WO1995005601A1 - Method for detecting biological interactions especially in receptor binding assays - Google Patents

Method for detecting biological interactions especially in receptor binding assays Download PDF

Info

Publication number
WO1995005601A1
WO1995005601A1 PCT/GB1994/001799 GB9401799W WO9505601A1 WO 1995005601 A1 WO1995005601 A1 WO 1995005601A1 GB 9401799 W GB9401799 W GB 9401799W WO 9505601 A1 WO9505601 A1 WO 9505601A1
Authority
WO
WIPO (PCT)
Prior art keywords
receptor
solid phase
binding
biological receptor
ligand
Prior art date
Application number
PCT/GB1994/001799
Other languages
French (fr)
Inventor
Andrew John Garman
Original Assignee
Zeneca Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeneca Limited filed Critical Zeneca Limited
Priority to EP94923803A priority Critical patent/EP0714514B1/en
Priority to AU73896/94A priority patent/AU7389694A/en
Priority to JP7506835A priority patent/JPH09503291A/en
Priority to US08/596,210 priority patent/US6054282A/en
Priority to DE69414122T priority patent/DE69414122T2/en
Publication of WO1995005601A1 publication Critical patent/WO1995005601A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to improved methods of detecting biological interactions especially in receptor binding assays.
  • the invention involves the use of radial partition.
  • a method for the detection of a compound which modulates binding of a ligand to a biological receptor comprises contacting the ligand, biological receptor and test compound at a locus on a solid phase matrix, the matrix allowing movement of fluids therein by capillary action, under conditions which permit binding of the ligand to the biological receptor and partition of any unbound ligand on the solid phase matrix, and detecting any modulation of binding by the test compound by reference to any such partition.
  • Components of the above assay may be added to the matrix in any order.
  • three, preferably two of the components may be mixed prior to application to the matrix.
  • the order should be such that the ligand does not contact the biological receptor before the test compounds, since this would require any active compound to displace the ligand and this might be kinetically slow and reduce the sensitivity of the assay.
  • the first addition should contain the biological receptor.
  • the biological receptor is immobilised on the solid phase matrix.
  • the method of the invention may be used to determine interactions between a biological receptor of interest and a test compound. Therefore in a further aspect of the present invention we provide a method for the detection of a compound which binds to a biological receptor, which method comprises contacting the biological receptor with a test compound at a locus on a solid phase matrix, the matrix allowing movement of fluids therein by capillary action, under conditions which permit binding of the test compound to the biological receptor and partition of any unbound test compound on the solid phase matrix, and detecting binding of the test compound to the biological receptor by reference to any such partition.
  • test compound is immobilised on the solid phase matrix prior to application of the other assay component.
  • immobilised we mean covalent or non-covalent attachment to the matrix, or attachment to a substance which is unable to migrate through the matrix by capillary action.
  • the receptor is a membrane receptor
  • immobilisation is conveniently provided by application of the receptor in the form of membrane fragments.
  • the receptor may be provided with a peptide tag, conveniently attached to the N- or C-terminus and produced as a fusion product by genetic manipulation technology, and immobilisation effected by means of a partner complementary to the tag, for example an anti-tag antibody, immobilised on the matrix by covalent or non-covalent means.
  • the test compound is immobilised, this is conveniently achieved by synthesis of the test compound on the matrix.
  • Such systems have been described for example by R. Frank, Tet. Lett. 48, (42) , 9217-9232 (1992) .
  • binding of the biological receptor to the test compound will generally take place in solution.
  • one or more of the relevant components are conveniently applied in solution.
  • drying or partial drying for example by allowing a pause between additions may be employed in order to reduce the fluid volume of the assay.
  • a preferred assay comprises addition of the biological receptor, drying, addition of the test compound and then the ligand, incubation followed by washing.
  • after binding partition may have already taken place to some limited extent. However, in general, it is preferred to limit incubation to a defined locus and, after incubation, a wash fluid is then conveniently applied as a separate step to allow any desired degree of partition to occur.
  • the matrix of the present invention is conveniently a porous solid-phase matrix such as a sheet of cellulose paper or glass fibre paper or papers of mixed glass fibre and cellulose.
  • the partition of the present invention is conveniently radial partition followed by quantitation or estimation of the extent of the labelled component retained in the central locus or in the peripheral areas of the matrix, or both.
  • the assay method is performed as a linear partition assay which permits a higher density of assay loci than outlined above.
  • This assay is performed as described above but employs smaller volumes and/or thicker matrix eg. paper, such that a high proportion of the wash buffer is directed downwards (assuming a horizontal paper) , this process optionally being facilitated by positioning the loci close together such that radial movement is restricted.
  • this process may be facilitated by the provision of an adsorbent layer under the matrix.
  • This assay is conveniently performed with the ligand labelled with a signal that cannot be detected significantly through the (opaque) paper, for example a chromophore, fluorophore, chemilumophore (or enzymes generating these) or tritium.
  • a signal that cannot be detected significantly through the (opaque) paper
  • the signal is a fluorophore.
  • the extent of binding is determined by measuring the surface signal: thus compounds binding to the receptor will prevent binding of the labelled ligand and a diminished signal will result.
  • Both radial and linear assays may be carried out on any convenient two- or three-dimensional matrix including those where the structural integrity of the matrix is assisted by supporting surfaces.
  • Convenient two-dimensional matrices include sheets of paper and the like, but it will be understood that they may be on separate supports, for example filters attached to the bottom of microtitre plates.
  • the linear and radial partition assay may be performed on any matrix that allows the linear flow of the liquid.
  • the biological receptor is conveniently a pharmacological receptor of interest, such as a membrane receptor, or any target of for example pharmaceutical or agrochemical interest.
  • targets may be for example proteins such as those involved in the mediation of cellular signalling, control of gene expression, cell adhesion, inflammation; enzymes and their inhibitors, proteoglycans, oligo- or poly-saccharides, nucleic acid in double or single stranded form, and complexes comprising one or more of the above species.
  • the biological receptor is conveniently provided in the form of membrane fragments.
  • the biological receptor may be a fragment or domain or an analogue of the natural biological receptor of interest.
  • the ligand is conveniently selected from those compounds known to bind to the biological receptor of interest.
  • the ligand may be a peptide, protein, oligo- or poly-saccharide, or a small molecule.
  • the ligand may be an analogue of the naturally occuring ligand.
  • the methods of the invention are preferably carried out with with reference to one or more controls.
  • Detecting the presence of bound or unbound material is conveniently effected by labelling one or more of the soluble components of the particular system. Most conveniently the ligand is labelled. Alternatively the biological partner is labelled.
  • the label used may be any conventional label used in biochemical assays.
  • the label is conveniently such that it may be be located and determined by a two-dimensional imaging technique, for example radioactivity that may be determined by autoradiography or storage phosphor or proportional wire counting or microchannel array detector technology, or fluorescence that may be determined by a fluorescence scanner device, or a colour, or enzyme-generated colour, that may be assessed by visual inspection or image analysis.
  • the label is conveniently a fluorophore, or an enzyme that generates a signal that does not penetrate significantly the chosen matrix.
  • weakly penetrating radioactive isotopes such as tritium, may be employed.
  • interacting signals may be employed, such that the bound or the free label is determined by an interaction with a second signal component located on the immobilised component or on the matrix.
  • Interacting signals are known in the art and include for example fluorescence energy transfer.
  • An intrinsic property of the immobilised partner or the matrix for example its mass or its hydropathy, may be considered as an interacting signal, permitting detection by fluorescence polarisation or modulation of other fluorescence properties.
  • label includes tags that form one half of an affinity pair, such as biotin, whose presence may be subsequently determined by incubation with the complementary partner of the affinity pair to which has been conjugated a signal.
  • the method comprises the steps of adding to a suitable paper, for example glass fibre paper, membrane fragments containing the receptor of interest, test compound and labelled ligand, preferably in that order and in a small volume, conveniently totalling less than lO ⁇ l, such as less than 6 ⁇ l , and incubating under conditions to allow binding to occur. All additions are made at the same position on the paper. Subsequently, wash buffer of a convenient volume is applied, such that unbound ligand is washed radially while bound ligand remains in the centre, since the membrane fragments are unable to migrate through the paper.
  • a suitable paper for example glass fibre paper
  • membrane fragments containing the receptor of interest preferably in that order and in a small volume, conveniently totalling less than lO ⁇ l, such as less than 6 ⁇ l , and incubating under conditions to allow binding to occur. All additions are made at the same position on the paper.
  • wash buffer of a convenient volume is applied, such that unbound ligand is washed
  • the ligand is labelled with a radioactive isotope and the assay result visualised by autoradiography, proportional wire counting, microchannel array detector or storage phosphor technology.
  • the latter three techniques permit quantitation of the results.
  • non-isotopic labels may be used, in particular fluorescent labels used in conjunction with two-dimensional fluorescence scanners are convenient. In these approaches a test compound that prevents binding of the ligand to the receptor is revealed by a .diminuation in the intensity of the central spot.
  • membranes for use as a solid phase matrix in the above methods.
  • Such membranes may be treated or coated with substances for example to improve non-specific binding of the labelled component to the matrix, or to retain the immobilised component in the central locus.
  • An advantage of the assay of the invention is that a plurality of assays may be conveniently carried out on a single sheet of matrix. Thus, a large number of compounds may be screened in a single experiment. Conveniently, this is achieved my means of robtic liquid handling devices. Several such devices are known and include for example robotic sample processors such as the Tecan RSP 5072.
  • the above assays give significant advantages over conventional techniques. These include increased throughput capacity, simpler operation, increased robustness and lower cost. For receptor binding assays using membrane fragments, it is also believed that the assay is more discriminating in its ability to detect compounds with genuine receptor binding activity. Whilst we do not wish to be bound by theoretical considerations, the more gentle filtration employed by this method, compared to vacuum filtration methods, results in compounds that merely disrupt the structure of the membrane fragments not being detected since the fragments, though disrupted, nevertheless remain in the central zone.
  • Figure 1 shows an autoradiograph showing displacement of radiolabelled endothelin by different concentrations of unlabelled endothelin according to the assay described in Example 1.
  • T total (no unlabelled endothelin)
  • NS non-specific binding
  • -11,-10,-9,-8,-7 10 M
  • Figure 2 shows the correlation in the percentage displacement obtained for 24 test compounds in the radial partition assay as described in Example 2 against the conventional vacuum filtration method.
  • Figure 3 shows the image obtained by following the procedures set out in Example 3. This-shows dark central spots indicating total binding to the localised receptor,the absence of a spot indicates full inhibition of binding due to a high concentration of salmon calcitonin being applied to that position (1 micromolar) .
  • Figure 4 shows the image obtained by following the procedures set out in Example 4. This shows the effects of total binding I and non-specific binding II as determined at the following membrane concentrations: A. 0.7 mg/ml, B. 0.5 mg/ml, C. 0.3 mg/ml, D. 0.1 mg/ml, E. 0.05 mg/ml.
  • This assay investigates the interaction of endothelin 1 with a washed membrane fraction prepared from mouse erythroleukaemia (MEL) cells expressing the human endothelin ETA receptor (ET receptor - Adachi et al, Biochem. Biophys. Res. Commun. , 1991, 180, 1265-1272), separated in a radial format.
  • MEL mouse erythroleukaemia
  • MEL cells WO-89/01517-Grosveld et al/MRC, WO-92/11380-Hollis et al/ICI
  • homogenisation buffer 50mM Tris [hydroxymethyl]amino- methane (Trizma base), 5 ⁇ g/ml soybean trypsin inhibitor, ImM 1,10-phenanthroline, ImM benzamidine hydrochloride, lOO ⁇ g/ml bacitracin, (all from Sigma) , 3mM sucrose (BDH) ; pH 8.0 with HCl) .
  • the cell suspension was homogenised using a mechanical homogeniser (Polytron PT-3000 on 75% power) for 3 x 10 second bursts with 2 minutes cooling on ice in-between bursts.
  • the homogenate was centrifuged at 1500 x g for 10 minutes at 4oC (SS34 rotor - Sorval RC5C centrifuge) .
  • the supernatant was poured off and re-centrifuged at >40,000 x g for 30 minutes at 4oC (SS34 rotor - Sorval centrifuge) .
  • the resulting supernatant was discarded and the pellet washed by re-suspending in homogenisation buffer (as previously described) and re-centrifuging at >40,000 x g for 30 minutes (as above) .
  • the final pellet was re-suspended in homogenisation buffer using a glass/Teflon hand held homogeniser. Aliquots of the final membrane suspension were stored frozen in liquid nitrogen until required.
  • th s concentration was used to define the non-specific binding. Dilutions of this were made to give a range of concentrations from 3 x 10 7M to 3 x 10 1M.
  • the freshly thawed membrane suspension was diluted to give about 0.3 mg/ml protein concentration, 15 ⁇ l of which was applied to all assay positions on a glass fibre filter mat (Whatman GFB) . This was allowed to partially dry at room temperature for 20 minutes.
  • Fig. 1 shows a central spot for the total binding (T) and an absence of a spot for the non-specific binding (10-7M endothelin) .
  • the four dilutions of endothelin show a progressive loss of the central spot consistent with an IC-50 of between 10-10 and 10-11M.
  • the mat was exposed to a storage phosphor screen (Molecular Dynamics) for 3 hours and analysed on a Phosphorlmager SF (Molecular Dynamics) .
  • the intensity of the central spots was determined using the software provided.
  • the displacement for each compound was calculated by subtracting the non-specific binding value from all values and expressing total counts - compound counts as a percentage of total counts.
  • the displacement for the compounds for this assay are compared with those obtained in the conventional assay in Figure. 2.
  • the high degree of correlation shows that the assay of the invention is useful in detecting compounds which inhibit the binding of a ligand with a receptor.
  • Recombinant human calcitonin receptor preparations were obtained as follows: a fresh pellet of MEL cells (WO-89/01517-Grosveld et al/MRC, WO-92/11380-Hollis et al/ICI) containing the cloned human calcitonin receptor (cf. Gorn, A.H. et al J. Clin. Invest., (1992), 90.
  • the homogenate was centrifuged at 3,000 rpm (llOOg) for 10 minutes at 4 deg.C (SS34 rotor - Sorval RC5C centrifuge) .
  • the low-speed supernatant was removed, and the pellet re-suspended in 10 ml of homogenisation buffer and dispersed with 3 x 10 second treatments with the Polytron homogeniser, followed by low-speed centifugation as described above.
  • the supematants from both spins were combined. This was then centrifuged for 30 minutes at 33,000 rpm (100,000g) at 4 deg C in an L7 Ultracentrifuge (Beckman) using a Ti75 head.
  • the pellet was re-suspended in 20mM HEPES, pH 7.4, and re-centrifuged. This pellet was then re-suspended as before and treated with 10 strokes of the glass/Teflon homogeniser.
  • Protein determination was by the BCA method of the Pierce Chemical Co., using their recommended protocol and bovine serum albumin (BSA) as a standard. Membranes were diluted to a stock concentration of 0.08 mg/ml protein, and stored at -70 deg. C.
  • Each assay position- was allowed to incubate at room temperature for 40 minutes, after which time 6 microlitres of wash buffer (lOmM Tris [hydroxymethyl]amino-methane (Trizma base) (Sigma) , 150mM sodium chloride (Fisons AR) , pH7.4, with 0.05% polyoxyethylenesorbitan monolaurate (Sigma) ) , was applied. All additions were made using a Tecan RSP 5072 robotic sample processor with a 4 way tip. The mat was allowed to dry completely and was exposed to a storage phosphor screen (Molecular Dynamics) for 3 hours and analysed using a PhosphorImager SF (Molecular Dynamics) .
  • Bradykinin binding various receptor mwmhrane concentrations.
  • Recombinant human bradykinin receptor preparations were obtained as follows: a fresh pellet of MEL cells (WO-89/01517-Grosveld et al/MRC, WO-92/11380-Hollis et al/ICI) containing the cloned human bradykinin receptor was re-suspended in cold (4 deg.
  • C) homogenisation buffer (lOmM Tris [hydroxymethyl]amino-methane (Trizma base) pH 7.5, 0.1 mg/ml bacitracin, 0.005 mg/ml soybean trypsin inhibitor (5 mg/ml pre-solubilised in ethanol) , ImM benzamidine, 250mM phenylmethylsulfonylflouride (in ethanol) (all from Sigma), 0.2M sucrose (Fisons AR) ) .
  • the cell suspension was homogenised (Ultra-turax at 20,500 rpm) for 3 x 10 second bursts with 2 minute cooling on ice between bursts.
  • the lysate was centifuged at 3500 rpm (1500g) for 10 minutes at 4 deg. C (SS34 rotor - Sorval RC5C centrifuge) . The low speed supernatant was removed and the pellet discarded. The supernatant was centrifuged for 30 minutes at 20,000 rpm (40000g) at 4 deg. C in the Sorval centrifuge.
  • Protein determination was by the BCA method of the Pierce Chemical Co., using their recommended protocol and BSA as a standard. Membranes were aliquoted and stored at -70 deg. C until use.
  • a solution of [125I-Tyr8] -bradykinin was prepared in assay buffer to give a concentration of 0.15pM.
  • a stock solution of a standard bradykinin receptor antagonist (M248138) was prepared at a concentration of 0.3mM and a dilution in Tris[hydroxymethyl]amino-methane (Trizma base) (TRIS) (Sigma), pH 7.0 was made to give a concentration of 0.05mM, this was used to determine the non-specific binding.
  • a glass fibre filter mat (Tomtec RG) was soaked in 0.15% polyethyleneimine (Sigma) at 4 deg. C for 10 hours and left to dry completely. 4 x 4 microlitre spots of each membrane concentration were applied to the dry filter mat and left at room temperature for 2 hours. 2 microlitres of either TRIS buffer (to give total binding), or 2 microlitres of the inhibitor (to give non-specific binding) were applied to each spot, immediately followed by 2 microlitres of [1251] -bradykinin.
  • wash buffer ImM TRIS, lOOmM sodium chloride (Fisons AR) , 0.02% BSA pH 7.5
  • wash buffer ImM TRIS, lOOmM sodium chloride (Fisons AR) , 0.02% BSA pH 7.5

Abstract

A method for the detection of a compound which modulates binding of a ligand to a biological receptor, which method comprises contacting the ligand, biological receptor and test compound at a locus on a solid phase matrix, the matrix allowing movement of fluids therein by capillary action, under conditions which permit binding of the ligand to the biological receptor and partition of any unbound ligand on the solid phase matrix, and detecting any modulation of binding by the test compound by reference to any such partition.

Description

METHOD FOR DETECTING BIOLOGICAL INTERACTIONS ESPECIALLY IN RECEPTOR BINDING ASSAYS.
The present invention relates to improved methods of detecting biological interactions especially in receptor binding assays. In particular the invention involves the use of radial partition.
Conventional radioligand binding assays are involved, ie. they employ vacuum filtration and other complex procedures. Such procedures are outlined for example in Receptor-Ligand Interactions, E.D. Hulme (Ed), 1992, IRL Press. A need therefore exists for further improved techniques which are less cumbersome to perform and more suitable, for example, for the identification of new drug leads by high throughput screening.
Radial partition was first described as long ago as 1982 (J. . Giegel et al, Clin. Chem., 28., 1894-1898(1982)). Since then it has become well established as the basis for assays in the immunodiagnostics field. A typical method employs an antibody immobilised on a paper filter with sequential application of analyte and second antibody conjugate. A wash (optionally containing substrate for enzyme immunoassays) is then applied such that unbound conjugate is washed radially away from the centre leaving bound conjugate as a central dot. Quantitation according to the signal used gives, by reference to a standard curve, the concentration of the analyte.
We have now surprisingly found that the principle of radial partition may be successfully applied in novel assays for the identification of compounds which bind to a biological receptor of interest. Such novel partition assays do not require vacuum filtration or other complex procedures. These may be readily applied in rapid or high throughput screening procedures, and used for the identification of novel active compounds in, for example, the pharmaceutical and agrochemical industries.
Therefore according to a first aspect of the present invention we provide a method for the detection of a compound which modulates binding of a ligand to a biological receptor, which method comprises contacting the ligand, biological receptor and test compound at a locus on a solid phase matrix, the matrix allowing movement of fluids therein by capillary action, under conditions which permit binding of the ligand to the biological receptor and partition of any unbound ligand on the solid phase matrix, and detecting any modulation of binding by the test compound by reference to any such partition.
Components of the above assay may be added to the matrix in any order. Optionally three, preferably two of the components may be mixed prior to application to the matrix. Preferably, the order should be such that the ligand does not contact the biological receptor before the test compounds, since this would require any active compound to displace the ligand and this might be kinetically slow and reduce the sensitivity of the assay. Preferably the first addition should contain the biological receptor. Preferably the biological receptor is immobilised on the solid phase matrix.
Alternatively the method of the invention may be used to determine interactions between a biological receptor of interest and a test compound. Therefore in a further aspect of the present invention we provide a method for the detection of a compound which binds to a biological receptor, which method comprises contacting the biological receptor with a test compound at a locus on a solid phase matrix, the matrix allowing movement of fluids therein by capillary action, under conditions which permit binding of the test compound to the biological receptor and partition of any unbound test compound on the solid phase matrix, and detecting binding of the test compound to the biological receptor by reference to any such partition.
Conveniently the test compound is immobilised on the solid phase matrix prior to application of the other assay component.
By "immobilised" we mean covalent or non-covalent attachment to the matrix, or attachment to a substance which is unable to migrate through the matrix by capillary action. In the case where the receptor is a membrane receptor, immobilisation is conveniently provided by application of the receptor in the form of membrane fragments. Alternatively the receptor may be provided with a peptide tag, conveniently attached to the N- or C-terminus and produced as a fusion product by genetic manipulation technology, and immobilisation effected by means of a partner complementary to the tag, for example an anti-tag antibody, immobilised on the matrix by covalent or non-covalent means. Where the test compound is immobilised, this is conveniently achieved by synthesis of the test compound on the matrix. Such systems have been described for example by R. Frank, Tet. Lett. 48, (42) , 9217-9232 (1992) .
Whilst we do not wish to be bound by theoretical considerations, binding of the biological receptor to the test compound will generally take place in solution. Thus one or more of the relevant components are conveniently applied in solution.
Optionally drying or partial drying, for example by allowing a pause between additions may be employed in order to reduce the fluid volume of the assay.
A preferred assay comprises addition of the biological receptor, drying, addition of the test compound and then the ligand, incubation followed by washing.
Depending on the nature of the fluid medium and the solid phase matrix, after binding partition may have already taken place to some limited extent. However, in general, it is preferred to limit incubation to a defined locus and, after incubation, a wash fluid is then conveniently applied as a separate step to allow any desired degree of partition to occur.
The matrix of the present invention is conveniently a porous solid-phase matrix such as a sheet of cellulose paper or glass fibre paper or papers of mixed glass fibre and cellulose.
The partition of the present invention is conveniently radial partition followed by quantitation or estimation of the extent of the labelled component retained in the central locus or in the peripheral areas of the matrix, or both.
Alternatively the assay method is performed as a linear partition assay which permits a higher density of assay loci than outlined above. This assay is performed as described above but employs smaller volumes and/or thicker matrix eg. paper, such that a high proportion of the wash buffer is directed downwards (assuming a horizontal paper) , this process optionally being facilitated by positioning the loci close together such that radial movement is restricted. Optionally this process may be facilitated by the provision of an adsorbent layer under the matrix. This assay is conveniently performed with the ligand labelled with a signal that cannot be detected significantly through the (opaque) paper, for example a chromophore, fluorophore, chemilumophore (or enzymes generating these) or tritium. Preferably the signal is a fluorophore. The extent of binding is determined by measuring the surface signal: thus compounds binding to the receptor will prevent binding of the labelled ligand and a diminished signal will result.
Both radial and linear assays may be carried out on any convenient two- or three-dimensional matrix including those where the structural integrity of the matrix is assisted by supporting surfaces. Convenient two-dimensional matrices include sheets of paper and the like, but it will be understood that they may be on separate supports, for example filters attached to the bottom of microtitre plates. The linear and radial partition assay may be performed on any matrix that allows the linear flow of the liquid.
The biological receptor is conveniently a pharmacological receptor of interest, such as a membrane receptor, or any target of for example pharmaceutical or agrochemical interest. Such targets may be for example proteins such as those involved in the mediation of cellular signalling, control of gene expression, cell adhesion, inflammation; enzymes and their inhibitors, proteoglycans, oligo- or poly-saccharides, nucleic acid in double or single stranded form, and complexes comprising one or more of the above species.
The biological receptor is conveniently provided in the form of membrane fragments. The biological receptor may be a fragment or domain or an analogue of the natural biological receptor of interest.
The ligand is conveniently selected from those compounds known to bind to the biological receptor of interest. Typically, the ligand may be a peptide, protein, oligo- or poly-saccharide, or a small molecule. The ligand may be an analogue of the naturally occuring ligand.
The methods of the invention are preferably carried out with with reference to one or more controls.
Detecting the presence of bound or unbound material is conveniently effected by labelling one or more of the soluble components of the particular system. Most conveniently the ligand is labelled. Alternatively the biological partner is labelled.
The label used may be any conventional label used in biochemical assays. For radial partition assays, the label is conveniently such that it may be be located and determined by a two-dimensional imaging technique, for example radioactivity that may be determined by autoradiography or storage phosphor or proportional wire counting or microchannel array detector technology, or fluorescence that may be determined by a fluorescence scanner device, or a colour, or enzyme-generated colour, that may be assessed by visual inspection or image analysis.
Alternative labelling and detection systems may be devised which obviate the need for the detection technique to distinguish between bound and free label. For example if fluorescence is employed as the label, only the centre of the locus may be illuminated, such that only the bound label fluoresces. Alternatively, if a radioisotope is employed as the label, after the assay a small volume of scintillant may be applied to the central portion of the locus only, such that only bound label will be detected. Alternatively, if an enzyme is employed as the label, after the assay a small volume of substrate may be applied to the central portion of the locus only, such that only bound label is detected. This principle may be applied to any signal system which requires two or more components to give the signal (including light irradiation as a component) and variations on the above will be apparent to the scientist of average skill.
For linear partition assays, the label is conveniently a fluorophore, or an enzyme that generates a signal that does not penetrate significantly the chosen matrix. Alternatively, weakly penetrating radioactive isotopes, such as tritium, may be employed.
Alternatively, for both radial and linear partition assays, interacting signals -may be employed, such that the bound or the free label is determined by an interaction with a second signal component located on the immobilised component or on the matrix. Interacting signals are known in the art and include for example fluorescence energy transfer. An intrinsic property of the immobilised partner or the matrix, for example its mass or its hydropathy, may be considered as an interacting signal, permitting detection by fluorescence polarisation or modulation of other fluorescence properties.
It will be understood that the term "label" includes tags that form one half of an affinity pair, such as biotin, whose presence may be subsequently determined by incubation with the complementary partner of the affinity pair to which has been conjugated a signal.
Methods for labelling ligands and biological partners are known in the art and are described for example in the catalogues of the Pierce Chemical Company and of Molecular Probes, and references contained therein.
We have found that radioligand binding assays can advantageously be performed in this form. The method comprises the steps of adding to a suitable paper, for example glass fibre paper, membrane fragments containing the receptor of interest, test compound and labelled ligand, preferably in that order and in a small volume, conveniently totalling less than lOμl, such as less than 6 μl , and incubating under conditions to allow binding to occur. All additions are made at the same position on the paper. Subsequently, wash buffer of a convenient volume is applied, such that unbound ligand is washed radially while bound ligand remains in the centre, since the membrane fragments are unable to migrate through the paper.
Conveniently the ligand is labelled with a radioactive isotope and the assay result visualised by autoradiography, proportional wire counting, microchannel array detector or storage phosphor technology. The latter three techniques permit quantitation of the results. Alternatively, non-isotopic labels may be used, in particular fluorescent labels used in conjunction with two-dimensional fluorescence scanners are convenient. In these approaches a test compound that prevents binding of the ligand to the receptor is revealed by a .diminuation in the intensity of the central spot.
We also disclose pre-treated membranes for use as a solid phase matrix in the above methods. Such membranes may be treated or coated with substances for example to improve non-specific binding of the labelled component to the matrix, or to retain the immobilised component in the central locus.
An advantage of the assay of the invention is that a plurality of assays may be conveniently carried out on a single sheet of matrix. Thus, a large number of compounds may be screened in a single experiment. Conveniently, this is achieved my means of robtic liquid handling devices. Several such devices are known and include for example robotic sample processors such as the Tecan RSP 5072.
The above assays give significant advantages over conventional techniques. These include increased throughput capacity, simpler operation, increased robustness and lower cost. For receptor binding assays using membrane fragments, it is also believed that the assay is more discriminating in its ability to detect compounds with genuine receptor binding activity. Whilst we do not wish to be bound by theoretical considerations, the more gentle filtration employed by this method, compared to vacuum filtration methods, results in compounds that merely disrupt the structure of the membrane fragments not being detected since the fragments, though disrupted, nevertheless remain in the central zone.
The invention will now be described but not limited with reference to the following Examples and Figures wherein:
Figure 1 shows an autoradiograph showing displacement of radiolabelled endothelin by different concentrations of unlabelled endothelin according to the assay described in Example 1. T: total (no unlabelled endothelin), NS: non-specific binding; -11,-10,-9,-8,-7: 10 M,
-10 -9 -8 -7 10 M, 10 M, 10 M and 10 M unlabelled endothelin.
Figure 2 shows the correlation in the percentage displacement obtained for 24 test compounds in the radial partition assay as described in Example 2 against the conventional vacuum filtration method.
Figure 3 shows the image obtained by following the procedures set out in Example 3. This-shows dark central spots indicating total binding to the localised receptor,the absence of a spot indicates full inhibition of binding due to a high concentration of salmon calcitonin being applied to that position (1 micromolar) .
Figure 4 shows the image obtained by following the procedures set out in Example 4. This shows the effects of total binding I and non-specific binding II as determined at the following membrane concentrations: A. 0.7 mg/ml, B. 0.5 mg/ml, C. 0.3 mg/ml, D. 0.1 mg/ml, E. 0.05 mg/ml.
Example 1
Establishment of an endothelin receptor binding assay
This assay investigates the interaction of endothelin 1 with a washed membrane fraction prepared from mouse erythroleukaemia (MEL) cells expressing the human endothelin ETA receptor (ET receptor - Adachi et al, Biochem. Biophys. Res. Commun. , 1991, 180, 1265-1272), separated in a radial format.
A fresh pellet of MEL cells (WO-89/01517-Grosveld et al/MRC, WO-92/11380-Hollis et al/ICI) containing the cloned human ET receptor was obtained. These cells were re-suspended in homogenisation buffer (50mM Tris [hydroxymethyl]amino- methane (Trizma base), 5μg/ml soybean trypsin inhibitor, ImM 1,10-phenanthroline, ImM benzamidine hydrochloride, lOOμg/ml bacitracin, (all from Sigma) , 3mM sucrose (BDH) ; pH 8.0 with HCl) . The cell suspension was homogenised using a mechanical homogeniser (Polytron PT-3000 on 75% power) for 3 x 10 second bursts with 2 minutes cooling on ice in-between bursts. The homogenate was centrifuged at 1500 x g for 10 minutes at 4oC (SS34 rotor - Sorval RC5C centrifuge) . The supernatant was poured off and re-centrifuged at >40,000 x g for 30 minutes at 4oC (SS34 rotor - Sorval centrifuge) . The resulting supernatant was discarded and the pellet washed by re-suspending in homogenisation buffer (as previously described) and re-centrifuging at >40,000 x g for 30 minutes (as above) . The final pellet was re-suspended in homogenisation buffer using a glass/Teflon hand held homogeniser. Aliquots of the final membrane suspension were stored frozen in liquid nitrogen until required.
All assay dilutions were made using assay buffer (50mM Trizma base, ImM CaC12, 0.05% polyoxyethylenesorbitan monolaurate (Tween 20, Sigma), 0.1% bovine serum albumin (fatty acid free); heat treated to 56°C for 30 minutes, pH7.4) . A stock solution of endothelin 1 (human, porcine, Cambridge Research Biochemicals) was
-5 prepared at 3 x 10 M in de-ionised water and stored in aliquots at
-20°C until needed. The stock solution was diluted with assay buffer
-7 (as above) to give a concentration of 3 x 10 M, th s concentration was used to define the non-specific binding. Dilutions of this were made to give a range of concentrations from 3 x 10 7M to 3 x 10 1M. The freshly thawed membrane suspension was diluted to give about 0.3 mg/ml protein concentration, 15μl of which was applied to all assay positions on a glass fibre filter mat (Whatman GFB) . This was allowed to partially dry at room temperature for 20 minutes. 15μl of either assay buffer (to give total binding) , or a dilutions of endothelin 1 were applied to the membrane spots, immediately followed by 15μl of 90pM (0.2 terabecquerels/mmol) [1251] -Tyrl3-endothelin 1(human, porcine, NEN Research Products) were applied to the same spots. The mat was then incubated in a humid atmosphere at 37°C for 40 minutes, after which time 60 μl of wash buffer (50mM Tris-HCl, pH7.4) was applied to the same spots. The mat was then exposed to autoradiography film (Fuji X-ray) for 3 days.
The results are given in Fig. 1. The radioactivity bound to the membranes did not move, whilst the unbound radioactivity was washed out from the central spot in a radial manner, forming an outer circle. Fig. 1 shows a central spot for the total binding (T) and an absence of a spot for the non-specific binding (10-7M endothelin) . The four dilutions of endothelin show a progressive loss of the central spot consistent with an IC-50 of between 10-10 and 10-11M.
Example 2
Detection of the activity of test compounds and correlation with conventional methodology
24 compounds of known activity in a conventional endothelin receptor binding assay were selected for this experiment. In brief, the conventional assay employed incubation of the membrane receptor fragments and radiolabelled endothelin (as described in Example 1) with test compounds. After incubation for 90 minutes, the mixture was filtered through a glass fibre mat (Wallac printed filter mat B) using vacuum filtration on a cell harvester (Tomtec 96 Mach 2) , and counted on a beta counter (Wallac 1205 BetaPlate) . The percentage displacement for each compound was calculated by reference to the total and non-specific binding controls.
These compounds were assayed at a final concentration 0.3mM in the radial partition assay as described in Example 1, with the following modifications: the volumes of receptor, compound and label were 2, 4 and 4 microlitres respectively and the wash volume was 5 microlitres. The filter employed was a reinforced mat (Tomtec RG) .
The mat was exposed to a storage phosphor screen (Molecular Dynamics) for 3 hours and analysed on a Phosphorlmager SF (Molecular Dynamics) . The intensity of the central spots was determined using the software provided. The displacement for each compound was calculated by subtracting the non-specific binding value from all values and expressing total counts - compound counts as a percentage of total counts.
The displacement for the compounds for this assay are compared with those obtained in the conventional assay in Figure. 2. The high degree of correlation shows that the assay of the invention is useful in detecting compounds which inhibit the binding of a ligand with a receptor.
Example 3
Multiple assays using human calcitonin receptor
Recombinant human calcitonin receptor preparations were obtained as follows: a fresh pellet of MEL cells (WO-89/01517-Grosveld et al/MRC, WO-92/11380-Hollis et al/ICI) containing the cloned human calcitonin receptor (cf. Gorn, A.H. et al J. Clin. Invest., (1992), 90. 1726-1735) was re-suspended in cold (4 deg.C) homogenisation buffer (20mM HEPES, lOOmM NaCl, 5mM EDTA, O.lmM phenylmethylsulfonyl fluoride (PMSF) , 1 mM iodoactamide, pH 7.4) . The cell suspension was homogenised using a mechanical homogeniser (Polytron PT-3000 on 75% power) for 3 x 10 second bursts with 2 minutes cooling on ice between bursts. The lysate was transferred to a glass/Teflon homogeniser and given 10 strokes to ensure cell disruption. The homogenate was centrifuged at 3,000 rpm (llOOg) for 10 minutes at 4 deg.C (SS34 rotor - Sorval RC5C centrifuge) . The low-speed supernatant was removed, and the pellet re-suspended in 10 ml of homogenisation buffer and dispersed with 3 x 10 second treatments with the Polytron homogeniser, followed by low-speed centifugation as described above. The supematants from both spins were combined. This was then centrifuged for 30 minutes at 33,000 rpm (100,000g) at 4 deg C in an L7 Ultracentrifuge (Beckman) using a Ti75 head. The pellet was re-suspended in 20mM HEPES, pH 7.4, and re-centrifuged. This pellet was then re-suspended as before and treated with 10 strokes of the glass/Teflon homogeniser.
Protein determination was by the BCA method of the Pierce Chemical Co., using their recommended protocol and bovine serum albumin (BSA) as a standard. Membranes were diluted to a stock concentration of 0.08 mg/ml protein, and stored at -70 deg. C.
All assay dilutions were made using assay buffer (20mM HEPES, 120 mM NaCl, 0.25% BSA (fatty acid free), 0.1% bacitracin, pH 7.4. A stock solution of calcitonin (salmon, Cambridge Research Biochemicals) was prepared at 0.1 mM in 100 mM sodium phosphate buffer, containing 150 mM NaCl and 0.1% BSA, pH 7.5, and a dilution in assay buffer at 0.3nM prepared. A solution of
(3- [1251]iodotyrosyl-22) salmon calcitonin (0.3nM) was prepared and a portion mixed 1:1 with the unlabelled calcitonin to give an isotopically diluted preparation. The freshly thawed membrane suspension was diluted to a working concentration of 0.02 mg/ml.
To a 30 x 43 cm glass fibre filter mat (Tomtec RG) was added 4 microlitres of receptor preparation to 2,304 positions in a rectangular array. This was allowed to dry for 2 hours at room temperature. 2 microlitres of either assay buffer (to give total binding) or a dilution of salmon calcitonin were applied along with 2 microlitres of the [1251] salmon calcitonin in the same addition. Each assay position-was allowed to incubate at room temperature for 40 minutes, after which time 6 microlitres of wash buffer (lOmM Tris [hydroxymethyl]amino-methane (Trizma base) (Sigma) , 150mM sodium chloride (Fisons AR) , pH7.4, with 0.05% polyoxyethylenesorbitan monolaurate (Sigma) ) , was applied. All additions were made using a Tecan RSP 5072 robotic sample processor with a 4 way tip. The mat was allowed to dry completely and was exposed to a storage phosphor screen (Molecular Dynamics) for 3 hours and analysed using a PhosphorImager SF (Molecular Dynamics) .
The image obtained from the Phosphorlmager is shown in Figure 3. This shows the dark central spots indicating total binding to the localised receptor,the absence of a spot indicates full inhibition of binding due to a high concentration of salmon calcitonin being applied to that position (1 micromolar) . Although the application of small volumes to a filter mat requires care the figure shows that the invention is a convenient way to increase greatly the number of tests possible in one simple assay.
Example 4.
Bradykinin binding; various receptor mwmhrane concentrations.
Recombinant human bradykinin receptor preparations were obtained as follows: a fresh pellet of MEL cells (WO-89/01517-Grosveld et al/MRC, WO-92/11380-Hollis et al/ICI) containing the cloned human bradykinin receptor was re-suspended in cold (4 deg. C) homogenisation buffer (lOmM Tris [hydroxymethyl]amino-methane (Trizma base) pH 7.5, 0.1 mg/ml bacitracin, 0.005 mg/ml soybean trypsin inhibitor (5 mg/ml pre-solubilised in ethanol) , ImM benzamidine, 250mM phenylmethylsulfonylflouride (in ethanol) (all from Sigma), 0.2M sucrose (Fisons AR) ) . The cell suspension was homogenised (Ultra-turax at 20,500 rpm) for 3 x 10 second bursts with 2 minute cooling on ice between bursts. The lysate was centifuged at 3500 rpm (1500g) for 10 minutes at 4 deg. C (SS34 rotor - Sorval RC5C centrifuge) . The low speed supernatant was removed and the pellet discarded. The supernatant was centrifuged for 30 minutes at 20,000 rpm (40000g) at 4 deg. C in the Sorval centrifuge.
Protein determination was by the BCA method of the Pierce Chemical Co., using their recommended protocol and BSA as a standard. Membranes were aliquoted and stored at -70 deg. C until use.
Freshly thawed membrane solution was diluted in assay buffer (37.5mM N-tris [Hydroxymethyl] -methyl-2-aminoethane-sulphonic acid (TES) , 1.5mM phenanthroline, 0.21 mg/ml bacitracin, 0.15mM thiorphan, 0.15% bovine serum albumin (essentially fatty acid free) (BSA) (all from Sigma), 0.45mM magnesium chloride (BDH), pH 6.8, heat treated for 30 minutes at 56 deg. C) , to give five concentrations of membranes :
A. 0.7 mg/ml
B. 0.5 mg/ml
C. 0.3 mg/ml
D. 0.1 mg/ml
E. 0.05 mg/ml
A solution of [125I-Tyr8] -bradykinin (NEN Research Products) was prepared in assay buffer to give a concentration of 0.15pM. A stock solution of a standard bradykinin receptor antagonist (M248138) was prepared at a concentration of 0.3mM and a dilution in Tris[hydroxymethyl]amino-methane (Trizma base) (TRIS) (Sigma), pH 7.0 was made to give a concentration of 0.05mM, this was used to determine the non-specific binding.
A glass fibre filter mat (Tomtec RG) was soaked in 0.15% polyethyleneimine (Sigma) at 4 deg. C for 10 hours and left to dry completely. 4 x 4 microlitre spots of each membrane concentration were applied to the dry filter mat and left at room temperature for 2 hours. 2 microlitres of either TRIS buffer (to give total binding), or 2 microlitres of the inhibitor (to give non-specific binding) were applied to each spot, immediately followed by 2 microlitres of [1251] -bradykinin.
The mat was left at room temperature for 40 minutes, after which time 6 microlitres of wash buffer (ImM TRIS, lOOmM sodium chloride (Fisons AR) , 0.02% BSA pH 7.5) was applied to each spot. When dry the mat was exposed to a storage phosphor screen (Molecular Dynamics) for 3 hours and analysed on a Phospholmager SF (Molecular Dynamics) .
The image obtained from the Phosphorlmager is shown in Figure 4. This shows that with each concentration total binding and non-specifc binding can be determined and that as the concentration of membranes decreases the total binding decreases in a linear manner, confirming that the invention can be used with various different receptors and receptor concentrations.

Claims

Claims :
1. A method for the detection of a compound which modulates binding of a ligand to a biological receptor, which method comprises contacting the ligand, biological receptor and test compound at a locus on a solid phase matrix, the matrix allowing movement of fluids therein by capillary action, under conditions which permit binding of the ligand to the biological receptor and partition of any unbound ligand on the solid phase matrix, and detecting any modulation of binding by the test compound by reference to any such partition.
2. A method as claimed in claim 1 wherein the biological receptor is immobilised on the solid phase matrix.
3. A method as claimed in claim 1 or claim 2 wherein the ligand is labelled.
4. A method for the detection of a compound which binds to a biological receptor, which method comprises contacting the biological receptor with a test compound at a locus on a solid phase matrix, the matrix allowing movement of fluids therein by capillary action, under conditions which permit binding of the test compound to the biological receptor and partition of any unbound test compound on the solid phase matrix, and detecting binding of the test compound to the biological receptor by reference to any such partition.
5. A method as claimed in claim 4 wherein the biological receptor is immobilised on the solid phase matrix.
6. A method as claimed in any one of the previous claims wherein partition is linear partition.
7. A method as claimed in any one of the previous claims wherein the biological receptor is provided in the form of membrane fragments.
8. A method as claimed in any one of the previous claims wherein the biological receptor is a pharmacological receptor of interest.
9. A method as claimed in any one of claims 1-8 wherein bound or free label is detected using fluorescence.
10. A method as claimed in any one of claims 1-9 wherein bound or free label is determined by interacting signals.
11. A method as claimed in any one of claims 1-3 or 6-8 which is a radioligand binding assay.
12. A method as claimed in any one of the previous claims wherein a plurality of test compounds are assayed on a single solid phase matri .
13. A solid phase matrix for use in a method as claimed in any one of the previous claims and treated or coated with one or more of the assay components.
14. A solid phase matrix as claimed in claim 13 wherein the biological receptor is immobilised on the solid phase matrix.
PCT/GB1994/001799 1993-08-18 1994-08-17 Method for detecting biological interactions especially in receptor binding assays WO1995005601A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP94923803A EP0714514B1 (en) 1993-08-18 1994-08-17 Method for detecting biological interactions especially in receptor binding assays
AU73896/94A AU7389694A (en) 1993-08-18 1994-08-17 Method for detecting biological interactions especially in receptor binding assays
JP7506835A JPH09503291A (en) 1993-08-18 1994-08-17 Method for detecting biological interactions, especially in receptor binding assays
US08/596,210 US6054282A (en) 1993-08-18 1994-08-17 Method for detecting biological interactions especially in receptor binding assays
DE69414122T DE69414122T2 (en) 1993-08-18 1994-08-17 METHOD FOR DETECTING BIOLOGICAL INTERACTIONS, IN PARTICULAR IN RECEPTOR BINDING ASSAYS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB939317193A GB9317193D0 (en) 1993-08-18 1993-08-18 Method
GB9317193.2 1993-08-18

Publications (1)

Publication Number Publication Date
WO1995005601A1 true WO1995005601A1 (en) 1995-02-23

Family

ID=10740691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1994/001799 WO1995005601A1 (en) 1993-08-18 1994-08-17 Method for detecting biological interactions especially in receptor binding assays

Country Status (8)

Country Link
US (1) US6054282A (en)
EP (1) EP0714514B1 (en)
JP (1) JPH09503291A (en)
AT (1) ATE172541T1 (en)
AU (1) AU7389694A (en)
DE (1) DE69414122T2 (en)
GB (2) GB9317193D0 (en)
WO (1) WO1995005601A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928888A (en) * 1996-09-26 1999-07-27 Aurora Biosciences Corporation Methods and compositions for sensitive and rapid, functional identification of genomic polynucleotides and secondary screening capabilities
WO2004027426A2 (en) * 2002-09-20 2004-04-01 Abbott Laboratories Method for using a blank matrix in a continuous format high throughput screening process
KR100634849B1 (en) * 1997-06-20 2006-10-17 사이퍼젠 바이오시스템스, 인코오포레이티드 Retentate chromatography and protein chip arrays with applications in biology and medicine
US7335505B2 (en) 2001-01-15 2008-02-26 Wista Laboratories Ltd. Materials and methods relating to protein aggregation in neurodegenerative disease
US7335652B2 (en) 2001-03-20 2008-02-26 Wista Laboratories Ltd. Neurofibrillary labels
US7534786B2 (en) 1995-03-27 2009-05-19 Wista Laboratories Ltd. Inhibition of tau-tau association
US7834237B2 (en) 2001-01-03 2010-11-16 Wista Laboratories Ltd. Materials and methods relating to protein aggregation in neurodegenerative disease
US7888350B2 (en) 2006-03-29 2011-02-15 Wista Laboratories Ltd. 3,7-diamino-10H-phenothiazine salts and their use
US8710051B2 (en) 2006-03-29 2014-04-29 Wis Ta Laboratories Ltd. 3,7-diamino-10H-phenothiazine salts and their use
WO2017108582A1 (en) * 2015-12-22 2017-06-29 Centre National De La Recherche Scientifique - Cnrs - Device for detecting neurotoxins and process for manufacture thereof
US10864216B2 (en) 2011-02-11 2020-12-15 Wista Laboratories, Ltd. Phenothiazine diaminium salts and their use

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387390B1 (en) * 1997-06-20 2009-02-18 Bio - Rad Laboratories, Inc. Retentate chromatography and protein chip arrays with applications in biology and medicine
AU7103500A (en) * 1999-09-01 2001-03-26 Medalys Corporation High throughput chemical profiling
WO2002095054A2 (en) * 2001-05-18 2002-11-28 President And Fellows Of Harvard College Method of determining protein interaction inhibitors
EP1534075B1 (en) * 2002-07-12 2009-09-30 Morehouse School of Medicine Method for identifying salt-sensitive persons
US20110236907A1 (en) * 2008-06-17 2011-09-29 Wei Chen Radiolabled cyclopamine assay for the smoothened receptor
US9110053B2 (en) * 2010-08-20 2015-08-18 Agilent Technologies, Inc. Dried blood spotting paper device and method
US20130337579A1 (en) * 2010-09-03 2013-12-19 University Of Maryland, College Park Methods for Determining Protein Ligand Binding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645687A (en) * 1970-01-05 1972-02-29 Samuel T Nerenberg Immunodiffusion plate apparatus
EP0120602A2 (en) * 1983-02-24 1984-10-03 AMERSHAM INTERNATIONAL plc Assay methods
EP0488170A1 (en) * 1990-11-28 1992-06-03 BEHRINGWERKE Aktiengesellschaft Cell-free receptor binding tests, their production and use
WO1993014408A1 (en) * 1992-01-14 1993-07-22 Amylin Pharmaceuticals, Inc. Myotonin receptors and screening methods
WO1993014403A1 (en) * 1992-01-06 1993-07-22 Baxter Diagnostics Inc. Multi-test immunochemical reagent and method to use same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752562A (en) * 1981-01-23 1988-06-21 Baxter Travenol Laboratories, Inc. Detection of serum antibody and surface antigen by radial partition immunoassay
US4517285A (en) * 1982-10-20 1985-05-14 The Wiggins Teape Group Limited Papermaking of polyolefin coated supports by controlling streaming potential
US4670381A (en) * 1985-07-19 1987-06-02 Eastman Kodak Company Heterogeneous immunoassay utilizing horizontal separation in an analytical element
US5030558A (en) * 1986-11-07 1991-07-09 Syntex (U.S.A.) Inc. Qualitative immunochromatographic method and device
GB2232486A (en) * 1989-05-30 1990-12-12 Quadrant Bioresources Ltd Immunoassay
US5264372A (en) * 1991-03-15 1993-11-23 Amylin Pharmaceuticals, Inc. Receptor-based screening methods for amylin agonists and antagonists
DE4202848A1 (en) * 1992-01-31 1993-08-05 Boehringer Mannheim Gmbh ANALYSIS ELEMENT FOR IMMUNOASSAYS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645687A (en) * 1970-01-05 1972-02-29 Samuel T Nerenberg Immunodiffusion plate apparatus
EP0120602A2 (en) * 1983-02-24 1984-10-03 AMERSHAM INTERNATIONAL plc Assay methods
EP0488170A1 (en) * 1990-11-28 1992-06-03 BEHRINGWERKE Aktiengesellschaft Cell-free receptor binding tests, their production and use
WO1993014403A1 (en) * 1992-01-06 1993-07-22 Baxter Diagnostics Inc. Multi-test immunochemical reagent and method to use same
WO1993014408A1 (en) * 1992-01-14 1993-07-22 Amylin Pharmaceuticals, Inc. Myotonin receptors and screening methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. L. GIEGEL ET AL.: "Radial partition immunoassay.", CLINICAL CHEMISTRY., vol. 28, no. 9, September 1982 (1982-09-01), WINSTON US, pages 1894 - 1898 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534786B2 (en) 1995-03-27 2009-05-19 Wista Laboratories Ltd. Inhibition of tau-tau association
US8278298B2 (en) 1995-03-27 2012-10-02 Wista Laboratories Ltd. Inhibition of tau-tau-association
US5928888A (en) * 1996-09-26 1999-07-27 Aurora Biosciences Corporation Methods and compositions for sensitive and rapid, functional identification of genomic polynucleotides and secondary screening capabilities
KR100634849B1 (en) * 1997-06-20 2006-10-17 사이퍼젠 바이오시스템스, 인코오포레이티드 Retentate chromatography and protein chip arrays with applications in biology and medicine
CN100351990C (en) * 1997-06-20 2007-11-28 生物辐射实验室股份有限公司 Retentate chromatography and protein chip arrays applications in biology and medicine
US7834237B2 (en) 2001-01-03 2010-11-16 Wista Laboratories Ltd. Materials and methods relating to protein aggregation in neurodegenerative disease
US7335505B2 (en) 2001-01-15 2008-02-26 Wista Laboratories Ltd. Materials and methods relating to protein aggregation in neurodegenerative disease
US7893054B2 (en) 2001-01-15 2011-02-22 Wista Laboratories Ltd. Materials and methods relating to protein aggregation in neurodegenerative disease
US7335652B2 (en) 2001-03-20 2008-02-26 Wista Laboratories Ltd. Neurofibrillary labels
US7713962B2 (en) 2001-03-20 2010-05-11 Wista Laboratories Ltd. Neurofibrillary labels
US8097615B2 (en) 2001-03-20 2012-01-17 Wista Laboratories Ltd. Neurofibrillary labels
WO2004027426A3 (en) * 2002-09-20 2004-06-24 Abbott Lab Method for using a blank matrix in a continuous format high throughput screening process
WO2004027426A2 (en) * 2002-09-20 2004-04-01 Abbott Laboratories Method for using a blank matrix in a continuous format high throughput screening process
US7888350B2 (en) 2006-03-29 2011-02-15 Wista Laboratories Ltd. 3,7-diamino-10H-phenothiazine salts and their use
US8710051B2 (en) 2006-03-29 2014-04-29 Wis Ta Laboratories Ltd. 3,7-diamino-10H-phenothiazine salts and their use
US9174954B2 (en) 2006-03-29 2015-11-03 Wista Laboratories Ltd. 3,7-diamino-10H-phenothiazine salts and their use
US11344558B2 (en) 2006-03-29 2022-05-31 Wista Laboratories Ltd. 3, 7-diamino-10H-phenothiazine salts and their use
US11951110B2 (en) 2006-03-29 2024-04-09 Wista Laboratories Ltd. 3, 7-diamino-10H-phenothiazine salts and their use
US10864216B2 (en) 2011-02-11 2020-12-15 Wista Laboratories, Ltd. Phenothiazine diaminium salts and their use
US11180464B2 (en) 2011-02-11 2021-11-23 Wista Laboratories Ltd. Phenothiazine diaminium salts and their use
WO2017108582A1 (en) * 2015-12-22 2017-06-29 Centre National De La Recherche Scientifique - Cnrs - Device for detecting neurotoxins and process for manufacture thereof
WO2017108115A1 (en) * 2015-12-22 2017-06-29 Centre National De La Recherche Scientifique - Cnrs - Device for detecting neurotoxins and process for manufacture thereof
AU2016376356B2 (en) * 2015-12-22 2023-07-20 Centre National De La Recherche Scientifique - Cnrs - Device for detecting neurotoxins and process for manufacture thereof

Also Published As

Publication number Publication date
AU7389694A (en) 1995-03-14
EP0714514A1 (en) 1996-06-05
GB9317193D0 (en) 1993-10-06
DE69414122T2 (en) 1999-03-11
GB9416583D0 (en) 1994-10-12
EP0714514B1 (en) 1998-10-21
GB2281122A (en) 1995-02-22
US6054282A (en) 2000-04-25
ATE172541T1 (en) 1998-11-15
DE69414122D1 (en) 1998-11-26
GB2281122B (en) 1997-11-12
JPH09503291A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
EP0714514B1 (en) Method for detecting biological interactions especially in receptor binding assays
US5585277A (en) Screening method for identifying ligands for target proteins
TW555967B (en) Continuous format high throughput screening
CA2423630C (en) Magnetic in situ dilution
CN100420947C (en) Method for quantitative determination of specific analyte with single trapping agent and reagent kit therefor
EP0937250B1 (en) A solid phase cell-based assay
JPH03502244A (en) Test method and reagent kit
AU2001296579A1 (en) Magnetic in situ dilution
US7141436B2 (en) Immunoassay and reagents and kits for performing the same
WO2000073799A1 (en) Microscale assays and microfluidic devices for transporter, gradient induced, and binding activities
JP3135067B2 (en) Immunodiagnostic test system and its use
DK0662218T3 (en) Immunological solid-phase assay method
CZ217294A3 (en) One-way reaction vessel for immunological analysis in solid phase and method of measuring components which might be determined by immune reactions
EP0883810A1 (en) DETECTION OF DIOXIN-LIKE COMPOUNDS BY DETECTION OF TRANSFORMED Ah RECEPTOR/ARNT COMPLEX
Yu et al. Development of a magnetic microplate chemifluorimmunoassay for rapid detection of bacteria and toxin in blood
JP2000221192A (en) Specimen, method for quantitatively or qualitatively measuring its interaction or reaction dynamics, and sample carrier
KR920004415A (en) Peptides with Antigen Determinants Specific for Alpha 1-Misoglobulin
JP2002525607A5 (en)
WO1996003647A1 (en) Method for screening compound libraries
US8153367B2 (en) Amplified array analysis system
JPH03505920A (en) Detection method
WO1999054734A1 (en) Comb-like solid phase for measuring analytes
EP1355155A1 (en) Combinational biosensor
EP3978619A1 (en) Automated silver enhancement system
Kimball Corstjens et al.(45) Date of Patent: Dec. 28, 2010

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BB BG BR BY CA CH CN CZ DE DK ES FI GB GE HU JP KE KG KP KR KZ LK LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994923803

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08596210

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1994923803

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1994923803

Country of ref document: EP