WO1994000695A1 - Magnetostriktiver wandler - Google Patents

Magnetostriktiver wandler Download PDF

Info

Publication number
WO1994000695A1
WO1994000695A1 PCT/DE1993/000489 DE9300489W WO9400695A1 WO 1994000695 A1 WO1994000695 A1 WO 1994000695A1 DE 9300489 W DE9300489 W DE 9300489W WO 9400695 A1 WO9400695 A1 WO 9400695A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetostrictive transducer
transducer according
thin layer
magnetic field
magnetostrictive
Prior art date
Application number
PCT/DE1993/000489
Other languages
English (en)
French (fr)
Inventor
Heinz Friedrich
Christoph Treutler
Gerhard Benz
Gottfried Flik
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP6501931A priority Critical patent/JPH07508135A/ja
Priority to DE59306537T priority patent/DE59306537D1/de
Priority to EP19930912566 priority patent/EP0646221B1/de
Priority to US08/356,281 priority patent/US5588466A/en
Publication of WO1994000695A1 publication Critical patent/WO1994000695A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0005Lift valves
    • F16K99/0007Lift valves of cantilever type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0053Electric operating means therefor using magnetostrictive means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2002/041Electromagnetic transducer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0074Fabrication methods specifically adapted for microvalves using photolithography, e.g. etching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/008Multi-layer fabrications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/712Integrated with dissimilar structures on a common substrate formed from plural layers of nanosized material, e.g. stacked structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/776Ceramic powder or flake
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/832Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
    • Y10S977/838Magnetic property of nanomaterial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/901Manufacture, treatment, or detection of nanostructure having step or means utilizing electromagnetic property, e.g. optical, x-ray, electron beamm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2202By movable element
    • Y10T137/2213Electrically-actuated element [e.g., electro-mechanical transducer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2224Structure of body of device

Definitions

  • the invention is based on a magnetostrictive transducer according to the preamble of the main claim.
  • a magnetostrictive transducer is already known from the company "Application Manual for the Design of Extrema Terfenol Magnetostrictive Transducers" from Edge Technologies, Inc., which converts a current-carrying coil and a rod arranged therein from a
  • a microvalve is known from DE-Al 40 03 619, in which the fluid jet can be directed into one of two outlet channels by a bending tongue lying parallel to the incoming fluid jet. The bending tongue is operated mechanically. Furthermore, a microvalve is known from DE-Al 39 19 876, in which a sealing block suspended on piezoelectrically operated bending elements can close an outlet. The deposition of thin metal layers from a metal vapor is described, for example, in a book by Sze, VLSI Technologie, McGraw-Hill International, pages 347 to 367. Advantages of the invention
  • the magnetostrictive transducer according to the invention with the characterizing features of the main claim has the advantage that the thin layers are also suitable as drives for very small transducers. By using it in bending elements, very large deflections can nevertheless be achieved. Furthermore, the thin magnetostrictive layers can generate very high forces in relation to their small size. Furthermore, it is to be regarded as an advantage that the thin magnetostrictive layers do not require any direct supply lines and can therefore also be used in places to which an electrical supply line could only be carried out with great problems. Furthermore, transducers with magnetostrictive thin layers can be operated at very high frequencies and have better dynamic behavior than e.g. macroscopic rods.
  • the measures listed in the subclaims allow advantageous developments and improvements of the magnetostrictive transducer specified in the main claim.
  • the thin layers show a high magnetostrictive effect, ie a large relative change in length, if they are amorphous or have a nanocrystalline structure. Such layers are also characterized by a low hysteresis of the magnetostrictive effect.
  • the thin layers can be arranged at the points where high tensile or Compressive stresses are to be generated in order to achieve long travel ranges for the bending transducers. A large number of miniaturized magnetostrictive transducers can thus be produced simultaneously on a substrate plate.
  • the bending elements can be shaped as bending beams or membranes.
  • a preferred magnetic direction the direction of the so-called slight magnetization, is generated in the thin layers.
  • the external magnetic field is strengthened in the area of the thin magnetostrictive layer, so that large forces can be generated with small external magnetic fields.
  • the measures to strengthen the magnetostrictive effect allow the use of particularly simple coils to generate the magnetic field.
  • the coils can, for example, be designed using thick film technology.
  • a particularly attractive field of application for the magnetostrictive transducer is the application.I-_.ng in valves, since relatively large forces are required here and it is difficult to route electrical wiring inside the valve. If the outlet of this valve is closed by a bending transducer, atomization of the escaping medium can be supported by an oscillation of the bending transducer.
  • Particularly small valves can be structured out of silicon wafers, but metallic substrate plates are also suitable for the magnetostrictive transducers.
  • FIG. 1 shows a thin layer on a substrate
  • FIGS. 2, 3 and 4 show a thin layer on a bending tongue
  • FIG. 5 shows a sputtering system for depositing the thin layer
  • FIG. 6 shows a thin layer which is embedded in two soft magnetic layers
  • Figure 7 shows a first embodiment of a magnetostrictive valve
  • Figure 8 shows another embodiment of a magnetostrictive valve.
  • 10 denotes a silicon wafer on which a thin magnetostrictive layer 1 is deposited.
  • the thin layer is deposited.
  • composition by the empirical formula Tb.,. Dy, .Fe ⁇ with
  • the microstructure of the thin layer is preferably amorphous.
  • Amorphous layers here are layers that do not show any diffraction phenomena in the transmission electron microscope in the diffraction mode.
  • Quality Magnetostrictive properties of the thin layer 1 can also be realized with nanocrystalline layers which have a grain diameter of less than 50 nanometers. In contrast to amorphous layers, pronounced hysteresis properties are observed in coarsely crystalline layers. Coarse-crystalline layers are therefore not suitable for use with low external magnetic fields.
  • the thin layer 1 can be structured by conventional techniques such as applying a photo varnish, photolithography and subsequent etching, so that a structured thin magnetostrictive layer 2 is produced, as is shown, for example, in FIG.
  • the thin layer 1 is etched, for example, by a mixture of hydrochloric acid, nitric acid and water.
  • the silicon wafer 10 is structured in such a way that the bending beam 11 is formed, which is suspended from the frame 12. The methods of silicon micromechanics required for this are familiar to the person skilled in the art.
  • FIGS. 3 and 4 show the effect of an external magnetic field on the bending beam 11 with an applied magnetostrictive thin layer 2 as a function of the direction of the magnetic field.
  • the starting position ie the position of the bending beam 11 without a magnetic field corresponds to the position shown in FIG. 2. It is assumed in FIG. 2 that when the thin layer 1 was deposited on the wafer 10, no internal stresses in the composite consisting of magnetostrictive layer 1 and the wafer 10 were generated. In practice, however, this is difficult to achieve when using silicon wafers as the substrate, since the deposition of the thin magnetostrictive layer generally takes place at higher temperatures and the thermal expansion coefficient of TbDyFe alloys is significantly greater than that of single-crystal silicon .
  • FIG. 3 shows the effect of a magnetic field that is parallel to the long side of the bending beam 11.
  • a magnetostrictive material expands in the direction of the magnetic field. Since the magnetic field, as indicated by the arrow, is parallel to the starting position of the bending beam 11, the thin layer 2 becomes longer and the bending beam 11 is deflected to the side on which no thin layer 2 is located, in this case downward.
  • the dynamics of the bending transducer are only insignificantly hampered by eddy currents that can arise in the layer. Eddy currents essentially only arise in one plane perpendicular to the magnetic field, but the thicknesses of one to 20 micrometers used here are too small for eddy currents to develop to any significant extent.
  • FIG. 4 shows the effect of a magnetic field which is oriented perpendicular to the longitudinal direction of the bending beam 11, as indicated by the arrow.
  • the magnetostrictive layer 2 expands in the direction of the magnetic field. By this expansion alone However, the bending beam 11 cannot be bent. However, since the volume of the magnetostrictive thin layer 2 is retained in a first approximation, it contracts in the direction that is perpendicular to the B field, ie parallel to the bending beam 11. The shortening of the length of the thin layer 2 thus causes the bending beam 11 to deflect toward the side on which the thin layer 2 is arranged. However, since this is an indirect effect, the deflections which can be achieved are smaller with the same dimensions as in FIG. 3. An advantage of this orientation of the magnetic field is, however, that coils that generate a magnetic field that are oriented perpendicular to the bending beam 11 may be easier and cheaper to produce than coils that generate a magnetic field parallel to the bending beam 11.
  • FIG. 4a shows a structuring of the magnetostrictive thin layer 2, by which the formation of eddy currents is largely suppressed.
  • the magnetostrictive layer 2 is divided photolithographically into electrically separated partial areas. At a high frequency of the external magnetic field, eddy currents lead to an undesired heating up of the transducer and to a weakening of the magnetic field and thus prevent the thin layer 2 from reacting correspondingly quickly to the magnetic field.
  • FIG. 5 describes the production of the thin layer 1 on a wafer 10 in a sputtering system. In a vacuum kettle
  • an argon plasma is generated between a target 20 and the wafer 10, which is directed onto the target 20 in such a way that metal atoms are knocked out of the target 20.
  • the metal atoms are then deposited on the surface of the wafer 10 from the gas phase. It is important to ensure that the oxygen or. the water content in the argon atmosphere is kept as low as possible to avoid oxidation of terbium and dysprosium.
  • the target 20 is designed as a so-called mosaic target, i.e. it consists of individual pieces of the three elements terbium, dysprosium and iron. The areas are chosen so that the desired composition of the thin layer 1 is achieved. Alternatively, an alloy target can also be used.
  • the wafer 10 is arranged on a substrate holder which can be cooled and heated. Furthermore, the substrate holder is rotatably mounted in order to improve the homogeneity of the layer composition. In addition, an electrical voltage, the so-called bias voltage, can be applied to the substrate holder, through which the quality of the deposition can also be influenced.
  • an electrical voltage the so-called bias voltage
  • coils 22 and 23 of which the coil
  • the coil 22 generates a magnetic field that is perpendicular to the wafer and the coil 23 generates a magnetic field that is parallel to the surface of the wafer.
  • both the height of the magnetostriction that can be achieved (the so-called saturation magnetostriction) and the direction of the slight magnetization can be influenced. If the external magnetic field required to actuate a bending transducer is parallel to the direction of easy magnetization, a high external magnetic field already becomes high Agnetostrictive change in length achieved. If, on the other hand, the external magnetic field is perpendicular to the slight magnetization, comparatively high magnetic fields are required to achieve a comparable magnetostrictive effect, which can only be produced with great effort. For powerful and inexpensive to produce bending transducers, it is therefore advantageous if the direction of the external magnetic field coincides with the direction of easy magnetization.
  • the direction of easy magnetization is generally in the layer plane, i.e. parallel to the surface of the substrate.
  • the preferred direction in the layer plane is retained, but a comparatively lower external magnetic field achieves a significantly higher magnetostrictive effect than when the coil 23 is not operated without operation
  • Magnetic field of the coil 22 the direction of easy magnetization can be adjusted perpendicular to the layer plane. A high magnetostrictive effect is thereby achieved with low external magnetic fields oriented perpendicular to the layer plane.
  • FIG. 6 shows a further advantageous embodiment of a bending beam 11 suspended from the frame 12 with a thin magnetostrictive layer 3.
  • the thin magnetostrictive layer 3 is embedded in thin soft magnetic layers 13 with low hysteresis and high magnetic susceptibility such as, for example, an FeNi alloy, which is known under the trade name Per alloy.
  • the soft magnetic material of the thin layers 13 reinforces the external magnetic field.
  • Such a soft magnetic layer can also serve as a protective layer to prevent undesired aging effects, for example by reaction with oxygen from the atmosphere.
  • FIG. 7 shows a first application of the magnetostrictive layer 2 on a bending beam 11 in a microvalve.
  • the microvalve shown here is similarly described with a thermomechanical drive in DE-Al 40 03 619.
  • the microvalve is constructed from three structured silicon plates 30, 31, 32.
  • the bending beam 11 and the beam controller 37 are structured out of the middle silicon plate 31.
  • the inlet 34 and the outlet 35 are formed by the corresponding structures of the upper silicon plate 30 and the middle silicon plate 31.
  • the outlet 36 is produced by the corresponding structuring of the middle silicon plate 31 and the lower silicon plate 32.
  • the valve is surrounded by an outer coil 33 which generates a magnetic field which is oriented parallel to the bending beam 11.
  • the bending beam 11 is here in the starting position, ie shown without an external magnetic field. Due to internal stresses between the thin layer 2 and the bending beam 11, the bending beam 11 is slightly bent upwards.
  • the thin layer 2 expands. This has the consequence that, as described at the beginning of FIG. 3, the bending beam bends to the side on which there is no thin layer 2, i.e. down in this case. Since the fluid jet entering through the inlet 34 adheres to the upper side of the bending beam 11, when the bending beam 11 is deflected downward it is directed against the beam splitter 37 such that the fluid jet exits the valve through the outlet 36. Due to the magnetic field generated by the coil 33, the fluid jet can be switched back and forth as desired between the two outlets 35 and 36.
  • the coil 33 is designed here as a normal air coil.
  • An advantage of this valve structure is in particular that the magnetostrictive effect due to the direction of the magnetic field according to FIG. 3 is particularly large. Furthermore, no electrical leads are required inside the valve. This considerably simplifies the construction of the valve. A disadvantage of this arrangement is that the valve and the coil must be brought together individually.
  • FIG. 8 shows a further embodiment of a microvalve, which is largely based on the microvalve described in DE-Al 39 19 876.
  • the valve described there was based on a piezoelectric drive.
  • a particular advantage of the microvalve according to FIG. 8 is that the entire valve can be manufactured in parallel in a multiplicity of valves from one substrate. In particular, it is not necessary To manufacture the valve body and the coil for generating the magnetic field separately and then to join them together in a further step.
  • the valve is constructed from three silicon plates 41, 42, 43, a membrane 49 having a sealing block 45 lying on the membrane being formed from the middle silicon plate 42. This serves as a stop to limit the opening cross-section and leads to better sealing behavior.
  • the inlet 46 is formed by the corresponding structures of the middle silicon plate 42 or the lower silicon plate 43. Furthermore, the lower silicon plate 43 has an opening, the outlet 47, on which is surrounded by a valve seat 50.
  • the outlet 47 has been structured by corresponding etching processes in such a way that it has a sharp edge, the so-called tear-off edge 48.
  • conductor tracks for a thick film coil 44 are applied by thick film technology. Alternatively, the coil can be manufactured using thin-film technology, the thickness of the conductor tracks being increased by means of galvanic processes.
  • the thin magnetostrictive layer 2 is applied to the membrane 49.
  • a magnetic field is generated by the thick film coil 44, which is approximately perpendicular to the surface of the thin layer 2.
  • This magnetic field thus, as previously described for FIG. 4, causes the thin layer 2 to contract in the direction perpendicular to the magnetic field, ie parallel to the surface of the membrane 49.
  • the membrane 49 is thus deflected to the side on which the thin layer 2 is arranged, ie downwards, in the direction of the valve seat 50.
  • This deflection of the membrane 49 causes the sealing block 45 to be pressed against the valve seat 50.
  • the outlet 47 is thus closed.
  • the deformation of the membrane 49 shown here in the starting position occurs when there is a pressure difference between the formed by the membrane 49 and the upper silicon plate 41 cavity and the inlet 46.
  • an improved embodiment of this valve is that the sealing block 45 is not suspended from a closed membrane 49, but the membrane 49 has openings. Furthermore, the sealing block 45 can be hung on individual bending beams. These measures ensure that the pressure on both sides of the bending element is almost the same and only has to be worked against a slight pressure difference.
  • the coil 44 can be applied to the top or bottom of the silicon plate composite by means of layer technology.
  • Thick film coils are particularly inexpensive and can be manufactured in parallel on a large number of valves. This also applies if the coils are produced using thin film technology.
  • a disadvantage is that the magnetostrictive effect of the thin layer 2 that can be used for the movement of the bending element is somewhat less in FIG.
  • the membrane 49 or the sealing block 45 can be set in high-frequency vibrations by applying a corresponding alternating magnetic field to the thin layer 2. If the excitation takes place with the natural frequency of the system consisting of sealing block 45 and membrane 49, large amplitudes of this oscillation are achieved even at low powers. With a corresponding rigidity of the membrane 49, this vibration can lie in the range of the ultrasound and thus the atomization of a Liquid on exit through the outlet 47 can be improved. It is also advantageous if the outlet 47 has a sharp tear-off edge 48. The atomization of the escaping liquid is particularly advantageous, for example, if the valve shown is to be used to inject gasoline into an engine. The excitation of high-frequency vibrations further reduces the risk of contamination, since deposits on the inside of the valve body are largely prevented. This is particularly advantageous for maintaining the functionality of the microvalves, which can easily become dirty.

Abstract

Es wird ein magnetostriktiver Wandler vorgeschlagen, bei dem eine magnetostriktive Schicht (2) auf einem Biegeelement, beispielsweise einem Biegebalken (11) angeordnet ist. Durch ein äußeres Magnetfeld wird das Biegeelement (11) ausgelenkt. Die dünne magnetostriktive Schicht besteht aus Tb(1-x)Dy(x)Te2.

Description

Maσnetostriktiver Wandler —
Stand der Technik
Die Erfindung geht aus von einem magnetostriktiven Wandler nach der Gattung des Hauptanspruchs. Aus der Firmenschrift "Application Manual for the Design of Extrema Terfenol Magnetostrictive Transducers" der Firma Edge Technologies, Inc. ist bereits ein magnetostriktiver Wandler bekannt, der eine stromdurchflossene Spule und einen darin angeordneten Stab aus einer
Terbium-Dysprosium-Eisen-Legierung aufweist. Weiterhin ist aus der DE-Al 40 03 619 ein Mikroventil bekannt, bei dem durch eine parallel zum eintretenden Fluidstrahl liegende Biegezunge der Fluidstrahl in einen von zwei Auslaßkanälen lenkbar ist. Dabei wird die Biegezunge ther omechanisch betrieben. Weiterhin ist aus der DE-Al 39 19 876 ein Mikroventil bekannt, bei dem ein an piezoelektrisch betriebenen Biegeelementen aufgehängter Dichtblock einen Auslaß verschließen kann. Das Abscheiden von dünnen Metallschichten aus einem Metall¬ dampf wird beispielsweise in einem Buch von Sze,VLSI Technologie, McGraw-Hill International, Seite 347 bis 367 beschrieben. Vorteile der Erfindung
Der erfindungsgemäße magnetostriktive Wandler mit den kenn¬ zeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vor¬ teil, daß die dünnen Schichten auch als Antriebe für sehr kleine Wandler geeignet sind. Durch die Anwendung in Biegeelementen können dabei trotzdem sehr große Auslenkungen erreicht werden. Weiterhin können durch die dünnen magnetostriktiven Schichten im Verhältnis zu ihrer Kleinheit sehr hohe Kräfte erzeugt werden. Weiterhin ist es als Vorteil anzusehen, daß die dünnen magnetostriktiven Schichten keine unmittelbaren Zuleitungen benötigen und somit auch an Stellen einsetzbar sind, zu denen eine elektrische Zuleitung nur unter großen Problem erfolgen könnte. Weiterhin können Wandler mit magnetostriktiven Dünnschichten mit sehr hohen Frequenzen betrieben werden und weisen ein besseres Dynamisches Verhalten auf auf als z.B. makroskopische Stäbe.
Durch in den Unteransprüchen aufgeführten Maßnahmen sind vorteil¬ hafte Weiterbildungen und Verbesserungen des im Hauptanspruch ange¬ gebenen magnetostriktiven Wandlers möglich. Einen hohen magneto¬ striktiven Effekt d.h. eine große relative Längenänderung zeigen die dünnen Schichten, wenn sie amorph sind oder eine nanokristalline Struktur aufweisen. Solche Schichten zeichnen sich auch durch eine geringe Hysterese des magnetostriktiven Effektes aus. Durch Struktu¬ rierung können die dünnen Schichten an den Stellen angeordnet werden, wo hohe Zugbzw. Druckspannungen erzeugt werden sollen um große Stellwege der Biegewandler zu erzielen. Es können so eine Vielzahl von miniaturisierten magnetostriktiven Wandlern gleich¬ zeitig auf einer Substratplatte hergestellt werden. Durch die Zer¬ legung der dünnen Schicht in viele einzelne, elektrisch getrennte Bereiche werden Wirbelströme in der dünnen Schicht unterdrückt und so das dynamische Verhalten der magnetostriktiven Schicht ver¬ bessert. Die Biegeelemente sind als Biegebalken oder Membranen aus¬ formbar. Durch das Tempern oder Abscheiden in einem äußeren Magnet¬ feld wird eine magnetische Vorzugsrichtung die Richtung der sog. leichten Magnetisierung in den dünnen Schichten erzeugt.
Schon bei niedrigen äußeren Magnetfeldern von 500 Oersted wird eine
-4 hohe Magnetostriktion in der Größenordnung von einigen 10 er¬ reicht, wenn das Magnetfeld parallel zur Vorzugsriehtung, d.h. parallel zur Richtung der leichten Magnetisierung angelegt wird. Ohne spezielle Vorkehrungen liegt diese Vorzugsrichtung bei amorphen Proben meist in der Schichtebene. Durch Tempern in einem äußeren Magnetfeld oder bereits durch AbScheidung in einem äußeren Magnet¬ feld kann zum einen die erreichbare Magnetostriktion der Schichten weiter erhöht als auch die Vorzugsrichtung beliebig eingestellt werden. Dadurch können Biegewandler realisiert werden, die hohe Aus¬ lenkungen bei niedrigen äußeren Feldern aufweisen, wobei das äußere Feld sowohl senkrecht als auch parallel zur magnetostriktiven Dünn¬ schicht orientiert sein kann.
Durch die Einbettung der dünnen magnetostriktiven Schicht in weitere dünne Schichten aus einem weichmagnetischen Material wird das äußere Magnetfeld im Bereich der dünnen magnetostriktiven Schicht ver¬ stärkt, so daß mit geringen äußeren Magnetfeldern große Kräfte er¬ zeugt werden können. Die Maßnahmen zur Verstärkung des magneto¬ striktiven Effektes erlauben die Verwendung von besonders einfachen Spulen zur Erzeugung des Magnetfeldes. Die Spulen können beispiels¬ weise in Dickfilmtechnik ausgeführt sein. Ein besonders attrakt --"-s Anwendungsgebiet für den magnetostriktiven Wandler ist die Anwen-.I-_.ng in Ventilen, da hier relativ große Kräfte notwendig sind und es schwierig ist, elektrische Leitungen in das Innere des Ventils hereinzuführen. Wird bei diesem Ventil der Auslaß durch einen Biegewandler verschlossen, so kann durch eine Schwingung des Biegewandlers eine Zerstäubung des austretenden Mediums unterstützt werden. Besonders kleine Ventile können aus Siliziumwafern heraus¬ strukturiert werden, aber auch metallische Substratplatten sind für die magnetostriktiven Wandler geeignet..
Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen darge¬ stellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine dünne Schicht auf einem Substrat, Figuren 2, 3 und 4 eine dünne Schicht auf einer Biegezunge, Figur 5 eine Sputter- anlage zur Abscheidung der dünnen Schicht, Figur 6 eine dünne Schicht, die in zwei weichmagnetische Schichten eingebettet ist, Figur 7 ein erstes Ausführungsbeispiel eines magnetostriktiven Ventils und Figur 8 ein weiteres Ausführungsbeispiel eines magneto¬ striktiven Ventils.
Beschreibung der Ausführungsbeispiele
In der Figur 1 ist mit 10 ein Siliziumwafer bezeichnet, auf dem eine dünne magnetostriktive Schicht 1 abgeschieden ist. Die dünne Schicht
1 besteht aus den Elementen Terbium, Dysposiu und Eisen, wobei die
Zusammensetzung durch die Summenformel Tb., . Dy, .FeΛ mit
(1-x) (x) 2
0<x<l gegeben ist. Vorzugsweise ist dabei x in der Größenordnung von 0,75 +/- 0,11. Die MikroStruktur der dünnen Schicht ist dabei vor¬ zugsweise amorph. Als amorphe Schichten sind hier Schichten zu ver¬ stehen, die im Durchstrahlungselektronenmikroskop im Beugungsmodus keine Beugungserscheinungen zeigen. Gute magnetostriktive Eigenschaften der dünnen Schicht 1 sind auch noch mit nanokristallinen Schichten zu realisieren, die einen Korndurch¬ messer von weniger als 50 Nanometern aufweisen. Bei grobkristallinen Schichten werden im Gegensatz zu amorphen Schichten stark ausge¬ prägte Hystereseeigenschaften beobachtet. Grobkristalline Schichten eignen sich deshalb nicht für die Anwendung bei geringen äußeren Magnetfeldern. Durch übliche Techniken wie Aufbringen eines Foto¬ lacks, Fotolithograhie und anschließende Ätzung kann die dünne Schicht 1 strukturiert werden, so daß eine strukturierte dünne magnetostriktive Schicht 2 entsteht, wie sie beispielsweise in der Figur 2 gezeigt wird. Die Ätzung der dünnen Schicht 1 erfolgt bei¬ spielsweise durch ein Gemisch von Salzsäure, Salpetersäure und Wasser. Der Siliziumwafer 10 wird so strukturiert, daß der Biege¬ balken 11 entsteht, der am Rahmen 12 aufgehängt ist. Die dazu be¬ nötigten Methoden der Siliziummikromechanik sind dem Fachmann ge¬ läufig.
In den Figuren 3 und 4 ist der Effekt eines äußeren Magnetfelds auf den Biegebalken 11 mit aufgebrachten magnetostriktiver Dünnschicht 2 in Abhänigkeit von der Richtung des Magnetfelds gezeigt. Die Aus¬ gangslage, d.h. die Lage des Biegebalkens 11 ohne ein Magnetfeld entspricht der in der Figur 2 gezeigten Position. Dabei wird bei der Figur 2 davon ausgegangen, daß bei der Abscheidung der dünnen Schicht 1 auf dem Wafer 10 keine inneren Spannungen im Verbund be¬ stehend aus magnetostriktiven Schicht 1 und dem Wafer 10 erzeugt wurde. Dies ist bei der Verwendung von Siliziumwafern als Substrat jedoch in der Praxis nur schwer zu erreichen, da die Abscheidung der dünnen magnetostriktiven Schicht in der Regel bei höheren Tempe¬ raturen erfolgt und der thermische Ausdehnungskoeffizient von TbDyFe-Legierungen wesentlich größer ist als der von einkristallinem Silizium. Es ist jedoch möglich, die Abscheidung so zu beeinflussen, daß spannungsfreie Metallschichten auf Siliziumwafern erzeugt werden können. Bei der Figur 2 wird davon ausgegangen, daß keine Ver¬ spannungen zwischen der dünnen magnetostriktiven Schicht 2 und dem Biegebalken 11 bestehen. Zur Verringerung thermisch bedingter innerer Spannungen muß das Siliziumsubstrat besonders gut gekühlt werden. In diesem Fall ist es möglich, die Abscheidung so zu be¬ einflussen, daß nahezu spannungsfreie TbDyFe-Schichten auf Silizium¬ wafern erzeugt werden. Vorteilhafter bei Verwendung von Metall¬ substraten wie Stahl oder Nickel ist, daß die thermischen Aus¬ dehnungskoeffizienten besser an die der TbDyFe-Schicht angepaßt sind.
In der Figur 3 wird die Wirkung eines Magnetfeldes, das parallel zur Längsseite des Biegebalkens 11 ist gezeigt. Ein magnetostriktives Material dehnt sich in Richtung des Magnetfeldes aus. Da das Magnet¬ feld, wie durch den Pfeil angedeutet, parallel zur Ausgangslage des Biegebalkens 11 ist, wird die dünne Schicht 2 länger und der Biege¬ balken 11 wird zu der Seite ausgelenkt, auf der keine dünne Schicht 2 gelegen ist, in diesem Fall nach unten. In der in Figur 3 ge¬ zeigten Anordnung wird die Dynamik des Biegewandlers nur unwesent¬ lich durch Wirbelströme behindert, die in der Schicht entstehen können. Wirbelströme entstehen im wesentlichen nur in einer Ebene senkrecht zum Magnetfeld, die hier verwendete Dicken von einem bis 20 Mikrometer sind jedoch zu gering, als daß sich Wirbelströme in wesentlichem Umfang ausbilden könnten.
In der Figur 4 ist die Wirkung eines Magnetfeldes dargestellt, das senkrecht zur Längsrichtung des Biegebalkens 11 orientiert ist, wie durch den Pfeil angedeutet. Die magnetostriktive Schicht 2 dehnt sich in Richtung des Magnetfeldes aus. Durch diese Ausdehnung allein kann jedoch keine Verbiegung des Biegebalkens 11 bewirkt werden. Da jedoch in erster Näherung das Volumen der magnetostriktiven Dünn- schicht 2 erhalten bleibt, zieht sie sich in der Richtung, die senk¬ recht zum B-Feld ist, d.h. parallel zum Biegebalken 11, zusammen. Durch die Längenverkürzung der dünnen Schicht 2 wird somit eine Aus- lenkung des Biegebalkens 11 zu der Seite bewirkt, auf der die dünne Schicht 2 angeordnet ist. Da es sich hierbei jedoch um einen in¬ direkten Effekt handelt, sind die erzielbaren Auslenkungen bei an¬ sonsten gleichen Dimensionen wie in der Figur 3 geringer. Vorteil¬ haft an dieser Orientierung des Magnetfeldes ist jedoch, daß Spulen, die ein Magnetfeld erzeugen, das senkrecht zum Biegebalken 11 orientiert sind, unter Umständen leichter und kostengünstiger herzu¬ stellen sind als Spulen, die ein Magnetfeld parallel zum Biegebalken 11 erzeugen.
In der Anordnung nach Figur 4 können Wirbelströme im Vergleich zur Anordnung nach Figur 3 leichter indiziert werden. In der Figur 4a ist daher eine Strukturierung der magnetostriktiven Dünnschicht 2 gezeigt, durch die die Ausbildung von Wirbelströmen weitgehend unterdrückt wird. Um den Wirbelstrompfad zu unterbrechen, ist die magnetostriktive Schicht 2 fotolithographisch in elektrisch ge¬ trennte Teilbereiche geteilt. Wirbelströme führen bei einer hohen Frequenz des äußeren Magnetfelds zu einer unerwünschten Aufwärmung des Wandlers und zu einer Schwächung des Magnetfeldes und verhindern so, daß die dünne Schicht 2 entsprechend schnell auf das Magnetfeld reagiert.
Die in den Figuren 3 und 4 beschriebenen Effekte in Abhängigkeit von der Orientierung des Magnetfeldes bleiben erhalten, wenn der Biege¬ balken aufgrund innerer Spannungen zwischen dem Biegebalken 11 und der dünnen Schicht 2 bereits in dem Zustand, in dem kein äußeres Magnetfeld vorhanden ist, ausgelenkt ist. In der Figur 5 wird die Herstellung der dünnen Schicht 1 auf einem Wafer 10 in einer Sputteranlage beschrieben. In einem Vakuumkessel
21 wird zwischen einem Target 20 und dem Wafer 10 ein Argonplasma erzeugt, das so auf das Target 20 gelenkt wird, daß Metallatome vom Target 20 herausgeschlagen werden. Aus der Gasphase scheiden sich dann die Metallatome auf der Oberfläche des Wafers 10 ab. Dabei ist darauf zu achten, daß der Sauerstoffbzw. der Wasseranteil in der Argonatmosphäre so gering wie möglich gehalten wird, um eine Oxi- dation von Terbium und Dysprosium zu vermeiden. Das Target 20 ist als sog. Mosaiktarget ausgebildet, d.h. es besteht aus einzelnen Stücken der drei Elemente Terbium, Dysprosium und Eisen. Die Flächen sind dabei so gewählt, daß die gewünschte Zusammensetzung der dünnen Schicht 1 erreicht wird. Alternativ kann auch ein Legierungstarget verwendet werden. Der Wafer 10 ist auf einem Substrathalter ange¬ ordnet, der gekühlt und beheizt werden kann. Weiterhin ist der Sub¬ strathalter drehbar gelagert, um die Homogenität der Schichtzu¬ sammensetzung zu verbessern. Außerdem kann an den Substrathalter eine elektrische Spannung, die sog. Bias-Spannung angelegt werden, durch die ebenfalls die Qualität der Abscheidung beeinflußt werden kann. Weiterhin sind Spulen 22 und 23 vorhanden, von denen die Spule
22 ein Magnetfeld erzeugt, das senkrecht auf dem Wafer steht und die Spule 23 ein Magnetfeld erzeugt, das parallel zur Oberfläche des Wafers ist.
Mit Hilfe der Spulen 22, 23 kann sowohl die H he der erreichbaren Magnetostriktion (die sog. Sattigungsmagnetostriktion), als auch die sog. Richtung der leichten Magnetisierung beeinflußt werden. Wenn das zur Betätigung eines Biegewandlers notwendige äußere Magnetfeld parallel zur Richtung der leichten Magnetisierung liegt, so wird schon bei einem geringen äußeren Magnetfeld eine hohe agnetostriktiv verursachte Längenänderung erzielt. Liegt dagegen das äußere Magnetfeld senkrecht zur leichten Magnetisisierung, so werden zum Erreichen eines vergleichbaren magnetostriktiven Effekts vergleichsweise hohe Magnetfelder benötigt, die nur mit großem Auf¬ wand hergestellt werden können. Für leistungsfähige und kosten¬ günstig herzustellende Biegewandler ist es daher vorteilhaft, wenn die Richtung des äußeren Magnetfelds mit der Richtung der leichten Magnetisierung übereinstimmt.
Bei der Schichtabscheidung ohne Betrieb der äußeren Magnetspulen 22, 23 liegt die Richtung der leichten Magnetisierung im allgemeinen in der Schichtebene, d.h. parallel zur Oberfläche des Substrates. Durch Abscheiden der Schicht im Magnetfeld der Spule 23 bleibt die Vorzug¬ srichtung in der Schichtebene erhalten, es wird aber bei vergleichs¬ weise niedrigeren äußeren Magnetfeldern ein wesentlich höherer magnetostriktiver Effekt erzielt als bei einer Abscheidung ohne Betrieb der Spule 23. Durch Abscheiden der Schicht im Magnetfeld der Spule 22 kann die Richtung der leichten Magnetisierung senkrecht zur Schichtebene eingestellt werden. Dadurch wird ein hoher magneto¬ striktiver Effekt bei niedrigen, senkrecht zur Schichtebene orientierten äußeren Magnetfeldern erreicht.
Eine weitere Möglichkeit besteht darin, durch den Heizer 24 die dünne Schicht 1 zu erwärmen und in einem äußeren Magnetfeld wieder abzukühlen. Dabei sollten jedoch Temperaturen von ca. 350°C nicht überschritten werden, da sonst eine Rekristallisation der amorphen dünnen Schicht 1 verursacht wird, die mit einer Zunahme der Hysterese verbunden ist. In der Figur 6 ist eine weitere vorteilhafte Ausgestaltung eines am Rahmen 12 aufgehängten Biegebalkens 11 mit einer dünnen magneto¬ striktiven Schicht 3 gezeigt. Die dünne magnetostriktive Schicht 3 ist in dünne weichmagnetische Schichten 13 mit geringer Hysterese und großer magnetischer Suszeptibilität wie beispielsweise einer FeNi-Legierung, die unter dem Handelsnamen Per alloy bekannt ist, eingebettet. Durch das weichmagnetische Material der dünnen Schichten 13 wird eine Verstärkung des äußeren Magnetfeldes er¬ reicht. Durch diese Maßnahme können somit niedrigere magnetische Feldstärken bzw. einfachere Spulen zur Erzeugung des Magnetfeldes verwendet werden. Eine solche weichmagnetische Schicht kann zusätz¬ lich auch als Schutzschicht zur Verhinderung von unerwünschten Alterungseffekten z.B. durch Reaktion mit Sauerstoff aus der Atmos¬ phäre dienen. Die Verwendung von anderen Schutzschichten, beispiels¬ weise aus Siliziumnitrid, Glas, Nickel-Chrom-Legierung oder Titan¬ nitrid ist ebenfalls möglich.
In der Figur 7 ist eine erste Anwendung der magnetostriktiven Schicht 2 auf einem Biegebalken 11 in einem Mikroventil gezeigt. Das hier gezeigte Mikroventil ist in ähnlicher Weise mit einem thermo- mechanischen Antrieb in der DE-Al 40 03 619 beschrieben. Das Mikro¬ ventil ist aus drei strukturierten Silizumplatten 30, 31, 32 aufge¬ baut. Aus der mittleren Siliziumplatte 31 ist der Biegebalken 11 und der Strahlteuer 37 herausstrukturiert. Durch die entsprechenden Strukturen der oberen Siliziumplatte 30 und der mittleren Silizium¬ platte 31 ist der Einlaß 34 und der Auslaß 35 gebildet. Durch die entsprechende Strukturierung der mittleren Siliziumplatte 31 und der unteren Siliziumplatte 32 ist der Auslaß 36 erzeugt. Das Ventil ist von einer äußeren Spule 33 umgeben, die ein Magnetfeld erzeugt, welches parallel zum Biegebalken 11 orientiert ist. Der Biegebalken 11 ist hier in der Ausgangslage, d.h. ohne ein äußeres Magnetfeld gezeigt. Aufgrund von inneren Spannungen zwischen der dünnen Schicht 2 und dem Biegebalken 11 ist der Biegebalken 11 leicht nach oben verbogen. Ein durch den Einlaß
34 eintretender Fluidstrahl wird so vom Biegebalken 11 in den Auslaß
35 gelenkt. Wenn nun durch die Spule 33 ein äußeres Magnetfeld er¬ zeugt wird, so dehnt sich die dünne Schicht 2 aus. Dies hat zur Folge, daß wie eingangs zu Figur 3 beschrieben, der Biegebalken zu der Seite verbiegt, auf der keine dünne Schicht 2 gelegen ist, d.h. in diesem Fall nach unten. Da der durch den Einlaß 34 eintretende Fluidstrahl an der Oberseite des Biegebalken 11 haftet, wird er, wenn der Biegebalken 11 nach unten ausgelenkt wird, so gegen den Strahlteiler 37 gelenkt, daß der Fluidstrahl durch den Auslaß 36 das Ventil verläßt. Durch das durch die Spule 33 erzeugte Magnetfeld kann so der Fluidstrahl beliebig zwischen den beiden Auslässen 35 und 36 hin und her geschaltet werden.
Die Spule 33 ist hier als normale Luftspule ausgebildet. Vorteilhaft an diesem Ventilaufbau ist insbesondere, daß der magnetostriktive Effekt durch die Richtung des Magnetfeldes entsprechend Figur 3 be¬ sonders groß ist. Weiterhin werden keine elektrischen Zuleitungen im Inneren des Ventils benötigt. Dadurch vereinfacht sich der Aufbau des Ventils erheblich. Nachteilhaft an dieser Anordnung ist, daß Ventil und Spule einzeln zusammengeführt werden müssen.
In der Figur 8 ist eine weitere Ausführung eines Mikroventils ge¬ zeigt, die sich weitgehend am Mikroventil orientiert, das in der DE-Al 39 19 876 beschrieben ist. Das dort beschriebene Ventil ging jedoch von einem piezoelektrischen Antrieb aus. Ein besonderer Vor¬ teil des Mikroventils nach der Figur 8 ist, daß das gesamte Ventil parallel in einer Vielzahl von Ventilen aus einem Substrat gefertigt werden kann. Insbesondere ist es nicht notwendig, Ventilkörper und die Spule für die Erzeugung des Magnetfeldes separat zu fertigen und dann in einem weiteren Schritt zusammenzu¬ fügen. Das Ventil ist aus drei Siliziumplatten 41, 42, 43 aufgebaut, wobei aus der mittleren Siliziumplatte 42 eine Membran 49 mit einem auf der Membran liegenden Dichtblock 45 ausgebildet ist. Dieser dient als Anschlag zur Begrenzung des Öffnungsquerschnitt und führt zu einem besseren Dichtverhalten. Durch die entsprechenden Strukturen der mittleren Siliziumplatte 42 bzw. der unteren Siliziumplatte 43 ist der Einlaß 46 gebildet. Weiterhin weist die untere Siliziumplatte 43 eine Öffnung, den Auslaß 47, auf der von einem Ventilsitz 50 umgeben ist. Der Auslaß 47 ist durch ent¬ sprechende Ätzprozesse so strukturiert worden, daß er eine scharfe Kante, die sog. Abrißkante 48 aufweist. Auf der Oberseite der Siliziumplatte 41 und der Unterseite der Siliziumplatte 43 sind durch Dickfilmtechnik Leiterbahnen für eine Dickfilmspule 44 aufge¬ bracht. Alternativ kann die Spule aus in Dünnfilmtechnik hergestellt werden, wobei die Leiterbahnen durch galvanische Prozesse in ihrer Dicke verstärkt werden können. Auf der Membran 49 ist die dünne magnetostriktive Schicht 2 aufgebracht.
Durch die Dickfilmspule 44 wird ein Magnetfeld erzeugt, das ungefähr senkrecht auf der Oberfläche der dünnen Schicht 2 steht. Durch dieses Magnetfeld wird somit, wie zuvor zu der Figur 4 beschrieben, ein Zusammenziehen der dünnen Schicht 2 in der Richtung die senk¬ recht zum Magnetfeld d.h. parallel zur Oberfläche der Membran 49 ist verursacht. Die Membran 49 wird so zu der Seite ausgelenkt, auf der die dünne Schicht 2 angeordnet ist, d.h. nach unten, in Richtung des Ventilsitzes 50. Durch diese Auslenkung der Membran 49 wird der Dichtblock 45 gegen den Ventilsitz 50 gepreßt. Der Auslaß 47 wird so verschlossen.Die hier in der Ausgangslage gezeigte Verformung der Membran 49 stellt sich ein, wenn ein Druckunterschied zwischen dem durch die Membran 49 und die obere Siliziumplatte 41 gebildeten Hohlraum und dem Einlaß 46 besteht. In diesem Fall muß ein Teil der durch die dünne Schicht erzeugbaren Kraft dafür aufgewendet werden, diesen Druckunterschied zu überwinden. Um die zur Verfügung stehende Karft möglichst wirkungsvoll in Bewegung umzusetzten, besteht eine verbesserte Ausführungsform dieses Ventils darin, daß der Dichtblock 45 nicht an einer geschlossenen Membran 49 aufgehängt ist, sondern die Membran 49 Öffnungen aufweist. Weiterhin kann der der Dichtblock 45 an einzelnen Biegebalken aufgehängt werden. Durch diese Maßnahmen wird erreicht, daß der Druck auf beiden Seiten des Biegeelements nahezu gleich ist und nur gegen eine geringe Druckdifferenz ge¬ arbeitet werden muß.
Bei der in der Figur 8 gezeigten Anordnung von Spule und dünner Schicht 2 ist vorteilhaft, daß die Spule 44 durch Schichttechnik auf der Ober- bzw. Unterseite des Siliziumplattenverbundes aufgebracht werden kann. Dickfilmspulen sind besonders preisgünstig und können parallel auf einer Vielzahl von Ventilen gleichzeitig gefertigt werden. Dies gilt auch, wenn die Spulen in Dünnfilmtechnik erzeugt werden. Als Nachteil ist festzuhalten, daß in Figur 8 der für die Bewegung des Biegeelements nutzbare magnetostriktive Effekt der dünnen Schicht 2 etwas geringer ist.
Im geöffneten Zustand kann durch Anlegen eines entsprechenden magnetischen Wechselfeldes an die dünne Schicht 2 die Membran 49 bzw. der Dichtblock 45 in hochfrequente Schwingungen versetzt werden. Wenn die Anregung mit der Eigenfrequenz des Systems aus Dichtblock 45 und Membran 49 erfolgt, so werden auch bei geringen Leistungen große Amplituden dieser Schwingung erreicht. Bei ent¬ sprechender Steifigkeit der Membran 49 kann diese Schwingung im Bereich des Ultraschalls liegen und so die Zerstäubung einer Flüssigkeit beim Austritt durch den Auslaß 47 verbessert werden. Vorteilhaft ist dabei weiterhin, wenn der Auslaß 47 eine scharfe Abrißkante 48 aufweist. Die Zerstäubung der austretenden Flüssigkeit ist beispielsweise besonders vorteilhaft, wenn das gezeigte Ventil zur Einspritzung von Benzin in einem Motor verwendet werden soll. Durch die Anregung von hochfrequenten Schwingungen wird weiterhin die Gefahr der Verschmutzung herabgesetzt, da Ablagerungen an den Innenseiten des Ventilköpers weitgehend verhindert werden. Dies ist insbesondere für die Erhaltung der Funktionstüchtigkeit der Mikro- ventile, die leicht verschmutzen können, vorteilhaft.

Claims

Ansprüche
1. Magnetostriktiver Wandler, mit Mitteln (33, 44) ein Magnetfeld zu erzeugen und einem im Magnetfeld angeordneten Antrieb aus
TB.. .Dy, ,Fe„ (0<x<l), dadurch gekennzeichnet, daß der An- (1-x) ~ (x) 2 trieb als dünne Schicht (1, 2, 3) ausgebildet ist, die auf einem Biegeelement (11, 49) aufgebracht ist.
2. Magnetostriktiver Wandler, nach Anspruch 1, dadurch gekenn¬ zeichnet, daß die dünne Schicht (1, 2 3) aus einem Metalldampf ab¬ geschieden ist.
3. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß die dünne Schicht (1, 2, 3) amorph ist.
4. Magnetostriktiver Wandler nach Anspruch 1 oder Anspruch 2, da¬ durch gekennzeichnet, daß die dünne Schicht (1, 2, 3) nanokristallin mit einem mittleren Korndurchmesser von weniger als 50 Nanometern ist.
5. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß die dünne Schicht (2, 3) strukturiert ist.
6. Magnetostriktiver Wandler Anspruch 5, dadurch gekennzeichnet, daß die dünne Schicht (3) so strukturiert ist, daß einzelne, elektrisch getrennte Bereiche entstehen.
7. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß das Biegeelement als Biege¬ balken (11) oder Membran (49) ausgebildet ist.
8. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß die dünne Schicht (1, 2, 3) in einem äußeren Magnetfeld getempert ist.
9. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß die dünne Schicht (1, 2, 3) in einem äußeren Magnetfeld abgeschieden ist.
10. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß die dünne Schicht (1, 2, 3) in weitere dünne Schichten (13) aus einem weichmagnetischen Material eingebettet ist.
11. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß die dünne, magnetostriktive
Schicht (1, 2, 3) mit einer Schutzschicht aus Si„N„, TiN, NiCr
3 4 oder NiFe versehen ist.
12. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß das Mittel ein Magnetfeld zu erzeugen als Dickfilmspule oder Dünnfilmspule (44) ausgeführt ist.
13. Magnetostriktiver Wandler nach einem der vorhergehenden An¬ sprüche, dadurch gekennzeichnet, daß der Antrieb in einem Ventil Verwendung findet, daß ein Fluidstrahl durch mindestens eine Einla߬ öffnung (34) einströmt, daß parallel zur Flußrichtung ein Biege¬ balken (11) mit der dünnen Schicht (2, 3) angeordnet ist, und daß durch die Auslenkung des Biegebalkens (11) der Fluidstrahl in einen von mindestens zwei Auslaßkanälen (35, 36) lenkbar ist.
14. Magnetostriktiver Wandler nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß der Antrieb in einem Ventil Verwendung findet, daß das Ventil jeweils mindestens einen Auslaß (47) und Ein¬ laß (46) und weiterhin einen an Biegeelementen (49) aufgehängten Dichtblock (45) aufweist, daß die dünne Schicht (2) auf den Biege¬ elementen (49) angeordnet ist, und daß durch eine Auslenkung des Dichtblocks (45) der Auslaß (47) verschließbar ist.
15. Magnetostriktiver Wandler nach Anspruch 14, dadurch gekenn¬ zeichnet, daß bei geöffnetem Auslaß (47) das Biegeelement (49) durch das Magnetfeld zu Schwingungen in einer Eigenfrequenz des Biege¬ elements (49) anregbar ist.
16. Magnetostriktiver Wandler nach Anspruch 15, dadurch gekenn¬ zeichnet, daß durch die Schwingungen ein flüssiges Medium zerstäub¬ bar ist.
17. Magnetostriktiver Wandler nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß das Ventil mindestens teilweise aus Siliziumplatten (30, 31, 32, 41, 42, 43) herausstrukturiert ist.
18. Magnetostriktiver Wandler nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß das Ventil mindestens teilwise aus einem Metallsubstrat, insbesondere Stahl, Nickel oder Titan heraus¬ strukturiert ist.
19. Magnetostriktiver Wandler nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, daß die Mittel zur Erzeugung des Magnetfelds auf der Außenseite des Ventils angeordnet sind.
PCT/DE1993/000489 1992-06-20 1993-06-08 Magnetostriktiver wandler WO1994000695A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6501931A JPH07508135A (ja) 1992-06-20 1993-06-08 磁気ひずみ変換器
DE59306537T DE59306537D1 (de) 1992-06-20 1993-06-08 Magnetostriktiver wandler
EP19930912566 EP0646221B1 (de) 1992-06-20 1993-06-08 Magnetostriktiver wandler
US08/356,281 US5588466A (en) 1992-06-20 1993-06-08 Magnetostrictive transducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP4220226.4 1992-06-20
DE19924220226 DE4220226A1 (de) 1992-06-20 1992-06-20 Magnetostrikiver Wandler

Publications (1)

Publication Number Publication Date
WO1994000695A1 true WO1994000695A1 (de) 1994-01-06

Family

ID=6461450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1993/000489 WO1994000695A1 (de) 1992-06-20 1993-06-08 Magnetostriktiver wandler

Country Status (5)

Country Link
US (1) US5588466A (de)
EP (1) EP0646221B1 (de)
JP (1) JPH07508135A (de)
DE (2) DE4220226A1 (de)
WO (1) WO1994000695A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358959A (zh) * 2018-04-09 2019-10-22 有研稀土新材料股份有限公司 一种磁致伸缩薄膜复合材料及其制备方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508435C2 (sv) * 1993-02-23 1998-10-05 Erik Stemme Förträngningspump av membranpumptyp
DE19510250C1 (de) * 1995-03-21 1996-05-02 Siemens Ag Magnetostriktiver Aktor
DE19510249C1 (de) * 1995-03-21 1996-05-23 Siemens Ag Magnetostriktiver Aktor
DE19517204C2 (de) * 1995-05-11 1997-03-06 Karlsruhe Forschzent Mikromechanischer Aktor
JP2899682B2 (ja) * 1996-03-22 1999-06-02 科学技術庁金属材料技術研究所長 Ti−Ni系形状記憶合金とその製造方法
DE19614044C1 (de) * 1996-04-10 1997-10-23 Deutsche Forsch Luft Raumfahrt Aktuator mit einem ansteuerbaren längenveränderlichen Element aus einem multifunktionalen Werkstoff
US5877432A (en) * 1996-11-26 1999-03-02 The University Of Dayton Magnetostrictive actuator
US6241904B1 (en) * 1997-07-15 2001-06-05 Silverbrook Research Pty Ltd Method of manufacture of a two plate reverse firing electromagnetic ink jet printer
US6267905B1 (en) * 1997-07-15 2001-07-31 Silverbrook Research Pty Ltd Method of manufacture of a permanent magnet electromagnetic ink jet printer
US6251298B1 (en) * 1997-07-15 2001-06-26 Silverbrook Research Pty Ltd Method of manufacture of a planar swing grill electromagnetic ink jet printer
US6248248B1 (en) * 1997-07-15 2001-06-19 Silverbrook Research Pty Ltd Method of manufacture of a magnetostrictive ink jet printer
US6248249B1 (en) * 1997-07-15 2001-06-19 Silverbrook Research Pty Ltd. Method of manufacture of a Lorenz diaphragm electromagnetic ink jet printer
US6214244B1 (en) * 1997-07-15 2001-04-10 Silverbrook Research Pty Ltd. Method of manufacture of a reverse spring lever ink jet printer
US6231773B1 (en) * 1997-07-15 2001-05-15 Silverbrook Research Pty Ltd Method of manufacture of a tapered magnetic pole electromagnetic ink jet printer
WO1999015281A2 (en) * 1997-09-19 1999-04-01 Etrema Products, Inc. Multilayer magnetostrictive transducer and magnetostrictive composite material for same
AT410018B (de) 1998-02-06 2003-01-27 Sticht Walter Mehrwegventil
US5983944A (en) * 1998-03-20 1999-11-16 Niv; Shaul E. Apparatus for active fluid control
US7025324B1 (en) 2002-01-04 2006-04-11 Massachusetts Institute Of Technology Gating apparatus and method of manufacture
DE102004032484B3 (de) * 2004-07-05 2005-11-24 Infineon Technologies Ag Sensor und Verfahren zum Herstellen eines Sensors
US7250839B2 (en) * 2004-08-09 2007-07-31 Energen, Inc. Magnetostrictive thin film actuator
US8514663B2 (en) * 2005-05-02 2013-08-20 Charles Saron Knobloch Acoustic and magnetostrictive actuation
SE529789C8 (sv) * 2006-03-10 2007-12-27 Abb Ab Mätanordning omfattande ett skikt av en magnetoelastisk legering och förfarande för tillverkning av mätanordningen
US7505110B2 (en) * 2006-03-14 2009-03-17 International Business Machines Corporation Micro-electro-mechanical valves and pumps
DE102007030744B4 (de) * 2007-07-02 2012-03-22 Siemens Audiologische Technik Gmbh Akustischer Aktor und Verfahren zu dessen Herstellung
US8956325B2 (en) * 2011-12-07 2015-02-17 Stmicroelectronics, Inc. Piezoelectric microfluidic pumping device and method for using the same
DE102015210178A1 (de) * 2015-06-02 2016-12-08 Robert Bosch Gmbh Elektrostatisch stimmbares, magnetoelektrisches induktives Bauelement
US9773876B2 (en) 2015-07-02 2017-09-26 Ut-Battelle, Llc Semiconductor composition containing iron, dysprosium, and terbium
RU2020124617A (ru) 2015-09-10 2020-08-04 САУТУАЙР КОМПАНИ, ЭлЭлСи Способы и системы для ультразвукового измельчения зерна и дегазации при литье металла
EP3203080B1 (de) 2016-01-29 2021-09-22 Microjet Technology Co., Ltd Pneumatische miniaturvorrichtung
US10487820B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature pneumatic device
US9976673B2 (en) * 2016-01-29 2018-05-22 Microjet Technology Co., Ltd. Miniature fluid control device
US10487821B2 (en) 2016-01-29 2019-11-26 Microjet Technology Co., Ltd. Miniature fluid control device
US10584695B2 (en) 2016-01-29 2020-03-10 Microjet Technology Co., Ltd. Miniature fluid control device
US10529911B2 (en) 2016-01-29 2020-01-07 Microjet Technology Co., Ltd. Piezoelectric actuator
US10451051B2 (en) 2016-01-29 2019-10-22 Microjet Technology Co., Ltd. Miniature pneumatic device
US10388849B2 (en) 2016-01-29 2019-08-20 Microjet Technology Co., Ltd. Piezoelectric actuator
US10615329B2 (en) 2016-01-29 2020-04-07 Microjet Technology Co., Ltd. Piezoelectric actuator
EP3203079B1 (de) 2016-01-29 2021-05-19 Microjet Technology Co., Ltd Piezoelektrischer aktuator
EP3203078B1 (de) 2016-01-29 2021-05-26 Microjet Technology Co., Ltd Pneumatische miniaturvorrichtung
US10683861B2 (en) 2016-11-10 2020-06-16 Microjet Technology Co., Ltd. Miniature pneumatic device
US10746169B2 (en) 2016-11-10 2020-08-18 Microjet Technology Co., Ltd. Miniature pneumatic device
US10655620B2 (en) 2016-11-10 2020-05-19 Microjet Technology Co., Ltd. Miniature fluid control device
AU2018221259A1 (en) 2017-02-17 2019-09-05 Southwire Company, Llc Ultrasonic grain refining and degassing procedures and systems for metal casting including enhanced vibrational coupling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3370538A (en) * 1966-02-11 1968-02-27 E W Hines And Associates Fluid pumps energized by magnetostrictive action
US3638153A (en) * 1970-07-13 1972-01-25 Honeywell Inc Transducer having single layered magnetostrictive member
EP0161397A2 (de) * 1984-03-22 1985-11-21 Identitech Corporation Antriebssystem mit einem magnetomechanischen Hebelarm
EP0401607A1 (de) * 1989-05-29 1990-12-12 Bürkert Gmbh & Co. Verfahren zur Herstellung eines Mikroventils und Mikroventil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174716A (en) * 1962-10-15 1965-03-23 Salter Jack Nelson Magnetostrictive multiplier device
US4158368A (en) * 1976-05-12 1979-06-19 The United States Of America As Represented By The Secretary Of The Navy Magnetostrictive transducer
US4581624A (en) * 1984-03-01 1986-04-08 Allied Corporation Microminiature semiconductor valve
US4845450A (en) * 1986-06-02 1989-07-04 Raytheon Company Self-biased modular magnetostrictive driver and transducer
DE3919876A1 (de) * 1989-06-19 1990-12-20 Bosch Gmbh Robert Mikroventil
DE4003619A1 (de) * 1990-02-07 1991-08-14 Bosch Gmbh Robert Mikroventil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3370538A (en) * 1966-02-11 1968-02-27 E W Hines And Associates Fluid pumps energized by magnetostrictive action
US3638153A (en) * 1970-07-13 1972-01-25 Honeywell Inc Transducer having single layered magnetostrictive member
EP0161397A2 (de) * 1984-03-22 1985-11-21 Identitech Corporation Antriebssystem mit einem magnetomechanischen Hebelarm
EP0401607A1 (de) * 1989-05-29 1990-12-12 Bürkert Gmbh & Co. Verfahren zur Herstellung eines Mikroventils und Mikroventil

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MITSUTERU INOUE, ET AL.: "MULTILAYERED MAGNETO-SURFACE-ACOUSTIC-WAVE DEVICES COMPOSED OF HIGHLY MAGNETOSTRICTIVE AMORPHOUS FE-B FILMS AND THIN INSULATING INTERLAYERS.", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, JP, vol. 28., no. SUPPL. 28-01., 1 March 1989 (1989-03-01), JP, pages 132 - 134., XP000085275, ISSN: 0021-4922, DOI: 10.1143/JJAP.28.132 *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 63 (E-585)25. Februar 1988 *
PATENT ABSTRACTS OF JAPAN vol. 13, no. 147 (E-741)11. April 1989 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358959A (zh) * 2018-04-09 2019-10-22 有研稀土新材料股份有限公司 一种磁致伸缩薄膜复合材料及其制备方法

Also Published As

Publication number Publication date
EP0646221B1 (de) 1997-05-21
JPH07508135A (ja) 1995-09-07
DE59306537D1 (de) 1997-06-26
US5588466A (en) 1996-12-31
DE4220226A1 (de) 1993-12-23
EP0646221A1 (de) 1995-04-05

Similar Documents

Publication Publication Date Title
EP0646221B1 (de) Magnetostriktiver wandler
DE4234237C2 (de) Temperaturkompensierter Mikroaktor
DE60130619T2 (de) Thermische Betätigungsvorrichtung
DE69729219T2 (de) Materialien mit hoher mechanischer spannung für magnetfeld-kontrolierten aktor
DE3914031C2 (de) Mikromechanischer Aktuator
DE4418450C2 (de) Mikroventil
EP0339528B1 (de) Ventilanordnung aus mikrostrukturierten Komponenten
DE60021450T2 (de) Fluidisches-Modul bildendes Aggregat geätzer Platten
WO1990015933A1 (de) Mikroventil
DE3926647A1 (de) Verfahren zur herstellung eines mikroventils
DE3905625A1 (de) Magnetoresistiver magnetkopf und verfahren zu seiner herstellung
WO1992013200A1 (de) Mikroventil
EP0704032A1 (de) Servoventil
EP0815601B1 (de) Magnetostriktiver aktor
DE102007049930A1 (de) Oberflächenmodifizierte Strukturen
EP0834031B1 (de) Verfahren zur herstellung eines mikromembranventiles
EP3115826A1 (de) Vorrichtung zur ablenkung eines laserstrahls
DE19637878A1 (de) Mikroventil mit vorgespannter Ventilklappenstruktur
EP2286472B1 (de) Bauelement aus einem ferromagnetischen formgedächtnismaterial und desssen verwendung
DE3126246A1 (de) Elektrisch betaetigbares ventil
DE10310072B4 (de) Mikromechanischer Aktor
DE60202064T2 (de) Vorrichtungen für molekularstrahlepitaxie
EP1320110B1 (de) Verfahren zur Herstellung nanokristalliner Ringbandkerne
DE19607197B4 (de) Schichtaufbau mit einem hartmagnetischen Nd-Fe-B-Dünnfilm auf einem Substrat und Verfahren zur Herstellung des Schichtaufbaus
DE102006040251A1 (de) Vorrichtung mit einem magnetostriktiven Antrieb

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1993912566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08356281

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1993912566

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1993912566

Country of ref document: EP