WO1993022706A1 - External modulator for optical communication - Google Patents

External modulator for optical communication

Info

Publication number
WO1993022706A1
WO1993022706A1 PCT/JP1993/000148 JP9300148W WO9322706A1 WO 1993022706 A1 WO1993022706 A1 WO 1993022706A1 JP 9300148 W JP9300148 W JP 9300148W WO 9322706 A1 WO9322706 A1 WO 9322706A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
external modulator
mode optical
support substrate
thin film
Prior art date
Application number
PCT/JP1993/000148
Other languages
English (en)
French (fr)
Inventor
Toshiya Hikami
Shoichi Negami
Matsue Murata
Shigeaki Nishikawa
Hiromi Ogawa
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP13607892A external-priority patent/JPH05307159A/ja
Priority claimed from JP28105492A external-priority patent/JPH06110025A/ja
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to EP93903316A priority Critical patent/EP0591540A4/en
Priority to US08/170,346 priority patent/US5506721A/en
Publication of WO1993022706A1 publication Critical patent/WO1993022706A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0128Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects
    • G02F1/0131Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence
    • G02F1/0134Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-mechanical, magneto-mechanical, elasto-optic effects based on photo-elastic effects, e.g. mechanically induced birefringence in optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves

Definitions

  • the present invention relates to an external modulator for optical communication that applies a modulation signal to an optical fiber from the outside and indirectly modulates light propagating in the optical fiber. Yes, it can suppress the resonance of the elastic wave in the optical fiber, and because it has a small insertion loss, it can be connected to many in one transmission line, has flat frequency characteristics, and has high frequency modulation It relates to an external modulator for optical communication that can be used.
  • modulators conventionally incorporated in optical communication systems are direct modulation systems that directly modulate the output light by changing the current applied to the light source, such as a semiconductor laser device or light emitting diode. Is common.
  • the light source is unstable based on the modulation of the intensity of an LD (laser diode) generally used as the light source, and the transmission distance of the optical signal is greatly restricted. There is a problem.
  • this method basically uses one signal source (transmission source) for one transmission line, in order to put optical signals from a plurality of signal sources on one transmission line, the signal source and the transmission line are used. It is necessary to introduce an optical coupler between the two.
  • the insertion loss caused by the insertion of the optical coupler is large. For example, even in the case of a waveguide type optical coupler whose insertion loss is considered to be relatively small, it is about 0.5 dB. Therefore, the number of i signals that can be connected to one transmission line is limited.
  • one optical transmission line is equipped with a DC light source whose intensity is constant over time, and a modulator arranged in the middle of the optical transmission line modulates the passing light. Therefore, it is possible to eliminate the obstacle based on the instability of the light source.
  • Another advantage is that the insertion loss when the modulator is connected to the optical transmission line is small, so that a large number of modulators can be installed on the optical transmission line.
  • One is to form a L i N b 0 3 waveguide pattern of a refractive index in diameter in example by ion exchange on a substrate, in which is disposed an electrode for voltage application to the vicinity of the waveguide.
  • This external modulator operates using the electric pre-school effect, and has excellent modulation characteristics in the high-frequency region (up to several GHz), but has a dependence on temperature and humidity changes. There is a problem that the dependence of the optical output intensity on the bias voltage is changed due to the expansion and contraction of the waveguide substrate and the change over time caused in response to these changes, and it is difficult to obtain a stable operation. Moreover, there is a difficulty in industrial utility because the single crystal L i N b 0 3 is very high titer. In the case of this external modulator, the insertion loss is as large as 2 to 4 dB, so that it is difficult to install many in one optical transmission line.
  • the outer periphery of the cladding layer 1a of the single mode optical fiber 1 is a lower electrode 2 made of a Cr-Au thin film, a thin film of ZnO which is a piezoelectric material, and furthermore, a Cr—A It has a structure covered with an upper electrode 4 composed of a u thin film.
  • Godi 1 consists of CuZAu at about 180 ° C in the outer periphery of the optical fiber in J. Lightwave Technol vol. 6, 1586, 1988.
  • a proposal is made in which a piezoelectric thin film 3 composed of a lower electrode 2 and Zn 0 is partially formed sequentially.
  • unnecessary acoustic wave resonance modes can be reduced by making the stress of the elastic wave concentrated on the core 1b of the optical fiber perpendicular to the axis instead of being axially symmetric.
  • the optical fiber and external modulation means are integrated, so the insertion loss to the transmission line is extremely small. With the advantage of being small and inexpensive to manufacture.
  • the lower electrode, the piezoelectric thin film, and the upper electrode are all formed by vacuum evaporation
  • the film is formed by applying the method, since the surface of the optical fiber 1 is a curved surface, a uniform pressure is applied over the entire surface in the circumferential direction.
  • the elastic wave is large at the outer periphery of the optical fiber
  • the acoustic wave resonates inside the optical fiber.
  • This external modulator is provided on one side of a support substrate 5 made of quartz glass.
  • the lower electrode 2 the ZnO thin film 3, and the upper electrode 4
  • the single mode optical fiber 1 is densely inserted into this groove 5a.
  • This external modulator is the same as that of Hickernell et al.
  • the insertion loss into the optical transmission line is extremely small, and since the surface of the support substrate 5 is flat, the lower electrode 2, It is easy to control the film thickness of the piezoelectric thin film 3 and the upper electrode 4, and has an advantage that uniform piezoelectric characteristics can be obtained over the entire surface.
  • the groove 5a formed on one surface of the support substrate 5 made of quartz glass exactly matches the curvature of the cross section of the single mode optical fiber 1 to be embedded closely here. It is very difficult to process it. Furthermore, for the same reason as in Hickerne l and God i l and others, a resonance phenomenon occurs inside the optical fiber, and the frequency characteristics of the modulator do not become flat.
  • the elastic wave travels straight at the interface between the support substrate 5 and the optical fiber 1, and the elastic wave is effectively focused on the core of the optical fiber 1. It is difficult.
  • the driving frequency is high, the directivity of the elastic wave generated by the piezoelectric thin film 3 is extremely sharp, and the elastic wave travels straight through the support substrate 5, and thus the elastic wave incident on the core of the optical fiber 1.
  • the waves are very limited. That is, the rate at which the elastic wave generated from the piezoelectric thin film 3 contributes to the modulation of the light propagating through the optical fiber 1 is extremely small, and the efficiency deteriorates.
  • the effective length of the piezoelectric thin film with respect to the optical fiber can be increased by increasing the aspect ratio of the portion functioning as a piezoelectric element.
  • the width of the piezoelectric thin film 3 or the upper electrode 4 is reduced.
  • the modulation frequency is greatly reduced as
  • the bandwidth of the wave number becomes narrow.
  • the piezoelectric element composed of electrodes is electrically connected
  • This modulated signal is efficiently transmitted to the piezoelectric element.
  • the impedance change of the piezoelectric element due to the frequency is the impedance change of the piezoelectric element due to the frequency
  • the frequency band used by these external modulators depends on the area of the upper electrode. Become. Therefore, in the case of an external modulator having only one upper electrode, only one frequency band can be used, and the amount of information to be transmitted is reduced.
  • the space occupied by the modulation system may be increased.
  • This external modulator has a structure in which a PZT piezoelectric ceramic is mechanically pressed onto the coating of a single-mode optical fiber.
  • the purpose of the present invention is to reduce the insertion loss.
  • the object is to provide an external modulator for communication.
  • -Another object of the present invention is to provide a lower electrode, a piezoelectric thin film, an upper electrode
  • Still another object of the present invention is to provide an elastic wave generated by a piezoelectric thin film.
  • Modulator for optical communication that can achieve excellent modulation efficiency
  • Another object of the present invention is to provide an elastic wave generated from a piezoelectric thin film.
  • Yet another purpose is to convey more information with a single external modulator.
  • the first aspect comprises the following External modulator for optical communication:
  • a supporting substrate having substantially the same acoustic impedance as the cladding layer of the single-mode optical fiber to be placed;
  • a piezoelectric element portion in which a lower electrode, a piezoelectric thin film, and an upper electrode are laminated in this order on one surface of the support substrate;
  • At least one single-mode optical fiber disposed on the other surface of the support substrate.
  • the external modulation for optical communication s ⁇ comprises the following:
  • a piezoelectric element portion in which a lower electrode, a piezoelectric thin film, and an upper electrode are laminated in this order on one surface of the support substrate;
  • At least one single mode optical fiber disposed on the upper electrode
  • an external module for optical communication comprising: Controller:
  • a support substrate including a medium having a built-in optical transmission line and having an acoustic impedance substantially equal to that of the optical transmission line; a lower electrode, a piezoelectric thin film, and an upper electrode laminated on one surface of the support substrate in this order;
  • a piezoelectric element portion comprising:
  • the external modulator of the first embodiment described above has a basic configuration as shown in FIGS. 5 to 6, wherein a piezoelectric element portion is provided on one surface of the support substrate and a single mode light is provided on the other surface. It has a structure in which fibers are arranged.
  • a thin film-like lower electrode 2 and a piezoelectric element The thin film 3 and the thin film upper electrode 4 are laminated in this order to form the piezoelectric element portion A.
  • the lower electrode 2 and the upper electrode 4 have leads for introducing an electric signal for driving the piezoelectric thin film 3. 7a and 7b are attached respectively.
  • the material of the support substrate 6 is not limited to the quartz glass described above, but may be any material having a value such that the acoustic impedance of the cladding layer of the single mode optical fiber disposed on the support substrate is substantially equal to that of the single crystal fiber.
  • a Si substrate ⁇ a sapphire substrate can also be used.
  • the material of the lower electrode 2 and the upper electrode 4 is not particularly limited, but, for example, A 1, Cr, Au, Cu, Cr / A u, T a ZA u, etc. may be mentioned.
  • T i ZA u also, as the material of the piezoelectric thin film 3, for example, L i N B_ ⁇ 3, Z n 0, A 1 N, PVDF ( polyvinylidene fluoride) You can give something.
  • Each of the lower electrode 2, the piezoelectric thin film 3, and the upper electrode 4 can be formed by a known film forming method such as a sputtering method, a vacuum evaporation method, and a CVD method.
  • the supporting substrate 6 since the supporting substrate 6 has a flat plate shape, the deposition operation of the lower electrode 2, the piezoelectric thin film 3, and the upper electrode 4 can be performed while the supporting substrate 6 is fixed. Moreover, the respective film thicknesses can be easily controlled.
  • the lower electrode 2, the piezoelectric thin film 3, and the upper electrode 4 having a uniform thickness can be formed over the entire surface, and the piezoelectric element portion A can exhibit a highly reliable function.
  • the piezoelectric thin film is formed with Z n 0, the c axis of Z n ⁇ is oriented perpendicular to the surface of the support substrate 6.
  • the piezoelectric efficiency can be increased.
  • a single-mode optical fiber 8 is arranged at the center. Specifically, the other surface 6b of the support substrate and the portion of the desired length of the optical fiber 8 are brought close to the acoustic impedance of the cladding layer 8a. Then, the optical fiber 8 is fixed to the supporting substrate 6 by covering the surface with an object 9 having acoustic impedance.
  • the acoustic impedance refers to the product of the density of the propagation medium of the elastic wave and the velocity of the elastic wave propagating through the medium.
  • the entire outer periphery of the optical fiber 8 except for the portion in contact with the support substrate 6 is covered with the substance 9.
  • any substance having an acoustic impedance substantially equal to that of the support substrate 6, that is, a substance having an acoustic impedance substantially equal to the acoustic impedance of the cladding layer 8a of the arranged sinal mode optical fiber 8 is used. May be
  • the reflection coefficient of an elastic wave (sound wave) at the interface between a medium whose acoustic impedance is Z 1 and a medium whose acoustic impedance is Z is
  • the outer periphery of the single mode optical fiber is covered with the above-described substance as described above, the acoustic impedance at the interface between the two becomes substantially equal, and the reflection coefficient at the interface becomes extremely small. Therefore, the propagated elastic wave can efficiently enter the single-mode optical fiber. Also, the return due to the reflection of the elastic wave transmitted through the single-mode optical fiber at the optical fiber interface is suppressed. Thus, resonance in the optical fiber can be suppressed.
  • Such effect exerts a substance, for example, the Ke I sodium (N a O * 4 S i 0 2 ⁇ aq) dispersing a fine powder of silica glass, which was vitrified by firing it ( Acoustic impedance: 13.1 X 10 6 kg / (m 2 ⁇ s)) Similarly, alumina powder was dispersed in sodium gayate, which was fired and vitrified (acoustic impedance: 15.2 X 10 6 kg / (m 2 ⁇ s)) Similarly, zirconia powder is dispersed in soda gay acid, which is baked and vitrified (acoustic impedance: 30.1) X 1 0 6 kg / (m 2 ⁇ s)) which canceller mission-box and a, also the specific acoustic Inpidansu was approximated to clad layer 8 a by dispersing a predetermined amount of metal powder in the polymer compound You can give things.
  • an optical signal is passed from a DC light source to a single-mode optical fiber 8, and a voltage having a predetermined frequency is applied between the leads 7a and 7b.
  • a periodic pressure is applied to the optical fiber 8 from the piezoelectric thin film 3, and the external force causes a refractive index distribution inside the optical fiber 8 to modulate the passing light.
  • the outer periphery of the optical fiber 8 is coated with a material whose acoustic impedance is similar to that of the cladding layer 8a, the outer periphery of the optical fiber 8 does not reflect the sound wave propagated from the piezoelectric thin film 3. Escaping into the material, the optical fiber The resonance phenomenon inside is eliminated. Therefore,
  • FIGS. 8 to 11 show the structure of the structure shown in FIGS. 5 to 7.
  • the supporting substrate 6 has a configuration described later.
  • a medium 6c is formed of quartz glass, and a medium 6d is formed.
  • the curved surface 10a is convex toward the medium 6c.
  • Such a supporting substrate 6 is made of, for example,
  • quartz glass powder After that, it can be manufactured by depositing quartz glass powder on it and melting it by raising the temperature while applying high pressure. it can.
  • the curved surface 10a may have a shape like a part of a spherical surface as shown in FIG. 9 and extend in the longitudinal direction of the single mode optical fiber 8 arranged as shown in FIG. It may be a part of a cylindrical curved surface. In short, the curved surface 10a is shaped according to the shape of the piezoelectric element part A.
  • This external modulator operates as follows.
  • the generated elastic wave can be regarded as a plane wave.
  • the elastic wave traveling straight from the piezoelectric element part A into the support substrate 6 is reflected and refracted at the joint surface 10a, and the incident angle and the refraction angle are the propagation of the elastic wave of the two media 6c and 6d. Determined by speed.
  • the propagation speed of the elastic wave of the medium 6c is made higher than that of the medium 6d, and the shape of the joint surface 10a of the two media is changed to a curved surface 10a convex toward the medium 6c.
  • the elastic wave is focused toward the single-mode optical fiber 8 as shown by the arrow and concentrated toward the core 8b.
  • Fig. 11 shows that the supporting substrate 6 has a high elastic wave propagation speed.
  • the medium 6c is placed on the single mode optical fiber 8 side,
  • a medium 6 d with a low propagation speed is placed on the piezoelectric element A side.
  • FIG. 6 is a cross-sectional view showing an external modulator when the external modulator is formed.
  • the bonding surface 10a is formed as a curved surface that is convex toward the medium 6c.
  • FIG. 12 is a schematic diagram of an external modulator according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing another example of an external modulator that can
  • the piezoelectric element In the support substrate 6 of this external modulator, the piezoelectric element
  • the single mode optical fiber extends in the direction of placement of the bar 8
  • a groove 11 with a curvature slightly larger than the curvature of 8 is formed. Have been.
  • the acoustic impedance is substantially the same as the acoustic impedance of the cladding layer 8a of the single-mode optical fiber 8 to be arranged, and the propagation speed of the elastic wave is a single-mode optical fiber.
  • 8 is made of a medium having a larger value than that of the medium, for example, aluminum silicon single crystal.
  • groove 11 may be formed by known machining, or may be formed by chemical etching.
  • the single mode optical fiber 8 is accommodated and arranged in the groove 11. At this time, the inner peripheral surface of the groove 11 and the outer peripheral surface of the single-mode optical fiber 8 are bonded via the above-mentioned substance having an acoustic impedance similar to the acoustic impedance of the cladding layer 8a. As a result, they are acoustically connected and fixed. Acoustic here means that the acoustic impedance of both is approximately equal.
  • the single-mode optical fiber 8 may be housed and fixed in the groove 11 by adhesive bonding at the interface with the groove 11 as described above.
  • the remaining outer periphery of the fiber 8 may be coated with the above-described substance as shown in FIGS. This is preferable because the single-mode optical fan 8 can be securely fixed.
  • FIG. 13 shows a state in which a propagating wave propagating through the support substrate 6 enters the single mode optical fiber 8. If the driving frequency of the elastic wave generated by the piezoelectric element part A is high, the generated elastic wave travels straight through the support substrate 6, but at that time, the outer peripheral surface of the single mode optical fiber 8 and the inner periphery of the groove 11 Regarding the refraction of an elastic wave at the interface with a surface, Snell's law holds as in the case of light.
  • the propagation speed of the elastic wave propagating in the support substrate 6 is V i
  • the incident angle is 0 !
  • the propagation speed of the elastic wave propagating in the single mode optical fiber 8 is 2
  • the emission angle is 2
  • V 1 sin ⁇ 2 u 2 sin ⁇ !
  • the shape of the groove 11 of the support substrate 6 is made slightly smaller than the curvature of the single mode optical fiber 8, so that the groove 11 and the single After filling the gap formed with the mode optical fiber 8 with matching oil 11a, etc.
  • elastic waves can be focused on the core 8b.
  • the external modulator shown in FIG. 17 and FIG. 17, which is a cross-sectional view taken along the line XVI I—XVI I in FIG. 16, is the first modulator of the basic configuration shown in FIG. 5 to FIG.
  • a plurality of (two in the figure) upper electrodes of the piezoelectric element portion A are arranged.
  • modulation signals with different contents are input from the modulation signal output unit, which is an information source, to each of the upper electrodes 4a and 4b, and one external optical modulator increases the number (the number of upper electrodes). Information).
  • the frequency band of each modulation signal can be changed, so that a single external modulator can transmit a large amount of information. Will be able to Therefore, the space occupied by the modulation system can be reduced as compared with the case where a plurality of external modulators are used.
  • the external modulator shown in FIG. 18 and FIG. 19, which is a cross-sectional view taken along the line XIX—XI of FIG. 18, has a lower electrode 2 commonly arranged in the piezoelectric element portion A.
  • a plurality (two in the figure) of piezoelectric thin films 3a, 3 are formed on the electrode 2, and upper electrodes 4a, 4b are formed on these piezoelectric thin films, respectively.
  • the film thickness of the thin film 3 is changed at a fixed rate along the arrangement direction of the arranged single mode optical fibers 8.
  • a relatively inclined surface is formed between the optical fiber 8 and the longitudinal direction.
  • the modulation frequency is the modulation frequency.
  • the degree of thickness change of the piezoelectric thin film is
  • This gradient is adjusted in the range of 4. 0 ⁇ 5. 0 X 1 0 one 4
  • the optical fiber 8 is placed, and the outer periphery of the
  • the outer periphery of the optical fiber 8 is the sound of the cladding layer 8a. Since the acoustic fiber is covered with a material whose acoustic impedance is close to that of the optical fiber, the elastic wave does not reflect on the outer periphery of the optical fiber, and the resonance phenomenon in the optical fiber can be eliminated, and a flat frequency characteristic can be obtained.
  • the roughness of the rough surface is preferably such that the center line average roughness (R a) defined by JIS B 0601 is equal to or greater than the wavelength of the elastic wave propagating in the support substrate.
  • R a center line average roughness
  • JIS B 0601 the center line average roughness
  • Such a rough surface can be formed, for example, by polishing using abrasive grains having a particle size of several tens of m.
  • the external modulator having this structure As shown in FIGS. 16 to 19, a plurality of upper electrodes are formed on the piezoelectric thin film 3 or a plurality of upper electrodes are formed on the lower electrode 2. A single-mode optical fiber is placed on each of the upper electrodes. Thereby, a large number of information transmissions by one external modulator can be realized.
  • the thickness of the piezoelectric thin film is formed so as to be inclined at a fixed rate in the longitudinal direction of the single-mode optical fiber to be arranged, so that the modulation frequency can be reduced. Broadband can be realized.
  • the lower electrode 2, the piezoelectric thin film 3, and the upper electrode 4 are sequentially laminated with a uniform thickness on one surface & a of the support substrate 6 to form the piezoelectric element portion A.
  • the other surface 6b an inclined surface inclined at a constant rate in a direction orthogonal to the longitudinal direction of the single-mode optical fiber 8 disposed, the elastic wave generated by the piezoelectric element portion A That is, as shown by the broken line, the elastic wave propagating in the support substrate 6 can be prevented from returning in the same direction by being reflected on the inclined surface 6b, and as a result, the resonance of the elastic wave in the support substrate 6 can be prevented. Can be prevented.
  • the base 12 and the upper part of the base 12 are arranged and are urged by the springs 13a and 13a.
  • An external modulator is set on the base 12 of the pressing means comprising a pressing portion 13 which can be moved up and down in the vertical direction with the single-mode optical fiber 8 side up and screws 13 c, 1
  • the single mode optical fiber 8 is elastically pressed by the urging force of the springs 13a and 13a via, for example, the silicone rubber 14. This is preferable because the single mode optical fiber 8 can be held in a stable state, and furthermore, the effect can be enhanced because the optical fiber and the supporting substrate are more closely contacted.
  • a light transmission path is directly built in the support substrate.
  • FIG. 26 and FIG. 27 which is a cross-sectional view taken along the line XXVI I—XXVI I in FIG. 26, such an external modulator has a built-in optical transmission line. 6e, which has a structure in which the piezoelectric element portion A is formed on one surface of the support substrate 6.
  • a cladding layer made of quartz glass and a core layer are sequentially laminated on a Si substrate 6f by a conventional flame deposition method, and then a part of the core layer is dry-etched. After removal, a waveguide 6 e having a predetermined cross-sectional shape is formed in the longitudinal direction, and the waveguide 6 e buried in the cladding layer 6 g is referred to as a support substrate 6.
  • a support substrate 6 One side of the support substrate It is manufactured by forming a piezoelectric element part A on the substrate.
  • the waveguide 6e serves as a light transmission path, and the light propagating therethrough is modulated by the function of the piezoelectric element A located immediately above the waveguide 6e.
  • a predetermined amount of quartz glass powder is filled in a mold, and a single-mode optical fiber 8 is placed there.
  • a single-mode optical fiber 8 is integrated into the support substrate 6 as an optical transmission path by virtue of vitrification by refilling the silica glass powder from above and firing the whole while pressurizing the whole. be able to.
  • a plurality of upper electrodes are formed on the piezoelectric thin film 3 or as shown in FIGS.
  • a plurality of piezoelectric thin films By forming a plurality of piezoelectric thin films, further forming an upper electrode on each of them, and correspondingly incorporating an optical transmission path in the support substrate, a large amount of information can be obtained from one external modulator. Transmission can be realized.
  • the thickness of the piezoelectric thin film is formed to be inclined at a constant rate in the longitudinal direction of the built-in optical transmission line, thereby reducing the modulation frequency. Broadening of the bandwidth can be realized.
  • FIG. 1 is a perspective view showing a conventional example of an external modulator
  • FIG. I is a perspective view showing another conventional example of the external modulator
  • FIG. 3 is a perspective view showing another conventional example of the external modulator
  • FIG. 4 is a graph showing the frequency characteristics of the conventional external modulator
  • FIG. 6 is a perspective view showing the state of one surface of the external modulator of the present invention
  • FIG. 6 is a perspective view showing the state of the other surface of the external modulator of the present invention
  • FIG. 8 is a cross-sectional view taken along line I-VI I
  • FIG. 8 is a cross-sectional view showing another example of the external modulator according to the present invention
  • FIG. 10 is a perspective view showing another example of the medium junction surface in the external modulator of FIG. 8;
  • FIG. 11 is a cross-sectional view showing another example of the external modulator of the present invention;
  • FIG. 13 is a cross-sectional view showing still another example of the present invention;
  • FIG. 13 is a diagram showing a state in which an elastic wave propagating through a supporting substrate in the external modulator of FIG. 12 is incident on a single mode optical fiber.
  • Fig. 14 shows the behavior of the elastic wave in the external modulator of Fig. 12 when the propagation speed of the elastic wave in the support substrate is higher than that in the single mode optical fiber.
  • FIG. 15 is an explanatory diagram in the case where an elastic wave exhibits another behavior different from that of FIG. 14;
  • FIG. 15 is an explanatory diagram in the case where an elastic wave exhibits another behavior different from that of FIG. 14;
  • FIG. 15 is an explanatory diagram in the case where an elastic wave exhibits another behavior different from that of FIG. 14
  • FIG. 16 is a plan view showing another example of the external modulator of the present invention
  • 17 is a sectional view taken along the line XVI I—XVI I in FIG. 16
  • FIG. 18 is a plan view showing another example of the external modulator of the present invention
  • FIG. 19 is a view in FIG.
  • FIG. 20 is a cross-sectional view taken along the line XXI-XIX
  • FIG. 20 is a side view showing still another example of the external modulator of the present invention
  • FIG. 21 is a cross-sectional view taken along the line XXI-XXI in FIG.
  • Figure 22 shows 23 is a perspective view showing another embodiment of the external modulator of the present invention
  • FIG. 23 is a cross-sectional view showing another example of the external modulator shown in FIG.
  • FIG. 24 is an external modulation shown in FIG.
  • FIG. 25 is a sectional view showing a pressing means of the external modulator of the present invention
  • FIG. 26 is a sectional view showing still another embodiment of the external modulator of the present invention.
  • FIG. 27 is a sectional view taken along the line XXVI I—XXVI I of FIG. 26;
  • FIG. 28 is a perspective view showing another example of still another embodiment of the external modulator of the present invention.
  • FIG. 29 is a block diagram showing a measurement system of the modulation output of the external modulator;
  • A1 is sputtered on one surface 6a of a quartz glass plate 6 having a thickness of 1 mm to form a lower electrode 2, and ZnO is sputtered thereon to form a piezoelectric thin film 3 having a thickness of 5iin.
  • A1 was sputtered to form an upper electrode.
  • a cladding layer 8a of a single mode optical fiber 8 having a core diameter of 8 was arranged on the other surface 6 of the quartz glass plate 6.
  • an adhesive in which silica glass powder with a particle size of 5 m is dispersed in sodium gayate is applied over a length of 1 O mm at the location where the silica glass powder is to be disposed, and after drying at room temperature, the temperature is raised to 150 ° C. Firing was performed at ° C for 2 hours.
  • the optical fiber 8 is supported by a coating 9 of a sintered body of quartz glass powder.
  • An external modulator having the structure shown in FIGS. 5 to 7 integrated with the substrate 6 was obtained.
  • the acoustic impedance of the support substrate 6 and the single-mode optical fin 8 was 13.1 X 10 6 kg / (m 2 ⁇ s), and the acoustic impedance of the coating 9 was The dance has almost the same value.
  • the ends of the optical fibers of the external modulator were thermally fused to each other to connect the 100 external modulators in series, one end of which was connected to the light source, and the other end of which was connected to the receiving unit.
  • the light source used was an LD that emits light at a wavelength of 1.333 nm.
  • the LD emitted light at a constant intensity and was incident on a single-mode optical fiber.
  • the receiver was equipped with a polarizing element connected to a single-mode optical fiber, and was assembled so that after passing through this polarizing element, the change in the received light intensity could be measured with a PD.
  • the loss of light due to one external modulator was only a connection loss due to fusion of single mode optical fibers, and was about 0.03 dB. Therefore, the total loss of 100 pieces was about 3.0 dB.
  • a sinusoidal wave from 400 MHz to 500 MHz is transmitted as a modulation signal to each external modulator at 1 MHz intervals, and all signals at that time are measured by the receiving unit.
  • quartz glass was used as the medium 6d
  • flint glass was used as the medium 6c.
  • the overall thickness of the support substrate was 2 mm, and the radius of curvature of the curved surface 10a was 1.25. mm, except that the height was set to 0.5 mni, the piezoelectric element portion A was formed in the same manner as in Example 1, and a single-mode optical fiber was arranged in the same manner.
  • This external modulator was set in the measurement system shown in Fig. 29, and its modulation output was measured for light having a wavelength of 1.333 nm.
  • the modulation output improved by 12 dB or more compared to the case where the support substrate 6 was entirely made of quartz glass was measured.
  • a 1 is used as the supporting substrate &, on one surface, the lower electrode 2 and the upper electrode 4 are each 0.2 mm thick Cr and Au, and the piezoelectric thin film 3 is 7 m thick ⁇ ⁇ ⁇ from the piezoelectric element.
  • a part A is formed, and a groove 11 having a diameter of 126 mm and a semicircular cross section is engraved on the other surface.
  • a single-mode optical fiber 8 having a diameter of 125 mm is accommodated in this groove, Was bonded with the adhesive used in Example 1 and then fired to be bonded and fixed, whereby an external modulator having a structure shown in FIG. 12 was manufactured.
  • This external modulator was set in the measurement system shown in Fig. 29, a high frequency voltage of about 200 MHz was applied between the lower electrode 2 and the upper electrode 4, and the wavelength was 1.33 nm. The modulation output for each light was measured. An improvement in the modulation output of 10 dB or more was observed as compared to an external modulator in which the propagation speed of the elastic wave was the same as that of the optical fiber, and a silica glass plate was used as the supporting substrate and the same grooves were provided.
  • the substrate of silicon single crystal is prepared as a support substrate 6, by performing the etching process with water oxidizing power Riumu solution after forming an etching mask in S i ⁇ 2 on one side of it., As shown in the third 0 Figure A groove 11 having a sectional shape was formed. Next, after filling the matching oil 11a into the groove 11, a single-mode optical fiber 8 is placed here, and the optical fiber is supported as shown by the arrow in Fig. 30. An external modulator having a structure as shown in FIG. 30 was pressed against the substrate 6 and fixed in the groove. When the modulation output of this external modulator was also measured under the conditions of Example 3, the elastic waves generated in the piezoelectric element part A were efficiently focused on the core 8 b of the single mode optical filter 8. Was confirmed.
  • a 20 mm long, ⁇ 2 omni, 1 mm thick quartz glass plate was prepared as a support substrate.
  • A1 is vacuum-deposited on one side of this quartz glass plate to form a lower electrode having a thickness of about 0.2 zm, and a ZnO piezoelectric thin film with a thickness of about 10 m is further formed thereon by sputtering.
  • vacuum deposition of A1 was performed on it, with a width of 0.4 am and a length of 1
  • the piezoelectric element part A was formed by depositing two strip-shaped upper electrodes with a thickness of 0.2 mm and a thickness of 0.2 m, and an external modulator having the structure shown in Figs. 1'6 and 17 was manufactured.
  • the piezoelectric thin film 3 is driven by applying a signal with a center frequency of 320 MHz and a band width of IMHz to one of the external modulators, and a signal of a center frequency of 34 MHz and a band width of 4 MHz to the other. I let it.
  • An external modulator having the structure shown in FIGS. 20 and 21 was manufactured as follows.
  • a quartz glass plate having a length of 20 thighs, a width of 20 mm, and a thickness of 1 mm was prepared as a support substrate 6, and A 1 was vacuum-deposited on one side thereof to form a lower electrode 2 having a thickness of about 0 m 2.
  • a thin film of piezoelectric thin film was formed by depositing Zn on a strip with a width of about 10 m and a length of about 10 nm by sputtering.
  • the pressure conductive thin film 3 that the upper surface is an inclined surface having a slope of about 2 X 1 0- 3 in the longitudinal direction.
  • A1 was vacuum-deposited on the piezoelectric thin film 3 to form a strip-shaped upper electrode 4 having a width of i mm and a length of 10 thighs. Then, the other surface of the support substrate is processed in the same manner as in the first embodiment. Thus, a single mode optical fiber 8 was disposed immediately below the upper electrode 4.
  • This external modulator was set in the measurement system shown in Fig. 29, and the frequency characteristics were evaluated using light with a wavelength of 1.33 nm. The results are shown in FIG.
  • the attenuation of the elastic wave is small in the frequency region corresponding to the thickness of the piezoelectric thin film 3, and the bandwidth of the modulation frequency is widened. .
  • An external modulator having the structure shown in FIG. 22 was manufactured as follows.
  • a piezoelectric element portion A is formed on one surface of a support substrate made of a quartz glass plate in the same manner as in Example 1, and the upper electrode 4 of the piezoelectric element portion A is formed on the upper electrode 4 by using the adhesive used in Example 1.
  • Single-mode optical fiber 8 was placed and fixed.
  • This external modulator was connected in series in the same manner as in Example 1, and the same test was performed. As a result, the total loss of 100 pieces was about 4.8 dB, and all of the modulated signals in the range of 400 to 500 MHz could be detected simultaneously.
  • the surface on which the piezoelectric element portion A was not formed was polished with abrasive grains having a particle size of 40 m, and the An external modulator having the structure shown in Fig. 23 was manufactured with a surface roughness Ra of 6.8 m.
  • the surface on which the piezoelectric element portion A is not formed has a gradient 10 in a direction perpendicular to the longitudinal direction of the single mode optical fiber 8.
  • An external modulator having the structure shown in FIG.
  • a silica glass fine particle to become a cladding layer and a core layer was deposited by flame deposition on a 6-inch Si substrate with a diameter of 76.2 mm (3 inches) and a thickness of 110 f.
  • the slab was baked and vitrified to form a slab clad layer and a slab core layer.
  • the core layer was dry-etched to a width of 8 ⁇ m.
  • silica glass fine particles to be a cladding layer are deposited again from above and vitrified and guided to the cladding layer 6 d.
  • a supporting substrate having a thickness of 50 ⁇ m excluding the Si substrate 6 f in which the waveguide 6 e was embedded was used.
  • the lower electrode 2, the piezoelectric thin film 3, and the upper electrode 4 were sequentially laminated on the cladding layer 6d in the same manner as in Example 1 to form the piezoelectric element portion A.
  • An external modulator having the structure shown in FIG. 28 was manufactured as follows.
  • the single-mode optical fiber 8 was integrated into a support substrate having a vertical length of 20 ram and a thickness of 1.0 mm.
  • the lower electrode 2, the piezoelectric thin film 3, and the upper electrode 4 were sequentially laminated on the support substrate 6 in the same manner as in Example 1 to form the piezoelectric element portion A.
  • the external modulator of the present invention has a small insertion loss, has a flat frequency characteristic, can be used for high-frequency modulation, can transmit a large amount of information, and can resonate elastic waves in an optical fiber. It is useful as an external modulator for optical communication because it can efficiently suppress the elastic wave to the optical fiber and can be easily manufactured.

Description

明 細 書
光通信用外部変調器
技 術 分 野
本発明は、 光ファイバに外部から変調信号を印加して、 その光フアイバ中を伝搬している光を間接的に変調させ る光通信用外部変調器に関し、 更に詳しくは、 製造が容 易であり、 光ファイバ中の弾性波の共鳴を抑制すること ができ、 また、 挿入損失が小さいので 1つの伝送路に多 数接続することが可能であり、 フラッ 卜な周波数特性を 有し、 高周波変調でも使用可能な光通信用外部変調器に 関する。
背 景 技 術
従来から光通信システムに組込まれている変調器のほ とんどは、 光源である半導体レーザ素子や発光ダイォー ドなどへの印加電流を変化させて、 その出力光を直接変 調させる直接変調方式のものが一般的である。
しかしながら、 この方式の場合には、 光源として一般 に用いられている L D (レーザーダイオード) などの強 度が変調することに基づいて光源が不安定であり、 光信 号の伝送距離は大きく制約を受けるという問題がある。
また、 この方式は、 1伝送路に対し 1信号源 (発信源) を基本とするため、 複数個の信号源からの光信号を 1つ の伝送路に乗せるためには、 信号源と伝送路の間に光結 合器を揷入することが必要になる。 しかしながら、 上記した直接変調方式では、 光結合器 の前記挿入に伴って生ずる掙入損失は大きい。 例えば、 この揷入損失が比較的小さいとされている導波路型光結 合器の場合でも約 0. 5 d Bである。 そのため、 1つの伝 送路に結合できる i 号の数は制限される。
直接変調方式における上記制約を克服するために、 最 近では、 外部変調方式を利用する変調器の ¾発が進めら れている。
この外部変調方式は、 1つの光伝送路に、 時間に対し て強度が一定である直流光源を備えていて、 光伝送路の 途中に配置されている変調器において通過光に変調を与 える方式であり、 光源の不安定さに基づく障害を排除す ることが可能である。 また、 変調器を光伝送路に接続し たときの挿入損失は小さく、 そのため、 光伝送路へ多数 個を設置することが可能であるという利点も備えている。
このような外部変調方式の光通信システムに組込む変 調器としては、 次のようなものが代表的な例として知ら れている。
その 1つは、 L i N b 0 3 の基板の上に例えばイオン 交換によって屈折率大の導波路パターンを形成し、 その 導波路の近傍に電圧印加用の電極を配置したものである。
この外部変調器は電気先学効果を利用して作動するも のであり、 高周波領域 (〜数 G H z ) における変調特性 は優れているが、 温度変化や湿度変化に対する依存性が 大きく、 これらの変化に対応して生じた導波路基板の膨 張収縮や経時変化などにより、 光出力強度のバイアス電 圧依存性に変化が生じ、 安定した動作が得にくいという 問題がある。 しかも、 L i N b 03 の単結晶は極めて高 価であるため工業的な実用性で難点がある。 そして、 こ の外部変調器の場合、 挿入損失は 2〜4 d Bと大きいの で、 1つの光伝送路に多数設置することが困難である。
また、 D. S. Czaplakや F. S. Hickernel 1らが Ul trasonics Symposium, 1 9 8 7年, 4 9 1〜4 9 3頁で発表した第 1図で示したようなタイプのものがある。 この外部変調 器は、 シングルモー ド光フアイバ 1のクラッ ド層 1 aの 外周を C r一 A u薄膜から成る下部電極 2, 圧電体であ る Z n Oの薄膜 3, 更に C r— A u薄膜から成る上部電 極 4で被覆した構造のものである。
また、 Godi 1 りは、 J. Lightwave Technol vol. 6, 1586, 1988において、 第 2図で示したように、 光フアイ バの外周のうち約 1 8 0 °Cの部分に C uZA uから成る 下部電極 2, Z n 0から成る圧電薄膜 3を順次部分的に 成膜したものを提案している。 この外部変調器の場合は、 光ファイバのコア 1 bに集中する弾性波の応力を軸対称 ではなく軸に垂直にすることにより、 不要な弾性波の共 鳴モードを減少させることができる。
これらの外部変調器は、 光ファイバと外部変調手段が ' 一体構造になっているため、 伝送路への挿入損失は極め て少なく、 かつ安価に製造できるという利点を備えてい
る。 '
しかしながら、 これらの外部変調器の場合、 下部電極, 圧電薄膜, 上部電極は、 いずれも真空蒸着法ゃスパッタ
法を適用して成膜されているが、 光フアイバ 1の表面は - 曲面であるため、 その円周方向の全体に亘つて均一な圧
電特性を有する圧電薄膜を成膜するためには、 成膜装置
内で光ファイバを回転させたり、 その他の高度な操作技
術が必要になり、 製造上の難点がある。
更には、 光ファイバの外周において弾性波が大きく反
射し、 そのため光ファイバの内部で弾性波の共鳴が起こ
り、 その結果、 変調器としての周波数特性がフラッ トに
ならないという特性上の不都合な問題が生ずる。
更に、 D . B . Patterson らは、 Opt ics Let t ers, vo l
14, No. 4, 1989年, I 4 8〜2 5 0頁において、 第 3図
で示したようなタイプのものを発表している。
この外部変調器は、 石英ガラス製の支持基板 5の一方
の面に下部電極 2, Z n Oの薄膜 3, 上部電極 4をこの
順序で積層し、 他方の面に断面が半円状の溝 5 aを形成
し、 この溝 5 aの中にシングルモー ド光フアイバ 1を密
着して埋込んだ構造のものである。
この外部変調器は、 前記した Hi ckerne l lらのものと同
じょうに、 光伝送路への挿入損失は極めて小さくなり、 ' また支持基板 5の表面は平面であるため、 下部電極 2, 圧電薄膜 3, 上部電極 4の膜厚制御は容易であり、 全面 に亘つて均一な圧電特性を'得ることができるという利点 を備えている。
しかし、 この外部変調器の場合、 石英ガラスの支持基 板 5の一方の面に形成する溝 5 aを、 ここに密着して埋 込むべきシングルモード光フアイバ 1の断面の曲率と正 確に一致させるように加工することは非常に困難である。 更には、 Hi ckerne l lや God i l らの場合と同じ理由で、 光 フアイバの内部では共鳴現象が起こり、 その変調器とし ての周波数特性がフラッ トにならない。
また、 支持基板 5と光フアイバ 1内を伝搬する弾性波
(音波) の速度は略等しくなつているため、 支持基板 5 と光ファイバ 1 との界面では上記弾性波が直進してしま い、 その弾性波を有効に光フアイバ 1のコアに集束させ るということが困難である。 、 とくに、 駆動周波数が高 い場合は、 圧電薄膜 3で発生した弾性波の指向性が極め て鋭く、 弾性波は支持基板 5内を直進するため、 光ファ ィバ 1のコアに入射する弾性波はごく限られた量になる。 すなわち、 圧電薄膜 3より発生した弾性波が、 光フアイ バ 1を伝搬している光の変調に寄与する割合は極めて小 さく、 効率が悪くなる。
これを改善するためには、 圧電素子として機能する部 分の縦横比を大きく して光フアイバに対する圧電薄膜の' 有効長を長くすればよいわけであるが、 そのような処置 を行うと圧電薄膜 3または上部電極 4の幅が狭くなるた
め、 圧電薄膜と光ファイバとの枏対的な位置関係の設定
には高精度を要求され、 組立が困難になる。
なお、 上記した Hickerne l l, Go d i 1, Pat terson らの外
部変調器には共通して次のような問題がある。 · まず、 圧電薄膜から発生する弾性波の振幅はそれぞれ
の膜厚に大きく依存することである。 そして、 その振幅
は、 圧電薄膜への印加周波数と S / N比とから計測する
ことができるが、 その値は、 第 4図で示したように、 共
振周波数 f rで最大値をとり、 共振周波数 f rからずれ
るにつれて大きく減衰していくため、 それに伴う変調周
波数の帯域幅が狭くなつてしまうことである。
また、 これら外部変調器の場合、 変調媒体として圧電
薄膜が使用されているため、 それと下部電極および上部
電極によって構成される圧電素子部は電気的にはコンデ
ンサとなる。 このため、 そのインピーダンスは情報源で
ある変調信号出力部からの変調信号の周波数に依存して
変化する。 この変調信号を効率良く圧電素子部に伝える
ためには、 情報源である変調信号出力部と圧電素子部の
間で電気的整合を取らなければならない。
周波数による圧電素子部のィンピ一ダンス変化は、 圧
電素子部の電気容量に依存し、 この電気容量は上部電極
の面積に大きく依存する。 したがって、 これら外部変調' 器の使用周波数帯域は上部電極の面積に依存することに なる。 このため、 上部電極を 1個しかもたない外部変調 器の場合には使用周波数帯域が 1つしか取れず、 伝送す る情報量が少なくなつてしまうという問題がある。
この問題を補うため、 1 ケ所の局に複数の外部変調器 を直列接続することが考えられる。 この場合、 複数の外 部変調器間を光ファイバで接続するとき、 光ファイバの 両端に光コネク夕が接続されていればコネクタ用ァダブ 夕を用いて容易に接続可能であるが、 この接続方式では 接続個所が多数になればなるほど挿入損失が無視できな くなり、 またコネクタ間で光が反射するという新たな問 題が生じてく る。
また、 光ファイバの両端を融着法を用いて接続すれば 前記の挿入損失および光の反射の問題はなくなるが、 取 り扱いが困難であるという問題が生じてく る。
また、 前記 2つの接続方式に共通した問題として、 変 調システムの占有スペースが大きくなることがある。
更に、 藤崎らが信学春全大 B - 8 9 1 , 1 9 9 0年に おいて発表したタイプのものがある。 、 この外部変調器 は、 シングルモー ド光フアイバの被覆上に P Z T圧電セ ラ ミ ックスを機械的に押しつけた構造のものである。
しかしながら、 このタイプの外部変調器は、 圧電体と シングルモー ド光フアイバのクラッ ドが密着していない ため、 圧電体から光フアイバへの弾性波の伝達効率が劣' り、 その結果、 1 M H z以上の高周波変調に適切に対応 できるものとはいいがたい。
本発明の目的は、 挿入損失が小さいことはもち論のこ
と、 特定の共鳴ピークをもたないフラッ 卜な周波数特性
を示し、 5 0 ひ M H z程度の高周波変調も可能である光
通信用外部変調器を提供することである。 - 本発明の別の目的は、 下部電極, 圧電薄膜, 上部電極
の膜厚を制御することが容易であるため製造しやすく、
しかも、 圧電薄膜の配向性制御を容易に行うことができ、 良好な圧電効果を実現できる光通信用外部変調器を提供
することである。
本発明の更に別の目的は、 圧電薄膜で発生した弾性波
を効率よく光ファイバのコアに集束することができ、 も
つて優れた変調効率の実現が可能な光通信用外部変調器
を提供することである。
本発明の他の目的は、 圧電薄膜から発生した弾性波の
出力効率の周波数特性がブロードであり、 変調周波数帯
域幅が広域化している光通信用外部変調器を提供するこ
とである。
更に他の目的は、 単一の外部変調器で多くの情報を伝
達することができ、 かつ、 変調システムの占有スペース
を狭くすることができる光通信用外部変調器を提供する
ことである。
発 明 の 開 示 ' 本発明においては、 第 1の態様として、 下記から成る 光通信用外部変調器 :
配置されるシングルモー ド光フアイバのクラ ッ ド層と略 同じ音響ィ ンピーダンスを有する支持基板 ;
前記支持基板の一方の面に、 下部電極, 圧電薄膜, 上部 電極をこの順序で積層して成る圧電素子部 ;
前記支持基板の他方の面に配置された少なく とも 1本の シングルモー ド光フアイノく ; および、
前記シングルモー ド光フアイバの配置個所の少なく とも 一部分では前記シングルモー ド光フアイバを被覆し、 力、 つ、 前記シングルモー ド光ファイバのクラ ッ ド層と近似 した音響ィ ンピーダンスを有する物質 ; が提供される。 また別の態様としては、 下記から成る光通信用外部変 調 s§ :
配置されるシングルモー ド光フアイバのクラッ ド層と略 同じ音響ィ ンピーダンスを有する支持基板 ;
前記支持基板の一方の面に、 下部電極, 圧電薄膜, 上部 電極をこの順序で積層して成る圧電素子部 ;
前記上部電極の上に配置される少なく とも 1本のシング ルモー ド光フアイバ ; および、
前記シングルモー ド光フアイバの配置個所の少なく とも 一部分では前記シングルモ一 ド光フアイバを被覆し、 力、 つ、 前記シングルモー ド光フ アイバのクラ ッ ド層と近似 した音響ィンピーダンスを有する物質 ; が提供される。 ' 更に別の態様としては、 下記から成る光通信用外部変 調器:
光伝送路を内蔵し、 かつ、.前記光伝送路と略等しい音響 インピーダンスを有する媒質から成る支持基板; 前記支持基板の一方の面に、 下部電極, 圧電薄膜, 上部 電極をこの順序で積層して成る圧電素子部;が提供され る。
上記した第 1の態様の外部変調器は、 第 5図〜第 Ί図 で示したような基本構成のものであり、 支持基板の一方 の面に圧電素子部が、 他方の面にシングルモード光ファ ィバが配置された構造になっている。
まず、 第 5図において、 例えば厚み 1 匪, 縦 2 0 誦, 撗 2 O mmで石英ガラスから成る平板状の支持基板 6の一 方の面 6 aには、 薄膜状の下部電極 2, 圧電薄膜 3, 更 に薄膜状の上部電極 4がこの順序で積層されて圧電素子 部 Aを構成し、 下部電極 2と上部電極 4には、 圧電薄膜 3を駆動するための電気信号を導入するリード 7 a , 7 bがそれぞれ添着されている。
支持基板 6の材料としては、 上記した石英ガラスに限 定されるものではなく、 この支持基板に配置するシング ルモード光フアイバのクラッ ド層と音響ィンピーダンス が略等しい値を有する材料であればよく、 例えば、 S i 基板ゃサフアイャ基板なども使用することができる。 下部電極 2, 上部電極 4の材料としては、 格別限定さ' れないが、 例えば、 A 1 , C r , A u , C u, C r / A u, T a Z A u , T i Z A uなどをあげることができ、 また、 圧電薄膜 3の材料としては、 例えば L i N b〇 3, Z n 0, A 1 N, P V D F (ポリフッ化ビニリデン) な どをあげることができる。
これらの下部電極 2, 圧電薄膜 3, 上部電極 4 は、 い ずれも例えば、 スパッタ リ ング法や真空蒸着法, C V D 法のような公知の成膜法で形成することができる。
この成膜時において、 支持基板 6は平板形状であるた め、 ここへの下部電極 2, 圧電薄膜 3, 上部電極 4の成 膜操作は、 支持基板 6を固定したままで実施することが でき、 しかもそれぞれの膜厚制御は容易である。
したがって、 全面に亘つて厚みが均一な下部電極 2, 圧電薄膜 3, 上部電極 4を成膜することができ、 圧電素 子部 Aは信頼性の高い機能を発揮することができるよう になる。 また、 圧電薄膜 3の配向性を制御することが容 易であり、 例えば圧電薄膜を Z n 0で成膜したとき、 Z n〇の c軸を支持基板 6の面に対して垂直に配向させる ことにより、 圧電効率を高めることができるようになる。 支持基板 6の他方の面 6 bには、 第 6図、 および第 5 図の VI I— VI I 線に沿う断面図である第 7図で示したよ うに、 前記した圧電薄膜 3の直下の位置にシングルモー ド光ファイバ 8が配置されている。 具体的には、 支持基 板の他方の面 6 bと上記光フアイバ 8の所望する長さの' 部分を、 クラ ッ ド層 8 aの音響ィ ンピーダンスと近接し た音響ィンピーダンスを有する物貧 9で S覆して光ファ ィバ 8を支持基板 6に固定する。 なお、 ここでいう音響 ィンピーダンスとは、 弾性波の伝搬媒質の密度とその媒 質中を伝搬する弾性波の速度との積をいう。
その場合、 光フアイバ 8の外周のうち、 支持基板 6と 接触している部分を除いた全ての外周が上記物質 9で被 覆されるようにする。
このような物質としては、 支持基板 6と音響ィンピー ダンスが略等しい物質、、すなわち配置したシンダルモー ド光フアイバ 8のクラッ ド層 8 aの音響ィンピーダンス と略等しい音響インピーダンスを有する物質であれば何 であってもよい
一般に、 音響ィンピーダンスが Z 1 である媒質と音響 ィンピ一ダンスが Z である媒質との界面における弾性 波 (音波) の反射係数は、
次式: ( Z 2 — Z 1 ) Z ( Z 2 + Z i )
で表される。
したがって、 上記したようにシングルモード光フアイ バの外周を上記物質で被覆すると、 両者の界面の音響ィ ンピーダンスは略等しくなり、 界面における反射係数は 極めて小さくなる。 そのため、 伝搬してきた弾性波は効 率よく シングルモード光ファイバに入射することができ る。 また、 シングルモード光ファイバ内を透過した弾性 波の光ファィバ境界面における反射に基づく戻りが抑制 され、 もって光ファィバ内における共鳴を抑制すること ができる。
このような効果を発揮する物質としては、 例えば、 ケ ィ酸ソーダ (N a O * 4 S i 02 · a q) に石英ガラス の微粉末を分散させ、 それを焼成してガラス化したもの (音響ィ ンピ一ダンス : 1 3. 1 X 1 06kg/ (m2 · s)) 、 同じく ゲイ酸ソーダにアルミ ナ粉末を分散させ、 それを 焼成してガラス化したもの (音響ィ ンピーダンス : 1 5. 2 X 1 0 6kg/ (m2 · s)) 、 同じく ゲイ酸ソ一ダにジルコ ニァ粉末を分散させ、 それを焼成してガラス化したもの (音響ィ ンピーダンス : 3 0. 1 X 1 06kg/ (m2 · s)) な どのセラ ミ ッ クスや、 また高分子化合物に所定量の金属 粉を分散させてその固有音響ィンピーダンスをクラッ ド 層 8 aに近似させたものをあげることができる。
この外部変調器においては、 直流光源からシングルモ ー ド光ファイバ 8に光信号を通過させて、 リー ド 7 a, 7 b間に所定周波数の電圧を印加する。 圧電薄膜 3から 光フアイバ 8に周期的な圧力が印加され、 この外力によ つて、 光ファイバ 8の内部に屈折率分布が生じて通過光 が変調される。
このとき、 光ファイバ 8の外周はそのクラ ッ ド層 8 a と音響イ ンピーダンスが近似した物質で被覆されている ので、 光ファイバ 8の外周では圧電薄膜 3から伝搬した' 音波の反射は起こらず前記物質中に逃散し、 光ファイバ の内部における共鳴現象は解消する。 そのため、 フラッ
トな周波数特性が得られる。
第 8図〜第 1 1図は、 第 5図〜第 7図で示した構造の
外部変調器において、 圧電素子部 Aで発生した弾性波を
効率よく シングルモード光ファイバのコアに集束するこ - とができ、 もって変調効率の向上を可能にしたものを示
す。
この外部変調器は、 支持基板 6が後述する構成をとる
ことを除いては、 第 5図〜第 7図で示した外部変調器の
構造と変わるところはない。
すなわち、 支持基板 6は、 第 8図で示したように、 弾
性波の伝搬速度が異なる 2つの媒質 & c, 6 dを接合し
て構成される。 そして両媒質の接合面 1 0において、 圧
電素子部 Aの直下に位置している両媒質の接合面 1 0 a
は、 曲面になっている。
例えば、 媒質 6 cを石英ガラスで形成し、 媒質 6 dを
フリントガラスで形成すると、 前者の方が後者の場合よ
りも弾性波の伝搬速度が高くなるので、 その場合には、
第 8図で示したように、 曲面 1 0 aは媒質 6 c側に凸の
曲面にする。
このような支持基板 6は、 例えばフリ ン十ガラスの粉
末を所定の型に充填して曲面 1 0 aができるように固め
たのち、 その上に石英ガラスの粉末を堆積し、 高圧をか' けたまま昇温して溶融させることにより製造することが できる。
なお、 曲面 1 0 aは第 9図に示すような球面の一部の ような形状であってもよく、 第 1 0図に示すように配置 されているシングルモード光ファイバ 8の長手方向に延 びる円筒曲面の一部のようなものであってもよい。 要す るに曲面 1 0 aは圧電素子部 Aの形状に合わせて賦形さ れている。
この外部変調器はつぎのように動作する。
まず、 圧電素子部 Aで発生する弾性波が例えば 2 0 0 M H z程度の高周波の場合には、 発生する弾性波は平面 波とみなすことができる。 圧電素子部 Aから支持基板 6 内を直進する弾性波は接合面 1 0 aで反射, 屈折を起こ し、 その際の入射角, 屈折角は 2つの媒質 6 c , 6 dの 弾性波の伝搬速度で定まる。 第 8図で示したように、 媒 質 6 dより媒質 6 cの弾性波の伝搬速度を高く し、 両媒 質の接合面 1 0 aの形状を媒質 6 c側に凸の曲面 1 0 a にしておく と、 弾性波はシングルモー ド光フアイバ 8 に 向けて矢印のように集束しそのコア 8 bに向かって集中 するようになる。
したがって直流光源からシングルモ一ド光フアイバ 8 に光を入射し、 下部電極 2と上部電極 4の間に所定周波 数の電圧を印加すると、 圧電素子部 Aから発生する弾性 波が支持基板 6中を伝搬するうちに集束されてコア 8 b に向かって集中していくので、 シングルモード光フアイ バ 8内を通過する光を極めて効率よく変調することがで
きる
なお、 この外部変調器の場合、 支持基板 6内の接合曲
面 1 0 aの曲率を適宜に選定することにより、 弾性波の
集束の精度をやや落し、 シングルモー ド光ファイバ 8の ' 取付け精度の公差をゆるくすることも可能である。
第 1 1図は、 支持基板 6が、 弾性波の伝搬速度が高い
媒質 6 cをシングルモ一ド光フアイバ 8側に、 弾性波の
伝搬速度が低い媒質 6 dを圧電素子部 A側に配置して構
成されている場合の外部変調器を示す断面図である。
この場合は、 圧電素子部 Aの直下に位置する両媒質の
接合面 1 0 aは、 媒質 6 c側に凸の曲面として形成され
る。 このことにより、 圧電素子部 Aで発生した弾性波を
効率よく シングルモード光フアイバ 8のコア 8 bへ集束
させることが可能になる。
第 1 2図は、 第 1の態様の外部変調器において、 シン
グルモ一ド光フアイバ 8のコアに弾性波を効率よく集束
するこどができる別の例の外部変調器を示す断面図であ
る o
この外部変調器の支持基板 6においては、 圧電素子部
Aが形成されている面 6 aの反対側の面 6 bの前記圧電
素子部 Aの直下に、 配置されるシングルモー ド光フアイ
バ 8の配置方向に延び、 そのシングルモー ド光ファイバ
8の曲率よりも若干大きい曲率を有する溝 1 1が形成さ れている。
支持基板 6 としては、 配置されるシングルモー ド光フ アイバ 8のクラ ッ ド層 8 aの音響イ ンピーダンスと略同 じ音響インピーダンスを有し、 かつ、 弾性波の伝搬速度 はシングルモー ド光ファイバ 8内におけるそれより も大 きい値を有する媒質、 例えばアルミニゥムゃシ リ コン単 結晶で構成されている。
また、 上記した溝 1 1 は、 公知の機械加工によって刻 設してもよく、 または、 化学的なエッチングによって刻
BXし しもよい。
この溝 1 1 の中にシングルモー ド光ファイバ 8が収容 配置される。 そのとき、 溝 1 1の内周面とシングルモー ド光フアイバ 8の外周面とは、 クラッ ド層 8 aの音響ィ ンピーダンスと近似した音響イ ンピーダンスを有する前 記した物質を介して接着されることにより、 音響的に接 合,固定される。 ここでいう音響的とは両者の音響イ ン ピーダンスが略等しいことをいう。
なお、 溝 1 1へのシングルモー ド光ファイバ 8の収容 と固定に関しては、 上記したように溝 1 1 との界面での 接着固定であってもよいが、 それに加えて更に、 シング ルモー ド光フアイバ 8の残余の外周を、 第 5図〜第 7図 で示したように、 上記した物質で被覆してもよい。 この ようにすると、 シングルモー ド光ファィノく 8の固定を確' 実にすることができて好適である。 つぎに、 この外部変調器において、 溝 1 1の内周面と シングルモード光フアイバ 8の外周面との界面における 弾性波の挙動を説明する。
第 1 3図は支持基板 6を伝搬してきた弹性波がシング ルモード光ファイバ 8に入射する状態を示す。 圧電素子 部 Aで発生した弾性波の駆動周波数が高い場合は、 発生 した弾性波は支持基板 6の中を直進するが、 そのとき、 シングルモード光フアイバ 8の外周面と溝 1 1の内周面 との界面における弾性波の屈折に関しては、 光の場合と 同様にスネルの法則が成立する。
ここで、 支持基板 6中を伝搬する弾性波の伝搬速度を V i , 入射角 0 ! 、 シングルモード光ファイバ 8中を伝 搬する弾性波の伝搬速度を 2 , 出射角 2 とすると、 V 1 s i n Θ 2 = u 2 s i n ^! となる。 した力 つて、 V I が 2 よりも大きい場合、 弾性波は第 1 4図の矢印 で示したように、 シングルモード光ファイバ 8の曲率よ りもやや大きいところに弾性波が集束することになり、 シングルモ一ド光ファィバ 8中のコア 8 bを伝搬する光 をかなり効率よく変調することができることになる。 更には、 第 1 5図で示したように、 支持基板 6の溝 1 1の形状をシングルモード光ファィバ 8の曲率よりもや や小さく し、 そのことにより、 溝 1 1とそこに収容した シングルモード光ファイバ 8との間に形成される空隙部 をマッチングオイル 1 1 aなどで満たしたのち、 このシ ングルモード光ファイバ 8を物質 9で固定することによ つてもコア 8 bに弾性波を集束することができる。
第 1 6図と第 1 6図の XVI I— XVI I線に沿う断面図であ る第 1 7図に示す外部変調器は、 第 5図〜第 7図で示し た基本構成の第 1の態様の外部変調器において、 圧電素 子部 Aの上部電極が複数個 (図では 2個) 配置されてい るものである。
このような構造にすると、 各上部電極 4 a, 4 bごと に情報源である変調信号出力部から内容の異なる変調信 号を入力して 1個の外部光変調器で多く (上部電極の数 と同じ数) の情報を送ることができる。
また、 各上部電極 4 a , 4 bの面積を適宜に変化させ ることにより、 各変調信号における周波数帯域を変化さ せることができるので、 1個の外部変調器で多数の情報 を伝送することができるようになる。 したがって、 複数 の外部変調器を使用する場合に比べて、 変調システムの 占有スペースを狭くすることができる。
また、 第 1 8図および第 1 8図の X I X— XI X 線に沿う 断面図である第 1 9図に示す外部変調器は、 圧電素子部 Aにおいて、 下部電極 2が共通配置され、 この下部電極 2の上に複数個 (図では 2個) の圧電薄膜 3 a, 3 が 形成され、 これら圧電薄膜の上にそれぞれ上部電極 4 a, 4 bが形成されているものである。
この構造の場合も、 第 1 6図, 第 1 7図で示した外部 変調器の場合と同じ効果を奏することができる。
第 2 0図および第 2 0 ®の XXI— XXI 線に沿う断面図
である第 2 1図に示した外部変調器は、 第 5図〜第 7図
で示した基本構成において、 圧電素子部 Aにおける圧電
薄膜 3の膜厚を、 配置されているシングルモード光ファ - ィバ 8の配置方向に沿って一定の割合で変化させたもの
である。 すなわち、 圧電薄膜 3の膜面とシングルモー ド
光ファイバ 8の長手方向との間では、 相対的に傾斜面が
形成されている外部変調器である。
この外部変調器の場合、 圧電薄膜 3の膜厚に対応する
弹性波の周波数領域において、 弾性波の振幅の減衰を小
さく抑えることが可能となり、 その結果、 変調周波数の
帯域幅を広域化することができるという効果が得られる。
この場合、 圧電薄膜の膜厚変化の程度は変調する光の
波長の周波数によっても異なってくるが、 概ね配置され
たシングルモ一ド光ファィバ 8の長手方向においてその
勾配が 4. 0 ~ 5. 0 X 1 0一4の範囲内に調整されているこ
とが好ましい。
次に、 本発明の外部変調器における第 2の態様は、 第
2 2図で示したように、 上部電極 2の上にシングルモー
ド光ファイバ 8を配置して、 その外周を前記した物質 9
で被覆,固定した構造のものである。
この場合も、 第 1の態様の場合と同じように、 シング
ルモ一ド光ファィバ 8の外周はそのクラッ ド層 8 aと音 響ィンピーダンスが近似する物質で被覆されているので、 光フアイバの外周における弾性波の反射は起こらず光フ アイバ内での共鳴現象を解消できフラッ 卜な周波数特性 を得ることができる。
また、 この構造の外部変調器において、 第 2 3図で示 したように、 支持基板 6の表面のうち、 圧電素子部 Aが 形成されていない方の面 6 bを粗面にすると、 圧電素子 部 Aで発生した弾性波のうち支持基板 6内を伝搬した弾 性波は、 この粗面 6 bで散乱することになり、 その結果、 支持基板 6内における弾性波の共鳴を防止することがで きるので好適である。
この場合、 粗面の粗さは、 J I S B 0 6 0 1で規 定する中心線平均粗さ (R a ) が支持基板内を伝搬する 弾性波の波長以上の値であることが好ましい。 例えば、 支持基板が石英ガラス板から成り、 圧電素子部 Aへの印 加周波数が 4 0 0 M H zの場合、 粗面の R aを 1 5 〃 m にすると好適である。
このような粗面は、 例えば粒径数十^ mの砥粒を用い て研磨することによつて形成することができる。
なお、 この構造の外部変調器においても、 第 1 6図〜 第 1 9図で示したように、 圧電薄膜 3の上に複数個の上 部電極を形成し、 または下部電極 2の上に複数個の圧電 薄膜を成膜し、 更にそれぞれに上部電極を成膜し、 各上' 部電極の上にシングルモ一ド光フアイバを配置すること により、 1個の外部変調器による多数の情報伝送を実現 することができる。 また、第 2 0図, 第 2 1図で示した ように、 圧電薄膜の膜厚を、 配置するシングルモー ド光 フアイバの長手方向に一定の割合で傾斜して形成するこ とにより変調周波数の帯域幅の広域化を実現することが できる。
また、 第 2 4図で示したように、 支持基板 6の一方の 面 & aには均一な膜厚で下部電極 2, 圧電薄膜 3, 上部 電極 4を順次積層して圧電素子部 Aを形成し、 他方の面 6 bを、 配置されているシングルモード光フアイバ 8の 長手方向と直交する方向に一定の割合で傾斜する傾斜面 とすることにより、 圧電素子部 Aで発生した弾性波のう ち支持基板 6内を伝搬した弾性波は、 破線で示したよう に、 この傾斜面 6 bで反射することにより同じ方向への 戻りが防止でき、 その結果、 支持基板 6内における弾性 波の共鳴を防止することができる。
以上の第 1の態様, 第 2の態様の外部変調器は、 いず れも、 シングルモード光ファイバが支持基板または上部 電極の表面に接合固定されているだけであるので、 実使 用時に、 何らかの外力でその接合が損傷する虞れもある。
そのため、 これらの外部変調器においては、 第 2 5図 で示したように、 基台 1 2と、 この基台 1 2の上部に配 置され、 ばね 1 3 a , 1 3 aで付勢される押えプレート 1 3 bを備え、 ねじ 1 3 c, 1 3 cを調節することによ り、 上下方向に昇降可能な押圧部 1 3とから成る押圧手 段の前記基台 1 2に、 シングルモード光フアイバ 8側を 上にして外部変調器をセッ 卜 し、 ねじ 1 3 c, 1 3 cを 調節して押圧部 1 3を降下させることにより、 ばね 1 3 a, 1 3 aの付勢力で例えばシリ コーンラバー 1 4を介 してシングルモード光フアイバ 8を弾性的に押圧する。 このようにすると、 シングルモード光ファイバ 8を安定 した状態で保持することができるので好適であり、 更に、 光ファイバと支持基板がより密接するため効果を高める ことができる。
本発明の外部変調器における第 3の態様は、 支持基板 の中に、 直接、 光の伝送路を内蔵させたものである。
このような外部変調器としては、 第 2 6図および第 2 6図の XXVI I— XXVI I 線に沿う断面図である第 2 7図で 示したように、 内蔵される光伝送路が光導波路 6 eであ り、 支持基板 6の片面に圧電素子部 Aを形成した構造の ものをあげることができる。
この外部変調器は、 例えば S i基板 6 f の上に常法の 火炎堆積法によって石英ガラスから成るクラッ ド層, コ ァ層を順次積層したのち、 コア層の一部をドライエッチ ングして除去し、 所定の断面形状の導波路 6 eを長手方 向に形成し、 更に、 この導波路 6 eをクラッ ド層 6 gで 埋設したものを支持基板 6とし、 この支持基板の一方の 面に圧電素子部 Aを形成して製造される。 この構造においては、 この導波路 6 eが光の伝送路と なり、 ここを伝搬する光はこの直上に位置する圧電素子 部 Aの働きによって変調される。
また、 第 2 8図で示したように、 支持基板 6を石英ガ ラスで製造するに際して、 型内に石英ガラスの粉末を所 定量充塡したのち、 そこにシングルモード光フアイバ 8 を配置し、 その上から再び石英ガラスの粉末を充塡して 全体を加圧しながら焼成してガラス化することにより支 持基板 6内にシングルモ一ド光フアイバ 8を光伝送路と して一体的に内蔵することができる。 そして、 この支持 基板 6の一方の面に圧電素子部 Aを形成することにより、 第 3の態様の外部変調器にすることができる。
なお、 この構造の外部変調器においても、 第 1 6 '図〜 第 1 9図で示したように、 圧電薄膜 3の上に複数個の上 部電極を形成し、 または下部電極 2の上に複数個の圧電 薄膜を成膜し、 更にそれぞれに上部電極を成膜し、 それ らに対応して光伝送路を支持基板に内蔵させることによ り、 1個の外部変調器による多数の情報伝送を実現する ことができる。 また、 第 2 0図, 第 2 1図で示したよう に、 圧電薄膜の膜厚を、 内蔵されている光伝送路の長手 方向に一定の割合で傾斜して形成することにより変調周 波数の帯域幅の広域化を実現ずることができる。
図面の簡単な説明 ' 第 1図は、 外部変調器の従来例を示す斜視図;第 2図 は外部変調器の他の従来例を示す斜視図 ;第 3図は外部 変調器の別の従来例を示す斜視図;第 4図は従来の外部 変調器の周波数特性を示すグラフ ;第 5図は本発明の外 部変調器の一方の面の状態を示す斜視図;第 6図は本発 明の外部変調器の他方の面の状態を示す斜視図、 第 7図 は第 5図の VI I— VI I 線に沿う断面図;第 8図は本発明 はの外部変調器の他の例を示す断面図;第 9図は第 8図 の外部変調器における媒質接合面の例を示す斜視図 ;第 1 0図は第 8図の外部変調器における媒質接合面の他の 例を示す斜視図;第 1 1図は本発明の外部変調器の別の 例を示す断面図;第 1 2図は本発明の更に別の例を示す 断面図;第 1 3図は第 1 2図の外部変調器における支持 基板を伝搬してきた弾性波がシングルモード光ファイバ に入射する状態を示す説明図 ;第 1 4図は第 1 2図の外 部変調器において支持基板中の弾性波の伝搬速度がシン グルモード光ファイバ中の弾性波の伝搬速度よりも大き い場合の弾性波の挙動を示す説明図;第 1 5図は弾性波 が第 1 4図とは異なる別の挙動を示す場合の説明図 ;第 1 6図は本発明の外部変調器の別の例を示す平面図 ;第 1 7図は第 1 6図の XVI I— XVI I線に沿う断面図;第 1 8 図は本発明の外部変調器の他の例を示す平面図 ;第 1 9 図は第 1 8図の XI X— XIX 線に沿う断面図;第 2 0図は 本発明の更に別の外部変調器の例を示す側面図 ;第 2 1 図は第 2 0図の XXI— XXI 線に沿う断面図 ;第 2 2図は は本発明の外部変調器の他の態様を示す斜視図;第 2 3 図は第 2 2図の外部変調器における他の例を示す断面図; 第 2 4図は第 2 2図の外部変調器における別の例を示す 側面図 ;第 2 5図は本発明の外部変調器の押圧手段を示 す断面図;第 2 6図は本発明の外部変調器の更に別の態 様の例を示す側面図 ;第 2 7図は第 2 6図の XXVI I— XX VI I 線に沿う断面図;第 2 8図は本発明の外部変調器の 更に別の態様の他の例を示す斜視図;第 2 9図は外部変 調器の変調出力の測定系を示すプロック図;第 3 0図は 本発明の実施例 4におけるシングルモード光フアイバの 溝内への固定状態を示す断面図 ;第 3 1図は実施例 6の 外部変調器の周波数特性を示すグラフ ;である。
実 施 例
実施例 ί
厚み 1 mmの石英ガラス板 6の一方の面 6 aに A 1をス パッタして下部電極 2とし、 その上に Z n Oをスパッタ して厚み 5 i inの圧電薄膜 3とし、 更にその上に A 1を スパッ夕して上部電極を形成した。 そして石英ガラス板 6の他方の面 6 に、 コア径 8 のシングルモー ド光 ファイバ 8のクラッ ド層 8 aを配置した。 ついで、 ゲイ 酸ソーダの中に粒径 5 mの石英ガラス粉末が分散して いる接着剤を配置個所の長さ 1 O mmに亘つて塗布し、 室 温下で乾燥放置したのち温度 1 5 0 °Cで 2時間焼成した。 光フアイバ 8は石英ガラス粉末の焼成体の被覆 9で支持 基板 6に一体化され、 第 5図〜第 7図で示した構造の外 部変調器が得られた。
この外部変調器において、 支持基板 6, シングルモー ド光ファイ ノく 8の音響ィンピーダンスはいずれも 1 3. 1 X 1 0 6 kg/ (m2 · s )であり、 また被覆 9の音響ィンピー ダンスも略同じ値である。
この外部変調器の各光フアイバの端部を互いに熱融着 させることによりこの外部変調器 1 0 0個を直列に接続 し、 その一端を光源に、 他端を受信部に接続した。
光源としては波長 1. 3 3 n mの光を発する L Dを使用 し、 この L Dを一定強度で発光させてシングルモー ド光 ファイバに入射させた。 また、 受信部は、 シングルモー ド光ファイバに接続した偏光素子を備え、 この偏光素子 を通過したのち P Dで受光強度の変化を計測できるよう に組み立てた。
この光通信システムにおいては、 1個の外部変調器に よる光の損失は、 シングルモード光フアイバ相互の融着 による接続損失のみであって、 約 0. 0 3 d Bであった。 したがって、 1 0 0個全体での損失は約 3. 0 d Bであつ た。
4 0 0 M H zから 5 0 0 M H zの正弦波を 1 M H zの 間隔で各外部変調器に変調信号として発信し、 そのとき の全ての信号を受信部で計測したところ、 全てを同時に' 検出することができた。 実施例 2
第 8図で示した外部変調器において、 媒質 6 dとして 石英ガラス, 媒質 6 cとしてフリ ントガラスを用い、 支 持基板の全体の厚みを 2 mm, 曲面 1 0 aの曲率半径を 1. 2 5 mm, その高ざを 0 5 mniに設定したことを除いては、 実施例 1の場合と同様にして圧電素子部 Aを形成し、 ま た同じようにしてシングルモ一ド光フアイバを配置した。
この外部変調器を、 第 2 9図で示した測定系にセッ ト し、 波長 1. 3 3 n mの光に対しその変調出力を測定した。 支持基板 6が全体として石英ガラスから成るものに比べ て、 1 2 d B以上向上した変調出力が測定ざれた。
実施例 3
支持基板 &として A 1を用い、 その一方の面に、 下部 電極 2, 上部電極 4がそれぞれ厚み 0. 2 mの C rと A u、 圧電薄膜 3が厚み 7 mの Ζ η θから圧電素子部 A を形成し、 他方の面に直径が 1 2 6 mmで断面が半円形の 溝 1 1を刻設し、 ここに直径 1 2 5 mmのシングルモード 光ファイバ 8を収容して、 雨者を、 実施例 1で用いた接 着剤で接着したのち焼成して接着固定することにより、 第 1 2図で示した構造の外部変調器を製造した。
この外部変調器を第 2 9図で示した測定系にセッ トし、 下部電極 2と上部電極 4の間に 2 0 0 M H z程度の高周 波電圧を印加し、 波長 1. 3 3 n mの光に対する変調出力 を測定した。 弾性波の伝搬速度が光フアイバと同じ石英ガラス板を 支持基板として用いて同様の溝を設けて構成された外部 変調器に比べて、 1 0 d B以上の変調出力の向上が認め られた。
実施例 4
支持基板 6としてシリコン単結晶の基板を用意し、 そ . の片面に S i 〇2 でエッチングマスクを形成したのち水 酸化力リゥム溶液でエツチング処理を行なって、 第 3 0 図で示したような断面形状の溝 1 1を刻設した。 ついで、 この溝 1 1の中にマッチングオイル 1 1 aを満たしたの ち、 ここにシングルモー ド光ファイ ノく 8を配置し、 この 光ファイバを第 3 0図の矢印で示したように支持基板 6 側に押圧して溝内に固定した第 3 0図で示したような構 造の外部変調器にした。 この外部変調器についても前記 実施例 3の条件で変調出力を測定したところ、 圧電素子 部 Aで発生した弾性波は効率よく シングルモード光ファ イ ノく 8のコア 8 bに集束していることが確認できた。
実施例 5
縦 2 0 mm, 橫 2 O mni, 厚み 1 mmの石英ガラス板を支持 基板として用意した。
この石英ガラス板の片面に A 1を真空蒸着して厚みが 約 0. 2 z mの下部電極を成膜し、 更にその上に、 スパッ 夕法で厚み約 1 0 mの Z n 0の圧電薄膜を成膜したの' ち、 その上に、 A 1を真空蒸着して幅 0. 4 a m , 長さ 1 mm, 厚み 0.2 mの短冊状の上部電極を 2本成膜して圧 電素子部 Aを形成し、 第 1' 6図, 第 1 7図で示した構造 の外部変調器を製造した。
この外部変調器の一方に、 中心周波数 3 2 0 MH z , バン ド幅 I MH z, 他方に中心周波数 3 4 0 MH z, バ ンド幅 4MH zの信号を印加して圧電薄腠 3を駆動させ た。
第 2 9図に示した測定系で、 検光子通過により強度変 調された信号を 0 Z E変換器を通してスペク トラムアナ ライザで観察したところ、 2つの信号は正確に伝送され ていることが確認された。
実施例 6
次のようにして、 第 2 0図, 第 2 1図で示した構造の 外部変調器を製造した。
まず、 縦 2 0腿, 横 2 0 mm, 厚み 1 mmの石英ガラス板 を支持基板 6として用意し、 その片面に A 1を真空蒸着 して厚み約 0 2 m©下部電極 2を成膜し、 更にその上 に、 スパッタ法で Z n◦を幅約 1 0 m, 長さ約 1 0蘭 の短冊状に被着して圧電薄膜を成膜した。 なお、 この圧 電薄膜 3はその上面が長手方向で約 2 X 1 0— 3の勾配を 有する傾斜面になっている。
ついで、 この圧電薄膜 3の上に A 1を真空蒸着して幅 i mm, 長さ 1 0腿の短冊状の上部電極 4を成膜した。 その後、 実施例 1と同様にして、 支持基板の他方の面 で上記上部電極 4の直下の位置にシングルモード光ファ ィバ 8を配置した。
この外部変調器を第 2 9図で示した測定系にセッ トし、 波長 1. 3 3 n mの光を用いて周波数特性の評価を行った。 その結果を第 3 1図に示した。
第 3 1図から明らかなように、 この外部変調器におい ては、 圧電薄膜 3の膜厚に対応する周波数領域において 弾性波の減衰は小さく、 変調周波数の帯域幅の広域化が 実現されている。
実施例 Ί
第 2 2図で示した構造の外部変調器を次のようにして 製造した。
すなわち、 実施例 1 と同様にして石英ガラス板の支持 基板の片面に圧電素子部 Aを形成し、 この圧電素子部 A の上部電極 4の上に実施例 1で用いた接着剤を用いてシ ングルモード光フアイバ 8を配置 ·固定した。
この外部変調器につき、 実施例 1 と同様の方法で直列 に接続して同様の試験を行った。 その結果、 1 0 0個全 体の損失は約 4. 8 d Bであり、 また 4 0 0〜 5 0 0 M H zにおける変調信号の全てを同時に検出することができ た。
実施例 8
実施例 7の支持基板において、 圧電素子部 Aが形成さ' れていない方の面を粒径 4 0 mの砥粒で研磨して、 表 面粗さが R aで 6. 8 mの粗面にして第 2 3図で示した 構造の外部変調器を製造した。
この外部変調器について、 実施例 7と同様の試験を行 つたところ、 支持基板中の弾性波の共鳴は防止され、 実 施例 7の外部変調器に比べて周波数帯域が & M H z向上 した。
実施例 9
実施例 7の支持基板において、 圧電素子部 Aが形成さ ' れていない方の面を、 シングルモード光ファィバ 8の長 手方向と直交する方向に勾配 1 0。 で傾斜する面にして 第 2 4図で示した構造の外部変調器を製造した。
この外部変調器について、 実施例 7と同様の試験を行 つたところ、 支持基板中の弾性波の共鳴は防止され、 実 施例 7の外部変調器に比べて周波数帯域が 3 M H z向上 した。
実施例 1 0
第 2 6図, 第 2 7図で示した構造の外部変調器を次の ようにして製造した。
直径 7 6. 2 mm ( 3インチ) , 厚み 1匪の S i基板 6 f の上に、 火炎堆積法によってクラッ ド層, コア層になる 石英ガラス微粒子を順次堆積したのち 1 1 0 0 °Cで焼成 してガラス化し、 スラブクラッ ド層, スラブコア層を形 成した。
ついで、 コア層にドライエッチングを施し、 幅 8 ^ m, 高さ 8 z mの断面形状の導波路 6 eを長手方向に形成し たのち、 その上から再びクラッ ド層になる石英ガラス微 粒子を堆積してそれをガラス化し、 クラッ ド層 6 dに導 波路 6 eが埋設された、 S i基板 6 f を除いた厚みが 5 0 〃mである支持基板とした。
そして、 このクラッ ド層 6 dの上に実施例 1 と同様に して下部電極 2, 圧電薄膜 3, 上部電極 4を順次積層し て圧電素子部 Aを形成した。
ついで、 端面を研磨した光ファイバを導波路 6 eの両 端に突き当てて光伝送路を形成した。 この外部変調器に つき、 実施例 1 と同様に測定したところ、 周波数帯域は、 実施例 7の外部変調器に比べて Ί M H z以上向上してい た。
実施例 1 1
第 2 8図で示した構造の外部変調器を次のようにして 製造した。
深さ 1. 3 mm, 縦 2 0 mm, 横 2 O mmの金型内に、 粒径 3 〜 5 mの石英ガラス粉末を約半分の深さまで充塡し、 その上に外径 1 2 5 〃 mのシングルモー ド石英ガラス光 フアイバを配置したのち、 その上から再び石英ガラス粉 末を金型内に充填した。
常温下で厚み方向に 1 0 0 0 kg/cm2の圧で加圧し、 厚 み 1. 2 mm, 縦 ·橫 2 0 mmで厚み方向の中央付近に光ファ ィバが位置する基板を得た。 これを常圧下において 1 3 0 0 °Cで焼成し、 縦 *模 2 0 ram, 厚み I. 0 mmの支持基板 の中にシングルモー ド光ファイバ 8を一体化させた。
この支持基板 6の上に実施例 1と同様にして下部電極 2, 圧電薄膜 3, 上部電極 4を順次積層して圧電素子部 Aを形成した。
この外部変調器につき、 実施例 1 0と同様の試験を行 つたところ、 略同じような結果が得られた。
産業上の利甩可能性
本発明の外部変調器は、 挿入損失が小さく、 フラッ ト な周波数特性をもち、 高周波変調でも使用可能であり、 多数の情報を伝送することができ、 光ファィバ内におけ る弾性波の共鳴が抑制ざれ、 弾性波を効率よく光フアイ バに集束することができ、 そして製造が容易であるため、 光通信の外部変調器として有用である。

Claims

請 求 の 範 囲
. 下記から成る光通信用外部変調器:
配置されるシングルモード光フアイバのクラッ ド層と略 同じ音響ィンピーダンスを有する支持基板;
前記支持基板の一方の面に、 下部電極, 圧電薄膜, '上部 電極をこの順序で積層して成る圧電素子部 ;
前記支持基板の他方の面に配置された少なく とも 1本の シングルモー ド光フアイバ ; および、
前記シングルモード光フアイバの配置個所の少なく とも 一部分では前記シングルモード光フアイバを被覆し、 か つ、 前記シングルモード光ファイバのクラッ ド層と近似 した音響ィンピーダンスを有する物質。
. 前記支持基板は、 弾性波の伝搬速度が異なる複数の媒 . 質を接合して成り、 かつ、 その接合面には、 前記圧電素 子部から放射された弾性波を前記シングルモード光ファ ィバに向けて集束する曲面が形成されているクレーム 1 の光通信用外部変調器。
. 前記支持基板には、 配置されるシングルモード光ファ ィバを収容するための溝が刻設され、 かつ、 前記支持基 板は、 そこを伝搬する弾性波の伝搬速度が前記シングル モード光フアイバにおける弾性波の伝搬速度よりも大き い媒質から成るクレーム 1の光通信用外部変調器。
. 前記シングルモー ド光フアイバを被覆する物質がセラ ミ ックスであるクレーム 1の光通信用外部変調器。
5 . 前記上部電極が、 圧電薄膜の上に複数個設けられてい るクレーム 1の光通信用外部変調器。
6 . 前記圧電薄膜の膜厚が、 前記シングルモー ド光フアイ バの長手方向に一定の割合で厚み変化しているクレーム 1の光通信用外部変調器。
7 . 前記支持基板と前記シングルモード光フアイバを弾性 的に押圧する手段を備えているクレーム 1の光通信甩外
Figure imgf000038_0001
8 . 下記から成る光通信用外部変調器:
配置されるシングルモード光ファイバのクラッ ド層と略 同じ音響インピーダンスを有する支持基板;
前記支持基板の一方の面に、 下部電極, 圧電薄膜, 上部 電極をこの順序で積層して成る圧電素子部;
前記上部電極の上に配置される少なくとも 1本のシング ルモード光ファイバ; および、
前記シングルモード光フアイバの配置個所の少なくとも —部分では前記シングルモード光フアイバを被覆し、 力、 つ、 前記シングルモード光フアイバのクラッ ド層と近似 した音響ィンビーダンスを有する物質。
9 . 前記シングルモード光ファイバを被覆する物質がセラ ミ ックスであるクレーム 8の光通信用外部変調器。
10. 前記上部電極が圧電薄膜の上に複数個設けられている クレーム 8の光通信用外部変調器。
11. 前記支持基板の他方の面が粗面になっているクレーム 8の光通信用外部変調器。
12. 前記支持基板の他方の面は、 前記圧電薄膜の膜面に対 し、 配置されたシングルモード光フアイバの長手方向に 傾斜する面になっているクレーム 8の光通信用外部変調
13. 下記から成る光通信用外部変調器:
光伝送路を内蔵し、 かづ、 前記光伝送路と略等しい音響 ィンピーダンスを有する媒質から成る支持基板; 前記支持基板の一方の面に、 下部電極, 圧電薄膜, 上部 電極をこの順序で積層して成る圧電素子部。
14. 前記上部電極が圧電薄膜の上に複数個設けられている ク レーム 1 3の光通信用外部変調器。
15. 前記圧電薄膜の膜厚が、 前記光伝送路の長手方向と直 交する方向に一定の割合で厚み変化しているクレーム 1 3の光通信用外部変調器。
16. 前記支持基板の他方の面が粗面になっているクレーム 1 3の光通信用外部変調器。
PCT/JP1993/000148 1992-04-28 1993-02-05 External modulator for optical communication WO1993022706A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP93903316A EP0591540A4 (en) 1992-04-28 1993-02-05 External modulator for optical communication
US08/170,346 US5506721A (en) 1992-04-28 1993-02-05 External modulator for optical communication

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4/136078 1992-04-28
JP13607892A JPH05307159A (ja) 1992-04-28 1992-04-28 外部光変調器
JP28105492A JPH06110025A (ja) 1992-09-28 1992-09-28 光外部変調器
JP4/281054 1992-09-28

Publications (1)

Publication Number Publication Date
WO1993022706A1 true WO1993022706A1 (en) 1993-11-11

Family

ID=26469757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000148 WO1993022706A1 (en) 1992-04-28 1993-02-05 External modulator for optical communication

Country Status (4)

Country Link
US (1) US5506721A (ja)
EP (1) EP0591540A4 (ja)
CA (1) CA2112480A1 (ja)
WO (1) WO1993022706A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757987A (en) * 1997-02-07 1998-05-26 Lucent Technologies Inc. Acousto-optic modulator for optical waveguides
DE19945729B4 (de) * 1999-09-23 2008-04-24 Jenoptik Ldt Gmbh Akustooptischer Fasermodulator
US6487326B1 (en) 1999-11-29 2002-11-26 Board Of Regents, The University Of Texas System Thin film fiber optic electrode sensor array and apparatus
CN101408458A (zh) * 2003-03-31 2009-04-15 佐勒技术公司 监视与控制燃烧过程的方法与设备
US7787728B2 (en) * 2004-03-31 2010-08-31 Zolo Technologies, Inc. Optical mode noise averaging device
US7228012B2 (en) * 2005-08-01 2007-06-05 Photonics On-Fiber Devices, Inc. On-fiber microwave modulator and high speed switch for telecommunication applications
US8544279B2 (en) * 2005-11-04 2013-10-01 Zolo Technologies, Inc. Method and apparatus for spectroscopic measurements in the combustion zone of a gas turbine engine
AU2010203674B2 (en) 2009-01-09 2014-09-25 Onpoint Technologies, Llc Method and apparatus for monitoring combustion properties in an interior of a boiler
WO2011019755A1 (en) 2009-08-10 2011-02-17 Zolo Technologies, Inc. Mitigation of optical signal noise using a multimode transmit fiber
CA2871072C (en) 2012-04-19 2020-07-14 Zolo Technologies, Inc. In-furnace retro-reflectors with steerable tunable diode laser absorption spectrometer
AU2015370309B2 (en) 2014-12-23 2021-06-10 Onpoint Technologies, Llc TDLAS architecture for widely spaced wavelengths

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890253A (ja) * 1972-02-29 1973-11-24
JPS51136431A (en) * 1975-05-21 1976-11-25 Hagiwara Denki Kk Diferacted electric sound transducer
JPS5241541A (en) * 1975-09-29 1977-03-31 Nippon Telegr & Teleph Corp <Ntt> Input-output equipment for optical fibers
JPS5390950A (en) * 1977-01-19 1978-08-10 Nec Corp Variable light attenuator
JPS56128145A (en) * 1980-03-12 1981-10-07 Yokogawa Electric Works Ltd Ultrasonic photographing apparatus
JPS5919922A (ja) * 1982-07-27 1984-02-01 Hoya Corp 音響光学変調素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2140548B2 (de) * 1971-08-12 1973-08-30 Akustooptischer lichtablenker
AU556849B2 (en) * 1984-08-31 1986-11-20 Litton Systems, Incorporated Acousto-optic phase modulation
US4703287A (en) * 1985-08-22 1987-10-27 United Technologies Corporation Phase modulator for fiber-optic sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890253A (ja) * 1972-02-29 1973-11-24
JPS51136431A (en) * 1975-05-21 1976-11-25 Hagiwara Denki Kk Diferacted electric sound transducer
JPS5241541A (en) * 1975-09-29 1977-03-31 Nippon Telegr & Teleph Corp <Ntt> Input-output equipment for optical fibers
JPS5390950A (en) * 1977-01-19 1978-08-10 Nec Corp Variable light attenuator
JPS56128145A (en) * 1980-03-12 1981-10-07 Yokogawa Electric Works Ltd Ultrasonic photographing apparatus
JPS5919922A (ja) * 1982-07-27 1984-02-01 Hoya Corp 音響光学変調素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0591540A4 *

Also Published As

Publication number Publication date
EP0591540A1 (en) 1994-04-13
US5506721A (en) 1996-04-09
CA2112480A1 (en) 1993-11-11
EP0591540A4 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
JP4375597B2 (ja) 光導波路デバイスおよび進行波形光変調器
US6406196B1 (en) Optical device and method for producing the same
WO1993022706A1 (en) External modulator for optical communication
JPS5821213A (ja) 光結合装置
JP2009523264A (ja) 薄型soicmos光電集積回路内への広帯域光学結合
JP2000171671A (ja) 光通信用モジュールおよびその実装方法
US20120114293A1 (en) Optical waveguide structure having angled mirror and lens
US7778497B2 (en) Optical modulators
JP2001264594A (ja) 光デバイスおよびその製造方法
EP1367855A1 (en) Vibration detector
CA1164950A (en) Frequency modulated laser diode
JP2001215371A (ja) モニタ付光導波路型素子
JP2018146681A (ja) 光学装置、スタブデバイス
EP0880048A1 (en) Acousto-optic planar waveguide modulators
JP2959881B2 (ja) 光通信用外部変調器
US5757987A (en) Acousto-optic modulator for optical waveguides
KR100557165B1 (ko) 양방향 광송수신 모듈과 그를 이용한 양방향 광송수신패키지
US6704130B1 (en) Electromechanical optical modulator providing stray light control
JP2003270597A (ja) 光可変減衰装置
WO2022138699A1 (ja) 光導波路素子及びそれを用いた光変調デバイス並びに光送信装置
US20030185480A1 (en) Device package with reduced bonding stresses
JPH0949993A (ja) 光通信用外部変調器
JPS5857724B2 (ja) 光学的信号の接続装置
JPH088834A (ja) 光通信用光外部変調器とそれを用いた双方向光通信システム
EP1434067A1 (en) Optical filter module, and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 08170346

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2112480

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1993903316

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1993903316

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1993903316

Country of ref document: EP