WO1993011015A1 - Displacement in transfer apparatus and driving controller of transfer member - Google Patents

Displacement in transfer apparatus and driving controller of transfer member Download PDF

Info

Publication number
WO1993011015A1
WO1993011015A1 PCT/JP1992/001560 JP9201560W WO9311015A1 WO 1993011015 A1 WO1993011015 A1 WO 1993011015A1 JP 9201560 W JP9201560 W JP 9201560W WO 9311015 A1 WO9311015 A1 WO 9311015A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
displacement
rope
pulley
wire
Prior art date
Application number
PCT/JP1992/001560
Other languages
English (en)
French (fr)
Inventor
Norio Ito
Tatsuya Shimoda
Sumitaka Wako
Toshiyuki Ishibashi
Yasunori Ueki
Makoto Okeya
Mitsuho Matsuzawa
Original Assignee
Seiko Epson Corporation
Cosmo System Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation, Cosmo System Corporation filed Critical Seiko Epson Corporation
Priority to DE69228697T priority Critical patent/DE69228697T2/de
Priority to EP92924025A priority patent/EP0613807B1/en
Priority to US08/244,270 priority patent/US5581180A/en
Publication of WO1993011015A1 publication Critical patent/WO1993011015A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/06Safety devices or measures against cable fracture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/02Suspension of the load; Guiding means, e.g. wheels; Attaching traction cables

Definitions

  • An object of the present invention is to provide a displacement detecting device for detecting a displacement of a cable body guided by a guide member such as a pulley from a reference point set on the guide member with respect to the guide member.
  • the present invention relates to a drive control device for a carrier that controls a drive speed using a detection device.
  • a transporting device in which a rope is guided by a guide member there are, for example, a lift device including a pulley and a wire lobe, a gondola device, a lobeway, a cable car, and the like (these are collectively referred to as a lift device hereinafter).
  • a lift device including a pulley and a wire lobe, a gondola device, a lobeway, a cable car, and the like (these are collectively referred to as a lift device hereinafter).
  • This ski lift has a problem in that the transporter suspended on the wire rope is susceptible to the effects of wind from the side in the movement direction, and in addition, the installation environment is Since there are many areas, there is a danger that the wire lobe will easily come off the pulley due to the rolling of the transport equipment due to the crosswind.
  • a lift detection device is provided in the lift device to detect the release of the probe from the pulley, and on the other hand, the roll of the transporter is monitored by a monitor camera.
  • the wire rope itself detached from the pulley presses a switch such as a limit switch provided on a side of the pulley.
  • monitoring of the roll of the transporter using a camera for monitoring is performed by installing cameras for monitoring at multiple locations along the direction in which the wire lobes are stretched. It monitors the rolling of the transport equipment.
  • the above-mentioned conventional detachment detection device aims to prevent a secondary disaster caused by operating the lift with the wire lobe detached from the pulley, and the detachment of the wire lobe from the pulley.
  • monitoring of the roll of the rocker with a monitor camera can hardly prevent the wire lobe from coming off from the pulley groove due to gusts.
  • the speed of operation of ski lifts has increased.With the increase in lifts for multiple passengers and the increase in size of gondola and ropeway, wire lobes have become more and more likely to come off pulleys. Victims are increasing year by year.
  • the present invention can efficiently and automatically prevent the cable body from coming off the pulley or the like by detecting the displacement amount of the cable body from the guide member.
  • a displacement detection device for the guide member of the rope that can be easily installed on existing lift equipment, and displacement of the rope from a reference point defined in the pulley groove at multiple locations The child is detected, and the By controlling the operating speed, it is possible to prevent ropes from coming off the pulley grooves efficiently and automatically and efficiently, greatly improving the safety and transportability of carriers.
  • the present invention provides a guide member such as a pulley engaged with the rope body, the rope body itself traveling or fixed to a support, and the guide member fixed to the support body or traveling on itself.
  • a detecting device for detecting a relative displacement between a cable body and a guide member in a transport device comprising: a detecting unit that detects a displacement of a medium.
  • the present invention it is possible to detect the amount of displacement of the rope body, particularly the amount of displacement from the reference position when displaced from any reference position, with a simple configuration. With this arrangement, it is possible to prevent a situation in which a wire body such as a wire lobe is detached from a guide member such as a pulley beforehand, and automatically and efficiently.
  • the present invention provides the displacement amount detecting device, wherein a speed control means for driving a carrier is provided, and the speed control means is configured to control the speed of the carrier according to a displacement output signal from the displacement amount detecting device.
  • This is a drive control device for the transporting body that controls the speed of the carrier.
  • the displacement amount detection device detects the displacement amount of the rope body from the reference point defined in the guide member, and comprehensively controls the operation speed of the carrier according to the displacement amount. This prevents the cable from coming off the guide member, and This makes it possible to prevent the problem dynamically and efficiently, greatly improving the safety of the carrier and the transport power.
  • FIG. 1 is a schematic view of a displacement detecting device for a metal cable body in a guide member according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing output characteristics with respect to a displacement amount of a Hall element.
  • FIG. 3 is a circuit diagram showing a detection circuit using a Hall element.
  • Figure 4 is a circuit diagram using a magnetoresistive element.
  • Figure 5 is a circuit diagram using a magnetic diode.
  • Fig. 6 is a perspective view showing a displacement detection device attached to a pole of a ski lift.
  • FIG. 7 is a schematic diagram of a device for detecting a displacement amount of a metal cable body in a guide member according to a second embodiment.
  • FIG. 8 is a view showing an output characteristic with respect to a displacement amount of the Hall element.
  • FIG. 9 is a schematic diagram of a device for detecting a displacement amount of a metal cable body in a guide member according to a third embodiment.
  • FIG. 10 is a block diagram showing independent detection of displacement amounts in the vertical and horizontal directions.
  • FIG. 11 is a schematic diagram of a device for detecting the amount of displacement of a metal cable body in a guide member according to a fourth embodiment.
  • FIG. 12 is a circuit diagram showing a detection circuit using a coil.
  • FIG. 13 is a schematic diagram of a device for detecting a displacement of a metal cable body in a guide member according to the fifth embodiment.
  • FIG. 14 is a schematic diagram of a device for detecting the displacement of a metal cable body in a guide member according to a sixth embodiment.
  • FIG. 15 is a diagram showing a detection unit corresponding to the twisted portion of the wire lobe according to the seventh embodiment.
  • FIG. 16 is a circuit diagram showing a detection circuit that detects the amount of displacement by removing ripple components.
  • FIG. 17 is a circuit diagram showing a detection circuit using the magnetoelectric conversion element according to the eighth embodiment and eliminating the need for an offset cancel circuit.
  • FIG. 18 is a circuit diagram of a displacement amount detection device according to a ninth embodiment.
  • FIG. 19 is a circuit diagram of the displacement amount detection device according to the tenth embodiment.
  • FIG. 20 is a cross-sectional view showing the displacement amount detection device according to the eleventh embodiment.
  • FIG. 21 is a side view showing the displacement amount detecting device.
  • FIG. 22 is a circuit diagram showing the displacement amount detecting device of the above.
  • FIG. 23 is a cross-sectional view showing a displacement detector according to the 12th embodiment.
  • FIG. 24 is a circuit diagram showing the displacement amount detection device of the above.
  • FIG. 25 is a diagram showing a detection unit corresponding to the twisting of the wire lobe according to the thirteenth embodiment.
  • FIG. 26 is a schematic diagram of a displacement amount detection device according to the 14th embodiment.
  • FIG. 27 is a block diagram showing a displacement amount detection device of the above.
  • FIG. 28 is a block diagram showing a fifteenth embodiment.
  • FIG. 29 is a block diagram showing a 16th embodiment.
  • FIG. 30 is a schematic diagram showing the 17th embodiment.
  • Fig. 31 is a front view showing the displacement detection device attached to the column of the ski lift.
  • FIG. 32 is a block diagram of a lift drive control device according to the present invention.
  • Fig. 33 is a diagram showing the control of the motor speed with respect to the amount of displacement.
  • FIG. 34 is a schematic diagram showing the entire lift drive control device.
  • FIG. 35 is a block diagram of a lift drive control device according to another embodiment.
  • FIG. 36 is a schematic diagram showing the entire lift drive control device of the above.
  • FIG. 37 is a circuit diagram showing a detection circuit for obtaining speed information using a ripple component.
  • Fig. 38 shows the output characteristics with respect to the displacement of the Hall element.
  • the apparatus for detecting the displacement of a cable body includes: Is a wire rope made of a magnetic material, and a magnet is arranged facing the wire ⁇ -loop, and a magnetoelectric conversion means is arranged on a magnetic circuit formed by the magnet and the wire lobe.
  • the displacement of the position change of the wire lobe with respect to the guide member is detected based on the output voltage from the means. That is, magnetism is used as a medium for position detection emitted from the detection device toward the cord.
  • the displacement amount detecting device 1 of the first embodiment includes a pulley 13 serving as a guide member for guiding a wire rope 2, and always maintains a constant distance between the pulley 13 and the wire lobe 2.
  • a magnet 3 disposed with one magnetic pole facing the magnetic flux B, a magnetic flux B emitted from the N pole of the magnet 3 and passing through the wire lobe 2, and a hole serving as a magnetoelectric conversion element provided on the magnetic flux B It comprises an element 4 and a detection circuit 5 shown in FIG. 3 for detecting the output voltage from the Hall element 4.
  • the magnet 3 is a permanent magnet having a predetermined volume or a predetermined volume and energy product according to the detection accuracy and range of the displacement amount.
  • the N pole side is arranged toward the wire lobe 2, but the S pole side may be arranged toward the wire lobe 2.
  • the wire lobe 2 and the magnet 3 constitute a magnetic circuit 9 which forms a magnetic flux B emitted from the N pole of the magnet 3 and passing through the wire lobe 2 and returning to the S pole of the magnet 3.
  • a Hall element 4 described later, the amount of displacement of the wire lobe 2 can be obtained.
  • the Hall element 4 is disposed on the magnetic circuit 9 just above the magnetic pole (N pole) on the wire lobe 2 side of the magnet 3, and the magnetic flux B in the magnetic circuit 9 is This is for detecting the amount of change.
  • the Hall element 4 is one of the so-called magneto-electric conversion elements, and a predetermined voltage is proportional to a change in the amount of magnetic flux applied to the element.
  • Fig. 2 shows the output characteristics of this embodiment. The amount of displacement shown in the figure is based on the displacement when the wire lobe 2 is located directly above the magnetic pole in FIG. 1 and the wire rope 2 with respect to the direction of the magnetic flux B with respect to this displacement criterion. This indicates the amount of lateral displacement when moving laterally (in the direction of the arrow), and the output (voltage) from the Hall element 4 is obtained as an absolute value in proportion to the amount of lateral displacement.
  • the minus direction is the left direction with respect to the reference position.
  • the magnetic circuit 9 forms a magnetic flux B passing through the wire rope 2, which is a magnetic material, and the magnetic flux applied to the Hall element 4 when the wire lobe 2 is at the reference position is used as a reference of the displacement.
  • the amount of magnetic flux B attracted and deflected by the wire rope 2 side is calculated from the amount of magnetic flux applied to the Hall element 4 to obtain an increase or decrease. Is detected.
  • the detection circuit 5 is for amplifying the output voltage from the Hall element 4 and removing the output due to the static magnetic field. As shown in FIG. 3, the detection circuit 5 includes a differential amplifier 6, an offset canceller 7, and an inverting amplifier 8.
  • the differential amplifier section 6 is a general differential amplifier circuit composed of an amplifier 10 in which two output lines from the Hall element 4 are connected to a brass and a negative terminal on the input side, respectively. The difference between the output voltages output from the Hall element 4 and both output lines is amplified. In this way, noise is reduced by receiving the input through operational amplification.
  • the voltage applied to the Hall element 4 is To flow a predetermined input current for driving the. In the present embodiment, an output voltage whose polarity is inverted is output from the output side of the differential amplifier 6.
  • the offset canceller 7 is for removing the output component due to the static magnetic field described above.
  • an offset adjusting resistor is connected to the negative terminal on the input side, and the positive terminal is connected to the output side.
  • the operational amplifier 11 is directly connected to a DC voltage, and a positive DC voltage (offset cancel voltage) corresponding to the output of the static magnetic field is output from the output side of the operational amplifier 11.
  • offset cancel voltage offset cancel voltage
  • the inversion width section 8 is used to further amplify a net output voltage corresponding to the amount of change of the magnetic flux B by the offset canceling voltage and to invert the polarity to the positive electrode.
  • 12 is an inverting amplifier circuit.
  • the resistors in FIG. 3 are for setting the width ratio.
  • a Hall element is used in the above embodiment, a magnetoresistive element as shown in FIG. 4 or a magnetic diode as shown in FIG. 5 may be used. 4 and 5, the description of the offset cancel circuit is omitted.
  • the transfer body of the present invention may be described as a lift, and the transfer device may be described as a lift device.
  • the ski lift device 15 has a plurality of pillars 14 erected on a slope of a ski slope, and a plurality of pulleys 13 are rotatably supported on the upper part of the pillars 14.
  • a wire lobe 2 with a transporter suspended therefrom is stretched over, and the wire rope 2 is driven in the stretching direction to move the transporter.
  • the displacement amount detecting device 1 is configured by housing a Hall element 4, a magnet 3, and a detecting circuit 5 in this order from above in a detecting unit 16, and this detecting unit 16 is It is attached to the upper part of 4 by a fixing plate 17 along the circumferential groove direction of the pulley 13.
  • the detection unit 16 is attached below the wire lobe 2, on the side of the wire rope 2 opposite to the side on which the lift travels, or above the wire rope 2. That is, the lift is fixed at the upper end to the probe 2 and the vertical member of the lift usually passes through one side of the pulley (opposite the column), so that the lift member passes The detection unit 16 is installed at the location except for the side.
  • the detection unit 16 is mounted between the pulleys or outside the pulley.
  • a plate 17 is protruded from a bearing plate 13 b supporting the bearing 13 a of the pulley 13, and the detection unit 16 is provided between the plate 17. Attached.
  • the detection unit 16 is provided outside the pulley 13. When the detection unit 16 is mounted, the displacement reference position of the displacement detection device 1 should be aligned with the center of the bottom of the pulley circumferential groove.
  • the amount of displacement when the wire lobe 2 stretched in the pulley groove is displaced from the reference position in the groove can always be detected, and the wire lobe 2 can be prevented from coming off from the pulley groove, and It is possible to prevent this automatically and efficiently.
  • the Hall element 4 since the Hall element 4 is used, it is possible to detect the sensitivity to a sudden displacement of the wire rope 2 due to a gust or a small change over time.
  • the reference position for the displacement is arbitrary.
  • the two magnets 3, 3 have different magnetic poles directed toward the wire rope 2.
  • a magnetic flux is provided at both ends of the yoke 18 at a predetermined interval, and is emitted from the N pole of one magnet 3 and passes through the wire lobe 2 or the yoke 18 and returns to the S pole of the other magnet 3.
  • the magnetic circuit 9 forming B is configured. In the case of this example, the detection sensitivity of the displacement amount is improved and the magnet amount is reduced as compared with the case where the number of the magnets 3 is one.
  • the output from the Hall element 4 is an absolute value
  • the displacement direction of the wire lobe 2 is unknown, but in the present embodiment, the output characteristics as shown in FIG. 8 are obtained. From, it is possible to specify the displacement direction with respect to the lateral direction.
  • the detection circuit is the same as in the first embodiment.
  • two magnets 3 are arranged at a predetermined interval, and the magnet 3 is emitted from the N pole of one of the magnets 3 to generate a wire lobe 2.
  • a magnetic circuit 9 is formed to form a magnetic flux B that returns to the S pole of the other magnet 3 after passing through the inside or the yoke 18, and two Hall elements 4, 4 are provided at predetermined positions on the magnetic circuit 9. Is arranged.
  • the displacement direction can be specified only in the horizontal direction, whereas in the present embodiment, the displacement direction in the vertical direction can be specified separately from the horizontal direction.
  • the magnetic flux amount detected by the Hall element is considered simply as the magnitude of the magnetic flux amount by removing the magnetic polarity
  • the wire rope 2 is displaced in the horizontal direction
  • the amount of magnetic flux detected by one of the Hall elements increases, and the amount of magnetic flux detected by the other Hall element decreases. In other words, it can be specified that the displacement of the wire rope 2 is in the horizontal direction. At this time, even if one increased magnetic flux amount and the other decreased magnetic flux amount are added, the magnetic flux amount is always constant and the displacement direction cannot be obtained.
  • the amount of magnetic flux detected by both Hall elements 4 will increase or decrease similarly to each other, and the amount of magnetic flux detected by both Hall elements 4, 4 will increase. Add From the sum thus generated, it can be specified that the displacement of the wire rope 2 is in the vertical direction. In this case, even if the amount of one magnetic flux is subtracted from the amount of the other magnetic flux, the amount of magnetic flux is always constant, and the displacement direction cannot be obtained.
  • the offset cancel voltage is subtracted from each of the output voltages output from the two Hall elements 4 and 4, respectively.
  • the absolute displacement of the magnetic flux which has no magnetic polarity, is taken into the full-wave rectifier circuit 20, and the absolute displacement of one is subtracted from the absolute value of the other.
  • the displacement direction and the displacement amount in the vertical direction are obtained by adding one absolute value and the other absolute value. This makes it possible to distinguish whether the displacement of the wire rope from the inside of the groove is a displacement in the vertical direction due to a pound or a displacement in the horizontal direction due to wind or the like.
  • the change amount of the magnetic flux B is obtained from the magnetic flux amount detected by the Hall element in the above-described first to third embodiments. In the present embodiment, it is determined from the induced electromotive force generated in the coil due to the change in the magnetic flux B linked to the coil.
  • the displacement amount detection device 1 of the present embodiment has a magnet 3 arranged with one magnetic pole facing the wire lobe 2 and a magnet 3 emitted from the N pole of the magnet 3 and passing through the wire lobe 2. And a detection circuit 5 for detecting an output voltage from the coil 19.
  • the coil 19 is disposed on a magnetic circuit 9 immediately above the magnetic pole (N pole) of the magnet 3 on the wire rope 2 side of the magnet 3.
  • the magnetic flux B is linked. Therefore, when the wire rope 2 is positioned directly above the magnetic pole, the displacement is used as a reference.
  • the wire lobe 2 is When displaced laterally (in the direction of the arrow) with respect to the direction of By calculating the amount of change in magnetic flux B from the induced electromotive force generated in coil 19, the amount of displacement of wire lobe 2 is detected.
  • the detection circuit 5 is for amplifying the output voltage from the coil 19.
  • this detection circuit 5 is a general differential amplifier circuit composed of operational amplifiers 10 having both ends of the coil 9 connected to the brass and the minus terminal on the input side, respectively.
  • the deviation between both ends of the coil 19 due to the induced electromotive force generated in the coil 19 is widened.
  • the voltage applied to both ends of the coil 19 is for driving the circuit. Since the change of the magnetic flux B is obtained from the induced electromotive force generated in the coil 19, only the displacement of the wire lobe 2 can be detected, so that the offset canceling unit is not required.
  • a coil since a coil is used, it is possible to detect low sensitivity to sudden displacement of wire lobe 2 due to gusts.
  • the displacement amount detection device 1 according to the fifth embodiment shown in FIG. 13 has the same improvement in the detection sensitivity of the displacement amount and the reduction of the magnet amount as compared with the case of the single magnet 3, similarly to the second embodiment described above. And the direction of displacement with respect to the lateral direction can be specified.
  • the detection circuit 5 is the same as in the fourth embodiment.
  • the displacement amount detection device 1 according to the sixth embodiment shown in FIG. 14 can specify the displacement direction in the vertical direction separately from the horizontal direction, similarly to the third embodiment described above. However, the offset cancel voltage in FIG. 10 is not required.
  • the seventh embodiment shown in FIG. 15 is a detection device in a case where a twisted wire such as a wire port 2 is used as a metal cable body.
  • wire ropes 2 are widely used as ropes for ski lift devices 15 and the like. Since the wire lobe 2 has a twist, detection of only one radial direction of the wire lobe 2 includes a ripple component due to the twist in the output voltage, which may cause erroneous detection. That is, while wire lobe 2 is constant with respect to Hall element 4 Even if the vehicle is running with a gap, the wire rope 2 is detected as periodically coming into contact with and separating from the Hall element because there is a twist. In order to prevent this erroneous detection, as shown in Fig.
  • the magnet 3 and the two sets of Hall elements 4 are placed along the wire lobe 2 in the axial direction of the wire lobe 2 at a pitch P of 1Z2.
  • a ripple component can be removed from the output voltage by combining the output voltages from the respective Hall elements 4 with each other.
  • the detection circuit 5 of the present embodiment is configured such that the operational amplifiers 6 and 6 and the offset cancel unit 7 connected to the two sets of Hall elements 4 respectively include the inverting amplifier 8. It is configured to be connected to the negative input terminal.
  • the two sets of Hall elements 4 are arranged side by side at an interval of 1/2 of the pitch P of the twisted stitch along the axial direction of the wire rope 2,
  • the output voltages obtained by inverting the 180 ⁇ phase with each other are obtained, and the ripple components are removed by adding the output voltages. Therefore, it is possible to detect the ⁇ ⁇ displacement amount of the detection accuracy without being affected by the twist of the wire rope 2.
  • a Hall element is used in this example, a coil may be used.
  • the displacement detection device 1 according to the eighth embodiment shown in FIG. 17 is different from the first to third embodiments in that the detection circuit 5 using the magnetoelectric conversion element 5 eliminates the re-offset canceling unit 7 while operating amplification.
  • a capacitor 33 is connected between the section 6 and the inverting amplification section 8. As a result, it is possible to detect only the displacement of the wire rope 2 as in the above-described fourth to sixth embodiments.
  • the displacement amount of the metal cable can be obtained by a simple configuration including the magnet, the metal cable, the guide member, and the magnetoelectric conversion element.
  • the displacement detection device 1 according to the ninth embodiment shown in FIG. 18 includes a coil 19 and a detection circuit 39.
  • the detection circuit 39 includes a detection unit 35 for detecting an impedance change occurring in the coil 19, a rectification unit 34 for rectifying an AC signal into a DC signal, and a differential amplification unit 6 for amplifying a DC signal. Become.
  • the detecting section 35 includes a voltage dividing resistor 36 connected in parallel to the coil 19 and an oscillator 37 connected to one end of the voltage dividing resistor 36. It is configured. A high-frequency signal is applied to the coil 19 by the oscillator 37, and when the wire lobe 2 is displaced from the reference position and approaches the coil 19, a change occurs in the inductance of the coil 19, and the impedance changes. Become. As a result, the voltage dividing ratio between the recoil coil 19 and the voltage dividing resistor 36 is changed, and the divided voltage applied between the rain ends of the coil is changed.
  • the rectifier 34 is a general smoothing circuit composed of a diode 32 and a capacitor 33, and the divided voltage signal generated in the detector 35 is rectified into a DC voltage signal.
  • the differential width section 6 is a general differential width circuit composed of an op-amp 38 in which two output lines from the rectification section 34 are connected to the plus and minus terminals on the input side, respectively.
  • the deviation of the DC voltage signal output between the output lines is amplified to a predetermined level and obtained as a displacement.
  • the displacement detection device 1 according to the tenth embodiment shown in FIG. 19 includes a coil 19 and a detection circuit 39.
  • the detection circuit 39 includes a detection unit 35, a rectification unit 34 for rectifying an AC signal into a DC signal, and a differential amplification unit 6 for amplifying the DC signal.
  • the detection section 35 includes a capacitor 40 connected in parallel to the coil 19 to form a resonance circuit 41.
  • An oscillator 37 is connected in parallel to the resonance circuit 41 (oscillation source), and the oscillation circuit 41 is resonated by the oscillator 37 to form an oscillation circuit.
  • This oscillation circuit is set by the coil 19 and the capacitor 40 so that predetermined oscillation characteristics can be obtained.
  • the wire lobe 2 displaced from the reference position approaches the coil 19
  • the leakage magnetic flux generated from the coil 19 passes through the wire rope 2.
  • eddy current loss occurs in the wire lobe 2, and the loss changes the impedance of the coil. Therefore, the value of the quality factor Q of the oscillator changes, and the characteristics of the oscillator deteriorate.
  • the oscillation output changed by the detector 35 due to the displacement of the wire rope is rectified into a DC voltage signal by a smoothing circuit including a diode 32 and a capacitor 33.
  • the differential amplifying unit 6 is a general differential amplifying circuit composed of an operational amplifier 38 in which two output lines from the rectifying unit 34 are connected to a brass and a negative terminal on the input side, respectively. The deviation of the DC voltage signal output between the output lines is amplified to a predetermined level and obtained as a displacement.
  • the displacement detection device 1 includes a pulley 13, a displacement detection coil 19, a rotating part 27, a rotation side coil 28, It comprises a fixed section 29, a fixed coil 30, a detection section 35, a rectification section 34, and a differential amplification section 6.
  • the displacement detecting coils 19 are arranged at equal intervals in the circumferential direction on one side of the pulley 13 as shown in FIG. 21, and as shown in FIG.
  • the coils 19 are connected in series on a circuit to a detection unit 35 via a rotary transformer unit 31 composed of a rotary coil 28 and a fixed coil 30 which will be described later, while being connected in series.
  • the antenna is divided into three equal parts in the circumferential direction, but it may be further divided.
  • the rotating part 27 is a small step formed on one end face of the pulley 13 coaxially with the pulley 13, and the outer circumferential surface of the rotating part 27 has a predetermined number of turns and the rotating side coil 28. Is wound.
  • the fixed portion 29 is formed in a cylindrical body having a diameter larger than that of the rotating portion 27 and one end thereof being closed, and the inner peripheral surface of the fixed portion 29 has a predetermined number of turns.
  • the fixed side coil 30 is wound.
  • the detection section 35 is composed of an oscillator 37 connected in parallel to the fixed coil 30.
  • the fixed-side coil 30 is supplied with a high-frequency signal by the oscillator 37, and when the wire lobe 2 is displaced from the reference position of displacement and approaches the displacement detecting coil 19, the wire lobe 2 is displaced.
  • Mutual induction occurs between each displacement detection coil 19 and impedance change occurs in each displacement detection coil 19 V
  • the voltage applied between both ends of the displacement detection coil 19 at this time is The voltage is applied to both ends of the fixed side coil 30 via the rotary transformer section 31 in a state where the pressure is changed.
  • the rectifier 34 is connected to both ends of the fixed coil 30.
  • the voltage signal applied across the fixed coil 30 is rectified into a DC voltage signal by a smoothing circuit composed of the diode 32 and the capacitor 33. Is done.
  • the differential width section 6 is a general differential width circuit composed of an op-amp 38 in which two output lines from the rectification section 34 are connected to a brass and a minus terminal on the input side, respectively. The deviation of the DC voltage signal output between the output lines is amplified to a predetermined level and obtained as a displacement.
  • the AC signal from the oscillator 37 is applied to the displacement detecting coil 19 via the rotary transformer section 31 composed of the fixed coil 30 and the rotating coil 28, and is supplied with power.
  • the wire lobe 2 is displaced from the reference point in the groove of the pulley 13 and approaches the displacement detection coil 19
  • the wire lobe 2 and the displacement detection Mutual induction acts with the displacement coil 19, and the impedance of the displacement detection coil 19 changes.
  • the voltage applied to both ends of the displacement detecting coil 19 changes, and the voltage corresponding to this change is rectified into a DC voltage by the rectifying unit 34 via the rotary transformer unit 31, and a predetermined voltage is set by the differential amplifying unit 6.
  • the amount of change is obtained by varying the level. That is, the application of the AC signal to the displacement detection coil 19 and the detection of the impedance change of the displacement detection coil 19 can be performed without contacting the pulley 13.
  • the displacement detection device 1 includes a displacement detection coil 19, a magnet 3, a rotating unit 27, a rotating coil 28, and a fixed unit 29. It comprises a fixed-side coil 30, a rectifier 34, and a differential amplifier 6.
  • the displacement detecting coils 19 are arranged at equal intervals in the circumferential direction on one side surface of the pulley 13, and the respective displacement detecting coils 19 are connected in series. As shown in FIG. 24, both ends of the displacement detecting coil 19 connected in series are connected to a rotary transformer section composed of a rotating coil 28 and a fixed coil 30 described later. It is connected to the rectification unit 34 via 31. Note that, in the present embodiment, they are arranged in three equal parts in the circumferential direction.
  • the magnet 3 is disposed on the back surface of the displacement detection coil 19 on the far side from the pulley groove portion, and is spaced apart from the displacement detection coil 19.
  • the magnet 3 forms a magnetic flux B emitted from the N pole and passing through the wire rope 2.
  • the rotating part 27 is a small step formed on one end face of the pulley 13 coaxially with the pulley 13, and the outer circumferential surface of the rotating part 27 has a predetermined number of turns and the rotating side coil 28. Is wound.
  • the fixed portion 29 is formed in a cylindrical body having a diameter larger than that of the rotating portion 27 and one end thereof is closed, and a predetermined number of turns is formed on an inner peripheral surface of the fixed portion 29. ,
  • the fixed side coil 30 is wound.
  • the rectifier 34 is connected to both ends of the fixed coil 30 as shown in FIG. 24, and a voltage signal generated by the induced electromotive force generated in the rotating coil 28 is supplied to the diode 32 and the capacitor. It is rectified to a DC voltage signal by the smoothing circuit according to 33.
  • the differential width section 6 generally includes an operational amplifier 38 in which two output lines from the rectification section 34 are connected to a brass and a negative terminal on the input side, respectively.
  • This is a typical differential amplifier circuit, and the deviation of the DC voltage signal output between the rain output lines is amplified to a predetermined level and obtained as a displacement amount.
  • the magnetic flux B linked to the coil changes, and an induced electromotive force is generated in the coil.
  • the voltage applied to the rain end of the displacement detection coil 19 changes, and the voltage corresponding to this change is again rectified into a DC voltage by the rectification unit via the rotary transformer unit, and at a predetermined level in the differential width unit. And the amount of change is obtained. In other words, the detection of the induced electromotive force generated in the displacement detection coil 19 can be performed without contacting the pulley 13.
  • the displacement amount detection device 1 according to the thirteenth embodiment shown in FIG. 25 is similar to the case of the seventh embodiment, except that a rope body having a twist, such as a wire lobe 2, is used. It is a detection device.
  • two sets of coils 19 and magnets 3 are arranged side by side at an interval of 1 Z2 of the pitch P of the twisted stitch along the axial direction of the probe 2.
  • the ripple component can be removed from the re-output voltage. That is, each coil 19 obtains an output voltage with an inverted phase of 18 (T phase), and by adding these output voltages, the ripple component can be removed, and the twist of the wire lobe 2 can be reduced. It is possible to detect a displacement amount with high detection accuracy without being affected by the eyes.
  • the cord is made of a magnetic material.
  • a magnet 3 is arranged opposite to the wire rope 2, and a coil 19 is arranged on a magnetic circuit 9 formed by the magnet 3 and the wire rope 2.
  • a core 19 a of a magnetic material is inserted, and a fixed resistor 36 is connected in series to the coil 19, and a constant frequency signal from an oscillator 37 is applied to the coil 19, and both ends of the coil are connected.
  • This embodiment is based on the finding that the impedance of the coil 19 changes in proportion to the magnetic permeability of the ferromagnetic core 19a.
  • the magnetic permeability of the ferromagnetic core 19a changes due to a change in the magnetic flux of the magnetic circuit 9 due to a change in the saturation state of the ferromagnetic core 19a.
  • the magnetic flux of the magnetic circuit 9 changes as the distance between the wire lobe 2 and the coil 19 changes. Therefore, the displacement of the wire probe 2 is represented as a change in the impedance of the coil 19, and thus, by detecting the change in the impedance of the coil 19, the displacement of the wire 1 lobe 2 can be detected. .
  • an AC signal is applied to detect the impedance change of the coil 19, and the detection (DC voltage) corresponding to the voltage division ratio with the fixed resistor 36 is performed.
  • the detection DC voltage
  • a power amplifier is provided between the oscillator 37 and the fixed resistor 36, and the DC component of the low-frequency signal detected by the detection circuit causes an offset. Is done.
  • a DC voltage is applied to the coil 19 without using the permanent magnet 3 of the previous example, and the same operation as the magnet 3 is performed. Has been done.
  • the same operation as in the previous example is performed, but the number of parts is reduced because the permanent magnet is not used, and the generated magnetic force ( ⁇ ⁇ ) is adjusted by arbitrarily adjusting the DC voltage. It is possible to easily change the detection sensitivity because it is possible to change the performance of the magnet caused by applying a DC voltage. As a result, it is possible to easily cope with various wire lobes. it can.
  • the magnetomotive force NI (ampere turn) caused by the current flowing through the coil 19 is set to be equal to or larger than the DC magnetic field. It is necessary to keep it.
  • the amount of displacement when the metal cable body is displaced from the reference position in the groove can be detected by the impedance change generated in the coil.
  • the structure of the device is simple, and the wire rope can be prevented from coming off from the pulley groove portion automatically and efficiently, and can be easily installed on existing lift equipment.
  • the electric power to the detection coil provided on the rotating side is also reduced by the voltage signal from the rotating side. Can be taken in non-contact with the pulley, so that it is possible to detect a stable and accurate displacement amount without being affected by the size of the backlash of the supported pulley when detecting the displacement amount.
  • the 16th embodiment shown in FIG. 29 uses ultrasonic waves as a medium for position detection emitted toward the cord 2, and transmits the ultrasonic waves from the transmitting ultrasonic transducer 51 to the cord.
  • the transmitted ultrasonic wave is reflected by the cord, and the reflected ultrasonic wave is received by the ultrasonic transducer for receiving 52, the transmitted signal and the delay time
  • the received signal obtained after ⁇ t is multiplied, and the displacement of the position change of the rope relative to the pulley is detected by frequency measurement.
  • frequency modulation and continuous wave FM-CW are used.
  • frequency modulation is performed by a modulation signal generator and a voltage controlled oscillator.
  • the ultrasonic transducer 51 uses the continuous wave (transmitted wave)
  • the ultrasonic transducer 51 transmits the signal to the cable 2.
  • an output change according to the displacement is obtained. This makes it possible to detect the displacement amount of the position change of the rope body with respect to the pulley.
  • the 17th embodiment shown in FIG. 30 uses light as the position detection medium emitted toward the cord 2, and the light emitted from the light emitting element 53 to the cord is The light reflected by the body 2 is received by the light receiving element 54, and the change in the output signal of the light receiving element 54 is used to detect the displacement of the position change of the cable body 2 with respect to the pulley. .
  • a light emitting element for example, a light emitting diode
  • a light emitting lens 55 for example, a light emitting diode
  • the light reflected by the cord 2 is collected by the light receiving lens 56 and forms an image on a light receiving element (for example, a small photo transistor array).
  • a light receiving element for example, a small photo transistor array
  • the amount of displacement when the cord is displaced from the reference position in the groove can be detected by a change in a medium other than magnetism. Even if the cable is not made of metal, it is possible to prevent the cable body from coming off the pulley groove automatically and efficiently, and it is easy to install it on existing lift equipment.
  • the displacement amount detection device has a detection unit 16 positioned outside the pulley 13 as shown in FIG. When there are four trains, it may be provided between the outer pulley and the inner pulley.
  • the drive control device for a carrier such as a lift is formed by using the displacement amount detection device shown in the first to eighth embodiments, and as shown in FIG. 32, a wire from the pulley groove portion is used. It comprises the displacement amount detecting means 1 for detecting the displacement amount of the rope 2, and speed control means 25 for controlling the driving speed of the wire rope in accordance with the output signal from the displacement amount detecting means 1. .
  • the speed control means 25 will be described.
  • the speed control means 25 includes a motor speed control circuit 21, a drive circuit 22, a motor 24, and a speed detector 23.
  • the motor speed control circuit 21 controls the motor speed as shown in FIG. 33 according to the output signal from the displacement amount detecting means 1. As shown in the figure, when the predetermined displacement amount is exceeded, the braking control is performed on the motor 24.On the other hand, when the displacement amount is small, the speed of the motor 2 is not changed and the motor 2 remains in the low speed state. It is operating at a constant speed. As a result, the safety of the lift and the transport capacity can be greatly improved. .
  • the application circuit 22 starts or brakes the motor 24 or accelerates the motor according to a control signal from the motor speed control circuit 21.
  • the speed detector 23 detects the current speed from the motor 24, and feeds this result to the motor speed control circuit 21.
  • the motor speed control circuit 21 outputs this signal. And determines whether or not the rotation speed of the motor 24 is controlled to a predetermined value, and outputs a control signal to the drive circuit 22 as necessary.
  • the output signals obtained by detecting the displacement amounts from the plurality of pulleys are taken into the motor speed control circuit 21 as a logical sum to provide a comprehensive system.
  • the safety of the lift and the transport capacity can be improved.
  • the displacement The reference position is arbitrary.
  • the following lift drive control device is realized by using the displacement amount detection device shown in the ninth to thirteenth embodiments.
  • the lift device according to the present embodiment uses a coil as shown in FIG. 19, the displacement amount detecting means 1 for detecting the displacement amount of the rope 2 from the pulley groove portion, and speed control means for controlling the driving speed of the wire rope 2 according to the output signal from the displacement amount detecting means 1. It consists of 2 and 5.
  • This speed control means 25 is basically the same as that of the previous example. Also in this example, since the speed of the motor 24 is controlled according to the displacement detected when the wire lobe 2 stretched over the pulley is displaced from the reference position in the pulley groove, the speed of the wire lobe 2 from the pulley groove is increased.
  • the output signals from the detection of the displacement amounts from the plurality of pulleys are taken into the motor speed control circuit 21 as a logical OR, so that the overall safety and lift of the lift can be reduced. Can be improved.
  • the speed detection of the wire used in the lift drive control device can also be performed by the detection circuit shown in FIG.
  • This detection circuit uses the ripple component correction circuit shown in FIG. 16 described above. By extracting one of the Hall element outputs in this correction circuit, that is, the ripple component is detected. By doing so, speed information is obtained.
  • the detection coil 19 is attached to the pulley 13 shown in FIGS. 20 and 21, the output of each detection coil is in a burst form every time the detection coil approaches the wire due to the rotation of the pulley. Since this signal is emitted, it is possible to use this burst signal as a speed signal.
  • the displacement amount detecting means at a plurality of locations detects the displacement amount of the wire lobe from the reference point defined in each pulley groove, and By controlling the operation speed of the lift comprehensively according to the It is possible to prevent the rope from coming off and automatically and efficiently, thus greatly improving lift safety and transport capacity.
  • the drive control device for a carrier such as a lift of the present invention not only the above-described abnormality detection in the case where the cable such as a wire and the guide member such as a pulley are disengaged is prevented, but also in a normal daily inspection.
  • the inspection is more reliable than before. It can be done at elevated levels. In other words, at present, daily inspections such as rubber abrasion and displacement of pulleys and wires were performed by visual inspection by an inspector on a gondola for inspection.
  • the guide member includes a metallic or non-metallic rope, it can be used for a luggage transport lift, a gondola, a ropeway, and the like.
  • the present invention can be used to detect, for example, disconnection, deformation or damage of the rope.

Description

明細書
:における位置変位量の検出装置及び搬送体の駆動制
" ? 技術分野
本発明は、 滑車などの案内部材に案内された索体が、 当該案内 部材に設定した基準点から変位したときの変位量を検出する索体 の案内部材に対する変位量検出装置と、 この変位量検出装置を用 いて駆動速度を制御する搬送体の駆動制御装置に関する。
10 背景技術
従来、 案内部材に索体が案内された搬送装置に、 例えば滑車と ワイヤローブとからなるリフト装置、 ゴンドラ装置、 ローブゥェ ィ、 ケーブルカー等 (これらをまとめて、 以下、 リフト装置とい う。 ) があり、 一般的にはスキー場に設置せられるスキーリフト
15 で知られている。 このスキーリフトには、 機構上、 ワイヤロープ に懸架されている搬器が、 移動方向の側方からの風等による影響 を受けやすいという問題があり、 加えて、 設置環境が山間等の突 風の多い地域であることから、 横風による搬器の横揺れに起因し て、 ワイヤローブが滑車から外れやすいという危険性がある。 こ
20 れに対する安全対策として、 一方で、 リフト装置に滑車からのヮ ィャローブの外れを検出する外れ検出装置が設けられ、 他方で、 モニタ用のカメラによる搬器の横揺れの監視が行われている。
上記外れ検出装置は、 滑車から外れたワイヤロープ自身が、 滑 車の側方に設けられたリミツトスイツチ等のスィッチを押圧する
*. 25 ことにより、 滑車からのワイヤロープの外れが検出されるという ものである。 また、 モニタ用のカメラによる搬器の横揺れの監視 は、 ワイヤローブの張架方向に沿った複数箇所にモニタ用のカメ ラを設置し、 このカメラからのモニタにより、 人が終始、 風等に よる搬器の横揺れを監視している。
なお、 リフト装置においては、 一般に滑車が固定で、 ワイヤ口 ープが走行するものであるが、 逆に、 ワイヤロープが固定で、 滑 車が走行する形式のものも存在してぉリ、 横風による搬器の横揺 れに起因して、 滑車がワイヤローブから外れやすいという危険性 があることは、 上述したことと同様である。 以下においては、 ヮ ィャローブが走行する場合を例に採って説明する。
ところで、 上記従来の外れ検出装置は、 ワイヤローブが滑車か ら外れたままの状態でリフトの運行をすることによってひきおこ される二次災害を防止することを目的としており、 ワイヤローブ の滑車からの外れそのものを防止できないという問題点がある。 また、 モニタ用のカメラによる擻器の横揺れに対する監視では、 突風などによる滑車溝部からのワイヤローブの外れは殆ど防ぐこ とができない。 更に近年、 スキーリフトの運行速度の高速化ゃ複 数人乗りのリフトの増加、 ゴンドラやロープウエイ等の大型化に より、 ますますワイヤローブが滑車から外れやすくなつてきてお リ-、 これらによる災害での被害者が年々增加してきている。 更に 、 従来のモニタ用のカメラによる擻器の横揺れ監視では、 人が始 終、 監視しなければならないため非効率であるとともに、 搬器の 横揺れの程度ついて、 危険の有無の判断基準が曖昧であるという 不具合がある。 更にまた、 上記複数台のモニタ用のカメラを、 多 くの既存のリフト設備に設置する場合、 設置工事が大がかリとな リ、 そのため設置费用もかかるという問題点もある。
そこで、 本発明は、 案内部材からの索体の変位量を検出するこ とにより、 滑車等からの索体の外れその.ものを未然に、 しかも自 動的に効率よく防止することが可能であるとともに、 既存のリフ ト設備にも簡易に設置可能な索体の案内部材に対する変位量検出 装置を提供すること、 並びに、 複数箇所での滑車溝部内に定めた 基準点からの索体の変位童を検出し、 各変位量に応じて搬送体の 運行速度を制御することにより、 滑車溝部からの索体の外れ.を未 然に、 しかも自動的に効率よく防止することが可能となり、 搬送 体の安全性と輸送力とを大幅に向上させることができるとともに 、 既存のリフト設備にも簡易に設置可能な搬送体の駆動制御装置 を提供することを目的としている。 発明の開示
本発明は、 それ自体が走行するか又は支持体に固定された索体 と、 ;前記索体が係合する滑車等の案内部材であって、 支持体に 固定されるか又はそれ自体が走行する案内部材と、 ;前記索体又 は案内部材と共に走行する搬送体と、 ;前記案内部材の近傍に取 リ付けられ、 且つ当該案内部材との間隔が常に一定とされている 、 索体 ·案内部材間の相対位置を検出する変位量検出装置と、 ; を備え、 前記変位量検出装置は、 この装置から索体に向けて発せ られる位置検出用の媒体を発生する媒体発生手段と、 この媒体の 変位量を検出する検出手段と、 を具備した搬送装置における索体 と案内部材との相対位置変位量の検出装置である。 本発明によれ ば、 簡易な構成により、 索体の変位量、 とりわけ基準となる任意 の位置から変位したときの基準位置からの変位量を検出すること ができるので、 この検出装置を所定の位置に設けることにより、 滑車などの案内部材からワイヤローブなどの索体が外れる事態を 未然に、 しかも自動的に効率よく防止することが可能となる。
また、 本発明は、 前記の変位量検出装置に搬送体を駆動する速 度制御手段を設け、 そしてこの速度制御手段は、 前記変位量検出 装置からの変位量の出力信号に応じて前記搬送体の速度を制御す る搬送体の駆動制御装置である。 この発明の装置によれば、 変位 量検出装置により案内部材内に定めた基準点からの索体の変位量 を検出し、 その変位量に応じて総合的に搬送体の運行速度を制御 することにより、 案内部材からの索体の外れを未然に、 しかも自 動的に効率よく防止することが可能となリ、 搬送体の安全性と輸 送力を大幅に向上させることができる。 図面の簡単な説明
図 1は本発明の第 1実施例に係る案内部材における金属製索体 の変位量検 装置の概要図。
図 2はホール素子の変位量に対する出力特性を示す図。
図 3はホール素子を用いた検出回路を示す回路図。
図 4は磁気抵抗素子を用いた回路図。
図 5は磁気ダイォードを用いた回路図。
図 6はスキーリフトの支柱に取付けた変位量検出装置を示す斜 視図。
図 7は第 2実施例に係る案内部材における金属製索体の変位量 検出装置の概要図。
面 8はホール素子の変位量に対する出力特性を示す図。
図 9は第 3実施例に係る案内部材における金属製索体の変位量 検出装置の概要図。
図 1 0は縦及び横方向の変位量の独立検出を示すブロック図。 図 1 1は第 4実施例に係る案内部材における金属製索体の変位 量検出装置の概要図。
図 1 2はコイルを用いた検出回路を示す回路図。
- 図 1 3は第 5実施例に係る案内部材における金属製索体の変位 量検出装置の概要図。
図 1 4は第 6実施例に係る案内部材における金属製索体の変位 量検出装置の概要図。
図 1 5は第 7実施例に係るワイヤローブの撚リ目に対応した検 出ュニットを示す図。
図 1 6はリプル成分を除去して変位量を検出する検出回路を示 す回路図 o 図 1 7は第 8実施例に係る磁電変換素子を用いてオフセットキ ヤンセル回路を不要とした検出回路を示す回路図。
図 1 8は第 9実施例に係る変位量検出装置の回路図。
図 1 9は第 1 0実施例に係る変位量検出装置の回路図。
図 2 0は第 1 1実施例に係る変位量検出装置を示す断面図。 図 2 1は同上の変位量検出装置を示す側面図。
図 2 2は同上の変位量検出装置を示す回路図。
図 2 3は第 1 2実施例に係る変位量検出装置を示す断面図。 図 2 4は同上の変位量検出装置を示す回路図。
図 2 5は第 1 3実施例に係るワイヤローブの撚リ目に対応した 検出ュニットを示す図。
図 2 6は第 1 4実施例を示す変位量検出装置の概要図。
図 2 7は同上の変位量検出装置を示すブロック図。
図 2 8は第 1 5実施例を示すブロック図。
図 2 9は第 1 6実施例を示すブロック図。
図 3 0は第 1 7実施例を示す概要図。
図 3 1はスキーリフトの支柱に取付けた変位量検出装置を示す 正面図。
図 3 2は本発明に係るリフト駆動制御装置のブロック図。
図 3 3は変位量に対するモータ速度の制御を示す図。
図 3 4はリフト駆動制御装置の全体を示す概要図。
図 3 5は他の実施例のリフト駆動制御装置のブロック図。
図 3 6は同上のリフト駆動制御装置の全体を示す概要図。
図 3 7はリプル成分を用いて速度情報を得るための検出回路を 示す回路図。
図 3 8はホール素子の変位量に対する出力特性を示す図。 発明を実施するための最良の形態
第 1実施例から第 1 5実施例の索体の変位量検出装置は、 索体 を磁性体からなるワイヤーロープとすると共に、 ワイヤー ρ—プ に対向して磁石を配置し、 この磁石及び前記ワイヤーローブによ リ形成される磁気回路上に磁電変換手段を配置し、 この磁電変換 手段からの出力電圧により、 前記ヮィヤーローブの案内部材に対 する位置変化の変位量を検出するものである。 つまり、 前記検出 装置から索体に向けて発せられる位置検出用の媒体に磁気を用い ている。
第 1実施例の変位量検出装置 1は、 図 1に示すように、 ワイヤ ロープ 2を案内する案内部材たる滑車 1 3と、 この滑車 1 3との 間隔を常に一定に維持するとともに前記ワイヤローブ 2に対向し て一方の磁極を向けて配設された磁石 3と、 磁石 3の N極より発 せられてワイヤローブ 2内を通過する磁束 B、 磁束 B上に設けら れた磁電変換素子たるホール素子 4と、 ホール素子 4からの出力 電圧を検出する図 3に示した検出回路 5とから構成されている。
上記磁石 3は、 永久磁石であり、 変位量の検出精度及び範囲に 応じて所定の体積のもの、 或いは所定の体積且つエネルギー積を 持つものが用いられている。 なお、 図 1では N極側をワイヤロー ブ 2に向けて配設されているが、 S極側をワイヤローブ 2に向け て配設しても差し支えない。
上記ワイヤローブ 2及び上記磁石 3により、 磁石 3の N極から 発せられワイヤローブ 2内を通過し磁石 3の S極に回帰する磁束 Bを形成する磁気回路 9が構成されており、 本発明では、 この磁 気回路 9における磁束量の変化を、 後述するホール素子 4によつ て検出することにより、 ワイヤローブ 2の変位量が得られる。 上記ホール素子 4は、 図 1に示すように、 上記磁石 3のワイヤ ローブ 2側の磁極 (N極) の直上方向の磁気回路 9上に配設され ており、 上記磁気回路 9における磁束 Bの変化量を検出するため のものである。 このホール素子 4ば、 磁電変換素子と称されるも のの一つでぁリ、 素子に加わる磁束量の変化に比例して所定の電 圧が得られるもので、 図 2に本実施例での出力特性を示す。 図中 に示す変位量は、 図 1において、 上記ワイヤローブ 2が上記磁極 の直上方向に位置するときを変位の基準とし、 この変位の基準に 対して上記ワイヤロープ 2が上記磁束 Bの向きに対して側方 (矢 印方向) へ移動したときの横ずれ量を示しており、 この横ずれ量 に比例してホール素子 4からの出力 (電圧) が絶対値で得られて いる。 図 2中の破線は、 既にホール素子 4に加えられている静磁 場による出力を示してぉリ、 後述する検出回路 5のオフセットキ ヤンセル部 7によって実線に示す出力特性に調節されている。 な お、 図 2中において、 変位量のブラス方向を例えば基準の位置に 対して右側方向とすれば、 マイナス方向は基準の位置に対して左 側方向となる。
したがって、 上記磁気回路 9によって磁性体であるワイヤロー プ 2内を通過する磁束 Bを形成しておき、 ワイヤローブ 2が基準 の位置にあるときにホール素子 4に加わる磁束量を変位量の基準 として、 ワイヤロープ 2が基準の位置から変位したときに、 この ワイヤロープ 2側に吸引されて偏向した磁束 Bがホール素子 4に 加える磁束量から増減量を求めることにより、 基準の位置からの ワイヤロープ 2の変位量が検出される。
上記検出回路 5は、 上記ホール素子 4からの出力電圧の増幅及 び静磁場による出力分の除去をするためのものである。 この検出 回路 5は、 図 3に示すように、 差動増幅部 6と、 オフセットキヤ ンセル部 7と、 反転増幅部 8とから構成されている。
上記差動増幅部 6は、 上記ホール素子 4からの 2本の出力ライ ンが、 入力側のブラス及びマイナス端子にそれぞれ接続されたォ ぺアンプ 1 0からなる一般的な差動増幅回路であり、 ホール素子 4から両出力ライン間に出力された出力電圧の偏差を増幅してい る。 このように、 入力を作動増幅で受けることでノイズ対策とな る。 また、 ホール素子 4に印加されている電圧は、 ホール素子 4 を駆動するための所定の入力電流を流すためのものである。 なお 、 本実施例では、 差動増幅部 6の出力側から極性の反転した出力 電圧が出力されている。
上記オフセヅトキヤンセル部 7は、 上述した静磁場による出力 分を取除くためのもので、 図 3に示すように、 オフセット調整用 抵抗が入力側のマイナス端子に接続され、 プラス端子が出力側に 直結されたオペアンプ 1 1からなり、 このオペアンプ 1 1の出力 側からは静磁場による出力分に相当する正極性の直流電圧 (オフ セヅトキャンセル電圧) が出力される。 これにより、 上記差動增 幅部 6から出力された逆極性の出力電圧より、 静磁場による出力 分を差引いた出力電圧が得られる。
上記反転增幅部 8は、 上記オフセットキヤンセル電圧によって 磁束 Bの変化量に即した正味分とされた出力電圧をさらに増幅す るとともに、 極性を正極に反転するためのものであり、 一般的な オペアンプ 1 2による反転増幅回路である。 図 3中の抵抗は增幅 率設定用である。
なお、 上記実施例ではホール素子を用いたが、 図 4に示すよう な磁気抵抗素子や、 図 5に示すような磁気ダイオードを用いても よい。 また、 図 4及び図 5においては、 オフセットキャンセル回 路の記載を省略している。
,次に図 6において、 上述の変位量検出装置 1を、 スキーリフト 装置 1 5に用いた場合について説明する。 なお、 以下において、 本発明の搬送体をリフトとして、 また搬送装置をリフト装置とし て、 説明することがある。
このスキーリフト装置 1 5は、 スキー場の斜面に複数の支柱 1 4を立設し、 この支柱 1 4の上部に複数の滑車 1 3を回転可能に 軸支し、 各滑車 1 3の周溝に搬器が懸吊されたワイヤローブ 2を 張リ渡し、 このワイヤロープ 2を張架方向に駆動して搬器を移動 させるものとされている。 上記変位量検出装置 1は、 図 6に示すように、 検出ユニット 1 6内に上方からホール素子 4、 磁石 3、 検出回路 5の順に収納さ れて構成され、 この検出ュニット 1 6が支柱 1 4の上部に固定板 1 7により滑車 1 3の周溝方向に沿って取付けられている。 検出 ユニット 1 6は、 ワイヤローブ 2の下方、 リフトが走行する側と は反対側のワイヤロープ 2の側方、 又はワイヤロープ 2の上方の いずれかに取り付けられている。 つまり、 リフトはその上端がヮ ィャローブ 2に固定されていて、 通常、 リフトの縦方向の部材が 滑車の一側 (支柱の反対側) を通過するようになっているので、 そのリフト部材が通る側を除いた箇所に、 検出ユニット 1 6を設 けるものである。
また、 支柱 1 4には複数の滑車 1 3が設けられているので、 検 出ュニット 1 6は滑車と滑車の間や、 滑車の外側に位置させて取 り付けるものである。 図 6に示す実施例では、 滑車 1 3の軸受 1 3 aを支持する軸受板 1 3 bにそれぞれ板体 1 7を突出させて設 け、 この板体 1 7の間に検出ユニット 1 6を取り付けている。 こ の例では、 検出ユニット 1 6を滑車 1 3の外側に設けている。 検出ュニット 1 6の取り付けの際には、 変位量検出装置 1の変 位の基準位置を滑車周溝の底部中心位置に合わせておく。 これに ょリ、 滑車溝部内に張り渡されたワイヤローブ 2が溝部内の基準 位置から変位した時の変位量を常時検出することができ、 滑車溝 部からのワイヤローブ 2の外れを未然に、 しかも自動的に効率よ く防止することが可能である。 また、 ホール素子 4を用いている ことから、 突風によるワイヤロープ 2の急激な変位や時間をかけ ての少量ずつの変化に対して髙感度の検出が可能である。 なお、 変位の基準位置は任意である。
次にその他の実施例について順次図面に基づいて説明する。 ま ず図 7に示した第 2実施例による変位量検出装置 1は、 二つの磁 石 3, 3が、 ワイヤロープ 2に対し互いに異なる磁極を向けて、 ヨーク 1 8の両端部に所定の間隔を隔てて配設され、 一方の磁石 3の N極から発せられてワイヤローブ 2内又はヨーク 1 8を通過 し、 他方の磁石 3の S極に回帰する磁束 Bを形成する磁気回路 9 が構成されたものである。 この例の場合は、 磁石 3がーつのとき に比べ変位量の検出感度の向上及び磁石量の低滅化が図られてい る。 また、 第 1実施例では、 ホール素子 4からの出力が絶対値で あるため、 ワイヤローブ 2の変位方向が不明であつたが、 本実施 例では、 図 8に示すような出力特性が得られることから、 横方向 に対する変位方向の特定が可能となっている。 なお、 検出回路は 第 1実施例と同様のものである。
図 9に示した第 3実施例による変位量検¾装置 1は、 所定の間 隔を隔てて二つの磁石 3, 3を配設し、 一方の磁石 3の N極から 発せられて、 ワイヤローブ 2内又はヨーク 1 8を通過し他方の磁 石 3の S極に回帰する磁束 Bを形成する磁気回路 9を構成し、 こ の磁気回路.9上の所定の箇所に二つのホール素子 4 , 4を配設し たものである。 第 2実施例では横方向にのみ変位方向の特定が可 能であったのに対して、 本実施例では横方向とは別に縦方向への 変位方向の特定が可能となっている。 縦横の変位方向を識別する ために、 ホール素子が検出する磁束量を、 磁気上の極性を取り除 いて、 単なる磁束量の大小として考えてみた場合、 ワイヤロープ 2が横方向へ変位すると、 どちらか一方のホール素子が検出する 磁束量が増え、 他方のホール素子が検出する磁束量が減ることと なリ、 一方の増えた磁束量から他方の滅った磁束量を減算して生 じた差にょリ、 ワイヤロープ 2の変位が横方向であることが特定 できる。 このとき、 一方の増えた磁束量と他方の減った磁束量を 加算しても磁束量が常に一定となり変位方向は得られない。 また 、 ワイヤローブ 2が縦方向へ変位すると、 両方のホール素子 4, が検出する磁束量は互いに同様に増えたり、 或いは減つたりす ることとなり、 両方のホール素子 4 , 4が検出した磁束量を加算 して生じた和により、 ワイヤロープ 2の変位が縦方向であること が特定できる。 この場合、 一方の磁束量から他方の磁束量を減算 しても磁束量が常に一定となり、 変位方向は得られない。
具体的な縦及び横方向の変位方向の検出手段としては、 図 1 0 に示すように、 まず二つのホール素子 4, 4より出力された各出 力電圧からオフセットキャンセル電圧をそれぞれ差引き、 次に全 波整流回路 2 0に取込んで磁気上の極性の無い単なる磁束量の絶 対値とし、 一方の絶対値から他方の絶対値を滅算することにより 横方向の変位方向及び変位量が求められ、 また、 一方の絶対値と 他方の絶対値とを加算することにより縦方向の変位方向及び変位 量が求められる。 これにより、 溝部内からのワイヤロープの変位 がパウンドによる縦方向への変位なのか、 或いは風などによる横 方向への変位なのかを識別することが可能となる。
図 1 1に示した第 4実施例による変位量検出装置 1は、 磁束 B の変化量を、 上述の第 1〜 3実施例では、 ホール素子により検出 された磁束量から求めているのに対し、 本実施例では、 コイルに 鎖交する磁束 Bの変化によってコイルに生じる誘導起電力から求 めている。 本実施例の変位量検出装置 1は、 図 1 1に示すように 、 一方の磁極をワイヤローブ 2に向けて配設された磁石 3と、 磁 石 3の N極より発せられワイヤローブ 2内を通過する磁束 B上に 設けられたコイル 1 9と、 コイル 1 9からの出力電圧を検出する 検出回路 5とから構成されている。
上記コイル 1 9は、 図 1 1に示すように、 上記磁石 3のワイヤ ロープ 2側の磁極 (N極) の直上方向の磁気回路 9上に配設され ており、 このコイル 1 9には上記磁束 Bが鎖交した状態となって いる。 したがって、 ワイヤロープ 2が上記磁極の直上方向に位置 する時を変位の基準とし、 この変位の基準にあるときのコイル 1 9に鎖交している磁束 Bを変位量の基準として、 ワイヤローブ 2 が上記磁束 Bの向きに対して側方 (矢印方向) へ変位したときの コイル 1 9に生じる誘導起電力から磁束 Bの変化量を求めること により、 ワイヤローブ 2の変位量が検出される。
上記検出回路 5は、 上記コイル 1 9からの出力電圧を増幅する ためのものである。 この検出回路 5は、 図 1 2に示すように、 上 記コイル 9の両端が入力側のブラス及びマイナス端子にそれぞ れ接続されたオペアンプ 1 0からなる一般的な差動増幅回路であ リ、 コイル 1 9に生じた誘導起電力によるコイル 1 9の両端間の 偏差を增幅している。 コイル 1 9の両端に印加されている電圧は 、 回路を駆動するためのものである。 なお、 磁束 Bの変化をコィ ル 1 9に生じる誘導起電力から求めているので、 ワイヤローブ 2 の変位分のみの検出が可能なためオフセットキャンセル部は必要 がない。 また、 コイルを用いていることから、 突風によるワイヤ ローブ 2の急激な変位に対して髙感度の検出が可能である。
図 1 3に示した第 5実施例による変位量検出装置 1は、 上述の 第 2実施例と同様に、 磁石 3がーつのときに比べ、 変位量の検出 感度の向上及び磁石量の低減化が図られているとともに、 横方向 に対する変位方向の特定が可能となっている。 検出回路 5は第 4 実施例と同様のものとなる。
図 1 4に示した第 6実施例による変位量検出装置 1は、 上述の 第 3実施例と同様に、 横方向とは別に縦方向への変位方向の特定 が可能となっている。 ただし、 図 1 0中のオフセヅトキヤンセル 電圧は必要がない。
図 1 5に示した第 7実施例は、 金属製索体に、 えばワイヤ口 ープ 2等、 撚リ目のあるものを用いた場合についての検出装置で ある。 一般に、 スキーリフト装置 1 5などでの索体はワイヤロー ブ 2が広く用いられて.いる。 このワイヤローブ 2には撚リ目があ るため、 ワイヤローブ 2の一径方向のみの検出では出力電圧に撚 リ目によるリプル成分が含まれ、 これによつて誤検出する恐れが ある。 すなわち、 ワイヤローブ 2がホール素子 4に対し一定の間 隔を以て走行していても、 撚リ目が存するので、 ワイヤロープ 2 はホール素子に対し周期的に接離しているように検出されること となる。 この誤検出を防止するために、 図 1 5に示すように、 磁 石 3及び二組のホール素子 4を、 ワイヤローブ 2の軸方向に沿つ て撚リ目のピッチ Pの 1 Z 2の間隔をあけてそれぞれ並設し、 各 ホール素子 4からの出力電圧を合成することにより出力電圧から リプル成分を除去することができる。 本実施例の検出回路 5は、 図 1 6に示すように、 二組のホール素子 4にそれぞれ接続された 作動増幅部 6, 6と、 オフセヅトキャンセル部 7とが、 反転増幅 部 8のマイナス側の入力端子に接続されて構成されている。 上述 したように、 二組のホール素子 4がワイヤロープ 2の軸方向に沿 つ 撚リ目のピヅチ Pの 1 / 2の間隔を有して並設されているの で、 各ホール素子 4からは互いに 1 8 0 β 位相の反転した出力電 圧が得られ、 この各出力電圧を加算することにより、 リプル成分 が除去される。 したがって、 ワイヤロープ 2の撚リ目に影響され ずに検出精度の髙ぃ変位量の検出を行うことが可能となる。 なお 、 この例ではホール素子を用いたが、 コイルでもよい。
図 1 7に示した第 8実施例による変位量検出装置 1は、 上述の 第 1〜 3実施例での磁電変換素子を用いた検出回路 5よリオフセ ヅトキャンセル部 7を取り除く一方、 作動増幅部 6と反転増幅部 8との間にコンデンサ 3 3を接続したものである。 これにより、 上述の第 4〜6実施例の場合と同様に、 ワイヤロープ 2の変位分 のみの検出が可能となる。
以上説明した第 1実施例乃至第 8実施例によれば、 磁石及び金 属製索体と案内部材、 磁電変換素子からなる簡易な構成により、 金属製索体の変位量、 とりわけ基準となる任意の位置から変位し たときの変位量を検出することができるので、 この検出装置を所 定の位置に設けることにより、 滑車溝部からのワイヤローブ等の 外れを未然に、 しかも自動的に効率よく防止することができ、 ま た、 既存のリフト設備にも設置が容易である。
図 1 8に示した第 9実施例による変位量検出装置 1は、 コイル 1 9と、 検出回路 3 9とから構成されている。
上記検出回路 3 9は、 コイル 1 9に生じるインピーダンス変化 を検出する検出部 3 5と、 交流信号を直流信号に整流する整流部 3 4と、 直流信号の増幅を行う差動増幅部 6とからなる。
上記検出部 3 5は、 図 1 8に示すように、 コイル 1 9に並列に 接続された分圧抵抗 3 6と、 この分圧抵抗 3 6の一端側に接続さ れた発振器 3 7とから構成されている。 上記コイル 1 9は発振器 3 7によって高周波信号が印加されており、 ワイヤローブ 2が基 準位置から変位してコイル 1 9に接近してくると、 コイル 1 9の インダクタンスに変化が生じ、 インピーダンス変化となる。 これ によリコイル 1 9と分圧抵抗 3 6との分圧比が変り、 コイルの雨 端間にかかる分圧電圧が変化する。
上記整流部 3 4は、 ダイオード 3 2とコンデンサ 3 3とから構 成された一般的な平滑回路であり、 上記検出部 3 5で生じた分圧 電圧信号が直流電圧信号に整流される。
上記差動增幅部 6は、 上記整流部 3 4からの 2本の出力ライン が入力側のプラス及びマイナス端子にそれぞれ接続されたォペア ンプ 3 8からなる一般的な差動增幅回路であり、 両出力ライン間 に出力された直流電圧信号の偏差が所定のレベルに増幅され変位 量として得られる。
図 1 9に示した第 1 0実施例による変位量検出装置 1は、 コィ ル 1 9と、 検出回路 3 9から構成されている。
上記検出回路 3 9は、 検出部 3 5と、 交流信号を直流信号に整 流する整流部 3 4と、 直流信号の増幅を行う差動増幅部 6とから なる。
上記検出部 3 5は、 図 1 9に示すように、 上記コイル 1 9にコ ンデンサ 4 0が並列に接続されて共振回路 4 1を構成し、 さらに 、 共振回路 4 1 (発振源) に発振器 3 7が並列に接続され、 発振 器 3 7により共振回路 4 1が共振した状態とされて発振回路を構 成している。 この発振回路は、 所定の発振特性が得られるように コイル 1 9及びコンデンサ 4 0により設定されている。 そして、 基準位置から変位したワイヤローブ 2がコイル 1 9に接近してく ると、 コイル 1 9から発生した洩れ磁束がワイヤロープ 2内を通 過していく。 このとき、 ワイヤローブ 2内ではうず電流損が生じ 、 この損失によってコイルのインピーダンスが変化する。 したが つて、 発振回路のクオリティファクタ Qの値が変化し発振回路と しての特性が落ちる。
上記整流部 3 4では、 ワイヤロープの変位によって上記検出部 3 5で変化した発振出力がダイオード 3 2及びコンデンサ 3 3に よる平滑回路によって直流電圧信号に整流される。
上記差動増幅部 6は、 上記整流部 3 4からの 2本の出力ライン が入力側のブラス及びマイナス端子にそれぞれ接続されたォペア ンブ 3 8からなる一般的な差動増幅回路であり、 両出力ライン間 に出力された直流電圧信号の偏差が所定のレベルに増幅され変位 量として得られる。
図 2 0及び図 2 1に示した第 1 1実施例による変位量検出装置 1は、 滑車 1 3と、 変位検出用コイル 1 9と、 回転部 2 7と、 回 転側コイル 2 8と、 固定部 2 9と、 固定側コイル 3 0と、 検出部 3 5と、 整流部 3 4と、 差動増幅部 6とから構成されている。 上記変位検出用コイル 1 9は、 図 2 1に示すように、 滑車 1 3 の一方の側面部の周方向に等間隔で配設され、 さらに図 2 2に示 すように、 各変位検出用コイル 1 9は回路上ではそれぞれ直列に 接続された状態で後述する回転側コィル 2 8及び固定側コィル 3 0により構成されたロータリートランス部 3 1を経て検出部 3 5 に接続されている。 なお、 本実施例では、 周方向に 3等分して配 設されているが、 さらに多分化しても差し支えない。 上記回転部 2 7は、 滑車 1 3の一方の端面に滑車 1 3と同軸に 形成された小段部であり、 この回転部 2 7の外周面には所定の巻 数で上記回転側コイル 2 8が巻かれている。
上記固定部 2 9は、 上記回転部 2 7より大径で一方の端部が閉 塞された筒状体に形成されており、 この固定部 2 9の内周面には 所定の巻数で上記固定側コイル 3 0が卷かれている。
上記検出部 3 5は、 図 2 2に示すように、 上記固定側コイル 3 0に並列に接続された発振器 3 7とから構成されている。 上記固 定側コイル 3 0は発振器 3 7によって高周波信号が印加されてお リ、 ワイヤローブ 2が変位の基準位置から変位して変位検出用コ ィル 1 9に接近してくると、 ワイヤローブ 2と各変位検出用コィ ル 1 9との間で相互誘導が起リ、 各変位検出用コイル 1 9にイン ピーダンス変化が生じる V このときの変位検出用コイル 1 9の両 端間にかかる電圧が、 上記ロータリートランス部 3 1を経て上記 固定側コイル 3 0の両端側に変圧された状態でかかる。
'上記整流部 3 4は、 固定側コイル 3 0の両端に接続されており 、 固定側コイル 3 0の両端間にかかる電圧信号がダイオード 3 2 及びコンデンサ 3 3による平滑回路によって直流電圧信号に整流 される。
上記差動增幅部 6は、 上記整流部 3 4からの 2本の出力ライン が入力側のブラス及びマイナス端子にそれぞれ接続されたォペア ンブ 3 8からなる一般的な差動增幅回路であり、 商出力ライン間 に出力された直流電圧信号の偏差が所定のレベルに増幅され変位 量として得られる。
したがって、 発振器 3 7による交流信号は固定側コイル 3 0と 回転側コイル 2 8とにより構成されるロータリートランス部 3 1 を経て変位検出用コイル 1 9に印加され給電された状態となる。 そして、 ワイヤローブ 2が滑車 1 3の溝部内基準点から変位して 変位検出用コイル 1 9に接近すると、 ワイヤローブ 2と変位検出 新たな用紙 用コイル 1 9との間で相互誘導作用が働き、 変位検出用コイル 1 9のインピーダンスが変化する。 これにより変位検出用コイル 1 9の両端にかかる電圧が変化し、 この変化分の電圧はロータリー トランス部 3 1を経て整流部 3 4で直流電圧に整流され、 差動増 幅部 6で所定のレベルに增幅されて変化量が得られる。 つまり、 変位検出用コイル 1 9への交流信号の印加及び変位検出用コイル 1 9のインピーダンス変化の検出を滑車 1 3に非接触で行うこと ができる。
図 2 3に示した第 1 2実施例による変位量検出装置 1は、 変位 検出用コイル 1 9と、 磁石 3と、 回転部 2 7と、 回転側コイル 2 8と、 固定部 2 9.と、 固定側コイル 3 0と、 整流部 3 4と、 差動 増幅部 6とから構成されている。
上記変位検出用コイル 1 9は、 図 2 3に示すように、 滑車 1 3 の一方の側面部の周方向に等間隔で配設されており、 各変位検出 用コイル 1 9は、 直列に接続されており、 図 2 4に示すように、 直列に接続された変位検出用コイル 1 9の両端側は、 後述する回 転側コイル 2 8及び固定側コイル 3 0により構成されたロータリ 一トランス部 3 1を経て整流部 3 4に接続されている。 なお、 本 実施例では、 周方向に 3等分して配設されている。
上記磁石 3は、 図 2 3に示すように、 上記変位検出用コイル 1 9の滑車溝部から遠方側の背面に変位検出用コイル 1 9より離し て配設されている。 この磁石 3は、 N極から発せられワイヤロー プ 2内を通過する磁束 Bを形成するためのものである。
上記回転部 2 7は、 滑車 1 3の一方の端面に滑車 1 3と同軸に 形成された小段部であり、 この回転部 2 7の外周面には所定の巻 数で上記回転側コイル 2 8が巻かれている。
上記固定部 2 9は、 上記回転部 2 7よリ大径で一方の端部が閉 塞された筒状体に形成されており、 この固定部 2 9の内周面には 所定の卷数で上記固定側コイル 3 0が巻かれている。 上記整流部 3 4は、 図 2 4に示すように、 固定側コイル 3 0の 両端に接続されており、 上記回転側コイル 2 8に生じた誘導起電 力による電圧信号がダイオード 3 2及びコンデンサ 3 3による平 滑回路によって直流電圧信号に整流される。
上記差動增幅部 6は、 図 2 4に示すように、 上記整流部 3 4か らの 2本の出力ラインが入力側のブラス及びマイナス端子にそれ ぞれ接続されたオペアンプ 3 8からなる一般的な差動増幅回路で あり、 雨出力ライン間に出力された直流電圧信号の偏差が所定の レベルに増幅され変位量として得られる。
したがって、 ワイヤローブが滑車の溝内基準点から変位して変 位検出用コイルに接近すると、 コイルに鎖交している磁束 Bが変 化するためコイルに誘導起電力が生じる。 これによリ変位検出用 コイル 1 9の雨端にかかる電圧が変化し、 この変化分の電圧は再 びロータリートランス部を経て整流部で直流電圧に整流され、 差 動增幅部では所定のレベルに増幅されて変化量が得られる。 つま り、 変位検出用コイル 1 9に生じる誘導起電力の検出を滑車 1 3 に非接触で行うことができる。
図 2 5に示した第 1 3実施例による変位量検出装置 1は、 前記 第 7実施例の場合と同様に、 索体に例えばワイヤローブ 2等、 撚 リ目のあるものを用いた場合についての検出装置である。 この例 では、 図 2 5に示すように、 二組のコイル 1 9及び磁石 3を、 ヮ ィャローブ 2の軸方向に沿って撚リ目のピッチ Pの 1 Z 2の間隔 をあけてそれぞれ並設し、 各コイル 1 9からの出力電圧を合成す ることによリ出力電圧からリプル成分を除去することができる。 すなわち、 各コイル 1 9からは互いに 1 8 (T 位相の反転した出 力電圧が得られ、 この各出力電圧を加算することにより、 リプル 成^ ^を除去することができ、 ワイヤローブ 2の撚リ目に影響され ずに検出精度の高い変位量の検出を行うことが可能となる。
図 2 6及び図 2 7に示した第 1 4実施例は、 索体を磁性体から なるワイヤーロープ 2とし、 このワイヤーロープ 2に対向して磁 石 3を配置し、 この磁石 3及び前記ワイヤーロープ 2により形成 される磁気回路 9上にコイル 1 9を配置し、 このコイルには強磁 性体のコア 1 9 aを揷入し、 更に、 前記コイル 1 9に固定抵抗 3 6を直列に接続すると共にコイル 1 9に発振器 3 7からの定周波 信号を印加し、 前記コィル両端の直流電圧を検出することにより 、 前記ワイヤーロープの滑車に対する位置変化の変位量を検出す るものである。
この実施例は、 コイル 1 9のインピーダンスが、 強磁性体のコ ァ 1 9 aの透磁率に比例して変化するという知見に基づく。 この 強磁性体のコア 1 9 aの透磁率は、 磁気回路 9の磁束の変化によ リ、 強磁性体のコア 1 9 aの飽和状態が変化して、 変化する。 そ して、 磁気回路 9の磁束は、 ワイヤーローブ 2とコイル 1 9との 距離が変化することにより、 変化する。 したがって、 ワイヤー口 ーブ 2の変位は、 コイル 1 9のインピーダンス変化となって表わ れるので、 このコイル 1 9のインピーダンス変化を検出すること により、 ワイヤ一ローブ 2の変位の検出が可能となる。
具体的には、 図 2 7に示したように、 コイル 1 9のインピーダ ンス変化を検出するために交流信号を印加し、 固定抵抗 3 6との 分圧比分の検出 (直流電圧) を行うものであり、 そして、 この検 出信頼性を保持するには、 一方で、 強磁性体のコア 1 9 aを飽和 状態にしておくことが必要であり、 他方で、 コイル 1 9に流す電 流による起磁力 Ν · I (アンペアターン) を、 直流磁界より十分 小さくしておくことが必要となるものである。 なお、 発振器 3 7 と固定抵抗 3 6間には電力増幅部を設けており、 また、 前記検波 回路にて検出した低周波信号の直流分は、 オフセットを生じるの で、 オフセットキャンセル部 7によって調節される。
図 2 8に示した第 1 5実施例は、 前例の永久磁石たる磁石 3を 甩いずに、 コイル 1 9に直流電圧を印加して、 磁石 3と同様の作 用を行わしめている。 この実施例の場合は、 前例と同様の作用を 行うこととなるが、 永久磁石を使用しない分、 部品点数の削減と なリ、 また、 直流電圧を任意に調整することによリ発生磁力 (直 流電圧を印加することにより生じる磁石の性能) を変更すること が可能となるので、 検知感度を容易に変化させることができ、 そ の結果、 種々様々なワイヤーローブに容易に対応することができ る。 更に、 この実施例の場合は、 直流電圧を印加してコイルに磁 場を発生させるので、 コイル 1 9に流す電流による起磁力 N · I (アンペアターン) を、 直流磁界と同様か或いは大きくしておく ことが必要となる。
以上説明した第 9実施例乃至第 1 5実施例によれば、 金属製索 体が溝部内の基準位置から変位したときの変位量をコイルに生じ たインピーダンス変化で検出することができるため、 検出装置の 構成が簡易となリ且つ、 、滑車溝部からのワイヤロープの外れを未 然にしかも自動的に効率よく防止することができ、 さらに既存の リフト設備にも設置が容易である。 また、 回転側コイル及び固定 側コイルによりトランス形状を構成すること (第 9実施例乃至第 1 3実施腐) により、 回転側に設けられた検出用コイルへの耠電 も回転側からの電圧信号の取込みも滑車に非接触で行えるため、 変位量の検出の際に軸支された滑車のガタの大きさにも影響され ることなく安定した精度の高い変位量の検出が可能となる。
図 2 9に示した第 1 6実施例は、 索体 2に向けて発せられる位 置検出用の媒体に超音波を用いたもので、 送波用の超音波振動子 5 1より索体へ送波した超音波が索体で反射し、 この反射した超 音波を受波用の超音波振動子 5 2で受波 、 送波信号と遅延時間
Δ t後に得られる受波信号とを乗算し、 周波数測定によリ前記索 体の滑車に対する位置変化の変位量を検出するものである。 この 例では、 周波数変調、 連続波方式 (FM-CW方式) をとつている。
具体的には、 変調信号発生器と電圧制御発振器にて周波数変調 した連続波 (送波) を用いて、 超音波振動子 5 1より索体 2へ送 波する。 そして、 索体で反射して、 遅延時間 Δ t後に得られる受 波信号と送波信号を乗算し、 ローパスフィルタによって低周波成 分のみを取り出すことにより、 変位に応じた出力変化が得られ、 これによつて前記索体の滑車に対する位置変化の変位量を検出す ることができる。
図 3 0に示した第 1 7実施例は、 索体 2に向けて発せられる位 置検出用の媒体に光を用いたもので、 投光素子 5 3より索体へ出 射した光が索体 2で反射し、 この反射した光を受光素子 5 4で受 け、 この受光素子 5 4の出力信号の変化により、 前記索体 2の滑 車に対する位置変化の変位量を検出するものである。
具体的には、 投光素子 (例えば発光ダイオード) より出射した 光が投光レンズ 5 5で細かく絞られ、 索体 2に照射される。 索体 2で反射した光は、 受光レンズ 5 6で集光され、 受光素子 (例え ばフォト小ランジスタアレー) 上にて結像する。 そして索体の変 位に応じて結像位置が変化するため、 受光素子上の照射位置及び その強さが変化し、 当該受光素子の出力信号の変化により、 前記 索体の滑車に対する位置変化の変位量を検出するものである。
以上説明した第 1 6実施例及び第 1 7実施例によれば、 索体が 溝部内の基準位置から変位したときの変位量を磁気以外の媒体の 変化で検出することができるため、 索体が金属製でなくとも、 滑 車溝部からの索体の外れを未然にしかも自動的に効率よく防止す ることができ、 また、 既存のリフト設備にも設置が容易である。
なお、 変位量検出装置は、 図 6に示すように、 これを検出ュニ ヅト 1 6として滑車 1 3の外側に位置させる態様のほかに、 図 3 1に示すように、 例えば滑車 1 3が 4連の場合に、 外側の滑車と その内側の滑車との間に設けるようにしてもよい。
次に、 上記変位量検出装置を用いた速度制御を行うリフト駆動 制御装置について説明する。 本実施例のリフト等搬送体の駆動制御装置は、 第 1実施例乃至 第 8実施例に示した変位量検出装置を用いてなすもので、 図 3 2 に示すように、 滑車溝部からのワイヤロープ 2の変位量を検出す る前記変位量検出手段 1と、 この変位量検出手段 1からの出力信 号に応じてワイヤロープの駆動速度を制御する速度制御手段 2 5 とから構成されている。 以下、 速度制御手段 2 5について説明す る。
上記速度制御手段 2 5は、 図 3 2に示すように、 モータ速度制 御回路 2 1と、 駆動回路 2 2と、 モータ 2 4と、 速度検出器 2 3 とから構成されている。
上記モータ速度制御回路 2 1は、 上記変位量検出手段 1からの 出力信号にょリ、 図 3 3に示すようなモータ速度の制御を行って いる。 図に示されているように、 所定の変位量を越えたときには モータ 2 4に対して制動制御がなされる一方、 変位量が少ないと きにはモータ 2 の速度をかえずに髙速状態で定速運転させてい る。 このことによリ、 リフトの安全性と輸送力とを大幅に向上さ せることができる。 .
上記願動回路 2 2は、 上記モータ速度制御回路 2 1からの制御 信号にしたがってモータ 2 4を始動或いは制動させたり、 速度を 加减速させたリしている。
上記速度検出器 2 3は、 モータ 2 4から現在の速度を検出し、 この結果を上記モータ速度制御回路 2 1にフィードパックするた めのものであり、 モータ速度制御回路 2 1では、 この信号により モータ 2 4の回転速度が所定の制御通リになされているかを比較 判断し、 必要に応じて制御信号を上記駆動回路 2 2に出力する。
上記のように構成されたリフト装置において、 図 3 4に示すよ うに、 複数の滑車からの変位量の検出による出力信号を論理和で 上記モータ速度制御回路 2 1に取込むことにより、 総合的にリフ トの安全性と輸送力とを向上させることができる。 なお、 変位の 基準位置は任意である。
次に示すリフト駆動制御装置は、 第 9実施例乃至第 1 3実施例 に示した変位量検出装置を用いてなすもので、 本実施例のリフト 装置は、 図 3 5に示すように、 コイル 1 9と、 滑車溝部からのヮ ィャロープ 2の変位量を検出する前記変位量検出手段 1 と、 この 変位量検出手段 1からの出力信号に応じてワイヤロープ 2の駆動 速度を制御する速度制御手段 2 5とから構成されている。 この速 度制御手段 2 5は前例のものと基本的には同様のものである。 こ の例の場合も、 滑車に張り渡されたワイヤローブ 2が滑車溝部内 の基準位置から変位したときに検出された変位量に応じてモータ 2 4の速度制御が行われるので、 滑車溝部からのワイヤロープ 2 の外れを未然に、 しかも自動的に効率よく防止することが可能で ある。 さらに、 図 3 6に示すように、 複数の滑車からの変位量の 検出による出力信号を論理和で上記モータ速度制御回路 2 1に取 込むことにより、 総合的にリフトの安全性と輸送力とを向上させ ることができる。 また、 リフト駆動制御装置に用いるワイヤの速 度検出は、 図 3 7に示す検出回路によっても行われ得る。 この検 出回路は、 前記図 1 6に示したリプル成分の補正回路を利用した もので、 この補正回路の中でホール素子出力のどちらか一方の出 力を取り出すことにより、 つまりリプル成分を検出することによ リ、 速度情報を得るものである。 さらに、 図 2 0及び図 2 1で示 した滑車 1 3に検出用コイル 1 9を取り付けてある場合には、 各 検出コイルの出力は、 滑車の回転によって検出コイルがワイヤに 近づくたびにパースト状の信号を発するので、 このバースト状の 信号を速度信号として利用することも可能である。
上述した本発明のリフト等搬送体の駆動制御装置によれば、 複 数箇所の変位量検出手段により、 各滑車溝部内に定めた基準点か らのワイヤローブの変位量を検出し、 各変位量に応じて総合的に リフトの運行速度を制御することにより、 滑車溝部からのワイヤ ロープの外れを未然に、 しかも自動的に効率よく防止するこ.とが 可能となり、 リフトの安全性と輸送力を大幅に向上させることが できる。
また、 本発明のリフト等搬送体の駆動制御装置によれば、 上述 したワイヤ等索体と滑車等案内部材との外れの場合の異常検出を 未然に防止するだけでなく、 通常の日常点検において、 ワイヤの 滑車に対する位置ずれなどのチェックや、 滑車に設けられている ゴムの滅リ具合の点検を、 現場に行かなくても実施することがで き、 しかもその点検は従来よりも信頼性を高めて行うことができ る。 すなわち、 現状は、 ゴムの摩耗等の点検や、 滑車とワイヤの 位置ずれ等の日常点検は点検用のゴンドラ等に点検員が乗って、 目視点検にょリ為されていた。 ところが本発明によれば、 例えば 滑車のゴムがすり減ってきた場合は、 センサとワイヤ間の距離が 近づくため、 図 3 8に示すように、 実線にて示す通常位置におけ る信号出力に対し、 破線にて示すような逆極性の出力が得られの で、 これによリゴムの摩耗等の異常を瞬時にしかも確実に識別す ることができる。 産業上の利用可能性
上述した本発明は、 とりわけスキーリフトに適している。 更に 、 スキーリフトのほか、 案内部材に金属製又は非金属製索体が案 内されたものであれば、 荷物の運搬用リフト、 ゴンドラ、 ロープ ウェイ等にも利用可能である。 また、 案内部材における索体の変 位量検出以外に、 例えば索体の断線、 変形又は損傷などを検出す るのにも利用可能である。

Claims

請求の
1 . それ自体が走行するか又は支持体に固定された索体と、 前記索体が係合する滑車等の案内部材であって、 支持体に固定 されるか又はそれ自体が走行する案内部材と、
前記索体又は案内部材と共に走行する搬送体と、
前記案内部材の近傍に取リ付けられ、 且つ当該案内部材との間 隔が常に一定とされている、 索体 ·案内部材間の相対位置を検出 する変位量検出装置と、 を備え、
前記変位量検出装置は、 この装置から索体に向けて発せられる 位置検出用の媒体を発生する媒体発生手段と、 この媒体の変位量 を検出する検出手段と、 を具備したことを特徴とする装置。
2 . 地面に複数の支柱を立て、 各支柱に滑車の支持部材を取り付 け、 前記滑車に索体を係合して走行させ、 更に、 前記変位量検出 装置を前記各支持部材の全部又は一部に取り付けると共に、 この 位置検出装置の取り付け位置を、 前記索体の下方、 搬送体が走行 する側とは反対側の索体の側方、 又は索体の上方としたことを特 徵とする前記請求項 1記載の装置。
3 . 索体を磁性体からなるワイヤロープとすると共に、 ワイヤ口 ーブに対向して磁石を配置し、 この磁石及び前記ワイヤローブに より形成される磁気回路上に磁電変換手段を配置し、 この磁電変 換手段からの出力電圧により、 前記ワイヤローブの案内部材に対 する位置変化の変位量を検出することを特徴とする前記請求項 1 記載の装置。
4 . 案内部材に対するワイヤロープの所定相対位置を基準位置と なし、 この基準位置にあるときの前記磁電変換手段に加わる磁束 の磁束量を基準とし、 前記ワイヤローブが前記基準位置から変位 したときに増減する磁束量を求めることにより、 前記ワイヤロー ブの案内部材に対する位置変化の変位量が検出されることを特徴 とする前記請求項 3記載の装置。
5 . 磁石は永久磁石か又は電磁石を用いると共に、 磁電変換手段 としてホール素子、 磁気抵抗素子、 磁気ダイオード、 又はコイル を用いたことを特徵とする前記請求項 3記載の装置。
6 . 磁気回路上の所定の箇所に任意の数の磁電変換手段を配設し たことを特徵とする前記請求項 3記載の装置。
7 . 磁電変換手段からの出力電圧を增幅して取り出す検出回路を 傭えたことを特徵とする前記請求項 5記載の装置。
8 . 索体を磁性体からなるワイヤロープとすると共に、 ワイヤ口 ーブに対向して磁石を配置し、 この磁石及び前記ワイヤロープに より形成される磁気回路上にコイルを配置し、 このコイルに鎖交 する磁束の変化によって当該コイルに生じる誘導起電力により、 前記ワイヤロープの案内部材に対する位置変化の変位量を検出す ることを特徵とする前記請求項 1記載の装置。
9 . ワイヤロープが基準位置に位置するときの前記コイルに鎖交 する磁享の磁束量を基準とし、 ワイヤロープが前記基準位置から 変位した際その磁束の偏向によつて前記コィルに生じる誘導起電 力から磁束の変化量を求めることによリ、 ワイヤローブの前記変 位量が検出されることを特徵とする前記請求項 8記載の装置。
1 0 . 索体を磁性体からなるワイヤロープとなし、 更に、 このヮ ィャロープが係合する案内部材と、 この滑車溝部の近傍の所定箇 所に配設されたコイルと、 このコイルに対して並列に接続され前 記コイルに高周波信号を印加する発振器と、 前記コイルに対して 並列に接続され前記コイルに対して所定の分圧比を有する分圧抵 杭と、 前記コイルの両端間に発生する分圧電圧信号を直流電圧信 号に整流する整流回路と、 を備えたことを特徵とする前記請求項 1記載の装置。
1 1 . 索体を磁性体からなるワイヤローブとなし、 更に、 このヮ ィャローブが係合する案内部材と、 この滑車溝部の近傍の所定箇 所に配設されたコイルと、 このコイルに対して並列に接続された コンデンサと、 このコンデンサ及び前記コイルよりなる共振回路 に対して並列に接続され前記共振回路に高周波信号を印加して共 振させ所定の発振特性を有する発振回路を形成する発振器と、 前 記発振回路の発振出力信号を直流電圧信号に整流する整流回路と 、 を備えたことを特徴とする前記請求項 1記載の装置。
1 2 . 前記案内部材を滑車となし、 この滑車の溝部の近傍の所定 の箇所に任意の数のコイルを配設した請求の範囲第 1 0項又は第 1 1項記載の装置。
1 3 . 索体を磁性体からなるワイヤローブとなし、 更に、 このヮ ィャローブが係合する案内部材を滑車となし、 前記滑車の一方の 側面部の周方向に等間隔で配設され直列に接続された 1以上の変 位検出用コイルと、 前記滑車に設けられ前記直列接続された変位 検出用コィルの端側に接続された回転側コィルと、 前記回転側コ ィルに対向して設けられ且つ交流電圧が印加されて前記回転側コ ィルと共にトランスを形成する固定側コイルと、 前記固定側コィ ルの両端に接続され前記変位検出用コイルに生じるインピーダン ス変化を検出する検出手段と、 を備えたことを特徵とする前記請 求項 1記載の装置。
1 4 . 索体を磁性体からなるワイヤローブとなし、 更に、 このヮ ィャロープが係合する案内部材を滑車となし、 前記滑車の一方の 側面部の周方向に等間隔で.配設され直列に接続された 1以上の変 位検出用コイルと、 前記変位検出用コイルの背面側に前記変位検 出用コイルと同数配設された磁石と、 前記滑車に設けられ前記直 列接続された変位検出用コィルの端側に接続された回転側コィル と、 前記回転側コイルに対向して設けられ且つ交流電圧が印加さ れて前記回転側コィルとともにトランスを形成する固定側コィル と、 前記固定側コイルの両端に接続され前記変位検出用コイルに 生じるインピーダンス変化を検出する検出手段と、 を備えたこと を特徵とする前記請求項 1記載の装置。
1 5 . 二組の磁電変換素子又はコイルを、 ワイヤロープの軸方向 に沿って撚リ目のピッチ Pの 1ノ2の間隔をあけて並設し、 各磁 電変換素子又はコイルからの出力電圧を合成することにより出力 電圧からリブル成分を除去することを特徵とする前記請求項 3又 は請求項 1 2記載の装置。
1 6 . 索体を磁性体からなるワイヤローブとすると共に、 ワイヤ ロープに対向して磁石を配置し、 この磁石及び前記ワイヤローブ によリ形成される磁気回路上にコイルを配置し、 このコイルには 強磁性体のコアを揷入し、 更に、 前記コイルに固定抵抗を直列に 接続すると共にコイルに定周波信号を印加し、 前記コィル両端の 直流電圧を検出することにより、 前記ワイヤロープの滑車に対す る位置変化の変位量を検出することを特徵とする前記請求項 1記 載の装置。
1 7 . 索体を磁性体からなるワイヤローブとすると共に、 前記滑 車の近傍の所定箇所にコイルを配置し、 このコイルには強磁性体 のコアを挿入し、 前記コイルに固定抵抗を直列に接続すると共に コイルに定周波信号を印加し、 更に、 前記コイルに直流電圧を印 加して、 前記コイル両端の直流電圧を検出することにより、 前記 ワイヤロープの滑車に対する位置変化の変位量を検出することを 特徵とする前記請求項 1記載の装置。
1 8 . 索体に向けて発せられる位置検出用の媒体に超音波を用い 、 送波用の超音波振動子よリ索体へ送波した超音波が索体で反射 し、 この反射した超音波を受波用の超音波振動子で受波し、 送波 信号と遅延時間 Δ 1後に得られる受波信号とを乗算し、 周波数測 定により前記索体の滑車に対する位置変化の変位量を検出するこ とを特徵とする前記請求項 1記載の装置。
1 9 . 索体に向けて発せられる位置検出用の媒体に光を用い、 投 光素子よリ索体へ出射した光が索体で反射し、 この反射した光を 受光素子で受け、 この受光素子の出力信号の変化により、 前記索 体の滑車に対する位置変化の変位量を検出することを特徴とする 前記請求項 1記載の装置。
2 0 . それ自体が走行するか又は支持体に固定された索体と、 前記索体が係合する滑車等の案内部材であって、 支持体に固定 されるか又はそれ自体が走行する案内部材と、
前記索体又は案内部材と共に走行する搬送体と、
前記リフトを駆動する速度制御手段と、
前記案内部材の近傍に取り付けられ、 且つ当該案内部材との間 隔が常に一定とされている、 索体 ·案内部材間の相対位置を検出 する変位量検出装置と、 を備え、
前記変位量検出装置は、 この装置から索体に向けて発せられる 位置検出用の媒体を発生する媒体発生手段と、 この媒体の変位量 を検出する検出手段と、 を具備し、
前記速度制御手段は、 前記変位量検出装置からの変位量の出力 信号に応じて前記搬送体の速度を制御することを特徴とする搬送 体の駆動制御装置。
PCT/JP1992/001560 1991-11-29 1992-11-27 Displacement in transfer apparatus and driving controller of transfer member WO1993011015A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69228697T DE69228697T2 (de) 1991-11-29 1992-11-27 Positionsänderung bei einer transportvorrichtung und antriebsregler für ein transportelement
EP92924025A EP0613807B1 (en) 1991-11-29 1992-11-27 Displacement in transfer apparatus and driving controller of transfer member
US08/244,270 US5581180A (en) 1991-11-29 1992-11-27 Horizontal and vertical displacement detector of wire rope

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3/316194 1991-11-29
JP31619491 1991-11-29
JP31724691 1991-12-02
JP3/317246 1991-12-02

Publications (1)

Publication Number Publication Date
WO1993011015A1 true WO1993011015A1 (en) 1993-06-10

Family

ID=26568578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/001560 WO1993011015A1 (en) 1991-11-29 1992-11-27 Displacement in transfer apparatus and driving controller of transfer member

Country Status (4)

Country Link
US (1) US5581180A (ja)
EP (2) EP0771709B1 (ja)
DE (2) DE69228697T2 (ja)
WO (1) WO1993011015A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138833A (ja) * 2003-11-06 2005-06-02 Optosys Ag ロープ位置センサ
JP2020530565A (ja) * 2017-08-25 2020-10-22 インノヴァ・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 誘導センサー
JP2022535722A (ja) * 2019-05-28 2022-08-10 インノヴァ・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ロープウェイ設備のプーリの摩耗を把握する方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19752362A1 (de) * 1997-11-26 1999-06-17 Doppelmayr Seilbahn Produktion Schaltungsanordnung zur Überwachung des fehlerfreien und/oder zur Erkennung eines fehlerbehafteten Zustands einer Anlage
US6222899B1 (en) 1998-07-30 2001-04-24 The United States Of America As Represented By The Secretary Of The Navy System for determining the deployed length of a flexible tension element
US6241462B1 (en) 1999-07-20 2001-06-05 Collaborative Motion Control, Inc. Method and apparatus for a high-performance hoist
JP4556374B2 (ja) * 1999-12-14 2010-10-06 パナソニック株式会社 非接触型位置センサ
US6267205B1 (en) * 2000-04-18 2001-07-31 Otis Elevator Company Magnetic guidance for an elevator rope
ITBZ20030005A1 (it) 2003-01-30 2004-07-31 High Technology Invest Bv Dispositivo pressore per la conduzione di fune in sistemi di trasporto a trazione di fune.
US7313259B2 (en) * 2003-11-26 2007-12-25 General Electric Company Method, system and computer program product for multi-modality registration using virtual cursors
ITBZ20050051A1 (it) 2005-09-29 2007-03-30 High Technology Invest Bv Dispositivo antiscarrucolamento per funi di impianti funiviari.
DE102007006316B3 (de) * 2007-01-30 2008-04-10 Hima Paul Hildebrandt Gmbh + Co Kg Vorrichtung und Verfahren zur Seillageüberwachung einer seilbetriebenen Transportanlage und seilbetriebene Transportanlage
ITMI20070157U1 (it) 2007-04-20 2008-10-21 Rolic Invest Sarl Seggiovia
ITMI20070835A1 (it) 2007-04-20 2008-10-21 Rolic Invest Sarl Impianto di trasporto a fune e metodo di azionamento dello stesso
ITMI20071618A1 (it) 2007-08-03 2009-02-04 Rolic Invest Sarl Impianto di trasporto a fune e metodo di azionamento dello stesso
FR2919841A1 (fr) * 2007-08-10 2009-02-13 Pomagalski Sa Dispositif de guidage d'un cable aerien d'une installation de remontee mecanique comportant des moyens d'arret automatique de l'installation
ITMI20072071A1 (it) 2007-10-26 2009-04-27 Rolic Invest Sarl Impianto di trasporto a fune e metodo di azionamento dello stesso
US7764169B2 (en) * 2008-03-12 2010-07-27 Eaton Corporation System for monitoring a plurality of sensors
DE102008015035A1 (de) 2008-03-13 2009-09-24 Hima Paul Hildebrandt Gmbh + Co Kg Verschleißüberwachungssystem, seilbetriebene Transportanlage und Verfahren zur Überwachung von Verschleißteilen derselben
IT1395098B1 (it) 2009-07-09 2012-09-05 Rolic Invest Sarl Unita' di trasporto per impianti di trasporto a fune
IT1395737B1 (it) 2009-08-04 2012-10-19 Rolic Invest Sarl Dispostivo di richiamo di un sedile per skilift
FR2951681B1 (fr) * 2009-10-23 2011-12-02 Gimar Montaz Mautino Dispositif de surveillance de rotation d'un organe tournant d'appui et de guidage, dans une installation de remontee mecanique
CN101716939B (zh) * 2009-12-26 2011-08-24 枣庄矿业(集团)有限责任公司柴里煤矿 架空乘人装置钢丝绳脱槽落地保护装置
IT1401120B1 (it) 2010-07-14 2013-07-12 Rolic Invest Sarl Scambio per impianto di trasporto a fune e impianto di trasporto a fune comprendente tale scambio.
GB201108398D0 (en) * 2011-05-19 2011-07-06 Loach Andrew Hand-held exercise apparatus and resistance mechanism for exercise apparatus
AT512298B1 (de) * 2012-02-06 2013-07-15 Innova Patent Gmbh Rolle, insbesondere laufrolle bzw. tragrolle für seilbahnanlagen
US10046815B2 (en) 2012-03-27 2018-08-14 Wearpro Incorporated Wear monitoring device and method of monitoring undercarriage and roller wear
EP2789985A1 (en) * 2013-04-10 2014-10-15 Tyco Electronics AMP GmbH Contactless position sensor and contactless position sensor system
CN107879232B (zh) * 2016-09-30 2021-07-20 奥的斯电梯公司 补偿链稳定装置和方法,电梯井道以及电梯系统
EP3336033A1 (en) * 2016-12-19 2018-06-20 KONE Corporation Arrangement of a hoisting device
EP3375686A1 (de) 2017-03-16 2018-09-19 Bartholet Maschinenbau AG Vorrichtung und verfahren zur überwachung einer luftseilbahnanlage
CN109295951A (zh) * 2018-10-15 2019-02-01 煤炭科学技术研究院有限公司 分段架线式边坡地表变形自动监测系统
FR3093490B1 (fr) * 2019-03-05 2021-03-12 Poma Installation de transport de véhicule par câble et procédé de mesure d’une information concernant une telle installation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138602A (en) * 1979-04-17 1980-10-29 Meiki Denki Seisakusho:Kk Detection of wire rope position
JPS6041806U (ja) * 1983-08-29 1985-03-25 日産自動車株式会社 変位量検出装置
JPS6295977U (ja) * 1985-12-09 1987-06-18
JPS6430027A (en) * 1987-07-27 1989-01-31 Mitsubishi Electric Corp Optical head
JPH0219712A (ja) * 1988-07-07 1990-01-23 Nagano Keiki Seisakusho Ltd 変位測定装置
JPH02157627A (ja) * 1988-12-09 1990-06-18 Matsushita Electric Ind Co Ltd 圧力センサ
JPH02221811A (ja) * 1989-02-22 1990-09-04 Hamamatsu Photonics Kk 変位センサ
JPH02280007A (ja) * 1989-04-20 1990-11-16 Komatsu Ltd 位置センサ
JPH03243801A (ja) * 1990-02-22 1991-10-30 Nkk Corp 非接触型距離計

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2452156A (en) * 1945-09-24 1948-10-26 Donald S Schover Float position indicator
CH393144A (de) * 1960-07-07 1965-05-31 Siemens Ag Magnetisch-elektrischer Signalgeber
CH421169A (de) * 1964-07-10 1966-09-30 Walter Staedeli Maschinenbau Uberwachungsverfahren des Entgleisens eines Stahldrahtseiles einer Seilbahnanlage und Gerät zur Ausübung dieses Verfahrens
US3991413A (en) * 1975-06-23 1976-11-09 Berger Philip H Constant current detector system
US4271763A (en) * 1978-05-15 1981-06-09 Berger Philip H Proximity detector
US4671187A (en) * 1985-09-20 1987-06-09 Kunczynski Jan K Deropement sensor apparatus with gravity-biased, falling, magnetic member
JPS62204118A (ja) * 1986-03-05 1987-09-08 Hitachi Ltd 磁気的に位置あるいは速度を検出する装置
DE3740800A1 (de) * 1987-12-02 1989-06-15 Bosch Gmbh Robert Vorrichtung zur erfassung des wegs oder des drehwinkels
AT388146B (de) * 1988-01-08 1989-05-10 Engel Edwin Dipl Ing Dr Techn Verfahren und vorrichtungen zur selbsttaetigen ueberwachung der lage der foerderseile von seilbahnen und schleppliften auf einer seiltragrolle
US5315244A (en) * 1989-11-17 1994-05-24 Visi-Trak Corporation Magnetic sensor with laminated field concentrating flux bar

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55138602A (en) * 1979-04-17 1980-10-29 Meiki Denki Seisakusho:Kk Detection of wire rope position
JPS6041806U (ja) * 1983-08-29 1985-03-25 日産自動車株式会社 変位量検出装置
JPS6295977U (ja) * 1985-12-09 1987-06-18
JPS6430027A (en) * 1987-07-27 1989-01-31 Mitsubishi Electric Corp Optical head
JPH0219712A (ja) * 1988-07-07 1990-01-23 Nagano Keiki Seisakusho Ltd 変位測定装置
JPH02157627A (ja) * 1988-12-09 1990-06-18 Matsushita Electric Ind Co Ltd 圧力センサ
JPH02221811A (ja) * 1989-02-22 1990-09-04 Hamamatsu Photonics Kk 変位センサ
JPH02280007A (ja) * 1989-04-20 1990-11-16 Komatsu Ltd 位置センサ
JPH03243801A (ja) * 1990-02-22 1991-10-30 Nkk Corp 非接触型距離計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0613807A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138833A (ja) * 2003-11-06 2005-06-02 Optosys Ag ロープ位置センサ
JP2020530565A (ja) * 2017-08-25 2020-10-22 インノヴァ・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 誘導センサー
JP2022535722A (ja) * 2019-05-28 2022-08-10 インノヴァ・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ロープウェイ設備のプーリの摩耗を把握する方法

Also Published As

Publication number Publication date
DE69228697D1 (de) 1999-04-22
EP0613807A4 (en) 1994-12-28
DE69228697T2 (de) 1999-07-29
EP0613807A1 (en) 1994-09-07
DE69231388T2 (de) 2001-01-25
DE69231388D1 (de) 2000-09-28
EP0771709B1 (en) 2000-08-23
EP0613807B1 (en) 1999-03-17
US5581180A (en) 1996-12-03
EP0771709A1 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
WO1993011015A1 (en) Displacement in transfer apparatus and driving controller of transfer member
RU2453835C1 (ru) Устройство для контроля стенок трубопроводов
JP2008528911A5 (ja)
JPH05203537A (ja) ころがり軸受の監視装置
JP4500437B2 (ja) ワイヤーロープの損傷検出装置
WO2013014533A2 (en) Method and apparatus for ferromagnetic cable inspection
JPS59650A (ja) ワイヤ−ロ−プの電磁探傷装置
US20210215639A1 (en) Magnetic body inspection device and magnetic body inspection method
KR102493154B1 (ko) 이물질 검출 장치 및 무선 충전 시스템
WO2020246130A1 (ja) ワイヤロープ検査システムおよびワイヤロープ検査方法
JP2019138703A (ja) 磁性体検査装置
KR102032986B1 (ko) 와이어 로프 손상 검출장치
KR101670427B1 (ko) 외란에 강인한 고감도 금속검출기
EP1171338B1 (en) Current sensor
CN108519508B (zh) 一种测量交流与直流电流的比较仪
JP2000088571A (ja) 管内移動体の位置検出方法
JP3208726U7 (ja)
JPH0767271A (ja) 移動体の非接触給電装置における変位検出装置
CN204330876U (zh) 一种无导线连接电流传感器
CN216594911U (zh) 一种钢丝绳无损检测装置
JP3208726U (ja) ワイヤレス給電システム
CN219328757U (zh) 一种基于霍尔效应的双环形检测器
CN109596704B (zh) 一种车轮专用涡流感应器
CN208872448U (zh) 一种旁路励磁方式的钢丝绳张力检测器
KR20100080489A (ko) 푸리어계수를 이용한 컨베이어 고무벨트 파손 감지 시스템

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1992924025

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992924025

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08244270

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1992924025

Country of ref document: EP