WO1995007055A1 - Installation pour operation de microchirurgie assistee par ordinateur et procedes mis en ×uvre par ladite installation - Google Patents

Installation pour operation de microchirurgie assistee par ordinateur et procedes mis en ×uvre par ladite installation Download PDF

Info

Publication number
WO1995007055A1
WO1995007055A1 PCT/FR1994/001050 FR9401050W WO9507055A1 WO 1995007055 A1 WO1995007055 A1 WO 1995007055A1 FR 9401050 W FR9401050 W FR 9401050W WO 9507055 A1 WO9507055 A1 WO 9507055A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
frame
image
reference frame
computer
Prior art date
Application number
PCT/FR1994/001050
Other languages
English (en)
Inventor
Hervé DRUAIS
Original Assignee
Deemed International S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9450616&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995007055(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Deemed International S.A. filed Critical Deemed International S.A.
Priority to DE69422631T priority Critical patent/DE69422631T2/de
Priority to EP94926960A priority patent/EP0722299B1/fr
Priority to AT94926960T priority patent/ATE188601T1/de
Priority to JP7508490A priority patent/JPH09507131A/ja
Priority to DK94926960T priority patent/DK0722299T3/da
Priority to US08/612,932 priority patent/US5755725A/en
Publication of WO1995007055A1 publication Critical patent/WO1995007055A1/fr
Priority to GR20000400910T priority patent/GR3033219T3/el

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3983Reference marker arrangements for use with image guided surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis

Definitions

  • the present invention relates to an installation for computer-assisted stereotaxic microsurgery operation.
  • French patent FR2651670 describes a process for the precise localization of a lesion and device for the implementation of this process.
  • the invention relates to a device and a method for precise localization of a lesion.
  • the method according to the invention is characterized in that the organ to be examined is immobilized in the same position as that of the biopsy to be carried out, axial CT scans of the organ are made through at least one rectangle transparent provided with three non-symmetrical opaque concurrent wires occupying determined positions relative to the biopsy apparatus, the lengths of the two segments (AB, AC) intercepted by said opaque wires are measured for a chosen lesional cut, at least one photo in the sampling position, the trace of the three opaque wires is reconstructed on said photo, and the lengths of the segments (AB, AC) measured are reported on said photo to determine the lesion baseline corresponding to the lesion cut chosen.
  • FR2686499 Another French patent published under the number FR2686499 describes an apparatus for treating a target, such as a lesion inside the body using a marker element implanted in or at vicinity of the target to control the therapy of said target.
  • This therapy device includes:
  • the means for locating being linked, for example mechanically or electrically, to the therapy means
  • the locating means locate at least one marker element implanted inside the lesion.
  • the calculation means calculate the position coordinates of the marker element (M0, M1, M2, M3) relative to the therapy means which are used to position the mobile therapy means in space in any position along the axes X, Y, Z. This device allows precise therapy of the lesion.
  • Such an apparatus requires, for its implementation, a heavy pre-surgical preparation.
  • French patent FR2682778 describes a microscope for computer-assisted stereotactic microsurgery, and a method for its operation.
  • This microscope includes detectors detecting optical data, a position identification system and a process control device evaluating the signals of said system.
  • This system is an optical base system integrated in the optical system of the microscope and there is provided a device which converts the signals delivered by the device into a two-dimensional graphic representation.
  • PCT / FR090 / 00714 discloses an installation in which the main repository is linked to the patient's bed. The patient is immobilized relative to the bed by a support helmet or equivalent means.
  • This document of the prior art states that the system includes means denoted 2, for placing in linked position, relative to the reference frame R2 of the structures SNH and SR. As an example, the head is fixed on an operating table.
  • the operating bed never has absolute mechanical rigidity, and the correlation between the patient and the virtual images does not have a sufficient degree of precision for certain interventions.
  • Patent WO92 / 06644 describes a radiotherapy installation comprising means for matching the radiation sources and the images obtained beforehand. This document does not mention the implementation of a reference system corresponding to the fixed reference system of the applicant's invention, which is moreover not necessary in view of the applications envisaged in this document of the prior art.
  • the object of the present invention is to remedy these drawbacks by proposing an installation of ergonomic use, making it possible to dissociate the image acquisition phase and the image exploitation phase for surgical purposes.
  • intraoperative imaging requires the use of binding stereotaxic techniques for the patient and for the operating personnel. These techniques include in particular a painful phase of implantation of a mechanical structure in the form of a frame which is essential in order to acquire the images relative to a known fixed frame of reference, to allow satisfactory calibration of the images, and to ensure .l immobilization of the patient's head, or more generally of the operating area, with respect to a given frame of reference.
  • the object of the invention is to ensure a correlation between digital images obtained by a medical imaging system with the patient so as to provide the surgeon with information intended to guide in real time his operating strategy. Certain interventions require a precision of the correlation of the order of a millimeter, or even less than a millimeter.
  • the installation according to the invention comprises an absolute reference which is the fixed reference Rr linked to a structure completely independent of the patient or of the imaging or visualization system.
  • Another object of the invention is to allow surgeons to proceed with the acquisition of images on a non-anesthetized and autonomous patient, according to a simplified procedure, at any time of hospitalization, or even in a different hospital establishment. , and possibly resort to several complementary imaging techniques.
  • the invention relates more particularly to an installation of the type comprising an articulated tool support, one of the ends of which is integral with a fixed reference frame R c.
  • said system comprising means for determining the coordinates (position of a point and orientation of a directing vector) of the tool in said fixed reference frame R c. as well as an Images database in which images from an imaging system are stored in the image repository R i .
  • the installation according to the invention comprises at least two sensors secured to the fixed frame of reference R c delivering an electrical signal which is a function of the position of the frame of reference of the patient R p in the fixed frame of reference R c , and a computer for matching the frame of reference of the tool R o with the patient's frame of reference Rp and the frame of reference of the image R i as a function of the information coming from said sensor, means for determining the coordinates of the tool in said fixed frame of reference R c and information coming from the image base, said computer delivering a signal for displaying the position of the tool in the frame of reference of the image R i on a control screen, and for controlling the position and movements of the tool as a function of control signals from a control box.
  • Such an installation makes it possible to use one or more images acquired before the intervention, before the patient is transferred to the surgical unit, and to use the images in real time in relation to the progress of the surgical intervention.
  • the fixed frame of reference is a completely independent frame of reference and is decoupled from both the patient frame of reference and the image frame of reference, and the tool frame of reference.
  • the fixed frame of reference is an absolute and permanent frame of reference. It is for example linked to a structural element of the operating room, for example the ceiling, the floor or a wall. This fixed reference is chosen so as to guarantee a permanent and stable reference in which the different transformation matrices can be calculated in all situations, by limiting neither the possibilities of movement of the patient, nor the possibilities of movement of the tool.
  • the sensors consist of at least two acquisition cameras secured to the fixed reference frame R c and arranged so that their fields of observation contain the surgical intervention area.
  • the means for determining the coordinates of the tool in said fixed frame of reference R c are constituted by at least two acquisition cameras secured to the fixed frame of reference R c and arranged so that their fields of observation contain the space mobility of the tool.
  • the installation comprises a geometrically defined trihedron, having at least four point non-coplanar point light sources integral with the tool holder, the mobility space of said trihedron being contained in the field of vision of the acquisition cameras. .
  • the installation further comprises a geometrically defined trihedron, having at least four point non-coplanar point light sources secured to the patient, the mobility space of said trihedron being contained in the field of vision of the acquisition cameras.
  • FIG. 1 shows a schematic view of the installation.
  • the installation according to the invention comprises:
  • the articulated support (1) comprises a base (11) integral with the fixed reference frame R c which is for example the ceiling of the operating room.
  • the articulated support (1) is constituted in the example described by a system of the type "three axes parallel delta". It comprises a first series of three arms (12, 13, 14) connected to the base (11) by motors (15) controlled independently. The first series of three arms (12, 13, 14) is connected to a second series of arms (17, 18, 19) by ball joints (16). The ends of the arms (17 to 19) are secured to a base (20) by means of axes of rotation. The arms are spaced two by two 120 degrees in a plane parallel to the base (11).
  • the end of the arms (17 to 19) is connected to a mechanism (20) comprising 3 axes of rotation perpendicular two by two, the end of the last axis of rotation supporting a tool-holder plate (2) comprising means of coupling of a surgical instrument.
  • This base also comprises a trihedron (21) consisting of an assembly of four light points (22 to 25), for example light-emitting diodes, the geometric arrangement of which is known with precision.
  • the displacement of this trihedron (21) is acquired by the set of cameras (3, 4, 5) which delivers an electrical signal making it possible to calculate at any time the position of the center of gravity of the trihedron (21) and its orientation, in the fixed frame of reference R c , and therefore of determine the passage matrix between the fixed reference frame R c and the reference frame of the tool holder R o .
  • the light-emitting diodes are, according to an embodiment, supplied sequentially, the detection being carried out synchronously.
  • the patient (30) also carries a trihedron
  • the set of cameras (3, 4, 5) delivers an electrical signal making it possible to calculate at any time the position of the center of gravity of the trihedron (31) and its orientation, in the fixed reference frame R c , and therefore to determine the passage matrix between the fixed reference frame R c and the patient reference frame R p .
  • the geometrically defined trihedron in the form of implants placed on the patient before the acquisition of the images, and arranged in four non-aligned points.
  • implants are in this case made of a material allowing detection by the imaging system or systems used.
  • the implants are for example made of titanium.
  • the patient after preparation, enters a first room equipped with image acquisition equipment.
  • the patient is instrumented in a known manner, the acquisition of the raw images and the verification of the images produced.
  • the images are scanned and stored in an image database. These images are then used from a workstation, in the absence of the patient, by calibration and segmentation of the images, indexing of the images and possible programming of the trajectories and operating strategies.
  • the patient is then transferred to the operating room.
  • the patient is then transferred out of the operating room, while the operating images are processed on a workstation.
  • the image acquisition process by the imaging system more particularly consists of:
  • the images are acquired by any known imaging means, for example MRI, angiography, radiography, computed tomography, etc.
  • the digitized images are stored in a database possibly accessible by a computer network from a remote site. .
  • the images thus recorded are processed with a view to:
  • the patient is transferred to the operating room.
  • the invention makes it possible to match the images acquired and linked to the patient with the tool. The location must be done regardless of the position of the tool and the patient.
  • the trihedron (21) used to identify the position of the tool is fixed removably or not on the base of the tool holder.
  • the fixing means will preferably be free of articulation so as to guarantee a permanence of the position of the trihedron (21) relative to the support of the tool.
  • the joining can be carried out by clipping.
  • the patient can be located in different ways: either by placing a rigid standardized trihedron, or by placing non-aligned implants, or by designating characteristic points on the patient's surface, close to the operating area, with a marking stylus.
  • the latter solution consists in using a pointer (32) in the form of a stylus, carrying two reference points detectable by the camera system, and making it possible to designate, and therefore to memorize the position of different characteristic points of the patient, of which he it is possible to follow the movements by shape recognition.
  • characteristic areas are for example the nose, the corners of the eyes or the chin.
  • Such a probe (32) comprises a stylet-shaped body terminated by a pointing zone (35), and comprising at least two light points (33, 34) making it possible to determine the position and the orientation of the probe (32) by analysis of the signals delivered by the cameras (3, 4, 5).
  • R mi Geometric reference defined by at least 4 non-aligned points (i varying by 1 year);
  • pr S the surface defined by a set of points P j acquired in the probe coordinate system R pr
  • i S the surface defined by a set of points P j acquired in the image coordinate system R i .
  • Step 1 Alignment between the ima ⁇ e mark and the patient mark
  • the first step in reconciling the reference systems consists in calculating the matrix i T p / pc of passage between the image reference frame and the patient reference frame.
  • a probe (32) is used in order to point remarkable points known in the image reference frame R i .
  • the coordinates of the ends of the probe (32) are known by construction, and by processing of the information delivered by the cameras (3, 4, 5) detecting the light points (33, 34) carried by the probe.
  • c P probe end c T pr pr P probe end and therefore calculate the passage matrix between the camera reference frame and the probe reference frame.
  • Inserts or a trihedron (31) are also used, comprising in one or other of the cases four non-aligned points identifiable by the cameras (3 to 5), and defining the reference frame R pc of the patient.
  • the transformation i T pr is therefore determined by a relation between the points i P j of the image database and the points pC P j measured with the probe.
  • This matrix i T m2 is determined by a relationship between the points i P j of the image database and the points m2 P j measured with the probe.
  • i T m2 by the method of least squares: According to an implementation variant, the installation of a trihedron (31) or the installation of inserts is avoided, by using an acic surfacing matching method.
  • the first step is to point 4 remarkable points on the patient (for example the nose, the eyes etc ).
  • the transformation i T pg is determined by a relation between the points i P j of the image database and the points pg P j measured with the probe (32).
  • the intermediate reference frame R m2 fixed with respect to the reference frames R pg and R pc .
  • a “coarse” transformation ( i T m2 ) g is then obtained which makes it possible to obtain an accuracy of the order of a few millimeters, insufficient for clinical use.
  • the second step consists in defining a corrected patient reference frame R pc by pointing a plurality of remarkable points located near the intervention area, using the probe (32).
  • Step 2 Alignment between the tool mark and the fixed mark
  • the next step in matching the benchmarks consists in calculating the matrix c T o of passage between the tool frame and the fixed frame.
  • R o can be expressed in the reference frame R m1 by the relation:
  • the reference frame R 0 being defined by the trihedron (21), the relationship in real time between the tool reference frame R o and the camera reference frame R c is thus obtained.
  • the fixed coordinate system R m1 is defined by at least 4 non-coplanar points m1 P 1 to m1 P 4 .
  • the cameras (3 to 5) detect these four points in the camera reference system, in which their coordinates are c P 1 to c P 4 .
  • cT m1 is a homogeneous 4x4 matrix with 12 remarkable elements
  • Step 2 Alignment between image mark and camera mark.
  • the next step in bringing the reference systems into conformity consists in calculating in real time the matrix m2 T i (t) of passage between the reference frame Rm 2 linked to the patient, with the image reference frame R i .
  • cP c T m2 (t) m2 P where c T m2 (t) is determined analogously to c T m ⁇ (t).
  • the final step of the matching consists in determining the relationship between the frame of reference R o frame of reference image R i .
  • Step 2 the position of the tool in the camera frame by the transformation m1 T o (known by construction) and c T m1 (t) (determined in real time by infrared measurement);
  • Step 3 the correlation between the fixed coordinate system R m2 and the image coordinate system R i by the transformation i T m2 , determined during the mapping.

Abstract

La présente invention concerne une installation pour opération de microchirurgie assistée par ordinateur, du type comportant un support d'outils articulé dont l'une des extrémités est solidaire d'un référentiel fixe Rc, ledit système comportant des moyens pour déterminer les coordonnées de l'outil dans ledit référentiel fixe Rc, ainsi qu'une base de données Image dans laquelle sont enregistrées les images provenant d'un système d'imagerie dans le référentiel de l'image Ri, caractérisé en ce qu'il comporte au moins deux capteurs solidaires du référentiel fixe Rc délivrant un signal électrique fonction de la position du référentiel du patient Rp dans le référentiel fixe Rc, et un calculateur pour la mise en correspondance du référentiel de l'outil Ro avec le référentiel du patient Rp et le référentiel de l'image Ri en fonction des informations provenant du capteur bidimensionnel, des moyens pour déterminer les coordonnées de l'outil dans ledit référentiel fixe Rc et des informations provenant de la base d'images, ledit calculateur délivrant un signal pour la visualisation de la position de l'outil dans le référentiel de l'image Ri sur un écran de contrôle, et pour commander la position et les déplacements de l'outil en fonction de signaux de commande provenant d'un boîtier de contrôle.

Description

INSTALLATION POUR OPÉRATION DE MICROCHIRURGIE ASSISTÉE PAR ORDINATEUR ET PROCÉDÉS MIS EN OEUVRE PAR LADITE INSTALLATION. La présente invention concerne une installation pour opération de microchirurgie stéréotaxique assistée par ordinateur.
ETAT DE LA TECHNIQUE
On connaît dans l'état de la technique de telles installations. A titre d'exemple, le brevet français FR2651670 décrit un procédé de localisation précise d'une lésion et dispositif pour la mise en oeuvre de ce procédé.
L'invention concerne un dispositif et un procédé de localisation précise d'une lésion. Le procédé selon l'invention est caractérisé en ce qu'on immobilise l'organe à examiner dans la même position que celle de la biopsie à pratiquer, on effectue des coupes axiales (XY) tomodensitomètriques de l'organe à travers au moins un rectangle transparent muni de trois fils opaques concourants non symétriques occupant des positions déterminées par rapport à l'appareillage de biopsie, on mesure les longueurs des deux segments (AB, AC) interceptés par lesdits fils opaques pour une coupe lésionnelle choisie, on effectue au moins un cliché en position de prélèvement, on reconstruit sur ledit cliché la trace des trois fils opaques, et on reporte sur ledit cliché les longueurs des segments (AB, AC) mesurés pour déterminer la ligne de base lésionnelle correspondant à la coupe lésionnelle choisie.
La mise en oeuvre de ce procédé implique une immobilisation parfaite du patient.
Un autre brevet français publié sous le numéro FR2686499 décrit un appareil de traitement d'une cible, telle qu'une lésion à l'intérieur du corps utilisant un élément marqueur implanté dans ou au voisinage de la cible pour piloter la thérapie de ladite cible. Cet appareil de thérapie comprend:
- des moyens de thérapie de la lésion,
- des moyens de repérage de la lésion, les moyens de repérage étant liés, par exemple mécaniquement ou électriquement, aux moyens de thérapie
- des moyens de calcul de la position de la lésion relativement aux moyens de thérapie à l'aide des moyens de repérage
- des moyens d ' activat ion des moyens de thérapie.
Les moyens de repérage réalisent le repérage d'au moins un élément marqueur implanté à l'intérieur de la lésion. Les moyens de calcul calculent les coordonnées de position de l'élément marqueur (M0, M1, M2, M3) par rapport aux moyens de thérapie qui sont utilisés pour positionner les moyens de thérapie mobiles dans l'espace dans une position quelconque selon les axes X, Y, Z. Cet appareil permet de réaliser une thérapie précise de la lésion.
Un tel appareil nécessite, pour sa mise en oeuvre, une préparation pré-chirurgicale lourde.
Le brevet français FR2682778 décrit un microscope pour opération de microchirurgie stéréotaxique assistée par ordinateur, et un procédé pour son fonctionnement. Ce microscope comporte des détecteurs détectant des données optiques, un système d'identification de position et un dispositif de commande de processus évaluant les signaux dudit système. Ce système est un système à base optique intégré dans le système optique du microscope et il est prévu un dispositif qui convertit les signaux délivrés par le dispositif en une représentation graphique bidimensionnelle.
Un autre brevet de l'art antérieur, le brevet PCT/FR090/00714, divulgue une installation dans laquelle le référentiel principal est lié au lit du patient. Le patient est immobilisé par rapport au lit par un casque de maintien ou un moyen équivalent. Ce document de l'art antérieur expose que le système comporte des moyens notés 2, de mise en position liée, par rapport au référentiel R2 des structures SNH et SR. A titre d'exemple, la tête est fixée sur une table d'opération.
Cette solution n'est pas totalement satisfaisante car les moyens de maintien réduisent les voies d'accès possibles, et imposent des contraintes gênantes au chirurgien, qui doit considérer que la position du patient est définitive à partir du début de l'intervention.
De plus, le lit opératoire ne présente jamais une rigidité mécanique absolue, et la corrélation entre le patient et les images virtuelles ne présente pas un degré de précision suffisant pour certaines interventions.
Le brevet WO92/06644 décrit une installation de radiothérapie comportant des moyens de mise en concordance des sources de rayonnement et des images obtenues préalablement. Ce document ne mentionne pas la mise en oeuvre d'un référentiel correspondant au référentiel fixe de l'invention de la demanderesse, qui n'est d'ailleurs pas nécessaire compte tenu des applications envisagées dans ce document de l'art antérieur.
OBJET DE LA PRESENTE INVENTION
L'objet de la présente invention est de remédier à ces inconvénients en proposant une installation d'utilisation ergonomique, permettant de dissocier la phase d'acquisition d'image et la phase d'exploitation des images à des fins chirurgicales.
Dans l'état de la technique, les systèmes d'acquisition d'images à des fins de diagnostiques, ne nécessitant pas une intervention lourde ou traumatisante, ne sont pas exploitables à des fins peropératoires. En effet, l'imagerie per-opératoires nécessite le recours à des techniques de stéréotaxie contraignantes pour le patient et pour le personnel opératoire. Ces techniques comportent notamment une phase douloureuse d'implantation d'une structure mécanique en forme de cadre qui est indispensable afin d'acquérir les images par rapport à un référentiel fixe connu, de permettre une calibration satisfaisante des images, et d'assurer .l'immobilisation de la tête du patient, ou plus généralement de la zone opératoire, par rapport à un référentiel donné.
Le but de l'invention est d'assurer une corrélation entre des images numériques obtenues par un système d'imagerie médicale avec le patient de façon à apporter au chirurgien des informations destinées à guider en temps réelle sa stratégie opératoire. Certaines interventions nécessitent une précision de la corrélation de l'ordre du millimètre, voire inférieure au millimètre.
Pour atteindre ce but, l'installation selon l'invention comporte un référentiel absolu qui est le référentiel fixe Rr lié à une structure totalement indépendante du patient ou du système d'imagerie ou de visualisation.
Un autre but de l'invention est de permettre aux chirurgiens de procéder à l'acquisition des images sur un patient non anesthésié et autonome, suivant une procédure simplifiée, à n'importe quel moment de l'hospitalisation, voire dans un établissement hospitalier différent, et éventuellement recourir à plusieurs techniques d'imagerie complémentaires.
L'invention concerne plus particulièrement une installation du type comportant un support d'outils articulé dont l'une des extrémités est solidaire d'un référentiel fixe Rc. ledit système comportant des moyens pour déterminer les coordonnées (position d'un point et orientation d'un vecteur directeur) de l'outil dans ledit référentiel fixe Rc. ainsi qu'une base de données Images dans laquelle sont enregistrées les images provenant d'un système d'imagerie dans le référentiel de l'image Ri. L'installation selon l'invention comporte au moins deux capteurs solidaires du référentiel fixe Rc délivrant un signal électrique fonction de la position du référentiel du patient Rp dans le référentiel fixe Rc, et un calculateur pour la mise en correspondance du référentiel de l'outil Ro avec le référentiel du patient Rp et le référentiel de l'image Ri en fonction des informations provenant dudit capteur, des moyens pour déterminer les coordonnées de l'outil dans ledit référentiel fixe Rc et des informations provenant de la base d'images, ledit calculateur délivrant un signal pour la visualisation de la position de l'outil dans le référentiel de l'image Ri sur un écran de contrôle, et pour commander la position et les déplacements de l'outil en fonction de signaux de commande provenant d'un boîtier de contrôle.
Une telle installation permet d'exploiter une ou plusieurs images acquises préalablement à l'intervention, avant le transfert du patient en bloc chirurgical, et d'exploiter en temps réel les images en relation avec le déroulement de l'intervention chirurgicale.
Le référentiel fixe est un référentiel totalement indépendant est découplé tant du référentiel patient que du référentiel image, et du référentiel outil. Le référentiel fixe est un référentiel absolu et permanent. Il est par exemple lié à un élément de structure du bloc opératoire, par exemple le plafond, le sol ou un mur. Ce référentiel fixe est choisi de façon à garantir une référence permanente et stable dans laquelle les différentes matrices de transformations peuvent être calculées dans toutes les situations, en ne limitant ni les possibilités de déplacement du patient, ni les possibilités de déplacement de l'outil.
Selon une première variante, les capteurs sont constitués par au moins deux caméras d'acquisition solidaires du référentiel fixe Rc et disposées de façon à ce que leur champs d'observation contiennent la zone d'intervention chirurgicale.
Avantageusement, les moyens pour déterminer les coordonnées de l'outil dans ledit référentiel fixe Rc sont constitués par au moins deux caméras d'acquisition solidaires du référentiel fixe Rc et disposées de façon à ce que leur champs d'observation contiennent l'espace de mobilité de l'outil.
Selon un mode de réalisation préféré, l'installation comporte un trièdre géométriquement défini, présentant au moins quatre sources lumineuses ponctuelles non coplanaires solidaire du porte-outil, l'espace de mobilité dudit trièdre étant contenu dans le champs de vision des caméras d'acquisition.
Avantageusement l'installation comporte en outre un trièdre géométriquement défini, présentant au moins quatre sources lumineuses ponctuelles non coplanaires solidaire du patient, l'espace de mobilité dudit trièdre étant contenu dans le champs de vision des caméras d'acquisition.
L'invention sera mieux comprise à la lecture de la description qui suit, faisant référence aux dessins annexés où:
- La figure 1 représente une vue schématique de l'installation.
L'installation selon l'invention comporte:
- un support articulé (1) ;
- une platine porte-outil (2) ;
- un ensemble de trois caméras (3, 4, 5) ; - des trièdres de référence (21, 31) ;
- un calculateur (8) ;
- un dispositif de stockage d'images
numérisées (9) ;
- un écran de visualisation (10).
Le support articulé (1) comporte une base (11) solidaire du référentiel fixe Rc qui est par exemple le plafond de la salle d'opération.
Le support articulé (1) est constitué dans l'exemple décrit par un système de type "trois axes delta parallèle". Il comprend une première série de trois bras (12, 13, 14) reliés à la base (11) par des moteurs (15) commandés indépendamment. La première série de trois bras (12, 13, 14) est raccordée à une deuxième série de bras (17, 18, 19) par des rotules (16) . Les extrémités des bras (17 à 19) sont solidaires d'une embase (20) par l'intermédiaire d'axes de rotation. Les bras sont écartés deux à deux de 120 degrés dans un plan parallèle à la base (11).
L'extrémité des bras (17 à 19) est relié à un mécanisme (20) comportant 3 axes de rotation perpendiculaires deux à deux, l'extrémité du dernier axe de rotation supportant une platine porte-outil (2) comportant des moyens d'accouplement d'un instrument chirurgical.
Cette embase comporte par ailleurs un trièdre (21) constitué par un assemblage de quatre points lumineux (22 à 25), par exemple des diodes électroluminescentes, dont la disposition géométrique est connue avec précision.
Le déplacement de ce trièdre (21) est acquis par l'ensemble de caméras (3, 4, 5) qui délivre un signal électrique permettant de calculer à tout moment la position du centre de gravité du trièdre (21) et son orientation, dans le référentiel fixe Rc, et donc de déterminer la matrice de passage entre le référentiel fixe Rc et le référentiel du porte-outil Ro.
Les diodes électroluminescentes sont selon un mode de mise en oeuvre alimentées séquentiellement, la détection se faisant de manière synchrone.
Le patient (30) porte également un trièdre
(31) grâce auquel l'ensemble de caméras (3, 4, 5) délivre un signal électrique permettant de calculer à tout moment la position du centre de gravité du trièdre (31) et son orientation, dans le référentiel fixe Rc, et donc de déterminer la matrice de passage entre le référentiel fixe Rc et le référentiel du patient Rp.
On peut également réaliser le trièdre géométriquement défini sous forme d'implants mis en place sur le patient avant l'acquisition des images, et disposés en quatre points non alignés. Ces implants sont dans ce cas réalisés en un matériau permettant une détection par le ou les systèmes d'imagerie mis en oeuvre. Les implants sont par exemple réalisés en titane.
Le processus de mise en oeuvre de l'installation pour une intervention chirurgicale est le suivant:
Le patient, après une préparation, entre dans une première salle équipée de matériel d'acquisition des images. Dans cette salle, on procède de façon connue à l'instrumentation du patient, à l'acquisition des images brutes et à la vérification des images réalisées. Les images sont numérisées et stockées dans une base de données images. Ces images sont ensuite exploitées à partir d'une station de travail, en l'absence du patient, par calibration et segmentation des images, indexation des images et programmation éventuelle des trajectoires et des stratégies opératoires. Le patient est ensuite transféré en salle d' opération.
Dans la salle d'opération, on procède successivement:
- à la préparation du patient
- à l'instrumentation du dispositif porteoutil ;
- à l'installation du patient, conservant l'instrumentation mise en place dans la phase d'acquisition d'images ;
- à l'instrumentation complémentaire du patient ;
- à la mise en correspondance des différents référentiels ;
- à l'intervention chirurgicale et à l'enregistrement des images opératoires.
L'instrumentation complémentaire sera seule visible en cours d'intervention chirurgicale, l'instrumentation initiale posée pendant la phase d'imagerie étant cachée sous les draps ou les champs.
Le patient est ensuite transféré hors de la salle opératoire, pendant que les images opératoires sont exploitées sur une station de travail.
Le processus d'acquisition des images par le système d'imagerie consiste plus particulièrement à :
- raser le patient, si on prévoit de lui instrumenter la tête ;
- anesthésier éventuellement le patient avant le transport en salle d'imagerie ;
- mettre en place le trièdre (15) ou les implants ;
- positionner le patient dans le système d'imagerie
- procéder à l'acquisition des images ;
- vérifier les images enregistrées dans la base d'images, notamment en ce qui concerne la vi s ibilité de s repère s sur chacune de s images enregistrées , de la définition , et des informations nécessaires à l ' intervention chirurgicale ultérieure ;
- ressortir le patient .
Les images sont acquises par tout moyen d'imagerie connu, par exemple IRM, angiographie, radiographie, tomodensitométrie, etc.... Les images numérisées sont stockées dans une base de données éventuellement accessible par un réseau informatique à partir d'un site éloigné.
Les images ainsi enregistrées sont traitées en vue de procéder à :
- la calibration des images suivant les spécifications de l'imageur mis en oeuvre ;
- la segmentation des images en vue d'une exploitation 2D/3D ou 3D ;
- l'indexage éventuel des points de repères en vue de la mise en correspondance ;
- le repérage des points caractéristiques des images contenues dans la base de données images, en vue de l'exploitation pendant la phase opératoire, notamment par la recherche des cibles, des voies d'accès possibles et des trajectoires des instruments, et éventuellement par la simulation des différentes stratégies en 2D ou 3D, et une mémorisation des axes de progression ainsi expérimentés.
Après cette étape de traitement des images et d'exploitation virtuelle de la base de données images, le patient est transféré dans la salle opératoire.
Afin de permettre au chirurgien d'exploiter les informations préalablement acquises, il est nécessaire de connaître la position et l'orientation relative de l'axe de l'outil par rapport aux images, dans le repère intermédiaire correspondant à la zone d'intervention sur le patient. A cet effet, l'invention permet la mise en correspondance des images acquises et liées au patient, avec l'outil. Le repérage doit s'effectuer quelle que soit la position de l'outil et du patient.
Le trièdre (21) servant à repérer la position de l'outil est fixé de façon amovible ou non sur la base du porte-outil. Le moyen de fixation sera de préférence dépourvu d'articulation de façon à garantir une permanence de la position du trièdre (21) par rapport au support de l'outil. La solidarisâtion peut être réalisée par clipsage.
Le repérage du patient peut être réalisé de différentes façons: soit par pose d'un trièdre rigide normalisé, soit par pose d'implants non alignés, soit encore par désignation de points caractéristiques de la surface du patient, à proximité de la zone opératoire, avec un stylet de repérage.
Cette dernière solution consiste à mettre en oeuvre un pointeur (32) en forme de stylet, portant deux points de références détectables par le système de caméras, et permettant de désigner, et donc de mémoriser la position de différents points caractéristiques du patient, dont il est possible de suivre les déplacements par reconnaissance de forme. Ces zones caractéristiques sont par exemple le nez, les coins des yeux ou le menton.
Une telle sonde (32) comporte un corps en forme de stylet terminé par une zone de pointage (35), et comportant au moins deux points lumineux (33, 34) permettant de déterminer la position et l'orientation de la sonde (32) par analyse des signaux délivrés par les caméras (3, 4, 5).
La mise en concordance des référentiels sera exposée plus en détail dans ce qui suit.
Pour la bonne compréhension, on désignera par : - aP un point défini dans le repère Ra ;
- aTb la matrice de transformation homogène (4 lignes, 4 colonnes) permettant d'exprimer dans le repère Ra les coordonnées d'un point défini dans le repère Rb, par la relation aP= aTb bP .
Par ailleurs, les différents repères cités sont:
R0 Repère de l'outil ;
Ri Repère de l'image ;
Rc Repère des caméras ;
Rpr Repère de la sonde ;
Rpg Repère grossier du patient ;
Rpc Repère corrigé du patient ;
Rmi Repère géométrique défini par au moins 4 points non alignés (i variant de 1 a n) ;
Rm1 Repère géométrique lié à l'outil ;
Rm2 Repère géométrique lié au patient.
Par ailleurs, on notera prS la surface définie par un ensemble de points Pj acquis dans le repère sonde Rpr et iS la surface définie par un ensemble de points Pj acquis dans le repère image Ri.
Etape 1 : Mise en concordance entre le repère imaσe et le repère patient
La première étape de la mise en concordance des référentiels consiste à calculer la matrice iTp/pc de passage entre le repère image et le repère patient.
Selon un exemple de mise en oeuvre de l'installation, on utilise une sonde (32) afin de pointer des points remarquables connus dans le repère image Ri. Les coordonnées des extrémités de la sonde (32) sont connues par construction, et par traitement des informations délivrées par les caméras (3, 4, 5) détectant les points lumineux (33, 34) portés par la sonde. On peut ainsi exprimer les coordonnées de l'extrémité (35) de la sonde (32) dans le repère de la caméra par la relation :
c Pextrémité sonde = cTpr prPextrémité sonde et donc calculer la matrice de passage entre le référentiel de la caméra et le référentiel de la sonde.
On utilise par ailleurs des inserts ou un trièdre (31) comportant dans l'un ou l'autre des cas quatre points non alignés identifiables par les caméras (3 à 5), et définissant le repère Rpc du patient.
Ces points iPj sont connus dans le repère image Ri et sont mesurés avec la sonde (32), dans le repère sonde Rpr dans lequel leurs coordonnées sont prPj. Lorsque l'extrémité de la sonde point sur l'un des points du trièdre (31) ou sur l'un des inserts, on a une relation d'identité entre les deux coordonnées :
pr Pj = Pextrémité sonde.
La transformation iTpr est donc déterminée par une relation entre les points iPj de la base de données images et les points pCPj mesurés avec la sonde.
On utilise le repère intermédiaire Rm2 fixe par principe d'utilisation, par rapport au repère Rpc et on détermine la matrice de transformation iTm2. Cette matrice iTm2 est déterminée par une relation entre les points iPj de la base de données images et les points m2Pj mesurés avec la sonde.
En effet, lorsque l'extrémité de la sonde
(32) pointe sur un point Pj, la relation suivante est vérifiée:
m2Pj=m2Tc(t) cTpr (t) prpextrémité sonde
et on détermine alors iTm2 par la méthode des moindres carrés :
Figure imgf000015_0001
Selon une variante de mise en oeuvre, on évite la pose d'un trièdre (31) ou la pose d' inserts, en utilisant une méthode de mise en correspondance surf acique.
On procède pour cela à deux étapes consécutives:
La première étape consiste à pointer 4 points remarquables sur le patient (par exemple le nez, les yeux etc...) . On se retrouve alors dans une situation analogue à la variante précédente, car on dispose de points Pj non coplanaires, dont les coordonnées iPj sont connus dans le repère image Ri. La transformation iTpg est déterminée par une relation entre les points iPj de la base de données images et les points pgPj mesurés avec la sonde (32) .
On utilise comme précédemment le repère intermédiaire Rm2 fixe par rapport aux repères Rpg et Rpc.
On obtient alors une transformation "grossière" (iTm2)g qui permet d'obtenir une précision de l'ordre de quelques millimètres, insuffisante pour un usage clinique.
La deuxième étape consiste à définir un repère patient corrigé Rpc en pointant une pluralité de points remarquables se trouvant à proximité de la zone d'intervention, à l'aide de la sonde (32) .
Cette opération permet de mettre en correspondance deux surfaces :
● la surface réelle du patient, définie par l'acquisition faite avec la sonde prS(PrPj) avec n≥j>4, la résolution étant d'autant meilleure que n est grand ;
● la surface iS liée à l'image du patient la plus proche de la surface réelle définie dans le repère image, et utilisant la transformation grossière (iTm2)g en ne sélectionnant à cet effet qu'une partie de la banque de données images. prS{prPj} avec n≥j≥4 On a alors la relation suivante:
m2P j=m2 Tc ( t ) c Tpr ( t ) pr Pext rémité sonde
avec p r Pext rémité sonde= prP j
et on détermine alors iTm2 par la méthode des moindres carrés :
Min ∑lOSfPj}- iTm2 m2S{m2Pj})21 | avec n>j>4
Etape 2 : Mise en concordance entre le repère outil et le repère fixe
L'étape suivante de la mise en concordance des référentiels consiste à calculer la matrice cTo de passage entre le repère outil et le repère fixe.
● La transformation m1To donnant la relation entre le repère outil Ro et le repère fixe Rm1 est connu par construction.
Les coordonnées d'un point oP dans le repère
Ro peuvent être exprimées dans le repère Rm1 par la relation :
m1P = m1To oP
● La transformation cTm1 donnant la relation entre le repère fixe Rmi et le repère Rc est connu en temps réel par mesure infrarouge. Les coordonnées d'un point m1P dans le repère Rm1 peuvent être exprimées dans le repère Rc par la relation :
cP = cTm1(t)m1P
Les coordonnées d'un point °P lié à l'outil peuvent donc être exprimés en temps réel dans le repère fixe de mesure Rc par la relation :
CP = cTmι (t)mlT0°P
Le repère R0 étant défini par le trièdre (21), on obtient ainsi la relation en temps réel entre le repère outil Ro et le repère caméra Rc .
Résolution des équations permettant de calculer les matrices de transformation
Le repère fixe Rm1 est défini par au moins 4 points non coplanaires m1P1 à m1P4. Les caméras (3 à 5) détectent ces quatre points dans le référentiel caméras, dans lequel leurs coordonnées sont cP1 à cP4.
On cherche la relation cTm1 telle que :
cPj= cTm1 m1Pj , où j = 1 à 4
Théoriquement , | | cPj - cTm1 m 1Pj | | = 0
On cherche donc cTm 1 qui minimise les erreurs , d ' où :
Figure imgf000018_0001
Le minimum est déterminé par dérivation. cTm1 est une matrice 4x4 homogène avec 12 éléments remarquables
Figure imgf000018_0002
On dérive la relation
Figure imgf000018_0003
et on obtient un système de 3×4 = 12 équations à 12 inconnues
pour k = 1 à 3 : k étant l'indice de ligne pour 1 = 1 à 4, 1 étant l'indice de colonne
Figure imgf000019_0001
Figure imgf000020_0001
La résolution de ce système d'équation est réalisée par un algorithme connu par le calculateur de l'installation selon l'invention, qui ne sera pas exposé plus en détail dans le cadre de la présente description, l'Homme du métier étant en mesure de mettre en oeuvre les solutions informatiques adaptées. Etape 2 : Mise en concordance entre repère image et le repère caméra.
L'étape suivante de la mise en concordance des référentiels consiste à calculer en temps réel la matrice m2Ti (t) de passage entre le repère Rm2 lié au patient, avec le repère image Ri.
● La transformation cTpr donnant la relation entre le repère Rpr de la sonde (32) et le repère caméra Rc est connu en temps réel par mesure infrarouge.
Les coordonnées d'un point prP dans le repère Rpr peuvent être exprimées dans le repère Rc par la relation :
cp = cTpr(t) prP.
● La transformation cTm2 donnant la relation entre le repère fixe Rm2 et le repère Rc est connu en temps réel par mesure infrarouge. Les coordonnées d'un point m2P dans le repère Rm2 peuvent être exprimées dans le repère Rc par la relation :
cP = cTm2(t)m2P où cTm2(t) est déterminée de manière analogue à cTmχ (t) .
● Les coordonnées de l'extrémité de la sonde (32) cPextrémité sonde sont connues dans le repère Rpr par construction.
Elles peuvent être exprimées par la relation: cPextrémité sonde = cTpr (t) pr Pextrémité sonde Elles peuvent donc être exprimées dans le repère Rm2par la relation :
m2Pextréπιité sonde = m2Tc cTpr (t) prPextrémité sonde Etape 4 : Mise en concordance entre le repère imaσe et le repère outil.
L'étape finale de la mise en concordance consiste à déterminer la relation entre le repère Ro repère image Ri.
On connaît pour cela :
● Etape 2 : la position de l'outil dans le repère des caméras par les transformation m1To (connue par construction) et cTm1(t) (déterminée en temps réel par mesure infrarouge) ;
● Etape 3 : la corrélation entre le repère fixe Rm2 et le repère image Ri par la transformation iTm2, déterminée lors de la mise en correspondance.
● la position du repère Rm2 par rapport au repère fixe Rc par la transformation m2Tc(t) qui est l'inverse de cTm2(t), déterminée en temps réel par mesure infrarouge.
On obtient donc la transformation iTo(t) = iTm2 m2Tc(t)cTm1(t)m1To
permettant d'afficher en temps réel la coupe correspondant au point d'intérêt.
On obtient également la transformation oTi(t), inverse de iTo(t)_permettant d'asservir l'outil en temps réel par rapport à une cible définie dans la base de données images.
L'invention est décrite dans ce qui précède à titre d'exemple non limitatif. Il est bien entendu que l'Homme de Métier sera à même de proposer diverses variantes sans pour autant sortir du cadre de l'invention.

Claims

REVENDICATIONS
1 - Installation pour opération de microchirurgie assistée par ordinateur, du type comportant un support d'outils articulé dont l'une des extrémités est solidaire d'un premier référentiel, ledit système comportant des moyens pour déterminer les coordonnées de l'outil dans ledit premier référentiel, ainsi qu'une base de données Image dans laquelle sont enregistrées les images provenant d'un système d'imagerie dans le référentiel de l'image Ri . l'installation comportant au moins deux capteurs solidaires du premier référentiel délivrant un signal électrique fonction de la position du référentiel du patient Rp dans le premier référentiel, et un calculateur pour la mise en correspondance du référentiel de l'outil Ro avec le référentiel du patient Rp et le référentiel de l'image Ri en fonction des informations provenant du capteur bidimensionnel, l'installation comportant un calculateur délivrant un signal pour la visualisation de la position de l'outil dans le référentiel de l'image Ri sur un écran de contrôle, et pour commander la position et les déplacements de l'outil en fonction de signaux de commande provenant d'un boîtier de contrôle, caractérisé en ce que ledit premier référentiel est un référentiel fixe indépendant du patient et du référentiel image et en ce que l'installation comporte des moyens pour déterminer les coordonnées de l'outil dans ledit référentiel fixe Rc et des informations provenant de la base d'images,
2 - Installation pour opération de microchirurgie assistée par ordinateur selon la revendication 1 caractérisée en ce que les capteurs bidimensionnels sont constitués par au moins deux caméras d'acquisition solidaires du référentiel fixe Rc et disposées de façon à ce que leur champs d'observation contiennent la zone d'intervention chirurgicale. 3 - Installation pour opération de microchirurgie assistée par ordinateur selon la revendication 1 ou selon la revendication 2 caractérisée en ce que les moyens pour déterminer les coordonnées de l'outil dans ledit référentiel fixe Rc sont constitués par au moins deux caméras d'acquisition solidaires du référentiel fixe Rc et disposées de façon à ce que leur champs d'observation contiennent l'espace de mobilité de l'outil. 4 - Installation pour opération de microchirurgie assistée par ordinateur selon l'une quelconque des revendications précédentes caractérisée en ce qu'elle comporte un trièdre géométriquement défini, présentant au moins quatre sources lumineuses ponctuelles non coplanaires solidaire de l'outil, l'espace de mobilité dudit trièdre étant contenu dans les champs de vision des caméras d'acquisition.
5 - Installation pour opération de microchirurgie assistée par ordinateur selon l'une quelconque des revendications précédentes caractérisée en ce qu'elle comporte un trièdre géométriquement défini, présentant au moins quatre sources lumineuses ponctuelles non coplanaires solidaire de du patient, l'espace de mobilité dudit trièdre étant contenu dans le champs de vision des caméras d'acquisition, pendant la totalité de la phase opératoire.
6 - Installation pour opération de microchirurgie assistée par ordinateur selon la revendication 1 caractérisée en ce qu'elle comporte en outre une sonde (32) présentant une extrémité de pointage (35) et au moins deux points lumineux (33, 34) dont les positions par rapport à l'extrémité de pointage (35) sont déterminée géométriquement.
7 - Procédé de visualisation de la position d'un outil de microchurgie par rapport à une image préenregistrée caractérisé en ce qu'il comporte les étapes suivantes :
- détermination de la position de l'outil dans le repère Rc de la caméra par les transformation m1To connue par construction et cTm1(t), déterminée en temps réel par mesure optique ;
- détermination de la matrice 1Tm2 de passage entre le repère fixe Rm2 et le repère image Ri ;
- détermination de la position du repère Rm2 par rapport au repère fixe Rc par la transformation m2Tc(t) déterminée en temps réel par mesure optique ;
- calcul de la transformation
iTo(t) = iTm2 m2Tc(t) cTm1(t) m1T0
permettant d'afficher en temps réel la coupe correspondant au point d'intérêt.
8 - Procédé d'asservissement d'un outil de microchurgie par rapport à une base de données images caractérisé en ce qu'il comporte les étapes suivantes :
- détermination de la position de l'outil dans le repère Rc de la caméra par les transformations mlT0, connue par construction et cTmi(t), déterminée en temps réel par mesure optique ;
détermination de la matrice iTm2 de passage entre le repère fixe Rm2 et le repère image Ri ;
- détermination de la position du repère Rm2 par rapport au repère fixe Rc par la transformation m2Tc(t) déterminée en temps réel par mesure optique ;
- calcul de la transformation iTo(t) = iTm2 m2Tc{t) cTm1(t) m1T0
- calcul de la transformation oTi(t), inverse de iT0(t) permettant d'asservir l'outil en temps réel par rapport à une cible définie dans l base de données images.
PCT/FR1994/001050 1993-09-07 1994-09-06 Installation pour operation de microchirurgie assistee par ordinateur et procedes mis en ×uvre par ladite installation WO1995007055A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE69422631T DE69422631T2 (de) 1993-09-07 1994-09-06 Computerunterstützte mikrochirurgieausrüstung sowie diese ausrüstung gebrauchende verfahren
EP94926960A EP0722299B1 (fr) 1993-09-07 1994-09-06 Installation pour operation de microchirurgie assistee par ordinateur et procedes mis en uvre par ladite installation
AT94926960T ATE188601T1 (de) 1993-09-07 1994-09-06 Computerunterstützte mikrochirurgieausrüstung sowie diese ausrüstung gebrauchende verfahren
JP7508490A JPH09507131A (ja) 1993-09-07 1994-09-06 電算機支援顕微鏡外科手術のための設備と前記設備の使用法
DK94926960T DK0722299T3 (da) 1993-09-07 1994-09-06 Computerstøttet mikrokirurgisk udstyr og fremgangsmåde ved anvendelse heraf
US08/612,932 US5755725A (en) 1993-09-07 1994-09-06 Computer-assisted microsurgery methods and equipment
GR20000400910T GR3033219T3 (en) 1993-09-07 2000-04-13 Computer-assisted microsurgery equipment and methods for use with said equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR93/10624 1993-09-07
FR9310624A FR2709656B1 (fr) 1993-09-07 1993-09-07 Installation pour opération de microchirurgie assistée par ordinateur et procédés mis en Óoeuvre par ladite installation.

Publications (1)

Publication Number Publication Date
WO1995007055A1 true WO1995007055A1 (fr) 1995-03-16

Family

ID=9450616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1994/001050 WO1995007055A1 (fr) 1993-09-07 1994-09-06 Installation pour operation de microchirurgie assistee par ordinateur et procedes mis en ×uvre par ladite installation

Country Status (11)

Country Link
US (1) US5755725A (fr)
EP (1) EP0722299B1 (fr)
JP (1) JPH09507131A (fr)
AT (1) ATE188601T1 (fr)
DE (1) DE69422631T2 (fr)
DK (1) DK0722299T3 (fr)
ES (1) ES2145151T3 (fr)
FR (1) FR2709656B1 (fr)
GR (1) GR3033219T3 (fr)
PT (1) PT722299E (fr)
WO (1) WO1995007055A1 (fr)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033666A1 (fr) * 1995-04-28 1996-10-31 Siemens Aktiengesellschaft Appareil de traitement par ondes acoustiques
EP0755660A2 (fr) * 1995-07-28 1997-01-29 Armstrong Healthcare Limited Dispositif d'alignement
WO1997020515A1 (fr) * 1995-12-04 1997-06-12 Michael Vogele Dispositif pour piloter des structures tridimensionnelles
EP0793945A1 (fr) * 1996-03-08 1997-09-10 The University of Hull Appareil et méthode chirurgical de positionnement
JP2001506889A (ja) * 1996-12-21 2001-05-29 ディープイ・インターナショナル・リミテッド 整形外科手術時の外科器具の位置決めおよび案内装置
DE19639615C5 (de) * 1996-09-26 2008-11-06 Brainlab Ag Reflektorenreferenzierungssystem für chirurgische und medizinische Instrumente
JP2009542362A (ja) * 2006-06-29 2009-12-03 インテュイティブ サージカル インコーポレイテッド コンピュータディスプレイ画面の境界領域に表示されるツール位置および識別指標
WO2009034477A3 (fr) * 2007-04-16 2010-02-04 Neuroarm Surgical Ltd. Procedes, dispositifs et systemes de mappage de trames et de retour d'effort
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US8834489B2 (en) 2005-01-24 2014-09-16 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
US9101397B2 (en) 1999-04-07 2015-08-11 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US9291793B2 (en) 2005-01-24 2016-03-22 Intuitive Surgical Operations, Inc. Apparatus for compact counter balance arms
US9295524B2 (en) 2012-06-01 2016-03-29 Intuitive Surgical Operations, Inc. Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator
US9333042B2 (en) 2007-06-13 2016-05-10 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9339344B2 (en) 2012-06-01 2016-05-17 Intuitive Surgical Operations, Inc. Surgical instrument manipulator aspects
US9345387B2 (en) 2006-06-13 2016-05-24 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US9358074B2 (en) 2012-06-01 2016-06-07 Intuitive Surgical Operations, Inc. Multi-port surgical robotic system architecture
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US9516996B2 (en) 2008-06-27 2016-12-13 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the position and orienting of its tip
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US9622826B2 (en) 2010-02-12 2017-04-18 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US9717563B2 (en) 2008-06-27 2017-08-01 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US9788909B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc Synthetic representation of a surgical instrument
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9867721B2 (en) 2003-01-30 2018-01-16 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US9956044B2 (en) 2009-08-15 2018-05-01 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US10898153B2 (en) 2000-03-01 2021-01-26 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US11931141B2 (en) 2020-05-08 2024-03-19 Covidien Lp Hybrid registration method

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405072B1 (en) * 1991-01-28 2002-06-11 Sherwood Services Ag Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus
US6006126A (en) 1991-01-28 1999-12-21 Cosman; Eric R. System and method for stereotactic registration of image scan data
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5913820A (en) 1992-08-14 1999-06-22 British Telecommunications Public Limited Company Position location system
US5803089A (en) 1994-09-15 1998-09-08 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5829444A (en) * 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
DE69532829T2 (de) * 1994-10-07 2005-01-27 St. Louis University Vorrichtung zur benutzung mit einem chirurgischen navigationssystem
US6690963B2 (en) * 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US6351659B1 (en) * 1995-09-28 2002-02-26 Brainlab Med. Computersysteme Gmbh Neuro-navigation system
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6226418B1 (en) 1997-11-07 2001-05-01 Washington University Rapid convolution based large deformation image matching via landmark and volume imagery
US6611630B1 (en) 1996-07-10 2003-08-26 Washington University Method and apparatus for automatic shape characterization
US6009212A (en) * 1996-07-10 1999-12-28 Washington University Method and apparatus for image registration
US6408107B1 (en) 1996-07-10 2002-06-18 Michael I. Miller Rapid convolution based large deformation image matching via landmark and volume imagery
US6296613B1 (en) 1997-08-22 2001-10-02 Synthes (U.S.A.) 3D ultrasound recording device
US6249713B1 (en) * 1996-09-30 2001-06-19 Siemens Corporate Research, Inc. Apparatus and method for automatically positioning a biopsy needle
US6097994A (en) * 1996-09-30 2000-08-01 Siemens Corporate Research, Inc. Apparatus and method for determining the correct insertion depth for a biopsy needle
US6314310B1 (en) 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
ES2314989T3 (es) * 1997-02-14 2009-03-16 Biosense Webster, Inc. Sistema quirurgico de localizacion por radioscopica con volumen catografico ampliado.
US6006127A (en) * 1997-02-28 1999-12-21 U.S. Philips Corporation Image-guided surgery system
US5970499A (en) 1997-04-11 1999-10-19 Smith; Kurt R. Method and apparatus for producing and accessing composite data
US6708184B2 (en) 1997-04-11 2004-03-16 Medtronic/Surgical Navigation Technologies Method and apparatus for producing and accessing composite data using a device having a distributed communication controller interface
US6055449A (en) * 1997-09-22 2000-04-25 Siemens Corporate Research, Inc. Method for localization of a biopsy needle or similar surgical tool in a radiographic image
US6348058B1 (en) 1997-12-12 2002-02-19 Surgical Navigation Technologies, Inc. Image guided spinal surgery guide, system, and method for use thereof
US6289235B1 (en) * 1998-03-05 2001-09-11 Wake Forest University Method and system for creating three-dimensional images using tomosynthetic computed tomography
DK1089669T3 (da) 1998-06-22 2008-06-30 Ao Technology Ag Fiduciel matching ved hjælp af fiduciel skrue
US6118845A (en) 1998-06-29 2000-09-12 Surgical Navigation Technologies, Inc. System and methods for the reduction and elimination of image artifacts in the calibration of X-ray imagers
US6081577A (en) * 1998-07-24 2000-06-27 Wake Forest University Method and system for creating task-dependent three-dimensional images
US6477400B1 (en) 1998-08-20 2002-11-05 Sofamor Danek Holdings, Inc. Fluoroscopic image guided orthopaedic surgery system with intraoperative registration
US6482182B1 (en) 1998-09-03 2002-11-19 Surgical Navigation Technologies, Inc. Anchoring system for a brain lead
AU6421599A (en) 1998-10-09 2000-05-01 Surgical Navigation Technologies, Inc. Image guided vertebral distractor
US6285902B1 (en) 1999-02-10 2001-09-04 Surgical Insights, Inc. Computer assisted targeting device for use in orthopaedic surgery
NZ513919A (en) 1999-03-17 2001-09-28 Synthes Ag Imaging and planning device for ligament graft placement
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
EP1175244B1 (fr) 1999-04-07 2009-06-03 Loma Linda University Medical Center Systeme de surveillance des mouvements du patient dans le cadre d'une therapie protonique
US6491699B1 (en) 1999-04-20 2002-12-10 Surgical Navigation Technologies, Inc. Instrument guidance method and system for image guided surgery
EP1171780A1 (fr) 1999-04-20 2002-01-16 Synthes Ag Chur Dispositif permettant d'obtenir par voie percutanee des coordonnees tridimensionnelles a la surface d'un organe d'humain ou d'animal
ATE242865T1 (de) * 1999-05-03 2003-06-15 Synthes Ag Positionserfassungsvorrichtung mit hilfsmitteln zur ermittlung der richtung des schwerkraftvektors
JP3668865B2 (ja) * 1999-06-21 2005-07-06 株式会社日立製作所 手術装置
US8004229B2 (en) * 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US6499488B1 (en) 1999-10-28 2002-12-31 Winchester Development Associates Surgical sensor
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US6235038B1 (en) 1999-10-28 2001-05-22 Medtronic Surgical Navigation Technologies System for translation of electromagnetic and optical localization systems
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US20010025183A1 (en) * 2000-02-25 2001-09-27 Ramin Shahidi Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6535756B1 (en) 2000-04-07 2003-03-18 Surgical Navigation Technologies, Inc. Trajectory storage apparatus and method for surgical navigation system
US7085400B1 (en) 2000-06-14 2006-08-01 Surgical Navigation Technologies, Inc. System and method for image based sensor calibration
AU3071802A (en) * 2000-12-08 2002-06-18 Univ Loma Linda Med Proton beam therapy control system
AR039475A1 (es) * 2002-05-01 2005-02-23 Wyeth Corp 6-alquiliden-penems triciclicos como inhibidores de beta-lactamasa
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US6822244B2 (en) * 2003-01-02 2004-11-23 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7111401B2 (en) * 2003-02-04 2006-09-26 Eveready Battery Company, Inc. Razor head having skin controlling means
US20040199072A1 (en) * 2003-04-01 2004-10-07 Stacy Sprouse Integrated electromagnetic navigation and patient positioning device
WO2005018735A2 (fr) 2003-08-12 2005-03-03 Loma Linda University Medical Center Systeme modulaire de support de patient
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7862570B2 (en) 2003-10-03 2011-01-04 Smith & Nephew, Inc. Surgical positioners
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7764985B2 (en) 2003-10-20 2010-07-27 Smith & Nephew, Inc. Surgical navigation system component fault interfaces and related processes
CA2546023C (fr) 2003-11-14 2012-11-06 Smith & Nephew, Inc. Systemes coupants ajustables de chirurgie
US20050109855A1 (en) * 2003-11-25 2005-05-26 Mccombs Daniel Methods and apparatuses for providing a navigational array
US8109942B2 (en) 2004-04-21 2012-02-07 Smith & Nephew, Inc. Computer-aided methods, systems, and apparatuses for shoulder arthroplasty
US7567834B2 (en) 2004-05-03 2009-07-28 Medtronic Navigation, Inc. Method and apparatus for implantation between two vertebral bodies
US20060063998A1 (en) * 2004-09-21 2006-03-23 Von Jako Ron Navigation and visualization of an access needle system
FR2876896B1 (fr) * 2004-10-21 2007-10-26 Gen Electric Procede d'utilisation d'un dispositif de tomographie pour l'obtention d'images radioscopiques et dispositif pour la mise en oeuvre dudit procede
JP2008531091A (ja) 2005-02-22 2008-08-14 スミス アンド ネフュー インコーポレーテッド 直列型ミリングシステム
US7835784B2 (en) 2005-09-21 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for positioning a reference frame
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
GB2444738A (en) * 2006-12-12 2008-06-18 Prosurgics Ltd Registration of the location of a workpiece within the frame of reference of a device
US7780349B2 (en) 2007-01-03 2010-08-24 James G. Schwade Apparatus and method for robotic radiosurgery beam geometry quality assurance
US7934977B2 (en) * 2007-03-09 2011-05-03 Flow International Corporation Fluid system and method for thin kerf cutting and in-situ recycling
US20080260095A1 (en) * 2007-04-16 2008-10-23 Predrag Sukovic Method and apparatus to repeatably align a ct scanner
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
AU2009217348B2 (en) 2008-02-22 2014-10-09 Loma Linda University Medical Center Systems and methods for characterizing spatial distortion in 3D imaging systems
US8916134B2 (en) * 2008-07-11 2014-12-23 Industry-Academic Cooperation Foundation, Yonsei University Metal nanocomposite, preparation method and use thereof
US8165658B2 (en) 2008-09-26 2012-04-24 Medtronic, Inc. Method and apparatus for positioning a guide relative to a base
DE102008049709B4 (de) * 2008-09-30 2019-12-12 Siemens Healthcare Gmbh Verfahren zur selektiven Darstellung einer Bewegung der Lunge, Computerprogramm, Bildverarbeitungseinheit und Magnetresonanzgerät
US8175681B2 (en) 2008-12-16 2012-05-08 Medtronic Navigation Inc. Combination of electromagnetic and electropotential localization
US8494614B2 (en) 2009-08-31 2013-07-23 Regents Of The University Of Minnesota Combination localization system
US8494613B2 (en) 2009-08-31 2013-07-23 Medtronic, Inc. Combination localization system
EP2483710A4 (fr) 2009-10-01 2016-04-27 Univ Loma Linda Med Détecteur d'ionisation à impacts induits par les ions et utilisations de celui-ci
JP2014061057A (ja) * 2012-09-20 2014-04-10 Sony Corp 情報処理装置、情報処理方法、プログラム、及び測定システム
EP3166490B1 (fr) 2014-07-10 2022-11-16 Given Imaging Ltd. Ceinture de détection conçue pour localiser un dispositif in vivo et procédé de localisation associé
US11730926B2 (en) 2020-08-31 2023-08-22 Avent, Inc. System and method for detecting medical device location and orientation in relation to patient anatomy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004711A1 (fr) * 1989-10-05 1991-04-18 Diadix S.A. Systeme interactif d'intervention locale a l'interieur d'une structure non homogene

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4991579A (en) * 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5251127A (en) * 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5207223A (en) * 1990-10-19 1993-05-04 Accuray, Inc. Apparatus for and method of performing stereotaxic surgery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991004711A1 (fr) * 1989-10-05 1991-04-18 Diadix S.A. Systeme interactif d'intervention locale a l'interieur d'une structure non homogene

Cited By (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE43952E1 (en) 1989-10-05 2013-01-29 Medtronic Navigation, Inc. Interactive system for local intervention inside a non-homogeneous structure
US5944663A (en) * 1995-04-28 1999-08-31 Siemens Aktiengesellschaft Apparatus for treatment with acoustic waves
WO1996033666A1 (fr) * 1995-04-28 1996-10-31 Siemens Aktiengesellschaft Appareil de traitement par ondes acoustiques
EP0755660A2 (fr) * 1995-07-28 1997-01-29 Armstrong Healthcare Limited Dispositif d'alignement
EP0755660A3 (fr) * 1995-07-28 1997-03-26 Armstrong Healthcare Limited Dispositif d'alignement
WO1997020515A1 (fr) * 1995-12-04 1997-06-12 Michael Vogele Dispositif pour piloter des structures tridimensionnelles
EP0793945A1 (fr) * 1996-03-08 1997-09-10 The University of Hull Appareil et méthode chirurgical de positionnement
DE19639615C5 (de) * 1996-09-26 2008-11-06 Brainlab Ag Reflektorenreferenzierungssystem für chirurgische und medizinische Instrumente
JP2001506889A (ja) * 1996-12-21 2001-05-29 ディープイ・インターナショナル・リミテッド 整形外科手術時の外科器具の位置決めおよび案内装置
USRE44305E1 (en) 1997-09-24 2013-06-18 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42194E1 (en) 1997-09-24 2011-03-01 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE42226E1 (en) 1997-09-24 2011-03-15 Medtronic Navigation, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
USRE46422E1 (en) 1997-11-20 2017-06-06 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
USRE43328E1 (en) 1997-11-20 2012-04-24 Medtronic Navigation, Inc Image guided awl/tap/screwdriver
USRE46409E1 (en) 1997-11-20 2017-05-23 Medtronic Navigation, Inc. Image guided awl/tap/screwdriver
US10271909B2 (en) 1999-04-07 2019-04-30 Intuitive Surgical Operations, Inc. Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device
US9232984B2 (en) 1999-04-07 2016-01-12 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US10433919B2 (en) 1999-04-07 2019-10-08 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
US9101397B2 (en) 1999-04-07 2015-08-11 Intuitive Surgical Operations, Inc. Real-time generation of three-dimensional ultrasound image using a two-dimensional ultrasound transducer in a robotic system
US9504530B2 (en) 1999-10-28 2016-11-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US10898153B2 (en) 2000-03-01 2021-01-26 Medtronic Navigation, Inc. Multiple cannula image guided tool for image guided procedures
US9675424B2 (en) 2001-06-04 2017-06-13 Surgical Navigation Technologies, Inc. Method for calibrating a navigation system
US9757087B2 (en) 2002-02-28 2017-09-12 Medtronic Navigation, Inc. Method and apparatus for perspective inversion
US8838199B2 (en) 2002-04-04 2014-09-16 Medtronic Navigation, Inc. Method and apparatus for virtual digital subtraction angiography
US10743748B2 (en) 2002-04-17 2020-08-18 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US8696548B2 (en) 2002-04-17 2014-04-15 Covidien Lp Endoscope structures and techniques for navigating to a target in branched structure
US9642514B2 (en) 2002-04-17 2017-05-09 Covidien Lp Endoscope structures and techniques for navigating to a target in a branched structure
US11684491B2 (en) 2003-01-30 2023-06-27 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US11707363B2 (en) 2003-01-30 2023-07-25 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US9867721B2 (en) 2003-01-30 2018-01-16 Medtronic Navigation, Inc. Method and apparatus for post-operative tuning of a spinal implant
US10383509B2 (en) 2003-09-15 2019-08-20 Covidien Lp System of accessories for use with bronchoscopes
US9089261B2 (en) 2003-09-15 2015-07-28 Covidien Lp System of accessories for use with bronchoscopes
US8663088B2 (en) 2003-09-15 2014-03-04 Covidien Lp System of accessories for use with bronchoscopes
US8764725B2 (en) 2004-02-09 2014-07-01 Covidien Lp Directional anchoring mechanism, method and applications thereof
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
US9055881B2 (en) 2004-04-26 2015-06-16 Super Dimension Ltd. System and method for image-based alignment of an endoscope
US10321803B2 (en) 2004-04-26 2019-06-18 Covidien Lp System and method for image-based alignment of an endoscope
US9877792B2 (en) 2005-01-24 2018-01-30 Intuitive Surgical Operations, Inc. Compact counter balanced arms
US9291793B2 (en) 2005-01-24 2016-03-22 Intuitive Surgical Operations, Inc. Apparatus for compact counter balance arms
US9023060B2 (en) 2005-01-24 2015-05-05 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US10898281B2 (en) 2005-01-24 2021-01-26 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US10786318B2 (en) 2005-01-24 2020-09-29 Intuitive Surgical Operations, Inc. Compact counter balanced arm
US8834489B2 (en) 2005-01-24 2014-09-16 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US9968405B2 (en) 2005-01-24 2018-05-15 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US9168102B2 (en) 2006-01-18 2015-10-27 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US10597178B2 (en) 2006-01-18 2020-03-24 Medtronic Navigation, Inc. Method and apparatus for providing a container to a sterile environment
US9345387B2 (en) 2006-06-13 2016-05-24 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US10773388B2 (en) 2006-06-29 2020-09-15 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US9801690B2 (en) 2006-06-29 2017-10-31 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical instrument
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9788909B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc Synthetic representation of a surgical instrument
US10730187B2 (en) 2006-06-29 2020-08-04 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US11638999B2 (en) 2006-06-29 2023-05-02 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US11865729B2 (en) 2006-06-29 2024-01-09 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US10137575B2 (en) 2006-06-29 2018-11-27 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10737394B2 (en) 2006-06-29 2020-08-11 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
JP2012213655A (ja) * 2006-06-29 2012-11-08 Intuitive Surgical Inc コンピュータディスプレイ画面の境界領域に表示されるツール位置および識別指標
JP2009542362A (ja) * 2006-06-29 2009-12-03 インテュイティブ サージカル インコーポレイテッド コンピュータディスプレイ画面の境界領域に表示されるツール位置および識別指標
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9597154B2 (en) 2006-09-29 2017-03-21 Medtronic, Inc. Method and apparatus for optimizing a computer assisted surgical procedure
US9044257B2 (en) 2007-04-16 2015-06-02 Tim Fielding Frame mapping and force feedback methods, devices and systems
WO2009034477A3 (fr) * 2007-04-16 2010-02-04 Neuroarm Surgical Ltd. Procedes, dispositifs et systemes de mappage de trames et de retour d'effort
US8554368B2 (en) 2007-04-16 2013-10-08 Tim Fielding Frame mapping and force feedback methods, devices and systems
US9629520B2 (en) 2007-06-13 2017-04-25 Intuitive Surgical Operations, Inc. Method and system for moving an articulated instrument back towards an entry guide while automatically reconfiguring the articulated instrument for retraction into the entry guide
US11751955B2 (en) 2007-06-13 2023-09-12 Intuitive Surgical Operations, Inc. Method and system for retracting an instrument into an entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9901408B2 (en) 2007-06-13 2018-02-27 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US11432888B2 (en) 2007-06-13 2022-09-06 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9333042B2 (en) 2007-06-13 2016-05-10 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US10271912B2 (en) 2007-06-13 2019-04-30 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US10695136B2 (en) 2007-06-13 2020-06-30 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
US10188472B2 (en) 2007-06-13 2019-01-29 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US11399908B2 (en) 2007-06-13 2022-08-02 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9986895B2 (en) 2007-09-27 2018-06-05 Covidien Lp Bronchoscope adapter and method
US9668639B2 (en) 2007-09-27 2017-06-06 Covidien Lp Bronchoscope adapter and method
US10980400B2 (en) 2007-09-27 2021-04-20 Covidien Lp Bronchoscope adapter and method
US10390686B2 (en) 2007-09-27 2019-08-27 Covidien Lp Bronchoscope adapter and method
US8905920B2 (en) 2007-09-27 2014-12-09 Covidien Lp Bronchoscope adapter and method
US9575140B2 (en) 2008-04-03 2017-02-21 Covidien Lp Magnetic interference detection system and method
US8473032B2 (en) 2008-06-03 2013-06-25 Superdimension, Ltd. Feature-based registration method
US9659374B2 (en) 2008-06-03 2017-05-23 Covidien Lp Feature-based registration method
US11783498B2 (en) 2008-06-03 2023-10-10 Covidien Lp Feature-based registration method
US9117258B2 (en) 2008-06-03 2015-08-25 Covidien Lp Feature-based registration method
US10096126B2 (en) 2008-06-03 2018-10-09 Covidien Lp Feature-based registration method
US11074702B2 (en) 2008-06-03 2021-07-27 Covidien Lp Feature-based registration method
US8452068B2 (en) 2008-06-06 2013-05-28 Covidien Lp Hybrid registration method
US10285623B2 (en) 2008-06-06 2019-05-14 Covidien Lp Hybrid registration method
US10478092B2 (en) 2008-06-06 2019-11-19 Covidien Lp Hybrid registration method
US8467589B2 (en) 2008-06-06 2013-06-18 Covidien Lp Hybrid registration method
US9271803B2 (en) 2008-06-06 2016-03-01 Covidien Lp Hybrid registration method
US10674936B2 (en) 2008-06-06 2020-06-09 Covidien Lp Hybrid registration method
US10368952B2 (en) 2008-06-27 2019-08-06 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9717563B2 (en) 2008-06-27 2017-08-01 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxilary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US11382702B2 (en) 2008-06-27 2022-07-12 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9516996B2 (en) 2008-06-27 2016-12-13 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the position and orienting of its tip
US11638622B2 (en) 2008-06-27 2023-05-02 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US11234611B2 (en) 2008-07-10 2022-02-01 Covidien Lp Integrated multi-functional endoscopic tool
US10912487B2 (en) 2008-07-10 2021-02-09 Covidien Lp Integrated multi-function endoscopic tool
US11241164B2 (en) 2008-07-10 2022-02-08 Covidien Lp Integrated multi-functional endoscopic tool
US8932207B2 (en) 2008-07-10 2015-01-13 Covidien Lp Integrated multi-functional endoscopic tool
US10070801B2 (en) 2008-07-10 2018-09-11 Covidien Lp Integrated multi-functional endoscopic tool
US10984567B2 (en) 2009-03-31 2021-04-20 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10282881B2 (en) 2009-03-31 2019-05-07 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US10154798B2 (en) 2009-04-08 2018-12-18 Covidien Lp Locatable catheter
US8611984B2 (en) 2009-04-08 2013-12-17 Covidien Lp Locatable catheter
US9113813B2 (en) 2009-04-08 2015-08-25 Covidien Lp Locatable catheter
US10959798B2 (en) 2009-08-15 2021-03-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US10772689B2 (en) 2009-08-15 2020-09-15 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US11596490B2 (en) 2009-08-15 2023-03-07 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9956044B2 (en) 2009-08-15 2018-05-01 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US10271915B2 (en) 2009-08-15 2019-04-30 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
US9622826B2 (en) 2010-02-12 2017-04-18 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US10828774B2 (en) 2010-02-12 2020-11-10 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US10537994B2 (en) 2010-02-12 2020-01-21 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US10582834B2 (en) 2010-06-15 2020-03-10 Covidien Lp Locatable expandable working channel and method
US9358074B2 (en) 2012-06-01 2016-06-07 Intuitive Surgical Operations, Inc. Multi-port surgical robotic system architecture
US10143525B2 (en) 2012-06-01 2018-12-04 Intuitive Surgical Operations, Inc. Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator
US11737834B2 (en) 2012-06-01 2023-08-29 Intuitive Surgical Operations, Inc. Surgical instrument manipulator aspects
US9295524B2 (en) 2012-06-01 2016-03-29 Intuitive Surgical Operations, Inc. Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator
US10575908B2 (en) 2012-06-01 2020-03-03 Intuitive Surgical Operations, Inc. Multi-port surgical robotic system architecture
US11576734B2 (en) 2012-06-01 2023-02-14 Intuitive Surgical Operations, Inc. Multi-port surgical robotic system architecture
US11490977B2 (en) 2012-06-01 2022-11-08 Intuitive Surgical Operations, Inc. Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator
US9339344B2 (en) 2012-06-01 2016-05-17 Intuitive Surgical Operations, Inc. Surgical instrument manipulator aspects
US10390894B2 (en) 2012-06-01 2019-08-27 Intuitive Surgical Operations, Inc. Surgical instrument manipulator aspects
US10973598B2 (en) 2012-06-01 2021-04-13 Intuitive Surgical Operations, Inc. Redundant axis and degree of freedom for hardware-constrained remote center robotic manipulator
US11389255B2 (en) 2013-02-15 2022-07-19 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US11806102B2 (en) 2013-02-15 2023-11-07 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10952593B2 (en) 2014-06-10 2021-03-23 Covidien Lp Bronchoscope adapter
US10426555B2 (en) 2015-06-03 2019-10-01 Covidien Lp Medical instrument with sensor for use in a system and method for electromagnetic navigation
US11801024B2 (en) 2015-10-28 2023-10-31 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11006914B2 (en) 2015-10-28 2021-05-18 Medtronic Navigation, Inc. Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient
US11786317B2 (en) 2016-05-16 2023-10-17 Covidien Lp System and method to access lung tissue
US11160617B2 (en) 2016-05-16 2021-11-02 Covidien Lp System and method to access lung tissue
US10478254B2 (en) 2016-05-16 2019-11-19 Covidien Lp System and method to access lung tissue
US10418705B2 (en) 2016-10-28 2019-09-17 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10722311B2 (en) 2016-10-28 2020-07-28 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US11672604B2 (en) 2016-10-28 2023-06-13 Covidien Lp System and method for generating a map for electromagnetic navigation
US10615500B2 (en) 2016-10-28 2020-04-07 Covidien Lp System and method for designing electromagnetic navigation antenna assemblies
US10792106B2 (en) 2016-10-28 2020-10-06 Covidien Lp System for calibrating an electromagnetic navigation system
US11759264B2 (en) 2016-10-28 2023-09-19 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
US10751126B2 (en) 2016-10-28 2020-08-25 Covidien Lp System and method for generating a map for electromagnetic navigation
US10517505B2 (en) 2016-10-28 2019-12-31 Covidien Lp Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system
US11786314B2 (en) 2016-10-28 2023-10-17 Covidien Lp System for calibrating an electromagnetic navigation system
US10446931B2 (en) 2016-10-28 2019-10-15 Covidien Lp Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same
US10638952B2 (en) 2016-10-28 2020-05-05 Covidien Lp Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system
US11219489B2 (en) 2017-10-31 2022-01-11 Covidien Lp Devices and systems for providing sensors in parallel with medical tools
US11931141B2 (en) 2020-05-08 2024-03-19 Covidien Lp Hybrid registration method

Also Published As

Publication number Publication date
FR2709656A1 (fr) 1995-03-17
DE69422631T2 (de) 2001-02-08
ES2145151T3 (es) 2000-07-01
EP0722299B1 (fr) 2000-01-12
JPH09507131A (ja) 1997-07-22
ATE188601T1 (de) 2000-01-15
PT722299E (pt) 2000-07-31
US5755725A (en) 1998-05-26
DE69422631D1 (de) 2000-02-17
GR3033219T3 (en) 2000-08-31
EP0722299A1 (fr) 1996-07-24
DK0722299T3 (da) 2000-07-03
FR2709656B1 (fr) 1995-12-01

Similar Documents

Publication Publication Date Title
EP0722299B1 (fr) Installation pour operation de microchirurgie assistee par ordinateur et procedes mis en uvre par ladite installation
CA2691042C (fr) Plateforme robotisee multi-applicative pour la neurochirurgie et procede de recalage
US5920395A (en) System for locating relative positions of objects in three dimensional space
US6529758B2 (en) Method and apparatus for volumetric image navigation
US6605041B2 (en) 3-D ultrasound recording device
Krybus et al. Navigation support for surgery by means of optical position detection
US6674916B1 (en) Interpolation in transform space for multiple rigid object registration
US8131031B2 (en) Systems and methods for inferred patient annotation
FR2908628A1 (fr) Procede et systeme de pilotage d'un instrument medical
EP2340781B1 (fr) Procédé et appareil de localisation et de visualisation d'une cible par rapport à un point focal d'un système de traitement
FR2652928A1 (fr) Systeme interactif d'intervention locale a l'interieur d'une zone d'une structure non homogene.
FR2499399A1 (fr) Systeme de chirurgie stereotaxique
EP3556312B1 (fr) Un système de vision tridimensionnel
US6296613B1 (en) 3D ultrasound recording device
Hartov et al. Adaptive spatial calibration of a 3D ultrasound system
CA2264179C (fr) Dispositif d'enregistrement d'images ultrasonores tridimensionnelles
US9477686B2 (en) Systems and methods for annotation and sorting of surgical images
WO2005032390A1 (fr) Dispositif pour traitement medical assiste par robot
Wesarg et al. Accuracy of needle implantation in brachytherapy using a medical AR system: a phantom study
Dean Three-dimensional data capture and visualization
Ivanescu et al. Vision system for human body infrared thermography
Urban et al. Optical sensor position indicator for neonatal MEG
EP3719749A1 (fr) Procédé et configuration d'enregistrement
WO2022263764A1 (fr) Robot équipé d'une sonde échographique pour le guidage temps-réel d'interventions percutanées
JP2001321349A (ja) 生体磁場計測装置のための検査対象の位置決め方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994926960

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994926960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08612932

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1994926960

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)