WO1992017759A1 - Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method - Google Patents

Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method Download PDF

Info

Publication number
WO1992017759A1
WO1992017759A1 PCT/JP1991/000428 JP9100428W WO9217759A1 WO 1992017759 A1 WO1992017759 A1 WO 1992017759A1 JP 9100428 W JP9100428 W JP 9100428W WO 9217759 A1 WO9217759 A1 WO 9217759A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
electrode
displacement
electrodes
electric signal
Prior art date
Application number
PCT/JP1991/000428
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Okada
Original Assignee
Kazuhiro Okada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhiro Okada filed Critical Kazuhiro Okada
Priority to DE69124377T priority Critical patent/DE69124377T2/de
Priority to PCT/JP1991/000428 priority patent/WO1992017759A1/ja
Priority to EP91906457A priority patent/EP0537347B1/en
Priority to US07/952,753 priority patent/US5492020A/en
Priority to JP03506367A priority patent/JP3040816B2/ja
Publication of WO1992017759A1 publication Critical patent/WO1992017759A1/ja
Priority to US08/298,924 priority patent/US5497668A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/165Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/167Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using piezoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up
    • G01P15/0922Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up of the bending or flexing mode type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • gauge resistance is formed on a semiconductor substrate such as silicon
  • a force detection device that converts mechanical strain generated in a substrate based on a force applied from a substrate into an electric signal using a piezoresistance effect. If a weight is attached to the detection part of this force detection device, an acceleration detection device that detects acceleration applied to the weight as a force can be realized, and if a magnetic material is attached, the magnetism acting on the magnetic material is As a result, it is possible to realize a magnetic detection device that performs the detection.
  • U.S. Pat.Nos. 4,905,523, 4,969,605, and 4,969,366 describe the forces and accelerations according to the inventor's invention.
  • a magnetic detection device is disclosed.
  • Japanese Patent Application No. 2-2742499 describes a detection device having a simple structure in which two substrates are arranged to face each other and electrodes are formed on each substrate. It has been disclosed. In this detection device, one of the substrates is displaced based on a physical quantity such as force, acceleration, or magnetism to be detected, and the displacement changes the distance between the electrodes formed on the two substrates. Detected as a change in capacitance.
  • a method in which a piezoelectric element is sandwiched between both electrodes, and a change in the distance between the electrodes is detected as a voltage generated by the piezoelectric element. If an external force is directly applied to one of the substrates to cause displacement, it functions as a force detecting device for detecting the applied external force. In addition, if a weight is joined to one of the substrates and the substrate is displaced based on the acceleration acting on the weight, it functions as an acceleration detecting device that detects the applied acceleration. In addition, If a magnetic body is bonded to the substrate and the substrate is displaced based on the magnetism acting on the magnetic body, it functions as a magnetism detecting device for detecting the magnetism acting.
  • a detection device of some kind of physical quantity when a detection device of some kind of physical quantity is commercialized, it is necessary to perform an operation test to determine whether or not this detection device outputs a correct detection signal.
  • an operation test employs a method in which a physical quantity to be detected is actually applied to the detection device, and a detection signal at that time is examined. For example, in the case of an acceleration detection device, an acceleration of a predetermined magnitude is actually applied to the detection device from a predetermined direction and the detection signal at that time is correct according to the applied acceleration. It will be determined whether or not.
  • dedicated test equipment is required, and the test operation is also complicated and time-consuming. In particular, the quantity that can be tested with dedicated test equipment is limited, which leads to reduced productivity. Therefore, such conventional test methods are unsuitable as operation tests for mass-produced devices.
  • a first object of the present invention is to provide a method capable of performing a simple operation test on an apparatus for detecting a physical quantity by utilizing a change in the distance between electrodes, and a second object is to provide a method for performing this simple operation.
  • An object of the present invention is to provide a detection device having a function of performing a self-diagnosis by a simple operation test method. Disclosure of the invention
  • the operation test method includes a displacement electrode supported so as to be capable of being displaced by the action of an external force, a fixed electrode fixed to a device housing at a position facing the displacement electrode, and a distance between the two electrodes. It is equipped with a detection means for extracting changes as an electric signal, and is used to perform an operation test of a detection device for detecting a physical quantity corresponding to an external force as an electric signal. It can be grasped separately.
  • a predetermined voltage is applied between the fixed electrode and the displacement electrode, and the displacement electrode is displaced by Coulomb force generated based on the applied voltage.
  • the operation of the detecting device is tested by comparing the electric signal detected by the detecting means with the applied voltage.
  • a test electrode fixed to the device housing at a position facing the displacement electrode is further provided, and a predetermined voltage is applied between the test electrode and the displacement electrode. Is applied, and the displacement electrode is displaced by a cooler generated based on the applied voltage. By comparing the electric signal detected by the detecting means with the applied voltage in this displaced state, the operation of the detecting device is tested. It is the one that was made.
  • a test electrode supported so as to be displaceable together with the displacement electrode is further provided, and a predetermined voltage is applied between the test electrode and the fixed electrode. The displacement electrode is displaced by the Coulomb force generated based on the applied voltage, and the operation of the detecting device is tested by comparing the electric signal detected by the detecting means with the applied voltage in this displaced state. It is something to do.
  • the fourth method of the operation test comprises the steps of: a first test electrode supported so as to be displaced together with the displacement electrode; and a device housing at a position opposed to the first test electrode. And a fixed second test electrode, and a predetermined voltage is applied between the first test electrode and the second test electrode, and the displacement electrode is generated by Coulomb force generated based on the applied voltage.
  • the operation of the detection device is tested by displacing and comparing the electric signal detected by the detection means with the applied voltage in the displaced state.
  • the present invention by applying the above-described operation test method to a physical quantity detection device of a type that detects a change in electrode spacing as a change in capacitance, the following method having a self-diagnosis function is provided. Three detection devices can be realized.
  • the first detection device has a fixed portion fixed to the device housing, an action portion that receives a force based on the action of a physical quantity such as external force, acceleration, magnetism, and the like, Between A flexible substrate having a flexible portion formed and flexible; a fixed substrate fixed to the device housing so as to face the flexible substrate;
  • test electrode fixed to the device housing at a position facing the displacement electrode, and electrically insulated from the fixed electrode
  • Detecting means for outputting a change in capacitance between the displacement electrode and the fixed electrode as an electric signal
  • Voltage applying means for applying a predetermined voltage between the test electrode and the displacement electrode
  • the operation test can be performed by detecting the force acting on the action part based on the electric signal output from the detecting means, and comparing the electric signal output from the detecting means with the applied voltage applied by the voltage applying means. It is like that.
  • the second detection device includes a fixed portion fixed to the device housing, an action portion that receives a force based on the action of a physical quantity such as external force, acceleration, magnetism, and the like, A flexible substrate having a flexible portion formed therebetween; and a fixed substrate fixed to the device housing so as to face the flexible substrate; A displacement electrode formed at a position where displacement occurs due to the radius of the flexible substrate;
  • test electrode supported so as to be displaceable with the displacement electrode, and electrically insulated from the displacement electrode;
  • Detecting means for outputting a change in capacitance between the displacement electrode and the fixed electrode as an electric signal
  • Voltage applying means for applying a predetermined voltage between the test electrode and the fixed electrode
  • the operation test can be performed by detecting the force acting on the action part based on the electric signal output from the detecting means and comparing the electric signal output from the detecting means with the applied voltage applied by the voltage applying means. It is the one that was adopted.
  • the third detection device includes a fixed portion fixed to the device housing, an action portion that receives a force based on the action of a physical quantity such as an external force, acceleration, magnetism, and the like.
  • a flexible board formed between the flexible board and the flexible board, and a fixed board fixed to the device housing so as to face the flexible board;
  • a first test electrode which is formed at a position where the flexible substrate bends based on its own displacement and which is electrically insulated from the displacement electrode;
  • a second test electrode fixed to the device housing at a position facing the first test electrode and electrically insulated from the fixed electrode;
  • Detecting means for outputting a change in capacitance between the displacement electrode and the fixed electrode as an electric signal
  • Voltage applying means for applying a predetermined voltage between the first test electrode and the second test electrode
  • the operation test can be performed by detecting the force acting on the action part based on the electric signal output from the detecting means and comparing the electric signal output from the detecting means with the applied voltage applied by the voltage applying means. It was made.
  • the following three detection devices having a self-diagnosis function are applied by applying the above-described operation test method to a physical quantity detection device of a type that detects a change in electrode spacing using a piezoelectric element. Can be realized.
  • the first detection device includes a fixed portion fixed to the device housing, an action portion that receives a force based on the action of a physical quantity such as an external force, acceleration, magnetism, and the like. Between A flexible substrate having a flexible portion formed and flexible; a fixed substrate fixed to the device housing so as to face the flexible substrate;
  • a displacement electrode disposed at a position where displacement occurs due to bending of the flexible substrate
  • a piezoelectric element which is arranged so as to be sandwiched between the flexible substrate and the fixed substrate, converts a pressure applied by both substrates into an electric signal and outputs the electric signal to both electrodes,
  • test electrode fixed to the device housing at a position facing the displacement electrode, and electrically insulated from the fixed electrode
  • the operation test is performed by detecting the force acting on the action part based on the electric signal output from the piezoelectric element and comparing the electric signal output from the piezoelectric element with the applied voltage applied by the voltage applying means. It is something that can be done.
  • the second detection device includes a fixed portion fixed to the device housing, an action portion that receives a force based on the action of a physical quantity such as external force, acceleration, magnetism, and the like, and a second portion including the fixed portion and the action portion.
  • a flexible substrate having a flexible portion formed therebetween; and a fixed substrate fixed to the device housing so as to face the flexible substrate;
  • a displacement electrode disposed at a position where displacement occurs due to bending of the flexible substrate;
  • a piezoelectric element which is arranged so as to be sandwiched between the flexible substrate and the fixed substrate, converts a pressure applied by both substrates into an electric signal and outputs the electric signal to both electrodes,
  • test electrode supported to be displaceable with the displacement electrode and electrically insulated from the displacement electrode
  • Voltage applying means for applying a predetermined voltage between the test electrode and the fixed electrode
  • the operation test can be performed by detecting the force acting on the action part based on the electric signal output from the piezoelectric element and comparing the electric signal output from the piezoelectric element with the applied voltage applied by the voltage applying means. It was made.
  • the third detection device includes a fixed portion fixed to the device housing, an action portion that receives a force based on the action of a physical quantity such as an external force, acceleration, magnetism, and the like.
  • a flexible substrate having a flexible portion formed therebetween; and a fixed substrate fixed to the device housing so as to face the flexible substrate;
  • a displacement electrode disposed at a position where displacement occurs due to the radius of the flexible substrate
  • a fixed electrode fixed by a fixed substrate A piezoelectric element which is arranged so as to be sandwiched between the flexible substrate and the fixed substrate, converts a pressure applied by both substrates into an electric signal and outputs the electric signal to both electrodes,
  • a first test electrode which is formed at a position where a radius is generated in the flexible substrate based on its own displacement and which is electrically insulated from the displacement electrode;
  • a second test electrode fixed to the device housing at a position facing the first test electrode and electrically insulated from the fixed electrode;
  • Voltage applying means for applying a predetermined voltage between the first test electrode and the second test electrode
  • the operation test can be performed by detecting the force acting on the action part based on the electric signal output from the piezoelectric element and comparing the electric signal output from the piezoelectric element with the applied voltage applied by the voltage applying means. It is like that.
  • It has a fixed portion fixed to the device housing, an operating portion receiving a force based on the action of an external physical quantity, and a flexible portion formed between the fixed portion and the operating portion and having flexibility.
  • the first displacement electrode is fixed by the first fixed substrate, A first fixed electrode formed at a position facing the displacement electrode,
  • Detection means for outputting as a signal
  • FIG. 1 is a side sectional view showing a basic structure of a capacitance type acceleration detecting device to which an operation test method according to the present invention is applied.
  • FIG. 2 is a bottom view of the fixed substrate 10 of the detection device shown in FIG.
  • FIG. 1 shows a cross section of the fixed substrate 10 of FIG. 2 cut along the X-axis.
  • FIG. 3 is a top view of the flexible substrate 2 in the detection device shown in FIG. FIG. 1 shows a cross section of the flexible substrate 20 of FIG. 3 cut along the X-axis.
  • FIG. 4 is a side cross-sectional view showing a radiused state of the detection device when a force Fx in the X-axis direction acts on an action point P of the detection device shown in FIG.
  • FIG. 5 is a side cross-sectional view illustrating a radius state of the detection device when a force Fz in the Z-axis direction is applied to an action point P of the detection device illustrated in FIG.
  • FIG. 6 is a circuit diagram showing a circuit for operating the detection device shown in FIG. 1 and a circuit for performing an operation test on the circuit.
  • FIG. 7 is a circuit diagram showing an example of a specific circuit configuration of the CV conversion circuit shown in FIG.
  • FIG. 8 is a side cross-sectional view showing a specific test method for detecting a force in the + Z-axis direction.
  • FIG. 9 is a side sectional view showing a specific test method for detecting a force in the Z-axis direction.
  • FIGS. 10a and 10b are side sectional views of a capacitance type acceleration detection device having a function of performing a self-diagnosis by performing the operation test method according to the present invention.
  • FIG. 11 is a circuit diagram showing a circuit for operating the detection device shown in FIG. 1A and a circuit for performing an operation test on the circuit.
  • FIG. 12 is a side sectional view of another capacitive acceleration detection device having a function of performing self-diagnosis by performing the operation test method according to the present invention.
  • FIG. 13 is a side cross-sectional view of a capacitance-type force detection device having a function of performing self-diagnosis by performing the operation test method according to the present invention.
  • FIG. 14 is a side sectional view of a piezoelectric acceleration detecting device having a function of performing a self-diagnosis by performing the operation test method according to the present invention.
  • FIG. 15 is a top view showing the shape of an electrode formed on the upper surface of the piezoelectric element 45 in the detection device shown in FIG.
  • FIG. 16 is a side sectional view of a piezoelectric force detection device having a function of performing a self-diagnosis by performing the operation test method according to the present invention.
  • FIG. 17 is a side sectional view of another piezoelectric type force detecting device having a function of performing a self-diagnosis by performing the operation test method according to the present invention.
  • FIG. 18 is a side cross-sectional view of an evening acceleration detection device that takes a difference in acceleration detection in all directions.
  • FIGS. 19a and 19b are plan views showing electrode arrangements in the device shown in FIG.
  • FIG. 20 is a circuit diagram of a circuit for performing acceleration detection and operation test in the Z-axis direction in the device shown in FIG.
  • FIG. 21 is a graph showing a general relationship between a distance d between electrodes of a capacitive element and a capacitance value C.
  • FIG. 22 is a side sectional view showing another embodiment of the device shown in FIG.
  • FIG. 23 is a side sectional view showing still another embodiment of the device shown in FIG.
  • FIG. 24 is a side sectional view showing an embodiment in which the device shown in FIG. 18 is configured using metal.
  • FIG. 25 is a side sectional view showing an embodiment in which the device shown in FIG. 24 is applied to a force detection device.
  • FIG. 1 is a side sectional view showing a basic structure of an acceleration detecting device to which the present invention is applied.
  • the main components of this detection device are a fixed substrate 1, a flexible substrate 20, a working body 30, and a device housing 40.
  • FIG. 2 shows a bottom view of the fixed substrate 10.
  • FIG. 1 shows a cross section of the fixed substrate 10 of FIG. 2 cut along the X-axis.
  • the fixed substrate 10 is a disk-shaped substrate as shown, and the periphery is fixed to the device housing 40.
  • Fixed electrodes 11 to 14 and a disk-shaped fixed electrode 15 are formed as shown in the figure.
  • FIG. 3 shows a top view of the flexible substrate 20.
  • FIG. 1 shows a cross section obtained by cutting the flexible substrate 20 of FIG. 3 along the line X.
  • the flexible substrate 20 is also a disk-shaped substrate as shown in the figure, and its periphery is fixed to the device housing 4 #.
  • fan-shaped displacement electrodes 21 to 24 and a disk-shaped displacement electrode 25 are formed as shown in the figure.
  • the action body 30 has a columnar shape as shown by the broken line in FIG. 3, and is coaxially joined to the lower surface of the flexible substrate 20.
  • the device housing 40 has a cylindrical shape and fixedly supports the periphery of the fixed substrate 10 and the flexible substrate 20.
  • the fixed substrate 10 and the flexible substrate 20 are arranged at predetermined intervals at positions parallel to each other. Both are disc-shaped substrates, whereas the fixed substrate 1 ⁇ has high rigidity and is hard to form a radius, whereas the flexible substrate 20 has flexibility and This is a substrate that produces only In the example shown in FIG. 1, the rigidity of the fixed substrate 1 ⁇ is increased by increasing the thickness, and the flexibility of the flexible substrate 20 is increased by decreasing the thickness. By changing it, rigidity and flexibility may be provided. Alternatively, a groove may be formed in the substrate, or a through hole may be formed to provide flexibility. '' Fixed substrate 10, flexible substrate 20, working body 30 perform their original functions Any material may be used as long as the material can be used.
  • each electrode layer may be made of any material as long as it has conductivity.
  • an action point P is defined at the center of gravity of the action body 30, and an XYZ three-dimensional coordinate system with this action point P as the origin is defined as shown in the figure. That is, the X axis is defined in the right direction of Fig. 1, the Z axis is defined in the upward direction, and the Y axis is defined in the direction perpendicular to the paper surface toward the back side of the paper surface.
  • the central portion on which the operating body 30 is mounted is referred to as an operating portion
  • the peripheral portion fixed by the device housing 40 is referred to as a fixing portion
  • the portion therebetween is referred to as a flexible portion.
  • the capacitance C increases as the distance between the opposing electrodes decreases, and decreases as the distance between the electrodes increases.
  • the detector uses this principle to measure the change in capacitance between each electrode, and based on the measured value,
  • the acceleration in the X ⁇ direction is based on the capacitance change between the capacitive elements CI and C3
  • the acceleration in the Y-axis direction is based on the capacitive change in the capacitive elements C2 and C4
  • the acceleration in the Z-axis direction is the capacitive element C
  • the present invention relates to an operation test method for a detection device based on such a principle.
  • the above-described detection device is of a capacitance type
  • a piezoelectric detection device detects a change in capacitance by inserting a piezoelectric element between a flexible substrate and a fixed substrate. Instead, the voltage generated by this piezoelectric element is detected.
  • FIG. 6 is a circuit diagram showing a circuit for operating the detection device shown in FIG. 1 and a circuit for performing an operation test on the circuit.
  • the capacitance elements C1 to C5 correspond to the capacitance elements formed in the acceleration detection device described above.
  • the capacitance element C 1 is composed of a combination of a fixed electrode 11 and a displacement electrode 21.
  • the CV conversion circuits 51 to 55 connected to the respective capacitance elements C 1 to C 5 have a function of converting the capacitance value C of each capacitance element into a voltage value V.
  • the voltage values V1 to V5 output from the CV conversion circuits 51 to 55 are proportional to the capacitance values of the capacitance elements C1 to C5, respectively.
  • the differential amplifier 71 outputs the difference between the voltage values VI and V3 to a terminal Tx
  • the differential amplifier 72 outputs the difference between the voltage values V2 and V4 to a terminal Ty. Further, the voltage value V5 is output to the terminal Tz.
  • the voltage (V 1-V 3) obtained at terminal ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ becomes the acceleration detection value in the X-axis direction
  • the voltage obtained at terminal T y voltage (V 2 - V 4) becomes an acceleration detection value in the Y-axis direction
  • the acceleration in the X axis or in the ⁇ $ ⁇ direction is detected by taking the difference between the two voltage values by the differential amplifier. Detection by such a difference is There are benefits that can offset such errors (eg, temperature errors).
  • the acceleration that is not detected based on the difference in the acceleration of the Z-axis is described. This will be described in S4.
  • the CV conversion circuits 51 to 55 and the differential amplifiers 71 and 72 described above are circuits necessary for the detection device to perform a detection operation after all.
  • the operation test according to the present invention can be performed by further adding voltage generating circuits 61 to 65 and test switches S1 to S5 to this circuit.
  • the voltage generating circuits 61 to 65 may be any circuits as long as they can generate a desired voltage. For example, a circuit that converts digital data output from a microcomputer into an analog signal using an A converter may be used.
  • this is the same state as the state where the force FX in the X-axis direction acts on the point of action P.
  • the detection voltages output to the terminals Tx, Ty, and Tz are examined, and the force It checks whether or not it has the correct detection value indicating that FX has acted.
  • the operation test is performed by inspecting the detection voltage in the state. If the correct relationship between the applied voltage and the detection voltage is determined in advance, a quantitative operation test can be performed.
  • the capacitance value is not related to the generated voltage. It is desirable to keep the circuit constant. Alternatively, a circuit having a certain correlation between the generated voltage and the capacitance may be used. In the circuit, since the voltage generation circuits 61 to 65 are connected in parallel with the capacitance elements C1 to C5, if the capacitance values of the voltage generation circuits 61 to 65 fluctuate randomly, correct Operation test cannot be performed. In addition, the CV conversion circuits 51 to 55 need to detect the capacitance of the capacitance elements C1 to C5 without being affected by the voltage applied by the voltage generation circuits 61 to 65. .
  • FIG. 7 shows an example of a CV conversion circuit with such a function.
  • the CV conversion circuit 50 shown here has a function of converting the capacitance C of the capacitive element CO into a voltage V and outputting the voltage to the terminal Tout. Note that a voltage is applied to the capacitive element CO from the voltage generating circuit 60.
  • the CV conversion circuit 50 includes an oscillation circuit 56 and a rectification circuit 57. Oscillation circuit 56 generates an AC signal of a predetermined frequency, and supplies this to capacitive element C0.
  • the rectifier circuit 57 is composed of resistors R 1 and R 2, capacitors C 6 and C 7, and a diode D 1.
  • the rectifier circuit 57 converts the capacitance C of the capacitive element C 0 supplied with an AC signal to a voltage V. And output.
  • the CV conversion circuit 50 having such a configuration can convert the capacitance C of the capacitance element CO into the voltage V without being affected by the voltage applied from the voltage generation circuit 60. Note that the circuit of FIG. 7 is shown as an example, and as a CV conversion circuit, In addition, various circuits can be applied.
  • FIG. 8 is a side cross-sectional view showing a specific test method for the + Z-axis direction force detection operation.
  • This detection device is composed of a fixed substrate 8 ° and a flexible substrate 90.
  • a donut-shaped groove G is dug in the bottom surface of the flexible substrate 90 °, and the portion where the groove G is dug is thinner than the other portions. In this part, it becomes flexible.
  • the fixed substrate 80 is bonded to cover the upper surface of the flexible substrate 90 while maintaining a predetermined space on the upper surface of the flexible substrate 90.
  • a plurality of fixed electrodes 81 force are formed on the lower surface of the fixed substrate 80 and a plurality of displacement electrodes 91 force are formed on the upper surface of the flexible substrate 90 at positions facing each other.
  • the fixed substrate 8 ° and the flexible substrate 90 are formed of a glass substrate and a silicon substrate, respectively, and the fixed electrode 81 and the displacement electrode 91 are mounted on each substrate. It is composed of an aluminum layer formed on the substrate.
  • An insulating layer 92 such as a silicon oxide film or a silicon nitride film is formed between the flexible substrate 90 and the displacement electrode 91.
  • Fig. 8 shows the method of applying voltage at this stage. That is, if a positive charge is applied to the fixed electrode 81 side and a negative charge is applied to the displacement electrode 91 side by the power source V, an attractive force acts between the two, and the point of action P + Operation test is possible with the Z-axis direction force applied.
  • a plurality of auxiliary electrodes 82 are formed on the upper surface of the fixed electrode 80.
  • a positive charge is applied to the capture electrode 82 and the flexible substrate 90 (silicon substrate) by the power supply V, and a negative charge is applied to the fixed electrode 81 and the displacement electrode 91.
  • a polarization action occurs between the trapping electrode 82 and the fixed electrode 81, and a polarization action occurs between the displacement electrode 91 and the flexible substrate 90.
  • Each part is charged.
  • a repulsive force due to the Coulomb force acts between the fixed electrode 81 and the displacement electrode 91, and the state is the same as when a force in the -Z axis direction acts on the point of action P.
  • the electrode pair for generating the Coulomb force and the electrode pair for forming the capacitive element are the same electrode pair. That is, an electrode pair for generating Coulomb force is a pair of a fixed electrode (11 to 15, 81) and a displacement electrode (21 to 25, 82), and an electrode for forming a capacitive element. The pair is also the same electrode pair. In this way, sharing the same electrode pair has the advantage that it is not necessary to form another electrode for the operation test, but it limits the flexibility of the test and also complicates the test circuit. There is a disadvantage that it becomes.
  • a detection terminal for outputting a detection signal of a physical quantity and a test terminal for applying a voltage for a test.
  • a test electrode is formed in advance, and an electrode pair for generating Coulomb force and an electrode pair for forming a capacitive element are configured as separate electrode pairs. It was made.
  • FIG. 10a is a side sectional view of an acceleration detecting device provided with a test electrode for performing the operation test method according to the present invention.
  • the basic structure is the same as that of the acceleration detection device shown in FIG. 1, in which a fixed substrate 10 and a flexible substrate 20 are provided to face each other, and each is fixed to the device housing 40 around the periphery.
  • the fixed substrate 10 is a rigid substrate, while the flexible substrate 20 is thin and flexible.
  • On flexible substrate 20 On the surface, five displacement electrodes 21 to 25 as shown in FIG. 3 are formed.
  • five test electrodes 11 t to 15 t are formed on the lower surface of the fixed substrate 10, and five fixed electrodes 11 to 15 are further formed via the insulating layer 16. .
  • the planar arrangement of the five test electrodes 11 1 to 15 t and the planar arrangement of the five fixed electrodes 11 to 15 are the same as the electrode arrangement shown in FIG.
  • the electrode pairs for forming the capacitance elements C 1 to C 5 generate a kami and Coulomb force, which is a pair of fixed electrodes 11 to 15 and displacement electrodes 21 to 25.
  • the pair of electrodes is a pair of the test electrode 11 t to 15 t and the displacement electrode 21 to 25. Although one displacement electrode is shared, a separate electrode pair is used.
  • FIG. 10b shows an example in which five test electrodes 21 t to 25 t are formed on the flexible substrate 20 side.
  • An insulating layer 26 is formed between the test electrodes 21 t to 25 t and the displacement electrodes 21 to 25.
  • the electrode pair for generating the Coulomb force is a pair with the test electrodes 21 t to 25 t and the fixed electrodes 11 to 15.
  • FIG. 11 is an example of a circuit diagram applied to a detection device having a structure as shown in FIG. 10a.
  • the voltage generating circuit 60 applies a voltage between the test electrode 11 t and the displacement electrode 21 to apply Coulomb force.
  • the flexible substrate 20 bends, and the external force Will be in the same state as when.
  • the CV conversion circuit 5 ° detects the capacitance of the capacitance element C1 constituted by the fixed electrode 11 and the displacement electrode 21 and outputs the same as a voltage V to the terminal Tout. Since the fixed electrode 11 and the test electrode 11 t are electrically insulated by the insulating layer 16, the CV conversion circuit 50 is not affected by the voltage applied by the voltage generation circuit 60.
  • Capacitance can be detected.
  • the external connection terminals of this detector include a common terminal that conducts to each of the displacement electrodes 21 to 25, a detection terminal that conducts to each of the fixed electrodes 11 to 15, and a test electrode 11 t to l5. It is sufficient to provide a test terminal, which is conducted for each of t. Self-diagnosis can be easily performed by checking whether a predetermined output is obtained at the detection terminal when a predetermined voltage is applied to the test terminal.
  • FIG. 12 shows an embodiment in which the electrodes on the flexible substrate 20 are not shared but are separately provided. That is, the first test electrodes 21 t to 25 t are formed on the upper surface of the flexible substrate 20, and the displacement electrodes 21 to 25 are formed thereon via the insulating layer 26. I have.
  • the fixed substrate 10 side is the same as in the above-described embodiment, and the fixed electrodes 11 to 15 are formed on the second test electrodes 11 1 to 15 t via the insulating layer 16. Have been.
  • the electrode pairs for forming the capacitive elements C1 to C5 are a pair of fixed electrodes 11 to 15 and displacement electrodes 21 to 25. Electrode pair is the first trial A pair of the test electrode 21 1 t to 25 t and the second test position electrode 11 t to 25 t is used, and a completely separate electrode pair is used.
  • FIG. 13 is a side sectional view of a force detection device according to still another embodiment.
  • a fixed substrate 110, a flexible substrate 120, a working body 130, and an auxiliary substrate 140 are provided in the device housing 100.
  • the detector 13 31 extending from the operating body 13 ⁇ is led out of a hole 101 provided in the device housing 100.
  • each of the above components is made of metal.
  • On the lower surface of the fixed substrate 110 an insulating layer 116 is formed, and two fixed electrodes 111, 112 are formed thereon.
  • An insulating layer 146 is formed on the upper surface of the auxiliary substrate 140, and two test electrodes 141 and 142 are further formed thereon.
  • a detection terminal 151, a common terminal 152, and a test terminal 153 are led out of the left side of the device housing 100 (the force shown only one by one in the figure). As many as the number of electrodes are prepared). Of course, each of the terminals 151-153 is electrically insulated from the device housing 100.
  • Each terminal 15 1-: L53 is connected to each electrode and the flexible substrate 120 by a bonding wire 16 "L-163. In this detection device, Although no displacement electrode is provided, as described above, since the flexible substrate 120 is made of metal, the flexible substrate 120 itself has an electrode function. It will be.
  • the above-described detection processing may be performed in a state where a predetermined voltage is applied between the test terminal 153 and the common terminal 152.
  • a predetermined voltage is applied between the test terminal 153 and the common terminal 152.
  • the Coulomb force based on the applied voltage, the same state as when an external force acts on the detector 13 1 can be created.
  • at least four test electrodes should be provided.
  • FIG. 14 is a side sectional view of a piezoelectric acceleration detecting device having an operation test function according to the present invention.
  • the fixed substrate 10 having rigidity and the flexible substrate 20 having flexibility are It is supported by the device housing 40, and is similar to the electrostatic capacitance type detection device shown in FIG. 1 in that the operating body 30 is joined to the lower surface of the flexible substrate 20.
  • eight electrodes are formed on the lower surface of the fixed substrate 0 and the upper surface of the flexible substrate 20, respectively, and the piezoelectric element 45 is sandwiched between them.
  • the piezoelectric element 45 for example, PZT ceramics (solid solution of lead titanate and lead zirconate) can be used, and this may be inserted between both electrodes.
  • PZT ceramics solid solution of lead titanate and lead zirconate
  • FIG. 15 is a top view of the piezoelectric element 45, and clearly shows a planar arrangement of eight electrodes formed on the upper surface.
  • the electrodes formed on the upper surface of the piezoelectric element 45 are made up of four fixed electrodes 18 a 18 d (hatched with diagonal lines in the figure to help visually grasp the pattern). ) And four test electrodes 19 a 19 d (similarly indicated by doting). On the lower surface of the piezoelectric element 45, four displacement electrodes 28a28d and four test electrodes 29a29d are formed in exactly the same arrangement. Cut the piezoelectric element 45 in Fig. 15 FIG. 14 shows a cross section taken along the line 14. Note that the electrode configuration is not limited to a planar—layer structure as shown in FIG. 15, but to a multilayer structure as shown in FIG. 10a, FIG. 10b, and FIG. Is also good.
  • a change in the distance between the pair of electrodes facing each other is detected not as a change in capacitance but as a voltage generated between the two electrodes. That is, when acceleration is applied to the acting body 30 and the flexible substrate 20 is bent, the piezoelectric element 45 receives a partial compressive force or a stretching force. . This results in a voltage at each electrode pair. By recognizing which voltage is output to which electrode pair, the direction and magnitude of the applied acceleration on three-dimensional coordinates can be detected. Unlike a capacitance-type detection device, a piezoelectric detection device cannot use both a detection electrode pair and a test electrode pair.
  • test electrodes 19a and 29a and 19c and 29c Applying a voltage between and applying an attractive force between 19a and 29c and a repulsive force between 19c and 29c, if this device operates normally, Predetermined voltages are generated between the fixed electrode 18a and the displacement electrode 28a and between the fixed electrode 18c and the displacement electrode 28c. By monitoring this voltage, an operation test can be performed. If a voltage is applied between the test electrodes 19b and 29b and between 19d and 29d, a test in a direction perpendicular to the test direction described above can be performed.
  • FIG. 16 is a side sectional view of a piezoelectric force detecting device having an operation test function according to the present invention.
  • the device housing 200 is fixed to an industrial machine or the like using a screw hole 201, and a flexure element 250 is joined to a lower portion thereof.
  • the flexure element 250 is made of a metal, and has a donut-shaped groove G formed on the lower surface. C The forming portion 255 of the groove G has a small thickness and is flexible.
  • the screw passed through the screw hole 25 1 of the flexure element 250 is screwed into the screw hole 202 of the device housing 200.
  • a detector 260 extends on the lower surface of the center of the flexure element 25 °, and the external force acting on the tip is transmitted as momentum about the point of action P. Electrodes are formed on the upper and lower surfaces of the piezoelectric element 230 serving as the center of the device, and are sandwiched between the fixed substrate 210 and the displacement electrode flat plate 220 with a predetermined pressure. Four fixed electrodes 2 18 a to 2 18 d and four test electrodes 2 19 a to 2 19 on the upper surface d and force are formed in the same arrangement as the pattern shown in Fig.15. On the other hand, a single displacement electrode flat plate 220 is formed on the lower surface.
  • the eight electrodes on the upper surface are fixed to the device housing 200 by the fixed substrate 210, and the displacement electrode flat plate 220 on the lower surface is fixed to the strain body 250 by the transmitter 240. It is joined to the center of the upper surface.
  • the displacement electrode plate 220 is used as a common electrode, and the voltage generated at the fixed electrode 218a218d is used to detect the detector 26. ⁇ It is possible to detect the external force acting on ⁇ , and monitor the voltage generated on the fixed electrode 2 18 a 2 18 d while applying a predetermined voltage to the test electrode 2 19 a 2 19 d. This allows an operation test to be performed.
  • the embodiment shown in FIG. 17 is obtained by replacing the capacitance type force detection device shown in FIG. 13 with a piezoelectric type.
  • this detection device five fixed electrodes 111 are formed in the same arrangement as the two-dimensional arrangement shown in FIG. 2 so that a three-dimensional force can be detected.
  • four test electrodes] 4 1 to: 144 are arranged (electrode 144 is arranged behind the working body 130, and electrode 144 is arranged in front of the working body 130. Not), to be able to perform three-dimensional motion test It is.
  • a piezoelectric element 145 is inserted between the fixed electrodes 111 to 115 and the flexible substrate 120, and an external force is applied by a voltage generated at the fixed electrodes 111 to 115.
  • the basic acceleration detection device shown in Fig. Makes a difference in the acceleration detection in the X-axis direction and the Y-axis direction, but differs in the Z-axis direction. No difference is made in acceleration detection. Detection by difference has a merit that the error due to the external environment such as temperature can be offset. Therefore, it is preferable to make a difference in acceleration detection in the Z direction. An embodiment for realizing this will be described below. In the embodiment whose side cross section is shown in Fig. 18, the acceleration detection in all XYZ directions is performed by taking the difference. Device. On the lower surface of the fixed substrate 310, five fixed electrodes 11 to 15 are formed in the layout shown in FIG. 19a.
  • a doughnut-shaped groove G is dug in the lower surface of the flexible substrate 320, and an action part 321, a flexible part 32, and a fixed part 32, 23 are formed in the center, the periphery, and the periphery thereof. .
  • five displacement electrodes 21 to 25 are formed in the layout shown in FIG. 19b.
  • the above configuration is the same as the basic configuration shown in FIG.
  • the feature of this device is that a second fixed substrate 330 is further provided, and a displacement electrode 326 force is provided on the lower surface of the working portion 321 (and a fixed electrode is provided on the upper surface of the second fixed substrate 330).
  • the point is that the poles 33 are formed so as to face each other.
  • the acceleration detection and operation test in the X-axis and Y-axis directions using this device are the same as those in the device in Fig. 1.
  • acceleration detection and operation tests in the Z-axis direction are performed by the circuit shown in FIG.
  • the capacitive element C5 is composed of the fixed electrode 15 and the displacement electrode 25
  • the capacitive element C6 is composed of the fixed electrode 33 and the displacement electrode 32. Is what is done.
  • a voltage generation circuit 66 and a CV conversion circuit 56 for the capacitive element C 6 are added, and the difference between the voltage values V 5 and V 6 is calculated by the differential amplifier 73
  • the difference is that the calculated value is output as a detection value for the Z axis.
  • the detection values in all XYZ directions are different. It is based on minutes and can offset effects such as temperature.
  • the relationship between the distance d between electrodes of a capacitive element and the capacitance value C is as shown in the graph of FIG.
  • the capacitance value increases by AC 1 and becomes C 0 + ⁇ C 1.
  • the capacitance value will decrease by ⁇ C2 and become CO —.
  • the output of the differential amplifier 73 is equivalent to AC1 + AC2.
  • the capacitance of the capacitor C5 changes from C0 to C room C2, and the capacitance of the capacitor C6 becomes CO power changes to C 0 + AC 1. Therefore, the output of the differential amplifier 73 is equivalent to ⁇ ( ⁇ 1 + ⁇ 02).
  • the same absolute value is output for the acceleration having the same absolute value.
  • the embodiment shown in FIG. 22 is obtained by further adding a working body 345 and a pedestal 340 to the embodiment shown in FIG.
  • the displacement electrode 32 6 is formed on the lower surface of the working body 345.
  • the embodiment shown in FIG. 23 is obtained by changing the positions of the electrodes of the embodiment shown in FIG. 22.
  • the fixed electrodes 1] to 15 are arranged on the upper surface of the fixed substrate 330 and the displacement electrodes 21 to 2 are arranged. 5 is formed on the lower surface of the working body 345, respectively, the fixed electrode 336 is formed on the lower surface of the fixed substrate 31 ', and the displacement electrode 326 is formed on the flexible substrate 320.
  • the force suitable for forming each substrate with a glass or a semiconductor is used.
  • the acceleration detection device shown in FIG. 24 is an example suitable for being made of metal.
  • the members 410, 420, 425, 430, 440, 450 are all made of metal.
  • On the lower surface of the member 410 five fixed electrodes 11 to 15 are formed via an insulating layer 418.
  • Five displacement electrodes 21 to 25 are formed on the upper surface of the member 420 via an insulating layer 428, and a donut-shaped displacement electrode 4 26 on the lower surface via an insulating layer 429. Force ⁇ formed.
  • the member 4 2 5 On the lower surface of the member 4 20, the member 4 2 5 The lower end of the member 4 25 is connected to the member 4 50 via a diaphragm 4 35.
  • a donut-shaped fixed electrode 436 is formed on the upper surface of the member 430 via an insulating layer 438.
  • the acceleration detecting device shown in FIG. 24 is applied to a force detecting device, and the lower half structure is replaced with a metal member 431 (flexible substrate). ing. Based on the external force applied to the tip of the detector 4 32, the member 42 ° is displaced, and the external force is detected.
  • the present invention has been described based on some embodiments illustrating the present invention.
  • the present invention is not limited to these embodiments, and can be implemented in various other modes.
  • various arrangements of the electrodes may be considered in addition to the above-described embodiment.
  • the number of electrodes is not limited to the above embodiment. How and how many fixed electrodes, displacement electrodes, and test electrodes are to be formed is a matter that can be changed as appropriate in design.
  • an example is shown in which the eight-electrode arrangement shown in FIG. 15 is applied to a piezoelectric detection device.
  • the arrangement can also be applied to a capacitance type detection device.
  • the arrangement of the electrodes in one layer as shown in Fig. 15 simplifies the manufacturing process and enables mass production. It is rather desirable for production.
  • the electrode may be formed by any method.
  • an impurity diffusion region can be formed in a semiconductor substrate and used as an electrode.
  • the substrate itself can be used as an electrode. Therefore, in the present invention, the electrodes need not necessarily be separate from the substrate.
  • the acceleration detecting device and the force detecting device have been described. However, if the acting body is made of a magnetic material, a force based on magnetism can be detected. That is, the present invention is equally applicable to a magnetic detection device.
  • the operation test method according to the present invention can be widely applied to a force detection device, an acceleration detection device, and a magnetic detection device that detect a physical quantity by using a change in the distance between electrodes. is there. Also, this The detection device having the function of performing the operation test can perform the operation test by a simple method, and can be used with high reliability in practical use. Therefore, applications to automobiles and industrial robots can be expected.

Description

明 細 電極間距離の変化を利用して物理量を検出する装置 における動作試験方法、 およびこの方法を実施する 機能を備えた物理量の検出装置 技 術 分 野 本発明は、 電極間距離の変化を利用して、 力、 加速度 磁気などの物理量を検出する装置において、 その動作を 試験する方法に.関し、 更に、 この動作試験方法を実施す る機能を備えた力、 加速度、 磁気などの物理量の検出装 置に関する。 背 景 技 術 自動車産業や機械産業などでは、 力、 加速度、 磁気と いつた物理量を正確に検出できる検出装置の需要が高ま つている。 特に、 二次元あるいは三次元の各成分ごとに これらの物理量を検出しうる小型の装置が望まれている このような需要に応えるため、 シリ コ ンなどの半導体 基板にゲージ抵抗を形成し、 外部から加わる力に基づい て基板に生じる機械的な歪みを、 ピエゾ抵抗効果を利用 して電気信号に変換する力検出装置が提案されている。 この力検出装置の検出部に、 重錘体を取り付ければ、 重 錘体に加わる加速度を力と して検出する加速度検出装置 が実現でき、 磁性体を取り付ければ、 磁性体に作用する 磁気を力と して検出する磁気検出装置が実現できる。 た とえば、 米国特許第 4 9 0 5 5 2 3号、 同第 4 9 6 7 6 0 5号、 同第 4 9 6 9 3 6 6号には、 本願発明者の発明 に係る力、 加速度、 磁気の検出装置が開示されている。 上述のピエゾ抵抗効果を利用した検出装置に代わって、 電極間距離の変化を利用した検出装置も提案されている。 たとえば、 日本国特許出願 特願平 2 - 2 7 4 2 9 9号 明細書には、 2枚の基板を対向させて配置し、 それぞれ の基板上に電極を形成した単純な構造の検出装置が開示 されている。 この検出装置においては、 検出対象となる 力、 加速度、 磁気などの物理量に基づいて一方の基板を 変位させ、 この変位により両基板上に形成した電極間距 離を変化させ、 これを両電極間の静電容量の変化と して 検出している。 あるいは、 両電極間に圧電素子を挟んで おき、 電極間距離の変化をこの圧電素子が発生する電圧 として検出する方法も開示されている。 一方の基板に外 力をそのまま作用させて変位を起こさせれば、 作用した 外力を検出する力検出装置と して機能する。 また、 一方 の基板に重錘体を接合しておき、 この重錘体に作用した 加速度に基づいて基板を変位させれば、 作用した加速度 を検出する加速度検出装置と して機能する。 更に、 一方 の基板に磁性体を接合しておき、 この磁性体に作用 した 磁気に基づいて基板を変位させれば、 作用した磁気を検 出する磁気検出装置と して機能する。
一般に、 何らかの物理量の検出装置を製品化する場台、 この検出装置が正しい検出信号を出力するか否かの動作 試験を行う必要が生じる。 従来、 このような動作試験は、 検出対象となる物理量を実際にその検出装置に作用させ、 そのときの検出信号を調べるという方法が採られている。 たとえば、 加速度の検出装置であれば、 実際に所定の大 きさの加速度を所定の方向から検出装置に作用させ、 そ のときの検出信号が、 与えた加速度に応じた正しいもの になっているか否かを判定する こ とになる。 しかしな力《 ら、 このような動作試験を行うには、 専用の試験設備が 必要になり、 試験作業も煩雑で時間のかかる ものとなる。 特に、 専用の試験設備で試験できる数量が限定され、 生 産性の低下を招く ことになる。 したがって、 このような 従来の試験方法は、 大量生産される装置に対する動作試 験と しては不適当である。
本発明の第 1 の目的は、 電極間距離の変化を利用して 物理量を検出する装置について、 簡便な動作試験を行い 得る方法を提供する こ とであり、 第 2の目的は、 この簡 便な動作試験方法によって自己診断を行う機能をもった 検出装置を提供する こ とである。 発 明 の 開 示
<動作試験方法 >
本発明による動作試験方法は、 外力の作用により変位 しうるように支持された変位電極と、 この変位電極に対 向する位置において装置筐体に固定された固定電極と、 両電極間の距離の変化を電気信号と して取り出す検出手 段と、 を備え、 外力に対応した物理量を電気信号と して 検出する検出装置の動作試験を行うためのものであり、 次のような 4つの方法に分けて把握することができる。
( 1 ) 本発明による動作試験の第 1 の方法は、 固定電 極と変位電極との間に所定の電圧を印加し、 この印加電 圧に基づいて発生するクーロン力により変位電極を変位 させ、 この変位状態において検出手段が検出した電気信 号を印加電圧と比較することにより、 この検出装置の動 作を試験するようにしたものである。
(2 ) 本発明による動作試験の第 2の方法は、 変位電 極に対向する位置において装置筐体に固定された試験電 極を更に設け、 この試験電極と変位電極との間に所定の 電圧を印加し、 この印加電圧に基づいて発生するクーロ ンカにより変位電極を変位させ、 この変位状態において 検出手段が検出した電気信号を印加電圧と比較すること により、 この検出装置の動作を試験するようにしたもの である。 (3 ) 本発明による動作試験の第 3の方法は、 変位電 極とともに変位しうるように支持された試験電極を更に 設け、 この試験電極と固定電極との間に所定の電圧を印 加し、 この印加電圧に基づいて発生するクーロ ン力によ り変位電極を変位させ、 この変位状態において検出手段 が検出した電気信号を印加電圧と比較することによ り、 この検出装置の動作を試験するようにしたものである。
(4) 本発明による動作試験の第 4の方法は、 変位電 極とともに変位しう るように支持された第 1 の試験電極 と、 この第 1 の試験電極に対向する位置において装置筐 体に固定された第 2の試験電極と、 を更に設け、 第 1の 試験電極と第 2の試験電極との間に所定の電圧を印加し、 この印加電圧に基づいて発生するクーロン力により変位 電極を変位させ、 この変位状態において検出手段が検出 した電気信号を印加電圧と比較する こ とにより、 この検 出装置の動作を試験するようにしたものである。
<静電容量式検出装置への適用 >
本発明によれば、 上述の動作試験方法を、 電極間隔の 変化を静電容量の変化と して検出するタイプの物理量検 出装置に適用するこ とにより、 自己診断機能をもった以 下の 3つの検出装置を実現できる。
( 1 ) 第 1 の検出装置は、 装置筐体に固定される固定 部と、 外部からの力、 加速度、 磁気などの物理量の作用 に基づく力を受ける作用部と、 固定部と作用部との間に 形成され可撓性をもった可撓部と、 を有する可撓基板と、 この可撓基板に対向するように、 装置筐体に固定され た固定基板と、
可撓基板の橈みによって変位が生じる位置に形成され た変位電極と、
固定基板により固定され、 変位電極に対向する位置に 形成された固定電極と、
変位電極に対向する位置において装置筐体に固定され、 固定電極とは電気的に絶縁された試験電極と、
変位電極と固定電極との間に生じる静電容量の変化を 電気信号と して出力する検出手段と、
試験電極と変位電極との間に所定の電圧を印加する電 圧印加手段と、 ·
を備え、
検出手段の出力した電気信号に基づいて作用部に作用 した力を検出するとともに、 検出手段の出力した電気信 号を電圧印加手段の印加した印加電圧と比較するこ とに より動作試験を行い得るようにしたものである。
(2) 第 2の検出装置は、 装置筐体に固定される固定 部と、 外部からの力、 加速度、 磁気などの物理量の作用 に基づく力を受ける作用部と、 固定部と作用部との間に 形成され可撓性をもった可撓部と、 を有する可撓基板と、 この可撓基板に対向するように、 装置筐体に固定され た固定基板と、 可撓基板の橈みによって変位が生じる位置に形成され た変位電極と、
固定基板により固定され、 変位電極に対向する位置に 形成された固定電極と、
変位電極とと もに変位しうるように支持され、 変位電 極とは電気的に絶縁された試験電極と、
変位電極と固定電極との間に生じる静電容量の変化を 電気信号と して出力する検出手段と、
試験電極と固定電極との間に所定の電圧を印加する電 圧印加手段と、
を備え、
検出手段の出力した電気信号に基づいて作用部に作用 した力を検出するとともに、 検出手段の出力した電気信 号を電圧印加手段の印加した印加電圧と比較することに より動作試験を行い得るように したものである。
( 3 ) 第 3の検出装置は、 装置筐体に固定される固定 部と、 外部からの力、 加速度、 磁気などの物理量の作用 に基づく力を受ける作用部と、 固定部と作用部との間に 形成され可撓性をも,つた可撓部と、 を有する可撓基板と、 この可撓基板に対向するように、 装置筐体に固定され た固定基板と、
可撓基板の橈みによって変位が生じる位置に形成され た変位電極と、
固定基板により固定され、 変位電極に対向する位置に 形成された固定電極と、
自己の変位に基づき可撓基板に撓みを生じさせる位置 に形成され、 変位電極とは電気的に絶縁された第 1の試 験電極と、
この第 1 の試験電極に対向する位置において装置筐体 に固定され、 固定電極とは電気的に絶縁された第 2の試 験電極と、
変位電極と固定電極との間に生じる静電容量の変化を 電気信号と して出力する検出手段と、
第 1の試験電極と第 2の試験電極との間に所定の電圧 を印加する電圧印加手段と、
を備え、
検出手段の出力した電気信号に基づいて作用部に作用 した力を検出するとともに、 検出手段の出力した電気信 号を電圧印加手段の印加した印加電圧と比較することに より動作試験を行い得るようにしたものである。
ぐ圧電式検出装置への適用 >
また、 本発明によれば、 上述の動作試験方法を、 電極 間隔の変化を圧電素子を用いて検出するタイプの物理量 検出装置に適用することにより、 自己診断機能をもった 以下の 3つの検出装置を実現できる。
(1 ) 第 1 の検出装置は、 装置筐体に固定される固定 部と、 外部からの力、 加速度、 磁気などの物理量の作用 に基づく力を受ける作用部と、 固定部と作用部との間に 形成され可撓性をもった可撓部と、 を有する可撓基板と、 この可撓基板に対向するように、 装置筐体に固定され た固定基板と、
可撓基板の撓みによって変位が生じる位置に配置され た変位電極と、
固定基板により固定された固定電極と、
可撓基板と固定基板との間に挟まれるように配置され、 両基板によって加わる圧力を電気信号に変換して両電極 に出力する圧電素子と、
変位電極に対向する位置において装置筐体に固定され、 固定電極とは電気的に絶縁された試験電極と、
この試験電極と変位電極との間に所定の電圧を印加す る電圧印加手段と、 - を備え、
圧電素子の出力した電気信号に基づいて作用部に作用 した力を検出するとと もに、 圧電素子の出力した電気信 号を電圧印加手段の印加した印加電圧と比較するこ とに より動作試験を行い得るようにしたものである。
( 2 ) 第 2の検出装置は、 装置筐体に固定される固定 部と、 外部からの力、 加速度、 磁気などの物理量の作用 に基づく 力を受ける作用部と、 固定部と作用部との間に 形成され可撓性をもった可撓部と、 を有する可撓基板と、 この可撓基板に対向するように、 装置筐体に固定され た固定基板と、 可撓基板の撓みによって変位が生じる位置に配置され た変位電極と、
固定基板により固定された固定電極と、
可撓基板と固定基板との間に挟まれるように配置され、 両基板によって加わる圧力を電気信号に変換して両電極 に出力する圧電素子と、
変位電極とともに変位しうるように支持され、 変位電 極とは電気的に絶縁された試験電極と、
この試験電極と固定電極との間に所定の電圧を印加す る電圧印加手段と、
を備え、
圧電素子の出力した電気信号に基づいて作用部に作用 した力を検出するとともに、 圧電素子の出力した電気信 号を電圧印加手段の印加した印加電圧と比較することに より動作試験を行い得るようにしたものである。
( 3 ) 第 3の検出装置は、 装置筐体に固定される固定 部と、 外部からの力、 加速度、 磁気などの物理量の作用 に基づく力を受ける作用部と、 固定部と作用部との間に 形成され可撓性をもった可撓部と、 を有する可撓基板と、 この可撓基板に対向するように、 装置筐体に固定され た固定基板と、
可撓基板の橈みによって変位が生じる位置に配置され た変位電極と、
固定基板により固定された固定電極と、 可撓基板と固定基板との間に挟まれるように配置され、 両基板によって加わる圧力を電気信号に変換して両電極 に出力する圧電素子と、
自己の変位に基づき可撓基板に橈みを生じさせる位置 に形成され、 変位電極とは電気的に絶縁された第 1 の試 験電極と、
この第 1 の試験電極に対向する位置において装置筐体 に固定され、 固定電極とは電気的に絶縁された第 2の試 験電極と、
第 1 の試験電極と第 2の試験電極との間に所定の電圧 を印加する電圧印加手段と、
を備え、
圧電素子の出力した電気信号に基づいて作用部に作用 した力を検出するとともに、 圧電素子の出力した電気信 号を電圧印加手段の印加した印加電圧と比較するこ とに より動作試験を行い得るようにしたものである。
<差分による検出を行う装置 >
また、 本発明による別な検出装置においては、
装置筐体に固定される固定部と、 外部からの物理量の 作用に基づく 力を受ける作用部と、 固定部と作用部との 間に形成され可撓性をもった可撓部と、 を有する可撓基 板と、
可撓基板の第 1の面に対向するように、 装置筐体に固 定された第 1 の固定基板と、 可撓基板の第 2の面に対向するように、 装置筐体に固 定された第 2の固定基板と、
可撓基板の第 1の面に形成された第 1 の変位電極と、 可撓基板の第 2の面に形成された、 第 2の変位電極と. 第 1 の固定基板により固定され、 第 1の変位電極に対 向する位置に形成された第 1の固定電極と、
第 2の固定基板により固定され、 第 2の変位電極に対 向する位置に形成された第 2の固定電極と、
第 1の変位電極と第 1の固定電極との間に生じる静電 容量の変化と、 第 2の変位電極と第 2の固定電極との間 に生じる静電容量の変化と、 の差を電気信号と して出力 する検出手段と、
を設け、
検出手段の出力した電気信号に基づいて作用部に作用 した力を検出するようにしたものである。 図 面 の 簡 単 な 説 明 図 1 は、 本発明による動作試験方法の適用対象となる 静電容量型の加速度検出装置の基本構造を示す側断面図 である。
図 2は、 図 1 に示す検出装置の固定基板 1 0の下面図 である。 図 2の固定基板 1 0を X軸に沿って切断した断 面が図 1 に示されている。 図 3は、 図 1 に示す検出装置の可撓基板 2 ◦の上面図 である。 図 3の可撓基板 2 0を X軸に沿って切断した断 面が図 1 に示されている。
図 4は、 図 1 に示す検出装置の作用点 Pに X軸方向の 力 F xが作用したときの、 検出装置の橈み状態を示す側 断面図である。
図 5は、 図 1 に示す検出装置の作用点 Pに Z軸方向の 力 F zが作用したときの、 検出装置の橈み状態を示す側 断面図である。
図 6は、 図 1 に示す検出装置を動作させるための回路 およびこれに対する動作試験を行うための回路を示す回 路図である。
図 7は、 図 6に示す C V変換回路の具体的な回路構成 の一例を示す回路図である。
図 8は、 + Z軸方向の力の検出動作についての具体的 な試験方法を示す側断面図である。
図 9は、 — Z軸方向の力の検出動作についての具体的 な試験方法を示す側断面図である。
図 1 0 aおよび図 1 0 bは、 本発明による動作試験方 法を実施することにより自己診断を行う機能を備えた静 電容量型の加速度検出装置の側断面図である。
図 1 1 は、 図 1 ◦ aに示す検出装置を動作させるため の回路およびこれに対する動作試験を行うための回路を 示す回路図である。 図 1 2は、 本発明による動作試験方法を実施すること によ り 自己診断を行う機能を備えた別な静電容量型の加 速度検出装置の側断面図である。
図 1 3は、 本発明による動作試験方法を実施すること によ り 自己診断を行う機能を備えた静電容量型の力検出 装置の側断面図である。
図 1 4は、 本発明による動作試験方法を実施すること によ り 自己診断を行う機能を備えた圧電型の加速度検出 装置の側断面図である。
図 1 5は、 図 1 4に示す検出装置において、 圧電素子 4 5の上面に形成された電極の形状を示す上面図である。 図 1 6は、 本発明による動作試験方法を実施すること により自己診断を行う機能を備えた圧電型の力検出装置 の側断面図である。
図 1 7は、 本発明による動作試験方法を実施すること により自己診断を行う機能を備えた圧電型の別な力検出 装置の側断面図である。
図 1 8は、 すべての方向の加速度検出に差分をとる夕 イブの加速度検出装置の側断面図である。
図 1 9 aおよび 1 9 bは、 図 1 8に示す装置における 電極配列を示す平面図である。
図 2 0は、 図 1 8に示す装置における Z軸方向につい ての加速度検出および動作試験を行う回路の回路図であ o 図 2 1 は、 容量素子の電極間距離 d と容量値 Cとの一 般的な関係を示すグラフである。
図 2 2は、 図 1 8に示す装置の別な実施例を示す側断 面図である。
図 2 3は、 図 1 8に示す装置の更に別な実施例を示す 側断面図である。
図 2 4は、 図 1 8に示す装置を金属を用いて構成した 実施例を示す側断面図である。
図 2 5は、 図 2 4に示す装置を力検出装置に適用した 実施例を示す側断面図である。 発明を実施するための最良の形態
§ 検出装置の基本構造
本発明に係る動作試験方法について説明する前に、 本 発明の適用対象となる検出装置の構造およびその原理に ついて簡単に述べておく。 図 1 は、 本発明の適用対象と なる加速度検出装置の基本構造を示す側断面図である。 この検出装置の主たる構成要素は、 固定基板 1 ◦、 可撓 基板 2 0、 作用体 3 0、 そして装置筐体 4 0である。 図 2に、 固定基板 1 0の下面図を示す。 図 2の固定基板 1 0を X軸に沿って切断した断面が図 1 に示されている。 固定基板 1 0は、 図示のとおり円盤状の基板であり、 周 囲は装置筐体 4 0に固定されている。 この下面には、 扇 状の固定電極 1 1 〜 1 4および円盤状の固定電極 1 5が 図のように形成されている。 一方、 図 3に可撓基板 2 0 の上面図を示す。 図 3の可撓基板 2 0を X蚰に沿って切 断した断面が図 1に示されている。 可撓基板 2 0 も、 図 示のとおり円盤状の基板であり、 周囲は装置筐体 4 〇に 固定されている。 この上面には、 扇状の変位電極 2 1 〜 2 4および円盤状の変位電極 2 5が図のように形成され ている。 作用体 3 0は、 その上面が図 3に破線で示され ているよ うに、 円柱状をしており、 可撓基板 2 0の下面 に、 同軸接合されている。 装置筐体 4 0は、 円筒状をし ており、 固定基板 1 0および可撓基板 2 0の周囲を固着 支持している。
固定基板 1 0および可撓基板 2 0は、 互いに平行な位 置に所定間隔をおいて配設されている。 いずれも円盤状 の基板であるが、 固定基板 1 ◦は剛性が高く橈みを生じ にく い基板であるのに対し、 可撓基板 2 0は可撓性をも ち、 力が加わると橈みを生じる基板となっている。 図 1 に示す例では、 固定基板 1 ◦は厚みを厚くすることによ り剛性を高めており、 可撓基板 2 0は厚みを薄くするこ とにより可撓性をもたせているが、 材質を変えることに より、 剛性および可撓性をもたせるようにしてもかまわ ない。 あるいは、 基板に溝を形成したり、 貫通孔を形成 したり して可撓性をもたせることもできる。 '固定基板 1 0、 可撓基板 2 0、 作用体 3 0は、 本来の機能を果たす ことができるのであれば、 どのような材質で構成しても よい。 たとえば、 半導体やガラスなどで構成すること も できる し、 金属で構成すること もできる。 ただし、 固定 基板 1 0および可撓基板 2 0を金属で構成した場合は、 各電極が短絡しないように、 電極との間に絶縁層を形成 するなどの方法を講じる必要がある。 また、 各電極層も 導電性をもったものであれば、 どのような材質で構成し てもよい。
いま、 図 1 に示すように、 作用体 3 0の重心に作用点 Pを定義し、 この作用点 Pを原点とする X Y Z三次元座 標系を図のように定義する。 すなわち、 図 1の右方向に X寒由、 上方向に Z軸、 紙面に対して垂直に紙面裏側へ向 かう方向に Y軸、 をそれぞれ定義する。 可撓基板 2 0の うち、 作用体 3 0が接台された中心部を作用部、 装置筐 体 4 0によって固着された周囲部を固定部、 これらの間 の部分を可撓部、 と呼ぶことにすれば、 作用体 3 0に加 速度が作用すると、 可撓部に撓みが生じ、 作用部が固定 部に対して変位を生じることになる。 ここで、 この検出 装置全体をたとえば自動車に搭載したとすると、 自動車 の走行に基づき作用体 3 ◦に加速度が加わるこ とになる c この加速度により、 作用点 Pに外力が作用する。 作用点 Pに力が作用していない状態では、 図 1 に示すように、 固定電極 1 1 〜 1 5と変位電極 2 1 〜 2 5と-は所定間隔 をおいて平行な状態を保っている。 いま、 固定電極 1 1 〜 1 5と、 このそれぞれに対向する変位電極 2 1 ~ 2 5 との組み台わせを、 それぞれ容量素子 C 1〜 C 5と呼ぶ ことにする。 こ こで、 たとえば、 作用点 Pに X 由方向の 力 F xが作用すると、 この力 F X は可撓基板 2 ◦に対し てモーメ ン ト力を生じさせ、 図 4に示すよう に、 可撓基 板 2 0に撓みが生じる こ とになる。 この撓みにより、 変 位電極 2 1 と固定電極 1 1 との間隔は大き く なるが、 変 位電極 2 3と固定電極 1 3との間隔は小さ く なる。 作用 点 Pに作用 した力が逆向きの— F xであったとすると、 これと逆の関係の撓みが生じる ことになる。 このように 力 F xまたは— F xが作用 したとき、 容量素子 C 1 およ び C 3の静電容量に変化が表れる こ とになり、 これを検 出するこ とにより力 F X または— F Xを検出する ことが できる。 このと き、 変位電極 2 2, 24 , 2 5のそれぞ れと固定電極 1 2 , 14 , 1 5のそれぞれの間隔は、 部 分的に大き く なつたり小さ く なつたりするが、 全体と し ては変化しないと考えてよい。 一方、 Y方向の力 F yま たは一 F yが作用 した場合は、 変位電極 2 2と固定電極 1 2との間隔、 および変位電極 24と固定電極 1 4との 間隔、 についてのみ同様の変化が生じる。 また、 Z軸方 向の力 F zが作用した場合は、 図 5に示すよう に、 変位 電極 2 5と固定電極 1 5との間隔が小さ く なり、 逆向き のカー F zが作用した場合は、 この間隔は大き く なる。 このとき、 変位電極 2 1 ~ 24と固定電極; I 1 ~ 1 4 と の間隔も、 小さ く あるいは大き く なるが、 変位電極 2 5 と固定電極 1 5との間隔の変化が最も顕著である。 そこ で、 この容量素子 C 5の静電容量の変化を検出すること により力 F z または— F Zを検出することができる。 一般に、 容量素子の静電容量 Cは、 電極面積を S、 電 極間隔を d、 誘電率を £ とすると、
C = ε S / d
で定まる。 したがって、 対向する電極間隔が接近すると 静電容量 Cは大き く なり、 遠ざかると静電容量 Cは小さ く なる。 本検出装置は、 この原理を利用し、 各電極間の 静電容量の変化を測定し、 この測定値に基づいて作用点
Pに作用した外力、 別言すれば作用した加速度を検出す るものである。 すなわち、 X轴方向の加速度は容量素子 C I , C 3の間の容量変化に基づき、 Y軸方向の加速度 は容量素子 C 2, C 4の容量変化に基づき、 Z軸方向の 加速度は容量素子 C 5の容量変化に基づき、 それぞれ検 出が行われる。
本発明は、 このような原理に基づく検出装置の動作試 験方法に関するものである。 なお、 上述の検出装置は静 電容量式のものであるが、 圧電式の検出装置では、 可撓 基板と固定基板との間に圧電素子が挿入されており、 静 電容量の変化を検出する代わりに、 この圧電素子が発生 する電圧が検出される。 § 2 動作試験の方法
続いて、 本発明に係る動作試験方法を説明する。 図 6 は、 図 1 に示す検出装置を動作させるための回路および これに対する動作試験を行うための回路を示す回路図で ある。 ここで、 容量素子 C 1 〜 C 5は、 上述の加速度検 出装置において形成される容量素子に対応する。 たとえ ば、 容量素子 C 1 は、 固定電極 1 1 と変位電極 2 1 との 組み合わせよりなる。 各容量素子 C 1 ~ C 5に接続され た C V変換回路 5 1 〜 5 5は、 各容量素子の静電容量値 Cを電圧値 Vに変換する機能を有する。 したがって、 C V変換回路 5 1 ~ 5 5が出力する電圧値 V 1 ~ V 5は、 それぞれ容量素子 C 1 〜 C 5の静電容量値に比例し 値 となる。 差動増幅器 7 1 は、 電圧値 V I と V 3との差を 端子 T x に出力し、 差動増幅器 7 2は、 電圧値 V 2と V 4 との差を端子 T yに出力する。 また、 電圧値 V 5は、 端子 T zに出力される。 § 1で述べた検出装置の構造お よび動作説明を参照すれば、 端子 Τ χに得られた電圧 ( V 1 - V 3 ) が X軸方向の加速度検出値となり、 端子 T yに得られた電圧 (V 2 — V 4 ) が Y軸方向の加速度 検出値となり、 端子 T Z に得られた電圧 V 5が Z轴方向 の加速度検出値となることが理解できょう。
なお、 上述のように、 X軸または Υ$ώ方向の加速度は、 差動増幅器によって 2つの電圧値の差をとることによつ て検出される。 このような差による検出は、 外部環境に よる誤差 (たとえば、 温度誤差) を相殺することができ るメ リ ッ トがある。 なお、 上述の実施例では、 Z軸の加 速度については差による検出を行っていない力 <、 これに ついては後の S 4において説明する。
以上説明した C V変換回路 5 1 〜 5 5および差動増幅 器 7 1 , 7 2は、 結局、 この検出装置に検出動作を行わ せるために必要な回路である。 本発明に係る動作試験は、 この回路に更に電圧発生回路 6 1 〜 6 5および試験スィ ツチ S 1 ~ S 5を付加することにより行う ことができる。 電圧発生回路 6 1 〜 6 5は、 所望の電圧を発生すること のできる回路であれば、 どのようなものでもかまわない。 たとえば、 マイ クロコンピュー夕の出力するデジタルデ 一夕を A変換器でアナログ信号に変換するような回 路を用いればよい。
いま、 たとえば、 図 6に示す回路において、 試験スィ ツチ S 1および S 3を投入した場台を考える。 このとき、 電圧発生回路 6 3から容量素子 C 3の両電極に逆極性の 電荷が供給されるようにしておけば、 固定電極 1 3と変 位電極 2 3との間において、 一方が正にチャージされ、 もう一方が負にチャージされるため、 両者間にクーロン 力に基づく 引力が作用する。 また、 電圧発生回路 6 1か ら容量素子 C 1の両電極に同極性の電荷が供給されるよ うにしておけば、 両者間にクーロン力に基づく斥力が作 用する。 こ う して、 図 4に示すように、 可撓基板 2 〇が 変位を生じることになる。 これは、 作用点 Pに X軸方向 の力 F Xが作用した状態と同じ状態であることがわかる, この状態で、 各端子 T x , T y, T z に出力される検出 電圧を調べ、 力 F Xが作用したことを示す正しい検出値 となっているか否かを検査するのである。 結局、 電圧発 生回路 6 1および 6 3から容量素子 C 1および C 3に電 圧を印加するこ とにより、 作用点 Ρに X軸方向の力 F X が作用したのと同じ状態を作り出し、 この状態での検出 電圧を検査するこ とにより動作試験が行われることにな る。 印加電圧と検出電圧との正しい関係を予め求めてお けば、 定量的な動作試験が可能になる。 この動作試験で は、 加振器などを使って、 作用体 3 0に実際に加速度を 作用させる必要はなく 、 電気的な信号を入力したときに 出力される電気的な信号を観察するだけで動作試験が完 了する。 したがって、 従来の動作試験に比べて作業は非 常に簡単なものとなり、 大量生産に向いたものとなる。 X軸方向の加速度の検出動作を試験するには、 スィ ッチ S 1 , S 3によ り容量素子 C 1 , C 3に電圧を印加し、 Υ軸方向の加速度の検出動作を試験するには、 スィ ッチ S 2 , S 4により容量素子 C 2 , C 4に電圧を印加し、 Ζ軸方向の加速度の検出動作を試験するには、 スィ ッチ S 5により容量素子 C 5に電圧を印加すればよい。
なお、 図 6に示す回路図で、 電圧発生回路 6 1 〜 6 5 を外部からみたときの容量値は、 発生する電圧にかかわ りなく一定となるような回路にしておく のが好ま しい。 あるいは、 発生する電圧と容量との間に一定の相関関係 がある回路でもかまわない。 回路上は、 電圧発生回路 6 1 〜 6 5は容量素子 C 1 ~ C 5に並列接続されているた め、 電圧発生回路 6 1〜 6 5の容量値にラ ンダムに変動 が生じると、 正しい動作試験を行う ことができなく なる。 また、 C V変換回路 5 1 〜 5 5は、 電圧発生回路 6 1 ~ 6 5によって印加される電圧の影響を受けることなしに、 容量素子 C 1 〜 C 5の静電容量を検出する必要がある。 このような機能をもった C V変換回路の一例を図 7に示 す。 こ こに示す C V変換回路 5 0は、 容量素子 C Oの静 電容量 Cを電圧 Vに変換し、 端子 Tout に出力する 能 を有する。 なお、 容量素子 C Oには、 電圧発生回路 6 0 から電圧が印加されている。 C V変換回路 5 0は、 発振 回路 5 6と整流回路 5 7とによって構成されている。 発 振回路 5 6は、 所定周波数の交流信号を生成し、 これを 容量素子 C 0に与える。 整流回路 5 7は、 抵抗 R 1, R 2、 コ ンデンサ C 6 , C 7、 ダイオー ド D 1 によって構 成され、 交流信号が与えられた容量素子 C 0の静電容量 Cを電圧 Vに変換して出力する。 このような構成をもつ た C V変換回路 5 0は、 電圧発生回路 6 0からの印加電 圧の影響を受けることなしに、 容量素子 C Oの静電容量 Cを電圧 Vに変換することができる。 なお、 図 7の回路 は一例と して示したものであり、 C V変換回路と しては、 この他にも種々の回路を適用することができる。
続いて、 本発明による動作試験を、 より具体的な実施 例に'基づいて説明する。 図 8は、 + Z軸方向の力の検出 動作についての具体的な試験方法を示す側断面図である。 この検出装置は、 固定基板 8◦と可撓基板 9 0とによつ て構成されている。 可撓基板 9 ◦の底面には、 ドーナツ 状の溝 Gが掘られており、 この溝 Gが掘られた部分は他 の部分に比べて肉厚が薄く なつており、 可撓基板 9 0は、 この部分において可撓性をもつようになる。 固定基板 8 0は、 この可撓基板 9 0の上面に所定の空間を保持した まま、 可撓基板 9 0の上面を覆うように接合されている。 固定基板 8 0の下面には複数枚の固定電極 8 1力 可撓 基板 9 0の上面には複数枚の変位電極 9 1力 ;'、 互いに対 向する位置に形成されている。 この実施例では、 固定基 板 8◦および可撓基板 9 0は、 それぞれガラス基板およ びシリ コ ン基板から構成されており、 固定電極 8 1およ び変位電極 9 1 は、 各基板上に形成されたアルミ ニウム 層によって構成されている。 また、 可撓基板 9 0と変位 電極 9 1 との間には、 シリ コン酸化膜あるいはシリ コ ン 窒化膜のような絶縁層 9 2が形成されている。 このよう な検出装置において、 作用点 Pに + Z軸方向の力が作用 したのと同じ状態にするには、 固定.電極 8 1 と変位電極 9 1 との間にクーロン力による引力を作用させればよい。 図 8は、 この場台の電圧印加方法を示したものである。 すなわち、 電源 Vによって、 固定電極 8 1側には正の電 荷を、 変位電極 9 1側には負の電荷を、 それぞれ与えて やれば、 両者間に引力が作用して、 作用点 Pに + Z軸方 向の力が作用した状態での動作試験が可能になる。
なお、 作用点 Pに一 Z軸方向の力が作用したのと同じ 状態にするには、 検出装置自体の構造を少し変えておく 必要がある。 すなわち、 図 9に示すように、 固定電極 8 0の上面に複数枚の補助電極 8 2を形成しておく。 こ こ で電源 Vによ って、 捕助電極 8 2および可撓基板 9 0 (シ リ コ ン基板) に正の電荷を与え、 固定電極 8 1 およ び変位電極 9 1 に負の電荷を与えるようにする。 すると、 捕助電極 8 2と固定電極 8 1 との間で分極作用が起こ り、 また、 変位電極 9 1 と可撓基板 9 0との間で分極作用が 起こ り、 図に示すような極性に各部が帯電する。 結局、 固定電極 8 1 と変位電極 9 1 との間にクーロン力による 斥力が作用し、 作用点 Pに - Z軸方向の力が作用したの と同じ状態になる。
以上のように両者間に引力を作用させた状態の動作試 験では、 クーロン力を直接作用させる 2枚の電極だけで 十分であるが、 両者間に斥力を作用させた状態の動作試 験では、 更に補助的な電極を形成する必要がある。 ただ、 構造説明が複雑になるため、 以下の各実施例ではこの補 助的な電極の説明は省略する。 § 3 動作試験機能を備えた検出装置
上述の実施例では、 クーロン力を発生させるための電 極対と、 容量素子を構成するための電極対と、 は同一の 電極対である。 すなわち、 クーロン力を発生させるため の電極対は、 固定電極 ( 1 1〜 1 5, 81 ) と変位電極 (2 1〜25, 82) との対であり、 容量素子を構成す るための電極対も全く 同じ電極対である。 このように、 同じ電極対を共用すれば、 動作試験のために別な電極を 形成する必要がないという利点はあるが、 試験の自由度 に制約が生じ、 また、 試験のための回路も複雑になると いう欠点がある。 特に、 市販品と して流通させるには、 物理量の検出信号を出力する検出端子と、 試験のための 電圧を印加するための試験端子と、 が別個に設けられて いた方が都合がよい。 以下に示す検出装置は、 予め試験 用の電極を形成しておき、 クーロン力を発生させるため の電極対と、 容量素子を構成するための電極対と、 を別 個の電極対で構成するようにしたものである。
図 1 0 aは、 本発明による動作試験方法を実施するた めの試験電極を備えた加速度検出装置の側断面図である。 基本的な構造は、 図 1に示す加速度検出装置と同様であ り、 固定基板 1 0と可撓基板 20とが対向して設けられ、 それぞれが周囲において装置筐体 4 0に固定されている。 固定基板 1 0は剛性をもった基板であるが、 可撓基板 2 0は厚みが薄く 可撓性をもっている。 可撓基板 20の上 面には、 図 3に示すような 5枚の変位電極 2 1 〜 2 5が 形成されている。 一方、 固定基板 1 0の下面には、 5枚 の試験電極 1 1 t 〜 1 5 t が形成され、 更に絶縁層 1 6 を介して 5枚の固定電極 1 1 〜 1 5が形成されている。 5枚の試験電極 1 1 t 〜 1 5 t の平面的な配置、 および 5枚の固定電極 1 1 〜 1 5の平面的な配置は、 図 2に示 す電極配置と同じである。 このよ うな構造では、 容量素 子 C 1 〜 C 5を構成するための電極対は、 固定電極 1 1 〜 1 5と変位電極 2 1 〜 2 5との対であるカミ、 クーロン 力を発生させるための電極対は、 試験電極 1 1 t ~ 1 5 t と変位電極 2 1 ~ 2 5との対となり、 一方の変位電極 は共用するものの、 電極対としては別個のものが用いら れる。
図 1 0 bは、 5枚の試験電極 2 1 t 〜 2 5 t とを、 可 撓基板 2 0側に形成した実施例である。 試験電極 2 1 t 〜 2 5 t と変位電極 2 1 〜 2 5との間には絶縁層 2 6が 形成されている。 この場合、 クーロン力を発生させるた めの電極対は、 試験電極 2 1 t ~ 2 5 t 固定電極 1 1〜 1 5との対となる。
図 1 1 は、 図 1 0 aのような構造をもった検出装置に ついて適用する回路図の一例である。 電圧発生回路 6 0 は、 試験スィ ツチ Sの投入により、 試験電極 1 1 t と変 位電極 2 1 との問に電圧を印加してクーロン力を作用さ せる。 これによつて、 可撓基板 2 0が撓みを生じ、 外力 が作用したのと同じ状態になる。 一方、 C V変換回路 5 ◦は、 固定電極 1 1 と変位電極 2 1 とによって構成され る容量素子 C 1の静電容量を検出し、 電圧 Vと して端子 Tout に出力する。 固定電極 1 1 と試験電極 1 1 t とは、 絶縁層 1 6によって電気的に絶縁されているため、 C V 変換回路 5 0は、 電圧発生回路 6 0による印加電圧に何 ら影響を受けずに静電容量の検出を行う ことができる。 また、 この検出装置の外部接続端子としては、 変位電極 2 1 ~ 2 5のそれぞれに導通した共通端子、 固定電極 1 1 ~ 1 5のそれぞれに導通した検出端子、 試験電極 1 1 t ~ l 5 t のそれぞれに導通した試験端子、 をそれぞれ 設けておけばよい。 試験端子に所定の電圧を印加したと きに、 検出端子に所定の出力が得られるか否かを確かめ ることにより、 容易に自己診断を行う ことが可能である。 図 1 2は、 可撓基板 2 0側の電極を共用せずに別個に した実施例である。 すなわち、 可撓基板 2 0の上面には、 第 1の試験電極 2 1 t 〜 2 5 tが形成され、 その上に絶 縁層 2 6を介して変位電極 2 1〜 2 5が形成されている。 また、 固定基板 1 0側は、 前述の実施例と同様であり、 第 2の試験電極 1 1 1: 〜 1 5 t の上に絶縁層 1 6を介し て固定電極 1 1〜 1 5が形成されている。 このような構 造では、 容量素子 C 1〜 C 5を構成するための電極対は、 固定電極 1 1〜 1 5と変位電極 2 1 〜 2 5との対である 力 クーロン力を発生させるための電極対は、 第 1の試 験電極 2 1 t〜 25 t と第 2の試験位電極 1 1 t〜 25 t との対となり、 電極対と しては完全に別個のものが用 いられる。
図 1 3は、 更に別な実施例に係る力検出装置の側断面 図である。 装置筐体 1 00内には、 固定基板 1 1 0、 可 撓基板 1 20、 作用体 1 30、 補助基板 140が設けら れている。 作用体 1 3◦から伸びる検出子 1 3 1 は、 装 置筐体 1 00に設けられた孔部 1 0 1から外部へと導出 されている。 この実施例では、 以上の各構成要素はいず れも金属からなる。 固定基板 1 1 0の下面には、 絶縁層 1 1 6が形成され、 更にその上に 2枚の固定電極 1 1 1, 1 1 2が形成されている。 また、 補助基板 14 0の上面 には、 絶縁層 146が形成され、 更にその上に 2枚の試 験電極 14 1, 14 2が形成されている。 装置筐体 1 0 0の左側外部には、 検出端子 1 5 1, 共通端子 1 52, 試験端子 1 53が導出されている (図では 1本ずつしか 示されていない力《、 実際には、 電極数に応じただけの数 が用意される) 。 もちろん、 各端子 1 5 1〜 1 53は装 置筐体 1 00とは電気的に絶縁されている。 各端子 1 5 1〜 : L 53は、 ボンディ ングワイヤ 1 6 "L〜 1 63によ つて、 各電極および可撓基板 1 20に接続されている。 この検出装置では、 可撓基板 1 20上に変位電極は設け られていないが、 前述のように、 可撓基板 1 20は金属 で構成されているため、 それ自身が電極の機能を有する こ とになる。
この検出装置では、 検出子 1 3 1 の先端に力が加わる と、 可撓基板 1 2 0が撓みを生じ、 この可撓基板 1 2 〇 (変位電極と して機能する) と固定電極 1 1 1 , 1 1 2 との距離が変化する。 したがって、 検出端子 1 5 1 と共 通端子 1 5 2との間の静電容量の変化に基づいて、 作用 した力を検出するこ とができる。 もっとも、 この実施例 の装置では、 固定電極は 2枚しか設けられていないので、 二次元方向の力 (図の左右方向と上下方向の力) の検出 しかできない。 三次元方向の力を検出するためには、 最 低限 4枚の固定電極を設けておけばよい。 さて、 この検 出装置の動作試験を行うには、 試験端子 1 5 3と共通端 子 1 5 2との間に所定の電圧を印加した状態で、 前述の 検出処理を行えばよい。 印加電圧に基づく クーロ ン力の 作用により、 検出子 1 3 1 に外力が作用したのと同じ状 態を作るこ とができる。 なお、 三次元方向の動作試験を 行うには、 やはり最低限 4枚の試験電極を設けておけば よい。
以上述べてきたいくつかの実施例は、 いずれも静電容 量式の検出装置である。 本発明は、 このような静電容量 式の検出装置だけでなく 、 圧電式の検出装置にも適用可 能である。 図 1 4は、 本発明に係る動作試験機能を備え た圧電式の加速度検出装置の側断面図である。 剛性をも つた固定基板 1 0と可撓性をもつた可撓基板 2 0とが、 装置筐体 4 0 によって支持されており、 可撓基板 2 0の 下面に作用体 3 0が接合されている点は、 図 1 に示した 静電容量式の検出装置と同様である。 固定基板】 0の下 面および可撓基板 2 0の上面には、 後述するようにそれ ぞれ 8枚の電極が形成されており、 これらの間に圧電素 子 4 5が挟まれている。 圧電素子 4 5としては、 たとえ ば、 P Z Tセラ ミ ッ クス (チタ ン酸鉛とジルコ ン酸鉛と の固溶体) を用いるこ とができ、 これを両電極間に挿入 しておけばよい。 実際には、 圧電素子 4 5の上下両面に 電極を形成し、 これを両基板間に挿入するという方法で 製造するのが好ま しい。 このとき、 図の上下方向に所定 の圧力がかかった状態で揷入するようにする。 こ う して おけば、 上下の電極間隔が縮まった場合だけでなく 、 広 がった場合にも検出が可能になる。 図 1 5は、 圧電素子 4 5の上面図であり、 上面に形成された 8枚の電極の平 面的な配置が明瞭に示されている。 図のように、 圧電素 子 4 5の上面に形成された電極は、 4枚の固定電極 1 8 a 1 8 d (パターンの視覚的な把握を助けるため、 図 では斜線によるハッチングを施して示してある) と、 4 枚の試験電極 1 9 a 1 9 d (同様に、 ドッ トによる ツチングを施して示してある) と、 からなる。 圧電素子 4 5の下面にも、 これと全く 同じ配置で、 4枚の変位電 極 2 8 a 2 8 d と、 4枚の試験電極 2 9 a 2 9 d と、 が形成されている。 図 1 5の圧電素子 4 5を切断線 1 4 〜 1 4に沿って切断した断面が図 1 4に示されているこ とになる。 なお、 電極構成は、 図 1 5のような平面的な —層構造に限定されるものではなく、 図 1 0 a、 図 1 0 b、 図 1 2に示すような多層を重ねた構造にしてもよい。 このような圧電式の検出装置では、 対向する電極対の 距離の変化を、 静電容量の変化と して検出する代わりに、 両電極間に生じる電圧と して検出することになる。 すな わち、 作用体 3 0に加速度が作用し、 可撓基板 2 0に撓 みが生じると、 圧電素子 4 5は部分的な圧縮力が加わつ たり、 引き伸し力が加わったりする。 これにより、 各電 極対に電圧が生じることになる。 どの電極対にどの程度 の電圧が出力されたかを認識するこ とにより、 作用した 加速度の三次元座標上での方向および大きさが検出でき る。 圧電式の検出装置では、 静電容量式の検出装置のよ うに、 検出用の電極対と試験用の電極対とを兼用するこ とはできない。 両電極間に生じる電圧を直接検出するた め、 同じ電極に試験用電圧を印加することができないか らである。 このため、 検出用の電極対と試験用の電極対 とを別個にせざるを得ない。 図 1 5に示す電極配置を行 えば、 同一平面上で 2種類の電極を混在させることがで き、 かつ、 三次元方向の検出および動作試験を行う こと ができる。
動作試験は、 次のようにして行う ことができる。 たと えば、 試験電極 1 9 a と 2 9 aおよび 1 9 c と 2 9 c と の間に電圧を印加し、 1 9 a と 2 9 a との間に引力、 1 9 c と 2 9 c との間に斥力を作用させると、 この装置が 正常な動作をするのであれば、 固定電極 1 8 a と変位電 極 28 a との間、 および固定電極 1 8 c と変位電極 28 c との間に所定の電圧が生じる。 この電圧をモニタする ことにより、 動作試験を行う ことができる。 試験電極 1 9 b と 2 9 bおよび 1 9 d と 2 9 d との間に電圧を印加 すれば、 前述の試験方向とは垂直な方向に関する試験を 行う ことができる。
図 1 6は、 本発明に係る動作試験機能を備えた圧電式 の力検出装置の側断面図である。 装置筐体 2 0 0は、 ね じ穴 2 0 1を用いて産業機械などに固着され、 その下部 には起歪体 2 5 0が接合されている。 起歪体 2 5 0は金 属からなり、 下面に ドーナツ状の溝 Gが形成されている c この溝 Gの形成部 2 5 2は肉厚が薄く なつており可撓性 を有する。 起歪体 2 5 0のねじ穴 2 5 1 に通されたねじ は、 装置筐体 2 0 0のねじ穴 2 0 2に螺着される。 起歪 体 2 5 ◦の中心部下面には検出子 2 6 0が伸びており、 その先端に作用した外力は、 作用点 Pに関するモーメ ン トカとして伝達される。 この装置の中枢となる圧電素子 2 30の上面および下面には電極が形成され、 固定基板 2 1 0と変位電極平板 2 2 0とによって所定圧力をもつ て挟まれた状態となっている。 上面には 4枚の固定電極 2 1 8 a〜 2 1 8 d と 4枚の試験電極 2 1 9 a〜 2 1 9 dと力 図 1 5に示すパターンと同じ配置で形成されて いる。 一方、 下面には単一の変位電極平板 2 2 0が形成 されている。 上面の 8枚の電極は固定基板 2 1 0によつ て装置筐体 2 0 0に固定されており、 下面の変位電極平 板 2 2 0は伝達体 24 0によって起歪体 2 5 0の上面中 心部に接合されている。 変位電極平板 2 2 0を剛性をも つた厚い金属板で構成しておく ことにより、 作用点 Pに 作用した力を圧電素子 2 3 0に効率的に伝達することが できる。
このような構成をもった圧電式の力検出装置では、 変 位電極平板 2 2 0を共通の電極と して用い、 固定電極 2 1 8 a 2 1 8 dに発生する電圧により、 検出子 26 〇 に作用した外力の検出を行う ことができる し、 試験電極 2 1 9 a 2 1 9 dに所定の電圧を印加しながら、 固定 電極 2 1 8 a 2 1 8 dに発生する電圧をモニタするこ とにより動作試験を行う ことができる。
図 1 7に示す実施例は、 図 1 3に示す静電容量型の力 検出装置を、 圧電式に置き換えたものである。 この検出 装置では、 5枚の固定電極 1 1 1 1 1 5を図 2に示す 平面的配置と同じ配置で形成し、 三次元方向の力の検出 ができるようにしてある。 また、 4枚の試験電極 ] 4 1 〜: 1 44を配置し (電極 1 4 2は作用体 1 3 0の後方、 電極 1 44は作用体 1 3 0の前方に配置されるが図示さ れていない) 、 三次元方向の動作試験ができるようにし てある。 固定電極 1 1 1 ~ 1 1 5と可撓基板 1 2 0 との 間には圧電素子 1 4 5が挿入されており、 固定電極 1 1 1〜 1 1 5に発生する電圧により、 作用した外力の検出 力 われる。
なお、 図 1 0 a , 1 0 b, 1 2 , 1 3, 1 4, 1 6 , 1 7に示す実施例は、 固定電極、 変位電極、 試験電極と いう本発明による動作試験方法を実施するために最小限 必要な電極を備えた実施例である。 2つの電極間にクー ロ ン力による引力を作用させる場合には、 図 8に示すよ うに、 この 2枚の電極だけで十分であるが、 斥力を作用 させる場合には、 図 9に示すように、 更に補助電極が必 要になる。 したがって、 実用上は、 上述の各実施例に示 す構造に、 更に補助電極を設けておく のが好ま しい。 § 4 Z幸由方向について差分をとる実施例
図 6に示す回路図に示されているように、 図 ] に示し た基本的な加速度検出装置は、 X軸方向および Y軸方向 の加速度検出には差をとつているが、 Z軸方向の加速度 検出には差をとつていない。 差による検出は、 温度など の外部環境による誤差を相殺することができるメ リ ッ ト があるため、 Z幸由方向の加速度検出にも差をとるのが好 ま しい。 以下にこれを実現するための実施例を示す。 図 1 8に側断面を示す実施例は、 X Y Zすべての方向 の加速度検出を、 差分をとることにより行う加速度検出 装置である。 固定基板 3 1 0の下面には、 図 1 9 aに示 すレイアウ トで、 5枚の固定電極 1 1 〜 1 5が形成され ている。 可撓基板 3 2 0は、 下面に ドーナツ状の溝 Gが 掘られており、 中央に作用部 3 2 1、 その周囲に可撓部 3 2 2、 その周囲に固定部 3 2 3を形成する。 その上面 には、 図 1 9 b に示すレイァゥ 卜で 5枚の変位電極 2 1 〜 2 5が形成されている。 以上の構成は、 図 1 に示す基 本構成と同じである。 この装置の特徴は、 更に、 第 2固 定基板 3 3 0が設けられており、 作用部 3 2 1の下面に 変位電極 3 2 6力(、 第 2固定基板 3 3 0の上面に固定電 極 3 3 が、 それぞれ対向するように形成されている点 である。
この装置による X軸および Y軸方向についての加速度 検出および動作試験は、 図 1 の装置と同様である。 とこ ろが Z軸方向についての加速度検出および動作試験は、 図 2 0に示す回路によって行われる。 こ こで、 容量素子 C 5は、 固定電極 1 5と変位電極 2 5とで構成されるも のであるが、 容量素子 C 6は、 固定電極 3 3 6と変位電 極 3 2 6とによって構成されるものである。 図 6に示す Z軸に関する回路と比較すると、 容量素子 C 6に関して の電圧発生回路 6 6および C V変換回路 5 6が付加され、 電圧値 V 5と V 6 との差を差動増幅器 7 3によって求め、 これを Z軸に関する検出値と して出力する点が異なる。 これにより、 X Y Zすべての方向に関しての検出値が差 分に基づいて求ま り、 温度などの影響を相殺することが できる。
また、 このような差分に基づく検出は、 次のような点 においても有利である。 一般に容量素子の電極間距離 d と容量値 Cとの関係は図 2 1 に示すグラフのようになる。 いま、 距離 d 0において、 容量値 C 0であった状態から、 距離を A dだけ縮め d O - A dにすると、 容量値は A C 1 だけ増え、 C 0 + Δ C 1 となる。 逆に、 距離を Δ dだ け広げ d 0 + Δ dにすると、 容量値は Δ C 2だけ減り、 C O — となる。 こ こで A C 1 > A C 2である。 し たがって、 1組の容量素子 C 5の容量値のみに基づいて Z拳由方向の加速度検出を行う と、 絶対値が同じ加速度で あっても、 + Z方向と一 Z方向とでは、 容量値の変化の 度合が異なってしま う。 これに対処するためには、 何ら かの補正回路を設ける必要がある。 ところが、 図 2 0に 示すように、 差分に基づいた検出を行えば、 このような 問題は生じない。 たとえば、 図 1 8に示す装置において、 + Z方向 (図の上方) に加速度が作用すると、 容量素子 C 5の容量値は C Oから C O + A C l に変化し、 容量素 子 C 6の容量値は C 0から C ◦— Δ C 2に変化する。 よ つて、 差動増幅器 7 3の出力は、 A C 1 + A C 2に相当 したものになる。 これに対し、 同じ加速度が— Z方向 (図の下方) に作用すると、 容量素子 C 5の容量値は C 0から C O—厶 C 2に変化し、 容量素子 C 6の容量値は C O力、ら C 0 + A C 1 に変化する。 よって、 差動増幅器 7 3の出力は、 ― (Δ 1 + Δ 0 2 ) に相当したものに なる。 こ う して、 絶対値が同じ加速度に対しては同じ絶 対値の出力がなされる。
図 2 2に示す実施例は、 図 1 8に示す実施例に更に作 用体 34 5と台座 34 0とを加えたものである。 変位電 極 3 2 6は作用体 34 5の下面に形成されている。 図 2 3に示す実施例は、 図 2 2に示す実施例の電極の位置を 変えたものであり、 固定電極 1 】 〜 1 5が固定基板 3 3 0の上面に、 変位電極 2 1 〜 2 5が作用体 34 5の下面 に、 それぞれ形成され、 固定電極 3 36が固定基板 3 1 〇の下面に、 変位電極 3 26が可撓基板 3 2 0の上 に、 それぞれ形成されている。
以上の図 1 8, 2 2, 2 3の各実施例は、 各基板をガ ラスまたは半導体 (この場合は、 電極との間に絶縁層を 形成する) で構成するのに適している力 <、 図 24に示す 加速度検出装置は、 金属によって構成するのに適した例 である。 部材 4 1 0, 4 2 0 , 4 2 5 , 4 3 0 , 44 0 , 4 5 0はいずれも金属からなる。 部材 4 1 0の下面には 絶縁層 4 1 8を介して 5枚の固定電極 1 1〜 1 5が形成 されている。 部材 4 2 0の上面には絶縁層 4 28を介し て 5枚の変位電極 2 1〜 2 5が形成されており、 下面に は絶縁層 4 2 9を介して ドーナツ状の変位電極 4 2 6力《 形成されている。 部材 4 2 0の下面には、 部材 4 2 5が 接続されており、 この部材 4 2 5の下端はダイヤフラム 4 3 5を介して部材 4 5 0に接続されている。 また、 部 材 4 3 0の上面には絶縁層 4 3 8を介して ドーナツ状の 固定電極 4 3 6が形成されている。 部材 4 5 ◦に加速度 が作用すると、 ダイヤフラム 4 3 5が橈み、 部材 4 2 5 を介して部材 4 2 0が変位する。 この変位検出の原理は 上述した通りである。
図 2 5に示す実施例は、 図 2 4に示す加速度検出装置 を力検出装置に適用したものであり、 下半分の構成を金 属製の部材 4 3 1 に (可撓基板) に置換している。 検出 子 4 3 2先端に作用した外力に基づいて、 部材 4 2 ◦が 変位し、 この外力の検出が行われる。
§ その他の実施例
以上、 本発明を図示するいくつかの実施例に基づいて 説明したが、 本発明はこれらの実施例に限定されるもの ではなく 、 この他にも種々の態様で実施可能である。 た とえば、 各電極の配置は、 上述の実施例の他にも、 種々 の配置が考えられよう。 また、 各電極の枚数も上述の実 施例だけに限定されるものではない。 固定電極、 変位電 極、 試験電極、 をそれぞれ何枚ずつどのような位置に形 成するかは、 設計上、 適宜変更しう る事項である。 また たとえば、 上述の実施例では、 図 1 5に示す 8枚の電極 配置を圧電式の検出装置に適用した例を示したが、 この 配置を静電容量式の検出装置にも適用できることはもち ろんである。 図 1 0や図 1 2に示す検出装置のように電 極を二段に重ねる構造にするより も、 図 1 5に示すよう に一層に配置する方が、 製造工程は単純になり、 大量生 産する上ではむしろ好ま しい。
上述の実施例では、 主と して、 半導体基板の上にアル ミニゥムなどの金属層を形成し、 これを電極とする例を 示したが、 電極はどのような方法によって形成してもよ い。 たとえば、 半導体基板内に不純物拡散領域を形成し、 これを電極と して用いることもできょう。 また、 固定基 板や可撓基板を金属で形成すれば、 この基板自身を電極 と して用いることもできる。 したがって、 本発明におい て、 電極は必ずしも基板と別体のものである必要はない。 また、 上述の実施例では、 加速度検出装置および力検出 装置について述べたが、 作用体を磁性材料で構成してお けば、 磁気に基づく力の検出を行う ことができる。 すな わち、 本発明は磁気検出装置にも等しく適用しうるもの である。 産 業 上 の 利 用 分 野 本発明に係る動作試験方法は、 電極間距離の変化を利 用して物理量を検出する力検出装置、 加速度検出装置、 磁気検出装置、 に広く適用しうるものである。 また、 こ の動作試験を実施する機能を備えた検出装置は、 簡便な 方法により動作試験を行う ことができ、 実用上、 高い信 頼性をもって利用することができる。 したがって、 自動 車や産業ロボッ 卜への応用が期待できる。

Claims

請求 の 範 囲
1. 外力の作用により変位しうるように支持された 変位電極 ( 2 1〜 25) と、 この変位電極に対向する位 置において装置筐体 (40) に固定された固定電極 ( 1 :!〜 1 5) と、 前記両電極間の距離の変化を電気信号と して取り出す検出手段 ( 5 1 ~ 55) と、 を備え、 前記 外力に対応した物理量を電気信号と して検出する検出装 置の動作試験方法であって、
前記固定電極と前記変位電極との間に所定の電圧を印 加し、 この印加電圧に基づいて発生するクーロン力によ り前記変位電極を変位させ、 この変位状態において前記 検出手段が検出した電気信号を前記印加電圧と比較する ことにより、 この検出装置の動作を試験することを特徴 とする動作試験方法。
2. 外力の作用により変位しうるように支持された 変位電極 (2 1〜25) と、 この変位電極に対向する位 置において装置筐体 (40) に固定された固定電極 ( 1 :! 〜 1 5) と、 前記両電極間の距離の変化を電気信号と して取り出す検出手段 (51〜 55) と、 を備え、 前記 外力に対応した物理量を電気信号と して検出する検出装 置の動作試験方法であって、
前記変位電極に対向する位置において前記装置筐体に 固定された試験電極 ( 1 1 t 〜 1 5 t ) を更に設け、 こ の試験電極と前記変位電極との間に所定の電圧を印加し この印加電圧に基づいて発生するクーロ ン力により前記 変位電極を変位させ、 この変位状態において前記検出手 段が検出した電気信号を前記印加電圧と比較することに より、 この検出装置の動作を試験することを特徴とする 動作試験方法。
3. 外力の作用により変位しうるように支持された 変位電極 ( 2 1〜 25) と、 この変位電極に対向する位 置において装置筐体 (40) に固定された固定電極 ( 1 1〜 1 5) と、 前記両電極間の距離の変化を電気信号と して取り出す検出手段 ( 5 1〜 55) と、 を備え、 前記 外力に対応した物理量を電気信号と して検出する検出装 置の動作試験方法であって、
前記固定電極に対向する位置において前記変位電極と と もに変位しうるように支持された試験電極 ( 2 1 t〜 25 t ) を更に設け、 この試験電極と前記固定電極との 間に所定の電圧を印加し、 この印加電圧に基づいて発生 するクーロ ン力により前記変位電極を変位させ、 この変 位状態において前記検出手段が検出した電気信号を前記 印加電圧と比較することにより、 この検出装置の動作を 試験することを特徴とする動作試験方法。
4. 外力の作用により変位しうるように支持された 変位電極 (2 1〜 25) と、 この変位電極に対向する位 置において装置筐体 (40) に固定された固定電極 ( 1 1 - 1 5) と、 前記両電極間の距離の変化を電気信号と して取り出す検出手段 ( 5 1〜 55) と、 を備え、 前記 外力に対応した物理量を電気信号と して検出する検出装 置の動作試験方法であって、
前記変位電極とともに変位しうるように支持された第 1の試験電極 (2 1 1: 〜 25 t ) と、 この第 1の試験電 極に対向する位置において前記装置筐体に固定された第 2の試験電極 ( 1 1 t〜 1 5 t ) と、 を更に設け、 前記 第 1の試験電極と前記第 2の試験電極との間に所定の電 圧を印加し、 この印加電圧に基づいて発生するク ロン 力により前記変位電極を変位させ、 この変位状態におい て前記検出手段が検出した電気信号を前記印加電圧と比 較することにより、 この検出装置の動作を試験すること を特徴とする動作試験方法。
5. 装置筐体 (40) に固定される固定部と、 外部 からの物理量の作用に基づく力を受ける作用部と、 前記 固定部と前記作用部との間に形成され可撓性をもった可 撓部と、 を有する可撓基板 (20) と、
前記可撓基板に対向するように、 装置筐体に固定され た固定基板 ( 1 0) と、 前記可撓基板の橈みによって変位が生じる位置に形成さ れた変位電極 ( 2 1〜 25) と、
前記固定基板により固定され、 前記変位電極に対向す る位置に形成された固定電極 ( 1 1 ~ 1 5) と、
前記変位電極に対向する位置において前記装置筐体に 固定され、 前記固定電極とは電気的に絶縁された試験電 極 ( l l t ~ 1 5 t ) と、
前記変位電極と前記固定電極との間に生じる静電容量 の変化を電気信号と して出力する検出手段 ( 5 1 ~ 55) と、
前記試験電極と前記変位電極との間に所定の電圧を印 加する電圧印加手段 (6 1〜65) と、
を備え、
前記検出手段の出力した電気信号に基づいて前記作用 部に作用した力を検出するとともに、 前記検出手段の出 力した電気信号を前記電圧印加手段の印加した印加電圧 と比較するこ とにより動作試験を行い得るようにしたこ とを特徴とする物理量の検出装置。
6. 装置筐体 (40) に固定される固定部と、 外部 からの物理量の作用に基づく力を受ける作用部と、 前記 固定部と前記作用部との間に形成され可撓性をもった可 撓部と、 を有する可撓基板 (20) と、
前記可撓基板に対向するように、 装置筐体に固定され た固定基板 ( 1 ◦ ) と、
前記可撓基板の橈みによって変位が生じる位置に形成 された変位電極 (21〜 25) と、
前記固定基板により固定され、 前記変位電極に対向す る位置に形成された固定電極 ( 1 1〜 1 5) と、
前記固定電極に対向する位置において変位電極ととも に変位し、 前記変位電極とは電気的に絶縁された試験電 極 ( 2 1 1: 〜 25 t ) と、
前記変位電極と前記固定電極との間に生じる静電容量 の変化を電気信号と して出力する検出手段 ( 5 1〜55) と、
前記試験電極と前記固定電極との間に所定の電圧を印 加する電圧印加手段 (6 1〜65) と、
¾·俯ん、
前記検出手段の出力した電気信号に基づいて前記作用 部に作用した力を検出するとともに、 前記検出手段の出 力した電気信号を前記電圧印加手段の印加した印加電圧 と比較することにより動作試験を行い得るようにしたこ とを特徴とする物理量の検出装置。
7. 装置筐体 (40) に固定される固定部と、 外部 からの物理量の作用に基づく力を受ける作用部と、 前記 固定部と前記作用部との間に形成され可撓性をもつた可 撓部と、 を有する可撓基板 ( 20) と、 前記可撓基板に対向するように、 装置筐体に固定され た固定基板 ( 1 0) と、
前記可撓基板の撓みによって変位が生じる位置に形成 された変位電極 ( 2 1〜 25 ) と、
前記固定基板により固定され、 前記変位電極に対向す る位置に形成された固定電極 ( 1 1 ~ 1 5) と、
自己の変位に基づき前記可撓基板に撓みを生じさせる 位置に形成され、 前記変位電極とは電気的に絶縁された 第 1の試験電極 ( 2 1 t 〜 2 5 t ) と、
前記第 1の試験電極に対向する位置において前記装置 筐体に固定され、 前記固定電極とは電気的に絶縁された 第 2の試験電極 ( 1 1 t ~ l 5 t ) と、
前記変位電極と前記固定電極との間に生じる静電容量 の変化を電気信号と して出力する検出手段 ( 5 1 ~ 55) と、
前記第 1の試験電極と前記第 2の試験電極との間に所 定の電圧を印加する電圧印加手段 (6 1 ~65) と、
を備え、
前記検出手段の出力した電気信号に基づいて前記作用 部に作用した力を検出するとともに、 前記検出手段の出 力した電気信号を前記電圧印加手段の印加した印加電圧 と比較することにより動作試験を行い得るようにしたこ とを特徴とする物理量の検出装置。
8 . 装置筐体 ( 2 0 0 ) に固定される固定部と、 外 部からの物理量の作用に基づく力を受ける作用部と、 前 記固定部と前記作用部との間に形成され可撓性をもった 可撓部と、 を有する可撓基板 ( 2 5 0 ) と、
前記可撓基板に対向するように、 装置筐体に固定され た固定基板 ( 2 1 0 ) と、
前記可撓基板の撓みによって変位が生じる位置に配置 された変位電極 ( 2 2 0 ) と、
前記固定基板により固定された固定電極 ( 2 1 8 a 〜 2 1 8 d ) と、
前記可撓基板と前記固定基板との間に挟まれるように 配置され、 前記両基板によって加わる圧力を電気信,に 変換して前記両電極に出力する圧電素子 ( 2 3 0 ) と、 前記変位電極に対向する位置において前記装置筐体に 固定され、 前記固定電極とは電気的に絶縁された試験電 極 ( 2 1 9 a 〜 2 1 9 d ) と、
前記試験電極と前記変位電極との間に所定の電圧を印 加する電圧印加手段と、
を備え、
前記圧電素子の出力した電気信号に基づいて前記作用 部に作用した力を検出するとともに、 前記圧電素子の出 力した電気信号を前記電圧印加手段の印加した印加電圧 と比較することにより動作試験を行い得るようにしたこ とを特徴とする物理量の検出装置。
9 . 装置筐体 ( 2 0 0 ) に固定される固定部と、 外 部からの物理量の作用に基づく 力を受ける作用部と、 前 記固定部と前記作用部との間に形成され可撓性をもった 可撓部と、 を有する可撓基板 ( 2 5 0 ) と、
前記可撓基板に対向するように、 装置筐体に固定され た固定基板 ( 2 1 0 ) と、
前記可撓基板の撓みによって変位が生じる位置に配置 された変位電極 ( 2 2 0 ) と、
前記固定基板により固定された固定電極 ( 2 1 8 a 〜 2 1 8 d ) と、
前記可撓基板と前記固定基板との間に挟まれるように 配置され、 前記両基板によって加わる圧力を電気信号に 変換して前記両電極に出力する圧電素子 ( 2 3 0 ) と、 前記固定電極に対向する位置において前記変位電極と ともに変位し、 前記変位電極とは電気的に絶縁された試 験電極と、
前記試験電極と前記固定電極との間に所定の電圧を印 加する電圧印加手段と、
を備え、
前記圧電素子の出力した電気信号に基づいて前記作用 部に作用した力を検出するとともに、 前記圧電素子の出 力した電気信号を前記電圧印加手段の印加した印加電圧 と比較することにより動作試験を行い得るようにしたこ とを特徴とする物理量の検出装置。
1 0. 装置筐体 (4 0 ) に固定される固定部と、 外 部からの物理量の作用に基づく 力を受ける作用部と、 前 記固定部と前記作用部との間に形成され可撓性をもった 可撓部と、 を有する可撓基板 ( 2 0 ) と、
前記可撓基板に対向するように、 装置筐体に固定され た固定基板 ( 1 0 ) と、
前記可撓基板の橈みによって変位が生じる位置に配置 された変位電極 ( 28 a〜 2 8 d ) と、
前記固定基板により固定された固定電極 ( 1 8 a 〜 l 8 d ) と、
前記可撓基板と前記固定基板との間に挟まれるように 配置され、 前記両基板によって加わる圧力を電気信号に 変換して前記両電極に出力する圧電素子 (4 5 ) と、 自己の変位に基づき前記可撓基板に橈みを生じさせる 位置に形成され、 前記変位電極とは電気的に絶縁された 第 1 の試験電極 ( 2 9 a 〜 2 9 d ) と、
前記第 1 の試験電極に対向する位置において前記装置 筐体に固定され、 前記固定電極とは電気的に絶縁された 第 2の試験電極 ( 1 9 a〜 1 9 d ) と、
前記第 1の試験電極と前記第 2の試験電極との間に所 定の電圧を印加する電圧印加手段と、
を備え、
前記圧電素子の出力した電気信号に基づいて前記作用 部に作用した力を検出するとと もに、 前記圧電素子の出 力した電気信号を前記電圧印加手段の印加した印加電圧 と比較するこ とにより動作試験を行い得るようにしたこ とを特徵とする物理量の検出装置。
1 1. 装置筐体に固定される固定部と、 外部からの 物理量の作用に基づく 力を受ける作用部と、 前記固定部 と前記作用部との間に形成され可撓性をもつた可撓部と を有する可撓基板 ( 320 ) と、
前記可撓基板の第 1の面に対向するように、 装置筐体 に固定された第 1の固定基板 ( 3 1 0) と、
前記可撓基板の第 2の面に対向するように、 装置筐体 に固定された第 2の固定基板 ( 330 ) と、 . 前記可撓基板の第 1の面に形成された第 1の変位電極 ( 2 1〜 25 ) と、
前記可撓基板の第 2の面に形成された第 2の変位電極 ( 326) と、
前記第 1の固定基板により固定され、 前記第 1の変位 電極に対向する位置に形成された第 1の固定電極 ( 1 1 〜 1 5) と、
前記第 2の固定基板により固定され、 前記第 2の変位 電極に対向する位置に形成された第 2の固定電極 ( 33 6 ) と、
前記第 1の変位電極と前記第 ] の固定電極との間に生 じる静電容量の変化と、 前記第 2の変位電極と前記第 2 の固定電極との間に生じる静電容量の変化と、 の差を電 気信号と して出力する検出手段 (56) と、
を備え、
前記検出手段の出力した電気信号に基づいて前記作用 部に作用した力を検出することを特徵とする物理量の検 出装置。
PCT/JP1991/000428 1991-03-30 1991-03-30 Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method WO1992017759A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE69124377T DE69124377T2 (de) 1991-03-30 1991-03-30 Beschleunigungssensor mit Selbsttest
PCT/JP1991/000428 WO1992017759A1 (en) 1991-03-30 1991-03-30 Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method
EP91906457A EP0537347B1 (en) 1991-03-30 1991-03-30 Acceleration sensor having a self test feature
US07/952,753 US5492020A (en) 1991-03-30 1991-03-30 Detector for a physical quantity having a self-testing function
JP03506367A JP3040816B2 (ja) 1991-03-30 1991-03-30 電極間距離の変化を利用して物理量を検出する装置における動作試験方法、およびこの方法を実施する機能を備えた物理量の検出装置
US08/298,924 US5497668A (en) 1991-03-30 1994-08-31 Method of testing the operation of an apparatus for detecting acceleration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1991/000428 WO1992017759A1 (en) 1991-03-30 1991-03-30 Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method

Publications (1)

Publication Number Publication Date
WO1992017759A1 true WO1992017759A1 (en) 1992-10-15

Family

ID=14014342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000428 WO1992017759A1 (en) 1991-03-30 1991-03-30 Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method

Country Status (5)

Country Link
US (2) US5492020A (ja)
EP (1) EP0537347B1 (ja)
JP (1) JP3040816B2 (ja)
DE (1) DE69124377T2 (ja)
WO (1) WO1992017759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538899A2 (en) * 1991-10-25 1993-04-28 OKADA, Kazuhiro Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
JP2003028825A (ja) * 2001-07-11 2003-01-29 Toyota Central Res & Dev Lab Inc 静電容量型センサのセンサ特性測定方法とセンサ特性測定装置

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6864677B1 (en) * 1993-12-15 2005-03-08 Kazuhiro Okada Method of testing a sensor
EP0461265B1 (en) 1989-12-28 1995-05-10 Wacoh Corporation Acceleration sensors
US5421213A (en) * 1990-10-12 1995-06-06 Okada; Kazuhiro Multi-dimensional force detector
US6314823B1 (en) * 1991-09-20 2001-11-13 Kazuhiro Okada Force detector and acceleration detector and method of manufacturing the same
US6282956B1 (en) 1994-12-29 2001-09-04 Kazuhiro Okada Multi-axial angular velocity sensor
US5646346A (en) * 1994-11-10 1997-07-08 Okada; Kazuhiro Multi-axial angular velocity sensor
JP3256346B2 (ja) * 1993-07-29 2002-02-12 和廣 岡田 圧電素子を用いた力・加速度・磁気のセンサ
US5661235A (en) * 1993-10-01 1997-08-26 Hysitron Incorporated Multi-dimensional capacitive transducer
US6026677A (en) * 1993-10-01 2000-02-22 Hysitron, Incorporated Apparatus for microindentation hardness testing and surface imaging incorporating a multi-plate capacitor system
JP3549590B2 (ja) * 1994-09-28 2004-08-04 和廣 岡田 加速度・角速度センサ
JP2586406B2 (ja) * 1994-10-27 1997-02-26 日本電気株式会社 静電容量型加速度センサ
US5583290A (en) * 1994-12-20 1996-12-10 Analog Devices, Inc. Micromechanical apparatus with limited actuation bandwidth
US5587518A (en) * 1994-12-23 1996-12-24 Ford Motor Company Accelerometer with a combined self-test and ground electrode
US6003371A (en) 1995-02-21 1999-12-21 Wacoh Corporation Angular velocity sensor
JP3433401B2 (ja) * 1995-05-18 2003-08-04 アイシン精機株式会社 静電容量型加速度センサ
JPH0949856A (ja) * 1995-05-31 1997-02-18 Wako:Kk 加速度センサ
JP3079961B2 (ja) * 1995-07-11 2000-08-21 株式会社村田製作所 衝撃センサ
JPH09119943A (ja) * 1995-10-24 1997-05-06 Wako:Kk 加速度センサ
DE19601078C2 (de) * 1996-01-13 2000-01-05 Bosch Gmbh Robert Druckkraftsensor
US5986156A (en) * 1996-02-09 1999-11-16 Institut Francais Du Petrole Zeolite based catalyst of modified mazzite structure type and its use for the dismutation and/or transalkylation of alkylaromatic hydrocarbons
US6367326B1 (en) 1996-07-10 2002-04-09 Wacoh Corporation Angular velocity sensor
US6076401A (en) * 1996-07-10 2000-06-20 Wacoh Corporation Angular velocity sensor
FR2757948B1 (fr) * 1996-12-30 1999-01-22 Commissariat Energie Atomique Microsystemes pour analyses biologiques, leur utilisation pour la detection d'analytes et leur procede de realisation
JP4176849B2 (ja) * 1997-05-08 2008-11-05 株式会社ワコー センサの製造方法
US6311136B1 (en) * 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
US20030216874A1 (en) * 2002-03-29 2003-11-20 Henry Manus P. Drive techniques for a digital flowmeter
KR20000074442A (ko) * 1999-05-21 2000-12-15 오세옥 다용도 충격센서
JP4295883B2 (ja) 1999-12-13 2009-07-15 株式会社ワコー 力検出装置
DE60231067D1 (de) * 2001-07-10 2009-03-19 Commissariat Energie Atomique Eine Kraftmesseinrichtung beinhaltender Reifen
US6809529B2 (en) * 2001-08-10 2004-10-26 Wacoh Corporation Force detector
JP3861652B2 (ja) 2001-10-16 2006-12-20 株式会社デンソー 容量式物理量センサ
JP4216525B2 (ja) * 2002-05-13 2009-01-28 株式会社ワコー 加速度センサおよびその製造方法
JP4125931B2 (ja) * 2002-08-26 2008-07-30 株式会社ワコー 回転操作量の入力装置およびこれを利用した操作装置
JP2004271464A (ja) * 2003-03-12 2004-09-30 Denso Corp 半導体力学量センサ
JP4907050B2 (ja) * 2003-03-31 2012-03-28 株式会社ワコー 力検出装置
JP4271475B2 (ja) * 2003-03-31 2009-06-03 株式会社ワコー 力検出装置
JP4387691B2 (ja) * 2003-04-28 2009-12-16 株式会社ワコー 力検出装置
US8189300B1 (en) * 2003-05-15 2012-05-29 Wayne Allen Bonin Multi-layer capacitive transducer with mult-dimension operation
WO2005015137A1 (en) * 2003-08-12 2005-02-17 Heung Joon Park Load measuring transducer including elastic structure and gauge using induced voltage, and load measuring system using the same
JP4514509B2 (ja) * 2004-05-14 2010-07-28 アップサイド株式会社 力センサー、力検出システム及び力検出プログラム
GB0417683D0 (en) * 2004-08-09 2004-09-08 C13 Ltd Sensor
FR2885410A1 (fr) * 2005-05-04 2006-11-10 Commissariat Energie Atomique Dispositif de mesure de force par detection capacitive
US7337671B2 (en) 2005-06-03 2008-03-04 Georgia Tech Research Corp. Capacitive microaccelerometers and fabrication methods
US7305891B2 (en) * 2006-01-30 2007-12-11 Valeo Sylvania Llc Detectable indicator
US7578189B1 (en) * 2006-05-10 2009-08-25 Qualtre, Inc. Three-axis accelerometers
JP4687577B2 (ja) * 2006-06-16 2011-05-25 ソニー株式会社 慣性センサ
DE102006062314A1 (de) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Mehrachsiger mikromechanischer Beschleunigungssensor
JP2008190931A (ja) * 2007-02-02 2008-08-21 Wacoh Corp 加速度と角速度との双方を検出するセンサ
US7520170B2 (en) 2007-07-10 2009-04-21 Freescale Semiconductor, Inc. Output correction circuit for three-axis accelerometer
DE102007046017B4 (de) * 2007-09-26 2021-07-01 Robert Bosch Gmbh Sensorelement
CA2743996A1 (en) * 2008-11-21 2010-05-27 Makoto Takahashi Capacitive dynamic quantity sensor element and dynamic quantity sensor
US9024907B2 (en) * 2009-04-03 2015-05-05 Synaptics Incorporated Input device with capacitive force sensor and method for constructing the same
JP5257897B2 (ja) * 2009-06-01 2013-08-07 フリースケール セミコンダクター インコーポレイテッド 出力回路
KR100919477B1 (ko) * 2009-06-16 2009-09-28 박흥준 측정 오차를 제거하기 위한 유도 전압을 이용한 하중 측정 트랜스듀서 및 그 트랜스듀서를 이용한 하중 측정 시스템
KR100919478B1 (ko) 2009-06-16 2009-09-28 박흥준 편심 오차를 극복하기 위한 유도 전압을 이용한 하중 측정 트랜스듀서 및 그 트랜스듀서를 이용한 하중 측정 시스템
JP5439068B2 (ja) * 2009-07-08 2014-03-12 株式会社ワコー 力検出装置
US9222845B2 (en) 2009-08-21 2015-12-29 Regents Of The University Of Minnesota Flexible sensors and related systems for determining forces applied to an object, such as a surgical instrument, and methods for manufacturing same
JP5284911B2 (ja) * 2009-08-31 2013-09-11 日立オートモティブシステムズ株式会社 静電容量型物理量センサ及び角速度センサ
DE102009045428B4 (de) * 2009-10-07 2019-06-19 Robert Bosch Gmbh Herstellungsverfahren für ein mikromechanisches Bauteil und mikromechanisches Bauteil
KR100987647B1 (ko) * 2009-12-31 2010-10-13 서울대학교산학협력단 전자기 유도 현상을 이용한 힘 측정 트랜스듀서
US9057653B2 (en) 2010-05-11 2015-06-16 Synaptics Incorporated Input device with force sensing
US9557857B2 (en) 2011-04-26 2017-01-31 Synaptics Incorporated Input device with force sensing and haptic response
US9748952B2 (en) 2011-09-21 2017-08-29 Synaptics Incorporated Input device with integrated deformable electrode structure for force sensing
US9041418B2 (en) * 2011-10-25 2015-05-26 Synaptics Incorporated Input device with force sensing
FR2986068B1 (fr) * 2012-01-24 2015-07-03 Jmr Holding Sonde a immerger dans un materiau
US9229592B2 (en) 2013-03-14 2016-01-05 Synaptics Incorporated Shear force detection using capacitive sensors
JP5529328B1 (ja) 2013-09-04 2014-06-25 株式会社トライフォース・マネジメント 発電素子
US10416030B2 (en) 2015-01-26 2019-09-17 Wacoh-Tech Inc. Force sensor
WO2016163033A1 (ja) 2015-04-07 2016-10-13 株式会社トライフォース・マネジメント 力覚センサおよびこれに用いる構造体
US9952252B2 (en) 2015-05-15 2018-04-24 Invensense, Inc. Offset rejection electrodes
US10295558B2 (en) 2015-05-15 2019-05-21 Invensense, Inc. Offset rejection electrodes
US11231441B2 (en) * 2015-05-15 2022-01-25 Invensense, Inc. MEMS structure for offset minimization of out-of-plane sensing accelerometers
JP2017058337A (ja) * 2015-09-18 2017-03-23 株式会社東芝 力覚センサ
JP5996078B1 (ja) 2015-10-19 2016-09-21 株式会社トライフォース・マネジメント 発電素子
CN106980097B (zh) * 2017-05-19 2023-10-10 深圳市特深电气有限公司 用于磁共振成像系统的鸟笼线圈及其调谐方法
DE102018211755A1 (de) * 2018-07-13 2020-01-16 Infineon Technologies Ag Amplitudenerfassung, amplitudenregelung und richtungserfassung einer schwingung eines schwingkörpers
US20220268582A1 (en) * 2019-07-30 2022-08-25 Kyocera Corporation Vibrometer and method for detecting vibration
US11693021B2 (en) * 2020-06-09 2023-07-04 Infineon Technologies Ag Combined corrugated piezoelectric microphone and corrugated piezoelectric vibration sensor
US11611835B2 (en) * 2020-06-09 2023-03-21 Infineon Technologies Ag Combined corrugated piezoelectric microphone and corrugated piezoelectric vibration sensor
CN111766010B (zh) * 2020-07-09 2022-03-22 北京航空航天大学 一种电容式触觉传感器
CN113253095A (zh) * 2021-05-12 2021-08-13 中国科学院地质与地球物理研究所 一种mems加速度传感器芯片批量测试方法及系统
US11691871B2 (en) * 2021-06-18 2023-07-04 Infineon Technologies Ag Microelectromechanical system (MEMS) vibration sensor having a segmented backplate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085342A (ja) * 1983-02-23 1985-05-14 日東工器株式会社 力測定装置
JPS6385461A (ja) * 1986-09-30 1988-04-15 Aisin Seiki Co Ltd 加速度センサの校正方法と加速度センサ
JPS63128682A (ja) * 1986-11-07 1988-06-01 クリスタル インスツルメンテ アクチエンゲゼルシャフト 圧電変換器素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4634965A (en) * 1984-12-31 1987-01-06 Sundstrand Data Control, Inc. Charge balancing detection circuit
US4679434A (en) * 1985-07-25 1987-07-14 Litton Systems, Inc. Integrated force balanced accelerometer
US4950914A (en) * 1987-03-30 1990-08-21 Honda Giken Kogyo Kabushiki Kaisha Collision detection system for a vehicle
FR2617607B1 (fr) * 1987-06-30 1989-12-01 Applic Gles Electrici Meca Accelerometre pendulaire a reequilibrage et procede de fabrication d'un tel accelerometre
CA1330265C (en) * 1988-09-23 1994-06-21 Craig W. White Self-calibrating accelerometer
US5060504A (en) * 1988-09-23 1991-10-29 Automotive Systems Laboratory, Inc. Self-calibrating accelerometer
US4987779A (en) * 1989-02-28 1991-01-29 United Technologies Corporation Pulse-driven accelerometer arrangement
US5103667A (en) * 1989-06-22 1992-04-14 Ic Sensors, Inc. Self-testable micro-accelerometer and method
EP0461265B1 (en) * 1989-12-28 1995-05-10 Wacoh Corporation Acceleration sensors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6085342A (ja) * 1983-02-23 1985-05-14 日東工器株式会社 力測定装置
JPS6385461A (ja) * 1986-09-30 1988-04-15 Aisin Seiki Co Ltd 加速度センサの校正方法と加速度センサ
JPS63128682A (ja) * 1986-11-07 1988-06-01 クリスタル インスツルメンテ アクチエンゲゼルシャフト 圧電変換器素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0537347A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0538899A2 (en) * 1991-10-25 1993-04-28 OKADA, Kazuhiro Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
EP0538899A3 (en) * 1991-10-25 1993-07-07 Kazuhiro Okada Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
US5343765A (en) * 1991-10-25 1994-09-06 Kazuhiro Okada Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
US5392658A (en) * 1991-10-25 1995-02-28 Okada; Kazuhiro Detector for force, acceleration or magnetism with respect to components in multi-dimensional directions
JP2003028825A (ja) * 2001-07-11 2003-01-29 Toyota Central Res & Dev Lab Inc 静電容量型センサのセンサ特性測定方法とセンサ特性測定装置
JP4508480B2 (ja) * 2001-07-11 2010-07-21 株式会社豊田中央研究所 静電容量型センサのセンサ特性測定装置

Also Published As

Publication number Publication date
DE69124377D1 (de) 1997-03-06
EP0537347A1 (en) 1993-04-21
US5492020A (en) 1996-02-20
US5497668A (en) 1996-03-12
JP3040816B2 (ja) 2000-05-15
EP0537347B1 (en) 1997-01-22
DE69124377T2 (de) 1997-06-12
EP0537347A4 (ja) 1994-03-23

Similar Documents

Publication Publication Date Title
WO1992017759A1 (en) Method of testing performance of device for measuring physical quantity by using change of distance between electrodes and physical quantity measuring device provided with function of executing this method
JP6476730B2 (ja) 力検出装置及びロボット
TW438971B (en) Electrostatic capacitance type sensor
US8117912B2 (en) Multiaxial acceleration sensor and angular velocity sensor
US7152485B2 (en) Acceleration detector
EP0549807B1 (en) Sensor for force, acceleration and magnetism using piezoelectric devices
US6397677B1 (en) Piezoelectric rotational accelerometer
US5512794A (en) Shear accelerometer
JP2841240B2 (ja) 力・加速度・磁気の検出装置
JP2975907B2 (ja) 力・加速度・磁気の検出装置
CN104897318A (zh) 力检测装置、机器臂以及电子部件输送装置
US8950258B2 (en) Micromechanical angular acceleration sensor and method for measuring an angular acceleration
JP3347316B2 (ja) 電極間距離の変化を利用して物理量を検出する装置およびその動作試験方法
JP3280009B2 (ja) 電極間距離の変化を利用して物理量を検出する装置およびその動作試験方法
JPH0868636A (ja) 加速度と角速度との双方を検出する装置
JP5205619B2 (ja) 圧電落下センサ及び圧電落下センサを用いた落下検出方法
JPH11248737A (ja) 静電容量型多軸加速度センサ
JPH0526754A (ja) 静電容量の変化を利用したセンサ
JP4394212B2 (ja) 加速度センサ
JP2773460B2 (ja) 半導体加速度センサ
JPH0627133A (ja) 3次元加速度センサ
JP3308043B2 (ja) 多軸加速度検出装置
RU2765333C1 (ru) Беспроводной трёхканальный датчик вибрации
SU1561047A1 (ru) Емкостный акселерометр
JPH11101697A (ja) 力・加速度・磁気の検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991906457

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991906457

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991906457

Country of ref document: EP