WO1992012735A1 - Composition containing ultrafine particles of magnetic metal oxide - Google Patents

Composition containing ultrafine particles of magnetic metal oxide Download PDF

Info

Publication number
WO1992012735A1
WO1992012735A1 PCT/JP1992/000031 JP9200031W WO9212735A1 WO 1992012735 A1 WO1992012735 A1 WO 1992012735A1 JP 9200031 W JP9200031 W JP 9200031W WO 9212735 A1 WO9212735 A1 WO 9212735A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
composition
complex
magnetic
composition according
Prior art date
Application number
PCT/JP1992/000031
Other languages
English (en)
French (fr)
Inventor
Kyoji Kito
Hideo Nagae
Masakatsu Hasegawa
Yoshio Ito
Akihiro Mizutani
Kimio Hirose
Masahiro Ohgai
Yasuji Yamashita
Nahoko Tozawa
Keiko Yamada
Shusaburo Hokukoku
Original Assignee
Meito Sangyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12001420&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1992012735(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DK92903328T priority Critical patent/DK0525199T4/da
Priority to AU11689/92A priority patent/AU652804B2/en
Priority to DE2001199065 priority patent/DE10199065I2/de
Priority to EP92903328A priority patent/EP0525199B2/en
Priority to CA002078679A priority patent/CA2078679C/en
Application filed by Meito Sangyo Kabushiki Kaisha filed Critical Meito Sangyo Kabushiki Kaisha
Priority to US07/934,637 priority patent/US5328681A/en
Priority to JP4503597A priority patent/JP2921984B2/ja
Priority to DE69229150T priority patent/DE69229150T3/de
Publication of WO1992012735A1 publication Critical patent/WO1992012735A1/ja
Priority to NO923584A priority patent/NO305636B1/no
Priority to NL300088C priority patent/NL300088I1/nl
Priority to LU91003C priority patent/LU91003I2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5094Microcapsules containing magnetic carrier material, e.g. ferrite for drug targeting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2400/00Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
    • G01N2400/10Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • G01N2400/12Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar
    • G01N2400/14Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar alpha-D-Glucans, i.e. having alpha 1,n (n=3,4,6) linkages between saccharide units, e.g. pullulan
    • G01N2400/22Dextran
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/20Magnetic particle immunoreagent carriers the magnetic material being present in the particle core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/30Magnetic particle immunoreagent carriers the magnetic material being dispersed in the polymer composition before their conversion into particulate form
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers
    • G01N2446/80Magnetic particle immunoreagent carriers characterised by the agent used to coat the magnetic particles, e.g. lipids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/806Electrical property or magnetic property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry

Definitions

  • the present invention relates to a composition containing ultrafine magnetic metal oxide particles, which is useful as a field of medicines and diagnostics, in particular, an MRI contrast agent.
  • compositions comprising magnetic metal oxide fine particles, for example, so-called magnetic fluids, have a wide variety of uses, one of which is as a base for pharmaceuticals and diagnostics. '
  • the present inventors have conducted research on the application of magnetic fluids to pharmaceuticals and diagnostics, especially from the viewpoint of their toxicity.As a result, magnetic fluids, which are foreign substances to living organisms, aggregate platelets, which are important components of blood, It has caused adverse effects on the living body, such as causing toxic effects of magnetic flux breakage.
  • the present inventors have no side effects such as platelet aggregation, As a result of intensive research to develop magnetic fluids that are excellent in safety and do not adversely affect the living body even when administered intravascularly, this time, we have found that magnetic metal oxide ultrafine particles and polysaccharides, polysaccharide derivatives and Z or protein When an organic monocarboxylic acid, for example, lactic acid, is added to the aqueous sol of the composite of the above, the magnetic sol, metabolic properties, tissue specificity, etc., which the aqueous sol originally has, are not substantially changed. The present inventors have found that the platelet aggregation of the aqueous sol can be significantly reduced, and have completed the present invention.
  • an organic monocarboxylic acid for example, lactic acid
  • the present invention provides a magnetic metal oxide ultrafine particle containing an aqueous sol of a complex of ultrafine magnetic metal oxide particles, a polysaccharide, a polysaccharide derivative, and Z or a protein, and an organic monocarboxylic acid. It provides a composition.
  • the magnetic metal oxide ultrafine particle-containing composition provided by the present invention has low toxicity, hardly shows a decrease in blood pressure unlike conventional magnetic fluids even when administered directly into the blood vessel of an animal, and furthermore has a platelet. It has an extremely small agglutinating effect and is excellent in safety as a drug.
  • it can be suitably used as an MRI contrast agent, a thermotherapy agent, a carrier for local administration of a drug, and the like.
  • FIG. 1 is an MR image of a liver part of a Wistar (fistar) rat in which a Novikoff tumor was implanted in the liver.
  • (A) and (B) were prepared in Example 10 described later. It is an MR image before administration of the complex sol preparation according to the present invention, and (C) and (D) are MR images 60 minutes after administration of the preparation.
  • FIGS. 2 (A) and (B) are micrographs of the lungs of dd mice to which the aqueous sol preparations prepared in Comparative Example 1 and Examples 2-3, respectively, were administered.
  • Example 1 a significant embolus was observed in the lung, whereas in Photo (B) (Examples 2-3), no embolus was observed in the lung.
  • Photo (B) Examples 2-3
  • a complex composed of magnetic metal oxide ultrafine particles, polysaccharide, a polysaccharide derivative (hereinafter, the polysaccharide and the polysaccharide derivative are abbreviated as a polysaccharide), and a protein or a protein, which is one of the components forming the composition of the present invention, is At least a part of which is known, and for example, a method of reacting an aqueous sol of magnetic metal oxide ultrafine particles prepared in advance with a polysaccharide and Z or a protein (hereinafter, referred to as a first method); It can be produced by a method of forming ultrafine magnetic metal oxide particles in the presence of a polysaccharide and Z or a protein (hereinafter, referred to as a second method).
  • the magnetic metal oxide forming the magnetic metal oxide ultrafine particles the following formula is used.
  • Micromax '' represents a divalent metal atom
  • Micromax 111 represents a trivalent metal atom, a number in the range between O ⁇ 1
  • examples of the divalent metal atom M 11 for example, magnesium, calcium, manganese, iron, nickel, cobalt, copper, zinc, strontium, barium and the like, using each of these alone Or two or more of them can be used in combination.
  • aluminum, iron, yttrium, neodymium, samarium, nickel sulphide, gadolinium, etc. can be used alone or in combination of two or more.
  • M 11 is as defined above and m is a positive number in the range 0 ⁇ m ⁇ l.
  • M 11 can include the same metal as exemplified by the formula (I).
  • M 11 is divalent iron
  • the magnetic metal oxide of the above formula (II) that is, the following formula
  • n is a number in the range 0 ⁇ n I
  • the magnetic iron oxides represented by are also preferred magnetic metal oxides in the present invention.
  • n 0 ⁇ - a iron oxide ( ⁇ one Fe 2 0 3)
  • magnetic iron oxide having a ferrous iron content of 10% by weight or less, preferably about 2 to about 7% by weight of the total iron in terms of iron metal is preferable.
  • Micromax 11 represents a divalent metal atom
  • M 1 V represents a tetravalent metal atom
  • Micromax ' can be exemplified by those already mentioned above as 1, also tetravalent metal atom Micromax' as, for example vanadium, chromium and manganese and the like.
  • the magnetic metal oxide Mononogu body examples represented by the above formula (IV) or (V) are, for example, that N i M n 0 3, C o M n O 3, C r 0 2 , and the like .
  • the magnetic metal oxide also includes a magnetic metal oxide having water of crystallization.
  • the polysaccharide capable of forming a complex with the magnetic metal oxide ultrafine particles is preferably a water-soluble polysaccharide.
  • the polysaccharide include glucose polymers such as dextran, starch, glycogen, pullulan, curdlan, and the like.
  • the polysaccharide derivatives include, for example, a modified polysaccharide (that is, a carboxy polysaccharide) obtained by heat-treating the polysaccharide with an alkali such as sodium hydroxide, and a carboxyalkyl ether of the polysaccharide and cellulose. With That.
  • the protein include water-soluble proteins such as albumin and globulin.
  • polysaccharides and polysaccharide derivatives are preferred.
  • dextran is preferable as the polysaccharide
  • dextran alkali modified products of starch and pullulan (carboxy polysaccharide) and their lower alkyl etherified carboxylates, particularly carboxymethyl dextran are preferable as the polysaccharide derivatives.
  • the intrinsic viscosity of the polysaccharide can generally be in the range of about 0.02 to about 0.5 dl Zg, preferably about 0.04 to 0.2 d1 g.
  • an aqueous sol of magnetic metal oxide ultrafine particles is prepared.
  • a method for preparing the aqueous sol include an alkali coprecipitation method and an ion exchange resin method.
  • the co-precipitation method includes, for example, a divalent metal salt, preferably a divalent iron salt and a trivalent metal salt, preferably a trivalent iron salt in a molar ratio of 1: 3 to 2: 1. .
  • aqueous sol of a magnetic metal oxide by adding until H is in the range of 1-3.
  • H in the ion exchange resin method, for example, a 0.1 to 2 M aqueous solution containing a ferrous salt and a ferric salt in a molar ratio of about 1: 2 is added to a strongly basic exchange resin slurry while stirring.
  • a mineral acid such as hydrochloric acid is added until the pH of the solution becomes 1 to 3, and then the aqueous iron oxide sol is obtained by filtering the resin. Consists of gaining.
  • These aqueous sols can be purified and concentrated or concentrated by dialysis, ultrafiltration, centrifugation, etc., if necessary.
  • the aqueous sol of magnetic metal oxide thus obtained and the aqueous solution of polysaccharide and Z or protein are mixed with a weight ratio of magnetic metal oxide to polysaccharide and Z or protein of about 1: 1 to about 1 in terms of metal. Mix at a ratio within the range of 6 and react by heating.
  • the concentration of the magnetic metal oxide in the reaction solution is not particularly limited, but generally 0.1 to 10 WZV%, preferably 1 to 5 WZV%, can be employed as the metal.
  • the reaction is generally carried out at room temperature to The reaction can be carried out at a temperature in the range of 120 ° C. for about 10 minutes to 10 hours, but usually, reflux heating for about 1 hour is sufficient. Then, purification or the like can be carried out by a method known per se.
  • an operation of separating an unreacted polysaccharide, Z or protein and a low-molecular compound from a complex formed by ultrafiltration is repeated, and a complex aqueous sol having a desired purity and concentration can be obtained.
  • a poor solvent for the complex such as methanol, ethanol, acetone or the like is added to the resulting reaction solution, and the complex is preferentially precipitated to precipitate, the precipitate is separated, and the precipitate is redissolved in water. It is dialyzed and concentrated under reduced pressure as needed to obtain a complex aqueous sol having a desired purity and concentration.Furthermore, the obtained reaction solution is passed through a gel filtration column, and concentrated under reduced pressure as necessary.
  • a composite aqueous sol having a desired purity and concentration can be obtained.
  • a step of ⁇ adjustment, centrifugation and / or filtration may be inserted in the middle and / or the end of the above step.
  • a second method for producing a conjugate according to the present invention comprises a divalent metal salt, preferably a divalent iron salt and a trivalent metal salt, preferably a trivalent metal salt, in the presence of a polysaccharide and / or a protein.
  • a mixed metal salt aqueous solution of an iron salt and a base aqueous solution are mixed and reacted to obtain a complex in one step.
  • This second method further depends on the order of addition: ( ⁇ ) a method of adding a mixed metal salt aqueous solution to an aqueous solution of a polysaccharide and / or a protein, and then adding and reacting an aqueous solution of a base; and ( ⁇ ) a method of adding a polysaccharide and / or a protein.
  • C A method of adding a mixed solution of a polysaccharide and / or protein aqueous solution and a mixed metal salt aqueous solution to a base aqueous solution; Polysaccharide and ⁇ or protein water in mixed metal salt aqueous solution The method can be classified into a method of adding a mixed solution of a solution and an aqueous base solution.
  • the aqueous mixed metal salt solution is prepared by mixing a divalent metal salt, preferably a divalent iron salt and a trivalent metal salt, preferably a trivalent iron salt, in a molar ratio of about 1: 4 to about 3: 1, preferably about It can be carried out by dissolving in an aqueous medium at a ratio of 1: 3 to about 1: 1.
  • concentration of the aqueous metal salt solution can vary over a wide range, but is usually in the range of about 0.1 to about 3M, preferably about 0.5 to about 2M.
  • the metal salt examples include salts with mineral acids such as hydrochloric acid, sulfuric acid and nitric acid.
  • Examples of the base include alkali metal hydroxides such as NaOH and KOH; ammonia, triethylamine, trimethylamine At least one member selected from the group consisting of amines and the like can be used.
  • the concentration of the aqueous base solution can also vary over a wide range, but is usually in the range of about 0.1 to about 10N, preferably about 1 to about 5N.
  • the amount of the base to be used is such that the pH of the reaction solution after the completion of the addition is substantially neutral or within the range of about pH 12, that is, the ratio of the metal salt to the base is from about 1: 1 to about 1: 1.5 ( (Specified ratio).
  • the amount of polysaccharide and Z or protein used can be about 1 to about 15 times, preferably about 3 to about 10 times, based on the weight of metal in the metal salt used.
  • the concentration of the aqueous solution of the polysaccharide and the Z or protein is not strictly limited, but is usually in the range of about 1 to about 40 W / V%, preferably about 5 to 30 WZV.
  • the addition and mixing of each aqueous solution can be performed under stirring and heating from room temperature to about 100 ° C. After adjusting the pH by adding a base or an acid as necessary, the reaction is carried out by heating and refluxing at a temperature of about 30 to about 120 for about 10 minutes to about 5 hours, usually about 1 hour.
  • the reaction solution thus obtained is purified in the same manner as in the first method, and if desired, can be adjusted in pH, concentrated, and filtered.
  • dextran disclosed in Japanese Patent Publication No. 59-13521 (U.S. Pat. No. 4,101,435) may be used as the conjugate in the present invention.
  • a complex of modified dextran obtained by heat-treating dextran with sodium hydroxide (ie, carboxydextran or less, sometimes abbreviated as CDX) and magnetic iron oxide having a particle size of 3 to 20 nm US Patent No. 4,452,773, magnetic iron-dextran microspheres having a molecular complex structure in which magnetic iron oxide particles having a colloid diameter are coated with dextran molecules; (International Application No.
  • PCTZWO 88/00060 composite microspheres in which magnetic iron oxide particles having a colloid diameter are coated with dextran molecules or protein molecules; Japanese Patent Application No. 1-2717. No. 84 (International Application No. PC TZ J P90 / 013 46), carboxyalkylated polysaccharides and magnetic metal oxides having a particle size of 2 to 30 nm can be used in the same manner. it can.
  • the magnetic metal oxide in the composite obtained as described above is a magnetic iron oxide
  • the content of divalent iron is small, and preferably, the content of divalent iron is all iron in terms of iron metal. It is more preferably 10% by weight or less of magnetic iron oxide, and polysaccharides, especially dextran and Z or carboxydextran are preferable as the complex stabilizer of the magnetic iron oxide particles.
  • Such a complex of a polysaccharide and a magnetic iron oxide may be prepared by using the aqueous sol of the complex prepared by the first and second methods, preferably by the second method.
  • the oxidizing agent used in this method oxidizes the magnetic iron oxide to reduce the iron (II) content, but does not substantially oxidize or decompose the polysaccharide. It is preferable to use, for example, a peroxide such as hydrogen peroxide or an oxidizing gas such as an oxygen gas or a mixed gas of an oxygen gas and an inert gas.
  • a peroxide such as hydrogen peroxide
  • an oxidizing gas such as an oxygen gas or a mixed gas of an oxygen gas and an inert gas.
  • examples of usable peroxides include hydrogen peroxide and ozone, but hydrogen peroxide is preferable.
  • the concentration of the raw material composite aqueous sol is not particularly limited, but is generally in the range of about 0.1 to about 4 M, preferably about 0.5 to about 2 M as iron.
  • the peroxide is added to the aqueous sol at a molar ratio of about 0.5 to about 10 times, preferably about 1 to about 5 times, relative to ferrous iron, and is preferably stirred, and the mixture is added at about 0 to about 8 times.
  • the reaction is carried out at a temperature of about 0, preferably about 15 to about 40, for about 10 minutes to about 24 hours, preferably for about 1 to about 5 hours.
  • a peroxide decomposing agent such as sodium sulfite, purification and the like are carried out in the same manner as in the complex, and the present invention having the desired purity, concentration and pH is obtained.
  • the iron oxide composite aqueous sol of the above can be obtained.
  • the polysaccharide content of the complex becomes too low, and it is preferable to add the polysaccharide to a desired concentration in order to improve stability.
  • the particle diameter of the resulting iron oxide composite as a whole is slightly smaller than that of the composite used as the raw material, generally about 70% or about the same, and the magnetic iron oxide in the composite oxide has a smaller particle diameter.
  • the particle diameter is almost the same as that of the raw material composite.
  • the magnetization of the resulting oxidized composite at 1 Tesla is generally 80% or more of that of the raw composite.
  • examples of the oxidizing gas that can be used include a mixed gas of an inert gas such as an oxygen gas, a nitrogen gas, an argon gas or a helium gas, and an oxygen gas. Particularly preferred.
  • the concentration of the composite aqueous sol during the oxidation reaction with the oxidizing gas is not particularly limited, but is about 0.1 to about 4 M, preferably about 0.5 to about 2 M, as described above.
  • the reaction is carried out at a temperature of from room temperature to about 120, preferably from about 60 to about 100 T, with stirring in an oxidizing gas atmosphere, optionally under pressure, under pressure.
  • is adjusted to be about 3 to about 8, preferably about 4 to about 6, and may be carried out for about 0.5 hours to about 3 days, preferably for about 2 to about 16 hours. Then, if necessary, purification and the like are carried out in the same manner as described above to obtain a composite oxide aqueous sol used in the present invention having a desired purity, concentration and ⁇ . At this time, especially in the case of purification by ultrafiltration, the polysaccharide content of the complex becomes too low, and it is likewise preferable to add the polysaccharide to a desired concentration.
  • An oxidizing gas, particularly an oxygen gas is preferable in that it has less side reactions as compared with the case where a peroxide is used. The properties of the obtained composite oxide show the same tendency as in the case of using peroxide.
  • the ratio of the polysaccharide and / or protein to the magnetic metal oxide ultrafine particles is determined by the diameter of the magnetic metal oxide ultrafine particles, the polysaccharide and / or the protein.
  • the conjugate can convert the polysaccharide and ⁇ or protein into a single metal complex in a magnetic metal oxide. It is preferred that the content be in the range of about 0.1 to about 5 parts by weight, preferably about 0.3 to about 2 parts by weight.
  • the metal content of the complex in the present specification (this metal includes all metals derived from magnetic metal oxides) is based on the Japanese Pharmacopoeia (11th revision, 1986) It is a value measured according to the method described in Section 17, Atomic Absorption Spectrophotometry. That is, concentrated hydrochloric acid is added to the aqueous sol or powder of the complex to completely decompose the contained metal to chloride, and then appropriately diluted, and the metal content is determined by comparing with the standard solution of each metal. .
  • the polysaccharide content in the complex is a value measured by the monoanthrone sulfate method in accordance with Analytical Chem., 25, 1656 (1953). That is, a solution obtained by appropriately diluting the hydrochloric acid decomposition solution used for the measurement of the metal content is added to a monoanthroic acid reagent to form a color, and the absorbance is measured. At the same time, color development is performed in the same manner using the polysaccharide used for the production of the complex as a reference substance, absorbance is measured, and the polysaccharide content is determined from the ratio of the absorbance of both.
  • the protein content of the conjugate was measured by the method described in Japanese Pharmacopoeia (Revised 11th, 1998), General Test Methods, and the method described in Section 26 Nitrogen Determination Method. ⁇ . That is, the nitrogen content is determined for the complex and the protein used for its production, and the protein content is determined from the ratio of both. Further, in the present invention, it is preferable to use a complex composed of magnetic iron oxide.
  • a complex composed of magnetic iron oxide a composite oxide composed of a polysaccharide and magnetic iron oxide is particularly preferred, and in particular, its divalent iron content Is preferably about 10% by weight or less, preferably about 2 to about 7% by weight of the total iron in terms of iron metal.
  • the degree of oxidation of the composite oxide can be represented by the amount of iron (II), and the content of iron (II) can be determined by a colorimetric method using 0-phenanthroline. That is, After careful consideration such as nitrogen replacement to prevent oxidation during the reaction, add concentrated hydrochloric acid to the aqueous sol or powder of the complex, and completely decompose the iron contained into chloride, Dilute and detect. Add 0.1% o-phenanthroline test solution (8 ml) in 0.4 M aqueous acid buffer (pH 4) to this test solution (lm 1), then add 1 M fluorinated lm (lm 1), and absorbance at a wavelength of 510 nm Ask for. On the other hand, the absorbance of the divalent iron standard solution and the water used for the measurement are determined in the same manner, and the divalent iron content is determined from the ratio.
  • the average particle diameter of the magnetic metal oxide ultrafine particles of the composite used can be generally in the range of about 2 to about 30 nm, preferably about 4 to about 15 nm.
  • the particle diameter of the magnetic metal oxide ultrafine particles is a value obtained by an X-ray diffraction method. That is, using a powder X-ray diffractometer (target: Co, wavelength: 1.790 A), X-ray diffraction of the lyophilized raw material composite and the powder of the composition of the present invention gives a specific compound. Several corresponding diffraction peaks can be observed, indicating that the magnetic metal oxide (magnetic particles) contained in the composite exists in a crystalline form.
  • the obtained diffraction peak broadens, that is, becomes smaller as the diameter of the magnetic particles contained in the composite decreases. Therefore, when the particle size of the magnetic metal oxide contained in the composite is 0.1 #m or less, the particle size can be measured by X-ray diffraction. That is, the particle size (diameter) of the strongest peak in X-ray diffraction can be calculated according to the Scherrer equation below.
  • the standard sample used is the same substance with a particle size of 1 m or more.
  • the values obtained in this way agree relatively well with the values obtained from the transmission electron microscope.
  • the particle diameter of the composite itself is a value measured by a light scattering method (for example, see Polymer J., 13, 1037-1043 (1981)), and the composite used in the present invention.
  • the body can generally have a particle diameter in the range of about 10 to about 500 nm, preferably about 20 to about 200 nm.
  • the magnetism (eg, magnetization and coercive force) of the composite can be determined from a magnetization-magnetic field curve (a so-called MH curve) using a vibrating sample magnetometer at room temperature.
  • the magnetization at 1 T of the composite used in the present invention can generally be in the range of about 10 to about 150 emu, preferably about 30 to about 150 emu, per gram of metal.
  • the coercive force of the composite that can be used in the present invention can be about 30 Oersted or less, and is preferably substantially superparamagnetic.
  • the T 2 relaxation ability of the raw material complex that can be used in the present invention is generally from about 5 to about 1000 (sec * mM) “ 1. preferably from about 10 to about 500 (sec-mM)” 1. More preferably from about 20 to about 500 (sec-mM). Approximately 300 (sec-mM) —can be in the range of 1 .
  • the aqueous sol of the magnetic metal oxide ultrafine particle-monosaccharide and / or protein complex described above, preferably the magnetic metal oxide ultrafine particle-polysaccharide complex, is mixed with an organic monocarboxylic acid to obtain the present invention.
  • an organic monocarboxylic acid such as Ringer's lactate solution. It is convenient to prepare it by adding an aqueous solution. In some cases, it may be prepared by introducing an organic monocarboxylic acid at the same time as removing impurities contained in the aqueous sol of the complex by an ultrafiltration method or a dialysis method.
  • the concentration of the composite aqueous sol used is not strictly limited, but can be generally in the range of about 0.05 to about 6M, preferably about 0.2 to about 2M in terms of metal, and its pH is about A range from 4 to about 10, preferably from about 5 to about 9, is suitable.
  • the monocarboxylic acid can be mixed with the aqueous sol of the composite in a range of about 1 mmol to about 30 mol, preferably about 5 to about 100 mol, per mol of metal in the composite.
  • the organic monocarboxylic acid to be used is a monovalent cation such as lithium, sodium, potassium, ammonium, lower alkylamine, or a salt with a divalent cation such as magnesium, calcium, barium, or the like, preferably in the form of sodium. And more preferably in the form of the free acid.
  • concentration of the organic monocarboxylic acid aqueous solution at the time of addition is not particularly limited, but may be generally about 0.01 M or more, preferably about 0.2 to about 2 M.
  • the monocarboxylic acid that can be added is preferably a water-soluble monocarboxylic acid.
  • a monocarboxylic acid that is free acid type and water-soluble is preferable, but a water-soluble monocarboxylic acid salt can also be used.
  • a water-soluble monocarboxylic acid those having 10 or less carbon atoms are preferable, and a monocarboxylic acid having a hydroxyl group and a di- or amino group can also be suitably used.
  • Specific examples of the organic monocarboxylic acid that can be suitably used in the present invention are as follows.
  • Fatty acids for example, diacid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, methylethyl folic acid, trimethylacetic acid, tert-butyl drunk acid, cabronic acid, getyl drunk acid, heptanoic acid, power Prillic acid, valproic acid, nonanoic acid, etc.
  • Organic monocarboxylic acids containing hydroxyl groups for example, glycolic acid, 3-hydroxypropionic acid, lactic acid; 5-hydroxybutyric acid, 4-hydroxybutyric acid, glyceric acid, mevalonic acid, dalconic acid, gulonic acid, Lucoheptonic acid and the like.
  • Organic monocarboxylic acids containing an amine group for example, glycine, alanine, ⁇ -aminobutyric acid, phosphine, norpaline, leucine, norleu Syn, Isoleucine, Phenylalanine, Tyrosine, Sulinamine, Threonine, Serine, Proline, Oxyproline, Tryptophan, Tyroxine, Joe Dotyrosine, Dibromtyrosine, Methionin, Cystine, Cystine, Lysine, Arginine, Histidine, ⁇ - ⁇ - ⁇ aminobutyric acid, 7-aminobutyric acid, 5-aminovaleric acid, etc.
  • aspartic acid, glutamic acid, S-oxyglutamic acid, and the like are dicarboxylic acids, but also have an amino group, so that they can be used in the present invention in the same manner as monocarboxylic acids.
  • Ketone acid for example, pyruvic acid, acetoacetic acid, levulinic acid and the like.
  • organic monocarboxylic acids can be used alone or in combination of two or more.
  • lower aliphatic monocarboxylic acids having 6 or less carbon atoms, which may have a hydroxyl group or an amino group are suitable, and lactic acid is particularly suitable.
  • the pH of the mixture of the aqueous sol of the complex and the organic monocarboxylic acid is not particularly limited, but is generally about 4 to about 11, preferably about 5 to about 9, and more preferably about 6 to about 9. Preferably, it is in the range of about 8.
  • the composition of the present invention can also be adjusted in concentration and filtered if desired, and further subjected to heat treatment if desired. In general, the heat treatment is preferably carried out at a temperature of about 60 to about 140 for about 5 minutes to about 5 hours, and especially for 121 to 20 to 30 minutes also serving as sterilization.
  • an inorganic salt such as sodium chloride as a tonicity agent
  • a monosaccharide such as glucose or a sugar alcohol such as mannitol or sorbitol
  • Various physiologically acceptable aids such as buffers or Tris buffers.
  • Agents can also be added.
  • the composition of the present invention can be powdered by a method known per se, preferably a freeze-drying method, irrespective of the presence or absence of these auxiliaries. Addition of this gives an aqueous sol.
  • the composition of the present invention obtained as described above has no t, z, or platelet aggregation effect having no blood pressure lowering effect as compared with the complex used as a raw material, but has a chemical, physical Or the other biological properties are not significantly changed, i.e., a very favorable effect that the safety of the composition of the present invention is improved and the effect as an MRI contrast agent, acute toxicity, etc. is not changed, for example. Is brought. So far, a composition of a polycarboxylic acid such as citric acid and a complex similar to that used in the present invention has already been proposed. However, the composition with the polycarboxylic acid certainly lowers blood pressure and platelets.
  • the composition containing the monocarboxylic acid of the present invention has low acute toxicity.
  • the LD 5 () of each of the composites of Examples 2-3, Comparative Example 1 and Reference Example 4, which are preferred embodiments of the present invention is 28 mmol Fe Z kg, 9
  • the compositions containing the monocarboxylic acid of the present invention are extremely useful as pharmaceuticals and diagnostics, with mmo 1 Fe / kg and 22 mmo 1 Fe / kg.
  • composition of the present invention is administered to an animal and subjected to a pathological examination of the lung, for example, as shown in Test Example 4 below (see FIG. 2 (B)), Not recognized and extremely safe.
  • the composition of the present invention has a low blood pressure lowering effect.
  • the blood pressure measurement is performed by using a composite aqueous sol such as the composition of the present invention as a metal, for example, 0.2.
  • a dose of mmo 1 Z kg is given intravenously to rabbits. If there is a blood pressure lowering effect, blood pressure reduction is generally observed within a range of about 2 to about 10 minutes after administration.
  • the composition of the present invention has a lower blood pressure lowering effect than the composite aqueous sol used as a raw material.
  • the composition c of Example 1 which is a preferred embodiment of the present invention, does not show a blood pressure lowering effect, but the composite aqueous sol of Reference Example 2, which is a raw material thereof, has a blood pressure lowering effect.
  • the composition of the present invention has a small platelet aggregation action.
  • the agglutinability of platelets is indicated by the residual ratio of platelets. That is, a complex aqueous sol such as the composition of the present invention is used as a metal to give, for example, 0.1 mmo 1 Zkg in a rabbit intravenously, and the ratio of the platelet count 5 minutes after administration to the platelet count immediately before administration is given.
  • the rate be the platelet residual rate (%).
  • the aqueous composite sol used as a raw material in the present invention generally has a residual ratio of platelets of about 1 to about 50%, whereas the composition of the present invention generally has a residual rate of about 2 to about 10%. Up to 2x.
  • the residual ratio of platelets in a preferred embodiment is Example 1 and the complex of ginseng iota I 5 kappa Reference Example 2 which is the raw material of the present invention are each 3 8 and 3%, even Example 2 3.
  • the residual ratio of platelets of each complex of Comparative Example 1 and Reference Example 4 which is a raw material thereof is 102, 97 and 56%, respectively.
  • At least the magnetic particle portion of the complex in the aqueous sol of each complex contained in the composition of the present invention easily accumulates in organs with developed reticuloendothelial system, for example, liver, spleen, and bone marrow immediately after intravenous administration.
  • reticuloendothelial system for example, liver, spleen, and bone marrow immediately after intravenous administration.
  • Especially low doses eg as metal
  • the complex aqueous sol was intravenously administered as a metal to a 0.1 mm O 1 Z kg rat, e.g.
  • composition of the present invention has various excellent properties as described above, and is used in the fields of biology and medicine, for example, iron capture agents, X-ray contrast agents, MRI contrast agents, and blood flow measurement. It can be safely used as an agent for hyperthermia, or as a carrier for the centralized administration of drugs to a local area using a magnetic field. Of these, it is particularly advantageously used for intravascular administration. be able to.
  • composition of the present invention which can be preferably used as an MRI contrast agent is a preferable embodiment of the present invention.
  • polysaccharides especially dextran, starch or pullulan, are preferred as the polysaccharide and Z or protein forming the aqueous complex sol, which is one component of the composition of the invention
  • Carboxypolysaccharides or carboxyalkyl ethers of polysaccharides are preferred.
  • the intrinsic viscosity of these polysaccharides is about 0.02 to about 0.5, Preferably it can be in the range of about 0.04 to about 0.2.
  • the magnetic metal oxide is preferably a magnetic iron oxide, more preferably an oxidized magnetic iron oxide, and the particle diameter of the magnetic metal oxide is about 2 to about 30 nm, preferably about 4 to about 15 nm.
  • the most preferred combination is a complex of CDX and magnetic iron oxide or an oxidized complex.
  • the magnetization per gram of metal at 1 Tesla of the composite that can be used in the composition of the present invention is preferably in the range of about 10 to about 150 emu, preferably about 30 to about 150 emu.
  • the T 2 relaxation ability of the complex is generally from about 5 to about 1000 (sec * mM) - preferably from about 10 to about 500 (sec - mM) - more preferably about 20 to about 300
  • lactic acid is particularly preferable among the above-mentioned organic monocarboxylic acids which can be added to the aqueous composite sol.
  • the concentration of the complex in the composition can be varied over a wide range, but is usually in the range of about lmmo 1 £ to about 4 mo 1 Z £, preferably about 0.01 to about 2 mol 1 £ in terms of metal.
  • a physiologically acceptable salt such as an inorganic salt such as sodium chloride, a monosaccharide such as glucose, a sugar alcohol such as mannitol or sorbitol, or a phosphate buffer or a tris buffer may be used.
  • a physiologically acceptable salt such as an inorganic salt such as sodium chloride, a monosaccharide such as glucose, a sugar alcohol such as mannitol or sorbitol, or a phosphate buffer or a tris buffer may be used.
  • auxiliaries can also be added.
  • composition of the present invention When the composition of the present invention is used as an MRI contrast agent, its dosage varies depending on the site to be diagnosed and cannot be specified unconditionally. It is in the range of 1 ⁇ 1 / kg to about 1 Ommo 1 Zkg body weight, preferably about 2 / zmol Zkg to about lmmo I Zkg body weight.
  • Administration methods include, for example, intravenous, intraarterial, intravesical, intramuscular, subcutaneous, and intradermal injections and infusions, and in some cases, oral administration or direct intestinal administration are also possible. .
  • composition of the present invention when a preferred form of the composition of the present invention is administered intravenously, much of it is concentrated relatively rapidly, for example within tens of minutes to several hours, in the reticuloendothelial system, especially in the liver, resulting in hepatic MR I Shooting is suitably performed.
  • the reticuloendothelial cells such as cancer are missing in the liver or there is a lesion in which the distribution is small
  • the lesion is compared with other normal sites in the composition of the present invention. Since the contained complexes are not collected at all or only a little, it is possible to easily specify the lesion by MRI imaging [see Test Example 3 and FIGS. 1 (A) to (D) below).
  • the composition of the present invention has an effect as a contrast agent against the image not only T 2 images.
  • Iron concentration 144 mg / m 1
  • particle diameter of magnetic iron oxide 6.2 nm
  • total particle diameter 89 nm
  • polysaccharide substance Roh iron weight ratio: 0.63
  • magnetization in 1 tesla 64 emu / 1 g iron
  • T 2 relaxation Capacity 130 (mM ⁇ sec) "Percentage of ferrous iron in total iron: 21%.
  • reaction solution was concentrated by ultrafiltration (fraction molecular weight: 100,000 daltons) to 11 and ultrafiltration (molecular weight cutoff: 100,000 daltons) was performed while adding water to the concentrate until the volume of the discharged solution reached 121. 100,000 daltons), add a predetermined amount of CDX to the inner solution of the mixture so that the weight ratio of CDX and iron becomes 1: 1, adjust the pH to 7.0 with sodium hydroxide, centrifuge, The supernatant is filtered through a membrane filter (pore size: 0.2 ⁇ m) to obtain 1.75 1 of the desired aqueous sol of the complex (Reference Example 4).
  • Iron concentration 56mgZml
  • particle size of magnetic iron oxide magnetic oxide 8.5nm
  • total particle size 67nm
  • polysaccharide substance Z iron weight ratio 1.08
  • magnetism at 1 Tesla 87 emu / 1g iron
  • T 2 relaxation ability 210 (mM ⁇ sec) " 1 divalent iron rate in Zentetsuchu: 3.4%.
  • the resulting precipitate is dissolved in water and dialyzed with running water for 16 hours.
  • the pH of the dialysate was adjusted to 7.2 with sodium hydroxide, concentrated under reduced pressure, and then filtered through a membrane filter (pore size: 0.2 zm) to obtain a magnetic iron oxide complex aqueous sol 39 Oml (iron concentration: 56 mgZml). obtain. 300 ml of this complex aqueous sol (iron concentration: 56 mgZml) was oxidized at 95 for 3 hours and 30 minutes using oxygen gas in the same manner as in Reference Example 4, cooled, and dialyzed with running water for 16 hours.
  • the pH of the dialysate is adjusted to 7.2 with sodium hydroxide, concentrated under reduced pressure, and then filtered through a membrane filter (pore size: 0.2 m) to obtain 285 ml of the desired composite aqueous sol (Reference Example 5).
  • Iron concentration: 55 m gZm 1 the particle size of the oxide magnetic iron oxide: 7.7 nm, total particle diameter: 78 nm, polysaccharide substance Z iron weight ratio: 0.97, magnetization that put in 1 tesla: 84 emuZl g iron, T 2 relaxation Capacity: 205 (mM ⁇ sec) -1 , Percentage of ferrous iron in total iron: 1.7%.
  • the pH of the dialysate is adjusted to 8.0 with sodium hydroxide, concentrated under reduced pressure, and then filtered through a membrane filter (pore size: 0.45 wm) to obtain 168 ml of the desired composite aqueous sol (Reference Example 6).
  • Iron concentration 54m gm 1
  • particle diameter of magnetic iron oxide 8.3 nm
  • total particle diameter 60 nm
  • polysaccharide substance Z iron weight ratio 1.00
  • magnetization in 1 tesla 85 emuZl g iron
  • T 2 relaxation ability 200 (mM ⁇ sec) _
  • the ratio of ferrous iron in total iron 5.7%.
  • Iron concentration 2 SmgZm 1, particle diameter of magnetic iron oxide: 8.4 nm, total particle diameter: 60 nm, polysaccharide substance iron weight ratio: 1.03, magnetization in 1 tesla: 85 emu / 1 g iron, T 2 relaxation ability: 215 (mM ⁇ sec) —The ratio of ferrous iron in total iron: 5.1
  • Comparative Example 3 A 500 ml solution containing 75.5 g of ferric chloride and hexahydrate and 32 g of ferrous chloride and tetrahydrate was dissolved in 250 g of dextran having an intrinsic viscosity of 0.075 d1 Zg. Add it slowly to 50 Om 1 of ammonia water over 5 minutes with vigorous stirring. The resulting slurry is sonicated (30 minutes), then heated (100 ° C, 10 minutes), cooled, and centrifuged at 1,000 Oxg for 20 minutes. The supernatant was diluted with water to 21 and concentrated to 500 ml by ultrafiltration (molecular weight cut off: 100,000 daltons).
  • Iron concentration 57mg nom1
  • Particle size of magnetic iron oxide 8.1nm
  • Overall particle size 220 nm polysaccharide substance Z iron weight ratio: 0.36
  • magnetization in 1 tesla 83 emu / 1 g iron
  • T 2 relaxation ability 255 (mM ⁇ sec) "divalent iron rate in the whole iron: 6.5%.
  • Example 1 Intrinsic viscosity prepared according to Reference Example 2 0.050 d 1
  • Example 1 To 100 ml, 2 ml of a 1 M L-lactic acid solution is added, and the same treatment as in Comparative Example 1 is performed to obtain 103 ml of the desired composition (Example 1).
  • Iron concentration 55 mg / mK
  • Magnetic iron oxide particle size 8.8 nm
  • overall particle size 8 lnm
  • polysaccharide substance Z iron weight ratio 1.01
  • magnetization at 1 Tesla 89 emuZ ⁇ 1 g iron
  • T 2 relaxation ability 270 (mM ⁇ sec) — Percentage of ferrous iron in total iron: 24%.
  • Example 2 In 200 ml of an aqueous sol (iron concentration: 56 mgZ ml) of a complex of CDX and an iron oxide magnetic oxide having an intrinsic viscosity of 0.050 d 1 prepared according to Reference Example 4, 1, 2, 4 ml of a 1 M L-monolactic acid solution was added. Then, 4 and 8 ml of a 2M L-lactic acid solution are added, and each is treated in the same manner as in Example 1 to obtain about 200 ml of the desired composition (Examples 2_1 to 5).
  • Example 3 Aqueous sol of a complex of CDX and magnetic iron oxide having an intrinsic viscosity of 0.050 d1 Zg prepared according to Reference Example 4 (iron concentration: 56 mgZml) pH was adjusted to 20 Om1 with an aqueous sodium hydroxide solution. 4 ml of the 1 M L-monolactic acid solution adjusted to 8 was added, and the mixture was treated in the same manner as in Comparative Example 2 to obtain 205 ml of the desired composition (Example 3).
  • Iron concentration 54MgZm 1
  • particle diameter of magnetic iron oxide 8.6 nm
  • total particle diameter 63 nm
  • polysaccharide Busshitsunotetsu weight ratio 1.00
  • magnetization in 1 tesla 88 emuZl g iron
  • T 2 relaxation ability 210 ( mM ⁇ sec)-Percentage of divalent iron in total iron: 5.5%.
  • Example 4 Complex dextran / magnetic iron oxide aqueous sol with an intrinsic viscosity of 0.051 d 1 Zg prepared according to Reference Example 1 (iron concentration: 56 mg)
  • Example 4 Iron concentration: 54MgZm 1, particle diameter of magnetic iron oxide: 6.2 nm, total particle diameter: 83 nm, polysaccharide substance Z iron weight ratio: 0.61, magnetization in 1 tesla: 63 emu / 1 g iron, T 2 relaxation ability : 140 (mM ⁇ sec) " 1. The ratio of ferrous iron in total iron: 15%.
  • Example 5 Aqueous sol of a complex of CDX having an intrinsic viscosity of 0.050 d 1 / g and magnetic iron oxide prepared in accordance with Reference Example 4 (iron concentration: 56 mgZ ml) was added to 50 ml of a 0.5 M monocarboxylic acid or monocarboxylic acid. Add 4 ml of an acid-soluble salt solution, stir for 10 minutes, adjust the pH to 8 with aqueous sodium hydroxide solution, add water to 10 Om1, and add a membrane filter (pore size: 0.2 / m) And autoclaving at 121 ° C. for 20 minutes to obtain 100 ml of the desired composition (Examples 5-1 to 6). All of the obtained formulations do not show a blood pressure lowering effect. Table 2
  • Example 6 Aqueous sol of intrinsic viscosity 0.120 d 1 Zg of CDX and magnetic iron oxide complex prepared according to Reference Example 5 (iron concentration: 55 mgZ ml) 1 M L monolactic acid solution in 10 Oml, 2 m 1 And then treated in the same manner as in Comparative Example 1 to obtain 103 ml of the desired composition (Example 6).
  • T 2 relaxation ability 245 (mM ⁇ sec)
  • the ratio of ferrous iron in total iron 3.5%.
  • Example 7 Aqueous sol of complex of CDX and zinc ferrite having intrinsic viscosity of 0.120 d1 Zg prepared according to Reference Example 6 (iron concentration: 42 mgZml: zinc concentration: 16 mgml) 1.5 ml of a lactic acid solution was added, and the mixture was treated in the same manner as in Comparative Example 1 to obtain 102 ml of the desired composition (Example 7).
  • Iron concentration 4 Omg / m1, Zinc concentration: 15mg / m1, Magnetic metal particle size: 10.1nm, Overall particle size: 110 nm, polysaccharide substance metal weight ratio: 1.31, magnetization in 1 tesla: 29 emuZl g iron, T 2 relaxation ability: 25 (mM ⁇ sec) - J.
  • Example 8 Intrinsic Viscosity Prepared According to Reference Example 0.115 d 1 Zg, Degree of Substitution: Carboxymethylation of 0.26 mol 1 Z-Glucose Unit Aqueous Complex Sol of Dextran and Magnetic Iron Oxide (Iron concentration: 56 mg Zm 1)
  • Example 8 To 100 ml, 2 ml of a 1 M L-lactic acid solution is added and treated in the same manner as in Comparative Example 1 to obtain 103 ml of the desired composition (Example 8).
  • T 2 relaxation ability 140 (mM ⁇ sec) — Percentage of ferrous iron in total iron: 15%.
  • Example 9 Intrinsic viscosity 0.050 shir prepared in accordance with Reference Example 8 Zg CDX and magnetic iron oxide complex aqueous sol (iron concentration 55 mg Zm 1) 10 Om 1, 1 M L monolactic acid solution 2 m 1 was added, Thereafter, the same treatment as in Example 1 is carried out to obtain a target composition (Example 9) of about 10 Om 1. Iron concentration
  • Example 10 Composition obtained in Reference Example 4 (iron concentration: 56 mgZm 1)
  • Example 11 1 The composition obtained in Example 2-5 (iron concentration: 53 mgZml) To 100 ml of 1 M phosphate buffer (1 lm1) was added, and 3N hydroxylic acid was added.
  • Example 12 4.3 g of dextran 40 was added to 10 Om1 of the composition obtained in Example 2-4 (iron concentration: 54 mg Z ml), and the pH was adjusted to 7 with a 3N sodium hydroxide solution. Add water to make the total volume 216 ml (iron concentration: 2 mgZm 1). While filtering through a membrane filter (pore size: 0.2 ⁇ ), divide into 4 ml aliquots of sterilized vials.
  • This preparation can be used as an MRI contrast agent by dissolving it in physiological saline before use.
  • Example 13 110 g of hydroxypropylcellulose was added to 10 Om 1 of the composition obtained in Example 1 (iron concentration: 55 mg Zm 1), and 3N 0
  • Test Example 1 The effect of each complex aqueous sol produced in the above-mentioned Reference Examples, Comparative Examples and Examples on platelet count was examined. Using a rabbit weighing 2 to 3 kg, a control blood sample is collected, and a test solution is intravenously administered in an amount of 5 mg, 5 ml, and 1 kg as a metal, and the blood sample is collected 5 minutes later.
  • the blood was added to TA, diluted 101-fold with a 1% ammonium oxalate solution, placed in a hemocytometer, and each platelet count was measured with a phase-contrast microscope (Brecher & Cronkite method). The results are shown in Table 3.
  • LD5 () Acute toxicity (LD5 () ) was determined for each composite aqueous sol produced in the above-mentioned Reference Examples, Comparative Examples and Examples. To each group of 5 dd mice (os) with 5 weeks of age, 5, 10, 20, 40, and 8 g of 1 g of Ommo as an aqueous solution of each complex aqueous sol was administered intravenously for 2 weeks. After observing life and death, LD 5D was calculated by the Litchfield & Wilcoxon method. Table 4 shows the LD5 () value of each composite aqueous sol. '
  • Acidity of Example 7 is the total concentration of mMZ 1 M metal Table 4
  • Fig. 2 (A) shows a micrograph of one of them.
  • the composition containing magnetic metal oxide ultrafine particles of the present invention has no side effects such as platelet aggregation, is excellent in safety for living organisms, and is administered intravascularly. It does not adversely affect the living body when it is used, and is useful in the fields of medicine, diagnostics, etc., particularly as an MRI contrast agent.

Description

明 細 書 磁性金属酸化物超微粒子含有組成物 技術分野
本発明は、 医薬、 診断薬の分野、 殊に MR I造影剤として有用な磁性 金属酸化物超微粒子含有組成物に関する。
背景技術
磁性金属酸化物微粒子からなる組成物、 例えば、 いわゆる磁性流体に は多種多様の用途があり、 その一分野に医薬、 診断薬の基剤としての用 途が挙げられる。 '
しかしながら、 分子レベルよりはるかに大きなサイズの金属酸化物微 小粒子を生体に安全に投与し、 有効に効果を発揮させるためには種々の 点に配慮した製剤化が必要である。 これまでに知られている製剤には種 々の欠点があり、 殊に生体適合性の点で問題が認められ、 改良のために 種々の提案がなされている。 例えば、 特表昭 6 4— 5 0 0 1 9 6号公報 (国際出願番号 P C T/W0 8 8 Z 0 0 0 6 0明細書) には、 ポリカル ボン酸バッファー中に分散したデキストラン被覆超常磁性流体が開示さ れている。 これらの磁性流体製剤を医療用に使用するためには、 毒性等 の点でまだ改良すべき点がいくつかある。
本発明者らは磁性流体の医薬、 診断薬への応用において、 特にその毒 性の面から研究を行なった結果、 生体にとっては異物である磁性流体は 血液の重要な構成成分である血小板を凝集させるなどの悪影響を生体に 与え、 これが磁性流休の毒性の一因となっていることをつきとめた。 そこで、 本発明者らは、 血小板凝集等の副作用がなく、 生体に対する 安全性に優れ、 血管内投与したときにも生体に悪影響を及ぼさない磁性 流体を開発すべく鋭意研究を行なった結果、 今回、 磁性金属酸化物超微 粒子と多糖、 多糖誘導体及び Z又は蛋白質との複合体の水性ゾルに有機 モノカルボン酸、 例えば乳酸を配合すると、 該水性ゾルが本来有してい る磁気的性質、 代謝性、 組織特異性等の性質を実質的に変化させずに、 該水性ゾルの血小板凝集性を顕著に低減しうることを見い出し本発明を 完成するに至った。
発明の開示
かくして、 本発明は、 磁性金属酸化物超激粒子と多糖、 多糖誘導体及 び Z又は蛋白質との複合体の水性ゾルと有機モノカルボン酸を含有する ことを特徵とする磁性金属酸化物超微粒子含有組成物を提供するもので あな。
本発明により提供される磁性金属酸化物超微粒子含有組成物は毒性が 弱く、 動物の血管内に直接投与しても従来の磁性流体のように血圧低下 を示すことが殆んどなく、 しかも血小板凝集作用も極めて小さく、 薬剤 としての安全性に優れており、 例えば、 MR I造影剤、 温熱療法剤、 薬 物の局所投与用担体等として好適に使用することができる。
図面の簡単な説明
第 1図は、 肝臓内にノビコフ(Novikoff)腫瘍を移植したウィスター (fistar)系ラッ卜の肝臓部位の MR像であり、 (A) 及び (B ) は、 後 記実施例 1 0で調製した本発明に従う複合体ゾル製剤を投与する前の M R像であり、 (C) 及び (D) は該製剤投与 6 0分後の MR像である。
(A) 及び (B ) では腫瘍部が全く識別できないが、 (C) 及び (D) では腫瘍部の形状及び大きさを明瞭に確認することができる。 o
第 2図 (A) 及び (B) はそれぞれ後記比較例 1及び実施例 2— 3で 調製した複合体水性ゾル製剤を投与した d d系マウスの肺の顕微鏡写真 であり、 写真 (A) (比較例 1) では肺に著るしい塞栓が認められるの に対し、 写真 (B) (実施例 2— 3) では肺に塞栓が認められない。 発明の詳細な記述
以下、 本発明の組成物についてさらに詳細に説明する。
本発明の組成物を形成する一方の成分である磁性金属酸化物超微粒子 と多糖、 多糖誘導体 (以下、 多糖及び多糖誘導体を併せて多糖類と略称 する) 及びノまたはタンパク質とからなる複合体は、 少なくともその一 部は既知のものであり、 また、 例えば、 予め調製した磁性金属酸化物超 微粒子の水性ゾルと多糖類及び Z又は蛋白質とを反応させる方法 (以下、 第一の方法という) ;多糖類及び Z又は蛋白質の存在下に磁性金属酸化 物超微粒子を形成せしめる方法 (以下、 第二の方法という) 等によって 製造することができる。
ここで、 磁性金属酸化物超微粒子を形成する磁性金属酸化物としては、 下記式
(Μ'Ό)^· M2 II,03 (I)
式中、 Μ''は 2価の金属原子を表わし、 Μ111は 3価の金属原子を 表わし、 ま O ≤1の範囲内の数である、
で示されるものを例示することができる。 上記式 (I) において、 2価 の金属原子 M11としては、 例えば、 マグネシウム、 カルシウム、 マンガ ン、 鉄、 ニッケル、 コバルト、 銅、 亜鉛、 ストロンチウム、 バリウム等 が挙げられ、 これらはそれぞれ単独で使用することができ、 或いは 2種 以上併用することもできる。 また、 3価の金属原子 M11'としては、 例 ,
4
えば、 アルミニウム、 鉄、 イットリゥム、 ネオジゥム、 サマリウム、 ュ 一口ピウム、 ガドリニウム等が挙げられ、 これらはそれぞれ単独で使用 するか、 或いは 2種以上組合わせて用いることができる。
上記式 (I) において M'11が 3価の鉄である磁性金属酸化物、 すな わち下記式
(M O)ra- F e 203 (II)
式中、 M11は上記と同義であり、 mは 0≤m≤lの範囲内の正数で ある、
で示されるフェライトが好適である。 ここで M11としては前記式 (I) で例示したのと同じ金属を挙げることができる。 特に M 11が 2価の鉄で ある場合の上記式 (I I) の磁性金属酸化物、 すなわち下記式
(F eO)„ · F e 203 (HI)
式中、 nは 0≤n Iの範囲内の数である、
で示される磁性酸化鉄もまた、 本発明においてより好適な磁性金属酸化 物として挙げることができる。 なお、 上記式 (I I I) において、 n = 0の場合はァ—酸化鉄 (ァ一Fe 203) であり、 また、 n =lの場合は マグネタイト (Fe304) である。
本発明では中でも、 2価鉄含量が、 鉄金属換算で全鉄の 10重量%以 下、 特に約 2〜約 7重量%の磁性酸化鉄が好適である。
さらに、 本発明における磁性金属酸化物としては、 下記式
M^M^Os (IV)
及び
MIV02 (V)
式中、 Μ 11は 2価の金属原子を表わし、 M 1 Vは 4価の金属原子を表わす、
で示される磁性金属酸化物を使用することもできる。 ここで 2価金属原 子 Μ ' 1としては前述したものが例示でき、 また 4価金属原子 Μ ' として は、 例えばバナジウム、 クロムおよびマンガンなどが挙げられる。
しかして、 上記式 (I V) 又は (V) で示される磁性金属酸化物の具 体例には、 例えば、 N i M n 03、 C o M n O 3、 C r 02等が挙げられ る。 なお、 本発明においては磁性金属酸化物として、 結晶水を有する磁 性金属酸化物をも包含するものである。
また、 上記磁性金属酸化物超微粒子と複合体を形成しうる多糖類とし ては水溶性のものが好ましく、 多糖としては、 例えば、 グルコースポリ マーであるデキストラン、 デンプン、 グリコーゲン、 プルラン、 カード ラン、 シゾフィラン、 ぺスタロチアン等; フラク ト一スポリマーである ィヌリン、 レバン等:マンノースポリマーであるマンナン等;ガラク ト ースポリマーであるァガロース、 ガラクタン等;キシロースポリマーで あるキシラン等; Lーァラビノースポリマーであるァラビナン等が挙げ られ、 多糖誘導体としては、 例えば、 前記多糖を水酸化ナトリウム等の アルカリで加熱処理して得られる改質多糖 (すなわち、 カルボキシ多糖) や前記多糖及びセルロースのカルボキシアルキルエーテル等を挙げるこ とができる。 さらに蛋白質としては、 例えば、 アルブミン、 グロブリン 等の水溶性タンパク質を例示することができる。
本発明では、 多糖及び多糖誘導体が好適である。 中でも多糖としては デキストランが好適であり、 多糖誘導体としてはデキストラン、 デンプ ンおよびプルランのアルカリ改質体 (カルボキシ多糖) やそのカルボキ シ低級アルキルエーテル化物、 殊にカルボキシメチルデキストランが好 0
ましい。 多糖類の極限粘度は、 一般に約 0. 0 2〜約 0. 5 d l Z g、 好 ましくは約 0. 0 4〜0. 2 d 1ノ gの範囲内にあることができる。 本発明に従う複合体を製造するための第一の方法では、 まず磁性金属 酸化物超微粒子の水性ゾルを調製する。 該水性ゾルの調製法としてはァ ルカリ共沈法やイオン交換樹脂法等が例示できる。 アル力リ共沈法は、 例えば、 2価金属塩、 好ましくは 2価鉄塩と 3価金属塩、 好ましくは 3 価鉄塩とをモル比で 1対 3ないし 2対 1の比率で含む 0. 1〜 2 Mの水 溶液と、 N a O H、 K O H、 N H 4O H等の塩基とを p Hが 7〜: L 2の 範囲内になるように混合し、 必要に応じて加熱熟成し、 沈殿する磁性金 属酸化物を分離、 水洗した後、 水に再分散し、 塩酸などの鉱酸を液の p
Hが 1〜3の範囲内となるまで加えることによつて磁性金属酸化物水性 ゾルを得ることからなる。 一方、 イオン交換樹脂法は、 例えば、 第一鉄 塩と第二鉄塩とを約 1対 2のモル比で含む 0. 1〜2 Mの水溶液を、 強 塩基性交換樹脂スラリーに撹拌下 p Hを 8〜 9の範囲内に保ちながら添 加した後、 塩酸などの鉱酸を液の p Hが 1〜3になるまで加え、 次いで 榭脂を據別することにより磁性酸化鉄水性ゾルを得ることからなる。 必要に応じてこれらの水性ゾルは、 透析、 限外濂過、 遠心等により精 製及びノまたは濃縮することができる。
こうして得られる磁性金属酸化物水性ゾルと多糖類及び Zまたはタン パク質水溶液とを、 金属換算で磁性金属酸化物対多糖類及び Zまたはタ ンパク質との重量比が約 1対 1ないし約 1対 6の範囲内となる割合で混 合し、 加熱反応させる。 反応液中の磁性金属酸化物の濃度は、 特に制限 されるものではないが、 通常、 金属として 0. 1〜1 0 WZV%、 好ま しくは 1〜5 WZV%の範囲内が採用できる。 反応は一般に室温ないし 1 2 0 °Cの範囲内の温度で約 1 0分ないし 1 0時間行うことができるが、 通常、 約 1時間程度還流加熱すれば十分である。 次いで、 それ自体既知 の方法により精製等を行なうことができる。 例えば、 限外濾過により生 成する複合体から未反応の多糖類及び Z又は蛋白質及び低分子化合物を 分離する操作を繰り返し、 所望の純度及び濃度を有する複合体水性ゾル を得ることができ、 また、 得られる反応液にメタノール、 エタノール、 アセトン等の複合体に対する貧溶媒を添加し、 該複合体を優先的に沈殿 析出させ、 析出物を分離し、 ついで析出物を水に再溶解し、 流水透析し、 必要に応じて減圧濃縮し、 所望の純度及び濃度を有する複合体水性ゾル を得ることができ、 さらに、 得られる反応液をゲル濂過カラムに通過さ せ、 必要に応じて減圧濃縮し、 所望の純度及び濃度を有する複合体水性 ゾルを得ることができる。 この際、 所望に応じて、 上記工程の途中及び /または最後に、 ρ Η調整、 遠心分離及び/または濾過の工程を入れる こともできる。
本発明に従う複合体を製造するための第二の方法は、 多糖類及び Ζま たはタンパク質の存在下に、 2価金属塩、 好ましくは 2価鉄塩及び 3価 金属塩、 好ましくは 3価鉄塩の混合金属塩水溶液と塩基水溶液とを混合 して反応させ、 1工程で複合体を得る方法である。 この第二の方法は更 に添加順序により、 (Α) 多糖類及び Ζまたはタンパク質水溶液に混合 金属塩水溶液を添加し、 ついで塩基水溶液を添加し反応させる方法; ( Β ) 多糖類及び/またはタンパク質水溶液に塩基水溶液を添加し、 次 いで混合金属塩水溶液を添加し反応させる方法; (C ) 塩基水溶液に多 糖類及び,またはタンパク質水溶液と混合金属塩水溶液との混液を添加 する方法; (D) 混合金属塩水溶液に多糖類及び Ζまたはタンパク質水 溶液と塩基水溶液の混液を添加する方法などに分類することができる。 これら (A)、 (B)、 (C) 及び (D) の各方法は添加順序が相違する のみで、 他の反応条件は本質的には変わらない。
上記混合金属塩水溶液の調製は、 2価金属塩、 好ましくは 2価鉄塩と 3価金属塩、 好ましくは 3価鉄塩とをモル比が約 1 : 4ないし約 3 : 1、 好ましくは約 1 : 3ないし約 1 : 1の割合で水性媒体中に溶解すること により行なうことができる。 この金属塩水溶液の濃度は広い範囲にわた つて変えることができるが、 通常約 0.1〜約 3M、 好ましくは約 0.5 〜約 2 Mの範囲内が適当である。
金属塩としては、 例えば塩酸、 硫酸、 硝酸等の鉱酸との塩を挙げるこ とができ、 また、 塩基としては、 例えば NaOH、 KOH等のアルカリ 金属水酸化物;アンモニア、 トリェチルァミン、 トリメチルァミン等の ァミン類などから選ばれる少なくとも 1種を使用することができる。 塩 基水溶液の濃度も広範囲にわたり変えることができるが、 通常約 0.1 〜約 10N、 好ましくは約 1〜約 5Nの範囲内が適当である。 用いる塩 基の量は添加終了後の反応液の p Hがほぼ中性ないし p H約 12の範囲 内になる量、 即ち金属塩と塩基との比が約 1 : 1ないし約 1 : 1.5 (規 定比) となるような量とすることができる。
更に、 使用する多糖類及び Zまたはタンパク質の量は、 用いる金属塩 中の金属の重量を基準にして約 1〜約 15倍、 好ましくは約 3〜約 10 倍とすることができる。 また、 多糖類及び Zまたはタンパク質水溶液の 濃度も厳密に制限されるものではないが、 通常約 1〜約 40W/V%、 好ましくは約 5〜30WZV の範囲内が適当である。 各水溶液の添加 及び混合は撹拌下に室温から約 100°Cまでの加熱下に行うことができ、 必要に応じて塩基または酸を添加して pHを調整した後、 約 30〜約 1 20での温度で約 10分〜約 5時間、 通常約 1時間加熱還流することに より反応させる。 こうして得られる反応液は前記第一の方法におけると 同様にして精製し、 所望ならば、 pH調整、 濃縮、 さらには濂過するこ とができる。
本発明における複合体としては、 上記の如く して製造されるもののほ か、 例えば、 特公昭 59— 13521号公報 (米国特許第 4, 101, 4 35号明細書) に開示されている、 デキストランまたはデキストランを 水酸化ナトリウムで加熱処理して得られる改質デキストラン (すなわち、 カルボキシデキストラン一以下 CDXと略記することがある) と粒子 径が 3〜20 nmの磁性酸化鉄との複合体;米国特許第 4, 452, 77 3号明細書に開示されている、 コロイ ド径の磁性酸化鉄粒子をデキスト ラン分子で被覆した分子複合体構造の磁性鉄ーデキストラン微小球;特 表昭 64— 500196号公報 (国際出願番号 PCTZWO 88/0 0060号明細書) に開示されている、 コロイ ド径の磁性酸化鉄粒子を デキストラン分子またはタンパク質分子で被覆した複合体微小球;特願 平 1— 271784号明細書 (国際出願番号 PC TZ J P90/013 46号明細書) に開示されている、 カルボキシアルキル化多糖と粒子径 が 2〜30 nmの磁性金属酸化物等も同様に使用することができる。
さらに、 本発明においては、 上記の如くして得られる複合体中の磁性 金属酸化物が磁性酸化鉄の場合には、 2価鉄の少ない、 好ましくは 2価 鉄含量が鉄金属換算で全鉄の 10重量%以下である、 酸化磁性酸化鉄で あることがより好ましく、 かつ磁性酸化鉄粒子の複合安定化剤としては 多糖類、 殊にデキストラン及び Z又はカルボキシデキストランが好まし い。 こうした多糖類と磁性酸化鉄との複合体 (以下、 複合体酸化物と略 称することがある) は、 前記第一及び二の方法、 好ましくは第二の方法 によって調製される複合体の水性ゾルに適当な酸化剤を作用させて行う ことができるが、 これに用いる酸化剤は磁性酸化鉄を酸化して、 2価鉄 含量を減少させるが、 多糖類を実質的に酸化もしくは分解しない酸化剤 が好ましく、 例えば、 過酸化水素のような過酸化物や酸素ガスまたは酸 素ガスと不活性ガスとの混合気体のような酸化性ガスを例示することが できる。
まず、 過酸化物による酸化では、 用い得る過酸化物として過酸化水素、 オゾン等が例示できるが、 過酸化水素が好ましい。 酸化反応の際、 原料 複合体水性ゾルの濃度は特に制限されるものではないが、 一般には鉄と して約 0. 1〜約 4 M、 好ましくは約 0. 5〜約 2 Mの範囲内が採用でき、 この水性ゾルに過酸化物を 2価鉄に対するモル比で約 0. 5〜約 1 0倍、 好ましくは約 1〜約 5倍添加し、 好ましくは撹拌し、 約 0〜約 8 0 、 好ましくは約 1 5〜約 4 0での温度で約 1 0分ないし約 2 4時間、 好ま しくは約 1〜約 5時間反応させるのがよい。 所望ならば、 亜硫酸ナトリ ゥムなどのような過酸化物の分解剤を添加した後、 前記複合体における と同様の方法で精製等を行い、 所望の純度、 濃度及び p Hを有する本発 明の酸化鉄複合体水性ゾルを得ることができる。 この際、 特に限外濾過 法で精製する場合には、 複合体の多糖類含量が少なくなりすぎるので、 所望の濃度まで多糖類を添加することは、 安定性の向上のために好まし い。 得られる酸化鉄複合体全体の粒子直径は、 原料に用いた複合体のそ れに比較してやや小さくなり、 一般に約 7 0 %ないし同程度となり、 ま た複合体酸化物中の磁性酸化鉄の粒子直径は、 原料複合体のそれとほと んど変わらず、 さらに、 得られる酸化複合体の 1テスラにおける磁化は、 一般に原料複合体のそれの 8 0 %ないし同程度となる。
—方、 酸化性ガスによる酸化の場合、 用い得る酸化性ガスとして、 酸 素ガスや窒素ガス、 アルゴンガスまたはヘリウムガスなどの不活性ガス と酸素ガスとの混合気体が例示できるが、 酸素ガスが特に好ましい。 酸 化性ガスによる酸化反応に際しても、 複合体水性ゾルの濃度は、 特に制 限されるものではないが、 上記と同様に約 0. 1〜約 4 M、 好ましくは 約 0. 5〜約 2 Mの範囲内が採用でき、 反応は、 酸化性ガス雰囲気、 所 望により加圧下に、 撹拌しながら室温ないし約 1 2 0 、 好ましくは約 6 0〜約 1 0 0 T)の温度で、 最終 ρ Ηが約 3〜約 8、 好ましくは約 4〜 約 6になるように調整し、 約 0. 5時間ないし約 3日間、 好ましくは約 2〜約 1 6時間行なうことができる。 ついで必要なら、 上記と同様の方 法で精製等を行い、 所望の純度、 濃度及び ρ Ηを有する本発明に用いる 複合体酸化物水性ゾルを得ることができる。 この際、 特に限外濾過法で 精製する場合には、 複合体の多糖類含量が少なくなりすぎるので、 所望 の濃度まで多糖類を添加することは同様に好ましいことである。 酸化性 ガス、 特に酸素ガスは、 過酸化物を用いた場合に比較して副反応がより 少ないと言う点で好ましい。 得られる複合体酸化物の性質は、 過酸化物 を用いた場合と同様な変化傾向を示す。
本発明においては、 いずれの方法によって得られる複合体においても、 多糖類及び また ίまタンパク質と磁性金属酸化物超微粒子との比率は、 磁性金属酸化物超微粒子の直径や多糖類及び Ζまたはタンパク質の分子 量等に依存し、 広い範囲にわたって変えることができるが、 一般に該複 合体は、 多糖類及び Ζまたはタンパク質を磁性金属酸化物中の金属 1重 量部当り約 0. 1〜約 5重量部、 好ましくは約 0 . 3〜約 2重量部の範囲 内で含有するのが好適である。
なお、 本明細書における複合体中の金属含量 (この金属には磁性金属 酸化物に由来する全金属が含まれる) は、 日本薬局方 (第 1 1改正、 1 9 8 6年) 、 一般試験法、 第 1 7項原子吸光光度法に記載される方法に 準拠して測定したときの値である。 即ち、 複合体の水性ゾルまたは粉末 に濃塩酸を添加し、 含まれる金属を完全に塩化物までに分解した後、 適 当に希釈し、 各金属の基準液と比較して金属含量を決定する。
また、 複合体中の多糖類含量は、 Analytical Chem. , 2 5、 1 6 5 6 ( 1 9 5 3 ) に準拠し、 硫酸一アントロン法で測定したときの値である。 すなわち、 上記金属含量の測定に用いた塩酸分解液を適当に希釈した液 を硓酸一アントロン試薬に加えて発色させ、 吸光度を測定する。 同時に 複合体の製造に用いた多糖類を基準物質として、 同様に発色させ、 吸光 度を測定し、 両者の吸光度の比率から多糖類の含量を求める。 一方、 複 合体中のタンパク質含量は、 日本薬局方 (第 1 1改正、 1 9 8 6年) 、 一般試験法、 第 2 6項窒素定量法に記載される方法に準拠して測定した ときの值である。 すなわち、 複合体及びその製造に用いたタンパク質に ついて窒素含量を求め、 両者の比率からタンパク質含量を決定する。 また、 本発明では、 磁性酸化鉄からなる複合体を用いるのが好適であ り、 この場合、 特に多糖類と磁性酸化鉄とからなる複合体酸化物が好ま しく、 特に、 その 2価鉄含量は鉄金属換算で全鉄の約 1 0重量%以下、 好ましくは約 2〜約 7重量%であることが好ましい。 複合体酸化物の酸 化の程度は 2価鉄量で表すことができ、 その 2価鉄含量は 0—フエナン トロリンによる比色定量法によって求めることができる。 すなわち、 測 定中の酸化を防ぐために窒素置換などの十分な配慮をした上で、 複合体 の水性ゾルまたは粉末に濃塩酸を添加し、 含まれる鉄を完全に塩化物ま でに分解した後、 適当に希釈し、 検波とする。 この検液 lm 1に 0. 4 M酔酸バッファー (pH4) 中の 0. 1%o—フエナントロリン試液 8 m 1、 ついで 1Mフッ化力リウム lm 1を加え、 波長 510 nmでの吸 光度を求める。 一方、 2価鉄基準液と測定に用いた水についても同様に 吸光度を求め、 その比率から 2価鉄含量を決定する。
また、 本発明では、 用いる複合体の磁性金属酸化物超微粒子の平均粒 子直径は一般に約 2〜約 30 n m、 好ましくは約 4〜約 15 n mの範囲 内にあることができる。 なお、 本明細書では、 磁性金属酸化物超微粒子 の粒子直径は X線回折法から求めた値である。 即ち、 粉末 X線回折計(タ ーゲット : C o、 波長: 1.790A) を用い、 凍結乾燥した原料複合 体および本発明の組成物の粉末について X線回折を行なうと、 特定の化 合物に対応したいくつかの回折ピークを認めることができるので、 複合 体に含まれる磁性金属酸化物 (磁性粒子) は結晶形態で存在することが 分かる。 得られる回折ピークは、 複合体に含まれる磁性粒子の直径の減 少に従ってブロード、 すなわち小さくなる。 従って、 複合体に含まれる 磁性金属酸化物の粒子径が 0. 1 #m以下である場合においては、 X線 回折により粒子径を測定す ¾ことができる。 すなわち、 X線回折での最 強ピークについて下記シエラー (Scherrer) 式に従って、 粒子径 (直径) を計算することができる。
O=k / β - cos θ .
β Β2— b
で D:粒子径 (A)
k :定数、 0.9
λ : X線波長 (1. 790人)
Θ :ブラッグ角 (度)
Β :試料の半値幅 (ラジアン)
b :標準試料の半値幅 (ラジアン) 。
なお用いる標準試料は粒子径 1 m以上の同一物質である。 こうして 求めた値は透過型電子顕微鏡から求めた値と比較的よく一致する。
また、 本明細書では、 複合体それ自体の粒子直径は、 光散乱法 [例え ば Polymer J., 13、 1037— 1043 (1981) 参照] により 測定された値であり、 本発明に用いられる複合体は一般に約 10〜約 5 O O nm、 好ましくは約 20〜約 200 n mの範囲内の粒子直径^有す ることができる。
また、 本明細書では、 複合体の磁性 (例えば、 磁化及び保磁力) は、 室温で振動試料式磁力計を用いて磁化一磁場曲線 (いわゆる M— H曲線) を描き、 これから求めることができる。 本発明に用いられる複合体の 1 テ Xラにおける磁化は、 一般に、 金属 l g当り約 10〜約 150 emu、 好ましくは約 30〜約 150 emuの範囲内にあることができる。 また、 本発明に用い得る複合体の保磁力は約 30ェルステツド以下であること ができ、 実質的に超常磁性であることが好ましい。
さらに、 本明細書では、 本発明の組成物及び Zまたは原料複合体の T2 緩和能力は、 水で各複合体を種々の濃度に希釈した水性ゾル及び希 釈に用いた水について、 60MHz (磁場が約 1.4テスラ) の CW— NMRを用い、 水のプロトンの共鳴曲線を描き、 得られるピークの半値 幅:厶 /2 (単位: H z) を求め、 さらに 1ノ T2 (単位 -' s e c—1) =π · Δ ι/2 を計算し、 1ΖΤ2 と測定試料の水性ゾル中の鉄濃度 (単 位: mM) との関係をグラフにプロットし、 最小自乗法で求めた直線の 傾きから求めることができる [単位: (s e c * mM)"1] 。 かように して算出される本発明で用い得る原料複合体の T2 緩和能力は、 一般に、 約 5〜約 1000 (s e c * mM)"1. 好ましくは約 10〜約 500 (s e c - mM)"1. さらに好ましくは約 20〜約 300 (s e c - mM)— 1の範囲内にあることができる。
以上に述べた磁性金属酸化物超微粒子一多糖類及び 又はタンパク質 複合体、 好ましくは磁性金属酸化物超微粒子一多糖類複合体の水性ゾル は、 有機モノカルボン酸と混合することにより、 本発明の組成物とする ことができる。 この場合、 該組成物は、 乳酸リンゲル液のような有機モ ノカルボン酸水性液に該複合体の水性ゾルを添加混合することもできる が、 通常は該複合体め水性ゾルに有機モノカルボン酸又はその水溶液を 添加することにより調製するのが好都合である。 また、 場合によっては、 限外據過法や透析法によって、 該複合体の水性ゾルに含まれる不純物を 除去すると同時に有機モノカルボン酸を導入することにより調製しても よい。
用いる該複合体水性ゾルの濃度は厳密に制限されるものではないが、 一般に金属換算で約 0.05〜約 6M、 好ましくは約 0.2〜約 2Mの範 囲内とすることができ、 またその pHは約 4〜約 10、 好ましくは約 5 〜約 9の範囲内が好適である。 該複合体水性ゾルに対しモノ力ルボン酸 は、 複合体中の金属 1モルあたり約 1ミリモル〜約 30モル、 好ましく は約 5ミ リモル〜約 100ミ リモルの範囲内で混合することができる。 使用する有機モノカルボン酸は、 リチウム、 ナトリウム、 カリウム、 ァ ンモニァ、 低級アルキルァミン等の 1価陽イオン;あるいはマグネシゥ ム、 カルシウム、 バリウム等の 2価陽イオンとの塩、 好ましくはナトリ ゥムの形で添加することができ、 さらに好ましくは遊離酸型で加えるの が好適である。 加える際の有機モノカルボン酸水溶液の濃度も特に制限 されるものではないが、 一般に約 0. 0 1 M以上、 好ましくは約 0 . 2〜 約 2 Mの範囲内が例示できる。
本発明において、 添加できるモノカルボン酸は水溶性のものが好まし く、 この場合遊離酸型で水溶性であるモノカルボン酸が好ましいが、 水 溶性のモノカルボン酸塩も用いることができる。 このような水溶性モノ カルボン酸としては、 炭素数が 1 0個以下のものが好ましく、 さらにま た、 水酸基及びノまたはアミノ基を有するモノ力ルボン酸もまた好適に 使用できる。 本発明において好適に用い得る有機モノカルボン酸の具体 例を示せば次のとおりである。
(i) 脂肪酸:例えば、 齚酸、 プロピオン酸、 酪酸、 ィソ酪酸、 吉 草酸、 イソ吉草酸、 メチルェチル詐酸、 トリメチル酢酸、 tert-ブチル 醉酸、 カブロン酸、 ジェチル酔酸、 ヘプタン酸、 力プリル酸、 バルプロ 酸、 ノナン酸等。
(ii) 水酸基耷含有する有機モノカルボン酸:例えば、 グリコール 酸、 3—ヒドロキシプロピオン酸、 乳酸、 ;5—ヒドロキシ酪酸、 4ーヒ ドロキシ酪酸、 グリセリン酸、 メバロン酸、 ダルコン酸、 グロン酸、 グ ルコヘプトン酸等。
(iii) アミン基を含有する有機モノカルボン酸:例えば、 グリシン、 ァラニン、 α—ァミノ酪酸、 ノ《リン、 ノルパリン、 ロイシン、 ノルロイ シン、 イソロイシン、 フエ二ルァラニン、 チロシン、 スリナミン、 スレ ォニン、 セリン、 プロリン、 ォキシプロリン、 トリプトファン、 チロキ シン、 ジョー ドチロシン、 ジブロムチロシン、 メチォニン、 シスチン、 システィン、 リジン、 アルギニン、 ヒスチジン、 β—了ラニン、 β - Ύ ミノ酪酸、 7—ァミノ酪酸、 5—アミノ吉草酸等。 さらにァスパラギン 酸、 グルタミン酸、 及び S—ォキシグルタミン酸等はジカルボン酸であ るが、 ァミノ基をも有しているので本発明においてモノカルボン酸と同 等に用いることができる。
(iv) ケトン酸:例えば、 ピルビン酸、 ァセト酢酸、 レブリン酸等。 これら有機モノカルボン酸はそれぞれ単独で使用することができ、 或 いは 2種以上併用してもよい。 これら有機モノカルボン酸の中、 適宜水 酸基又はァミノ基を有していてもよい、 炭素数 6以下の低級脂肪族モノ カルボン酸が好適であり、 殊に乳酸が適している。
該複合体の水性ゾルと有機モノカルボン酸との混合物の p Hは、 特に 制限されないが、 一般には、 約 4〜約 1 1、 好ましくは約 5〜約 9、 さ らに好ましくは約 6〜約 8の範囲内にあるのが好適である。 本発明の組 成物はまた、 所望ならば濃度調整及び濂過をし、 さらに、 所望ならば加 熱処理すること できる。 加熱処理は一般に約 6 0〜約 1 4 0での温度 で約 5分〜約 5時間、 特に滅菌を兼ね 1 2 1 で 2 0〜 3 0分間処理す るのが好適である。
さらに、 所望ならば加熱処理前もしくは処理後に、 例えば、 等張化剤 として塩化ナトリウムなどの無機塩;ブドウ糖等の単糖類またはマンニ トール、 ソルビトール等の糖アルコール類;あるいは p H保持剤として リン酸緩衝剤またはトリス緩衝剤などの生理学的に許容される種々の助 剤を添加することもできる。 また、 本発明の組成物は、 これらの助剤を 含むと含まざるとに関わらず、 それ自体既知の方法、 好ましくは凍結乾 燥法によって粉末化することもでき、 こうして得られる粉末は、 水を加 えれば水性ゾルとなる。
かくして得られる本発明の組成物は、 原料に用いた複合体に比較して、 血圧低下作用を有しな t、及び Z又は血小板凝集作用を示さないようにな るが、 化学的、 物理的、 あるいは他の生物学的性質については余り変化 がなく、 すなわち、 本発明の組成物の安全性が向上し、 かつ、 例えば M R I造影剤としての効果や急性毒性等は変わらないというきわめて好ま しい効果がもたらされる。 これまでに、 クェン酸などのポリカルボン酸 と本発明で用いると同様な複合体との組成物については既に提案されて いるが、 このポリカルボン酸との組成物は、 確かに血圧低下や血小板凝 集作用の如き副作用は低減されるが、 急性毒性が強いという重大な欠点 がある。 これに対し本発明のモノカルボン酸を含む組成物は急性毒性が 弱い。 例えば、 本発明の好ましい態様である実施例 2— 3、 比較例 1お よびそれらの原料である参考例 4の各複合体の L D 5 ()は、 それぞれ 2 8 mm o l F e Z k g、 9 mm o 1 F e /k gおよび 2 2 mm o 1 F e / k gであり、 本発明のモノカルボン酸を含む組成物は医薬、 診断薬とし て極めて有用である。
さらに、 本発明の組成物は、 例えばそれを動物に投与して肺の病理組 耩学検査を行なった場合、 後記試験例 4に示すように [第 2図 (B ) 参 照] 、 塞栓が認められず、 安全性が極めて高いものである。
本発明の組成物は血圧低下作用が少ない。 本明細書において、 血圧測 定は、 本発明の組成物などの複合体水性ゾルを金属として例えば 0. 2 mm o 1 Z k gの量を兎に静脈内投与して行う。 もし血圧低下作用があ る場合には、 一般に投与後約 2〜約 1 0分の範囲内に血圧低下がみられ る。 本発明の組成物は、 原料に用いた複合体水性ゾルに比較して、 血圧 低下作用が少ない。 例えば、 本発明の好ましい態様である実施例 1の組 c 成物は、 血圧低下作用を示さないが、 それらの原料である参考例 2の複 合体水性ゾルは血圧低下作用を示す。
また、 本発明の組成物は血小板凝集作用も少ない。 本明細書では、 血 小板の凝集性を血小板の残存率で示す。 すなわち、 本発明の組成物など の複合体水性ゾルを金属として例えば 0. l mm o 1 Z k gの量を兎に 静脈内投与し、 投与直前の血小板数に対する投与 5分後の血小板数の比
1 0
率を血小板の残存率 (%) とする。 本発明で原料として用いる複合体水 性ゾルは、 一般に血小板の残存率が約 1〜約 5 0 %であるのに対し、 本 発明の組成物は、 一般にその残存率が約 2〜約 1 0倍までに向上する。 例えば、 本発明の好ましい態様である実施例 1およびその原料である参 ι I 5κ 考例 2の各複合体の血小板の残存率は、 それぞれ 3 8および 3 %であり、 さらに実施例 2— 3、 比較例 1およびそれらの原料である参考例 4の各 複合体の血小板の残存率は、 それぞれ 1 0 2、 9 7および 5 6 %である。 本発明の組成物に含まれる各複合体水性ゾル中の少なくとも複合体の 磁性粒子部分は、 静脈内投与後速やかに細網内皮系の発達した臓器、 例 えば肝臓、 脾臓、 骨髄に集積し易く、 特に低投与量 (例えば金属として
20
0. l mm o 1 / k g ) では投与した複合体の大半、 おそらく実質的に 全てが肝臓のクツバ一星細胞に集積することが見出された。 この事実に 基き、 CW— NMRを用いて肝臓の磁化の程度を測定することにより、 以下の如く してこれら複合体の代謝性を評価した。 複合体水性ゾルを金属として 0. l mm o 1 Z k gラッ卜に静脈内投 与し、 例えば投与後 1時間、 2時間、 4時間、 1曰、 3曰、 7曰及び 1 4曰経過した時点でラットの肝臓について、 T 2 緩和能力の測定と同様 にして 1 ΖΤ 2 (単位: s e c—1) を求め、 未投与ラット群の肝臓の 1 /Ί ^ 値による補正をした後、 投与後の時間との関係から各複合体の代 謝性を半減期 (Half life) として算出する。 本発明の好ましい態様、 例えば実施例 2— 3に示される組成物の半減期は 3. 6曰であり、 一方、 参考例 4に示される原料複合体のそれは 3. 9曰であるので、 組成物の 代謝性は、 原料複合体のそれに比較してむしろよいと言える。
また、 本発明の組成物に関する磁性金属酸化物の粒子直径、 複合体全 体の粒子直径、 磁性及び T 2 緩和能力などの物理的性質は、 原料に用い た複合体のそれらのそれぞれ約 8 0〜約 1 2 0 %の範囲内に納まり、 殆 ど変化しない。
本発明の組成物は、 以上に述べた如き種々の優れた特性を有しており、 生物学分野及び医療分野、 例えば鉄捕給剤、 X線造影剤、 MR I造影剤、 血流の測定、 温熱療法用剤、 さらには磁場を利用した局所への薬物の集 中投与の際の担体などとして安全に使用することができ、 この内でも、 血管内へ投与する用途において特に有利に使用することができる。
MR I造影剤として好ましく使用し得る本発明の組成物は、 本発明の 好ましい態様である。 この好ましい態様において、 本発明の組成物の一 方の成分である複合体水性ゾルを形成する多糖類及び Z又はタンパク質 としては、 多糖類、 特にデキストラン、 デンプンもしくはプルランが好 ましく、 就中、 カルボキシ多糖もしくは多糖のカルボキシアルキルエー テルが好適である。 これら多糖類の極限粘度は約 0. 0 2〜約 0. 5、 好 ましくは約 0.04〜約 0.2の範囲内にあることができる。 一方、 磁性 金属酸化物は、 好ましくは磁性酸化鉄、 さらに好ましくは酸化処理され た磁性酸化鉄であり、 この磁性金属酸化物の粒子直径は約 2〜約 30 n m、 好ましくは約 4〜約 15nmの範囲内であることができ、 最も好ま しい組み合せは C D Xと磁性酸化鉄との複合体もしくは酸化複合体であ る。 さらに、 本発明の組成物に用い得る複合体の 1テスラにおける金属 1 g当りの磁化は約 10〜約 150 emu、 好ましくは約 30〜約 15 0 emuの範囲内にあることが望ましく、 また該複合体の T2 緩和能力 は、 一般に約 5〜約 1000 (s e c * mM)- 好ましくは約 10〜 約 500 (s e c - mM)- さらに好ましくは約 20〜約 300
(s e c * mM)-1の範囲内にあるものが好適である。
また、 MR I造影剤として好ましく用い得る本発明の組成物において、 上記複合体水性ゾルに配合しうる有機モノカルボン酸としては、 前述し たもののうち、 特に乳酸が好適である。
さらに、 本発明の組成物を MR I造影剤として使用する場合には、 組 成物を水性ゾルの形態で使用することが望ましい。 この際組成物中の複 合体の濃度は広範囲にわたって変えることができるが、 通常、 金属換算 で約 lmm o 1 £ないし約 4 mo 1 Z£、 好ましくは約 0.01〜約 2mo 1ノ£の範囲内が例示できる。 また、 水性ゾルの調製に際しては、 例えば塩化ナトリウムなどの無機塩、 ブドウ糖などの単糖類、 マンニト ール、 ソルビトール等の糖アルコール類、 あるいはリン酸緩衝剤、 トリ ス緩衝剤などの生理学的に許容される種々の助剤を添加することもでき る。 本発明の組成物を MR I造影剤として使用する場合のその投与量は、 診断部位によって異なるので一概には言えないが、 通常、 金属換算で約 1 μτηο 1 /k g〜約 1 Ommo 1 Zk g体重、 好ましくは約 2 /zmol Zk g〜約 lmmo I Zk g体重の範囲内である。 投与方法としては、 例えば、 静脈内、 動脈内、 膀胱内、 筋肉内、 皮下、 皮内などへの注射、 注入などが挙げられるが、 場合によっては経口投与あるいは腸内直接投 与も可能である。 例えば好ましい形態の本発明の組成物を静脈内投与す ると、 比較的速く、 例えば数十分ないし数時間以内にその多くが細網内 皮系、 特に肝臓に集まり、 その結果肝臓の MR I撮影が好適に行われる。 この際、 肝贜にたとえば癌など細網内皮系細胞が欠落するか、 またはそ の分布が少ない病変部があれば、 他の正常部位と比較して病変部には本 発明の組成物中に含まれる複合体が全くまたは少ししか集まらないので、 病変部の M R I撮影による特定を容易に行うことができる [後記試験例 3及び第 1図 (A) 〜(D) 参照] 。 なお、 本発明の組成物は T2 画像 のみならず 画像に対しても造影剤としての効果を有している。
発明を実施するための最良の形態
以下、 実施例を掲げて本発明をさらに具体的に説明する。
【参考例 1】 極限粘度 0.05 I d l Zgのデキストラン 105 gを水 350m 1に溶解し、 これに 1M—塩化第二鉄水溶液 14 Om 1 (塩化第二鉄 ·六水塩 37.8 g相当) に塩化第一鉄 ·四水塩 27.2 を窒素気流下で溶解した水溶液を加え、 さらに加温しながら、 撹拌下に 3規定水酸化ナトリウム水溶液を 305m l添加する。 次いで 6規定塩 酸を加え pHを 7.0に調整した後、 1時間 30分加熱還流する。 冷後、 2, 100 X gで 30分間遠心分離し、 上清体積の 92.8%のエタノー ルを添加して複合体を沈殺させ、 得られた沈激物を水に溶解し、 16時 間流水透析する。 透析液の pHを水酸化ナトリウムで 7.2に調整し、 減圧濃縮し、 次いでメンブレンフィルター (ポア一サイズ: 0.2/zm) で濂過を行ない目的とする複合体水性ゾル (参考例 1) 40mlを得る。 鉄濃度: 144mg/m 1、 磁性酸化鉄の粒子径: 6.2 nm、 全体の 粒子径: 89 nm、 多糖物質ノ鉄重量比: 0.63、 1テスラにおける 磁化: 64 emu/1 g鉄、 T2 緩和能力: 130 (mM♦ s e c)" 全鉄中の二価鉄割合: 21%。
【参考例 2】 極限粘度 0.050 d lZgの CDX105gを水 350mlに溶解し、 これに 1M—塩化第二鉄水溶液 140m 1 (塩化 第二鉄 ·六水塩 37.8 g相当) に塩化第一鉄 ·四水塩 13.6 gを窒素 気流下で溶解した水溶液を加え、 さらに加温しながら、 撹拌下に 3規定 水酸化ナトリゥ厶水溶液を 242m 1添加する。 次いで 6規定塩酸を加 え pHを 7.0に調整した後、 1時間 30分加熱還流する。 冷却後、 参 考例 1と同様に処理して目的とする複合体水性ゾル (参考例 2) 190 mlを得る。 鉄濃度: 56mg/ml、 磁性酸化鉄の粒子径: 8.8 η m、 全体の粒子径: 70 n m、 多糖物質/鉄重量比: 1.08、 1テス ラにおける磁化: 91 mu/1 g鉄、 T2 緩和能力: 230 (mM · s e cY 全鉄中の二価鉄割合: 21%。
【参考例 3】 極限粘度 0.050 d lZgの CDXl, 050gを 水 3, 50 Om 1に溶解し、 これに 1M—塩化第二鉄水溶液 1, 400 ml (塩化第二鉄 ·六水塩 378 g相当) に塩化第一鉄 *四水塩 136 gを窒素気流下で溶解した水溶液を加え、 さらに加温しながら、 撹拌下 に 3規定水酸化ナトリウム水溶液を 2, 420ml添加する。 次いで 6 規定塩酸を加え pHを 7.1に調整した後、 2時間加熱還流する。 冷後 2, 100 X gで 30分間遠心分離し、 上清をメンブレンフィルタ一(ポ アーサィズ: 0.2 m) で濾過し、 水を加えて 10 Iとし、 限外濾過 (分画分子量: 10万ダルトン) で 1.51まで濃縮した後、 濃縮液に 水を加えながら排出液量が 121になるまで限外濾過 (分画分子量: 10万ダルトン) を行ない、 濾過内液に CDXと鉄の重量比が 1 : 1に なるように所定量の CD Xを添加した後、 pHを水酸化ナトリウムで
7.0に調整し、 2, 10 Ox gで 1時間 30分間遠心分離し、 上清をメ ンブレンフィルター (ポア一サイズ: 0.2〃m) で ¾過を行なって目 的とする複合体水性ゾル(参考例 3) 1.91を得る。 鉄濃度: 57 mgZm 1、 磁性酸化鉄の粒子径: 8.6 nm、 全体の粒子径: 64 nm、 多糖物質 Z鉄重量比: 1.03、 1テスラにおける磁化: 89 emuXl g鉄、 T2 緩和能力: 220 (mM · s e c)" 全鉄中の 二価鉄割合: 23%。
【参考例 4】 参考例 3に従って極限粘度 0.050 d lZgの 〇0 1, 050 を水3, 5001111に溶解し、 これに 1M—塩化第二 鉄水溶液 1, 400ml (塩化第二鉄 ·六水塩 378 g相当) に塩化第 一鉄 ·四水塩 136 gを窒素気流下で溶解した水溶液を加え、 さらに加 温しながら、 撹拌下に 3規定水酸化ナトリウム水溶液を 2, 420ml 添加する。 次いで 6規定塩酸を加え pHを 7.1に調整した後、 2時間 加熱還流する。 冷後 2, 10 Ox gで 30分間遠心分離し、 上清をメン プレンフィルタ一 (ポア一サイズ: 0.2 zm) で濾過し、 その濂過液 に水を加えて 101とし、 限外濾過 (分画分子量: 10万ダルトン) で 1.51まで濃縮した後、 濃縮液に水を加えながら排出液量が 121に なるまで限外濾過 (分画分子量: 10万ダルトン) を行なって、 CDX と鉄の重量比が 0.4 : 1となった極限粘度 0.050 d lZgの CDX と磁性酸化鉄の複合体水性ゾル 1.9 1 (鉄濃度: 5 l g/m 1 ) の pHを水酸化ナトリウムで 7.5に調整した後、 水酸化ナトリウムで反 応 p Hが 4.2以下にならないように調整しながら酸素ガスを用いて 9 5°Cで 3時間 30分酸化する。 冷却後、 反応液を限外濾過 (分画分子量 : 10万ダルトン) で 1 1に濃縮し、 濃縮液に水を加えながら排出液量 が 12 1になるまで限外濂過 (分画分子量: 10万ダルトン) を行ない、 濂過内液に CDXと鉄の重量比が 1 : 1になるように所定量の CDXを 添加した後、 pHを水酸化ナトリウムで 7.0に調整し、 遠心分離し、 上清をメンブレンフィルター (ポア一サイズ: 0.2〃m) で濂過を行 なって目的とする複合体水性ゾル (参考例 4) 1.75 1を得る。 鉄濃 度: 56mgZm l、 酸化磁性酸化鉄の粒子径: 8.5 nm、 全体の粒 子径: 67 nm、 多糖物質 Z鉄重量比: 1.08、 1テスラにおける磁 ィ匕: 87 emu/1 g鉄、 T2 緩和能力: 210 (mM · s e c)"1, 全鉄中の二価鉄割合: 3.4%。
【参考例 5】 極限粘度 0.120 d l Zgの CDX 167 gを水
700m lに溶解し、 これに 1M—塩化第二鉄水溶液 280m 1 (塩化 第二鉄 ·六水塩 75.6 g相当) に塩化第一鉄 ·四水塩 27.2 gを窒素 気流下で溶解した水溶液を加え、 さらに加温しながら、 撹拌下に 3規定 水酸化ナトリウム水溶液を 484m 1添加する。 次いで 6規定塩酸を加 え pHを 7.0に調整した後、 1時間 30分加熱還流する。 冷後、 2, 1 00 X gで 30分間遠心分離し、 上清の 54.9%のエタノールを添加 して複合体を沈澱させ、 2, 100 X gで 10分間遠心分離する。 得ら れた沈澱物を水に溶解し、 その溶液体積の 57.1%のエタノールを添 加して複合体を再沈澱させ、 2, l O O x gで 10分間遠心分離し、 得 oe
26
られた沈澱物を水に溶解し、 16時間流水透析する。 透析液の PHを水 酸化ナトリウムで 7.2に調整し、 減圧濃縮し、 次いでメンブレンフィ ルター (ポア—サイズ: 0.2 zm) で濾過を行ない磁性酸化鉄複合体 水性ゾル 39 Oml (鉄濃度: 56mgZml) を得る。 この複合体水 性ゾル 300ml (鉄濃度: 56mgZml) を参考例 4と同様にして 酸素ガスを用いて 95でで 3時間 30分酸化し、 冷却後、 16時間流水 透析する。 透析液の pHを水酸化ナトリウムで 7.2に調整し、 減圧濃 縮し、 次いでメンブレンフィルター (ポア一サイズ: 0.2 m) で濾 過を行ない目的とする複合体水性ゾル (参考例 5) 285mlを得る。 鉄濃度: 55 m gZm 1、 酸化磁性酸化鉄の粒子径: 7.7 n m、 全体 の粒子径: 78nm、 多糖物質 Z鉄重量比: 0.97、 1テスラにおけ る磁化: 84 emuZl g鉄、 T2 緩和能力: 205 (mM · sec) -1、 全鉄中の二価鉄割合: 1.7%。
【参考例 6】 1M硫酸亜鉛 50mlと 0.5M硫酸第二鉄 150 m 1の混液に撹拌下、 加温しつつ 3規定水酸化ナ卜リウム水溶液 210 mlを滴下し、 次いで 3時間加熱還流する。 冷後、 反応混合液を遠心し、 沈殺物を水 450mlで水洗する操作を計 4回繰り返す。 得られたフエ ライトの懸濁液 (液量 300ml) に濃塩酸約 2.5mlを加え pH 1.7とし、 16時間携拌する。 得られたフェライト水性ゾル 300ml (pH2.1) に、 極限粘度 0.120d lZgの CDX45 gを水 90 m 1に溶解した液を加え、 水酸化ナ卜リゥムで pHを約 7に調整した後、 1時間加熱還流する。 冷後、 この反応液にメタノールを 46%まで添加 し、 析出した沈殺物を水 150mlに溶解し、 次いで 2, l OOxgで 30分間遠心し、 沈澱物を除去して得られる複合体の水性ゾルを 16時 間流水透析する。 透析液の pHを水酸化ナトリウムで 8.0に調整し、 減圧濃縮し、 次いでメンブレンフィルター (ポア一サイズ: 0.45 w m) で濾過を行ない目的とする複合体水性ゾル (参考例 6) 168ml を得る。 鉄濃度: 4 SmgZm 1、 亜鉛濃度: 16mgZm 1、 磁性金 属の粒子径: 10.3 nm、 全体の粒子径: 120 nm、 多糖物質 Z金 属重量比: 1.33、 1テスラにおける磁化: 27 emu/1 g鉄、 T2 緩和能力: 22 (mM · s eじ)—1
【参考例 7】 カルボキシメチル化デキストラン (極限粘度: 0.115 d 1 / g、置換度: 0.26mo 1 /グルコース単位) のナト リウム塩 86 gを水 240 m 1に溶解し、 これに塩化第二鉄 ·六水塩 4 5.4 gおよび塩化第一鉄 ·四水塩 21.6 gを窒素気流下で水 160 mlに溶解した液を加え、 さらに加温しながら、 撹拌下に 3規定水酸化 ナトリウム水溶液を、 pH 11まで添加する。 次いで塩酸を加え、 pH を 7.0に調整した後、 1時間加熱還流する。 冷後、 2, 100xgで 3 0分間遠心分離し、 上清液にメタノールを 46%まで添加し、 複合体を 沈澱させ、 得られた沈激物を水に溶解し、 16時間流水透析する。 透析 液の pHを水酸化ナトリウムで 8.0に調整し、 減圧濃縮し、 次いでメ ンブレンフィルター (ポア一サイズ: 0.45〃m) で濂過を行ない目 的とする複合体水性ゾル (参考例 7) 249mlを得る。 跌濃度: 56 mgZm 1、 磁性酸化鉄の粒子径: 7.3 nm、 全体の粒子径: 73 nm、 多糖物質 鉄重量比: 2.11、 1テスラにおける磁化: 85 emu/1 g鉄、 T2 緩和能力: 130 (mM · s e c )— 全鉄中の 二価鉄割合: 19%。
【参考例 8】 極限粘度 0.050 d の CDX162gを水 1080m lに溶解し、 これに 3規定水酸化ナトリウム水溶液を 353 m lを加え、 更に加温しながら、 1M—塩化第二鉄水溶液 222ml (塩 化第二鉄 ·六水塩 60.0 g相当) に塩化第一鉄 ·四水塩 21.6 gを窒 素気流下で溶解した水溶液を撹拌下に添加する。 次いで 6規定塩酸を加 え pHを 7.0に調整した後、 1時間 30分間還流加熱する。 冷却後、 参考例 1と同様に処理して目的とする複合体水性ゾル (参考例 8) 16 ひ m lを得る。 鉄濃度: 55mgZm l、 磁性酸化鉄の粒子径: 4.5 nm、 全体の粒子径: 36 nm、 CDXZ鉄重量比: 1.08、 1テス ラにおける磁化: 73 emu/1 g鉄、 T2 緩和能力: 68 (mM · sec)"1. 全鉄中の二価鉄割合: 13%。
【比較例 1】 参考例 4に従って調製した極限粘度 0.050 d 1 Zgの CDXと酸化磁性酸化鉄の複合体水性ゾル (鉄濃度: 56mgZ m l ) 200m〗に、 1 Mのクェン酸溶液 4m 1を加え、 3規定水酸化 ナトリウム水溶液で pHを 8とし、 10分間撹拌した後、 メンブレンフ ィルター (ポア一サイズ: 0.2 fim) で濂過を行ない、 121 で、 20分間ォートクレーブを行なって目的とする複合体水性ゾル (比較例 1 ) 210 m 1を得る。 鉄濃度: 54m g m 1、 磁性酸化鉄の粒子径 : 8.3 nm、 全体の粒子径: 60 nm、 多糖物質 Z鉄重量比: 1.00、 1テスラにおける磁化: 85 emuZl g鉄、 T2 緩和能力: 200 (mM · s e c)_ 全鉄中の二価鉄割合: 5.7%。
【比較例 2】 参考例 4に従って調製した極限粘度 0.050 d 1 Zgの CDXと酸化磁性酸化鉄の複合体水性ゾル (鉄濃度: 56mgZ m l ) 100m lに、 水酸化ナトリウム水溶液で p Hを 8に調整した 0.4Mのクェン酸溶液 10m lを加え、 10分間撹拌し、 3規定水酸 化ナトリウム水溶液で pHを 8とした後、 水を加えて全量を 200m l とし、 メンブレンフィルタ一 (ポア一サイズ: 0.2 zm) で濾過を行 ない、 121°Cで、 20分間ォ一トクレーブを行なって、 目的とする複 合体水性ゾル (比較例 2) 200mlを得る。 鉄濃度: 2 SmgZm 1、 磁性酸化鉄の粒子径: 8.4 nm、 全体の粒子径: 60 nm、 多糖物質 鉄重量比: 1.03、 1テスラにおける磁化: 85 emu/1 g鉄、 T2 緩和能力: 215 (mM · s e c)— 全鉄中の二価鉄割合: 5.1
%。
【比較例 3】 塩化第二鉄 ·六水塩 75.5 gおよび塩化第一鉄 · 四水塩 32 gを含有する 500m 1の溶液を極限粘度 0.075 d 1 Z gのデキストラン 250 gを溶解した 16%アンモニア水 50 Om 1に、 激しく攆拌しながら 5分間かけて徐々に加える。 生成したスラリ一を超 音波破砕 (30分) し、 次いで加熱 (100°C、 10分) 、 冷却し、 遠 心分離 1, 00 Ox gで 20分遠心分離する。 上清液を水で希釈して 2 1とし、 限外濂過 (分画分子量: 10万ダルトン) で 500mlまで濃 縮した後、 濃縮液に水 1.61を加え、 限外濾過 (分画分子量: 10万 ダルトン) で 500mlまで濃縮する。 この加水、 濃縮の操作を計 5回 繰り返した後、 濃縮液に 1M—クェン酸ナトリウム溶液 50 Om 1を加 え、 アンモニア水で pH 8.2に調整した 1 Om 1クェン酸アンモニゥ ムバッファ—で 16時間透析し、 限外濂過 (分画分子量: 10万ダルト ン) で 12 Om 1まで濃縮し、 メンブレンフィルタ一 (ポア一サイズ: 0.2 ^m) で濾過を行ない、 121°C、 30分間ォ一トクレーブを行 なって目的とする複合体水性ゾル (比較例 3) 115m Lを得る。 鉄濃 度: 57mgノ m 1、 磁性酸化鉄の粒子径: 8.1 nm、 全体の粒子径 : 220 nm.多糖物質 Z鉄重量比: 0.36、 1テスラにおける磁化 : 83 emu/1 g鉄、 T2 緩和能力: 255 (mM · s e c)" 全 鉄中の二価鉄割合: 6.5%。
【実施例 1】 参考例 2に従って調製した極限粘度 0.050 d 1
/gの CD Xと磁性酸化鉄の複合体水性ゾル (鉄濃度: 57mg/m 1 )
100mlに、 1Mの L—乳酸溶液 2m 1を加え、 比較例 1と同様に処 理して目的とする組成物 (実施例 1) 103mlを得る。 鉄濃度: 55 mg/mK磁性酸化鉄の粒子径: 8.8nm、 全体の粒子径: 8 lnm、 多糖物質 Z鉄重量比: 1.01、 1テスラにおける磁化: 89 emuZ ■ 1 g鉄、 T2 緩和能力: 270 (mM · s e c) — 全鉄中の二価鉄割 合: 24%。
【実施例 2】 参考例 4に従って調製した極限粘度 0.050 d 1 の CDXと酸化磁性酸化鉄の複合体水性ゾル (鉄濃度: 56mgZ ml) 200mlに、 1Mの L一乳酸溶液 1、 2、 4ml . および 2M の L—乳酸溶液 4、 8mlを加え、 各々実施例 1と同様に処理して目的 とする組成物 (実施例 2_1〜5) 各々約 200mlを得る。
繊物 拉子径 η· CDX/铁 1テスラに T,緩和能力 二 ®铁割合 *^ 芯 分 MMS おける班化 (■M-sec)"1 Fe¾V全跌
X
2-1 55 8.6 64 1.02 87 220 5.5
2-2 55 8.4 62 1.04 89 225 6.4
2-3 54 8.5 62 L03 86 225 5.6
2-4 54 8.5 62 1.04 85 230 5.5
2-5 53 8.3 62 1.03 87 230 5.1 【実施例 3】 参考例 4に従って調製した極限粘度 0.050 d 1 Zgの CD Xと酸化磁性酸化鉄の複合体水性ゾル (鉄濃度: 56mgZ ml) 20 Om 1に、 水酸化ナトリウム水溶液で p Hを 8に調整した 1 Mの L一乳酸溶液 4m 1を加え、 比較例 2と同様に処理して目的とする 組成物 (実施例 3) 205mlを得る。 鉄濃度: 54mgZm 1、 磁性 酸化鉄の粒子径: 8.6 nm、 全体の粒子径: 63 nm、 多糖物質ノ鉄 重量比: 1.00、 1テスラにおける磁化: 88 emuZl g鉄、 T2 緩和能力: 210 (mM · s e c)- 全鉄中の二価鉄割合: 5.5%。
【実施例 4】 参考例 1に従って調製した極限粘度 0.051 d 1 Zgのデキストランと磁性酸化鉄の複合体水性ゾル (鉄濃度: 56mg
Zml) 10 Omlに、 2 Mの L一乳酸溶液 2 m 1を加え、 実施例 1と 同様に処理して目的とする組成物 (実施例 4) 103mlを得る。 鉄濃 度: 54mgZm 1、 磁性酸化鉄の粒子径: 6.2 nm、 全体の粒子径 : 83 nm、 多糖物質 Z鉄重量比: 0.61、 1テスラにおける磁化: 63 emu/1 g鉄、 T2 緩和能力: 140 (mM · s e c)"1. 全鉄 中 二価鉄割合: 15%。
【実施例 5】 参考例 4に従って調製した極限粘度 0.050 d 1 /gの CD Xと酸化磁性酸化鉄の複合体水性ゾル (鉄濃度: 56mgZ ml) 50mlに、 0.5Mのモノカルボン酸もしくはモノカルボン酸 水可溶性塩溶液 4 m 1を加え、 10分間撹拌し、 水酸化ナトリゥム水溶 液で pHを 8とした後、 水を加えて 10 Om 1とし、 メンブレンフィル ター (ポア一サイズ: 0.2 /m) で濾過を行ない、 121°Cで、. 20 分間ォートクレーブを行なって目的とする組成物 (実施例 5— 1〜6) 100mlを得る。 得られた製剤はすべて血圧低下作用を示さない。 表 2
Figure imgf000034_0001
【実施例 6】 参考例 5に従って調製した極限粘度 0.120 d 1 Zgの CDXと酸化磁性酸化鉄の複合体水性ゾル (鉄濃度: 55mgZ ml) 10 Omlに、 1 Mの L一乳酸溶液 2 m 1を加え、 比較例 1と同 様に処理して目的とする組成物 (実施例 6) 103mlを得る。 鉄濃度 : 5 lmgZm 1、 磁性酸化鉄の粒子径: 7.7 nm、 全体の粒子径: 93nm、 多糖物質 Z鉄重量比: 0.97、 1テスラにおける磁化: 8 5 emu/1 g鉄、 T2 緩和能力: 245 (mM · s e c)"1. 全鉄中 の二価鉄割合: 3.5%。
【実施例 7】 参考例 6に従って調製した極限粘度 0.120 d 1 Zgの CD Xと亜鉛フェライ卜の複合体水性ゾル (鉄濃度: 42mgZ ml :亜鉛濃度: 16mg ml) 10 Omlに、 1Mの L—乳酸溶液 1.5mlを加え、'比較例 1と同様に処理して目的とする組成物 (実施 例 7) 102mlを得る。 鉄濃度: 4 Omg/m 1、 亜鉛濃度: 15 mg/m 1、 磁性金属の粒子径: 10.1 nm、 全体の粒子径: 110 nm、 多糖物質 金属重量比: 1.31、 1テスラにおける磁化: 29 emuZl g鉄、 T2 緩和能力: 25 (mM · s e c)— J
【実施例 8】 参考例 7に従って調製した極限粘度 0.115 d 1 Zg、 置換度: 0.26mo 1 Zグルコース単位のカルボキシメチル化 デキストランと磁性酸化鉄の複合体水性ゾル (鉄濃度: 56mgZm 1 )
100m 1に、 1Mの L—乳酸溶液 2m 1を加え、 比較例 1と同様に処 理して目的とする組成物 (実施例 8) 103m lを得る。 鉄濃度: 54 mg/m 1、 磁性酸化鉄の粒子径: 7.4 nm、 全体の粒子径: 70 nm、 多糖物質 Z鉄重量比: 2.11、 1テスラにおける磁化: 83 emuZl g鉄、 T2 緩和能力: 140 (mM · s e c)— 全鉄中の 二価鉄割合: 15%。
【実施例 9】 参考例 8に従って調製した極限粘度 0.050しり Zgの CD Xと磁性酸化鉄の複合体水性ゾル (鉄濃度 55mgZm 1 ) 10 Om 1に、 1Mの L一乳酸溶液 2m 1を加え、 以下実施例 1と同様 に処理して目的とする組成物 (実施例 9) 約 10 Om 1を得る。 鉄濃度
: 54mg/m 1 磁性酸化鉄の粒子径: 4.5nm、 全体の粒子径: 39nm、 CDXZ鉄重量比: 1.07、 1テスラにおける磁化: 74 611111ノ1 鉄、 T 2緩和能力: 70 (mM - s e c) "1. 全鉄中の二 価鉄割合: 9.3%。
【実施例 10】 参考例 4で得た組成物 (鉄濃度: 56mgZm 1 )
100mlに 1Mの L一乳酸 4.5m 1とマンニット 7.8 gを添加し、 3規定水酸化ナトリゥム溶液で pH 9とし、 水を加えて全量を 224 ml (鉄濃度: 25mgZml) とする。 メンブレンフィルター (ポア 一サイズ: 0.2 m) で濂過を行ないながら 3m 1ずつアンプルに分 注し、 窒素充填してから 121°C、 20分間オートクレープ滅菌して、 目的とする複合体水性ゾル製剤 (実施例 10) を得る。 この製剤は MR I造影剤として使用可能である。
【実施例 1 1】 実施例 2— 5で得た組成物 (鉄濃度: 53mgZ m l ) 100m 1に 1Mのリン酸緩衝液 1 lm 1を添加し、 3規定水酸
5
化ナトリウム溶液で pHを 7とし、 水を加えて全量を 53 Om 1 (鉄濃 度: 1 OmgZm 1 ) とする。 メンブレンフィルター (ポア一サイズ: 0.2 βτη で濂過を行ないながら 10m lずつ滅菌したバイアル瓶に 分注し、 目的とする複合体水性ゾル製剤を得る。 この製剤は MR I造影 剤として使用可能である。
10
【実施例 12】 実施例 2— 4で得た組成物 (鉄濃度: 54 m g Z m l ) 10 Om 1にデキストラン 40を 4.3 gを添加し、 3規定水酸 化ナトリウム溶液で pHを 7とし、 水を加えて全量を 216m l (鉄濃 度: 2 mgZm 1 ) とする。 メンブレンフィルター (ポア一サイズ: 0.2 μπι) で濾過を行ないながら 4m 1ずつ滅菌したバイアル瓶に分
1 S
注し、 凍結乾燥を行ない、 アルゴンガスを充填して目的とする複合体水 性ゾル製剤を得る。 この製剤は用時生理食塩水で溶解することにより M R I造影剤として使用可能である。
【実施例 13】 実施例 1で得た組成物 (鉄濃度: 55mgZm l ) 10 Om 1にヒドロキシプロピルセルロース 110 gを添加し、 3規定 0
水酸化ナトリウム溶液で pHを 7とし、 水を加えて全量を 5, 500m 1 (鉄濃度: lmgZm l ) とする。 メンブレンフィルター (ポアーサ ィズ: 0.45 wm) で濾過を行ないながら 100m lずつ滅菌したプ ラスチック容器に分注し、 目的とする複合体水性ゾル製剤を得る。 この 製剤は経口的に使用する MR I造影剤として使用可能である。
【試験例 1】 以上に述べた参考例、 比較例および実施例で製造し た各複合体水性ゾルについての血小板数に与える影響を調べた。 体重 2 〜3 kgの兎を用い、 対照血を採血した後、 被検液を金属として 5mg 5m 1 Zk gの量ずつ静脈内投与し、 その 5分後に採血し、 ED
T A加血とし、 1%シユウ酸アンモニゥム液で 101倍希釈し、 血球計 算板に入れて位相差顕微鏡で各々の血小板数を測定した (ブレッヒャー 一クロンカイ ト (Brecher & Cronkite) 法) 。 その結果を表 3に示す。
【試験例 2】 以上に述べた参考例、 比較例および実施例で製造し た各複合体水性ゾルについて急性毒性 (LD5()) を求めた。 5周令の d d系マウス (ォス) 1群 5匹に、 各複合体水性ゾルを金属として 5、 1 0、 20、 40、 8 Ommo 1 gの量ずつ静脈内投与し、 2週間そ の生死を観察し、 リッチフィールド一ウィルコクソン (Litchfield & Wilcoxon) 法により LD5Dを算出した。 各複合体水性ゾルの L D 5()値を 表 4に示す。 '
表 3
Figure imgf000038_0001
Figure imgf000038_0002
*:実施例 7の酸鏖度は mMZ 1 M金属総濃度 表 4
i o
1 5
20
Figure imgf000039_0001
*:実施例 7の複合体水性ゾル濃度は mmol金属/ kg
【試験例 3】 前記実施例 1 0で製造した複合体水性ゾル製剤につ いて、 インビボ MR像を撮影した。 即ち、 肝臓内にノビコフ(Novikofi) 腫瘍を移植したウィスター(Wistar)系ラッ卜に、 本製剤を金属として 2 0 ^mo 1 k gの量を静脈内注射し、 シスコ(Sisco)社(米国、 カルフ オルニァ) 製動物用 MR I装置を用い、 スピン一エコー法により、 繰り 返し時間 400ms e c. エコー時間 ms e cで撮影し、 肝臓部位の M R像を得た。 第 1図 (A:) 、 (B) 、 (C) 及び (D) にそれらの像を 示す。 第 1図の (A) 及び (B) は本製剤投与前の MR像であり、 同図 の (C) 及び (D) は本製剤投与 60分後の MR像である。
【試験例 4】 前記比較例 1及び実施例 2— 3で製造した両複合体 水性ゾルについて、 動物に投与して肺の病理組織学的検査を行った。 即 ち、 5週齢の dd系マウス (雄) 1群 5匹に、 各複合体水性ゾルを金属 としてそれぞれ 5mm o lZKgの量ずつ静脈内投与し、 5分後に剖検 を実施して肺を摘出し、 組織標本を作製し、 ベルリン ·ブルー染色を施 し、 光学顕微鏡下に観察した。
比較例 1の複合体水性ゾルを投与した群では、 いずれのマウスも肺に 塞栓が認められた。 その内の 1例の顕微鏡写真を第 2図 (A) に示す。
—方、 実施例 2— 3の複合体水性ゾルを投与した群では、 いずれのマウ スも肺に塞栓が認められなかった。 その内の 1例の顕微鏡写真を第 2図 (B) に示す。
この他、 ハートレイ系モルモット (雄) 及び日本白色ゥサギ (雌及び 雄) についてもマウスの場合と同様な試験を行い、 同様な結果が得られ ている。
産業上の利用可能性
以上述べたとおり、 本発明の磁性金属酸化物超微粒子含有組成物は、 血小板凝集等の副作用がなく、 生体に対する安全性に優れ、 血管内投与 したときにも生体に悪影響を及ぼすことがなく、 医薬、 診断薬等の分野 で、 殊に M R I造影剤として有用である。

Claims

請求の範囲
1. 磁性金属酸化物超微粒子と多糖、 多糖誘導体及び蛋白質から選ば れる少なくとも 1種との複合体の水性ゾルと有機モノカルボン酸を含有 することを特徴とする磁性金属酸化物超微粒子含有組成物。
2. 磁性金属酸化物が式
(M^O)^- M2 ,I,03 (I)
式中、 NT1は 2価の金属原子を表わし、 M111は 3価の金属原子を 表わし、 ^は O ≤1の範囲内の数である、
で示されるものである請求の範囲第 1項記載の組成物。
3. 磁性金属酸化物が、 式 (I) における M11が 2価の鉄であり、 且 つ M 111が 3価の鉄である磁性酸化鉄である請求の範囲第 2項記載の組 成物。
4. 磁性酸化鉄の 2価鉄含量が、 鉄金属換算で全鉄の 10重量%以下 である請求の範囲第 3項記載の組成物。
5. 複合体が磁性金属酸化物とデキストラン及びカルボキシデキトス ランから選ばれる少なくとも 1種との複合体である請求の範囲第 1項記 載の組成物。
6. 複合体が、 多糖、 多糖誘導体及び蛋白質から選ばれる少なくとも 1種を、 磁性金属酸化物中の金属 1重量部当り約 0.1〜約 5重量部含 有する請求の範囲第 1項記載の組成物。
7. 磁性金属酸化物超微粒子の平均粒子径が約 2〜約 30 nmの範囲 内にある請求の範囲第 1項記載の組成物。
8. 複合体が約 10〜約 500 nmの範囲内の粒子直径を有する請求 の範囲第 1項記載の組成物。
9. 複合体の 1テラスにおける磁化が金属 1 g当り約 10〜約 150 emuの範囲内にある請求の範囲第 1項記載の組成物。
10. 複合体が実質的に超常磁性である請求の範囲第 1項記載の組成 物。
11. 複合体が約 5〜約 1000 (s e c * mM) 1の範囲内の T2 緩和能力を有する請求の範囲第 1項記載の組成物。
12. 有機モノカルボン酸が水溶性のものである請求の範囲第 1項記 載の組成物。
13. 有機モノカルボン酸が炭素数 10以下のものである請求の範囲 第 1項記載の組成物。
14. 有機モノカルボン酸が水酸基を含有するものである請求の範囲 第 1項記載の組成物。
15. 有機モノカルボン酸がアミノ基を含有するものである請求の範 囲第 1項記載の組成物。
16. 有機モノカルボン酸が適宜水酸基又はアミノ基を有していても よい低級脂肪族モノカルボン酸である請求の範囲第 1項記載の組成物。
17. 有機モノカルボン酸が乳酸である請求の範囲第 1項記載の組成 物。
18. 有機モノカルボン酸を、 複合体中の金属 1モル当り約 1ミ リモ ル〜約 30モルの範囲内の量で含有する請求の範囲第 1項記載の組成物。
19. 約 4〜約 11の範囲内の ρΗを有する請求の範囲第 1項記載の 組成物。
20. 請求の範囲第 1項記載の組成物からなる MR I造影剤。
21. 請求の範囲第 1項記載の組成物を人又は動物に投与し、 該人又 は動物の細網内皮系の MR I造影を行なうことを特徴とする病変の診断 方法。
PCT/JP1992/000031 1991-01-19 1992-01-17 Composition containing ultrafine particles of magnetic metal oxide WO1992012735A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE69229150T DE69229150T3 (de) 1991-01-19 1992-01-17 Ultrafeine magnetische metalloxidteilchen enthalten de zusammensetzung
AU11689/92A AU652804B2 (en) 1991-01-19 1992-01-17 Composition containing ultrafine particles of magnetic metal oxide
DE2001199065 DE10199065I2 (de) 1991-01-19 1992-01-17 Ultrafeine magnetische metalloxidteilchen enthalten de zusammensetzung
EP92903328A EP0525199B2 (en) 1991-01-19 1992-01-17 Composition containing ultrafine particles of magnetic metal oxide
CA002078679A CA2078679C (en) 1991-01-19 1992-01-17 Magnetic metal oxide ultrafine particles-containing composition
DK92903328T DK0525199T4 (da) 1991-01-19 1992-01-17 Sammensætning indeholdende ultrafine partikler af magnetisk metaloxid
US07/934,637 US5328681A (en) 1991-01-19 1992-01-17 Composition comprising magnetic metal oxide ultrafine particles and derivatized polysaccharides
JP4503597A JP2921984B2 (ja) 1991-01-19 1992-01-17 磁性金属酸化物超微粒子含有組成物
NO923584A NO305636B1 (no) 1991-01-19 1992-09-15 Sammensetning inneholdende ultrafine magnetiske metalloksydpartikler, samt MRI-kontrastmiddel derav
NL300088C NL300088I1 (nl) 1991-01-19 2002-04-11 Ultrafijne magnetische metaaloxidedeeltjes bevattende samenstelling.
LU91003C LU91003I2 (en) 1991-01-19 2003-01-24 Resovist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/19512 1991-01-19
JP1951291 1991-01-19

Publications (1)

Publication Number Publication Date
WO1992012735A1 true WO1992012735A1 (en) 1992-08-06

Family

ID=12001420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000031 WO1992012735A1 (en) 1991-01-19 1992-01-17 Composition containing ultrafine particles of magnetic metal oxide

Country Status (13)

Country Link
US (1) US5328681A (ja)
EP (1) EP0525199B2 (ja)
JP (1) JP2921984B2 (ja)
AT (1) ATE179894T1 (ja)
AU (1) AU652804B2 (ja)
CA (1) CA2078679C (ja)
DE (2) DE10199065I2 (ja)
DK (1) DK0525199T4 (ja)
ES (1) ES2131067T5 (ja)
LU (1) LU91003I2 (ja)
NL (1) NL300088I1 (ja)
NO (2) NO305636B1 (ja)
WO (1) WO1992012735A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020405A1 (en) * 1994-01-28 1995-08-03 Nycomed Imaging As Oral magnetic particle formulation
WO2004016316A1 (ja) * 2002-08-16 2004-02-26 Admetec Co., Ltd. 加熱方法及びそのための加熱装置
WO2006051732A1 (ja) * 2004-11-10 2006-05-18 Konica Minolta Medical & Graphic, Inc. 被覆磁性粒子含有製剤およびその製造方法、並びに診断治療システム
JP2016172655A (ja) * 2015-03-16 2016-09-29 国立大学法人 岡山大学 γ−酸化鉄の製造方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE156706T1 (de) * 1993-03-17 1997-08-15 Silica Gel Gmbh Superparamagnetische teilchen, verfahren zu ihrer herstellung und verwendung derselben
DE4428851C2 (de) * 1994-08-04 2000-05-04 Diagnostikforschung Inst Eisen enthaltende Nanopartikel, ihre Herstellung und Anwendung in der Diagnostik und Therapie
DE19509694A1 (de) * 1995-03-08 1996-09-19 Schering Ag Verwendung von Magnetiten zur Bestimmung der Perfusion von menschlichem Gewebe mittels MR-Diagnostik
DE69732831T2 (de) 1996-01-10 2006-04-13 Amersham Health As Kontrastmittel
GB9600427D0 (en) * 1996-01-10 1996-03-13 Nycomed Imaging As Contrast media
US5855868A (en) * 1996-04-01 1999-01-05 Nycomed Imaging As Method of T1 -weighted resonance imaging of RES organs
FR2749082B1 (fr) * 1996-05-24 1998-06-26 Bio Merieux Particules superparamagnetiques et monodispersees
DK0915738T3 (da) * 1996-08-05 2002-05-06 Schering Ag Fremgangsmåde til fremstilling af kontrastmidler til magnetresonanstomografi
US6713173B2 (en) * 1996-11-16 2004-03-30 Nanomagnetics Limited Magnetizable device
GB2319253A (en) 1996-11-16 1998-05-20 Eric Leigh Mayes Composition, for use in a device, comprising a magnetic layer of domain-separated magnetic particles
US20060003163A1 (en) * 1996-11-16 2006-01-05 Nanomagnetics Limited Magnetic fluid
US6986942B1 (en) 1996-11-16 2006-01-17 Nanomagnetics Limited Microwave absorbing structure
US6815063B1 (en) 1996-11-16 2004-11-09 Nanomagnetics, Ltd. Magnetic fluid
US6725078B2 (en) * 2000-01-31 2004-04-20 St. Louis University System combining proton beam irradiation and magnetic resonance imaging
JP4448642B2 (ja) 2000-03-06 2010-04-14 シーメンス・ヘルスケア・ダイアグノスティックス・プロダクツ・ゲーエムベーハー 多糖で被覆された担体、その製造および使用
US6743395B2 (en) * 2000-03-22 2004-06-01 Ebara Corporation Composite metallic ultrafine particles and process for producing the same
US7169618B2 (en) * 2000-06-28 2007-01-30 Skold Technology Magnetic particles and methods of producing coated magnetic particles
DE10154016B4 (de) * 2001-10-26 2004-02-12 Berlin Heart Ag Magnetflüssigkeit und Verfahren zur ihrer Herstellung
US20030185757A1 (en) * 2002-03-27 2003-10-02 Mayk Kresse Iron-containing nanoparticles with double coating and their use in diagnosis and therapy
US9056128B2 (en) 2003-01-31 2015-06-16 Otsuka Pharmaceutical Factory, Inc. Adjuvant used in dielectric heating-assisted cancer treatment, and cancer treatment method
FR2861994A1 (fr) * 2003-11-12 2005-05-13 Guerbet Sa Nouvel agent de diagnostic pour l'irm dans les pathologies impliquant des proteinases
CA2749057A1 (en) 2004-02-20 2005-09-09 University Of Florida Research Foundation, Inc. System for delivering conformal radiation therapy while simultaneously imaging soft tissue
JP3822229B2 (ja) * 2004-05-27 2006-09-13 松下電器産業株式会社 基板上への微粒子配列体の形成方法
JP5354566B2 (ja) * 2008-07-25 2013-11-27 名糖産業株式会社 カチオン性多糖磁性粒子複合体
RU2480196C2 (ru) * 2008-09-29 2013-04-27 Вифор (Интернациональ) Аг Резервуар и способ хранения и подачи жидкости и жидкого медицинского препарата
IT1398263B1 (it) 2010-03-04 2013-02-22 Monzani Nanoparticelle magnetiche di ossido di ferro a dimensione controllata per la diagnosi ed il trattamento di neoplasie avanzate e metastatiche
DE102011112898A1 (de) 2011-09-08 2013-03-14 Charité - Universitätsmedizin Berlin Nanopartikuläres Phosphatadsorbens basierend auf Maghämit oder Maghämit/Magnetit, dessen Herstellung und Verwendungen
US10561861B2 (en) 2012-05-02 2020-02-18 Viewray Technologies, Inc. Videographic display of real-time medical treatment
US10413751B2 (en) 2016-03-02 2019-09-17 Viewray Technologies, Inc. Particle therapy with magnetic resonance imaging
EP3554635B1 (en) 2016-12-13 2021-01-20 ViewRay Technologies, Inc. Radiation therapy systems
CN111712298B (zh) 2017-12-06 2023-04-04 优瑞技术公司 放射疗法系统
US11209509B2 (en) 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452773A (en) * 1982-04-05 1984-06-05 Canadian Patents And Development Limited Magnetic iron-dextran microspheres
JPS62204501A (ja) * 1986-03-05 1987-09-09 Kashima Sekiyu Kk 磁性ミクロスフエアの製造方法
JPH01500196A (ja) * 1986-07-03 1989-01-26 アドバンスド マグネティックス,インコーポレーテッド 臨床用途に使用される生物分解性超常磁性物質

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001288A (en) * 1965-09-15 1977-01-04 Howard S. Gable Magnetic organo-iron compounds
SE463651B (sv) * 1983-12-21 1991-01-07 Nycomed As Diagnostikum och kontrastmedel
US4663166A (en) * 1984-06-22 1987-05-05 Veech Richard L Electrolyte solutions and in vivo use thereof
US4795698A (en) * 1985-10-04 1989-01-03 Immunicon Corporation Magnetic-polymer particles
US5160726A (en) * 1990-02-15 1992-11-03 Advanced Magnetics Inc. Filter sterilization for production of colloidal, superparamagnetic MR contrast agents
US5102652A (en) * 1986-07-03 1992-04-07 Advanced Magnetics Inc. Low molecular weight carbohydrates as additives to stabilize metal oxide compositions
SE8704157L (sv) * 1987-10-26 1989-04-27 Carbomatrix Ab C O Ulf Schroed Superparamagnetiska partiklar och foerfarande foer framstaellning daerav samt anvaendning
US5114703A (en) * 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
JP2726520B2 (ja) * 1989-10-20 1998-03-11 名糖産業株式会社 有機磁性複合体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4452773A (en) * 1982-04-05 1984-06-05 Canadian Patents And Development Limited Magnetic iron-dextran microspheres
JPS62204501A (ja) * 1986-03-05 1987-09-09 Kashima Sekiyu Kk 磁性ミクロスフエアの製造方法
JPH01500196A (ja) * 1986-07-03 1989-01-26 アドバンスド マグネティックス,インコーポレーテッド 臨床用途に使用される生物分解性超常磁性物質

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020405A1 (en) * 1994-01-28 1995-08-03 Nycomed Imaging As Oral magnetic particle formulation
WO2004016316A1 (ja) * 2002-08-16 2004-02-26 Admetec Co., Ltd. 加熱方法及びそのための加熱装置
WO2006051732A1 (ja) * 2004-11-10 2006-05-18 Konica Minolta Medical & Graphic, Inc. 被覆磁性粒子含有製剤およびその製造方法、並びに診断治療システム
JP2016172655A (ja) * 2015-03-16 2016-09-29 国立大学法人 岡山大学 γ−酸化鉄の製造方法

Also Published As

Publication number Publication date
AU652804B2 (en) 1994-09-08
DE69229150D1 (de) 1999-06-17
NL300088I1 (nl) 2002-07-01
JP2921984B2 (ja) 1999-07-19
DK0525199T3 (da) 1999-11-01
EP0525199B2 (en) 2004-04-14
AU1168992A (en) 1992-08-27
ATE179894T1 (de) 1999-05-15
LU91003I2 (en) 2003-03-24
DE10199065I2 (de) 2004-09-23
DE69229150T3 (de) 2005-01-05
DK0525199T4 (da) 2004-06-01
DE69229150T2 (de) 1999-09-30
ES2131067T5 (es) 2004-10-16
CA2078679C (en) 2006-12-05
ES2131067T3 (es) 1999-07-16
DE10199065I1 (de) 2002-02-21
CA2078679A1 (en) 1992-07-20
EP0525199B1 (en) 1999-05-12
US5328681A (en) 1994-07-12
EP0525199A1 (en) 1993-02-03
NO305636B1 (no) 1999-07-05
EP0525199A4 (en) 1994-08-17
NO923584L (no) 1992-11-12
NO2002003I2 (no) 2005-04-04
NO923584D0 (no) 1992-09-15

Similar Documents

Publication Publication Date Title
WO1992012735A1 (en) Composition containing ultrafine particles of magnetic metal oxide
JP3337075B2 (ja) 小粒子径水溶性カルボキシ多糖−磁性酸化鉄複合体
JP2726520B2 (ja) 有機磁性複合体
JP2939336B2 (ja) 水溶性カルボキシ多糖−磁性酸化鉄酸化複合体
JP5064612B2 (ja) 還元された炭水化物類及び炭水化物誘導体で被覆された熱的に安定なコロイド状酸化鉄
AU2008207819B2 (en) Tantalum oxide nanoparticles as imaging agents for X-ray/ computed tomography and methods for making same
AU686523B2 (en) Treated apatite particles for medical diagnostic images
JP2015519302A (ja) 磁性ナノ粒子分散剤、その調製及び診断及び治療用途
WO2015102289A1 (ko) 철산화물 나노입자를 포함하는 철결핍증의 예방 또는 치료용 약학 조성물
WO1995031220A1 (fr) Agent de contraste pour imagerie par resonance magnetique
WO2018217520A1 (en) Biogenic hemin-based mri contrast agents, and compositions and methods thereof
KR101018221B1 (ko) 금-증착된 산화철/글리콜 키토산 복합체, 이의 제조방법 및 이를 포함하는 mri 조영제
CN104822391A (zh) 磁性纳米粒子分散体、其制备及诊断和治疗用途
RU2687748C1 (ru) Способ получения нанодисперсного магнитоактивного рентгеноконтрастного средства
US9149545B2 (en) Nanoparticle-based imaging agents for X-ray/computed tomography and methods for making same
EP1522318A2 (en) Heat stable coated colloidal iron oxides

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992903328

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2078679

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1992903328

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1992903328

Country of ref document: EP