WO1993023092A1 - Anti-microbial coating for medical devices - Google Patents

Anti-microbial coating for medical devices Download PDF

Info

Publication number
WO1993023092A1
WO1993023092A1 PCT/CA1993/000201 CA9300201W WO9323092A1 WO 1993023092 A1 WO1993023092 A1 WO 1993023092A1 CA 9300201 W CA9300201 W CA 9300201W WO 9323092 A1 WO9323092 A1 WO 9323092A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
set forth
microbial
deposition
metals
Prior art date
Application number
PCT/CA1993/000201
Other languages
French (fr)
Inventor
Robert Edward Burrell
Larry R. Morris
Original Assignee
Westaim Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE69320472T priority Critical patent/DE69320472T2/en
Priority to CA002134217A priority patent/CA2134217C/en
Priority to EP93909715A priority patent/EP0641224B1/en
Priority to UA94119049A priority patent/UA42690C2/en
Application filed by Westaim Technologies Inc. filed Critical Westaim Technologies Inc.
Priority to RU94046003A priority patent/RU2131269C1/en
Priority to HU9403317A priority patent/HU217644B/en
Priority to KR1019940704191A priority patent/KR950701534A/en
Priority to JP5519731A priority patent/JP2947934B2/en
Priority to AU40558/93A priority patent/AU673170B2/en
Priority to MD96-0295A priority patent/MD1728C2/en
Priority to BR9306613A priority patent/BR9306613A/en
Priority to DK93909715T priority patent/DK0641224T3/en
Publication of WO1993023092A1 publication Critical patent/WO1993023092A1/en
Priority to US08/459,469 priority patent/US6017553A/en
Priority to HK98113016A priority patent/HK1011939A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/14Post-treatment to improve physical properties
    • A61L17/145Coating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/10Inorganic materials
    • A61L29/106Inorganic materials other than carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • C23C14/588Removal of material by mechanical treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00119Coatings on the energy applicator with metal oxide nitride
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/014Application surgical instrument
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/781Possessing nonosized surface openings that extend partially into or completely through the host material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/891Vapor phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/931Medical device coating

Definitions

  • This invention relates to methods for preparing modified materials such as meta coatings or powders in a form such that metal species are released on a sustainable basis a an enhanced rate.
  • the invention relates to methods of forming anti-microbial coatings and powders of biocompatible metals which provide a sustained release o anti-microbial metal species when in contact with body fluids or body tissues.
  • inorganic and organic soluble salts of silver are used to prevent and treat microbial infections. While these compounds are effective as soluble salts, they do not provide prolonged protection due to loss through removal or complexation of the free silver ions. They must be reapplied at frequent intervals to overcome this problem. Reapplication is not always practical, especially where an indwelling or implanted medical device is involved.
  • U.S. Patent 2,785, 153 discloses colloidal silver protein for this purpose. Such compounds are usually formulated as creams. These compounds have not found wide applicability in the medical area due to their limited efficacy. The silver ion release rate is very slow. Furthermore, coatings from such compounds have been limited due to adhesion, abrasion resistance and shelf life problems.
  • a silver metal coating is produced by Spire Corporation, U.S.A. under the trade mark SPI-ARGENT.
  • the coating is formed by an ion-beam assisted deposition (EBAD) coating process.
  • EBAD ion-beam assisted deposition
  • the infection resistant coating is stated to be non-leaching in aqueous solutions as demonstrated by zone of inhibition tests, thus enforcing the belief that silver metal surfaces do not release anti-microbial amounts of silver ions.
  • the second metal acts as a cathode to drive the electrochemical cell.
  • the Cu is the anode, releasing Cu + ions into the electrolyte.
  • the more noble of the metals, Ag acts as the cathode, which does not ionize and does not go into solution to any large extent.
  • An exemplary device of this nature is described in U.S. Patent 4,886,505 issued Dec. 12, 1989, to Haynes et al. The patent discloses sputtered coatings of two or more different metals with a switch affixed to one of the metals such that, when the switch is closed, metal ion release is achieved.
  • a second approach to activating the silver metal surface is to use heat or chemicals.
  • Metal coatings are typically produced as thin films by vapour deposition techniques such as sputtering. Thin films of metals, alloys, semiconductors and ceramics are widely used in the production of electronic components. These and other end uses require the thin films to be produced as dense, crystalline structures with minimal defects. The films are often annealed after deposition to enhance grain growth and recrystallization and produce stable properties. Techniques to deposit metal films are reviewed by R.F. Bunshah et al., "Deposition Technologies for Films and Coatings", Noyes Publications, N.J., 1982 and by J.A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings", J. Vac. Sci. Technol., 11(4), 666-670, 1974.
  • U.S. Patent No. 4,325,776, issued April 20, 1982 to Menzel discloses a process for producing coarse or single crystal metal films from certain metals for use in integrated circuits.
  • the metal film is formed by depositing on a cooled substrate (below -90°C) such that the metal layer is in an amorphous phase.
  • the metal layer is then annealed by heating the substrate up to about room temperature.
  • the end product is stated to have large grain diameter and great homogeneity, permitting higher current densities without electromigration failures.
  • the inventors set out to develop an antimicrobial metal coating. They discovered that, contrary to previous belief, it is possible to form metal coatings from an antimicrobial metal material by creating atomic disorder in the materials by vapour deposition under conditions which limit diffusion, that is which "freeze-in" the atomic disorder.
  • the anti-microbial coatings so produced were found to provide sustained release of anti-microbial metal species into solution so as to produce an anti-microbial effect.
  • atomic disorder so as to produce solubility can be created in other material forms, such as metal powders.
  • the invention also has application beyond anti-microbial metals, encompassing any metal, metal alloy, or metal compound, including semiconductor or ceramic materials, from which sustained release of metal species into solution is desired. For instance, materials having enhanced or controlled metal dissolution find application in sensors, switches, fuses, electrodes, and batteries.
  • atomic disorder includes high concentrations of: point defects in a crystal lattice, vacancies, line defects such as dislocations, interstitial atoms, amorphous regions, grain and sub grain boundaries and the like relative to its normal ordered crystalline state. Atomic disorder leads to irregularities in surface topography and inhomogenieties in the structure on a nanometre scale.
  • normal ordered crystalline state as used herein is meant the crystallinity normally found in bulk metal materials, alloys or compounds formed as cast, wrought or plated metal products. Such materials contain only low concentrations of such atomic defects as vacancies, grain boundaries and dislocations.
  • diffusion implies diffusion of atoms and/or molecules on the surface or in the matrix of the material being formed.
  • metal or “metals” as used herein are meant to include one or more metals whether in the form of substantially pure metals, alloys or compounds such as oxides, nitrides, borides, sulphides, halides or hydrides.
  • the invention in a broad aspect extends to a method of forming a modified material containing one or more metals.
  • the method comprises creating atomic disorder in the material under conditions which limit diffusion such that sufficient atomic disorder is retained in the material to provide release, preferably on a sustainable basis, of atoms, ions, molecules or clusters of at least one of the metals into a solvent for the material.
  • Clusters are known to be small groups of atoms, ions or the like, as described by R.P. Andres et al., "Research Opportunities on Clusters and Cluster-Assembled Materials", J. Mater. Res. Vol. 4, No. 3, 1989, P. 704.
  • atomic disorder may be created in metal powders or foils by cold working, and in metal coatings by depositing by vapour deposition at low substrate temperatures.
  • the invention provides a modified material comprising one or more metals in a form characterized by sufficient atomic disorder such that the material, in contact with a solvent for the material, releases atoms, ions, molecules or clusters containing at least one metal, preferably on a sustainable basis, at an enhanced rate relative to its normal ordered crystalline state.
  • the modified material is a metal powder which has been mechanically worked or compressed, under cold working conditions, to create and retain atomic disorder.
  • metal powder as used herein is meant to include metal particles of a broad particle size, ranging from nanocrystalline powders to flakes.
  • cold working indicates that the material has been mechanically worked such as by milling, grinding, hammering, mortar and pestle or compressing, at temperatures lower than the recrystallization temperature of the material. This ensures that atomic disorder imparted through working is retained in the material.
  • the modified material is a metal coating formed on a substrate by vapour deposition techniques such as vacuum evaporation, sputtering, magnetron sputtering or ion plating.
  • the material is formed under conditions which limit diffusion during deposition and which limit annealing or recrystallization following deposition.
  • the deposition conditions preferably used to produce atomic disorder in th coatings are outside the normal range of operating conditions used to produce defect free, dense, smooth films. Such normal practices are well known (see for example R.F. Bunshah et al., supra).
  • the deposition is conducted at low substrate temperatures such that the ratio of the substrate to the melting point of the metal or metal compound being deposited (T/Tm) is maintained at less than about 0.5, more preferably at less than about 0.35, and most preferably at less than 0.30. In this ratio, the temperatures are in degrees Kelvin. The preferred ratio will vary from metal to metal and increases with alloy or impuritiy content.
  • Other preferred deposition conditions to create atomic disorder include one or more of a higher than normal working gas pressure, a lower than normal angle of incidence of the coating flux and a higher than normal coating flux.
  • the temperature of deposition or cold working is not so low that substantial annealing or recrystallization will take place when the material is brought to room temperature or its intended temperature for use (ex. body temperature for anti-microbial materials) . If the temperature differential between deposition and temperature of use ( ⁇ T) is too great, annealing results, removing atomic disorder.
  • This ⁇ T will vary from metal to metal and with the deposition technique used. For example, with respect to silver, substrate temperatures of -20 to 200°C are preferred during physical vapour deposition.
  • Normal or ambient working gas pressure for depositing the usually required dense, smooth, defect free metal films vary according to the method of physical vapour deposition being used. In general, for sputtering, the normal working gas pressure is less than 75 mT (milliTorr), for magnetron sputtering, less than 10mT, and for ion-plating less than 200 mT. Normal ambient gas pressures vary for vacuum evaporation processes vary as follows: for e-beam or arc evaporation, from 0.001 to 0.01 mT; for gas scattering evaporation (pressure plating) and reactive arc evaporation, up to 200 mT, but typically less than 20 mT. Thus, in accordance with the method of the present invention, in addition to using low substrate temperatures to achieve atomic disorder, working (or ambient) gas pressures higher than these normal values may be used to increase the level of atomic disorder in the coating.
  • angles of incidence of the coating flux during deposition Normally to achieve dense, smooth coatings, this angle is maintained at about 90o +/- 15°.
  • angles of incidence lower tha nn about 75° may be used to increase the level of atomic disorder in the coating.
  • Yet another process parameter having an effect on the level of atomic disorder is the atom flux to the surface being coated.
  • High deposition rates tend to increase atomic disorder, however, high deposition rates also tend to increase the coating temperature.
  • the metals used in the coating or powder are those which have an anti-microbial effect, but which are biocompatible (non-toxic for the intended utility).
  • Preferred metals include Ag, Au, Pt, Pd, Ir (i.e. the noble metals), Sn, Cu, Sb, Bi, and Zn, compounds of these metals or alloys containing one more of these metals. Such metals are hereinafter referred to as "anti-microbial metals").
  • anti-microbial metals Most preferred is Ag or its alloys and compounds.
  • Anti-microbial materials in accordance with this invention preferably are formed with sufficient atomic disorder that atoms, ions, molecules or clusters of the anti-microbial material are released into an alcohol or water based electrolyte on a sustainable basis.
  • the terms "sustainable basis” is used herein to differentiate, on the one hand from the release obtained from bulk metals, which release metal ions and the like at a rate and concentration which is too low to achieve an anti-microbial effect, and on the other hand from the release obtained from highly soluble salts such as silver nitrate, which release silver ions virtually instantly in contact with an alcohol or water based electrolyte.
  • the anti-microbial materials of the present invention release atoms, ions, molecules or clusters of the anti-microbial metal at a sufficient rate and concentration, over a sufficient time period to provide a useful anti-microbial effect.
  • anti-microbial effect means that atoms, ions , molecules or clusters of the anti-microbial metal are released into the electrolyte which the material contacts in concentrations sufficient to inhibit bacterial growth in the vicinity of the material.
  • the most common method of measuring anti-microbial effect is by measuring the zone of inhibition (ZOI) created when the material is placed on a bacterial lawn.
  • ZOI zone of inhibition
  • a relatively small or no ZOI indicates a non-useful anti-microbial effect, while a larger ZOI (ex. greater than 5 mm) indicates a highly useful anti-microbial effect.
  • ZOI zone of inhibition
  • the invention extends to devices such as medical devices formed from, incorporating, carrying or coated with the anti-microbial powders or coatings.
  • the anti-microbial coating may be directly deposited by vapour deposition onto such medical devices as catheters, sutures, implants, burn dressings and the like.
  • An adhesion layer such as tantalum, may be applied between the device and the anti-microbial coating. Adhesion may also be enhanced by methods known in the art, for example etching the substrate or forming a mixed interface between the substrate and the coating by simultaneous sputtering and etching.
  • Anti-microbial powders may be incorporated into creams, polymers, ceramics, paints, or other matrices, by techniques well known in the art.
  • modified materials are prepared as composite metal coatings containing atomic disorder.
  • the coating of the one or more metals or compounds to be released into solution constitutes a matrix containing atoms or molecules of a different material.
  • the presence of different atoms or molecules results in atomic disorder in the metal matrix, for instance due to different sized atoms.
  • the different atoms or molecules may be one or more second metals, metal alloys or metal compounds which are co- or sequentially deposited with the first metal or metals to be released.
  • the different atoms or molecules may be absorbed or trapped from the working gas atmosphere during reactive vapour deposition.
  • the degree of atomic disorder, and thus solubility, achieved by the inclusion of the different atoms or molecules varies, depending on the materials.
  • one or more of the above-described vapour deposition conditions namely low substrate temperature, high working gas pressure, low angle of incidence and high coating flux, may be used in combination with the inclusion of different atoms or molecules.
  • Preferred composite materials for anti-microbial purposes are formed by including atoms or molecules containing oxygen, nitrogen, hydrogen, boron, sulphur or halogens in the working gas atmosphere while depositing the anti-microbial metal. These atoms or molecules are incorporated in the coating either by being absorbed or trapped in the film, or by reacting with the metal being deposited. Both of these mechanisms during deposition are hereinafter referred to as "reactive depostion”. Gases containing these elements, for example oxygen, hydrogen, and water vapour, may be provided continuously or may be pulsed for sequential deposition.
  • Anti-microbial composite materials are also preferably prepared by co- or sequentially depositing an anti-microbial metal with one or more inert biocompatible metals selected from Ta, Ti, Nb, Zn, V, Hf, Mo, Si, and Al.
  • the composite materials may be formed by co-, sequentially or reactively depositing one or more of the anti-microbial metals as the oxides, carbides, nitrides, borides, sulphides or halides of these metals and/or the oxides, carbides, nitrides, borides, sulphides or halides of the inert metals.
  • Particularly preferred composites contain oxides of silver and/or gold, alone or together with one or more oxides of Ta, Ti, Zn and Nb.
  • anti-microbial metals which are illustrative of utility for other metals, metal alloys and metal compounds.
  • Preferred metals include Al and Si, and the metal elements from the following groups of the periodic table: ⁇ iB, IVB, VB, Vie, VHB, VHm, IB, IIB, IIIA, IVA, and VA (excluding As) in the periods 4, 5 and 6, (see Periodic Table as published in Merck Index 10th Ed., 1983, Merck and Co. Inc., Rahway, N.J., Martha Windholz). Different metals will have varying degrees o solubility.
  • the creation and retention of atomic disorder in accordance with this invention results in enhanced solubility (release) of the metal as ions, atoms, molecules or clusters into an appropriate solvent i.e. a solvent for the particular material, typically a polar solvent, over the solubility of the material in its normal ordered crystalline state.
  • an appropriate solvent i.e. a solvent for the particular material, typically a polar solvent
  • the medical devices formed from, incorporating, carrying or coated with the anti-microbial material of this invention generally come into contact with an alcohol or water based electrolyte including a body fluid (for example blood, urine or saliva) or body tissue (for example skin, muscle or bone) for any period of time such that microorganism growth on the device surface is possible.
  • an alcohol or water based electrolyte including a body fluid (for example blood, urine or saliva) or body tissue (for example skin, muscle or bone) for any period of time such that microorganism growth on the device surface is possible.
  • the term "alcohol or water based electrolyte” also includes alcohol or water based gels.
  • the devices are medical devices such as catheters, implants, tracheal tubes, orthopaedic pins, insulin pumps, wound closures, drains, dressings, shunts, connectors, prosthetic devices, pacemaker leads, needles, surgical instruments, dental prostheses, ventilator tubes and the like.
  • the invention is not limited to such devices and may extend to other devices useful in consumer healthcare, such as sterile packaging, clothing and footwear, personal hygiene products such as diapers and sanitary pads, in biomedical or biotechnical laboratory equipment, such as tables, enclosures and wall coverings, and the like.
  • biomedical or biotechnical laboratory equipment such as tables, enclosures and wall coverings, and the like.
  • biomedical device as used herein and in the claims is intended to extend broadly to all such devices.
  • the device may be made of any suitable material, for example metals, including steel, aluminum and its alloys, latex, nylon, silicone, polyester, glass, ceramic, paper, cloth and other plastics and rubbers.
  • the device will be made of a bioinert material.
  • the device may take on any shape dictated by its utility, ranging from flat sheets to discs, rods and hollow tubes.
  • the device may be rigid or flexible, a factor again dictated by its intended use.
  • the anti-microbial coating in accordance with this invention is deposited as a thin metallic film on one or more surfaces of a medical device by vapour deposition techniques.
  • Physical vapour techniques which are well known in the art, all deposit the metal from the vapour, generally atom by atom, onto a substrate surface.
  • the techniques include vacuum or arc evaporation, sputtering, magnetron sputtering and ion plating.
  • the deposition is conducted in a manner to create atomic disorder in the coating as defined hereinabove.
  • Various conditions responsible for producing atomic disorder are useful. These conditions are generally avoided in thin film deposition techniques where the object is to create a defect free, smooth and dense film (see for example J.A. Thornton, supra). While such conditions have been investigated in the art, they have not heretofore been linked to enhanced solubility of the coatings so-produced.
  • the preferred conditions which are used to create atomic disorder during the deposition process include:
  • a low substrate temperature that is maintaining the surface to be coated at a temperature such that the ratio of the substrate temperature to the melting point of the metal (in degrees Kelvin) is less than about 0.5, more preferably less than about 0.35 and most preferably less than about 0.3; and optionally one or both of:
  • a higher than normal working (or ambient) gas pressure i.e. for vacuum evaporation: e-beam or arc evaporation, greater than 0.01 mT, gas scattering evaporation (pressure plating) or reactive arc evaporation, greater than 20 mT; for sputtering: greater than 75 mT; for magnetron sputtering: greater than about 10 mT; and for ion plating: greater than about 200 mT; and
  • the metals used in the coating are those known to have an anti-microbial effect.
  • the metal must also be biocompatible.
  • Preferred metals include the noble metals Ag, Au, Pt, Pd, and Ir as well as Sn, Cu, Sb, Bi, and Zn or alloys or compounds of these metals or other metals. Most preferred is Ag or Au, or alloys or compounds of one or more of these metals.
  • the coating is formed as a thin film on at least a part of the surface of the medical device.
  • the film has a thickness no greater than that needed to provide release of metal ions on a sustainable basis over a suitable period of time.
  • the thickness will vary with the particular metal in the coating (which varies the solubility and abrasion resistance), and with the degree of atomic disorder in (and thus the solubility of) the coating.
  • the thickness will be thin enough that the coating does not interfere with the dimensional tolerances or flexibility of the device for its intended utility.
  • thicknesses of less than 1 micron have been found to provide sufficient sustained anti-microbial activity. Increased thicknesses may be used depending on the degree of metal ion release needed over a period of time. Thicknesses greater than 10 microns are more expensive to produce and normally should not be needed.
  • the anti-microbial effect of the coating is achieved when the device is brought into contact with an alcohol or a water based electrolyte such as, a body fluid or body tissue, thus releasing metal ions, atoms, molecules or clusters.
  • concentration of the metal which is needed to produce an anti-microbial effect will vary from metal to metal.
  • anti-microbial effect is achieved in body fluids such as plasma, serum or urine at concentrations less than about 0.5 - 1.5 ⁇ g/ml.
  • the ability to achieve release of metal atoms, ions, molecules or clusters on a sustainable basis from a coating is dictated by a number of factors, including coating characteristics such as composition, structure, solubility and thickness, and the nature of the environment in which the device is used.
  • the time required for total dissolution will be a function of film thickness and the nature of the environment to which they are exposed.
  • the relationship in respect of thickness is approximately linear, i.e. a two fold increase in film thickness will result in about a two fold increase in longevity.
  • a coating deposited by magnetron sputtering such that the working gas pressure was low (ex. 15 mTorr) for 50% of the deposition time and high (ex. 30 mTorr) for the remaining time, has a rapid imtial release of metal ions, followed by a longer period of slow release.
  • This type of coating is extremely effective on devices such as urinary catheters for which an initial rapid release is required to achieve immediate anti-microbial concentrations followed by a lower release rate to sustain the concentration of metal ions over a period of weeks.
  • the substrate temperature used during vapour deposition should not be so low that annealing or recrystallization of the coating takes place as the coating warms to ambient temperatures or the temperatures at which it is to be used (ex. body temperature).
  • This allowable ⁇ T that the temperature differential between the substrate temperature during deposition and the ultimate temperature of use, will vary from metal to metal.
  • preferred substrate temperatures are -20 to 200°C , more preferably -10°C to 100°C are used.
  • Atomic order may also be achieved, in accordance with the present invention by preparing composite metal materials, that is materials which contain one or more anti-microbial metals in a metal matrix which includes atoms or molecules different from the anti-microbial metals.
  • Our technique for preparing composite material is to co- or sequentially deposit the anti-microbial metal(s) with one or more other inert, biocompatible metals selected from Ta, Ti, Nb, Zn, V, Hf, Mo, Si, Al and alloys of these metals or other metal elements, typically other transition metals.
  • inert metals have a different atomic radii from that of the anti-microbial metals, which results in atomic disorder during deposition. Alloys of this kind can also serve to reduce atomic diffusion and thus stabilize the disordered structure
  • Thin film deposition equipment with multiple targets for the placement of each of the anti-microbial and inert metals is preferably utilized.
  • the layer(s) of the inert metal(s) should be discontinuous, for example as islands within the anti-microbial metal matrix.
  • the final ratio of the anti-microbial metal(s) to inert metal(s) should be greater than about 0.2.
  • the most preferable inert metals are Ti, Ta, Zn and Nb. It is also possible to form the anti-microbial coating from oxides, carbides, nitrides, sulphides, borides, halides or hydrides of one or more of the anti-microbial metals and/or one or more of the inert metals to achieve the desired atomic disorder.
  • Another composite material within the scope of the present invention is formed by reactively co- or sequentially depositing, by physical vapour techniques, a reacted material into the thin film of the anti-microbial metal(s).
  • the reacted material is an oxide, nitride, carbide, boride, sulphide, hydride or halide of the anti-microbial and/or inert metal, formed in situ by injecting the appropriate reactants, or gases containing same, (ex. air, oxygen, water, nitrogen, hydrogen, boron, sulphur, halogens) into the deposition chamber. Atoms or molecules of these gases may also become absorbed or trapped in the metal film to create atomic disorder.
  • the reactant may be continuously supplied during deposition for codeposition or it may be pulsed to provide for sequential deposition.
  • the final ratio of anti-microbial metal(s) to reaction product should be greater than about 0.2. Air, oxygen, nitrogen and hydrogen are particularly preferred reactants.
  • the above deposition techniques to prepare composite coatings may be used with or without the conditions of lower substrate temperatures, high working gas pressures and low angles of incidence previously discussed. One or more of these conditions is preferred to retain and enhance the amount of atomic disorder created in the coating.
  • an adhesion layer on the device to be coated, as is known in the art.
  • a layer of Ti, Ta or Nb may be first deposited to enhance adhesion of the subsequently deposited anti-microbial coating.
  • Anti-microbial powders including nanocrystalline powders and powders made from rapidly solidified flakes or foils, can be formed with atomic disorder so as to enhance solubility.
  • the powders either as pure metals, metal alloys or compounds such as metal oxides or metal salts, can be mechanically worked or compressed to impart atomic disorder.
  • This mechanically imparted disorder is conducted under conditions of low temperature (i.e. temperatures less than the temperature of recrystallization of the material) to ensure that annealing or recrystallization does not take place.
  • the temperature varies between metals and increases with alloy or impurity content.
  • Anti-microbial powders produced in accordance with this invention may be used in a variety of forms, for instance in topical creams, paints or adherent coatings. Alternatively, the powder may be incorporated into a polymeric, ceramic or metallic matrix to be used as a material for medical devices or coatings therefor.
  • Example 1 The invention is further illustrated by the following non-limiting examples.
  • Example 1 The invention is further illustrated by the following non-limiting examples.
  • a medical suture material size 2/0, polyester braid was coated by magnetron sputtering an Ag-Cu-alloy onto the surface to a thickness of 0.45 microns, using either argon gas working pressures of 7 mTorr or 30 mT at 0.5 KW power and a T/Tm ratio of less than 0.5.
  • the anti-microbial effect of the coatings was tested by a zone of inhibition test.
  • Basal medium Eagle (BME) with Earle's salts and L-glutamine was modified with calf/serum (10%) and 1.5 % agar prior to being dispensed (15 ml) into Petri dishes.
  • the agar containing Petri plates were allowed to surface dry prior to being inoculated with a lawn of Staphylococcus aureus ATCC# 25923.
  • the inoculant was prepared from Bactrol Discs (Difco, M.) which were reconstituted as per the manufacturer's directions.
  • the materials or coatings to be tested were placed on the surface of the agar.
  • This example is included to illustrate the surface structures which are obtained when silver metal is deposited on silicon wafers using a magnetron sputtering facility and different working gas pressures and angles of incidence (i.e. the angle between the path of the sputtered atoms and the substrate). All other conditions were as follows: deposition rate was 200 A7min; ratio of temperature of substrate (wafer) to melting point of silver (1234°K), T/Tm was less than 0.3. Argon gas pressures of 7 mTorr (a normal working pressure for metal coatings) and 30 mTorr were used. Angles of incidence at each of these pressures were 90° (normal incidence), 50° and 10°. The coatings had a thickness of about 0.5 microns.
  • the resulting surfaces were viewed by scanning electron microscope.
  • argon gas pressure increased from 7 to 30 mTorr the grain size decreased and void volume increased significantly.
  • the angle of incidence was decreased, the grain size decreased and the grain boundaries became more distinct.
  • argon pressure and an angle of incidence of 10° there were indications of some voids between the grains.
  • the angle of incidence had a greater effect on the surface topography when the gas pressure was increased to 30 mTorr.
  • the grain size varied from 60 - 150 nm and many of the grains were separated by intergrain void spaces which were 15 - 30 nm wide.
  • the angle of incidence was decreased to 50°, the grain size decreased to 30 - 90 nm and the void volume increased substantially.
  • the grain size was reduced to about 10 - 60 nm and void volumes were increased again.
  • the observed nanometre scale changes in surface morphology and topography are indications of atomic disorder in the silver metal. While not being bound by the same, it is believed that such atomic disorder results in an increase in the chemical activity due to increased internal stresses and surface roughness created by mismatched atoms. It is believed that the increased chemical activity is responsible for the increased level of solubility of the coatings when in contact with an electrolyte such as body fluid.
  • the anti-microbial effect of the coatings was evaluated using the zone of inhibition test as set out in Example 1. Each coated silicon wafer was placed on an individual plate. The results were compared to the zones of inhibition achieved when solid silver (i.e. greater than 99 % silver) sheets, wires or membranes were tested. The results are summarized in Table 1. It is evident that the pure silver devices and the silver sputtered coating at 7 mTorr do not produce any biological effect. However, the coatings deposited at a higher than normal working gas pressure, 30 mTorr, demonstrated an anti-microbial effect, as denoted by the substantial zones of inhibition around the discs. Decreasing the angle of incidence had the greatest effect on anti-microbial activity when combined with the higher gas pressures.
  • Silicon wafers were coated by magnetron sputtering with an alloy of Ag and Cu (80:20) at normal incidence at working gas pressures of 7 mTorr and 30 mTorr, all other conditions being identical to those set out in Example 2.
  • the coatings formed at high working gas pressure had smaller grain sizes and larger void volumes than did the coatings formed at the lower working gas pressures.
  • Coatings which were similarly formed from a 50:50 Ag/Cu alloy were tested for anti-microbial activity with the zone of inhibition test set out in Example 1. The results are summarized in Table 2. Coatings deposited at low working gas pressure (7 mTorr) showed minimal zones of inhibition, while the coatings deposited at high working gas pressure (30 mTorr) produced larger zones of inhibition, indicative of anti-microbial activity.
  • a coating in accordance with the present invention was tested to determine the concentration of silver ions released into solution over time.
  • One cm 2 silicon wafer discs were coated with silver as set forth in Example 2 at 7 mTorr and 30 mTorr and normal incidence to a thickness of 5000 A°.
  • a sterile synthetic urine was prepared and dispensed into test tubes (3.5 ml).
  • the coated discs were placed into each test tubes and incubated for various times at 37°C. After various periods of time, the discs were removed and the Ag content of the filtered synthetic urine was determined using neutron activation analysis.
  • Table 3 The results are set forth in Table 3.
  • the table shows the comparative amounts of Ag released over time from coatings deposited on discs at 7 mTorr or 30 mTorr.
  • the coatings deposited at high pressure were more soluble than those deposited at low pressure. It should be noted that this test is a static test. Thus, silver levels build up over time, which would not be the case in body fluid where there is constant turn over.
  • This example is included to illustrate coatings in accordance with the present invention formed from another noble metal, Pd.
  • the coatings were formed on silicon wafers as set forth in Example 2, to a thickness of 5000 Ao , using 7 mTorr or 30 mTorr working gas pressures and angles of incidence of 90° and 10°.
  • the coated discs were evaluated for anti-microbial activity by the zone of inhibition test substantially as set forth in Example 1.
  • the coated discs were placed coating side up such that the agar formed a 1 mm surface coating over the discs.
  • the medium was allowed to solidify and surface dry, after which the bacterial lawn was spread over the surface.
  • the dishes were incubated at 37°C for 24 h. The amount of growth was then visually analyzed.
  • This example is included to illustrate the effect of silver deposition temperature on the antimicrobial activity of the coating.
  • Silver metal was deposited on 2.5 cm sections of a latex Foley catheter using a magnetron sputtering facility. Operating conditions were as follows; the deposition rate was 200 Ao per minute; the argon working gas pressure was 30mTorr; and the ratio of temperature of substrate to melting point of the coating metal silver, T/Tm was 0.30 or 0.38.
  • the angles of incidence were variable since the substrate was round and rough. That is the angles of incidence varied around the circumference and, on a finer scale, across the sides and tops of the numerous surface features.
  • the antimicrobial effect was tested by a zone of inhibition test as outlined in Example 1.
  • This example is included to demonstrate an antimicrobial coating formed by DC magnetron sputtering on a commercial catheter.
  • a teflon coated latex Foley catheter was coated by DC magnetron sputtering 99.99% pure silver on the surface using the conditions listed in Table 5.
  • the working gases used were commercial Ar and 99/1 wt% Ar/O 2 .
  • the antimicrobial effect of the coating was tested by a zone of inhibition test.
  • Mueller Hinton agar was dispensed into Petri dishes. The agar plates were allowed to surface dry prior to being inoculated with a lawn of Staphylococeus aureus ATCC# 25923.
  • the inoculant was prepared from Bactrol Discs (Difco, M.) which were reconstituted as per the manufacturer's directions.
  • Example 8 This example demonstrates silver coatings formed by arc evaporation, gas scattering evaporation (pressure plating) and reactive arc evaporation. Evaporation of 99.99% silver was performed onto silicon or alumina wafers at an initial substrate temperature of about 21°C, using the parameters as follows:
  • This example is included to illustrate composite materials to produce antimicrobial effects.
  • a set of coatings were produced by RF magnetron sputtering zinc oxide onto silicon wafers as outlined below. The zinc oxide coatings showed no zone of inhibition.
  • Coatings of Ag and ZnO were deposited to a total thickness of 3300 Angstroms by sequentially sputtering layers of Ag with layers of ZnO, according to the conditions below, in a 75/25 wt% ratio.
  • the coatings were demonstrated to have no zone of inhibition when the zinc oxide layers were about 100 Angstroms thick.
  • films consisting of islands of very thin to discontinuous layers of ZnO (less than 50 Angstroms) in an Ag matrix ie. a composite film had a 8 mm corrected zone of inhibition.
  • the conditions used to deposit the Ag were as follows:
  • This example demonstrates the effects of cold working and annealing silver and gold powders on the antimicrobial efficacy demonstrated by a standard zone of inhibition test.
  • Cold working of such powders results in a defective surface structure containing atomic disorder which favours the release of ions causing antimicrobial activity.
  • the antimicrobial effect of this defective structure can be removed by annealing.
  • Nanocrystalline silver powder (crystal size about 30 nm) was sprinkled onto adhesive tape and tested. A zone of inhibition of 5 mm was obtained, using the method set forth in Example 7. A 0.3g pellet of the nanocrystalline Ag powder was pressed at 40,000 psi. The pellet produced a 9 mm zone of inhibition when tested for antimicrobial activity.
  • Nanocyrstalline silver powder was mechanically worked in a ball mill for 30 sec.
  • the resulting powder was tested for antimicrobial activity, both by sprinkling the worked powder on adhesive tape and applying to the plates, and by pressing the powder into a pellet at the above conditions and placing the pellet on the plates.
  • the zones of inhibition observed were 7 and 11 mm respectively.
  • a pellet that had been pressed from the worked powder was annealed at 500°C for 1 hour under vacuum conditions. A reduced zone of inhibition of 3 mm was observed for the annealed pellet.
  • nanocrystalline silver powder while having a small anti-microbial effect on its own, has an improved antimicrobial effect by introducing atomic disorder by mechanical working of the powder in a ball mill or by pressing it into a pellet.
  • the antimicrobial effect was significantly decreased by annealing at 500°C.
  • conditions of mechanical working should not include or be followed by conditions such as high temperature, which allow diffusion. Cold mechanical working conditions are preferred to limit diffusion, for example by working at room temperature or by grinding or milling in liquid nitrogen.
  • Silver powder 1 micron particle size, was tested in a manner similar to above.
  • the Ag powder sprinkled onto adhesive tape and tested for a zone of inhibition. No zone of inhibition was observed.
  • the powder was worked in a ball mill for 30 seconds and sprinkled onto adhesive tape. A 6 mm zone of inhibition was observed around the powder on the tape.
  • the Ag powder (as is or after mechanical working in the ball mill) was pressed into a 0.3 g pellet using 40,000 psi, zones of inhibition of 5 and 6 mm respectively were observed.
  • a pellet which was formed from the ball milled powder and which was annealed at 500°C for 1 hour had significantly reduced antimicrobial activity.
  • the gold powder was pressed into a 0.2 g pellet using 40,000 psi. A 10 mm zone of inhibition was observed. When the pressed pellets were subsequently vacuum annealed at 500°C for 1 hour and the zone of inhibition was found to be 0 mm.
  • Example 7 demonstrates that an antimicrobial coating of silver can be obtained by sputtering in argon and 1 % oxygen (0.5 kW, 40 mTorr, 100 mm anode/cathode distance, and 20°C - produced a zone of inhibition of 11 mm).
  • Base Pressure less than 4 ⁇ 10 -6 Torr
  • This example demonstrates that the coatings of this invention have an antimicrobial effect against a broad spectrum of bacteria.
  • a total of 171 different bacterial samples encompassing 18 genera and 55 species were provide by the Provincial Laboratory of Public Health for Northern Alberta. These samples had been quick frozen in 20% skim milk and stored at -70°C for periods ranging from several months to several years. Fastidious organisms which were unlikely to grow under conditions used in standard Kirby-Bauer susceptibility testing were not used.
  • Each frozen sample was scraped with a sterile cotton swab to inoculate a blood agar plate (BAP).
  • BAP blood agar plate
  • the plates were incubated overnight at 35°C.
  • the following morning isolated colonies were subcultured onto fresh BAPs and incubated at 35°C overnight.
  • the next day, the organisms were subjected to Kirby-Bauer susceptibility testing as described below.
  • a sterile cotton swab was dipped into each broth. Excess fluid was removed by rotating the swab against the rim of the tube. The inoculum was applied to a Mueller Hinton (MH) agar plate by streaking the swab evenly in three directions over the entire agar surface. Three 1 cm ⁇ 1 cm silver coated silica wafer squares were applied to each MH plate and the plates were inverted and incubated overnight at 35°C. The coatings had been sputtered under the following conditions, which through XFD analysis were shown to be silver/silver oxide composite films:
  • BAP cultures of control organisms were provided by the Provincial Laboratory and included: Staphylococeus aureus ATCC 25923; Pseudomonas aeruginosa ATCC 27853; Escherichia coli: ATCC 25922; and Enteroeoeeus faec ⁇ lis ATCC 29212 to check the quality of the MH agar. These cultures were treated in a like manner to the test organisms except that standard antibiotic discs rather than silver coated wafers were applied to the bacterial lawns on the MH agar. These organisms demonstrated that the MH agar was suitable for standard ZOI tests.
  • Example 13 This example demonstrates the use of tantalum as an adhesive layer for coatings of this invention. Tantalum is well known as a material which, in the form of an interlayer, improves adhesion of thin films to substrates.
  • test sections including a group of stainless steel (316) (1 ⁇ 1 cm) and silicon (1.7 X 0.9 cm) coupons and sections of latex tubing (5 cm) were cleaned in ethanol and then half of the test sections were coated (by sputtering) with a thin layer (approx. 100 Angstroms) of Ta before an antimicrobial silver film was deposited on them. The second group of the test sections were only coated with the antimicrobial Ag film. Coating conditions are listed below. While all test sections had similar antimicrobial activity, the Ta coated test sections had much better adhesion properties than did the untreated test sections. Adhesion properties were determined using ASTM method D3359-87, a standard test method for measuring adhesion. Sputtering Conditions
  • DC magnetron sputtering was used to deposit silver from a 99.98% pure cathode onto silicon and alumina wafers with commercial argon moisturized with water as the working gas.
  • the argon was moisturized by passing it through two flasks containing 3 litres of room temperature water and one empty flask set up with glass wool to absorb any free liquid before the gas entered the sputtering unit.

Abstract

Anti-microbial coatings and method of forming same on medical devices are provided. The coatings are formed by depositing a biocompatible metal by vapour deposition techniques to produce atomic disorder in the coating such that a sustained release of metal ions sufficient to produce an anti-microbial effect is achieved. Preferred deposition conditions to achieve atomic disorder include a lower than normal substrate temperature, and one or more of a higher than normal working gas pressure and a lower than normal angle of incidence of coating flux. Anti-microbial powders formed by mechanical working to produce atomic disorder are also provided. The invention extends to other metal coatings and powders similarly formed so as to provide enhanced solubility.

Description

"ANTI-MICROBIAL COATING FOR MEDICAL DEVICES" FIELD OF THE INVENTION
This invention relates to methods for preparing modified materials such as meta coatings or powders in a form such that metal species are released on a sustainable basis a an enhanced rate. In a particular aspect, the invention relates to methods of forming anti-microbial coatings and powders of biocompatible metals which provide a sustained release o anti-microbial metal species when in contact with body fluids or body tissues. BACKGROUND OF THE INVENTION
The need for an effective anti-microbial coating is well established in th medical community. Physicians and surgeons using medical devices and appliances ranging from orthopaedic pins, plates and implants through to wound dressings and urinary catheters must constantly guard against infection. An inexpensive anti-microbial coating also finds application in medical devices used in consumer healthcare and personal hygiene products as well as in biomedical/biotechnical laboratory equipment. The term "medical device", as used herein and in the claims is meant to extend to all such products.
The anti-microbial effects of metallic ions such as Ag, Au, Pt, Pd, Ir (i.e. th noble metals), Cu, Sn, Sb, Bi and Zn are known (see Morton, H.E., Pseudomonas in Disinfection, Sterilization and Preservation, ed. S.S. Block, Lea and Febiger, 1977 and Grier, N., Silver and Its Compounds in Disinfection, Sterilization and Preservation, ed. S.S. Block, Lea and Febiger, 1977). Of the metallic ions with anti-microbial properties, silver is perhaps the best known due to its unusually good bioactivity at low concentrations. This phenomena is termed oligodynamic action. In modern medical practice both inorganic and organic soluble salts of silver are used to prevent and treat microbial infections. While these compounds are effective as soluble salts, they do not provide prolonged protection due to loss through removal or complexation of the free silver ions. They must be reapplied at frequent intervals to overcome this problem. Reapplication is not always practical, especially where an indwelling or implanted medical device is involved.
Attempts have been make to slow the release of silver ions during treatment by creating silver containing complexes which have a lower level of solubility. For example, U.S. Patent 2,785, 153 discloses colloidal silver protein for this purpose. Such compounds are usually formulated as creams. These compounds have not found wide applicability in the medical area due to their limited efficacy. The silver ion release rate is very slow. Furthermore, coatings from such compounds have been limited due to adhesion, abrasion resistance and shelf life problems.
The use of silver metal coatings for anti-microbial purposes has been suggested. For instance, see Deitch et al., Antimicrobial Agents and Chemotherapy, Vol. 23(3), 1983, pp. 356- 359 andMackeenetal., Antimicrobial Agents and Chemotherapy, Vol. 31(1), 1987, pp. 93 - 99. However, it is generally accepted that such coatings alone do not provide the required level of efficacy, since diffusion of silver ions from the metallic surface is negligible.
A silver metal coating is produced by Spire Corporation, U.S.A. under the trade mark SPI-ARGENT. The coating is formed by an ion-beam assisted deposition (EBAD) coating process. The infection resistant coating is stated to be non-leaching in aqueous solutions as demonstrated by zone of inhibition tests, thus enforcing the belief that silver metal surfaces do not release anti-microbial amounts of silver ions.
Given the failure of metallic silver coatings to generate the required anti- microbial efficacy, other researchers have tried novel activation processes. One technique is to use electrical activation of metallic silver implants (see Marino et al. , Journal of Biological Physics, Vol. 12, 1984, pp. 93 - 98). Electrical stimulation of metallic silver is not always practical, especially for mobile patients. Attempts to overcome this problem include developing in situ electrical currents through galvanic action. Metal bands or layers of different metals are deposited on a device as thin film coatings. A galvanic cell is created when two metals in contact with each other are placed in an electrically conducting fluid. One metal layer acts as an anode, which dissolves into the electrolyte. The second metal acts as a cathode to drive the electrochemical cell. For example, in the case of alternating layers of Cu and Ag, the Cu is the anode, releasing Cu+ ions into the electrolyte. The more noble of the metals, Ag, acts as the cathode, which does not ionize and does not go into solution to any large extent. An exemplary device of this nature is described in U.S. Patent 4,886,505 issued Dec. 12, 1989, to Haynes et al. The patent discloses sputtered coatings of two or more different metals with a switch affixed to one of the metals such that, when the switch is closed, metal ion release is achieved. Previous work has shown that a film composed of thin laminates of alternating, different metals such as silver and copper can be made to dissolve if the surface is first etched. In this instance, the etching process creates a highly textured surface (see M. Tanemura and F. Okuyama, J. Vac. Sci. Technol., 5, 1986, pp 2369-2372). However, the process of making such multilaminated films is time consuming and expensive.
Electrical activation of metallic coatings has not presented a suitable solution to the problem. It should be noted that galvanic action will occur only when an electrolyte is present and if an electrical connection between the two metals of the galvanic couple exists. Since galvanic corrosion occurs primarily at the metallic interface between the two metals, electrical contact is not sustained. Thus a continuous release of metal ions over an extended period of time is not probable. Also, galvanic action to release a metal such as silver is difficult to achieve. As indicated above, the metal ions exhibiting the greatest anti-microbial effect are the noble metals, such as Ag, Au, Pt and Pd. There are few metals more noble than these to serve as cathode materials so as to drive the release of a noble metal such as Ag at the anode.
A second approach to activating the silver metal surface is to use heat or chemicals. U.S. Patents 4,476,590 and 4,615,705, issued to Scales et al. on October 16, 1984 and October 7, 1986, respectively, disclose methods of activating silver surface coatings on endoprosthetic implants to render them bioerodible by heating at greater than 180°C or by contacting with hydrogen peroxide. Such treatments are limited in terms of the substrate/devices which can be coated and activated.
There is still a need for an efficacious, inexpensive anti-microbial material having the following properties:
- sustained release of an anti-microbial agent at therapeutically active levels; - applicable to a wide variety of devices and materials;
- useful shelf life; and
- low mammalian toxicity.
Metal coatings are typically produced as thin films by vapour deposition techniques such as sputtering. Thin films of metals, alloys, semiconductors and ceramics are widely used in the production of electronic components. These and other end uses require the thin films to be produced as dense, crystalline structures with minimal defects. The films are often annealed after deposition to enhance grain growth and recrystallization and produce stable properties. Techniques to deposit metal films are reviewed by R.F. Bunshah et al., "Deposition Technologies for Films and Coatings", Noyes Publications, N.J., 1982 and by J.A. Thornton, "Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings", J. Vac. Sci. Technol., 11(4), 666-670, 1974.
U.S. Patent No. 4,325,776, issued April 20, 1982 to Menzel discloses a process for producing coarse or single crystal metal films from certain metals for use in integrated circuits. The metal film is formed by depositing on a cooled substrate (below -90°C) such that the metal layer is in an amorphous phase. The metal layer is then annealed by heating the substrate up to about room temperature. The end product is stated to have large grain diameter and great homogeneity, permitting higher current densities without electromigration failures. SUMMARY OF THE INVENTION
The inventors set out to develop an antimicrobial metal coating. They discovered that, contrary to previous belief, it is possible to form metal coatings from an antimicrobial metal material by creating atomic disorder in the materials by vapour deposition under conditions which limit diffusion, that is which "freeze-in" the atomic disorder. The anti-microbial coatings so produced were found to provide sustained release of anti-microbial metal species into solution so as to produce an anti-microbial effect.
This basic discovery linking "atomic disorder" to enhanced solubility has broad application. The inventors have demonstrated that atomic disorder so as to produce solubility can be created in other material forms, such as metal powders. The invention also has application beyond anti-microbial metals, encompassing any metal, metal alloy, or metal compound, including semiconductor or ceramic materials, from which sustained release of metal species into solution is desired. For instance, materials having enhanced or controlled metal dissolution find application in sensors, switches, fuses, electrodes, and batteries.
The term "atomic disorder" as used herein includes high concentrations of: point defects in a crystal lattice, vacancies, line defects such as dislocations, interstitial atoms, amorphous regions, grain and sub grain boundaries and the like relative to its normal ordered crystalline state. Atomic disorder leads to irregularities in surface topography and inhomogenieties in the structure on a nanometre scale. By the term "normal ordered crystalline state" as used herein is meant the crystallinity normally found in bulk metal materials, alloys or compounds formed as cast, wrought or plated metal products. Such materials contain only low concentrations of such atomic defects as vacancies, grain boundaries and dislocations.
The term "diffusion" as used herein implies diffusion of atoms and/or molecules on the surface or in the matrix of the material being formed.
The terms "metal" or "metals" as used herein are meant to include one or more metals whether in the form of substantially pure metals, alloys or compounds such as oxides, nitrides, borides, sulphides, halides or hydrides.
The invention, in a broad aspect extends to a method of forming a modified material containing one or more metals. The method comprises creating atomic disorder in the material under conditions which limit diffusion such that sufficient atomic disorder is retained in the material to provide release, preferably on a sustainable basis, of atoms, ions, molecules or clusters of at least one of the metals into a solvent for the material. Clusters are known to be small groups of atoms, ions or the like, as described by R.P. Andres et al., "Research Opportunities on Clusters and Cluster-Assembled Materials", J. Mater. Res. Vol. 4, No. 3, 1989, P. 704.
Specific preferred embodiments of the invention demonstrate that atomic disorder may be created in metal powders or foils by cold working, and in metal coatings by depositing by vapour deposition at low substrate temperatures.
In another broad aspect, the invention provides a modified material comprising one or more metals in a form characterized by sufficient atomic disorder such that the material, in contact with a solvent for the material, releases atoms, ions, molecules or clusters containing at least one metal, preferably on a sustainable basis, at an enhanced rate relative to its normal ordered crystalline state.
In preferred embodiments of the invention, the modified material is a metal powder which has been mechanically worked or compressed, under cold working conditions, to create and retain atomic disorder.
The term "metal powder" as used herein is meant to include metal particles of a broad particle size, ranging from nanocrystalline powders to flakes.
The term "cold working" as used herein indicates that the material has been mechanically worked such as by milling, grinding, hammering, mortar and pestle or compressing, at temperatures lower than the recrystallization temperature of the material. This ensures that atomic disorder imparted through working is retained in the material.
In another preferred embodiment, the modified material is a metal coating formed on a substrate by vapour deposition techniques such as vacuum evaporation, sputtering, magnetron sputtering or ion plating. The material is formed under conditions which limit diffusion during deposition and which limit annealing or recrystallization following deposition. The deposition conditions preferably used to produce atomic disorder in th coatings are outside the normal range of operating conditions used to produce defect free, dense, smooth films. Such normal practices are well known (see for example R.F. Bunshah et al., supra). Preferably the deposition is conducted at low substrate temperatures such that the ratio of the substrate to the melting point of the metal or metal compound being deposited (T/Tm) is maintained at less than about 0.5, more preferably at less than about 0.35, and most preferably at less than 0.30. In this ratio, the temperatures are in degrees Kelvin. The preferred ratio will vary from metal to metal and increases with alloy or impuritiy content. Other preferred deposition conditions to create atomic disorder include one or more of a higher than normal working gas pressure, a lower than normal angle of incidence of the coating flux and a higher than normal coating flux.
The temperature of deposition or cold working is not so low that substantial annealing or recrystallization will take place when the material is brought to room temperature or its intended temperature for use (ex. body temperature for anti-microbial materials) . If the temperature differential between deposition and temperature of use (ΔT) is too great, annealing results, removing atomic disorder. This ΔT will vary from metal to metal and with the deposition technique used. For example, with respect to silver, substrate temperatures of -20 to 200°C are preferred during physical vapour deposition.
Normal or ambient working gas pressure for depositing the usually required dense, smooth, defect free metal films vary according to the method of physical vapour deposition being used. In general, for sputtering, the normal working gas pressure is less than 75 mT (milliTorr), for magnetron sputtering, less than 10mT, and for ion-plating less than 200 mT. Normal ambient gas pressures vary for vacuum evaporation processes vary as follows: for e-beam or arc evaporation, from 0.001 to 0.01 mT; for gas scattering evaporation (pressure plating) and reactive arc evaporation, up to 200 mT, but typically less than 20 mT. Thus, in accordance with the method of the present invention, in addition to using low substrate temperatures to achieve atomic disorder, working (or ambient) gas pressures higher than these normal values may be used to increase the level of atomic disorder in the coating.
Another condition discovered to have an effect on the level of atomic disorder in the coatings of the present invention is the angle of incidence of the coating flux during deposition. Normally to achieve dense, smooth coatings, this angle is maintained at about 90º +/- 15°. In accordance with the present invention, in addition to using low substrate temperatures during deposition to achieve atomic disorder, angles of incidence lower tha nn about 75° may be used to increase the level of atomic disorder in the coating.
Yet another process parameter having an effect on the level of atomic disorder is the atom flux to the surface being coated. High deposition rates tend to increase atomic disorder, however, high deposition rates also tend to increase the coating temperature. Thus, there is an optimum deposition rate that depends on the deposition technique, the coating material and other process parameters.
To provide an anti-microbial material, the metals used in the coating or powder are those which have an anti-microbial effect, but which are biocompatible (non-toxic for the intended utility). Preferred metals include Ag, Au, Pt, Pd, Ir (i.e. the noble metals), Sn, Cu, Sb, Bi, and Zn, compounds of these metals or alloys containing one more of these metals. Such metals are hereinafter referred to as "anti-microbial metals"). Most preferred is Ag or its alloys and compounds. Anti-microbial materials in accordance with this invention preferably are formed with sufficient atomic disorder that atoms, ions, molecules or clusters of the anti-microbial material are released into an alcohol or water based electrolyte on a sustainable basis. The terms "sustainable basis" is used herein to differentiate, on the one hand from the release obtained from bulk metals, which release metal ions and the like at a rate and concentration which is too low to achieve an anti-microbial effect, and on the other hand from the release obtained from highly soluble salts such as silver nitrate, which release silver ions virtually instantly in contact with an alcohol or water based electrolyte. In contrast, the anti-microbial materials of the present invention release atoms, ions, molecules or clusters of the anti-microbial metal at a sufficient rate and concentration, over a sufficient time period to provide a useful anti-microbial effect.
The term "anti-microbial effect" as used herein means that atoms, ions , molecules or clusters of the anti-microbial metal are released into the electrolyte which the material contacts in concentrations sufficient to inhibit bacterial growth in the vicinity of the material. The most common method of measuring anti-microbial effect is by measuring the zone of inhibition (ZOI) created when the material is placed on a bacterial lawn. A relatively small or no ZOI (ex. less than 1 mm) indicates a non-useful anti-microbial effect, while a larger ZOI (ex. greater than 5 mm) indicates a highly useful anti-microbial effect. One procedure for a ZOI test is set out in the Examples which follow.
The invention extends to devices such as medical devices formed from, incorporating, carrying or coated with the anti-microbial powders or coatings. The anti-microbial coating may be directly deposited by vapour deposition onto such medical devices as catheters, sutures, implants, burn dressings and the like. An adhesion layer, such as tantalum, may be applied between the device and the anti-microbial coating. Adhesion may also be enhanced by methods known in the art, for example etching the substrate or forming a mixed interface between the substrate and the coating by simultaneous sputtering and etching. Anti-microbial powders may be incorporated into creams, polymers, ceramics, paints, or other matrices, by techniques well known in the art.
In a further broad aspect of the invention, modified materials are prepared as composite metal coatings containing atomic disorder. In this case, the coating of the one or more metals or compounds to be released into solution constitutes a matrix containing atoms or molecules of a different material. The presence of different atoms or molecules results in atomic disorder in the metal matrix, for instance due to different sized atoms. The different atoms or molecules may be one or more second metals, metal alloys or metal compounds which are co- or sequentially deposited with the first metal or metals to be released. Alternatively the different atoms or molecules may be absorbed or trapped from the working gas atmosphere during reactive vapour deposition. The degree of atomic disorder, and thus solubility, achieved by the inclusion of the different atoms or molecules varies, depending on the materials. In order to retain and enhance the atomic disorder in the composite material, one or more of the above-described vapour deposition conditions, namely low substrate temperature, high working gas pressure, low angle of incidence and high coating flux, may be used in combination with the inclusion of different atoms or molecules.
Preferred composite materials for anti-microbial purposes are formed by including atoms or molecules containing oxygen, nitrogen, hydrogen, boron, sulphur or halogens in the working gas atmosphere while depositing the anti-microbial metal. These atoms or molecules are incorporated in the coating either by being absorbed or trapped in the film, or by reacting with the metal being deposited. Both of these mechanisms during deposition are hereinafter referred to as "reactive depostion". Gases containing these elements, for example oxygen, hydrogen, and water vapour, may be provided continuously or may be pulsed for sequential deposition.
Anti-microbial composite materials are also preferably prepared by co- or sequentially depositing an anti-microbial metal with one or more inert biocompatible metals selected from Ta, Ti, Nb, Zn, V, Hf, Mo, Si, and Al. Alternatively, the composite materials may be formed by co-, sequentially or reactively depositing one or more of the anti-microbial metals as the oxides, carbides, nitrides, borides, sulphides or halides of these metals and/or the oxides, carbides, nitrides, borides, sulphides or halides of the inert metals. Particularly preferred composites contain oxides of silver and/or gold, alone or together with one or more oxides of Ta, Ti, Zn and Nb.
DESCRIPTION OF THE PREF ERRED EMBODIMENTS
As above stated, the present invention has application beyond anti-microbial materials. However, the invention is disclosed herein with anti-microbial metals, which are illustrative of utility for other metals, metal alloys and metal compounds. Preferred metals include Al and Si, and the metal elements from the following groups of the periodic table: πiB, IVB, VB, Vie, VHB, VHm, IB, IIB, IIIA, IVA, and VA (excluding As) in the periods 4, 5 and 6, (see Periodic Table as published in Merck Index 10th Ed., 1983, Merck and Co. Inc., Rahway, N.J., Martha Windholz). Different metals will have varying degrees o solubility. However, the creation and retention of atomic disorder in accordance with this invention results in enhanced solubility (release) of the metal as ions, atoms, molecules or clusters into an appropriate solvent i.e. a solvent for the particular material, typically a polar solvent, over the solubility of the material in its normal ordered crystalline state.
The medical devices formed from, incorporating, carrying or coated with the anti-microbial material of this invention generally come into contact with an alcohol or water based electrolyte including a body fluid (for example blood, urine or saliva) or body tissue (for example skin, muscle or bone) for any period of time such that microorganism growth on the device surface is possible. The term "alcohol or water based electrolyte" also includes alcohol or water based gels. In most cases the devices are medical devices such as catheters, implants, tracheal tubes, orthopaedic pins, insulin pumps, wound closures, drains, dressings, shunts, connectors, prosthetic devices, pacemaker leads, needles, surgical instruments, dental prostheses, ventilator tubes and the like. However, it should be understood that the invention is not limited to such devices and may extend to other devices useful in consumer healthcare, such as sterile packaging, clothing and footwear, personal hygiene products such as diapers and sanitary pads, in biomedical or biotechnical laboratory equipment, such as tables, enclosures and wall coverings, and the like. The term "medical device" as used herein and in the claims is intended to extend broadly to all such devices.
The device may be made of any suitable material, for example metals, including steel, aluminum and its alloys, latex, nylon, silicone, polyester, glass, ceramic, paper, cloth and other plastics and rubbers. For use as an in-dwelling medical device, the device will be made of a bioinert material. The device may take on any shape dictated by its utility, ranging from flat sheets to discs, rods and hollow tubes. The device may be rigid or flexible, a factor again dictated by its intended use. Anti-Microbial Coatings
The anti-microbial coating in accordance with this invention is deposited as a thin metallic film on one or more surfaces of a medical device by vapour deposition techniques. Physical vapour techniques, which are well known in the art, all deposit the metal from the vapour, generally atom by atom, onto a substrate surface. The techniques include vacuum or arc evaporation, sputtering, magnetron sputtering and ion plating. The deposition is conducted in a manner to create atomic disorder in the coating as defined hereinabove. Various conditions responsible for producing atomic disorder are useful. These conditions are generally avoided in thin film deposition techniques where the object is to create a defect free, smooth and dense film (see for example J.A. Thornton, supra). While such conditions have been investigated in the art, they have not heretofore been linked to enhanced solubility of the coatings so-produced.
The preferred conditions which are used to create atomic disorder during the deposition process include:
- a low substrate temperature, that is maintaining the surface to be coated at a temperature such that the ratio of the substrate temperature to the melting point of the metal (in degrees Kelvin) is less than about 0.5, more preferably less than about 0.35 and most preferably less than about 0.3; and optionally one or both of:
- a higher than normal working (or ambient) gas pressure, i.e. for vacuum evaporation: e-beam or arc evaporation, greater than 0.01 mT, gas scattering evaporation (pressure plating) or reactive arc evaporation, greater than 20 mT; for sputtering: greater than 75 mT; for magnetron sputtering: greater than about 10 mT; and for ion plating: greater than about 200 mT; and
- maintaining the angle of incidence of the coating flux on the surface to be coated at less than about 75°, and preferably less than about 30°
The metals used in the coating are those known to have an anti-microbial effect. For most medical devices, the metal must also be biocompatible. Preferred metals include the noble metals Ag, Au, Pt, Pd, and Ir as well as Sn, Cu, Sb, Bi, and Zn or alloys or compounds of these metals or other metals. Most preferred is Ag or Au, or alloys or compounds of one or more of these metals.
The coating is formed as a thin film on at least a part of the surface of the medical device. The film has a thickness no greater than that needed to provide release of metal ions on a sustainable basis over a suitable period of time. In that respect, the thickness will vary with the particular metal in the coating (which varies the solubility and abrasion resistance), and with the degree of atomic disorder in (and thus the solubility of) the coating. The thickness will be thin enough that the coating does not interfere with the dimensional tolerances or flexibility of the device for its intended utility. Typically, thicknesses of less than 1 micron have been found to provide sufficient sustained anti-microbial activity. Increased thicknesses may be used depending on the degree of metal ion release needed over a period of time. Thicknesses greater than 10 microns are more expensive to produce and normally should not be needed.
The anti-microbial effect of the coating is achieved when the device is brought into contact with an alcohol or a water based electrolyte such as, a body fluid or body tissue, thus releasing metal ions, atoms, molecules or clusters. The concentration of the metal which is needed to produce an anti-microbial effect will vary from metal to metal. Generally, anti-microbial effect is achieved in body fluids such as plasma, serum or urine at concentrations less than about 0.5 - 1.5 μg/ml. The ability to achieve release of metal atoms, ions, molecules or clusters on a sustainable basis from a coating is dictated by a number of factors, including coating characteristics such as composition, structure, solubility and thickness, and the nature of the environment in which the device is used. As the level of atomic disorder is increased, the amount of metal ions released per unit time increases. For instance, a silver metal film deposited by magnetron sputtering at T/Tm < 0.5 and a working gas pressure of about 7 mTorr releases approximately 1/3 of the silver ions that a film deposited under similar conditions, but at 30 mTorr, will release over 10 days. Films that are created with an intermediate structure (ex. lower pressure, lower angle of incidence etc.) have Ag release values intermediate to these values as determined by bioassays. This then provides a method for producing controlled release metallic coatings in accordance with this invention. Slow release coatings are prepared such that the degree of disorder is low while fast release coatings are prepared such that the degree of disorder is high.
For continuous, uniform coatings, the time required for total dissolution will be a function of film thickness and the nature of the environment to which they are exposed. The relationship in respect of thickness is approximately linear, i.e. a two fold increase in film thickness will result in about a two fold increase in longevity.
It is also possible to control the metal release from a coating by forming a thin film coating with a modulated structure. For instance, a coating deposited by magnetron sputtering such that the working gas pressure was low (ex. 15 mTorr) for 50% of the deposition time and high (ex. 30 mTorr) for the remaining time, has a rapid imtial release of metal ions, followed by a longer period of slow release. This type of coating is extremely effective on devices such as urinary catheters for which an initial rapid release is required to achieve immediate anti-microbial concentrations followed by a lower release rate to sustain the concentration of metal ions over a period of weeks.
The substrate temperature used during vapour deposition should not be so low that annealing or recrystallization of the coating takes place as the coating warms to ambient temperatures or the temperatures at which it is to be used (ex. body temperature). This allowable ΔT, that the temperature differential between the substrate temperature during deposition and the ultimate temperature of use, will vary from metal to metal. For the most preferred metals of Ag and Au, preferred substrate temperatures of -20 to 200°C , more preferably -10°C to 100°C are used. Atomic order may also be achieved, in accordance with the present invention by preparing composite metal materials, that is materials which contain one or more anti-microbial metals in a metal matrix which includes atoms or molecules different from the anti-microbial metals.
Our technique for preparing composite material is to co- or sequentially deposit the anti-microbial metal(s) with one or more other inert, biocompatible metals selected from Ta, Ti, Nb, Zn, V, Hf, Mo, Si, Al and alloys of these metals or other metal elements, typically other transition metals. Such inert metals have a different atomic radii from that of the anti-microbial metals, which results in atomic disorder during deposition. Alloys of this kind can also serve to reduce atomic diffusion and thus stabilize the disordered structure Thin film deposition equipment with multiple targets for the placement of each of the anti-microbial and inert metals is preferably utilized. When layers are sequentially deposited the layer(s) of the inert metal(s) should be discontinuous, for example as islands within the anti-microbial metal matrix. The final ratio of the anti-microbial metal(s) to inert metal(s) should be greater than about 0.2. The most preferable inert metals are Ti, Ta, Zn and Nb. It is also possible to form the anti-microbial coating from oxides, carbides, nitrides, sulphides, borides, halides or hydrides of one or more of the anti-microbial metals and/or one or more of the inert metals to achieve the desired atomic disorder.
Another composite material within the scope of the present invention is formed by reactively co- or sequentially depositing, by physical vapour techniques, a reacted material into the thin film of the anti-microbial metal(s). The reacted material is an oxide, nitride, carbide, boride, sulphide, hydride or halide of the anti-microbial and/or inert metal, formed in situ by injecting the appropriate reactants, or gases containing same, (ex. air, oxygen, water, nitrogen, hydrogen, boron, sulphur, halogens) into the deposition chamber. Atoms or molecules of these gases may also become absorbed or trapped in the metal film to create atomic disorder. The reactant may be continuously supplied during deposition for codeposition or it may be pulsed to provide for sequential deposition. The final ratio of anti-microbial metal(s) to reaction product should be greater than about 0.2. Air, oxygen, nitrogen and hydrogen are particularly preferred reactants.
The above deposition techniques to prepare composite coatings may be used with or without the conditions of lower substrate temperatures, high working gas pressures and low angles of incidence previously discussed. One or more of these conditions is preferred to retain and enhance the amount of atomic disorder created in the coating.
It may be advantageous, prior to depositing an anti-microbial in accordance with the present invention, to provide an adhesion layer on the device to be coated, as is known in the art. For instance, for a latex device, a layer of Ti, Ta or Nb may be first deposited to enhance adhesion of the subsequently deposited anti-microbial coating.
Anti-Microbial Powders
Anti-microbial powders, including nanocrystalline powders and powders made from rapidly solidified flakes or foils, can be formed with atomic disorder so as to enhance solubility. The powders either as pure metals, metal alloys or compounds such as metal oxides or metal salts, can be mechanically worked or compressed to impart atomic disorder. This mechanically imparted disorder is conducted under conditions of low temperature (i.e. temperatures less than the temperature of recrystallization of the material) to ensure that annealing or recrystallization does not take place. The temperature varies between metals and increases with alloy or impurity content.
Anti-microbial powders produced in accordance with this invention may be used in a variety of forms, for instance in topical creams, paints or adherent coatings. Alternatively, the powder may be incorporated into a polymeric, ceramic or metallic matrix to be used as a material for medical devices or coatings therefor.
The invention is further illustrated by the following non-limiting examples. Example 1
A medical suture material size 2/0, polyester braid was coated by magnetron sputtering an Ag-Cu-alloy onto the surface to a thickness of 0.45 microns, using either argon gas working pressures of 7 mTorr or 30 mT at 0.5 KW power and a T/Tm ratio of less than 0.5.
The anti-microbial effect of the coatings was tested by a zone of inhibition test. Basal medium Eagle (BME) with Earle's salts and L-glutamine was modified with calf/serum (10%) and 1.5 % agar prior to being dispensed (15 ml) into Petri dishes. The agar containing Petri plates were allowed to surface dry prior to being inoculated with a lawn of Staphylococcus aureus ATCC# 25923. The inoculant was prepared from Bactrol Discs (Difco, M.) which were reconstituted as per the manufacturer's directions. Immediately after inoculation, the materials or coatings to be tested were placed on the surface of the agar. The dishes were incubated for 24 h at 37°C. After this incubation period, the zone of inhibition was measured and a corrected zone of inhibition was calculated (corrected zone of inhibition = zone of inhibition - diameter of the test material in contact with the agar).
The results showed no zone of inhibition on the uncoated suture, a zone of less than 0.5 mm around the suture coated at 7 mTorr and a zone of 13 mm around the suture coated at 30 mTorr. Clearly the suture coated in accordance with the present invention exhibits a much more pronounced and effective anti-microbial effect. Example 2
This example is included to illustrate the surface structures which are obtained when silver metal is deposited on silicon wafers using a magnetron sputtering facility and different working gas pressures and angles of incidence (i.e. the angle between the path of the sputtered atoms and the substrate). All other conditions were as follows: deposition rate was 200 A7min; ratio of temperature of substrate (wafer) to melting point of silver (1234°K), T/Tm was less than 0.3. Argon gas pressures of 7 mTorr (a normal working pressure for metal coatings) and 30 mTorr were used. Angles of incidence at each of these pressures were 90° (normal incidence), 50° and 10°. The coatings had a thickness of about 0.5 microns.
The resulting surfaces were viewed by scanning electron microscope. As argon gas pressure increased from 7 to 30 mTorr the grain size decreased and void volume increased significantly. When the angle of incidence was decreased, the grain size decreased and the grain boundaries became more distinct. At 7 mTorr argon pressure and an angle of incidence of 10°, there were indications of some voids between the grains. The angle of incidence had a greater effect on the surface topography when the gas pressure was increased to 30 mTorr. At 90°, the grain size varied from 60 - 150 nm and many of the grains were separated by intergrain void spaces which were 15 - 30 nm wide. When the angle of incidence was decreased to 50°, the grain size decreased to 30 - 90 nm and the void volume increased substantially. At 10°, the grain size was reduced to about 10 - 60 nm and void volumes were increased again. The observed nanometre scale changes in surface morphology and topography are indications of atomic disorder in the silver metal. While not being bound by the same, it is believed that such atomic disorder results in an increase in the chemical activity due to increased internal stresses and surface roughness created by mismatched atoms. It is believed that the increased chemical activity is responsible for the increased level of solubility of the coatings when in contact with an electrolyte such as body fluid.
The anti-microbial effect of the coatings was evaluated using the zone of inhibition test as set out in Example 1. Each coated silicon wafer was placed on an individual plate. The results were compared to the zones of inhibition achieved when solid silver (i.e. greater than 99 % silver) sheets, wires or membranes were tested. The results are summarized in Table 1. It is evident that the pure silver devices and the silver sputtered coating at 7 mTorr do not produce any biological effect. However, the coatings deposited at a higher than normal working gas pressure, 30 mTorr, demonstrated an anti-microbial effect, as denoted by the substantial zones of inhibition around the discs. Decreasing the angle of incidence had the greatest effect on anti-microbial activity when combined with the higher gas pressures.
Table I
Antimicrobial effect* of various silver and silver coated samples as determined using Staphylocococcus minus
Sample Percent Angle of Working Gas Corrected Zone
Silver Deposition Pressure of Inhibition
(mTorr) (mm)
Silver Sheetrolled 99+ - - <0.5
Silver wire
(.0045") 99+ - - <0.5
Silver membranecast 99+ - - <0.5
Sputtered thin
film 99+ normal (90°) 7 <0.5
Sputtered thin
film 99+ 50° 7 <0.5
Sputtered thin
film 99+ 10° 7 <0.5
Sputtered thin
film 99+ normal (90°) 30 6.3
Sputtered thin
film 99+ 50° 30 10
Sputtered thin
film 99+ 10 30 10
Example 3
Silicon wafers were coated by magnetron sputtering with an alloy of Ag and Cu (80:20) at normal incidence at working gas pressures of 7 mTorr and 30 mTorr, all other conditions being identical to those set out in Example 2. As in Example 2, when the coatings were viewed by SEM, the coatings formed at high working gas pressure had smaller grain sizes and larger void volumes than did the coatings formed at the lower working gas pressures.
Coatings which were similarly formed from a 50:50 Ag/Cu alloy were tested for anti-microbial activity with the zone of inhibition test set out in Example 1. The results are summarized in Table 2. Coatings deposited at low working gas pressure (7 mTorr) showed minimal zones of inhibition, while the coatings deposited at high working gas pressure (30 mTorr) produced larger zones of inhibition, indicative of anti-microbial activity.
Table 2
The antimicrobial effect of various sputter deposited silver-copper alloys as determined using Staphylococeus aureus
Sample Percent Angle of Working Gas Corrected
Silver Deposition Pressure Zone of
(º) (mTorr) Inhibition
(mm)
1 50 normal (90°) 7.5 <0.5
2 50 normal (90°) 30 16
3 50 10 30 19 Example 4
A coating in accordance with the present invention was tested to determine the concentration of silver ions released into solution over time. One cm2 silicon wafer discs were coated with silver as set forth in Example 2 at 7 mTorr and 30 mTorr and normal incidence to a thickness of 5000 A°. Using the method of Nickel et al., Eur. J. Clin. Microbiol., 4(2), 213-218, 1985, a sterile synthetic urine was prepared and dispensed into test tubes (3.5 ml). The coated discs were placed into each test tubes and incubated for various times at 37°C. After various periods of time, the discs were removed and the Ag content of the filtered synthetic urine was determined using neutron activation analysis.
The results are set forth in Table 3. The table shows the comparative amounts of Ag released over time from coatings deposited on discs at 7 mTorr or 30 mTorr. The coatings deposited at high pressure were more soluble than those deposited at low pressure. It should be noted that this test is a static test. Thus, silver levels build up over time, which would not be the case in body fluid where there is constant turn over.
Table 3
Concentration of silver in synthetic urine as a function of exposure time
Silver Concentration μg/ml
Exposure Time Working Argon Working argon (Days) gas pressure gas pressure
7mTorr 30mTorr
0 ND1 ΝD
1 0.89 1.94
3 1.89 2.36
10 8.14 23.06
Note: Films were deposited at normal incidence (90°)
1 - ΝD (non detectable) <0.46 μg/ml
Example 5
This example is included to illustrate coatings in accordance with the present invention formed from another noble metal, Pd. The coatings were formed on silicon wafers as set forth in Example 2, to a thickness of 5000 Aº , using 7 mTorr or 30 mTorr working gas pressures and angles of incidence of 90° and 10°. The coated discs were evaluated for anti-microbial activity by the zone of inhibition test substantially as set forth in Example 1. The coated discs were placed coating side up such that the agar formed a 1 mm surface coating over the discs. The medium was allowed to solidify and surface dry, after which the bacterial lawn was spread over the surface. The dishes were incubated at 37°C for 24 h. The amount of growth was then visually analyzed.
The results are set forth in Table 4. At high working gas pressures, the biological activity of the coating was much greater than that of coatings deposited at low pressure. Changing the angle of incidence (decreasing) improved the anti-microbial effect of the coating to a greater extent when the gas pressure was low than when it was high.
Table 4
Surface Control of Staphylococeus aureus by Sputter Deposited Palladium metal
Sample Sputtering Angle of Antimicrobial Control
Pressure Deposition
1 7mT 90°(normal incidence) More than 90% of surface covered by bacterial growth
2 7mT 10°(grazing incidence) 20-40% of surface covered by bacterial growth
3 30mT 90°(normal incidence) Less than 10% surface covered by bacterial growth
Example 6
This example is included to illustrate the effect of silver deposition temperature on the antimicrobial activity of the coating. Silver metal was deposited on 2.5 cm sections of a latex Foley catheter using a magnetron sputtering facility. Operating conditions were as follows; the deposition rate was 200 Aº per minute; the argon working gas pressure was 30mTorr; and the ratio of temperature of substrate to melting point of the coating metal silver, T/Tm was 0.30 or 0.38. In this example the angles of incidence were variable since the substrate was round and rough. That is the angles of incidence varied around the circumference and, on a finer scale, across the sides and tops of the numerous surface features. The antimicrobial effect was tested by a zone of inhibition test as outlined in Example 1.
The results showed corrected zones of inhibition of 0.5 and 16 mm around the tubing coated at T/Tm values of 0.38 and 0.30 respectively. The sections of Foley catheter coated at the lower T/Tm value were more efficacious than those coated at higher T/Tm value. Example 7
This example is included to demonstrate an antimicrobial coating formed by DC magnetron sputtering on a commercial catheter. A teflon coated latex Foley catheter was coated by DC magnetron sputtering 99.99% pure silver on the surface using the conditions listed in Table 5. The working gases used were commercial Ar and 99/1 wt% Ar/O2.
The antimicrobial effect of the coating was tested by a zone of inhibition test. Mueller Hinton agar was dispensed into Petri dishes. The agar plates were allowed to surface dry prior to being inoculated with a lawn of Staphylococeus aureus ATCC# 25923. The inoculant was prepared from Bactrol Discs (Difco, M.) which were reconstituted as per the manufacturer's directions. Immediately after inoculation, the coated materials to be tested were placed on the surface of the agar. The dishes were incubated for 24 hr. at 37°C. After this incubation period, the zone of inhibition was measured and a corrected zone of inhibition was calculated (corrected zone of inhibition = zone of inhibition - diameter of the test material in contact with the agar).
The results showed no zone of inhibition for the uncoated samples and a corrected zone of less than 1 mm for catheters sputtered in commercial argon at a working gas pressure of 5 mT. A corrected zone of inhibition of 11 mm was reported for the catheters sputtered in the 99/1 wt% Ar/O2 using a working gas pressure of 40 mT. XRD analysis showed that the coating sputtered in 1 % oxygen was a crystalline Ag film. This structure clearly caused an improved anti-microbial effect for the coated catheters. Table 5. Conditions of DC Magnetron Sputtering Used for Anti-Microbial Coatings Samples Sputtered in Commercial Argon Samples Sputtered in 99/1 wt% Ar/O2 Power 0.1 kW Power 0.5 kW Argon Pressure: 5 m Torr Ar/O2 Pressure: 40 m Torr Initial Substrate Temperature: 20°C Initial Substrate Temperature: 20°C
Cathode/Anode Distance: 40 mm Cathode/Anode Distance: 100mm
Film Thickness: 2500 A Film Thickness: 3000 A
Example 8 This example demonstrates silver coatings formed by arc evaporation, gas scattering evaporation (pressure plating) and reactive arc evaporation. Evaporation of 99.99% silver was performed onto silicon or alumina wafers at an initial substrate temperature of about 21°C, using the parameters as follows:
Bias: -100 V
Current: 20 Amp-hrs
Angle of incidence: 90°
Working Gas Pressure: 0.01 mT (arc), 26 mT Ar/H296:4 (gas scattering evaporation), and 26 mT O2 (reactive arc evaporation)
No corrected ZOI was observed for wafers coated at vacuum (arc). Pressure plating with a working gas atmosphere containing Ar and 4 % hydrogen produced a 6 mm ZOI, while a working gas atmosphere of pure oxygen (reactive arc) produced an 8 mm ZOI. Film thicknesses of about 4000 Angstroms were produced. The results indicate that the presence of gases such as hydrogen and/or oxygen in the arc evaporation atmosphere cause the coatings to have improved anti-microbial efficacy. Example 9
This example is included to illustrate composite materials to produce antimicrobial effects. A set of coatings were produced by RF magnetron sputtering zinc oxide onto silicon wafers as outlined below. The zinc oxide coatings showed no zone of inhibition.
Coatings of Ag and ZnO were deposited to a total thickness of 3300 Angstroms by sequentially sputtering layers of Ag with layers of ZnO, according to the conditions below, in a 75/25 wt% ratio. The coatings were demonstrated to have no zone of inhibition when the zinc oxide layers were about 100 Angstroms thick. However, films consisting of islands of very thin to discontinuous layers of ZnO (less than 50 Angstroms) in an Ag matrix (ie. a composite film) had a 8 mm corrected zone of inhibition.
The conditions used to deposit ZnO were as follows: Working gas = argon; Working gas pressure = 30 mT; Cathode-Anode distance: 40 mm; Initial Substrate Temperature: 21°C; Power: RF magnetron, 0.5 kW.
The conditions used to deposit the Ag were as follows:
Working gas = argon; Working gas pressure = 30 mT; Cathode-Anode distance = 40 mm; Initial Substrate Temperature = 21°C; Power = DC magnetron, 0.1 kW. Example 10
This example demonstrates the effects of cold working and annealing silver and gold powders on the antimicrobial efficacy demonstrated by a standard zone of inhibition test. Cold working of such powders results in a defective surface structure containing atomic disorder which favours the release of ions causing antimicrobial activity. The antimicrobial effect of this defective structure can be removed by annealing. Nanocrystalline silver powder (crystal size about 30 nm) was sprinkled onto adhesive tape and tested. A zone of inhibition of 5 mm was obtained, using the method set forth in Example 7. A 0.3g pellet of the nanocrystalline Ag powder was pressed at 40,000 psi. The pellet produced a 9 mm zone of inhibition when tested for antimicrobial activity. Nanocyrstalline silver powder was mechanically worked in a ball mill for 30 sec. The resulting powder was tested for antimicrobial activity, both by sprinkling the worked powder on adhesive tape and applying to the plates, and by pressing the powder into a pellet at the above conditions and placing the pellet on the plates. The zones of inhibition observed were 7 and 11 mm respectively. A pellet that had been pressed from the worked powder was annealed at 500°C for 1 hour under vacuum conditions. A reduced zone of inhibition of 3 mm was observed for the annealed pellet.
These results demonstrate that nanocrystalline silver powder, while having a small anti-microbial effect on its own, has an improved antimicrobial effect by introducing atomic disorder by mechanical working of the powder in a ball mill or by pressing it into a pellet. The antimicrobial effect was significantly decreased by annealing at 500°C. Thus, conditions of mechanical working should not include or be followed by conditions such as high temperature, which allow diffusion. Cold mechanical working conditions are preferred to limit diffusion, for example by working at room temperature or by grinding or milling in liquid nitrogen.
Silver powder, 1 micron particle size, was tested in a manner similar to above. The Ag powder sprinkled onto adhesive tape and tested for a zone of inhibition. No zone of inhibition was observed. The powder was worked in a ball mill for 30 seconds and sprinkled onto adhesive tape. A 6 mm zone of inhibition was observed around the powder on the tape. When the Ag powder (as is or after mechanical working in the ball mill) was pressed into a 0.3 g pellet using 40,000 psi, zones of inhibition of 5 and 6 mm respectively were observed. A pellet which was formed from the ball milled powder and which was annealed at 500°C for 1 hour had significantly reduced antimicrobial activity. Initially the pellet had some activity (4.5 mm zone of inhibition) but after the pellet was tested a second time, no zone of inhibition was observed. A control pellet which had not been annealed continued to give a zone of inhibition greater than 4 mm even after 14 repeats of the test. This demonstrates that an annealing step, following by mechanical working, limits the sustainable release of the antimicrobial silver species from the powders.
Nanocrystalline gold (20 nm crystals), supplied as a powder, was tested for anti-microbial effect by sprinkling the powder onto adhesive tape and using the zone of inhibition test. No zone of inhibition was recorded for the nanocrystalline gold powder. The gold powder was pressed into a 0.2 g pellet using 40,000 psi. A 10 mm zone of inhibition was observed. When the pressed pellets were subsequently vacuum annealed at 500°C for 1 hour and the zone of inhibition was found to be 0 mm.
The results showed that solubility and thus the anti-microbial efficacy of gold powders can be improved by a mechanical working process such as pressing a nanocrystalline material into a pellet. The antimicrobial activity can be removed by annealing. Cold working is preferred.
Other gold powders including a 2-5 micron and a 250 micron particle size powder did not demonstrate an antimicrobial effect under the above mechamcal working conditions. It is believed that the small grain size of the nanocrystalline gold powder was an important cofactor which, with the mechanical working, produced the desired antimicrobial effect. Example 11
This example is included to demonstrate a composite antimicrobial coating formed by reactive sputtering (another example of composite films) . Example 7 demonstrates that an antimicrobial coating of silver can be obtained by sputtering in argon and 1 % oxygen (0.5 kW, 40 mTorr, 100 mm anode/cathode distance, and 20°C - produced a zone of inhibition of 11 mm).
When a working gas of argon and 20 wt% oxygen was used to sputter antimicrobial coatings under the conditions listed below, the zones of inhibition ranged from 6 to 12 mm. This indicates that the provision of a reactive atmosphere during vapour deposition has the result of producing an antimicrobial film over a wide range of deposition process parameters. Sputtering Conditions
Target 99.99% Ag
Working Gas: 80/20 wt% Ar/O2
Working Gas Pressure: 2.5 to 50 mTorr
Power: 0.1 to 2.5 kW
Substrate Temperature: -5 to 20°C
Anode/Cathode Distance 40 to 100 mm
Base Pressure: less than 4 × 10-6 Torr
Example 12
This example demonstrates that the coatings of this invention have an antimicrobial effect against a broad spectrum of bacteria. A total of 171 different bacterial samples encompassing 18 genera and 55 species were provide by the Provincial Laboratory of Public Health for Northern Alberta. These samples had been quick frozen in 20% skim milk and stored at -70°C for periods ranging from several months to several years. Fastidious organisms which were unlikely to grow under conditions used in standard Kirby-Bauer susceptibility testing were not used.
Each frozen sample was scraped with a sterile cotton swab to inoculate a blood agar plate (BAP). The plates were incubated overnight at 35°C. The following morning isolated colonies were subcultured onto fresh BAPs and incubated at 35°C overnight. The next day, the organisms were subjected to Kirby-Bauer susceptibility testing as described below.
Four to five colonies (more if colonies were small) of the same morphological type were selected from each BAP subculture and inoculated into individual tubes containing approximately 5 mL of tryptic soy broth (TSB). The broths were incubated at 35°C for approximately 2 to 3 hours. At this time, the turbidity of most of the broth cultures either equalled or exceeded that of a 0.5 McFarland standard. The more turbid samples were diluted with sterile saline to obtain a turbidity visually comparable to that of the standard. To aid in the visual assessment of turbidity, tubes were read against a white background with contrasting black line.
A small number of the organisms (Streptococcus and Corynebacterium) did not grow well in TSB. The turbidity of these broths, after incubation, was less than that of the 0.5 McFarland standard. Additional colonies from the BAP subcultures were inoculated to these tubes to increase the turbidity to approximate that of the standard.
Within 15 minutes of adjusting the turbidity of the bacterial suspensions a sterile cotton swab was dipped into each broth. Excess fluid was removed by rotating the swab against the rim of the tube. The inoculum was applied to a Mueller Hinton (MH) agar plate by streaking the swab evenly in three directions over the entire agar surface. Three 1 cm × 1 cm silver coated silica wafer squares were applied to each MH plate and the plates were inverted and incubated overnight at 35°C. The coatings had been sputtered under the following conditions, which through XFD analysis were shown to be silver/silver oxide composite films:
Target: 99.99% Ag
Working gas: Ar/O280/20
Working gas pressure: 40 mT
Power: 0.1 kW
Temperature of Deposition 20°C
Base pressure 2 × 10-6 Torr
Cathode/anode distance 40 mm
BAP cultures of control organisms were provided by the Provincial Laboratory and included: Staphylococeus aureus ATCC 25923; Pseudomonas aeruginosa ATCC 27853; Escherichia coli: ATCC 25922; and Enteroeoeeus faecάlis ATCC 29212 to check the quality of the MH agar. These cultures were treated in a like manner to the test organisms except that standard antibiotic discs rather than silver coated wafers were applied to the bacterial lawns on the MH agar. These organisms demonstrated that the MH agar was suitable for standard ZOI tests. After 16 to 18 hours of incubation at 35°C zones of inhibition around the silver wafers or antibiotic discs were measured to the nearest mm. Corrected zones were calculated by subtracting the size of the wafer (1 cm) from the size of the total zone. Representative zone of inhibition results are shown in Table 7.
Figure imgf000033_0001
Example 13 This example demonstrates the use of tantalum as an adhesive layer for coatings of this invention. Tantalum is well known as a material which, in the form of an interlayer, improves adhesion of thin films to substrates. In this example test sections including a group of stainless steel (316) (1 × 1 cm) and silicon (1.7 X 0.9 cm) coupons and sections of latex tubing (5 cm) were cleaned in ethanol and then half of the test sections were coated (by sputtering) with a thin layer (approx. 100 Angstroms) of Ta before an antimicrobial silver film was deposited on them. The second group of the test sections were only coated with the antimicrobial Ag film. Coating conditions are listed below. While all test sections had similar antimicrobial activity, the Ta coated test sections had much better adhesion properties than did the untreated test sections. Adhesion properties were determined using ASTM method D3359-87, a standard test method for measuring adhesion. Sputtering Conditions
Target: 99.99% Ta
Working Gas: 99/1 wt% Ar/O2
Working Gas Pressure: 10 mTorr
Power: 0.5 kW
Cathode/Anode Distance: 100 mm
Substrate Temperature: 20°C
Target: 99.99% Ag
Working Gas: 99/1 wt% Ar/O2
Working Gas Pressure: 40 mTorr
Power: 0.5 kW
Cathode/Anode Distance: 100 mm
Substrate Temperature: 20°C Example 14
DC magnetron sputtering was used to deposit silver from a 99.98% pure cathode onto silicon and alumina wafers with commercial argon moisturized with water as the working gas. The argon was moisturized by passing it through two flasks containing 3 litres of room temperature water and one empty flask set up with glass wool to absorb any free liquid before the gas entered the sputtering unit.
The conditions of sputtering and the results of the standard zone of inhibition test performed on the sputtered silver films are shown below. Silver films which normally had no antimicrobial properties when deposited using argon that had not been treated with water yielded a corrected zone of inhibition of up to 8 mm when sputtered using a argon/water vapour mixture as the working gas.
Figure imgf000035_0001
All publications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference. The terms and expressions in this specification are used as terms of description and not of limitation. There is no intention, in using such terms and expressions, of excluding equivalents of the features illustrated and described, it being recognized that the scope of the invention is defined and limited only by the claims which follow.

Claims

Claims
1. A modified material comprising:
one or more metals in a form characterized by sufficient atomic disorder such that the material, in contact with a solvent for the material, releases atoms, ions, molecules or clusters containing at least one metal at an enhanced rate relative to its normal ordered crystalline state.
2. The material as set forth in claim 1 in the form of a powder or foil.
3. The material as set forth in claim 1 in the form of a coating.
4. The material as set forth in claim 2, wherein the material is cold worked to create the atomic disorder.
5. The material as set forth in claim 3, wherein the material is formed by vapour deposition.
6. The material as set forth in claim 5, wherein the material is formed by physical vapour deposition.
7. The material as set forth in claim 1, 2 or 3, wherein at least one of the metals is an anti-microbial metal and wherein the material is formed with sufficient atomic disorder that the atoms, ions, molecules or clusters of the anti-microbial metal are released on a sustainable basis.
8. The material as set forth in claim 1 , 4, or 6, wherein the metal is selected from the group consisting of Ag, Au, Pt, Pd, Ir, Sn, Cu, Sb, Bi, and Zn or an alloy or compound thereof.
9. The material as set forth in claim 1, 4, or 6, wherein the metal is Ag, Au or Pd or an alloy or compound of one or more of these metals.
10. A method of forming a modified material containing one or more metals, said method comprising:
creating atomic disorder in the material under conditions which limit diffusion such that sufficient atomic disorder is retained in the material to provide release of atoms, ions, molecules or clusters of at least one of the metals into a solvent for the material at an enhanced rate relative to its normal ordered crystalline state.
11. The method as set forth in claim 10 wherein the material is a powder or foil of one or more of the metals, and wherein the atomic disorder is formed by cold working of the powder or foil.
12. The method as set forth in claim 11, wherein the powder or foil is worked at a temperature below the recrystallization temperature for the powder or foil to retain atomic disorder.
13. The method as set forth in claim 12, wherein the material is a nanocrystalline powder.
14. The method as set forth in claim 12, wherein at least one of the metals is an anti-microbial metal and wherein the material is formed with sufficient atomic disorder that atoms, ions, molecules or clusters of the anti-microbial metal are released on a sustainable basis.
15. The method as set forth in claim 12, wherein at least one of the metals is selected from the group consisting of Ag, Au, Pt, Pd, Ir, Sn, Cu, Sb, Bi and Zn or alloys or compounds of one or more of these metals.
16. The method as set forth in claim 12, wherein at least one of the metals is Ag, Au or Pd or an alloy or compound containing one or more of these metals.
17. The method as set forth in claim 12, wherein at least one of the metals is silver or an alloy or compound containing silver.
18. The method as set forth in claim 10, wherein the material is formed as a coating on a substrate by vapour deposition under conditions which limit diffusion during deposition and which limit annealing or recrystallization following deposition.
19. The method as set forth in claim 18, wherein the material is formed by physical vapour deposition.
20. The method as set forth in claim 19, wherein the material is a coating of one or more of the metals formed on a substrate by vacuum evaporation, sputtering, magnetron sputtering or ion plating.
21. The method as set forth in claim 20, wherein the deposition is performed under conditions such that the ratio of the temperature of the substrate to the melting point of the metal or metal compound being deposited is maintained at less than about 0.5.
22. The method as set forth in claim 21 wherein the ratio is maintained at less than about 0.3.
23. The method as set forth in claim 21, wherein the deposition is performed such that the angle of incidence of the coating flux on the substrate to be coated is less than about 75°.
24. The method as set forth in claim 21, wherein the deposition is performed by arc evaporation at an ambient or working gas pressure of greater than about 0.01 mT.
25. The method as set forth in claim 21, wherein the deposition is performed by gas scattering evaporation at a working gas pressure of greater than about 20 mT.
26. The method as set forth in claim 21, wherein the deposition is performed by sputtering at a working gas pressure of greater than about 75 mT.
27. The method as set forth in claim 21, wherein the deposition is performed by magnetron sputtering at a working gas pressure of greater than about 10 mT.
28. The method as set forth in claim 21, wherein the deposition is performed by ion plating at a working gas pressure of greater than about 200 mT.
29. The method as set forth in claim 20, wherein at least one of the metals is an anti-microbial metal and wherein the material is formed with sufficient atomic disorder that atoms, ions, molecules or clusters of the anti-microbial metal are released on a sustainable basis.
30. The method as set forth in claim 21, 23 or 27, wherein at least one of the metals is an anti-microbial metal and wherein the material is formed with sufficient atomic disorder that atoms, ions, molecules or clusters of the anti-microbial metal are released on a sustainable basis.
31. The method as set forth in claim 20, wherein a composite coating is formed by co-, sequentially or reactively depositing a first metal in a matrix with atoms of molecules of a different material from the first metal such that atomic disorder is created in the matrix.
32. The method as set forth in claim 31, wherein the first metal is an anti-microbial metal and wherein the different material is atoms or molecules reactively deposited into the matrix from the working gas atmosphere during deposition.
33. The method as set forth in claim 31, wherein the first metal is an anti-microbial metal and wherein the different material is atoms or molecules selected from oxides, nitrides, carbides, borides, sulphides and halides of an inert biocompatible metal.
34. A. method of forming an antimicrobial coating on a device intended for use in contact with an alcohol or water based electrolyte, comprising: depositing a coating containing an anti-microbial metal on the surface of the device by vapour deposition to provide a thin film of the metal having atomic disorder such that the coating, in contact with an alcohol or a water based electrolyte, provides a sustained release of the metal ions, atoms, molecules or clusters into the alcohol or water based electrolyte at a concentration sufficient to provide a localized anti-microbial effect.
35. The method as set forth in claim 34, wherein the deposition is performed by a physical vapour deposition technique selected from vacuum evaporation, sputtering, magnetron sputtering or ion plating, under conditions which limit diffusion during deposition and which limit annealing or recrystallization following deposition.
36. The method as set forth in claim 35, wherein the deposition is performed such that the ratio of the temperature of the surface being coated to the melting point of the metal is maintained at less than about 0.5.
37. The method as set forth in claim 36, wherein the deposition is performed such that the angle of incidence of the coating flux on the medical device to be coated is less than about 75°.
38. The method as set forth in claim 36 or 37, wherein the deposition is performed by arc evaporation at an ambient or working gas pressure of greater than about 0.01 mT.
39. The method as set forth in claim 36 or 37, wherein the deposition is performed by gas scattering evaporation at a working gas pressure of greater than about 20 mT.
40. The method as set forth in claim 36 or 37, wherein the deposition is performed by sputtering at a working gas pressure of greater than about 75 mT.
41. The method as set forth in claim 36 or 37, wherein the deposition is performed by magnetron sputtering at a working gas pressure of greater than about 10 mT.
42. The method as set forth in claim 36 or 37, wherein the deposition is performed by ion plating at a working gas pressure of greater than about 200 mT.
43. The method as set forth in claim 36 or 37 wherein the metal is selected from the group consisting of Ag, Au, Pt, Pd, Ir, Sn, Cu, Sb, Bi, and Zn or an alloy or compound containing one or more of these metals.
44. The method as set forth in claim 36 or 37 wherein the metal is Ag, Au or Pd or an alloy or compound containing one or more of these metals.
45. A medical device intended for use in contact with an alcohol or water based electrolyte having an anti-microbial coating on its surface, comprising:
a medical device formed of a substantially bioinert structural material; and an anti-microbial coating formed on the surface of the medical device, said coating being formed from one or more anti-microbial metals and having sufficient atomic disorder such that the coating, in contact with an alcohol or water based electrolyte, provides a sustained release of the metal ions, atoms, molecules or clusters into the alcohol or water based electrolyte at a concentration sufficient to provide a localized anti-microbial effect.
46. The medical device as set forth in claim 45 , wherein the deposition is performed by a physical vapour deposition technique selected from vacuum evaporation, sputtering, magnetron sputtering or ion plating.
47. The medical device as set forth in claim 46, wherein the metal is selected from the group consisting of Ag, Au, Pt, Pd, Ir, Sn, Cu, Sb, Bi, and Zn or alloys or compounds containing one or more of said metals.
48. The medical device as set forth in claim 46, wherein the metal is Ag, Au or Pd or an alloy or compound containing one or more of these metals.
49. The material as set forth in claim 6, wherein the coating is a composite coating formed from at least one first metal, which is the metal to be released, in a matrix containing atoms or molecules of a different material from the first metal, the atoms or molecules of the different material creating atomic disorder in the matrix.
50. The material as set forth in claim 49, wherein the different material is selected from reacted species of the first metal or metal compound; absorbed or trapped atoms or molecules of oxygen, nitrogen, hydrogen, boron, sulphur and halogen; and a second metal.
51. The material as set forth in claim 50, wherein the first metal is an anti-microbial metal and the different material is selected from oxides, nitrides, hydrides, halides, borides, and carbides of an anti-microbial or a second metal; and absorbed or trapped atoms or molecules containing oxygen, nitrogen, hydrogen, boron, sulphur and halogen.
52. The material as set forth in claim 49, wherein the first metal is an anti-microbial metal and the different material is an oxide, nitride, boride, sulphide, halide or hydride of an inert metal selected from Ta, Ti, Nb, V, Hf, Zn, Mo, Si, and Al.
53. The material as set forth in claim 49, comprising silver oxide, silver metal and optionally absorbed or trapped atoms or molecules containing oxygen, nitrogen, hydrogen, boron, sulphur and halogen.
54. The method as set forth in claim 18, wherein the modified material is a composite coating formed by co-, sequentially or reactively depositing a first metal in a matrix with atoms or molecules of a different material from the first metal such that atomic disorder is created in the matrix.
55. The method as set forth in claim 53, wherein the first metal is an anti-microbial metal and wherein the different material is selected from atoms or molecules containing oxygen, nitrogen, hydrogen, boron, sulphur and halogen absorbed or trapped in the matrix from the atmosphere of the vapour deposition.
56. The method as set forth in claim 54, wherein the first metal is silver and the different material is selected from atoms or molecules containing oxygen, nitrogen, hydrogen, boron, sulphur and halogen.
57. The method as set forth in claim 55, wherein the first metal is an anti-microbial metal and wherein the different material is an oxide, nitride, carbide, boride, halide, sulphide or hydride of an inert metal selected from Ta, Ti, Nb, V, Hf, Zn, Mo, Si and Al.
58. The method as set forth in claim 57, wherein the first metal is silver and the different material is an oxide of Ta, Ti or Nb.
PCT/CA1993/000201 1992-05-19 1993-05-19 Anti-microbial coating for medical devices WO1993023092A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
HU9403317A HU217644B (en) 1992-05-19 1993-05-19 Modified materials containing metals, method for forming thereof and medical devices coated with said materials
EP93909715A EP0641224B1 (en) 1992-05-19 1993-05-19 Anti-microbial coating for medical devices
UA94119049A UA42690C2 (en) 1992-05-19 1993-05-19 THE MODIFIED MATERIAL, MODIFIED THE ANTIMIKROBNNYY MATERIAL, THE METHOD OF OBTAINING THE MODIFIED MATERIAL, THE METHOD OF THE FORMATION OF ANTIMICROBIC COATING ON THE INSTRUMENT And THE MEDICAL INSTRUMENT, INTENDED FOR THE USE In THE CONTACT With THE ELECTROLYTE ON THE BASIS OF ALCOHOL OR WATER, I has ON BY SOYA OF SURFACE THE ANTIMICROBIC COATING
JP5519731A JP2947934B2 (en) 1992-05-19 1993-05-19 Crystalline metal material, method for producing the metal material, and medical device coated with the metal material
RU94046003A RU2131269C1 (en) 1992-05-19 1993-05-19 Modified material, modified antimicrobial material, modified material obtaining method, method of antimicrobial coating formation on device, and medical device used in contact with electrolyte based on alcohol or water and having antimicrobial coating on its surface
CA002134217A CA2134217C (en) 1992-05-19 1993-05-19 Anti-microbial coating for medical devices
KR1019940704191A KR950701534A (en) 1992-05-19 1993-05-19 ANTI-MICROBIAL COATING FOR MEDICAL DEVICES
DE69320472T DE69320472T2 (en) 1992-05-19 1993-05-19 ANTIMICROBIAL COATING FOR MEDICAL DEVICE
AU40558/93A AU673170B2 (en) 1992-05-19 1993-05-19 Anti-microbial coating for medical devices
MD96-0295A MD1728C2 (en) 1992-05-19 1993-05-19 Modified material, modified anti-microbial material, method of preparing the modified material, method of forming the anti-microbial coating and medical device having on its surface the anti-microbial coating
BR9306613A BR9306613A (en) 1992-05-19 1993-05-19 Modified material modified antimicrobial material methods to form a modified material containing one or more metals and to form an antimicrobial coating and medical device
DK93909715T DK0641224T3 (en) 1992-05-19 1993-05-19 Anti-microbial coating for medical devices
US08/459,469 US6017553A (en) 1992-05-19 1995-06-02 Anti-microbial materials
HK98113016A HK1011939A1 (en) 1992-05-19 1998-12-09 Anti-microbial coating for medical devices

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88575892A 1992-05-19 1992-05-19
US07/885,758 1992-05-19
US08/057,968 US5681575A (en) 1992-05-19 1993-05-07 Anti-microbial coating for medical devices
US08/057,968 1993-05-07

Publications (1)

Publication Number Publication Date
WO1993023092A1 true WO1993023092A1 (en) 1993-11-25

Family

ID=25387630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1993/000201 WO1993023092A1 (en) 1992-05-19 1993-05-19 Anti-microbial coating for medical devices

Country Status (23)

Country Link
US (4) US5681575A (en)
EP (1) EP0641224B1 (en)
JP (1) JP2947934B2 (en)
KR (1) KR950701534A (en)
CN (1) CN1066783C (en)
AT (1) ATE169829T1 (en)
AU (1) AU673170B2 (en)
BR (1) BR9306613A (en)
CA (1) CA2134217C (en)
DE (1) DE69320472T2 (en)
DK (1) DK0641224T3 (en)
ES (1) ES2119899T3 (en)
GE (1) GEP20002060B (en)
HK (1) HK1011939A1 (en)
HU (1) HU217644B (en)
IL (1) IL105726A (en)
MD (1) MD1728C2 (en)
MX (1) MX9302877A (en)
NZ (1) NZ252076A (en)
RU (1) RU2131269C1 (en)
TW (1) TW374730B (en)
UA (1) UA42690C2 (en)
WO (1) WO1993023092A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636375A1 (en) * 1993-07-26 1995-02-01 Degussa Aktiengesellschaft Equipment and sanitary devices for hospitals
WO1995013704A1 (en) * 1993-11-18 1995-05-26 Westaim Technologies Inc. Anti-microbial materials
WO1995018637A1 (en) * 1994-01-11 1995-07-13 Spire Corporation Catheter having a long-lasting antimicrobial surface treatment
WO1995020878A1 (en) * 1994-02-01 1995-08-10 Theodor Krall Process for producing bactericidal/fungicidal plastic bodies
US5474797A (en) * 1991-10-18 1995-12-12 Spire Corporation Bactericidal coatings for implants
US5492763A (en) * 1992-06-08 1996-02-20 Spire Corporation Infection resistant medical devices and process
EP0717929A3 (en) * 1994-12-22 1997-03-19 Toni Dr Gradl Process and composition for the prevention of microbial growth on a surface; composition for surface coating and finishing
WO1998041095A2 (en) * 1997-03-17 1998-09-24 Westaim Technologies Inc. Anti-microbial coatings having indicator properties and wound dressings
AU703141B2 (en) * 1993-11-18 1999-03-18 Nucryst Pharmaceuticals Corp. Anti-microbial materials
US5895419A (en) * 1996-09-30 1999-04-20 St. Jude Medical, Inc. Coated prosthetic cardiac device
WO1999016390A3 (en) * 1997-09-26 1999-10-07 Mark A Babizhayev Coated ophthalmic and implantable devices and methods for producing same
US6013106A (en) * 1997-01-22 2000-01-11 St. Jude Medical, Inc. Medical article with adhered antimicrobial metal ions and related methods
US6017553A (en) * 1992-05-19 2000-01-25 Westaim Technologies, Inc. Anti-microbial materials
WO2001012246A1 (en) * 1999-08-17 2001-02-22 St. Jude Medical, Inc. Medical devices with metal/polymer composites
WO2001080920A2 (en) 2000-04-17 2001-11-01 Nucryst Pharmaceuticals Corp. Antimicrobial bioabsorbable materials
WO2002085384A2 (en) * 2001-04-23 2002-10-31 Nucryst Pharmaceuticals Corp. Lubricious coatings for substrates
JP2008080143A (en) * 1995-06-07 2008-04-10 Cook Inc Medical apparatus
EP2089480A2 (en) * 2006-11-27 2009-08-19 Micropyretics Heaters International, Inc. Antimicrobal materials and coatings
US7785317B2 (en) 2006-03-29 2010-08-31 Codman & Shurtleff, Inc. Joined metal tubing and method of manufacture
US7867176B2 (en) 2005-12-27 2011-01-11 Cordis Corporation Variable stiffness guidewire
US8075823B2 (en) 1999-07-30 2011-12-13 Guggenbichler J Peter Process for preparing antimicrobial plastic bodies having improved long-time performance
US8118859B2 (en) 2006-05-26 2012-02-21 Codman & Shurtleff, Inc. Occlusion device combination of stent and mesh having offset parallelogram porosity
US8585732B2 (en) 2006-06-14 2013-11-19 DePuy Synthes Products, LLC Retrieval device with sidewall grippers
US8647675B2 (en) 2012-03-08 2014-02-11 Pacesetter, Inc. Silver nanoparticle antimicrobial coating for long-term and short-term infection resistance
EP2693978A2 (en) * 2011-04-01 2014-02-12 Washington State University Researchfoundation Materials with modified surfaces and methods of manufacturing
US8690938B2 (en) 2006-05-26 2014-04-08 DePuy Synthes Products, LLC Occlusion device combination of stent and mesh with diamond-shaped porosity
US8865227B2 (en) 2007-12-20 2014-10-21 Smith & Nephew (Overseas) Limited Metal carbonate particles and methods of making thereof
CN104128101A (en) * 2014-07-18 2014-11-05 南京工业大学 Silver doped metal ceramic composite membrane and preparation method thereof
EP2810679A3 (en) * 2005-08-31 2015-04-15 Kimberly-Clark Worldwide, Inc. Anti-microbial catheter
US20210156081A1 (en) * 2017-07-18 2021-05-27 Naxau New Materials Co., Ltd. Fiber cloth having functional composite particles and preparation method therefor

Families Citing this family (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2033107C (en) * 1990-12-24 2001-06-12 Robert Edward Burrell Actively sterile surfaces
US5984905A (en) * 1994-07-11 1999-11-16 Southwest Research Institute Non-irritating antimicrobial coating for medical implants and a process for preparing same
US6861570B1 (en) 1997-09-22 2005-03-01 A. Bart Flick Multilayer conductive appliance having wound healing and analgesic properties
US7214847B1 (en) 1997-09-22 2007-05-08 Argentum Medical, L.L.C. Multilayer conductive appliance having wound healing and analgesic properties
US8801681B2 (en) 1995-09-05 2014-08-12 Argentum Medical, Llc Medical device
US8455710B2 (en) 1997-09-22 2013-06-04 Argentum Medical, Llc Conductive wound dressings and methods of use
US5814094A (en) 1996-03-28 1998-09-29 Becker; Robert O. Iontopheretic system for stimulation of tissue healing and regeneration
US6087549A (en) 1997-09-22 2000-07-11 Argentum International Multilayer laminate wound dressing
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US6756060B1 (en) 1996-09-19 2004-06-29 Usbiomaterials Corp. Anti-inflammatory and antimicrobial uses for bioactive glass compositions
US5834008A (en) 1996-09-19 1998-11-10 U.S. Biomaterials Corp. Composition and method for acceleration of wound and burn healing
US6365220B1 (en) 1997-11-03 2002-04-02 Nucryst Pharmaceuticals Corp. Process for production of actively sterile surfaces
US6605751B1 (en) 1997-11-14 2003-08-12 Acrymed Silver-containing compositions, devices and methods for making
US5976169A (en) * 1997-12-16 1999-11-02 Cardiovasc, Inc. Stent with silver coating and method
JPH11179870A (en) * 1997-12-24 1999-07-06 Mitsui Chem Inc Antibacterial paper and its manufacture
US6254635B1 (en) 1998-02-02 2001-07-03 St. Jude Medical, Inc. Calcification-resistant medical articles
IT1300023B1 (en) * 1998-05-11 2000-04-04 Medistar Srl BODY FLUID COLLECTION DEVICE.
IT1300024B1 (en) * 1998-05-11 2000-04-04 Medistar Srl DRAINAGE DEVICE FOR BODY FLUIDS.
WO1999066966A1 (en) * 1998-06-22 1999-12-29 Anatoly Dosta Thin-film coating for a bone implant
JP2003522553A (en) * 1998-08-07 2003-07-29 ライカ ミクロジュステムス(シュヴァイツ)アーゲー Medical equipment
US6168633B1 (en) * 1998-08-10 2001-01-02 Itzhak Shoher Composite surface composition for an implant structure
SI1112095T1 (en) * 1998-09-11 2003-04-30 Gerhard Dr. Schmidmaier Biologically active implants
CA2345232A1 (en) 1998-09-23 2000-03-30 Phycogen, Inc. Environmentally benign crop protection agents
US6248342B1 (en) 1998-09-29 2001-06-19 Agion Technologies, Llc Antibiotic high-pressure laminates
US6436422B1 (en) 1998-11-23 2002-08-20 Agion Technologies L.L.C. Antibiotic hydrophilic polymer coating
US6296863B1 (en) 1998-11-23 2001-10-02 Agion Technologies, Llc Antimicrobial fabric and medical graft of the fabric
US6585767B1 (en) 1998-11-23 2003-07-01 Agion Technologies, Inc. Antimicrobial suturing ring for heart valve
CA2360904C (en) 1999-02-04 2007-05-22 Michael Ahrens Bone screw
US6582715B1 (en) 1999-04-27 2003-06-24 Agion Technologies, Inc. Antimicrobial orthopedic implants
JP2002543108A (en) 1999-04-29 2002-12-17 ユーエスバイオマテリアルズ コーポレイション Anti-inflammatory bioactive glass particles
TW526281B (en) * 1999-04-30 2003-04-01 Kawasaki Steel Co Stainless steel material with excellent antibacterial property and process for producing the same
CA2377402C (en) 1999-06-14 2011-01-18 Imperial College Innovations Silver-containing, sol-gel derived bioglass compositions
EP1066825A1 (en) * 1999-06-17 2001-01-10 The Procter & Gamble Company An anti-microbial body care product
US6350253B1 (en) 1999-07-19 2002-02-26 I-Flow Corporation Catheter for uniform delivery of medication
US6379383B1 (en) * 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US6537310B1 (en) 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
US8458879B2 (en) 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US6267590B1 (en) 1999-11-24 2001-07-31 Agion Technologies, Llc Antimicrobial dental products
DE60038980D1 (en) 1999-12-28 2008-07-03 Kimberly Clark Co ANTIMICROBIAL WIPE CLOTH WITH CONTROLLED DISCHARGE FOR HARD SURFACES
WO2001047403A1 (en) 1999-12-28 2001-07-05 Kimberly-Clark Worldwide, Inc. Use-dependent indicator system for absorbent articles
DE60028415T2 (en) 1999-12-30 2007-06-06 Acrymed, Portland METHOD AND COMPOSITIONS FOR IMPROVED DISPENSING SYSTEMS
AU2001229631A1 (en) 2000-01-19 2001-07-31 Johns Hopkins University Method and apparatus for coating an endoprosthesis
AU2001229351A1 (en) * 2000-01-25 2001-08-07 Boston Scientific Limited Manufacturing medical devices by vapor deposition
US6306419B1 (en) 2000-02-23 2001-10-23 Aegis Biosciences, Llc Medical uses of styrene sulfonate polymers
US7137968B1 (en) * 2000-03-13 2006-11-21 Nucryst Pharmaceuticals Corp. Transcutaneous medical device dressings and method of use
KR100356643B1 (en) * 2000-03-31 2002-10-18 한국과학기술연구원 Biocompatible Metallic Materials Grafted with Biologically Active Compounds and Preparation Thereof
US20010049422A1 (en) * 2000-04-14 2001-12-06 Phaneuf Matthew D. Methods of applying antibiotic compounds to polyurethane biomaterials using textile dyeing technology
US8527046B2 (en) 2000-04-20 2013-09-03 Medtronic, Inc. MRI-compatible implantable device
US6989157B2 (en) * 2000-07-27 2006-01-24 Nucryst Pharmaceuticals Corp. Dry powders of metal-containing compounds
US7008647B2 (en) * 2001-04-23 2006-03-07 Nucryst Pharmaceuticals Corp. Treatment of acne
US20030170314A1 (en) * 2000-07-27 2003-09-11 Burrell Robert E. Compositions of metal-containing compounds
US20040191329A1 (en) * 2000-07-27 2004-09-30 Burrell Robert E. Compositions and methods of metal-containing materials
US20030206966A1 (en) * 2000-07-27 2003-11-06 Burrell Robert E. Methods of inducing apoptosis and modulating metalloproteinases
US7427416B2 (en) * 2000-07-27 2008-09-23 Nucryst Pharmaceuticals Corp. Methods of treating conditions using metal-containing materials
US7001617B2 (en) 2001-04-23 2006-02-21 Nueryst Pharmaceuticals Corp. Method of induction of apoptosis and inhibition of matrix metalloproteinases using antimicrobial metals
AU7832201A (en) 2000-07-27 2002-02-13 Nucryst Pharm Corp Treatment of hyperproliferative skin disorders and diseases
US20030180379A1 (en) * 2000-07-27 2003-09-25 Burrell Robert E. Solutions and aerosols of metal-containing compounds
US20030194444A1 (en) * 2000-07-27 2003-10-16 Burrell Robert E. Methods of treating skin and integument conditions
US20030185901A1 (en) * 2000-07-27 2003-10-02 Burrell Robert E. Methods of treating conditions with a metal-containing material
US7255881B2 (en) * 2000-07-27 2007-08-14 Nucryst Pharmaceuticals Corp. Metal-containing materials
US6866859B2 (en) 2000-08-30 2005-03-15 Biocoat Incorporated Bi-laminar, hyaluronan coatings with silver-based anti-microbial properties
JP2002126071A (en) * 2000-10-13 2002-05-08 Itzhak Shoher Composite material surface composition for constructing implant
JP2002146453A (en) * 2000-11-08 2002-05-22 Furuya Kinzoku:Kk Silver alloy material and antibacterial material
US6588425B2 (en) 2000-12-21 2003-07-08 Kimberly-Clark Worldwide, Inc. Respiratory suction catheter apparatus with antimicrobial chamber
US20030215564A1 (en) * 2001-01-18 2003-11-20 Heller Phillip F. Method and apparatus for coating an endoprosthesis
US6829509B1 (en) 2001-02-20 2004-12-07 Biophan Technologies, Inc. Electromagnetic interference immune tissue invasive system
US20020116029A1 (en) 2001-02-20 2002-08-22 Victor Miller MRI-compatible pacemaker with power carrying photonic catheter and isolated pulse generating electronics providing VOO functionality
US6929705B2 (en) 2001-04-30 2005-08-16 Ak Steel Corporation Antimicrobial coated metal sheet
US20020177863A1 (en) * 2001-05-24 2002-11-28 Mandel Stanley R. Surface treated ligating clip
US6565913B2 (en) 2001-07-24 2003-05-20 Southwest Research Institute Non-irritating antimicrobial coatings and process for preparing same
US6731979B2 (en) 2001-08-30 2004-05-04 Biophan Technologies Inc. Pulse width cardiac pacing apparatus
PT1882482E (en) 2001-09-12 2012-08-01 Convatec Ltd Antibacterial wound dressing
US7326669B2 (en) * 2001-09-20 2008-02-05 Honda Motor Co., Ltd. Substrate having catalyst compositions on surfaces of opposite sides
US8118789B2 (en) * 2002-02-20 2012-02-21 Abbott Research Group, Inc. Deodorizer devices and systems for controlling perspiration-related body odor
US7270653B2 (en) * 2002-02-20 2007-09-18 Abbott Research Group Methods of treating abnormal biological conditions using metal oxides
US6589216B1 (en) 2002-02-20 2003-07-08 Abbott Research Group, Inc. Vaginal douches, vaginal douche applicators and methods of vaginal douching
JP2003264307A (en) * 2002-03-11 2003-09-19 Sharp Corp Thin film solar cell and its manufacturing method
KR20030080286A (en) * 2002-04-04 2003-10-17 김민호 Manufacturing method of silver coating ceramic tile by high vacuum deposition
US6711440B2 (en) 2002-04-11 2004-03-23 Biophan Technologies, Inc. MRI-compatible medical device with passive generation of optical sensing signals
GB0208642D0 (en) * 2002-04-16 2002-05-22 Accentus Plc Metal implants
US7201925B2 (en) * 2002-04-23 2007-04-10 Nueryst Pharmaceuticals Corp. Treatment of ungual and subungual diseases
US6725092B2 (en) 2002-04-25 2004-04-20 Biophan Technologies, Inc. Electromagnetic radiation immune medical assist device adapter
CN1678277B (en) 2002-07-29 2010-05-05 艾克里麦德公司 Methods and compositions for treatment of dermal conditions
CN100342925C (en) * 2002-09-10 2007-10-17 约瑟夫-彼得古根比齐勒 A process for preparation of an antimicrobial plastics product
DE10243132B4 (en) * 2002-09-17 2006-09-14 Biocer Entwicklungs Gmbh Anti-infective, biocompatible titanium oxide coatings for implants and methods of making them
US20050008763A1 (en) * 2002-09-24 2005-01-13 Schachter Steven C. Antimicrobial coatings for medical applications
US7513093B2 (en) 2002-10-04 2009-04-07 Ethicon, Inc. Method of preparing a packaged antimicrobial medical device
US20040068293A1 (en) * 2002-10-04 2004-04-08 Howard Scalzo Packaged antimicrobial medical device and method of preparing same
US8112973B2 (en) 2002-10-04 2012-02-14 Ethicon, Inc. Method of making a packaged antimicrobial suture
US9474524B2 (en) 2002-10-04 2016-10-25 Ethicon, Inc. Packaged antimicrobial medical device having improved shelf life and method of preparing same
US20050101993A1 (en) * 2002-10-04 2005-05-12 Howard Scalzo Antimicrobial packaged medical device and method of preparing same
US8133437B2 (en) * 2002-10-04 2012-03-13 Ethicon, Inc. Method of preparing an antimicrobial packaged medical device
US9597067B2 (en) 2002-10-04 2017-03-21 Ethicon, Inc. Packaged antimicrobial medical device and method of preparing same
AU2003286575A1 (en) * 2002-10-22 2004-05-13 Nucryst Pharmaceuticals Corp. Prophylactic treatment methods
CN1164769C (en) * 2002-10-24 2004-09-01 高奔 Method and device of testing nudein hybride pair on gene chip by four-dimensional paramerter
US20040091417A1 (en) * 2002-11-07 2004-05-13 Nanoproducts Corporation Nanotechnology for agriculture, horticulture, and pet care
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
US20040115477A1 (en) * 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
DK1996744T3 (en) * 2002-12-18 2011-05-09 Nanosurface Technologies Llc Methods of antimicrobial coating
US8066854B2 (en) * 2002-12-18 2011-11-29 Metascape Llc Antimicrobial coating methods
US20050008676A1 (en) 2002-12-19 2005-01-13 Yongxing Qiu Medical devices having antimicrobial coatings thereon
US6863825B2 (en) * 2003-01-29 2005-03-08 Union Oil Company Of California Process for removing arsenic from aqueous streams
US6921546B2 (en) * 2003-02-20 2005-07-26 Gemtron Corporation Antimicrobial glass and glass-like products and method of preparing same
US7285576B2 (en) 2003-03-12 2007-10-23 3M Innovative Properties Co. Absorbent polymer compositions, medical articles, and methods
US20040180093A1 (en) * 2003-03-12 2004-09-16 3M Innovative Properties Company Polymer compositions with bioactive agent, medical articles, and methods
DE10316156B3 (en) * 2003-04-09 2004-10-14 Beiersdorf Ag Antimicrobial polymer materials and their use as a wound dressing
JP4036452B2 (en) * 2003-04-18 2008-01-23 日本テトラパック株式会社 Method for manufacturing packaging laminate material
CA2678624C (en) * 2003-05-16 2012-11-06 Exciton Technologies Inc. Deposition products, composite materials and processes for the production thereof
US20040254545A1 (en) * 2003-06-16 2004-12-16 Rider Dean Loller Method and apparatus for extending feeding tube longevity
DE10328261B4 (en) 2003-06-23 2007-10-25 Beiersdorf Ag Disinfecting coating with silver coating and its use
NZ543643A (en) * 2003-06-23 2007-09-28 Beiersdorf Ag Antimicrobial wound dressing with two layers and antimicrobial metal between layers but not on exterior
US20050008861A1 (en) * 2003-07-08 2005-01-13 Nanoproducts Corporation Silver comprising nanoparticles and related nanotechnology
US20060259020A1 (en) * 2003-09-17 2006-11-16 Minnesota Scientific, Inc. Bacteria resistant coating for surgical instrument
WO2005027722A2 (en) * 2003-09-17 2005-03-31 Minnesota Scientific, Inc. Bacteria resistant coating for surgical instrument
DE10352578B3 (en) * 2003-11-11 2005-03-24 Leica Microsystems Nussloch Gmbh Microtome includes manually operated sample holder, cutting unit, section receiver and cut section interception pan having coating with silver ion release system
DE10352575B3 (en) * 2003-11-11 2005-05-04 Leica Microsystems Nussloch Gmbh Cryostat with an inner container for receiving a microtome
US20050123621A1 (en) * 2003-12-05 2005-06-09 3M Innovative Properties Company Silver coatings and methods of manufacture
US20050123590A1 (en) * 2003-12-05 2005-06-09 3M Innovative Properties Company Wound dressings and methods
US7745509B2 (en) 2003-12-05 2010-06-29 3M Innovative Properties Company Polymer compositions with bioactive agent, medical articles, and methods
WO2005058199A1 (en) * 2003-12-16 2005-06-30 Avery Dennison Corporation Electrostatically self-assembled antimicrobial coating for medical applications
US7457667B2 (en) * 2004-02-19 2008-11-25 Silverleaf Medical Products, Inc. Current producing surface for a wound dressing
US7662176B2 (en) 2004-02-19 2010-02-16 Vomaris Innovations, Inc. Footwear apparatus and methods of manufacture and use
US20050202099A1 (en) * 2004-03-10 2005-09-15 Globe Union Industrial Corp. Anti-microbial sanitary ware and method for making the same
GB0405680D0 (en) * 2004-03-13 2004-04-21 Accentus Plc Metal implants
CN100453691C (en) * 2004-04-06 2009-01-21 成霖企业股份有限公司 Production of bathing products with surface antibacterial membrane and products thereof
US20050271746A1 (en) * 2004-05-18 2005-12-08 Abbott Chun L Topical treatments for abnormal biological conditions and method of topically treating such conditions
US20060051396A1 (en) * 2004-06-16 2006-03-09 Affinergy, Inc. Biofunctional coatings
US20080204021A1 (en) * 2004-06-17 2008-08-28 Koninklijke Philips Electronics N.V. Flexible and Wearable Radio Frequency Coil Garments for Magnetic Resonance Imaging
WO2006088484A2 (en) * 2004-06-18 2006-08-24 The Boc Group, Inc. Antimicrobial lining for gas cylinders and coupling components
US20060004431A1 (en) * 2004-07-01 2006-01-05 Fuller Thomas A Prophylactic bactericidal implant
US8900624B2 (en) 2004-07-30 2014-12-02 Kimberly-Clark Worldwide, Inc. Antimicrobial silver compositions
US8361553B2 (en) 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
EP1781098B1 (en) * 2004-07-30 2015-10-07 Avent, Inc. Antimicrobial devices and compositions
US20060034899A1 (en) * 2004-08-12 2006-02-16 Ylitalo Caroline M Biologically-active adhesive articles and methods of manufacture
US20060035039A1 (en) * 2004-08-12 2006-02-16 3M Innovative Properties Company Silver-releasing articles and methods of manufacture
CN100377796C (en) * 2004-08-23 2008-04-02 冠季科技股份有限公司 Repairing method and repairing agent for surface of inorganic plate
US20060062850A1 (en) * 2004-09-13 2006-03-23 Chen John C Controlled release antimicrobial polymer compositions
EP1809264B1 (en) * 2004-09-20 2016-04-13 Avent, Inc. Antimicrobial amorphous compositions
US20070265354A1 (en) * 2004-10-21 2007-11-15 Canham Leigh T Silicon Structure
TWI282385B (en) * 2004-12-02 2007-06-11 Taiwan Textile Res Inst Method for producing durably anti-microbial fibers
US20060141015A1 (en) * 2004-12-07 2006-06-29 Centre Des Technologies Textiles Antimicrobial material
KR20050012202A (en) * 2004-12-16 2005-01-31 주식회사 네패스 Method for manufacturing a heating/cooling coil with a nanometer silver coating layer
EP1828071B1 (en) * 2004-12-16 2011-02-09 AGC Glass Europe Process for the production of antimicrobial glass type substrate
FR2880036B1 (en) * 2004-12-23 2007-09-07 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF SILVER OR SILVER NONOPARTICLES DISPERSED ON A SUBSTRATE BY CHEMICAL VAPOR DEPOSITION
US20060147533A1 (en) * 2004-12-31 2006-07-06 Vijayashree Balasubramanian Antimicrobial biomaterial for blood bags
GB0500898D0 (en) * 2005-01-18 2005-02-23 Smith & Nephew Gold-protein coagulation
CA2646639A1 (en) * 2005-03-17 2006-09-21 Impactcare Aps Article to be inserted in a body cavity having biologically inhibiting surfaces
US8399027B2 (en) 2005-04-14 2013-03-19 3M Innovative Properties Company Silver coatings and methods of manufacture
DE102005018431A1 (en) * 2005-04-21 2006-10-26 Leica Microsystems (Schweiz) Ag surgical microscope
KR100673856B1 (en) * 2005-06-24 2007-01-24 한국공조엔지니어링 주식회사 Antibiosis method of cooling plate and housing unit
WO2006126783A1 (en) * 2005-05-24 2006-11-30 Korea Air Conditioning Engineering Company Method and apparatus for manufacturing heat-exchanging coil fin unit and housing unit of air handling system with antimicrobial function
WO2006133410A2 (en) * 2005-06-08 2006-12-14 Smaht Ceramics, Inc. Biocidal ceramic compositions, methods and articles of manufacture
KR100673859B1 (en) 2005-06-24 2007-01-24 한국공조엔지니어링 주식회사 Manufacture method of the ventilator have anti-fungi and antimicrobial function that coated by metallic nano particles and nano clay
US20070025869A1 (en) * 2005-07-15 2007-02-01 Gordon John H Fluid Delivery Device
DE102005042372B3 (en) * 2005-09-07 2007-01-18 Dräger Medical AG & Co. KG Artificial respiration and/or anesthetic device comprises hydrophilic polymer material surface that contains silver particle and mineral filler such as zeolite, silicon dioxide, titanium dioxide, alumina, and zircon oxide
US20080249607A1 (en) * 2005-09-20 2008-10-09 Thomas Jay Webster Biocompatable Nanophase Materials
GB2430202A (en) * 2005-09-20 2007-03-21 Mantis Deposition Ltd Antibacterial surface coatings
JP5208752B2 (en) * 2005-10-18 2013-06-12 オーガノジェネシス・インコーポレイテッド Antibacterial collagen construct
WO2007070650A2 (en) 2005-12-14 2007-06-21 3M Innovative Properties Company Antimicrobial adhesive films
WO2007070649A2 (en) 2005-12-14 2007-06-21 3M Innovative Properties Company Antimicrobial coating system
US20070166399A1 (en) * 2006-01-13 2007-07-19 3M Innovative Properties Company Silver-containing antimicrobial articles and methods of manufacture
AU2007208343B2 (en) * 2006-01-27 2008-12-04 Chameleon Scientific Corporation Antimicrobial coating methods
DK2012839T3 (en) 2006-04-07 2012-04-10 Bactiguard Ab HIS UNKNOWN ANTIMICROBIAL SUBSTRATES AND APPLICATIONS THEREOF
US20070243258A1 (en) * 2006-04-13 2007-10-18 3M Innovative Properties Company Method and apparatus for forming crosslinked chromonic nanoparticles
EP2015722B1 (en) * 2006-04-28 2016-11-16 Avent, Inc. Antimicrobial site dressings
US7766935B2 (en) 2006-06-12 2010-08-03 Codman & Shurtleff, Inc. Modified headpiece for hydraulic coil deployment system
US7670353B2 (en) * 2006-06-12 2010-03-02 Codman & Shurtleff, Inc. Modified headpiece for hydraulic coil deployment system
EP2316499B1 (en) * 2006-06-12 2013-05-01 Accentus Medical PLC Metal implants
WO2007149546A2 (en) * 2006-06-21 2007-12-27 Proteus Biomedical, Inc. Implantable medical devices comprising cathodic arc produced structures
US20080014247A1 (en) * 2006-06-30 2008-01-17 Nucryst Pharmaceuticals Metal-containing formulations and methods of use
WO2008028355A1 (en) * 2006-08-28 2008-03-13 Peiqi Jiang Method for making surface antibacterial products utilizing physical vapor deposition technology
US20080085326A1 (en) * 2006-10-04 2008-04-10 Hai Xiong Ruan Antimicrobial material compositions enriched with different active oxygen species
US20080185311A1 (en) * 2006-10-13 2008-08-07 Global Distributors Llc Rotationally molded plastic refuse container with microbial inhibiting inner surface and method
CN101491380B (en) * 2006-10-17 2012-07-04 颜怀伟 Antistatic bacteriostasis shoes
US20100098949A1 (en) * 2006-10-18 2010-04-22 Burton Scott A Antimicrobial articles and method of manufacture
BRPI0718860A2 (en) * 2006-11-08 2016-10-04 Massachusetts Inst Technology virucidal composition and method for killing viruses
US20080122582A1 (en) * 2006-11-29 2008-05-29 Texas Instruments Incorporated Location Based Portable Device Feature Disabler
US20080147186A1 (en) * 2006-12-14 2008-06-19 Joshi Ashok V Electrochemical Implant For Delivering Beneficial Agents
DE102006060057A1 (en) * 2006-12-19 2008-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Antimicrobial material and method for producing an antimicrobial material
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
CA2674038C (en) 2006-12-28 2015-12-01 Argentumcidalelectrics, Inc. Ex vivo antimicrobial devices and methods
ATE477006T1 (en) * 2007-01-15 2010-08-15 Accentus Medical Plc METAL IMPLANTS
US7897266B2 (en) * 2007-02-09 2011-03-01 Rovcal, Inc. Personal grooming device having a tarnish resistant, hypoallergenic and/or antimicrobial silver alloy coating thereon
EP1964580B1 (en) * 2007-03-01 2010-12-29 Mölnlycke Health Care AB Silver-containing foam structure
TW200901890A (en) * 2007-04-03 2009-01-16 Sure Internat Ventures B V New compostions and methods for cell killing
US20100240799A1 (en) * 2007-06-13 2010-09-23 3M Innovative Properties Company Antimicrobial film-forming composition, antimicrobial film, and method of verifying the presence of an antimicrobial film
EP2192923A2 (en) * 2007-08-27 2010-06-09 Massachusetts Institute of Technology Bi-functional polymer-attached inhibitors of influenza virus
ATE510455T1 (en) * 2007-10-03 2011-06-15 3M Innovative Properties Co METHOD FOR LIMITING MICROORGANISM GROWTH
JP5287861B2 (en) 2007-10-03 2013-09-11 アクセンタス メディカル リミテッド Method for producing metal with biocidal properties
US8349764B2 (en) * 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
JP5330404B2 (en) * 2007-12-12 2013-10-30 スリーエム イノベイティブ プロパティズ カンパニー Microstructured antimicrobial film
GB2459081A (en) * 2008-01-31 2009-10-14 Tecvac Ltd Coated biomedical components
US8399028B2 (en) * 2008-08-14 2013-03-19 Exciton Technologies Inc. Antimicrobial silver solutions
AU2009316270B2 (en) * 2008-11-24 2015-08-27 Avent, Inc. Antimicrobial laminate constructs
US20100247600A1 (en) * 2009-03-24 2010-09-30 Warsaw Orthopedic, Inc. Therapeutic drug eluting implant cover and method of making the same
US20100249783A1 (en) * 2009-03-24 2010-09-30 Warsaw Orthopedic, Inc. Drug-eluting implant cover
DE102009016881A1 (en) * 2009-04-08 2010-10-14 Arkema France, S.A. A method of manufacturing a three-dimensional object using a plastic powder having antimicrobial properties and plastic powder having antimicrobial properties for such a method
US9414864B2 (en) * 2009-04-15 2016-08-16 Warsaw Orthopedic, Inc. Anterior spinal plate with preformed drug-eluting device affixed thereto
US9078712B2 (en) * 2009-04-15 2015-07-14 Warsaw Orthopedic, Inc. Preformed drug-eluting device to be affixed to an anterior spinal plate
US8404273B2 (en) * 2009-04-24 2013-03-26 Old Dominion University Research Foundation Wound care system and bactericidal methods and devices
US8309233B2 (en) * 2009-06-02 2012-11-13 Integran Technologies, Inc. Electrodeposited metallic-materials comprising cobalt on ferrous-alloy substrates
US8367217B2 (en) * 2009-06-02 2013-02-05 Integran Technologies, Inc. Electrodeposited metallic-materials comprising cobalt on iron-alloy substrates with enhanced fatigue performance
US8545994B2 (en) * 2009-06-02 2013-10-01 Integran Technologies Inc. Electrodeposited metallic materials comprising cobalt
US20110172507A1 (en) * 2009-08-25 2011-07-14 Sns Nano Fiber Technology, Llc Textile Composite Material Comprising Nanofiber Nonwoven
US20110054429A1 (en) * 2009-08-25 2011-03-03 Sns Nano Fiber Technology, Llc Textile Composite Material for Decontaminating the Skin
US9114197B1 (en) 2014-06-11 2015-08-25 Silver Bullett Therapeutics, Inc. Coatings for the controllable release of antimicrobial metal ions
US8927004B1 (en) 2014-06-11 2015-01-06 Silver Bullet Therapeutics, Inc. Bioabsorbable substrates and systems that controllably release antimicrobial metal ions
US9821094B2 (en) 2014-06-11 2017-11-21 Silver Bullet Therapeutics, Inc. Coatings for the controllable release of antimicrobial metal ions
US10265435B2 (en) 2009-08-27 2019-04-23 Silver Bullet Therapeutics, Inc. Bone implant and systems and coatings for the controllable release of antimicrobial metal ions
US8221396B2 (en) 2009-08-27 2012-07-17 Silver Bullet Therapeutics, Inc. Bone implants for the treatment of infection
JP4778123B2 (en) 2009-09-08 2011-09-21 三井化学株式会社 Antimicrobial material, method for producing the same, and antimicrobial material
RU2429820C2 (en) 2009-09-24 2011-09-27 Закрытое акционерное общество "Институт прикладной нанотехнологии" (ЗАО"ИПН") Antiseptic ointment for outward application (2 versions)
US8808724B2 (en) * 2009-10-28 2014-08-19 Ethicon, Inc. Antimicrobial coatings with preferred microstructure for medical devices
CN104941004B (en) 2009-11-25 2018-09-14 扩散技术公司 The rear loading method of the plastics of zeolite is adulterated with antimicrobial metal ion pair
CN102834122B (en) 2009-12-11 2015-03-11 扩散技术公司 Method of manufacturing antimicrobial implants of polyetheretherketone
EP2363038A1 (en) * 2010-03-05 2011-09-07 Didar Almabekov Toothbrush
US8882730B2 (en) 2010-03-12 2014-11-11 Kci Licensing, Inc. Radio opaque, reduced-pressure manifolds, systems, and methods
MX2012012710A (en) 2010-05-07 2013-02-26 Difusion Technologies Inc Medical implants with increased hydrophilicity.
US9303322B2 (en) 2010-05-24 2016-04-05 Integran Technologies Inc. Metallic articles with hydrophobic surfaces
US8486319B2 (en) 2010-05-24 2013-07-16 Integran Technologies Inc. Articles with super-hydrophobic and/or self-cleaning surfaces and method of making same
WO2011156816A2 (en) * 2010-06-11 2011-12-15 Terence Kloss Compositions comprising polymers coated with metallic layers and methods of manufacture and use thereof
WO2012050639A1 (en) * 2010-10-14 2012-04-19 Micropyretics Heaters International, Inc. Antibiofilm nanoporous nanostructures and method to produce same
EP2637608B1 (en) 2010-11-12 2016-03-02 Silver Bullet Therapeutics Inc. Bone implant and systems that controllably releases silver
WO2012111301A1 (en) * 2011-02-18 2012-08-23 三井化学株式会社 Antimicrobial substance, method for producing same, and antimicrobial material
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
RU2473352C2 (en) 2011-04-21 2013-01-27 Закрытое акционерное общество "Институт прикладной нанотехнологии" Intra-articular fluid simulator formulation and method for preparing intra-articular fluid additive
US8936564B2 (en) * 2011-08-26 2015-01-20 Marshall Kerr Bio-compatible catheter
US9249521B2 (en) 2011-11-04 2016-02-02 Integran Technologies Inc. Flow-through consumable anodes
DE102011121687A1 (en) 2011-12-14 2013-06-20 Gmbu E.V., Fachsektion Dresden Depositing silver, useful e.g. for producing electrically conductive surface, comprises preparing silver compound solution in solvent, applying on a substrate, evaporating solvent and plasma treating substrate with applied silver compound
US9120095B2 (en) 2012-03-29 2015-09-01 Biomet Biologics, Llc Apparatus and method for separating and concentrating a component of a fluid
US10245025B2 (en) 2012-04-06 2019-04-02 Ethicon, Inc. Packaged antimicrobial medical device having improved shelf life and method of preparing same
JP5582164B2 (en) * 2012-04-19 2014-09-03 住友電気工業株式会社 Antibacterial ceramic product, ceramic surface treatment agent, and method for manufacturing antibacterial ceramic product
US20140031949A1 (en) * 2012-06-27 2014-01-30 Signal Medical Corporation Ceramic antibacterial
DE102012109272B4 (en) * 2012-09-28 2022-07-28 PV TECH Plasma und Vakuum Technologie GmbH Nanostructured, open-pored diffusion layer for the controlled release of copper ions for the targeted killing of MRE germs
US9381588B2 (en) 2013-03-08 2016-07-05 Lotus BioEFx, LLC Multi-metal particle generator and method
US9545301B2 (en) 2013-03-15 2017-01-17 Covidien Lp Coated medical devices and methods of making and using same
US9320592B2 (en) 2013-03-15 2016-04-26 Covidien Lp Coated medical devices and methods of making and using same
HUP1300343A2 (en) 2013-05-27 2014-11-28 Bay Zoltan Koezhasznu Nonprofit Kft Method for production of biocompatibile metal implant with antimicrobal feature and the metal implant
US9332921B2 (en) 2013-05-31 2016-05-10 Innovatech, Llc Anti-microbial electromyography needle
EP3036353B1 (en) * 2013-08-20 2022-01-26 MDS Coating Technologies Corp. Coating containing macroparticles and cathodic arc process of making the coating
US9586381B1 (en) 2013-10-25 2017-03-07 Steriplate, LLC Metal plated object with biocidal properties
US9668890B2 (en) 2013-11-22 2017-06-06 Covidien Lp Anti-thrombogenic medical devices and methods
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
CN103866242A (en) * 2014-03-20 2014-06-18 常州康鼎医疗器械有限公司 Physical vapor deposition (PVD) surface coating technique of medical instruments
US9452242B2 (en) 2014-06-11 2016-09-27 Silver Bullet Therapeutics, Inc. Enhancement of antimicrobial silver, silver coatings, or silver platings
TWI527920B (en) * 2014-11-26 2016-04-01 財團法人金屬工業研究發展中心 Protection film and method for depositing the protection film
US9789228B2 (en) 2014-12-11 2017-10-17 Covidien Lp Antimicrobial coatings for medical devices and processes for preparing such coatings
US10149956B2 (en) 2015-02-28 2018-12-11 John P. Ure Bi-lateral endobronchial suctioning device and medical suctioning system for intubated patients
AU2016243634B2 (en) 2015-03-30 2020-04-02 C. R. Bard, Inc. Application of antimicrobial agents to medical devices
TWI554391B (en) * 2015-05-15 2016-10-21 國立臺灣科技大學 Thin film metallic glass
JP6843079B2 (en) 2015-06-29 2021-03-17 スリーエム イノベイティブ プロパティズ カンパニー Antibacterial articles and how to use them
US10064273B2 (en) 2015-10-20 2018-08-28 MR Label Company Antimicrobial copper sheet overlays and related methods for making and using
EP3373984B1 (en) 2015-11-13 2020-12-23 3M Innovative Properties Company Anti-microbial articles and methods of using same
CN108348632B (en) 2015-11-13 2022-04-15 3M创新有限公司 Antimicrobial articles and methods of use thereof
US10682160B2 (en) 2015-12-03 2020-06-16 Globus Medical, Inc. External fixator assembly
US9872707B2 (en) 2015-12-03 2018-01-23 Globus Medical, Inc. External fixator assembly
US9943337B2 (en) 2015-12-03 2018-04-17 Globus Medical, Inc. External fixator assembly
US10136919B2 (en) 2015-12-03 2018-11-27 Globus Medical, Inc. External fixator assembly
TWI571522B (en) * 2016-05-23 2017-02-21 林彩惠 Method for coating metal cup
WO2018075259A1 (en) 2016-10-19 2018-04-26 3M Innovative Properties Company Anti-microbial articles
CN112367942A (en) * 2018-06-15 2021-02-12 3M创新有限公司 Dental appliance with metal oxide coating
RU2706425C1 (en) * 2019-02-18 2019-11-19 Андрей Александрович Волков Wound coating
CN111905154B (en) * 2019-05-08 2022-03-11 中国科学院金属研究所 Root canal file with antibacterial function and preparation method thereof
CN110144561A (en) * 2019-06-04 2019-08-20 东莞市和荣纳米技术有限公司 A kind of preparation method of hard coat of the durable with antibacterial functions
US11319450B2 (en) 2019-07-18 2022-05-03 Integran Technologies Inc. Articles comprising durable icephobic coatings
US11312869B2 (en) 2019-07-18 2022-04-26 Integran Technologies Inc. Articles comprising durable water repellent, icephobic and/or biocidal coatings
JP6774690B1 (en) * 2019-09-11 2020-10-28 相田化学工業株式会社 Antiviral alloy
WO2021116861A1 (en) 2019-12-09 2021-06-17 3M Innovative Properties Company Anti-microbial articles
AU2021224198A1 (en) * 2020-02-20 2022-07-21 Abbott Diabetes Care Inc. Antimicrobial and microstatic sensor systems
EP4133119A1 (en) * 2020-04-06 2023-02-15 Kheprion, Inc. Process for making antiinflammatory, antibacterial, antifungal and viricidal materials
US20210345711A1 (en) * 2020-05-06 2021-11-11 Saint-Gobain Performance Plastics Corporation Thin film layers and composite structures for virus control
EP3915373A1 (en) 2020-05-26 2021-12-01 AGXX Intellectual Property Holding GmbH Bioactive composition for killing cells
AU2021285714A1 (en) * 2020-06-04 2023-01-19 Survivon Ltd Article with pathogen inhibiting treatment
US11821075B2 (en) 2020-06-15 2023-11-21 Vapor Technologies, Inc. Anti-microbial coating physical vapor deposition such as cathodic arc evaporation
US11512818B2 (en) 2020-07-10 2022-11-29 Junming Ding Multi-mode portable lighting device with novel battery charging unit
WO2022073099A1 (en) * 2020-10-06 2022-04-14 Green Belting Industries Ltd. Metalized nano coated swab for trace detection
CN112593231B (en) * 2020-12-16 2021-10-26 北京航空航天大学 Method for preparing Ag-containing antibacterial particles on surface of pure titanium or titanium alloy
CN113640803B (en) * 2021-09-01 2022-07-22 江西师范大学 Short-time quantitative rainfall forecasting method based on echo intensity and echo top height extrapolation
WO2023031697A1 (en) 2021-09-01 2023-03-09 3M Innovative Properties Company Anti-virus respirator and mask
CN115286931A (en) * 2022-07-19 2022-11-04 深圳粤源建设有限责任公司 Transparent wood, preparation method thereof and transparent furniture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073024A (en) * 1980-03-27 1981-10-14 Nat Res Dev Antimicrobial Surgical Implants
EP0415206A2 (en) * 1989-08-31 1991-03-06 Ykk Corporation Production method of metal foil and metal foil produced by the method

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB206024A (en) 1922-11-20 1923-11-01 Alfred Russell Hewetson Improvements in a method of making shoes
US2103999A (en) * 1936-05-25 1937-12-28 Silver Oxide Products Company Disinfective and antiseptic compound for the treatment of ulcers, sores, and the like
DE819131C (en) * 1948-10-02 1951-10-29 Chininfabrik Braunschweig Buch Process for the production of disinfecting and bactericidal compounds
US2785153A (en) * 1954-09-13 1957-03-12 Crookes Barnes Lab Inc Silver protein
DE2530487A1 (en) * 1975-07-09 1977-01-27 Erfindergesellschaft Fresenius WATER SANITIZER AND METHOD FOR MANUFACTURING THEREOF
US4564361A (en) * 1975-11-18 1986-01-14 Hiroshi Akiyama Catheter
US4054139A (en) * 1975-11-20 1977-10-18 Crossley Kent B Oligodynamic catheter
JPS5740994Y2 (en) * 1977-05-17 1982-09-08
US4325776A (en) * 1977-06-20 1982-04-20 Siemens Aktiengesellschaft Method for preparing coarse-crystal or single-crystal metal films
US4167045A (en) * 1977-08-26 1979-09-11 Interface Biomedical Laboratories Corp. Cardiac and vascular prostheses
US4182535A (en) * 1978-09-18 1980-01-08 The Bendix Corporation Trailer brake system
US4341569A (en) * 1979-07-24 1982-07-27 Hughes Aircraft Company Semiconductor on insulator laser process
US4418686A (en) * 1979-08-01 1983-12-06 Child Laboratories Inc. Implant for inhibiting mastitis in dairy cattle
US4377675A (en) * 1979-09-24 1983-03-22 Dow Corning Corporation Amorphous materials derived from aqueous metal ammine siliconate solutions
JPS5911988B2 (en) * 1980-01-23 1984-03-19 株式会社日立製作所 Ion implantation method
JPS57500588A (en) * 1980-03-27 1982-04-08
US4483688A (en) * 1980-09-22 1984-11-20 Hiroshi Akiyama Catheter
IT1134586B (en) * 1980-12-04 1986-08-13 Renato Braga TOOTHBRUSH WITH SILVER BRISTLE HEAD
JPS57134558A (en) * 1981-02-16 1982-08-19 Fuji Photo Film Co Ltd Production of organic vapor deposited thin film
EP0065884B1 (en) * 1981-05-27 1986-08-20 Unitika Ltd. Urethral catheter capable of preventing urinary tract infection and process for producing the same
US4411648A (en) * 1981-06-11 1983-10-25 Board Of Regents, The University Of Texas System Iontophoretic catheter device
US4443488A (en) * 1981-10-19 1984-04-17 Spire Corporation Plasma ion deposition process
US4520039A (en) * 1982-09-23 1985-05-28 Sovonics Solar Systems Compositionally varied materials and method for synthesizing the materials
US4664960A (en) * 1982-09-23 1987-05-12 Energy Conversion Devices, Inc. Compositionally varied materials and method for synthesizing the materials
US4603152A (en) * 1982-11-05 1986-07-29 Baxter Travenol Laboratories, Inc. Antimicrobial compositions
DE3302567A1 (en) * 1983-01-26 1984-07-26 Christoph Dr. 8011 Höhenkirchen Steidle Catheter
GB2134791B (en) * 1983-02-11 1987-05-20 Vernon Carus Ltd Antibacterial dressing
US4592920A (en) * 1983-05-20 1986-06-03 Baxter Travenol Laboratories, Inc. Method for the production of an antimicrobial catheter
JPS6021912A (en) * 1983-07-14 1985-02-04 Mitsubishi Rayon Co Ltd Manufacture of metallized synthetic fiber staple
US4590031A (en) * 1983-09-23 1986-05-20 Energy Conversion Devices, Inc. Molding tool and method
US4716083A (en) * 1983-09-23 1987-12-29 Ovonic Synthetic Materials Company Disordered coating
US4528208A (en) * 1983-10-13 1985-07-09 Zymet, Inc. Method and apparatus for controlling article temperature during treatment in vacuum
JPS60141869A (en) * 1983-12-29 1985-07-26 Nissin Electric Co Ltd Method and device for forming film
US4569673A (en) * 1984-01-12 1986-02-11 Battelle Development Corporation Bacterial barrier for indwelling catheters and other medical devices
CA1242204A (en) 1984-01-16 1988-09-20 Sigmund E. Lasker Organometallic diphenyl hydantoins and uses thereof
DE3506288A1 (en) * 1984-09-06 1986-03-13 Johannes 7900 Ulm Reinmüller DEVICE FOR INSERTING IN Wounds and Wound Caves
US4677143A (en) * 1984-10-01 1987-06-30 Baxter Travenol Laboratories, Inc. Antimicrobial compositions
DE3587286T2 (en) * 1984-12-28 1993-09-23 Johnson Matthey Plc ANTIMICROBIAL COMPOSITIONS.
JPH0674501B2 (en) * 1985-02-27 1994-09-21 大阪大学長 Method of injecting heteroatoms into solids by electron beam
US4634432A (en) * 1985-05-13 1987-01-06 Nuri Kocak Introducer sheath assembly
US4612337A (en) * 1985-05-30 1986-09-16 The Trustees Of Columbia University In The City Of New York Method for preparing infection-resistant materials
US4886505A (en) * 1985-06-07 1989-12-12 Becton, Dickinson And Company Antimicrobial surfaces and inhibition of microorganism growth thereby
US4693760A (en) * 1986-05-12 1987-09-15 Spire Corporation Ion implanation of titanium workpieces without surface discoloration
US4846834A (en) * 1986-05-27 1989-07-11 Clemson University Method for promoting tissue adhesion to soft tissue implants
EP0254413A3 (en) * 1986-06-13 1989-11-08 Yoshiaki Matsuo Silver-ionic water and its uses
GB8616294D0 (en) * 1986-07-03 1986-08-13 Johnson Matthey Plc Antimicrobial compositions
JPS6256018A (en) * 1986-07-23 1987-03-11 Hitachi Ltd Complementary type semiconductor integrated circuit
US4718905A (en) * 1986-08-13 1988-01-12 Freeman Jerre M Haptic element using ion beam implantation for an intraocular lens
US4743493A (en) * 1986-10-06 1988-05-10 Spire Corporation Ion implantation of plastics
US4743308A (en) * 1987-01-20 1988-05-10 Spire Corporation Corrosion inhibition of metal alloys
JPS6415056A (en) * 1987-07-09 1989-01-19 Hanarou Maeda Body indwelling tube
DE3725728A1 (en) * 1987-08-04 1989-02-16 Freudenberg Carl Fa MEDICAL DEVICE AND METHOD FOR THE PRODUCTION THEREOF
US4846844A (en) * 1987-08-31 1989-07-11 Eli Lilly And Company Antimicrobial coated implants
US5080671A (en) * 1987-11-25 1992-01-14 Uri Oron Method of treating a metal prosthetic device prior to surgical implantation to enhance bone growth relative thereto following implantation
EP0318258B1 (en) * 1987-11-25 1993-04-07 Unitika Ltd. Antimicrobial latex composition
US5019601A (en) * 1987-12-29 1991-05-28 Cuno, Incorporated Elastomeric composition containing therapeutic agents and articles manufactured therefrom
US4867968A (en) * 1987-12-29 1989-09-19 Florida-Kansas Health Care, Inc. Elastomeric composition containing therapeutic agents and articles manufactured therefrom
US5152993A (en) * 1988-01-20 1992-10-06 Ellem Bioteknik Ab Method of preparing an implant body for implantation
SE464911B (en) * 1988-01-20 1991-07-01 Inst Applied Biotechnology ANTI-INFLAMMATORY AGENT, BASED ON THE REACTION PRODUCT BETWEEN H? 712O? 712 AND TITAN, PROCEDURE FOR ITS PREPARATION AND USE THEREOF
US5019096A (en) * 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US4932948A (en) * 1988-03-28 1990-06-12 Hollister Incorporated Male external catheter and antimicrobial insert therefor
WO1989011311A1 (en) * 1988-05-18 1989-11-30 Kasevich Associates, Inc. Microwave balloon angioplasty
US4855026A (en) * 1988-06-02 1989-08-08 Spire Corporation Sputter enhanced ion implantation process
DE3830359A1 (en) * 1988-06-07 1989-12-14 Weikl Andreas Dr Member that can be introduced and/or implanted in the body, body parts or body cavities
US5047385A (en) * 1988-07-20 1991-09-10 The Board Of Trustees Of The Leland Stanford Junior University Method of forming superconducting YBa2 Cu3 O7-x thin films with controlled crystal orientation
JPH0245051A (en) * 1988-08-04 1990-02-15 Shiro Yamada Artificial hair for planting and method and apparatus for producing artificial hair
US4944961A (en) * 1988-08-05 1990-07-31 Rensselaer Polytechnic Institute Deposition of metals on stepped surfaces
DE3831657A1 (en) * 1988-09-17 1990-03-22 Boehringer Ingelheim Kg DEVICE FOR THE OSTEOSYNTHESIS AND METHOD FOR THE PRODUCTION THEREOF
US5207706A (en) * 1988-10-05 1993-05-04 Menaker M D Gerald Method and means for gold-coating implantable intravascular devices
US4933178A (en) * 1988-10-07 1990-06-12 Biointerface Technologies, Inc. Metal-based antimicrobial coating
US5152774A (en) * 1988-10-17 1992-10-06 Schroeder William A Surgical instrument having a toughened wearing surface and method of making the same
US5055169A (en) * 1989-03-17 1991-10-08 The United States Of America As Represented By The Secretary Of The Army Method of making mixed metal oxide coated substrates
CA1316623C (en) 1989-04-06 1993-04-20 Pavel Stovicek Biocidal surface coating and casting compositions based on quarternary ammonium salts of nalkyl x,x bis (4,4' hydroxyphenyl) and quarternary salts of polyglycols as backbones of resins
US5320908A (en) 1989-05-04 1994-06-14 Ad Tech Holdings Limited Deposition of an extremely thin silver layer on a nonconducting substrate
US4999730A (en) * 1989-05-10 1991-03-12 Pickard Harold W Line voltage monitor and controller
DE3916648C1 (en) * 1989-05-22 1990-09-06 Fa. Carl Freudenberg, 6940 Weinheim, De
JP2930329B2 (en) * 1989-09-28 1999-08-03 ソニー株式会社 Antithrombotic material
SE9001009L (en) * 1990-03-21 1991-09-22 Ytbolaget I Uppsala Ab PROCEDURE SHOULD CREATE A HAIR AND Wear-Resistant Layer With Good Adhesion To Titanium Or Titanium Regulations And Products, Manufactured According To The Procedure
US5123924A (en) * 1990-04-25 1992-06-23 Spire Corporation Surgical implants and method
JPH04228532A (en) * 1990-05-29 1992-08-18 Mitsui Eng & Shipbuild Co Ltd Amorphous alloy coating fabric
US5133757A (en) * 1990-07-31 1992-07-28 Spire Corporation Ion implantation of plastic orthopaedic implants
JP2590653B2 (en) * 1990-11-28 1997-03-12 松下電器産業株式会社 Antimicrobial composite, method for producing the same, resin and coking material using the same
US5098434A (en) * 1990-11-28 1992-03-24 Boehringer Mannheim Corporation Porous coated bone screw
US5123927A (en) * 1990-12-05 1992-06-23 University Of British Columbia Method and apparatus for antibiotic knee prothesis
DE9017361U1 (en) * 1990-12-22 1991-03-14 Streitenberg, Hubert, Dr.Med., 7500 Karlsruhe, De
CA2033107C (en) * 1990-12-24 2001-06-12 Robert Edward Burrell Actively sterile surfaces
US5468562A (en) * 1991-03-01 1995-11-21 Spire Corporation Metallized polymeric implant with ion embedded coating
US5520664A (en) * 1991-03-01 1996-05-28 Spire Corporation Catheter having a long-lasting antimicrobial surface treatment
US5098582A (en) * 1991-05-09 1992-03-24 N. Jonas & Co., Inc. Divalent silver oxide bactericides
US5078902A (en) * 1991-05-09 1992-01-07 N. Jonas & Co., Inc. Divalent silver halide bactericide
US5073382A (en) * 1991-05-09 1991-12-17 N. Jonas & Co., Inc. Divalent silver alkaline bactericide compositions
US5089275A (en) * 1991-05-09 1992-02-18 N. Jonas & Co., Inc. Stabilized divalent silver bactericides
EP0515730A1 (en) 1991-05-29 1992-12-02 Mitsui Engineering and Shipbuilding Co, Ltd. Antibacterial amorphous alloy highly resistant to oxidation, discoloration, and corrosion, fabric coated with amorphous alloy, and insole
US5242706A (en) * 1991-07-31 1993-09-07 The United States Of America As Represented By The Secretary Of The Navy Laser-deposited biocompatible films and methods and apparatuses for producing same
US5233149A (en) * 1991-08-02 1993-08-03 Eaton Corporation Reprocessing weld and method
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
WO1993007924A1 (en) * 1991-10-18 1993-04-29 Spire Corporation Bactericidal coatings for implants
US5211855A (en) * 1992-01-24 1993-05-18 N. Jonas & Co., Inc. Method of treating water employing tetrasilver tetroxide crystals
US5223149A (en) * 1992-05-18 1993-06-29 N. Jonas & Co., Inc. Trivalent silver water treatment compositions
ATE272947T1 (en) * 1992-10-27 2004-08-15 Fuso Chemical Co Ltd BIFIDOBACTERIUM GROWTH PROMOTER
US5322520A (en) * 1992-11-12 1994-06-21 Implemed, Inc. Iontophoretic structure for medical devices
JP3201023B2 (en) * 1992-11-17 2001-08-20 東亞合成株式会社 Manufacturing method of antibacterial synthetic fiber
US5454886A (en) * 1993-11-18 1995-10-03 Westaim Technologies Inc. Process of activating anti-microbial materials
US5709677A (en) 1995-07-12 1998-01-20 Laser Industries, Ltd. Apparatus and method as preparation for performing a myringotomy in a child's ear without the need for anaesthesia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2073024A (en) * 1980-03-27 1981-10-14 Nat Res Dev Antimicrobial Surgical Implants
EP0415206A2 (en) * 1989-08-31 1991-03-06 Ykk Corporation Production method of metal foil and metal foil produced by the method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOM vol. 41, no. 6, June 1989, WARRENDALE US pages 12 - 17 FROES ET AL. 'Nanocrystalline metals for structural appllications' See pages 12-13, section "Synthesis"; Table I *
TECHNISCHE MITTEILUNGEN KRUPP no. 2, November 1989, ESSEN DE pages 69 - 76 SCHLUMP ET AL 'Nanocrystalline materials by mechanical alloying' See whole document *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520664A (en) * 1991-03-01 1996-05-28 Spire Corporation Catheter having a long-lasting antimicrobial surface treatment
US5474797A (en) * 1991-10-18 1995-12-12 Spire Corporation Bactericidal coatings for implants
US6017553A (en) * 1992-05-19 2000-01-25 Westaim Technologies, Inc. Anti-microbial materials
US5492763A (en) * 1992-06-08 1996-02-20 Spire Corporation Infection resistant medical devices and process
EP0636375A1 (en) * 1993-07-26 1995-02-01 Degussa Aktiengesellschaft Equipment and sanitary devices for hospitals
AU703141B2 (en) * 1993-11-18 1999-03-18 Nucryst Pharmaceuticals Corp. Anti-microbial materials
WO1995013704A1 (en) * 1993-11-18 1995-05-26 Westaim Technologies Inc. Anti-microbial materials
WO1995018637A1 (en) * 1994-01-11 1995-07-13 Spire Corporation Catheter having a long-lasting antimicrobial surface treatment
WO1995020878A1 (en) * 1994-02-01 1995-08-10 Theodor Krall Process for producing bactericidal/fungicidal plastic bodies
EP0717929A3 (en) * 1994-12-22 1997-03-19 Toni Dr Gradl Process and composition for the prevention of microbial growth on a surface; composition for surface coating and finishing
JP2008080143A (en) * 1995-06-07 2008-04-10 Cook Inc Medical apparatus
US5895419A (en) * 1996-09-30 1999-04-20 St. Jude Medical, Inc. Coated prosthetic cardiac device
US6013106A (en) * 1997-01-22 2000-01-11 St. Jude Medical, Inc. Medical article with adhered antimicrobial metal ions and related methods
WO1998041095A3 (en) * 1997-03-17 1999-03-11 Westaim Technologies Inc Anti-microbial coatings having indicator properties and wound dressings
US6333093B1 (en) 1997-03-17 2001-12-25 Westaim Biomedical Corp. Anti-microbial coatings having indicator properties and wound dressings
WO1998041095A2 (en) * 1997-03-17 1998-09-24 Westaim Technologies Inc. Anti-microbial coatings having indicator properties and wound dressings
WO1999016390A3 (en) * 1997-09-26 1999-10-07 Mark A Babizhayev Coated ophthalmic and implantable devices and methods for producing same
US6613088B1 (en) 1997-09-26 2003-09-02 Mark A. Babizhayev Coated ophthalmic and implantable devices and methods for producing same
US8075823B2 (en) 1999-07-30 2011-12-13 Guggenbichler J Peter Process for preparing antimicrobial plastic bodies having improved long-time performance
WO2001012246A1 (en) * 1999-08-17 2001-02-22 St. Jude Medical, Inc. Medical devices with metal/polymer composites
US6322588B1 (en) 1999-08-17 2001-11-27 St. Jude Medical, Inc. Medical devices with metal/polymer composites
WO2001080920A2 (en) 2000-04-17 2001-11-01 Nucryst Pharmaceuticals Corp. Antimicrobial bioabsorbable materials
WO2002085384A3 (en) * 2001-04-23 2003-08-21 Nucryst Pharm Corp Lubricious coatings for substrates
AU2002252881B2 (en) * 2001-04-23 2007-07-26 Smith & Nephew (Overseas) Limited Use of metals to treat inflammatory skin conditions
WO2002085384A2 (en) * 2001-04-23 2002-10-31 Nucryst Pharmaceuticals Corp. Lubricious coatings for substrates
AU2002252879B2 (en) * 2001-04-23 2007-08-02 Smith & Nephew (Overseas) Limited Use of metals to treat mucosal membranes
EP2810678A3 (en) * 2005-08-31 2015-04-15 Kimberly-Clark Worldwide, Inc. Anti-microbial catheter
EP2810679A3 (en) * 2005-08-31 2015-04-15 Kimberly-Clark Worldwide, Inc. Anti-microbial catheter
US7867176B2 (en) 2005-12-27 2011-01-11 Cordis Corporation Variable stiffness guidewire
US7785317B2 (en) 2006-03-29 2010-08-31 Codman & Shurtleff, Inc. Joined metal tubing and method of manufacture
US8690938B2 (en) 2006-05-26 2014-04-08 DePuy Synthes Products, LLC Occlusion device combination of stent and mesh with diamond-shaped porosity
US8118859B2 (en) 2006-05-26 2012-02-21 Codman & Shurtleff, Inc. Occlusion device combination of stent and mesh having offset parallelogram porosity
US8585732B2 (en) 2006-06-14 2013-11-19 DePuy Synthes Products, LLC Retrieval device with sidewall grippers
EP2089480A4 (en) * 2006-11-27 2012-10-03 Micropyretics Heaters Int Antimicrobal materials and coatings
EP2089480A2 (en) * 2006-11-27 2009-08-19 Micropyretics Heaters International, Inc. Antimicrobal materials and coatings
US8865227B2 (en) 2007-12-20 2014-10-21 Smith & Nephew (Overseas) Limited Metal carbonate particles and methods of making thereof
EP2693978A2 (en) * 2011-04-01 2014-02-12 Washington State University Researchfoundation Materials with modified surfaces and methods of manufacturing
EP2693978A4 (en) * 2011-04-01 2014-11-05 Univ Washington State Res Fdn Materials with modified surfaces and methods of manufacturing
US8647675B2 (en) 2012-03-08 2014-02-11 Pacesetter, Inc. Silver nanoparticle antimicrobial coating for long-term and short-term infection resistance
US9107903B2 (en) 2012-03-08 2015-08-18 Pacesetter, Inc. Silver nanoparticle antimicrobial coating for long-term and short-term infection resistance
CN104128101A (en) * 2014-07-18 2014-11-05 南京工业大学 Silver doped metal ceramic composite membrane and preparation method thereof
US20210156081A1 (en) * 2017-07-18 2021-05-27 Naxau New Materials Co., Ltd. Fiber cloth having functional composite particles and preparation method therefor

Also Published As

Publication number Publication date
HK1011939A1 (en) 1999-07-23
IL105726A0 (en) 1994-05-30
US6238686B1 (en) 2001-05-29
ES2119899T3 (en) 1998-10-16
CN1082625A (en) 1994-02-23
US5753251A (en) 1998-05-19
GEP20002060B (en) 2000-05-10
EP0641224B1 (en) 1998-08-19
JPH08500392A (en) 1996-01-16
AU4055893A (en) 1993-12-13
IL105726A (en) 1998-02-22
MD1728B2 (en) 2001-09-30
CA2134217A1 (en) 1993-10-25
RU2131269C1 (en) 1999-06-10
JP2947934B2 (en) 1999-09-13
HUT69766A (en) 1995-09-28
HU217644B (en) 2000-03-28
RU94046003A (en) 1996-09-27
BR9306613A (en) 1998-12-08
DE69320472T2 (en) 1998-12-24
CA2134217C (en) 2000-04-11
AU673170B2 (en) 1996-10-31
DE69320472D1 (en) 1998-09-24
CN1066783C (en) 2001-06-06
TW374730B (en) 1999-11-21
HU9403317D0 (en) 1995-02-28
UA42690C2 (en) 2001-11-15
ATE169829T1 (en) 1998-09-15
EP0641224A1 (en) 1995-03-08
US5681575A (en) 1997-10-28
NZ252076A (en) 1997-02-24
US5770255A (en) 1998-06-23
KR950701534A (en) 1995-04-28
MD1728C2 (en) 2002-03-31
DK0641224T3 (en) 1999-05-25
MX9302877A (en) 1994-07-29

Similar Documents

Publication Publication Date Title
US5681575A (en) Anti-microbial coating for medical devices
US5454886A (en) Process of activating anti-microbial materials
US5837275A (en) Anti-microbial materials
CA2136455C (en) Process for producing anti-microbial effect with complex silver ions
EP1996744B1 (en) Antimicrobial coating methods
EP0875146A1 (en) Anti-microbial materials
RU2167526C2 (en) Antibacterial materials
AU731732B2 (en) Anti-microbial materials
AU731730B2 (en) Process for producing anti-microbial effect with complex silver ions
CA2136456C (en) Novel anti-microbial materials
AU2007208343A1 (en) Antimicrobial coating methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR CA CH CZ DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO NZ PL PT RO RU SD SE SK UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)
EX32 Extension under rule 32 effected after completion of technical preparation for international publication
EX32 Extension under rule 32 effected after completion of technical preparation for international publication
LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)
WWE Wipo information: entry into national phase

Ref document number: 2134217

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 252076

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1993909715

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1993909715

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

EX32 Extension under rule 32 effected after completion of technical preparation for international publication
LE32 Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b)
EX32 Extension under rule 32 effected after completion of technical preparation for international publication

Free format text: AM+,KG+,MD+,TJ+,TM+

WWE Wipo information: entry into national phase

Ref document number: 96-0295

Country of ref document: MD

WWG Wipo information: grant in national office

Ref document number: 1993909715

Country of ref document: EP