WO1995008775A1 - Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung - Google Patents

Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung Download PDF

Info

Publication number
WO1995008775A1
WO1995008775A1 PCT/DE1994/001092 DE9401092W WO9508775A1 WO 1995008775 A1 WO1995008775 A1 WO 1995008775A1 DE 9401092 W DE9401092 W DE 9401092W WO 9508775 A1 WO9508775 A1 WO 9508775A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon layer
sensor
insulating layer
layer
doping
Prior art date
Application number
PCT/DE1994/001092
Other languages
English (en)
French (fr)
Inventor
Wolfgang Werner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP7509491A priority Critical patent/JP2927963B2/ja
Priority to EP94926800A priority patent/EP0720748B1/de
Priority to DE59407313T priority patent/DE59407313D1/de
Priority to US08/619,735 priority patent/US5744719A/en
Publication of WO1995008775A1 publication Critical patent/WO1995008775A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0002Arrangements for avoiding sticking of the flexible or moving parts
    • B81B3/0013Structures dimensioned for mechanical prevention of stiction, e.g. spring with increased stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00912Treatments or methods for avoiding stiction of flexible or moving parts of MEMS
    • B81C1/0092For avoiding stiction during the manufacturing process of the device, e.g. during wet etching
    • B81C1/00928Eliminating or avoiding remaining moisture after the wet etch release of the movable structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/11Treatments for avoiding stiction of elastic or moving parts of MEMS
    • B81C2201/117Using supercritical fluid, e.g. carbon dioxide, for removing sacrificial layers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Definitions

  • the invention relates to an integrated micromechanical sensor device and a method for its production.
  • Micromechanical sensors are increasingly used in all areas of technology, e.g. B. in navigation systems and motor vehicles, especially in connection withrestaurantsyste ⁇ men.
  • Pressure and acceleration sensors form a large part of such sensors.
  • Reliable, small, easy-to-manufacture and inexpensive sensors with a high measuring accuracy and a good proportionality between the measured variable and the output signal are required.
  • the manufacturing process for the known sensor is extremely complex and expensive.
  • the mechanical properties such as the modulus of elasticity or intrinsic stress of polysilicon are sensitive to the respective process conditions during manufacture.
  • the thermal healing of the intrinsic stress requires additional tempering steps in the manufacturing process, which has a disadvantageous effect on the electronic circuit integrated in the sensor at the same time.
  • additional depositions of semiconductor layers are necessary in the manufacturing process. With a conceivable use of modern sub- ⁇ m BICMOS circuits for the evaluation circuit of the sensor, it is no longer possible to produce stress-free polysilicon layers due to the low process temperatures used.
  • the post-published DE-A-43 09 917 describes the use of a single-crystalline silicon layer with an overlying silicon nitride layer.
  • the invention provides an integrated micromechanical sensor device in which a body with a substrate, with a monocrystalline silicon layer arranged above it and with an insulating layer arranged in between in a predetermined area, in which the silicon layer has trenches from its surface to its lower interface, in which in the silicon layer the side walls of the trenches and that of the lower interface of the silicon layer assigned zone of the silicon layer have a first predetermined doping and the silicon layer has at least in a partial region a second predetermined doping, in which a transistor arrangement in a first region
  • Silicon layer is provided over the insulating layer and in which a sensor arrangement is provided in a second region of the silicon layer in which there is at least partially no insulating layer.
  • a method for producing an integrated micromechanical sensor device provides the following steps:
  • the trenches can be filled with an insulating oxide layer.
  • the trenches are preferably filled with a doping oxide (doping insulating layer) after their production, which serves as a doping source for the subsequent doping of the trench walls.
  • the oxide in the trenches is removed again under the second region of the silicon layer in connection with the insulating layer.
  • the sensor produced according to the invention contains single-crystal silicon. It avoids the use of polysilicon layers for the mechanically moving parts, since single-crystal silicon is used for these parts.
  • Single-crystal silicon has precisely known mechanical properties which do not depend on the respective parameters of the manufacturing process. In addition, the mechanical properties are not subject to any degradation over time, so that the long-term stability is very great.
  • the invention has the further advantage that it is fully VLSI-compatible using known and available trench etching and filling methods. Furthermore, the sensor device according to the invention is mechanically robust, since the moving parts are in the silicon layer and not on the chip surface. Since the electrodes of the sensor are perpendicular to the chip surface, the sensor has a high specific capacity (packing density). At the same time, the sticking problem, i. H. an adhesion of surfaces during or after a rinsing process is defused, since the rigidity of the sensor device perpendicular to the direction of vibration is very high.
  • the sensor device according to the invention offers the considerable advantage that when using a bipolar or a BICMOS process, the number of masks for producing the sensor device is not increased compared to a standard process in these technologies.
  • Embodiments of the invention are characterized in the subclaims.
  • FIG. 6 shows a plan view of a capacitive sensor arrangement.
  • FIG. 1 shows a base body 10 formed during the production of the integrated micro-mechanical sensor device.
  • An insulating layer 2 is arranged on a substrate 1 and a single-crystalline silicon layer 3 is arranged on this insulating layer.
  • the substrate can also consist of silicon.
  • the thickness of the insulating layer 2 is chosen between 0.5 and 1 .mu.m, while the layer thickness of the silicon layer 3 z. B. can be between 5 and 20 microns.
  • the crystal orientation and doping of the substrate is arbitrary.
  • the orientation and doping of the silicon layer 3 corresponds to the basic technology used in the manufacture of the sensor device and its semiconductor circuit arrangement.
  • the Silizium ⁇ layer-facing side of the silicon layer 3 is n + -doped, while the side facing away from the insulating layer 2 Ober ⁇ surface zone of the silicon layer is n ⁇ -doped the insulating layer 2 and the surface of the lower Granzfl .
  • the doping of the silicon layer 3 is not necessary for the actual sensor element, but only depends on the technology that is to be used for the integrated circuit arrangement.
  • the base body according to Figure 1 can, for. B. be a DWB disc, where DWB means direct wafer bonding. Such wafers are glued together from two semiconductor wafers and can be obtained on the market with high quality with the layer thicknesses and dopings shown in FIG.
  • a further possibility for producing the base body shown in FIG. 1 is the use of the so-called SIMOX process (I. Jogen, H. Mader: Semiconductor Technology, Springer-Verlag, 3rd edition, 1991, page 237).
  • An insulating layer made of silicon oxide is formed by deep ion implantation of oxygen atoms in single-crystal silicon. This can be followed by an epitaxial step.
  • a third possibility for producing the base body according to FIG. 1 makes use of recrystallization, in which a silicon layer initially deposited amorphously or polycrystalline over a monocrystalline silicon layer and a silicon oxide layer arranged thereon is recrystallized by melting with a laser beam.
  • trenches are etched into the single-crystalline silicon layer 3 down to the surface of the insulating layer 2, for example by anisotropic dry etching.
  • the trenches are then filled with a doping insulating material.
  • a doping insulating material In the exemplary embodiment according to FIG. 2, phosphor glass (PSG) or boron phosphor glass (BPSG) can be used.
  • PSG phosphor glass
  • BPSG boron phosphor glass
  • the production of such glass layers is known, for example, from D. Widmann, H. Mader, H. Friedrich: Technology of Highly Integrated Circuits, Springer-Verlag, 1988, page 80 ff.
  • phosphorus and optionally boron diffuse out of the phosphor glass into the silicon of the trench walls of the silicon layer 3.
  • the area TB contains one or more insulated wells, into which CMOS, bipolar or other components are installed, depending on the specification. If the transistor arrangement to be implemented in the area TB, for. B. is a bipolar transistor, a buried collector zone and a low-resistance collector connection in the form of the doped trench walls have already been produced with the structure of the region TB shown in FIG. Compared to arrangements from the prior art, the generation of the structure shown in FIG. 2 does not require separate masking and doping processes for the buried zone, for a channel stopper and for a collector. An epitaxial process can also be omitted.
  • a transistor arrangement is then generated in the area TB.
  • This transistor arrangement can be manufactured using a standard bipolar or BICMOS process. Examples of such processes are e.g. B. from the aforementioned publication Widmann / Mader / Friedrich: technology of highly integrated circuits known.
  • a bipolar transistor structure e.g. B., starting from Figure 2, first the base zone, in a BICMOS process, the p or. n-tub are generated.
  • the area SB which is provided for the sensor element, is covered by a corresponding mask.
  • z. B a bipolar transistor, the collector C of which is connected to the collector terminal K in a low-resistance manner via the buried zone BL and the highly doped, low-resistance trench walls CA.
  • the p-doped base is connected to the base connection B.
  • the emitter connection E is arranged above the heavily doped n ++ zone.
  • the base, emitter and collector regions of the transistor are insulated from one another via insulation zones II to 13, preferably made of silicon oxide SiO 2.
  • a passivation layer P is then applied over the entire arrangement.
  • the passivation layer can consist of silicon nitride Si3N4.
  • the passivation layer P above the sensor area SB is removed with the aid of a paint mask FM and then first the doping insulating material 4 in the trenches of the sensor area and then the insulating layer 2 at least in partial zones of the sensor area SB.
  • This can e.g. B. done by a wet chemical or dry etching process.
  • the insulating layer 2 is completely removed under the movable electrodes of the sensor element and not completely removed under the non-movable electrodes of the sensor element, so that the latter are still mechanically connected to the substrate 1.
  • FIG. 4 shows an arrangement after the removal of the insulating material 4 and the insulating layer 2 next to and below the movable electrodes BEI, BE2 of the sensor area SB, while the insulating layer 2 is still below the solid electrodes FEI, FE2 and FE3 is partially present.
  • the transistor region TB is structured differently than in FIG. 3. While the arrangement of FIG. 4 has not changed in the arrangement of FIG. 4 at the doping ratios of silicon layer 3, an oxide layer 5 has been provided in the transistor region of FIG. 4 towards the edge of the sensor region.
  • the transistor area is covered with a passivation layer P and a paint mask FM lying above it.
  • subliming chemicals e.g. B. cyclohexane or dichlorobenzene can be used.
  • the mask FM is removed.
  • Figure 5 shows cross sections through a sensor structure, which is shown in Figure 6 in plan view. It is an acceleration sensor that has a movable mass part M that is suspended from the silicon layer 3 via spring elements F1, F2 and further spring elements (not shown).
  • the mass part M has finger-shaped movable electrodes BE10, BE11 and BEli, which protrude freely into areas between fixed electrodes FE10 to FE13 and FEli. Capacities are formed between the movable electrodes BEi and the fixed electrodes FEi, since the trench walls of the electrodes are highly doped, which are shown purely symbolically in FIG. 6 and in FIG. 5a.
  • Figure 5a shows a section along the line AA
  • Figure 5b shows a section along the line BB, which are shown in Figure 6.
  • the mass part M contains holes L. In principle, however, the holes are not absolutely necessary.
  • Figure 6 is the area of the special mask that is used to generate the sensor structures is used outlined. Within the area defined by the special mask SM, the doping insulating material is removed completely from the trenches and the insulating layer next to and below the movable electrodes, the mass part and the springs.
  • FIG. 5c shows the replacement circuit diagram obtained with the sensor structure of FIGS. 5a and b or FIG. 6.
  • the movable electrodes BEi i.e. BElOi bis BEli can be connected to a connection BEA via the mass part M and the spring Fi.
  • the fixed electrodes are connected in pairs to connections AE and CE, which correspond to the fixed plates of a capacitor.
  • the movable electrodes form a movable plate of the capacitor, so that FIG. 5c represents a differential capacitor.
  • the doping insulating material can be removed from the spaces ZR between two fixed electrodes, FIG. 5a. However, it is also possible for the interstices ZR of the fixed electrodes and the underlying insulating layer, which faces the respective fixed electrodes, to be retained. A prerequisite is a different mask with which only the insulating layer and the doping insulating material can be removed below and between the movable electrodes.
  • the fixed electrodes can be mechanically connected to the substrate 1 or the insulating layer 2 in a manner similar to that in the previously cited publication Electronic Design.
  • the attachment via an anchor results in self-supporting electrodes, which means that the fixed electrodes must be sufficiently rigid with respect to the acceleration forces acting on them so that additional measurement errors do not have a negative effect on the measurement accuracy.
  • the sensor arrangement shown in FIG. 6 reacts sensitively to movements of the mass part in the indicated direction of the arrow.
  • the permissible deflection of the finger-shaped capacitive movable electrodes is less than the gap distance to a fixed electrode, ie less than approximately 1 ⁇ m.
  • the evaluation circuit of the sensor device is designed as a control circuit in such a way that a control voltage counteracts a deflection of the measuring part in the sense that the partial capacitances formed by the differential capacitor are the same. This method has the advantage that it is a zero point method and is therefore generally more precise than an absolute method for determining the changes in capacitance.
  • a two-dimensional acceleration measurement is possible if two sensor arrangements according to FIG. 5 or FIG. 6 are used which are offset by 90 ° to one another.
  • the direction of oscillation of the respective mass parts lies in the direction of oscillation of the chip plane in two mutually perpendicular directions.
  • the technique described can be applied in a similar way to the production of differential pressure sensors.
  • the suspension springs of the sensor consist of monosilicon, so that the bending and stresses known from polysilicon are eliminated for the moving parts.
  • the sensor capacitance ⁇ can be divided independently of each other, so that a good sensor array can be realized.
  • the sensor arrangement permits a high packing density of the sensor, since the electrodes are perpendicular to the chip surface, so that a large capacitive area can be achieved.
  • the rigidity of the electrical tread perpendicular to the direction of vibration is very large, since the moment of resistance is proportional to the 3rd power of the electrode thickness. For this reason, there may be no adhesion or sticking problem, so that counteracting chemicals are not required.
  • the sensor Since the moving parts of the sensor are located in the silicon or in the silicon layer and not on the chip surface, the sensor is extremely robust mechanically.
  • the arrangement of the electrodes and the mass part in the chip level also automatically provides overload protection in the chip level.
  • Sensor device can be combined with all known technologies.
  • the sensor device is VLSI-compatible, so that structure widths below lum can be achieved.
  • the trench etching and filling methods known from semiconductor technology and the usual semiconductor methods can therefore be used in the production.

Abstract

Die integrierte mikromechanische Sensorvorrichung enthält einen Körper mit einem Substrat (1), auf dem eine isolierende Schicht (2) und darüber eine einkristalline Siliziumschicht (3) angeordnet sind, bei der die Siliziumschicht Gräben bis auf die Oberfläche der isolierenden Schicht aufweist und die Seitenwände der Gräben sowie die der isolierenden Schicht zugewandte Seite der Siliziumschicht eine erste Dotierung (n+) und die Siliziumschicht zumindest in einem Teilbereich ihrer verbleibenden Oberfläche eine zweite Dotierung (n-) aufweist, bei der die Siliziumschicht in einem ersten Bereich (TB) eine Transistoranordnung und in einem zweiten Bereich (SB) eine Sensoranordnung aufweist, wozu die isolierende Schicht (2) unter dem zweiten Bereich teilweise entfernt ist. Eine derartige Sensorvorrichtung weist erhebliche Vorzüge hinsichtlich ihrer Eigenschaften und ihres Herstellverfahrens gegenüber bekannten Vorrichtungen auf.

Description

Integrierte ikromechaniεche Sensorvorrichtung und Verfahren zu deren Herstellung.
Die Erfindung betrifft eine integrierte ikromechanische Sensorvorrichtung und ein Verfahren zu ihrer Herstellung.
Mikromechanische Sensoren finden zunehmend Eingang in alle Bereiche der Technik, z. B. in Navigationssysteme und Kraft¬ fahrzeuge, insbesondere in Verbindung mit Sicherheitssyste¬ men. Einen großen Teil derartiger Sensoren bilden Druck- und Beschleunigungssensoren. Gefragt sind zuverlässige, kleine, einfach herzustellende und dabei preiswerte Sensoren mit ei¬ ner hohen Meßgenauigkeit und einer guten Proportionalität zwischen Meßgröße und Ausgangssignal.
Die meisten heute verwendeten Druck- oder Beschleunigungs- Sensoren werden feinmechanisch oder mittels KOH-Ätztechnik auf Siliziu basiε (bulk-micromachining) hergestellt. Die Auswertung des bislang meist mittels des Piezoeffekts er¬ zeugten Sensorsignals erfolgt getrennt vom Sensor. Der Trend geht jedoch zum intelligenten Sensor, bei dem der Sensor so- wie die Schaltung zur Auswertung des Sensorsignals und gege¬ benenfalls eine Testschaltung auf Basis der Siliziumplanar- technologie auf einem Chip integriert sind. Die Auswertung des piezoresistiven oder kapazitiven Sensorsignals sowie die Linearisierung und Verstärkung erfolgen mit Halbleiter- Schaltkreisen bekannter Technologien. Ein derartiger Sensor ist beispielsweise aus der Veröffentlichung F. Goodenough: Airbags Boom When IC Accelerometer Sees 50 G, Electronic De¬ sign, August 8, 1991, pp. 45-56 bekannt.
Während konventionell hergestellte mikromechanische Sensoren relativ groß, teuer und ungenau sind, beschreibt die vorste¬ hend genannte Veröffentlichung eine verbesserte Ausführungs- form. Dieser bekannte sogenannte oberflächen-mikromechaniεche Sensor (surface micromachining) benötigt, wie insbesondere aus der diesbezüglichen weiteren Veröffentlichung: Analog Devices Combines Micromachining and BICMOS, Se iconductor International, Okt. 1991 hervorgeht, zu seiner Herstellung 21 Masken, nämlich 6 Masken für den Sensorprozeß und 15 Masken für einen 4 μ -BICMOS-Prozeß. Das zur Ausbildung des kapazitiven Sensors kammförmige Sensorelement besteht aus einem 2μm-dicken Polysiliziumelement und ist über Federn, die ebenfalls aus Polysilizium sind, mit der Substratoberfläche verbunden.
Das Herstellverfahren für den bekannten Sensor ist außeror¬ dentlich aufwendig und teuer. Darüberhinaus ist unsicher, ob die für die mechanisch bewegten Teile des Sensors verwendeten Polysiliziumschichten eine ausreichende mechanische Langzeitstabilität aufweisen. Neben dieser möglichen zeitli¬ chen Degradation sind die mechanischen Eigenschaften wie der Elastizitätsmodul oder intrinsischer Streß von Polysilizium sensibel von den jeweiligen Prozeßbedingungen während der Herstellung abhängig. Die thermische Ausheilung des intrin- sischen Stresses erfordert im Herstellungsprozeß zusätzliche Temperschritte, was sich nachteilig auf die gleichzeitig in dem Sensor integrierte elektronische Schaltung auswirkt. Zu- dem sind im Herstellungsprozeß zusätzliche Abscheidungen von Halbleiterschichten notwendig. Bei einem denkbaren Einsatz von modernen Sub-μm-BICMOS-Schaltungen für die Auswerte¬ schaltung des Sensors ist es aufgrund der dabei verwendeten niedrigen Prozeßtemperaturen nicht mehr möglich, streßfreie Polysiliziumschichten herzustellen.
Die nachveröffentlichte DE-A-43 09 917 beschreibt die Verwendung einer einkristallinen Siliziumschicht mit einer darüberliegenden Siliziumnitridschicht.
Die Erfindung sieht eine integrierte mikromechanische Sen¬ sorvorrichtung vor,bei der ein Körper mit einem Substrat, mit einer darüber angeordneten einkristallinen Siliziumschicht und mit einer in einem vorgegebenen Bereich dazwischen angeordneten isolierenden Schicht gebildet ist, bei der die Siliziumschicht Gräben von ihrer Oberfläche bis zu ihrer unteren Grenzfläche aufweist, bei der in der Siliziumschicht die Seitenwände der Gräben und die der unteren Grenzfläche der Siliziumschicht zugeordnete Zone der Siliziumschicht eine erste vorgegebene Dotierung haben und die Siliziumschicht zumindest in einem Teilbereich eine zweite vorgegebene Dotierung aufweist, bei der eine Transistoranordnung in einem ersten Bereich der
Siliziumschicht über der isolierenden Schicht vorgesehen ist und bei der eine Sensoranordnung in einem zweiten Bereich der Siliziumschicht vorgesehen ist, in dem zumindest teilweise keine isolierende Schicht vorhanden ist.
Ein Verfahren zur Herstellung einer integrierten mikromecha¬ nischen Sensorvorrichtung sieht folgende Schritte vor:
Bilden eines Grundkörpers mit einer auf einem Substrat angeordneten isolierenden Schicht und einer darüber an¬ geordneten einkristallinen Siliziumschicht, wobei die Siliziumschicht eine vorgegebene Dotierung aufweist,
Ätzen von Gräben in der Siliziumschicht bis auf die Oberfläche der isolierenden Schicht,
Dotieren der Grabenwände,
Erzeugen einer Transistoranordnung in einem ersten Be¬ reich der Siliziumschicht und
Entfernen der isolierenden Schicht unter einem zweiten Bereich der Siliziumschicht. Nach dem Dotieren der Grabenwände können die Gräben mit einer isolierenden Oxidschicht aufgefüllt werden. Vorzugsweise werden die Gräben jedoch nach ihrer Herstellung mit einem dotierenden Oxid (dotierende Isolierschicht) aufgefüllt, das als Dotierquelle für die nachfolgende Dotierung der Graben¬ wände dient. Das Oxid in den Gräben wird unter dem zweiten Bereich der Siliziumschicht in Verbindung mit der isolieren¬ den Schicht wieder entfernt.
Der gemäß der Erfindung hergestellte Sensor enthält einkri¬ stallines Silizium. Er vermeidet die Verwendung von Polysi¬ liziumschichten für die mechanisch bewegten Teile, da für diese Teile einkristallines Silizium verwendet wird. Einkri¬ stallines Silizium besitzt genau bekannte mechanische Eigen- schaften, die nicht von den jeweiligen Parametern des Her- stellungsprozesses abhängen. Zudem sind die mechanischen Ei¬ genschaften keiner zeitlichen Degradation unterworfen, so daß die Langzeitstabilität sehr groß ist.
Die Erfindung hat den weiteren Vorteil, daß sie unter Ver¬ wendung bekannter und verfügbarer Grabenätz- und Auffüllver¬ fahren in vollem Umfang VLSI-kompatibel ist. Weiterhin ist die erfindungsgemäße Sensorvorrichtung mechanisch robust, da sich die beweglichen Teile in der Siliziumschicht befinden und nicht auf der Chipoberfläche. Da die Elektroden des Sen¬ sors senkrecht zur Chipoberfläche stehen ergibt sich eine hohe spezifische Kapazität (Packungsdichte) des Sensors. Gleichzeitig wird das Sticking-Problem, d. h. eine Adhäsion von Flächen beim oder nach einem Spülvorgang entschärft, da die Steifigkeit der Sensorvorrichtung senkrecht zur Schwin¬ gungsrichtung sehr groß ist.
Schließlich bietet die erfindungsgemäße Sensorvorrichtung den erheblichen Vorteil, daß bei der Verwendung eines bipolaren oder eines BICMOS-Prozesses die Maskenzahl zur Herstellung der Sensorvorrichtung gegenüber einem Standardprozeß in diesen Technologien nicht erhöht wird. Ausgestaltungen der Erfindung sind in Unteransprüchen ge¬ kennzeichnet.
Die Erfindung wird nachfolgend anhand von Figuren der Zeich¬ nung näher erläutert, von denen
Figuren 1 bis 5 Querschnitte durch eine erfindungsge äße
Vorrichtung bei verschiedenen Herstellverfahrensschritten zeigen und
Figur 6 eine Draufsicht auf eine kapazitive Sensoranordnung zeigt.
Figur 1 zeigt einen bei der Herstellung der integrierten mi¬ kromechanischen Sensorvorrichtung gebildeten Grundkörper 10. Auf einem Substrat 1 ist eine isolierende Schicht 2 und auf dieser isolierenden Schicht eine einkristalline Silizium¬ schicht 3 angeordnet. Das Substrat kann ebenfalls aus Sili- ziu bestehen. Typischerweise wird die Dicke der isolierenden Schicht 2 zwischen 0,5 und 1 um gewählt, während die Schichtdicke der Siliziumschicht 3 z. B. zwischen 5 und 20 μm betragen kann. Die Kristallorientierung und Dotierung des Substrats ist beliebig. Die Orientierung und Dotierung der Siliziumschicht 3 entspricht der bei der Herstellung der Sensorvorrichtung und deren Halbleiterschaltungsanordnung verwendeten Basistechnologie.
Im Ausführungsbeispiel gemäß Figur 1 ist die der isolierenden Schicht 2 bzw. die der unteren Granzfl che der Silizium¬ schicht zugewandte Seite der Siliziumschicht 3 n+-dotiert, während die von der isolierenden Schicht 2 abgewandte Ober¬ flächenzone der Siliziumschicht n~-dotiert ist. Die Dotierung der Siliziumschicht 3 ist für das eigentliche Sensorelement nicht notwendig, sondern richtet sich ausschließlich nach der Technologie, die für die integrierte Schaltungsanordnung verwendet werden soll. Der Grundkörper gemäß Figur 1 kann z. B. eine DWB-Scheibe sein, wobei DWB Direct-Wafer-Bonding bedeutet. Derartige Scheiben sind aus zwei Halbleiterscheiben zusammengeklebt und lassen sich mit hoher Qualität mit den in Figur 1 gezeigten Schichtdicken und Dotierungen am Markt erwerben. Eine weitere Möglichkeit zur Herstellung des in Figur 1 gezeigten Grundkörpers ist die Verwendung des sogenannten SIMOX- Verfahrens (I. Rüge, H. Mader: Halbleiter-Technologie, Springer-Verlag, 3. Auflage, 1991, Seite 237). Dabei wird eine isolierende Schicht aus Siliziumoxid durch tiefe Ionen¬ implantation von Sauerstoffatomen in einkristallines Silizium gebildet. Daran kann sich ein Epitaxieschritt anschließen. Eine dritte Möglichkeit zur Herstellung des Grundkörpers gemäß Figur 1 macht von der Rekristallisation Gebrauch, bei der eine über einer einkristallinen Siliziumschicht und einer darauf angeordneten Siliziumoxidschicht zunächst amorph oder polykristallin abgeschiedene Siliziumschicht durch Aufschmelzen mit einem Laserstrahl rekristallisiert wird.
In einem nächsten Schritt werden in die einkristalline Sili¬ ziumschicht 3 Gräben bis auf die Oberfläche der isolierenden Schicht 2 geätzt, beispielsweise durch eine anisotrope Trockenätzung. Anschließend werden die Gräben mit einem do- tierenden Isolierstoff aufgefüllt. Im Ausführungsbeispiel gemäß Figur 2 kann Phosphorglas (PSG) oder Borphosphorglas (BPSG) verwendet werden. Die Erzeugung derartiger Glas- schichten ist beispielsweise aus D. Widmann, H. Mader, H. Friedrich: Technologie hochintegrierter Schaltungen, Sprin- ger-Verlag, 1988, Seite 80 ff. bekannt. Bei einer entspre¬ chenden Temperaturbehandlung diffundieren Phosphor und gege¬ benenfalls Bor aus dem Phosphorglas in das Silizium der Gra¬ benwände der Siliziumschicht 3 ein. Damit ergibt sich die in Figur 2 gezeigte Struktur, bei der die isolierende Schicht 2 und die dotierende Isolierschicht 4 am Fuß der zuvor geätzten Gräben aufeinanderstoßen. Die Grabenwände sind entsprechend der an der isolierenden Schicht 2 angrenzenden Zone der Siliziumschicht 3 dotiert, d. h. im Ausführungsbeispiel n+- dotiert.
Durch das Ätzen von Gräben in der Siliziumschicht und das Dotieren der Grabenwände werden sowohl der Bereich SB, in dem der eigentliche Sensor vorgesehen ist, als auch der Bereich TB, in dem die elektronische Auswerteschaltung, zumindest aber eine Transistoranordnung für die Verarbeitung des Sensorsignals vorgesehen ist, strukturiert und gegeneinander isoliert. Der Bereich TB beinhaltet eine oder mehrere iso¬ lierte Wannen, in die je nach Vorgabe CMOS-, Bipolar- oder sonstige Bauelemente eingebaut werden. Wenn die im Bereich TB zu realisierende Transistoranordnung z. B. ein bipolarer Transistor ist, ist mit der in Figur 2 gezeigten Struktur des Bereichs TB bereits eine vergrabene Kollektorzone und ein niederohmiger Kollektor-Anschluß in Form der dotierten Grabenwände erzeugt. Gegenüber Anordnungen aus dem Stand der Technik erfordert die Erzeugung der in Figur 2 gezeigten Struktur keine separaten Masken- und Dotierungsprozesse für die vergrabene Zone, für einen Kanalstopper und für einen Kollektor. Ein Epitaxieprozeß kann ebenfalls entfallen.
Ausgehend von der Struktur der Figur 2 wird anschließend eine Transistoranordnung in dem Bereich TB erzeugt. Diese Transistoranordnung kann mit einem standardmäßigen bipolaren oder BICMOS-Prozeß hergestellt werden. Beispiel für derartige Prozesse sind z. B. aus der vorgenannten Veröffentlichung Widmann/Mader/Friedrich: Technologie hochintegrierter Schaltungen bekannt. Bei einer bipolaren Transistorstruktur kann z. B., ausgehend von Figur 2, zunächst die Basiszone, bei einem BICMOS-Prozeß zunächst die p-bzw. n-Wanne erzeugt werden.
Selbstverständlich ist es möglich, ausgehend von der Struktur der Figur 2 auch eine MOS-Tranεistoranordnung in dem
Grundkörper zu realisieren. Auch in diesem Fall beginnt der standardmäßige Prozeß mit der Erzeugung einer p- bzw. n-Wanne in dem für die Transistorstrukturen vorgesehenen Bereich TB.
Während der Erzeugung der Transistoranordnung wird der Be- reich SB, der für das Sensorelement vorgesehen ist, durch eine entsprechende Maske abgedeckt. Gemäß Figur 3 ergibt sich z. B. ein bipolarer Transistor, dessen Kollektor C nie- derohmig über die vergrabene Zone BL und die hochdotierten niederohmigen Grabenwände CA mit dem Kollektoranschluß K verbunden sind. Die p-dotierte Basis ist mit dem Basisan¬ schluß B verbunden. Entsprechend ist der Emitteranschluß E über der hochdotierten n++-Zone angeordnet. Basis-, Emitter- und Kollektorbereiche des Transistors sind über Isolations¬ zonen II bis 13, vorzugsweise aus Siliziumoxid Siθ2, gegen- einander isoliert. Anschließend wird über der gesamten An¬ ordnung eine Passivierungsschicht P aufgebracht. Beispiels¬ weise kann die Passivierungsschicht aus Siliziumnitrid Si3N4 bestehen.
Im Anschluß an die Erzeugung der Transistoranordnung wird die Passivierungsschicht P über dem Sensorbereich SB mit Hilfe einer Lackmaske FM entfernt und danach zunächst der dotierende Isolierstoff 4 in den Gräben des Sensorbereichε und danach die isolierende Schicht 2 zumindeεt in Teilzonen deε Sensorbereichs SB entfernt. Dies kann z. B. durch einen naßchemischen oder einen Trocken-Ätzprozeß erfolgen. Die isolierende Schicht 2 wird dabei unter den beweglichen Elek¬ troden des Senεorelements vollständig und unter den nicht beweglichen Elektroden des Sensorelementε nicht vollständig entfernt, so daß letztere weiterhin mechanisch mit dem Substrat 1 verbunden sind.
Figur 4 zeigt eine Anordnung nach dem Entfernen deε Isolier¬ stoffs 4 und der isolierenden Schicht 2 neben und unter den beweglichen Elektroden BEI, BE2 des Sensorbereichε SB, wäh¬ rend unter den feεten Elektroden FEI, FE2 und FE3 die iso¬ lierende Schicht 2 noch teilweise vorhanden ist. In der An- Ordnung gemäß Figur 4 iεt der Transistorbereich TB anders als in Figur 3 strukturiert. Während sich an den Dotierungs- verhältniεεen der Siliziumεchicht 3 in der Anordnung der Fi¬ gur 4 gegenüber der Figur 2 nichtε verändert hat, iεt im Tranεistorbereich der Figur 4 zum Rand des Sensorbereichs hin eine Oxidschicht 5 vorgesehen. Der Transistorbereich ist mit einer Passivierungsschicht P und einer über dieser liegenden Lackmaske FM abgedeckt.
Um ein möglicherweise bei der Entfernung der isolierenden Schicht 2 unter dem Bereich der beweglichen Elektroden BEi auftretendes Adhäsionsproblem (Sticking) zu lösen, können sublimierende Chemikalien, z. B. Cyclohexan oder Dichlorben- zol verwendet werden.
Im Anschluß an das geschilderte Entfernen der isolierenden Schicht wird die Maske FM entfernt.
Figur 5 zeigt Querschnitte durch eine Sensorstruktur, die in Figur 6 in Draufsicht dargestellt ist. Es handelt sich um einen Beschleunigungεεensor, der ein bewegliches Masεeteil M hat, daε über Federelemente Fl, F2 und weitere nicht darge- εtellte Federelemente an der Siliziumεchicht 3 aufgehängt ist. Das Masseteil M hat fingerförmige bewegliche Elektroden BE10, BE11 und BEli, die frei in Bereiche zwischen festen Elektroden FE10 bis FE13 sowie FEli, hineinragen. Zwischen den beweglichen Elektroden BEi und den festen Elektroden FEi sind, da die Grabenwände der Elektroden hochdotiert sind, Kapazitäten gebildet, die in Figur 6 und in Figur 5a rein symbolisch dargestellt sind. Figur 5a zeigt dabei einen Schnitt entlang der Linie A-A und Figur 5b einen Schnitt entlang der Linie B-B, die in Figur 6 eingezeichnet sind. Um bei der Herεtellung deε Senεorteilε die iεolierende Schicht unter dem Masseteil zuverläεεig entfernen zu können, enthält daε Masseteil M Löcher L. Grundsätzlich sind die Löcher je¬ doch nicht zwingend erforderlich. In Figur 6 ist der Bereich der Sondermaske, die für die Erzeugung der Sensorstrukturen verwendet wird, skizziert. Innerhalb des durch die Sonder¬ maske SM definierten Bereichs erfolgt das Entfernen deε do¬ tierenden Isolierstoffs aus den Gräben und der isolierenden Schicht neben und unterhalb der beweglichen Elektroden, des Masεeteilε und der Federn vollεtändig.
Figur 5c zeigt das mit der Sensorεtruktur von Figur 5a und b bzw. Figur 6 erhaltene Erεatzεchaltbild. Die beweglichen Elektroden BEi, d.h. BElOi biε BEli εind über daε Masseteil M und die Feder Fi mit einem Anschluß BEA verbindbar. Die feεten Elektroden εind paarweiεe mit Anεchlüεsen AE und CE verbunden, die den festen Platten eines Kondenεatorε ent¬ sprechen. Die beweglichen Elektroden bilden eine bewegliche Platte des Kondensatorε, εo daß Figur 5c einen Differential- kondenεator darεtellt.
Aus den Zwischenräumen ZR zwischen zwei festen Elektroden, Figur 5a, kann der dotierende Isolierstoff entfernt werden. Es iεt jedoch auch möglich, daß die Zwiεchenräume ZR der fe- εten Elektroden und die darunterliegende iεolierende Schicht, die den jeweiligen feεten Elektroden zugewandt iεt, erhalten bleiben. Vorauεεetzung iεt eine andere Maεke, mit der εich nur die iεolierende Schicht und der dotierende Iεolierstoff unterhalb und zwischen den beweglichen Elektroden entfernen lasεen.
Die feεten Elektroden können alternativ zu der Struktur von Figur 5 bzw. Figur 6 in ähnlicher Weise wie in der zuvor zi¬ tierten Veröffentlichung Electronic Design mit dem Substrat 1 bzw. der isolierenden Schicht 2 mechanisch verbunden sein.
Die Befestigung über einen Anker hat freitragende Elektroden zur Konsequenz, was bedeutet, daß die festen Elektroden hin¬ sichtlich auf sie wirkender Beεchleunigungskräfte ausreichend biegesteif sein müssen, damit zusätzliche Meßfehler nicht negativ auf die Meßgenauigkeit wirken. Die in Figur 6 dargestellte Sensoranordnung reagiert senεibel auf Bewegungen deε Masseteils in der angedeuteten Pfeil- richtung. Die zulässige Auslenkung der fingerförmigen kapa¬ zitiven beweglichen Elektroden beträgt weniger als der Spaltabεtand zu einer feεten Elektrode, d. h. weniger alε etwa lμm. Vorzugεweiεe iεt deεhalb die Auεwerteschaltung der Sensorvorrichtung als Regelkreis derart ausgestaltet, daß eine Regelεpannung einer Auεlenkung deε Maεseteils in dem Sinne entgegenwirkt, daß die durch den Differentialkondensa- tor gebildeten Teilkapazitäten jeweilε gleich sind. Dieses Verfahren hat den Vorteil, daß es ein Nullpunktverfahren ist und deshalb in der Regel genauer ist als ein absolutes Ver¬ fahren zur Bestimmung der Kapazitätεänderungen.
Eine zweidimenεionale Beschleunigungsmesεung ist möglich, wenn zwei Sensoranordnungen gemäß Figur 5 bzw. Figur 6 ver¬ wendet werden, die zueinander um 90°versetzt sind. Die Schwingungsrichtung der jeweiligen Masεeteile liegt dabei in der Schwingungsrichtung der Chipebene in zwei zueinander senkrechten Richtungen. Die beschriebene Technik läßt sich in ähnlicher Weise auf die Herstellung von Differenzdruck¬ sensoren anwenden.
Die Erfindung hat folgende Vorteile:
Das Sensormasseteil, die Elektroden und der Biegebalken, d. h. die Aufhängefedern des Sensorε beεtehen auε Monoεilizium, εo daß für die beweglichen Teile die von Polyεilizium her bekannten Verbiegungen und Spannungen entfallen.
Maεεeteil des Sensors und die Federkonεtante deε Biegebalkenε εowie bei einem kapazitiven Senεor die Senεorkapazität εind unabhängig voneinander einεteilbar, εo daß εich gut Senεorarrayε realiεieren laεεen. Die Senεoranordnung erlaubt eine hohe Packungsdichte des Sensorε, da die Elektroden εenkrecht zur Chipoberfläche εtehen, so daß sich eine große kapazitive Fläche erzielen läßt. Die Steifigkeit der Elek- troden senkrecht zur Schwingungsrichtung ist sehr groß, da das Widerεtandεmoment proportional zur 3. Potenz der Elek¬ trodendicke ist. Aus diesem Grund tritt gegebenenfalls kein Adhäsionε- bzw. Stickingproblem auf, εo daß gegenwirkende Chemikalien nicht erforderlich εind.
Da sich die beweglichen Teile des Senεors im Silizium bzw. in der Siliziumεchicht befinden und nicht auf der Chipoberfläche ist der Sensor mechanisch außerordentlich robust. Durch die Anordnung der Elektroden und des Masseteilε in der Chipebene ist außerdem automatisch eine Überlastsicherung in der Chipebene gegeben.
Bei Verwendung eines bipolaren oder eines BICMOS-Standard- prozesseε alε Basistechnologie für die Auswerteschaltung des intelligenten Sensorε wird die Maεkenzahl nicht erhöht. Da¬ durch lassen sich erhebliche Kosten sparen und der Herstel- lungεprozeß inεgeεa t vereinfachen.
Grundεätzlich iεt daε erfindungεgemäße Verfahren bzw. die
Senεorvorrichtung kombinierbar mit allen bekannten Technolo¬ gien. Inεbesondere ist die Sensorvorrichtung VLSI-kompatibel, εo daß Strukturbreiten unter lum erzielt werden können. Verwendung bei der Herεtellung können deεhalb die auε der Halbleitertechnologie bekannten Grabenätz- und Auffüllver¬ fahren sowie die üblichen Halbleiterverfahren finden.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer integrierten mikromecha¬ nischen Sensorvorrichtung, g e k e n n z e i c h -n e t durch folgende Schritte:
a) Bilden eines Körpers mit einer auf einem Substrat (1) an¬ geordneten isolierenden Schicht (2) und einer darüber an¬ geordneten einkristallinen Siliziumεchicht (3), wobei die Siliziumεchicht eine vorgegebene Dotierung (n+, n~) auf¬ weist,
b) Ätzen von Gräben in der Siliziumschicht bis auf die Ober¬ fläche der isolierenden Schicht,
c) Dotieren der Grabenwände,
d) Erzeugen einer Tranεistoranordnung in einem ersten Bereich (TB) der Siliziumschicht, und
e) Entfernen der isolierenden Schicht (2) unter einem zweiten Bereich (SB) der Siliziumschicht.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß bei der Siliziumεchicht an ihrer der isolierenden Schicht zugewandten Seite eine erste vorgegebene Dotierung (n+) und in ihrer Oberflächenzone eine zweite vorgegebene Dotierung (n~) vorgesehen werden.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Gräben mit einem dotierenden Isolierεtoff (4) aufge¬ füllt werden.
4. Verfahren nach einem der vorhergehenden Anεprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Gräben mit Phosphorglaε aufgefüllt werden.
5. Verfahren nach einem der vorhergehenden Anεprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Grabenwände entsprechend der ersten vorgegebenen Do¬ tierung (n+) der Siliziumschicht (3) dotiert werden.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß die Transistoranordnung nach einem bipolaren, einem MOS- oder einem Bipolar-/MOS-Standardprozeß erzeugt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , daß nach Erzeugen der Transiεtoranordnung eine Paεεivie- rungεεchicht (P) in einem Senεorbereich (SB) entfernt und danach der Iεolierstoff in den Gräben des Sensorbereichε und die isolierende Schicht unter der Siliziumschicht entfernt werden.
8. Integrierte mikromechanische Sensorvorrichtung, bei der ein Körper (10) mit einem Substrat (1), mit einer darüber angeordneten einkristallinen Siliziumschicht (3) und mit einer in einem vorgegebenen Bereich dazwischen angeord- neten isolierenden Schicht (2) gebildet ist, bei der die Siliziumschicht Gräben von ihrer Oberfläche bis zu ihrer unteren Grenzfläche aufweist, bei der in der Siliziumschicht (3) die Seitenwände der Gräben und die der unteren Grenzfläche der Siliziumschicht zu- geordnete Seite der Siliziumschicht eine erste vorgegebene Dotierung (n+) haben und die Siliziumschicht zumindest in einem Teilbereich eine zweite vorgegebene Dotierung (n~) aufweist, bei der eine Transistoranordnung in einem ersten Bereich (TB) der Siliziumschicht über der isolierenden Schicht (2) vorgesehen ist und bei der eine Sensoranordnung in einem zweiten Bereich (SB) der Siliziumschicht vorgesehen ist, in dem zumindest teil¬ weise keine isolierende Schicht vorhanden ist.
9. Vorrichtung nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , daß die Gräben in dem ersten Bereich mit einem Isolierεtoff
(4) aufgefüllt sind.
10. Vorrichtung nach Anspruch 8 oder 9, d a d u r c h g e k e n n z e i c h n e t , daß als Transistoranordnung eine bipolare, eine MOS- oder eine Bipolar-MOS-Anordnung vorgesehen ist.
11. Vorrichtung nach einem der Ansprüche 8 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß die Sensoranordnung an zumindest einer Feder (Fl) ist.
12. Vorrichtung nach einem der Ansprüche 8 bis 11, d a d u r c h g e k e n n z e i c h n e t , daß die Sensoranordnung als kapazitiver oder piezoresistiver
Sensor ausgebildet ist.
13. Vorrichtung nach einem der Ansprüche 8 bis 12, d a d u r c h g e k e n n z e i c h n e t, daß die Sensoranordnung getrennt von einer Auswerteschaltung als Einzelbauelement ausgebildet ist.
PCT/DE1994/001092 1993-09-21 1994-09-20 Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung WO1995008775A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7509491A JP2927963B2 (ja) 1993-09-21 1994-09-20 集積マイクロメカニカルセンサデバイス及びその製造方法
EP94926800A EP0720748B1 (de) 1993-09-21 1994-09-20 Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung
DE59407313T DE59407313D1 (de) 1993-09-21 1994-09-20 Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung
US08/619,735 US5744719A (en) 1993-09-21 1994-09-20 Integrated micromechanical sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4332057A DE4332057A1 (de) 1993-09-21 1993-09-21 Integrierte mikromechanische Sensorvorrichtung und Verfahren zu deren Herstellung
DEP4332057.0 1993-09-21

Publications (1)

Publication Number Publication Date
WO1995008775A1 true WO1995008775A1 (de) 1995-03-30

Family

ID=6498207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001092 WO1995008775A1 (de) 1993-09-21 1994-09-20 Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung

Country Status (6)

Country Link
US (2) US5744719A (de)
EP (1) EP0720748B1 (de)
JP (1) JP2927963B2 (de)
AT (1) ATE173545T1 (de)
DE (2) DE4332057A1 (de)
WO (1) WO1995008775A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010361A1 (de) * 1997-06-13 2000-06-21 The Regents of The University of California Mikrohergestellte hochaspektverhältnis-vorrichtung mit elektrischer isolation und zwischenverbindungen
EP1808672A2 (de) 1998-09-12 2007-07-18 Qinetiq Limited Verbesserungen im Zusammenhang mit der Mikrobearbeitung
US7389696B1 (en) 1998-03-10 2008-06-24 Infineon Technologies Ag Measuring device with a microsensor and method for producing the same
US8703516B2 (en) 2008-07-15 2014-04-22 Infineon Technologies Ag MEMS substrates, devices, and methods of manufacture thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3198922B2 (ja) 1996-07-03 2001-08-13 株式会社村田製作所 静電容量型センサの製造方法
FR2757948B1 (fr) * 1996-12-30 1999-01-22 Commissariat Energie Atomique Microsystemes pour analyses biologiques, leur utilisation pour la detection d'analytes et leur procede de realisation
EP0895090B1 (de) * 1997-07-31 2003-12-10 STMicroelectronics S.r.l. Verfahren zum Herstellen hochempfindlicher integrierter Beschleunigungs- und Gyroskopsensoren und Sensoren, die derartig hergestellt werden
WO1999017521A1 (de) 1997-09-30 1999-04-08 Siemens Aktiengesellschaft Verfahren zum melden einer nachricht an einen teilnehmer
DE19819458A1 (de) * 1998-04-30 1999-11-04 Bosch Gmbh Robert Verfahren zur Herstellung eines mikromechanischen Bauelements und mikromechanisches Bauelement
JP2000206142A (ja) * 1998-11-13 2000-07-28 Denso Corp 半導体力学量センサおよびその製造方法
KR100773380B1 (ko) * 1999-06-03 2007-11-06 제네럴 세미컨덕터, 인코포레이티드 전력 mosfet, 이를 형성하는 방법, 및 이 방법에 의해 형성되는 다른 전력 mosfet
DE19940581C2 (de) * 1999-08-26 2001-07-26 Infineon Technologies Ag Verfahren zur Herstellung integrierter Sensoren
US6627949B2 (en) * 2000-06-02 2003-09-30 General Semiconductor, Inc. High voltage power MOSFET having low on-resistance
DE10065013B4 (de) * 2000-12-23 2009-12-24 Robert Bosch Gmbh Verfahren zum Herstellen eines mikromechanischen Bauelements
JP4722333B2 (ja) * 2001-07-02 2011-07-13 富士通株式会社 静電アクチュエータおよびその製造方法
US6576516B1 (en) * 2001-12-31 2003-06-10 General Semiconductor, Inc. High voltage power MOSFET having a voltage sustaining region that includes doped columns formed by trench etching and diffusion from regions of oppositely doped polysilicon
GB0206509D0 (en) * 2002-03-20 2002-05-01 Qinetiq Ltd Micro-Electromechanical systems
JP2005098740A (ja) * 2003-09-22 2005-04-14 Denso Corp 容量式半導体力学量センサ
CN100542021C (zh) * 2003-11-14 2009-09-16 Nxp股份有限公司 设有谐振器的半导体装置
JP4422624B2 (ja) * 2004-03-03 2010-02-24 日本航空電子工業株式会社 微小可動デバイス及びその作製方法
WO2008027996A2 (en) * 2006-08-29 2008-03-06 California Institute Of Technology Microfabricated implantable wireless pressure sensor for use in biomedical applications and pressure measurement and sensor implantation methods
DE102010039236B4 (de) * 2010-08-12 2023-06-29 Robert Bosch Gmbh Sensoranordnung und Verfahren zum Abgleich einer Sensoranordnung
US9577035B2 (en) * 2012-08-24 2017-02-21 Newport Fab, Llc Isolated through silicon vias in RF technologies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003740A1 (en) * 1990-08-17 1992-03-05 Analog Devices, Inc. Monolithic accelerometer
EP0591554A1 (de) * 1992-04-27 1994-04-13 Nippondenso Co., Ltd. Beschleunigungssensor und seine herstellung
EP0605300A1 (de) * 1992-12-28 1994-07-06 Commissariat A L'energie Atomique Verfahren zur Herstellung von Beschleunigungsmessern mittels der "Silizium auf Isolator"-Technologie sowie mittels diesem Verfahren erhaltener Beschleunigungsmesser

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB591554A (en) * 1945-03-15 1947-08-21 Derek Eyre Kirkland Improvements in or relating to rotary pumps with slidable vanes
US4611387A (en) * 1981-03-02 1986-09-16 Rockwell International Corporation Process for producing NPN type lateral transistors
CH642461A5 (fr) * 1981-07-02 1984-04-13 Centre Electron Horloger Accelerometre.
US4948757A (en) * 1987-04-13 1990-08-14 General Motors Corporation Method for fabricating three-dimensional microstructures and a high-sensitivity integrated vibration sensor using such microstructures
DE4000496A1 (de) * 1989-08-17 1991-02-21 Bosch Gmbh Robert Verfahren zur strukturierung eines halbleiterkoerpers
DE4042334C2 (de) * 1990-02-27 1993-11-18 Fraunhofer Ges Forschung Verfahren zum Erzeugen einer isolierten, einkristallinen Siliziuminsel
US5677560A (en) * 1990-05-29 1997-10-14 Fraunhofer Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Micromechanical component and process for the fabrication thereof
DE4021541C1 (de) * 1990-07-06 1991-12-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
DE69012555T2 (de) * 1990-07-25 1995-04-06 Ibm Methode zur Herstellung von mikromechanischen Sensoren für AFM/STM/MFM-Profilometrie und mikromechanischer AFM/STM/MFM-Sensorkopf.
US5295395A (en) * 1991-02-07 1994-03-22 Hocker G Benjamin Diaphragm-based-sensors
US5232866A (en) * 1991-10-23 1993-08-03 International Business Machines Corporation Isolated films using an air dielectric
US5227658A (en) * 1991-10-23 1993-07-13 International Business Machines Corporation Buried air dielectric isolation of silicon islands
DE4309917A1 (de) * 1992-03-30 1993-10-07 Awa Microelectronics Verfahren zur Herstellung von Siliziummikrostrukturen sowie Siliziummikrostruktur
US5461916A (en) * 1992-08-21 1995-10-31 Nippondenso Co., Ltd. Mechanical force sensing semiconductor device
JP3430771B2 (ja) * 1996-02-05 2003-07-28 株式会社デンソー 半導体力学量センサの製造方法
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003740A1 (en) * 1990-08-17 1992-03-05 Analog Devices, Inc. Monolithic accelerometer
EP0591554A1 (de) * 1992-04-27 1994-04-13 Nippondenso Co., Ltd. Beschleunigungssensor und seine herstellung
EP0605300A1 (de) * 1992-12-28 1994-07-06 Commissariat A L'energie Atomique Verfahren zur Herstellung von Beschleunigungsmessern mittels der "Silizium auf Isolator"-Technologie sowie mittels diesem Verfahren erhaltener Beschleunigungsmesser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1010361A1 (de) * 1997-06-13 2000-06-21 The Regents of The University of California Mikrohergestellte hochaspektverhältnis-vorrichtung mit elektrischer isolation und zwischenverbindungen
EP1010361A4 (de) * 1997-06-13 2001-05-30 Univ California Mikrohergestellte hochaspektverhältnis-vorrichtung mit elektrischer isolation und zwischenverbindungen
US6960488B2 (en) 1997-06-13 2005-11-01 The Regents Of The University Of California Method of fabricating a microfabricated high aspect ratio device with electrical isolation
US7389696B1 (en) 1998-03-10 2008-06-24 Infineon Technologies Ag Measuring device with a microsensor and method for producing the same
EP1808672A2 (de) 1998-09-12 2007-07-18 Qinetiq Limited Verbesserungen im Zusammenhang mit der Mikrobearbeitung
US8703516B2 (en) 2008-07-15 2014-04-22 Infineon Technologies Ag MEMS substrates, devices, and methods of manufacture thereof

Also Published As

Publication number Publication date
EP0720748A1 (de) 1996-07-10
US6133059A (en) 2000-10-17
JP2927963B2 (ja) 1999-07-28
JPH08510094A (ja) 1996-10-22
EP0720748B1 (de) 1998-11-18
ATE173545T1 (de) 1998-12-15
DE59407313D1 (de) 1998-12-24
US5744719A (en) 1998-04-28
DE4332057A1 (de) 1995-03-30

Similar Documents

Publication Publication Date Title
DE4332843C2 (de) Verfahren zur Herstellung einer mikromechanischen Vorrichtung und mikromechanische Vorrichtung
EP0720748B1 (de) Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung
DE602004004513T2 (de) Verfahren zur herstellung einer elektronischen vorrichtung und elektronische vorrichtung
US6192757B1 (en) Monolithic micromechanical apparatus with suspended microstructure
DE19537814B4 (de) Sensor und Verfahren zur Herstellung eines Sensors
US5576250A (en) Process for the production of accelerometers using silicon on insulator technology
US5620931A (en) Methods for fabricating monolithic device containing circuitry and suspended microstructure
DE60319528T2 (de) Monolithischer beschleunigungsaufnehmer aus silizium
DE69936590T2 (de) Vibrationskreisel und sein herstellungsverfahren
DE69925803T2 (de) Mikromechanischer halbleiter-beschleunigungssensor
DE69627645T2 (de) Integrierter piezoresistiver Druckwandler und Herstellungsverfahren dazu
EP0539393B1 (de) Mikromechanischer drehratensensor
CH682766A5 (de) Mikromechanischer Neigungssensor.
DE19906067A1 (de) Halbleitersensor für physikalische Größen und dessen Herstellungsverfahren
DE4309206C1 (de) Halbleitervorrichtung mit einem Kraft- und/oder Beschleunigungssensor
EP0979992B1 (de) Verfahren zur Herstellung eines Mikromechanischen Sensors
DE69925837T2 (de) Mikromechanischer Sensor
DE4318466A1 (de) Mikromechanischer Sensor und Verfahren zu dessen Herstellung
DE102017211080B3 (de) Mikromechanischer Sensor und Verfahren zum Herstellen eines mikromechanischen Sensors und eines mikromechanischen Sensorelements
EP1144976A1 (de) Verfahren zum erzeugen einer mikromechanischen struktur für ein mikro-elektromechanisches element
EP1389307B1 (de) Sensoranordnung, insbesondere mikromechanische sensoranordnung
WO2018069028A1 (de) Mikromechanischer sensor mit stressentkopplungsstruktur
DE69836813T2 (de) Verfahren zur Herstellung von Winkelgeschwindigkeitsmessern
DE102017206412B4 (de) Mikroelektromechanisches Bauelement, Verfahren zum Herstellen eines mikroelektromechanischen Bauelements und Verfahren zum Herstellen eines Systems auf einem Chip unter Verwendung eines CMOS-Prozesses
DE19603829A1 (de) Verfahren zur Herstellung von mikromechanischen Strukturen aus Silizium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994926800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08619735

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994926800

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994926800

Country of ref document: EP