WO1995011910A1 - 2'-amido and 2'-peptido modified oligonucleotides - Google Patents

2'-amido and 2'-peptido modified oligonucleotides Download PDF

Info

Publication number
WO1995011910A1
WO1995011910A1 PCT/US1994/012164 US9412164W WO9511910A1 WO 1995011910 A1 WO1995011910 A1 WO 1995011910A1 US 9412164 W US9412164 W US 9412164W WO 9511910 A1 WO9511910 A1 WO 9511910A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribozyme
rna
ribozymes
delivery
target
Prior art date
Application number
PCT/US1994/012164
Other languages
French (fr)
Inventor
Lech W. Dudycz
Original Assignee
Ribozyme Pharmaceuticals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ribozyme Pharmaceuticals, Inc. filed Critical Ribozyme Pharmaceuticals, Inc.
Priority to EP94932003A priority Critical patent/EP0725788B1/en
Priority to DE69415343T priority patent/DE69415343T2/en
Priority to AU80886/94A priority patent/AU8088694A/en
Priority to DK94932003T priority patent/DK0725788T3/en
Priority to JP7512756A priority patent/JPH09504297A/en
Publication of WO1995011910A1 publication Critical patent/WO1995011910A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/111Antisense spanning the whole gene, or a large part of it
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/121Hammerhead
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/122Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/123Hepatitis delta
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/124Type of nucleic acid catalytic nucleic acids, e.g. ribozymes based on group I or II introns
    • C12N2310/1241Tetrahymena
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/126Type of nucleic acid catalytic nucleic acids, e.g. ribozymes involving RNAse P
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/127DNAzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/333Modified A
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/336Modified G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3513Protein; Peptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3523Allyl
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/352Nature of the modification linked to the nucleic acid via a carbon atom
    • C12N2310/3527Other alkyl chain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/353Nature of the modification linked to the nucleic acid via an atom other than carbon
    • C12N2310/3533Halogen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/353Nature of the modification linked to the nucleic acid via an atom other than carbon
    • C12N2310/3535Nitrogen

Definitions

  • This invention relates to 2'- modifications of oligonucleotides.
  • Such modification with a 2'- amido or peptido group leads to expansion and enrichment of the side-chain hydrogen bonding network.
  • the amide and peptide moieties are responsible for complex structural formation of the oligonucleotide and can form strong complexes with other bases, and interfere with standard base pairing interactions. Such interference will allow the formation of a complex nucleic acid and protein conglomerate.
  • Oligonucleotides of this invention are significantly more stable than existing oligonucleotides and can potentially form biologically active bioconjugates not previously possible for oligonucleotides. They may also be used for in vi tro selection of unique aptamers, that is, randomly generated oligonucleotides which can be folded into an effective ligand for a target protein, nucleic acid or polysaccharide.
  • the invention features an oligonucleotide containing the modified base shown in Formula I, above.
  • Oligonucleotides of this invention are described generally above, and the structure is shown in Formula I, where such modifications to the 2'-hydroxyl group can be made in one or more positions of an RNA or DNA molecule.
  • the oligonucleotide is single-stranded and has between 10 and 50 bases of which one or more may be modified as shown, preferably, between 1 and 10 are modified.
  • Such oligonucleotides may include those having enzymatic activity, i.e. , ribozymes, which are modified in the 2'- position of the sugar moiety as shown in Formula I to provide stability to that enzymatic activity without significant alteration of the activity.
  • Oligonucleotides of the present invention can be readily synthesized using carbamate protecting groups, such as F-moc, in the peptide moieties and deprotected under mild basic conditions. Such nucleotides can then be incorporated by standard solid phase synthesis using nucleoside phosphoramidite or H-phosphonate intermediates.
  • Ribozymes are RNA molecules having an enzymatic activity which is able to repeatedly cleave other separate RNA molecules in a nucleotide base sequence specific manner. Such enzymatic RNA molecules can be targeted to virtually any RNA transcript, and efficient cleavage achieved in vi tro .
  • Ribozymes act by first binding to a target RNA. Such binding occurs through the target RNA binding portion of a ribozyme which is held in close proximity to an enzymatic portion of the RNA which acts to cleave the target RNA. Thus, the ribozyme first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After a ribozyme has bound and cleaved its RNA target it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.
  • ribozyme The enzymatic nature of a ribozyme is advantageous over other technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the effective concentration of ribozyme necessary to effect a therapeutic treatment is lower than that of an antisense oligonucleotide.
  • This advantage reflects the ability of the ribozyme to act enzymatically. ' Thus, a single ribozyme molecule is able to cleave many molecules of target RNA.
  • the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding, but also on the mechanism by which the molecule inhibits the expression of the RNA to which it binds. That is, the inhibition is caused by cleavage of the RNA target and so specificity is defined as the ratio of the rate of cleavage of ⁇ the targeted RNA over the rate of cleavage of non-targeted RNA. This cleavage mechanism is dependent upon factors additional to those involved in base pairing. Thus, it is thought that the specificity of action of a ribozyme is greater than that of antisense oligonucleotide binding the same RNA site.
  • enzymatic RNA molecule an RNA molecule which has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave RNA in that target. That is, the enzymatic RNA molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. This complementarity functions to allow sufficient hybridization of the enzymatic RNA molecule to the target RNA to allow the cleavage to occur. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in this invention.
  • equivalent RNA to picornavirus is meant to include those naturally occurring RNA molecules associated with viral caused diseases in various animals, including humans, and other primates. These viral RNAs have similar structures and equivalent genes to each other.
  • RNA molecules of this invention has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.
  • a method based upon H-phosphonate chemistry gives a relatively lower coupling efficiency than a method based upon phosphoramidite chemistry. This is a problem for synthesis of DNA as well.
  • a promising approach to scale-up of automatic oligonucleotide synthesis has been described recently for the H-phosphonates.
  • a combination of a proper coupling time and additional capping of "failure" sequences gave high yields in the synthesis of oligodeoxynucleotides in scales in the range of 14 ⁇ moles with as little as 2 equivalents of a monomer in the coupling step.
  • Another alternative approach is to use soluble polymeric supports (e.g. , polyethylene glycols) , instead of the conventional solid supports. This method can yield short oligonucleotides in hundred milligram quantities per batch utilizing about 3 equivalents of a monomer in a coupling step.
  • ribozyme structure can be made to enhance the utility of ribozymes. Such modifications will enhance shelf-life, half-life in vi tro, stability, and ease of introduction of such ribozymes to the target site, e.g. , to enhance penetration of cellular membranes, and confer the ability to recognize and bind to targeted cells.
  • Exogenous delivery of ribozymes benefits from chemical modification of the backbone, e.g. , by the overall negative charge of the ribozyme molecule being reduced to facilitate diffusion across the cell membrane.
  • the present strategies for reducing the oligonucleotide charge include: modification of internucleotide linkages by ethylphosphonates, use of phosphoramidites, linking oligonucleotides to positively charged molecules, and creating complex packages composed of oligonucleotides, lipids and specific receptors or effectors for targeted cells. Examples of such modifications include sulfur- containing ribozymes containing phosphorothioates and phosphorodithioates as internucleotide linkages in RNA.
  • Ribozymes may also contain ribose modified ribonucleotides as described herein. Ribozymes can also be either electrostatically or covalently attached to polymeric cations for the purpose of reducing charge. The polymer can be attached to the ribozyme by simply converting the 3'-end to a ribonucleoside dialdehyde which is obtained by a periodate cleavage of the terminal 2',3'-cis diol system.
  • linker arms containing carboxyl, amino or thiol functionalities may include different linker arms containing carboxyl, amino or thiol functionalities.
  • further examples include use of methylphosphonates and 2'-O- methylribose and 5' or 3' capping or blocking with m 7 GpppG or m 3 2 ' 2,7 GpppG.
  • a kinased ribozyme is contacted with guanosine triphosphate and guanyltransferase to add a m 3 G cap to the ribozyme.
  • the ribozyme can be gel purified using standard procedure. To ensure that the ribozyme has the desired activity, it may be tested with and without the 5' cap using standard procedures to assay both its enzymatic activity and its stability.
  • Synthetic ribozymes including those containing various modifiers, can be purified by high pressure liquid chromatography (HPLC) .
  • HPLC high pressure liquid chromatography
  • Other liquid chromatography techniques, employing reverse phase columns and anion exchangers on silica and polymeric supports may also be used.
  • Blocked ribozymes are cleaved from the solid support (e.g. , CPG) , and the bases and diphosphoester moiety deprotected in a sterile vial by dry ethanolic ammonia (2 mL) at 55°C for 16 hours. The reaction mixture is cooled on dry ice. Later, the cold liquid is transferred into a sterile screw cap vial and lyophilized. These conditions are suitable for removal of carbamate blocking groups in the 2' modifications shown in Formula I, and the amido and peptido linkages remain intact.
  • the residue is suspended in 1 M tetra- n-butylammonium fluoride in dry THF (TBAF) , using a 20- fold excess of the reagent for every silyl group, for 16 hours at ambient temperature (about 15-25°C) .
  • THF dry THF
  • the reaction is quenched by adding an equal volume of sterile 1 M triethylamine acetate, pH 6.5.
  • the sample is cooled and concentrated on a SpeedVac to half the initial volume.
  • the ribozymes are purified in two steps by HPLC on a C4 300 A 5 mm DeltaPak column in an acetonitrile gradient.
  • the first step is a separation of 5'-DMT-protected ribozyme(s) from failure sequences lacking a 5'-DMT group.
  • Solvents used for this step are: A (0.1 M triethylammonium acetate, pH 6.8) and B (acetonitrile).
  • the elution profile is: 20% B for 10 minutes, followed by a linear gradient of 20% B to 50% B over 50 minutes, 50% B for 10 minutes, a linear gradient of 50% B to 100% B over 10 minutes, and a linear gradient of 100% B to 0% B over 10 minutes.
  • the fraction containing ribozyme is cooled and lyophilized on a SpeedVac. Solid residue is dissolved in a minimum amount of ethanol and sodium perchlorate in acetone. The ribozyme is collected by centrifugation, washed three times with acetone, and lyophilized. Administration of Ribozyme
  • Selected ribozymes can be administered prophylactically, or to diseased patients, e.g. , by exogenous delivery of the ribozyme to an infected tissue by means of an appropriate delivery vehicle, e.g. , a liposome, a controlled release vehicle, by use of iontophoresis, electroporation or ion paired molecules, or covalently attached adducts, and other pharmacologically approved methods of delivery.
  • routes of administration include intramuscular, aerosol, oral (tablet or pill form) , topical, systemic, ocular, intraperitoneal and/or intrathecal.
  • Expression vectors for immunization with ribozymes and/or delivery of ribozymes are also suitable.
  • the specific delivery route of any selected ribozyme will depend on the use of the ribozyme. Generally, a specific delivery program for each ribozyme will focus on naked ribozyme uptake with regard to intracellular localization, followed by demonstration of efficacy. Alternatively, delivery to these same cells in an organ or tissue of an animal can be pursued. Uptake studies will include uptake assays to evaluate cellular oligonucleotide uptake, regardless of the delivery vehicle or strategy. Such assays will also determine the intracellular localization of the ribozyme following uptake, ultimately establishing the requirements for maintenance of steady-state concentrations within the cellular compartment containing the target sequence (nucleus and/or cytoplasm) . Efficacy and cytotoxicity can then be tested. Toxicity will not only include cell viability but also cell function.
  • Some methods of delivery include: a. encapsulation in liposomes, b. transduction by retroviral vectors, c. conjugation with cholesterol, d. localization to nuclear compartment utilizing antigen binding site found on most snRNAs, e. neutralization of charge of ribozyme by using nucleotide derivatives, and f. use of blood stem cells to distribute ribozymes throughout the body.
  • ribozyme modifications like most small molecules, are taken up by cells, albeit slowly.
  • the ribozyme may be modified essentially at random, in ways which reduces its charge but maintains specific functional groups. This results in a molecule which is able to diffuse across the cell membrane, thus removing the permeability barrier.
  • ribozymes Modification of ribozymes to reduce charge is just one approach to enhance the cellular uptake of these larger molecules.
  • the random approach is not advisable since ribozymes are structurally and functionally more complex than small drug molecules.
  • the structural requirements necessary to maintain ribozyme catalytic activity are well understood by those in the art. These requirements are taken into consideration when designing modifications to enhance cellular delivery. The modifications are also designed to reduce susceptibility to nuclease degradation. Both of these characteristics should greatly improve the efficacy of the ribozyme.
  • Cellular uptake can be increased by several orders of magnitude without having to alter the phosphodiester linkages necessary for ribozyme cleavage activity.
  • Drug delivery vehicles are effective for both systemic and topical administration. They can be designed to serve as a slow release reservoir, or to deliver their contents directly to the target cell.
  • An advantage of using direct delivery drug vehicles is that multiple molecules are delivered per uptake. Such vehicles have been shown to increase the circulation half-life of drugs which would otherwise be rapidly cleared from the blood stream.
  • Some examples of such specialized drug delivery vehicles which fall into this category are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.
  • liposomes are preferred. Liposomes increase intracellular stability, increase uptake efficiency and improve biological activity. Liposomes are hollow spherical vesicles composed of lipids arranged in a similar fashion as those lipids which make up the cell membrane. They have an internal aqueous space for entrapping water soluble compounds and range in size from 0.05 to several microns in diameter. Several studies have shown that liposomes can deliver RNA to cells and that the RNA remains biologically active. For example, a liposome delivery vehicle originally designed as a research tool, Lipofectin, has been shown to deliver intact mRNA molecules to cells yielding production of the corresponding protein. 5.
  • Liposomes offer several advantages: They are non-toxic and biodegradable in composition; they display long circulation half-lives; and recognition molecules can be readily attached to their surface for targeting to tissues. Finally, cost effective manufacture of liposome- 0 based pharmaceuticals, either in a liquid suspension or lyophilized product, has demonstrated the viability of this technology as an acceptable drug delivery system.
  • Nonoparticles and hydrogels may be potential delivery vehicles for a ribozyme.
  • These carriers have been developed for chemotherapeutic agents and protein- based pharmaceuticals, and consequently, can be adapted for ribozyme delivery.
  • Topical administration of ribozymes is advantageous since it allows localized concentration at the site of administration with minimal systemic adsorption. This simplifies the delivery strategy of the ribozyme to the disease site and reduces the extent of toxicological characterization. Furthermore, the amount of material to be applied is far less than that required for other administration routes. Effective delivery requires the ribozyme to diffuse into the infected cells. Chemical modification of the ribozyme to neutralize negative charge may be all that is required for penetration. However, in the event that charge neutralization is insufficient, the modified ribozyme can be co-formulated with permeability enhancers, such as Azone or oleic acid, in a liposome.
  • permeability enhancers such as Azone or oleic acid
  • the liposomes can either represent a slow release presentation vehicle in which the modified ribozyme and permeability enhancer transfer from the liposome into the infected cell, or the liposome phospholipids can participate directly with the modified ribozyme and permeability enhancer in facilitating cellular delivery.
  • both the ribozyme and permeability enhancer can be formulated into a suppository formulation for slow release. Ribozymes may also be systemically administered.
  • Systemic absorption refers to the accumulation of drugs in the blood stream followed by distribution throughout the entire body.
  • Administration routes which lead to systemic absorption include: intravenous, subcutaneous, intraperitoneal, intranasal, intrathecal and ophthalmic. Each of these administration routes expose the ribozyme to an accessible diseased tissue.
  • Subcutaneous administration drains into a localized lymph node which proceeds through the lymphatic network into the circulation. The rate of entry into the circulation has been shown to be a function of molecular weight or size.
  • the use of a liposome or other drug carrier localizes the ribozyme at the lymph node.
  • the ribozyme can be modified to diffuse into the cell, or- the liposome can directly participate in the delivery of either the unmodified or modified ribozyme to the cell.
  • a liposome formulation which can deliver ribozymes to lymphocytes and macrophages is also useful for the initial site of influenza virus replication is in tissues of the nasopharynx and respiratory system. Coating of lymphocytes with liposomes containing ribozymes will target the ribozymes to infected cells expressing viral surface antigens.
  • Whole blood studies show that the formulation is taken up by 90% of the lymphocytes after 8 hours at 37°C. Preliminary biodistribution and pharmacokinetic studies yielded 70% of the injected dose/gm of tissue in the spleen after one hour following intravenous administration.
  • Intraperitoneal administration also leads to entry into the circulation, with once again, the molecular weight or size controlling the rate of entry.
  • Liposomes injected intravenously show accumulation in the liver, lung and spleen.
  • the composition and size can be adjusted so that this accumulation represents 30% to 40% of the injected dose.
  • the rest is left to circulate in the blood stream for up to 24 hours.
  • the chosen method of delivery should result in cytoplasmic accumulation and molecules should have some nuclease-resistance for optimal dosing.
  • Nuclear delivery may be used but is less preferable.
  • Most preferred delivery methods include liposomes (10-400 niti) , hydrogels, controlled-release polymers, microinjection or electroporation (for ex vivo treatments) and other pharmaceutically applicable vehicles.
  • the dosage will depend upon the disease indication and the route of administration but should be between 100-200 mg/kg of body weight/day.
  • the duration of treatment will extend through the course of the disease symptoms, usually at least 14-16 days and possibly continuously. Multiple daily doses are anticipated for topical applications, ocular applications and vaginal applications. The number of doses will depend upon disease delivery vehicle and efficacy data from clinical trials.
  • ribozyme within the cell is dependent upon the rate of uptake and degradation. Decreasing the degree of degradation will prolong the intracellular half-life of the ribozyme.
  • chemically modified ribozymes e.g.. with modification of the phosphate backbone, or capping of the 5' and 3' ends of the ribozyme with nucleotide analogues may require different dosaging. Descriptions of useful systems are provided in the art cited above, all of which is hereby incorporated by reference herein.
  • the claimed ribozymes are also useful as diagnostic tools to specifically or non-specifically detect the presence of a target RNA in a sample. That is, the target RNA, if present in the sample, will be specifically cleaved by the ribozyme, and thus can be readily and specifically detected as smaller RNA species. The presence of such smaller RNA species is indicative of the presence of the target RNA in the sample.

Abstract

Oligonucleotide comprising a nucleotide base having formula (I) wherein B is a nucleotide base or hydrogen; R1 and R2 indepently are selected from the group consisting of hydrogen, an alkyl group containing between 2 and 10 carbon atoms inclusive, an amine, an amino acid, and a peptide containing between 2 and 5 amino acids inclusive; and the zigzag lines are independently hydrogen or a bond.

Description

DESCRIPTION
2'-AMID0 AND 2'-PEPTIDO MODIFIED OLIGONUCLEOTIDES
Background of the Invention
This invention relates to 2'- modifications of oligonucleotides.
Us an et al., "Nucleozymes", International Application No. PCT/US93/00833, describe modification of the 2'-hydroxyl group of RNA to produce modified nucleotides. Such nucleotides are termed nucleic acid analogues, and may have a "good coordinating ligand" with divalent metal ions, e.g. , a halogen, or a ine group. Acyclic analogues are also proposed.
Eckstein, International Application No. PCT/EP91/01811 (WO 92/07065), describes 2'-hydroxyl modifications of RNA having the following substitutions in place of the hydroxyl group: halo, sulfhydryl, azido, amino, onosubstituted amino and disubstituted amino.
Summary of the Invention This invention relates to replacement of the 2'- hydroxyl group of a ribonucleotide moiety with a 2'-amido or 2'-peptido moiety. Generally, such a nucleotide has the general structure shown in Formula I below:
Figure imgf000003_0001
The base (B) is any one of the standard bases or is a modified nucleotide base known to those in the art, or can be a hydrogen group. In addition, either Rx or R2 is H or an alkyl, alkene or alkyne group containing between 2 and 10 carbon atoms, or hydrogen, an amine (primary, secondary or tertiary, e.g. , R3NR4 where each R3 and R4 independently is hydrogen or an alkyl, alkene or alkyne having between 2 and 10 carbon atoms, or is a residue of an amino acid, i.e. , an amide) , an alkyl group, or an amino acid (D or L forms) or peptide containing between 2 and 5 amino acids. The zigzag lines represent hydrogen, or a bond to another base or other chemical moiety known in the art. Preferably, one of Rx and R2 is an H, and the other is an amino acid or peptide. Applicant has recognized that RNA can assume a much more complex structural form than DNA because of the presence of the 2'-hydroxyl group in RNA. This group is able to provide additional hydrogen bonding with other hydrogen donors, acceptors and metal ions within the RNA molecule. Applicant now provides molecules which have a modified amine group at the .2' position, such that significantly more complex structures can be formed by the modified oligonucleotide. Such modification with a 2'- amido or peptido group leads to expansion and enrichment of the side-chain hydrogen bonding network. The amide and peptide moieties are responsible for complex structural formation of the oligonucleotide and can form strong complexes with other bases, and interfere with standard base pairing interactions. Such interference will allow the formation of a complex nucleic acid and protein conglomerate.
Oligonucleotides of this invention are significantly more stable than existing oligonucleotides and can potentially form biologically active bioconjugates not previously possible for oligonucleotides. They may also be used for in vi tro selection of unique aptamers, that is, randomly generated oligonucleotides which can be folded into an effective ligand for a target protein, nucleic acid or polysaccharide.
Thus, in a first aspect, the invention features an oligonucleotide containing the modified base shown in Formula I, above.
Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims. Description of the Preferred Embodiments Oligonucleotides of this invention are described generally above, and the structure is shown in Formula I, where such modifications to the 2'-hydroxyl group can be made in one or more positions of an RNA or DNA molecule. Preferably, the oligonucleotide is single-stranded and has between 10 and 50 bases of which one or more may be modified as shown, preferably, between 1 and 10 are modified. Such oligonucleotides may include those having enzymatic activity, i.e. , ribozymes, which are modified in the 2'- position of the sugar moiety as shown in Formula I to provide stability to that enzymatic activity without significant alteration of the activity.
Oligonucleotides of the present invention can be readily synthesized using carbamate protecting groups, such as F-moc, in the peptide moieties and deprotected under mild basic conditions. Such nucleotides can then be incorporated by standard solid phase synthesis using nucleoside phosphoramidite or H-phosphonate intermediates. Use
The above nucleotides are particularly useful in ribozymes. Ribozymes are RNA molecules having an enzymatic activity which is able to repeatedly cleave other separate RNA molecules in a nucleotide base sequence specific manner. Such enzymatic RNA molecules can be targeted to virtually any RNA transcript, and efficient cleavage achieved in vi tro . Kim et al., 84 Proc. Natl. Acad. Sci. USA 8788, 1987; Haseloff and Gerlach, 334 Nature 585, 1988; Cech, 260 JAMA 3030, 1988; and Jefferies et al., 17 Nucleic Acids Research 1371, 1989.
Ribozymes act by first binding to a target RNA. Such binding occurs through the target RNA binding portion of a ribozyme which is held in close proximity to an enzymatic portion of the RNA which acts to cleave the target RNA. Thus, the ribozyme first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After a ribozyme has bound and cleaved its RNA target it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. The enzymatic nature of a ribozyme is advantageous over other technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the effective concentration of ribozyme necessary to effect a therapeutic treatment is lower than that of an antisense oligonucleotide. This advantage reflects the ability of the ribozyme to act enzymatically. ' Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding, but also on the mechanism by which the molecule inhibits the expression of the RNA to which it binds. That is, the inhibition is caused by cleavage of the RNA target and so specificity is defined as the ratio of the rate of cleavage of the targeted RNA over the rate of cleavage of non-targeted RNA. This cleavage mechanism is dependent upon factors additional to those involved in base pairing. Thus, it is thought that the specificity of action of a ribozyme is greater than that of antisense oligonucleotide binding the same RNA site. By "enzymatic RNA molecule" it is meant an RNA molecule which has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave RNA in that target. That is, the enzymatic RNA molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. This complementarity functions to allow sufficient hybridization of the enzymatic RNA molecule to the target RNA to allow the cleavage to occur. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in this invention. By "equivalent" RNA to picornavirus is meant to include those naturally occurring RNA molecules associated with viral caused diseases in various animals, including humans, and other primates. These viral RNAs have similar structures and equivalent genes to each other.
In preferred embodiments the enzymatic RNA molecule is formed in a hammerhead motif, but may also be formed in the motif of a hairpin, hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) . Examples of such hammerhead motifs are described by Rossi et al., 8 Aids Research and Human Retroviruses 183, 1992; of hairpin motifs by Ha pel et al., "RNA Catalyst for Cleaving Specific RNA Sequences," filed September 20, 1989, which is a continuation-in-part of U.S. Serial No. 07/247,100 filed September 20, 1988, Hampel and Tritz, 28 Biochemistry 4929, 1989 and Hampel et al., 18 Nucleic Acids Research 299, 1990; and an example of the hepatitis delta virus motif is described by Perrotta and Been, 31 Biochemistry 16, 1992; of the RNaseP motif by Guerrier-Takada et al., 35 Cell 849, 1983; and of the group I intron by Cech et al., U.S. Patent 4,987,071. These specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic RNA molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule. Synthesis of Ribozymes
Ribozymes useful in this invention can be produced by chemical synthesis. Chemical synthesis of RNA is similar to that for DNA synthesisΛ The additional 2'- OH group in RNA, however, requires a different protecting group strategy to deal with selective 3'-5' internucleotide bond formation, and with RNA susceptibility to degradation in the presence of bases. The recently developed method of RNA synthesis utilizing the t-butyldimethylsilyl group for the protection of the 2'-hydroxyl is the most reliable method for synthesis of ribozymes. The method reproducibly yields RNA with the correct 3'-5' internucleotide linkages, with average coupling yields in excess of 99%, and requires only a two- step deprotection of the polymer. A method based upon H-phosphonate chemistry gives a relatively lower coupling efficiency than a method based upon phosphoramidite chemistry. This is a problem for synthesis of DNA as well. A promising approach to scale-up of automatic oligonucleotide synthesis has been described recently for the H-phosphonates. A combination of a proper coupling time and additional capping of "failure" sequences gave high yields in the synthesis of oligodeoxynucleotides in scales in the range of 14 μmoles with as little as 2 equivalents of a monomer in the coupling step. Another alternative approach is to use soluble polymeric supports (e.g. , polyethylene glycols) , instead of the conventional solid supports. This method can yield short oligonucleotides in hundred milligram quantities per batch utilizing about 3 equivalents of a monomer in a coupling step.
Various modifications to ribozyme structure can be made to enhance the utility of ribozymes. Such modifications will enhance shelf-life, half-life in vi tro, stability, and ease of introduction of such ribozymes to the target site, e.g. , to enhance penetration of cellular membranes, and confer the ability to recognize and bind to targeted cells.
Exogenous delivery of ribozymes benefits from chemical modification of the backbone, e.g. , by the overall negative charge of the ribozyme molecule being reduced to facilitate diffusion across the cell membrane. The present strategies for reducing the oligonucleotide charge include: modification of internucleotide linkages by ethylphosphonates, use of phosphoramidites, linking oligonucleotides to positively charged molecules, and creating complex packages composed of oligonucleotides, lipids and specific receptors or effectors for targeted cells. Examples of such modifications include sulfur- containing ribozymes containing phosphorothioates and phosphorodithioates as internucleotide linkages in RNA. Synthesis of such sulfur-modified ribozymes is achieved by use of the sulfur-transfer reagent, 3H-l,2-benzenedithiol- 3-one 1,1-dioxide. Ribozymes. may also contain ribose modified ribonucleotides as described herein. Ribozymes can also be either electrostatically or covalently attached to polymeric cations for the purpose of reducing charge. The polymer can be attached to the ribozyme by simply converting the 3'-end to a ribonucleoside dialdehyde which is obtained by a periodate cleavage of the terminal 2',3'-cis diol system. Depending on the specific requirements for delivery systems, other possible modifications may include different linker arms containing carboxyl, amino or thiol functionalities. Yet further examples include use of methylphosphonates and 2'-O- methylribose and 5' or 3' capping or blocking with m7GpppG or m3 2'2,7GpppG. For example, a kinased ribozyme is contacted with guanosine triphosphate and guanyltransferase to add a m3G cap to the ribozyme. After such synthesis, the ribozyme can be gel purified using standard procedure. To ensure that the ribozyme has the desired activity, it may be tested with and without the 5' cap using standard procedures to assay both its enzymatic activity and its stability.
Synthetic ribozymes, including those containing various modifiers, can be purified by high pressure liquid chromatography (HPLC) . Other liquid chromatography techniques, employing reverse phase columns and anion exchangers on silica and polymeric supports may also be used.
There follows an example of the synthesis of one ribozyme. A solid phase phosphoramidite chemistry is employed. Monomers used are 2'-tert-butyl-dimethylsilyl cyanoethylphosphoramidites of uridine, N-benzoyl-cytosine, N-phenoxyacetyl adenosine and guanosine (Glen Research, Sterling, VA) . Solid phase synthesis is carried out on either an ABI 394 or 380B DNA/RNA synthesizer using the standard protocol provided with each machine. The only exception is that the coupling step is increased from 10 to 12 minutes. The phosphoramidite concentration is 0.1 M. Synthesis is done on a 1 μmole scale using a 1 μmole RNA reaction column (Glen Research) . The average coupling efficiencies are between 97% and 98% for the 394 model, and between 97% and 99% for the 380B model, as determined by a calorimetric measurement of the released trityl cation.
Blocked ribozymes are cleaved from the solid support (e.g. , CPG) , and the bases and diphosphoester moiety deprotected in a sterile vial by dry ethanolic ammonia (2 mL) at 55°C for 16 hours. The reaction mixture is cooled on dry ice. Later, the cold liquid is transferred into a sterile screw cap vial and lyophilized. These conditions are suitable for removal of carbamate blocking groups in the 2' modifications shown in Formula I, and the amido and peptido linkages remain intact. To remove the 2'-tert-butyl-dimethylsilyl groups from the ribozyme, the residue is suspended in 1 M tetra- n-butylammonium fluoride in dry THF (TBAF) , using a 20- fold excess of the reagent for every silyl group, for 16 hours at ambient temperature (about 15-25°C) . The reaction is quenched by adding an equal volume of sterile 1 M triethylamine acetate, pH 6.5. The sample is cooled and concentrated on a SpeedVac to half the initial volume. The ribozymes are purified in two steps by HPLC on a C4 300 A 5 mm DeltaPak column in an acetonitrile gradient.
The first step, or "trityl on" step, is a separation of 5'-DMT-protected ribozyme(s) from failure sequences lacking a 5'-DMT group. Solvents used for this step are: A (0.1 M triethylammonium acetate, pH 6.8) and B (acetonitrile). The elution profile is: 20% B for 10 minutes, followed by a linear gradient of 20% B to 50% B over 50 minutes, 50% B for 10 minutes, a linear gradient of 50% B to 100% B over 10 minutes, and a linear gradient of 100% B to 0% B over 10 minutes.
The second step is a purification of a completely deblocked ribozyme by a treatment of 2% trifluoroacetic acid on a C4300 A 5 mm DeltaPak column in an acetonitrile gradient. Solvents used for this second step are: A (0.1 M Triethylammonium acetate, pH 6.8) and B (80% acetonitrile, 0.1 M triethylammonium acetate, pH 6.8). The elution profile is: 5% B for 5 minutes, a linear gradient of 5% B to 15% B over 60 minutes, 15% B for 10 minutes, and a linear gradient of 15% B to 0% B over 10 minutes.
The fraction containing ribozyme is cooled and lyophilized on a SpeedVac. Solid residue is dissolved in a minimum amount of ethanol and sodium perchlorate in acetone. The ribozyme is collected by centrifugation, washed three times with acetone, and lyophilized. Administration of Ribozyme
Selected ribozymes can be administered prophylactically, or to diseased patients, e.g. , by exogenous delivery of the ribozyme to an infected tissue by means of an appropriate delivery vehicle, e.g. , a liposome, a controlled release vehicle, by use of iontophoresis, electroporation or ion paired molecules, or covalently attached adducts, and other pharmacologically approved methods of delivery. Routes of administration include intramuscular, aerosol, oral (tablet or pill form) , topical, systemic, ocular, intraperitoneal and/or intrathecal. Expression vectors for immunization with ribozymes and/or delivery of ribozymes are also suitable.
The specific delivery route of any selected ribozyme will depend on the use of the ribozyme. Generally, a specific delivery program for each ribozyme will focus on naked ribozyme uptake with regard to intracellular localization, followed by demonstration of efficacy. Alternatively, delivery to these same cells in an organ or tissue of an animal can be pursued. Uptake studies will include uptake assays to evaluate cellular oligonucleotide uptake, regardless of the delivery vehicle or strategy. Such assays will also determine the intracellular localization of the ribozyme following uptake, ultimately establishing the requirements for maintenance of steady-state concentrations within the cellular compartment containing the target sequence (nucleus and/or cytoplasm) . Efficacy and cytotoxicity can then be tested. Toxicity will not only include cell viability but also cell function.
Some methods of delivery that may be used include: a. encapsulation in liposomes, b. transduction by retroviral vectors, c. conjugation with cholesterol, d. localization to nuclear compartment utilizing antigen binding site found on most snRNAs, e. neutralization of charge of ribozyme by using nucleotide derivatives, and f. use of blood stem cells to distribute ribozymes throughout the body.
At least three types of delivery strategies are useful in the present invention, including: ribozyme modifications, particle carrier drug delivery vehicles, and retroviral expression vectors. Unmodified ribozymes, like most small molecules, are taken up by cells, albeit slowly. To enhance cellular uptake, the ribozyme may be modified essentially at random, in ways which reduces its charge but maintains specific functional groups. This results in a molecule which is able to diffuse across the cell membrane, thus removing the permeability barrier.
Modification of ribozymes to reduce charge is just one approach to enhance the cellular uptake of these larger molecules. The random approach, however, is not advisable since ribozymes are structurally and functionally more complex than small drug molecules. The structural requirements necessary to maintain ribozyme catalytic activity are well understood by those in the art. These requirements are taken into consideration when designing modifications to enhance cellular delivery. The modifications are also designed to reduce susceptibility to nuclease degradation. Both of these characteristics should greatly improve the efficacy of the ribozyme. Cellular uptake can be increased by several orders of magnitude without having to alter the phosphodiester linkages necessary for ribozyme cleavage activity.
Chemical modifications of the phosphate backbone will reduce the negative charge allowing free diffusion across the membrane. This principle has been successfully demonstrated for antisense DNA technology. The similarities in chemical composition between DNA and RNA make this a feasible approach. In the body, maintenance of an external concentration will be necessary to drive the diffusion of the modified ribozyme into the cells of the tissue. Administration routes which allow the diseased tissue to be exposed to a transient high concentration of the drug, which is slowly dissipated by systemic adsorption are preferred. Intravenous administration with a drug carrier designed to increase the circulation half-life of the ribozyme can be used. The size and composition of the drug carrier restricts rapid clearance from the blood stream. The carrier, made to accumulate at the site of infection, can protect the ribozyme from degradative processes.
Drug delivery vehicles are effective for both systemic and topical administration. They can be designed to serve as a slow release reservoir, or to deliver their contents directly to the target cell. An advantage of using direct delivery drug vehicles is that multiple molecules are delivered per uptake. Such vehicles have been shown to increase the circulation half-life of drugs which would otherwise be rapidly cleared from the blood stream. Some examples of such specialized drug delivery vehicles which fall into this category are liposomes, hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres.
From this category of delivery systems, liposomes are preferred. Liposomes increase intracellular stability, increase uptake efficiency and improve biological activity. Liposomes are hollow spherical vesicles composed of lipids arranged in a similar fashion as those lipids which make up the cell membrane. They have an internal aqueous space for entrapping water soluble compounds and range in size from 0.05 to several microns in diameter. Several studies have shown that liposomes can deliver RNA to cells and that the RNA remains biologically active. For example, a liposome delivery vehicle originally designed as a research tool, Lipofectin, has been shown to deliver intact mRNA molecules to cells yielding production of the corresponding protein. 5. Liposomes offer several advantages: They are non-toxic and biodegradable in composition; they display long circulation half-lives; and recognition molecules can be readily attached to their surface for targeting to tissues. Finally, cost effective manufacture of liposome- 0 based pharmaceuticals, either in a liquid suspension or lyophilized product, has demonstrated the viability of this technology as an acceptable drug delivery system.
Other controlled release drug delivery systems, such as nonoparticles and hydrogels may be potential delivery vehicles for a ribozyme. These carriers have been developed for chemotherapeutic agents and protein- based pharmaceuticals, and consequently, can be adapted for ribozyme delivery.
Topical administration of ribozymes is advantageous since it allows localized concentration at the site of administration with minimal systemic adsorption. This simplifies the delivery strategy of the ribozyme to the disease site and reduces the extent of toxicological characterization. Furthermore, the amount of material to be applied is far less than that required for other administration routes. Effective delivery requires the ribozyme to diffuse into the infected cells. Chemical modification of the ribozyme to neutralize negative charge may be all that is required for penetration. However, in the event that charge neutralization is insufficient, the modified ribozyme can be co-formulated with permeability enhancers, such as Azone or oleic acid, in a liposome. The liposomes can either represent a slow release presentation vehicle in which the modified ribozyme and permeability enhancer transfer from the liposome into the infected cell, or the liposome phospholipids can participate directly with the modified ribozyme and permeability enhancer in facilitating cellular delivery. In some cases, both the ribozyme and permeability enhancer can be formulated into a suppository formulation for slow release. Ribozymes may also be systemically administered.
Systemic absorption refers to the accumulation of drugs in the blood stream followed by distribution throughout the entire body. Administration routes which lead to systemic absorption include: intravenous, subcutaneous, intraperitoneal, intranasal, intrathecal and ophthalmic. Each of these administration routes expose the ribozyme to an accessible diseased tissue. Subcutaneous administration drains into a localized lymph node which proceeds through the lymphatic network into the circulation. The rate of entry into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier localizes the ribozyme at the lymph node. The ribozyme can be modified to diffuse into the cell, or- the liposome can directly participate in the delivery of either the unmodified or modified ribozyme to the cell.
A liposome formulation which can deliver ribozymes to lymphocytes and macrophages is also useful for the initial site of influenza virus replication is in tissues of the nasopharynx and respiratory system. Coating of lymphocytes with liposomes containing ribozymes will target the ribozymes to infected cells expressing viral surface antigens. Whole blood studies show that the formulation is taken up by 90% of the lymphocytes after 8 hours at 37°C. Preliminary biodistribution and pharmacokinetic studies yielded 70% of the injected dose/gm of tissue in the spleen after one hour following intravenous administration.
Intraperitoneal administration also leads to entry into the circulation, with once again, the molecular weight or size controlling the rate of entry. Liposomes injected intravenously show accumulation in the liver, lung and spleen. The composition and size can be adjusted so that this accumulation represents 30% to 40% of the injected dose. The rest is left to circulate in the blood stream for up to 24 hours.
The chosen method of delivery should result in cytoplasmic accumulation and molecules should have some nuclease-resistance for optimal dosing. Nuclear delivery may be used but is less preferable. Most preferred delivery methods include liposomes (10-400 niti) , hydrogels, controlled-release polymers, microinjection or electroporation (for ex vivo treatments) and other pharmaceutically applicable vehicles. The dosage will depend upon the disease indication and the route of administration but should be between 100-200 mg/kg of body weight/day. The duration of treatment will extend through the course of the disease symptoms, usually at least 14-16 days and possibly continuously. Multiple daily doses are anticipated for topical applications, ocular applications and vaginal applications. The number of doses will depend upon disease delivery vehicle and efficacy data from clinical trials.
Establishment of therapeutic levels of ribozyme within the cell is dependent upon the rate of uptake and degradation. Decreasing the degree of degradation will prolong the intracellular half-life of the ribozyme. Thus, chemically modified ribozymes, e.g.. with modification of the phosphate backbone, or capping of the 5' and 3' ends of the ribozyme with nucleotide analogues may require different dosaging. Descriptions of useful systems are provided in the art cited above, all of which is hereby incorporated by reference herein.
The claimed ribozymes are also useful as diagnostic tools to specifically or non-specifically detect the presence of a target RNA in a sample. That is, the target RNA, if present in the sample, will be specifically cleaved by the ribozyme, and thus can be readily and specifically detected as smaller RNA species. The presence of such smaller RNA species is indicative of the presence of the target RNA in the sample.
Other embodiments are within the following claims.

Claims

Claims 1. Oligonucleotide comprising a nucleotide base having the formula:
Figure imgf000019_0001
wherein B is a nucleotide base or hydrogen; Rx and R2 independently is selected from the group consisting of hydrogen, an alkyl group containing between 2 and 10 carbon atoms inclusive, an amine, an amino acid, and a peptide containing between 2 and 5 amino acids inclusive; and the zigzag lines are independently hydrogen or a bond.
PCT/US1994/012164 1993-10-27 1994-10-24 2'-amido and 2'-peptido modified oligonucleotides WO1995011910A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP94932003A EP0725788B1 (en) 1993-10-27 1994-10-24 2'-amido and 2'-peptido modified oligonucleotides
DE69415343T DE69415343T2 (en) 1993-10-27 1994-10-24 2'-AMIDO AND 2'-PEPTIDO-MODIFIED OLIGONUCLEOTIDES
AU80886/94A AU8088694A (en) 1993-10-27 1994-10-24 2'-amido and 2'-peptido modified oligonucleotides
DK94932003T DK0725788T3 (en) 1993-10-27 1994-10-24 2'-amido and 2'-peptide modified oligonucleotides
JP7512756A JPH09504297A (en) 1993-10-27 1994-10-24 2'-amide and 2'-peptide modified oligonucleotides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14383293A 1993-10-27 1993-10-27
US08/143,832 1993-10-27

Publications (1)

Publication Number Publication Date
WO1995011910A1 true WO1995011910A1 (en) 1995-05-04

Family

ID=22505865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1994/012164 WO1995011910A1 (en) 1993-10-27 1994-10-24 2'-amido and 2'-peptido modified oligonucleotides

Country Status (10)

Country Link
US (3) US5783425A (en)
EP (1) EP0725788B1 (en)
JP (1) JPH09504297A (en)
AT (1) ATE174600T1 (en)
AU (1) AU8088694A (en)
CA (1) CA2174339A1 (en)
DE (1) DE69415343T2 (en)
DK (1) DK0725788T3 (en)
ES (1) ES2127948T3 (en)
WO (1) WO1995011910A1 (en)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998028317A2 (en) * 1996-12-24 1998-07-02 Ribozyme Pharmaceuticals, Inc. Synthesis of nucleosides and polynucleotides
US5807743A (en) * 1996-12-03 1998-09-15 Ribozyme Pharmaceuticals, Inc. Interleukin-2 receptor gamma-chain ribozymes
WO1999055857A2 (en) * 1998-04-29 1999-11-04 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into ribozymes
US6127173A (en) * 1997-09-22 2000-10-03 Ribozyme Pharmaceuticals, Inc. Nucleic acid catalysts with endonuclease activity
US6127535A (en) * 1997-11-05 2000-10-03 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into oligonucleotides
US6248878B1 (en) 1996-12-24 2001-06-19 Ribozyme Pharmaceuticals, Inc. Nucleoside analogs
US6251666B1 (en) 1997-03-31 2001-06-26 Ribozyme Pharmaceuticals, Inc. Nucleic acid catalysts comprising L-nucleotide analogs
US6280936B1 (en) 1997-06-09 2001-08-28 Ribozyme Pharmaceuticals, Inc. Method for screening nucleic acid catalysts
US6458559B1 (en) 1998-04-22 2002-10-01 Cornell Research Foundation, Inc. Multivalent RNA aptamers and their expression in multicellular organisms
US6548657B1 (en) 1997-06-09 2003-04-15 Ribozyme Pharmaceuticals, Inc. Method for screening nucleic acid catalysts
US6617438B1 (en) 1997-11-05 2003-09-09 Sirna Therapeutics, Inc. Oligoribonucleotides with enzymatic activity
US6656731B1 (en) 1997-09-22 2003-12-02 Max Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Nucleic acid catalysts with endonuclease activity
US6673611B2 (en) 1998-04-20 2004-01-06 Sirna Therapeutics, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
US6831171B2 (en) 2000-02-08 2004-12-14 Yale University Nucleic acid catalysts with endonuclease activity
WO2005010042A1 (en) 2003-07-18 2005-02-03 Charité-Universitäts- Medezin Berlin 7a5/prognostin and use thereof for the diagnostic and therapy of tumors
WO2005041859A2 (en) 2003-04-30 2005-05-12 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery.
US7022828B2 (en) 2001-04-05 2006-04-04 Sirna Theraputics, Inc. siRNA treatment of diseases or conditions related to levels of IKK-gamma
US7034009B2 (en) 1995-10-26 2006-04-25 Sirna Therapeutics, Inc. Enzymatic nucleic acid-mediated treatment of ocular diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R)
US7109165B2 (en) 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US7176304B2 (en) 2002-02-20 2007-02-13 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US7435542B2 (en) 2002-06-24 2008-10-14 Cornell Research Foundation, Inc. Exhaustive selection of RNA aptamers against complex targets
WO2008137758A2 (en) 2007-05-04 2008-11-13 Mdrna, Inc. Amino acid lipids and uses thereof
US7491805B2 (en) 2001-05-18 2009-02-17 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
EP2042510A2 (en) 2002-02-20 2009-04-01 Sirna Therapeutics Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleid acid (siNA)
EP2068152A1 (en) 2007-12-06 2009-06-10 Max-Delbrück-Centrum für Molekulare Medizin (MDC) c-Kit as a novel target for the treatment of pain
WO2009155100A1 (en) 2008-05-30 2009-12-23 Yale University Targeted oligonucleotide compositions for modifying gene expression
EP2151248A1 (en) 2008-07-30 2010-02-10 Johann Bauer Improved pre-mRNA trans-splicing molecule (RTM) molecules and their uses
WO2010090762A1 (en) 2009-02-04 2010-08-12 Rxi Pharmaceuticals Corporation Rna duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
EP2275116A1 (en) 2003-07-18 2011-01-19 Sanofi-Aventis Deutschland GmbH Use of a Pak inhibitor for the treatment of a joint disease
WO2011019679A1 (en) 2009-08-11 2011-02-17 Allergan, Inc. Ccr2 inhibitors for treating conditions of the eye
US7923547B2 (en) 2002-09-05 2011-04-12 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7989612B2 (en) 2002-02-20 2011-08-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
WO2011120023A1 (en) 2010-03-26 2011-09-29 Marina Biotech, Inc. Nucleic acid compounds for inhibiting survivin gene expression uses thereof
WO2011133584A2 (en) 2010-04-19 2011-10-27 Marina Biotech, Inc. Nucleic acid compounds for inhibiting hras gene expression and uses thereof
WO2011139710A1 (en) 2010-04-26 2011-11-10 Marina Biotech, Inc. Nucleic acid compounds with conformationally restricted monomers and uses thereof
WO2011139843A2 (en) 2010-04-28 2011-11-10 Marina Biotech, Inc. Multi-sirna compositions for reducing gene expression
EP2415486A2 (en) 2001-05-18 2012-02-08 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
WO2012080459A1 (en) 2010-12-17 2012-06-21 Sanofi Mirnas in joint disease
WO2012080461A1 (en) 2010-12-17 2012-06-21 Sanofi Mirnas in joint disease
WO2012080460A1 (en) 2010-12-17 2012-06-21 Sanofi Mirnas in joint disease
WO2012084709A1 (en) 2010-12-17 2012-06-28 Sanofi Mirnas in joint disease
WO2012118910A2 (en) 2011-03-03 2012-09-07 Quark Pharmaceuticals, Inc. Compositions and methods for treating lung disease and injury
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US8299236B2 (en) 2004-05-04 2012-10-30 Marina Biotech, Inc. Compositions and methods for enhancing delivery of nucleic acids into cells and for modifying expression of target genes in cells
US8329667B2 (en) 2004-04-23 2012-12-11 The Trustees Of Columbia University In The City Of New York Inhibition of hairless protein mRNA
EP2532755A1 (en) 2011-06-10 2012-12-12 Sanofi-Aventis Methods and uses based on Slfn2 expression and relating to the identification and profiling of compounds for use in the treatment or prevention of pain
WO2012168453A1 (en) 2011-06-10 2012-12-13 Sanofi Methods and uses relating to the diagnosis or prognosis of pain-related tissue states or pain-related diseases such as pain
WO2012170957A2 (en) 2011-06-08 2012-12-13 Nitto Denko Corporation Retinoid-liposomes for enhancing modulation of hsp47 expression
WO2013036868A1 (en) 2011-09-07 2013-03-14 Marina Biotech Inc. Synthesis and uses of nucleic acid compounds with conformationally restricted monomers
WO2014004336A2 (en) 2012-06-27 2014-01-03 The Trustees Of Princeton University Split inteins, conjugates and uses thereof
US8664189B2 (en) 2008-09-22 2014-03-04 Rxi Pharmaceuticals Corporation RNA interference in skin indications
WO2014043291A1 (en) 2012-09-12 2014-03-20 Quark Pharmaceuticals, Inc. Double-stranded nucleic acid compounds
US8710209B2 (en) 2009-12-09 2014-04-29 Nitto Denko Corporation Modulation of HSP47 expression
US8815818B2 (en) 2008-07-18 2014-08-26 Rxi Pharmaceuticals Corporation Phagocytic cell delivery of RNAI
EP2826863A1 (en) 2007-05-30 2015-01-21 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US8999947B2 (en) 2005-06-14 2015-04-07 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
EP2857501A1 (en) 2013-10-03 2015-04-08 ETH Zurich Reprogramming of pluripotent stem cells for improved control of their differentiation pathways
WO2015049277A1 (en) 2013-10-01 2015-04-09 Ruprecht-Karls-Universität Heidelberg S100 based treatment of cardiac power failure
US9074211B2 (en) 2008-11-19 2015-07-07 Rxi Pharmaceuticals Corporation Inhibition of MAP4K4 through RNAI
US9080171B2 (en) 2010-03-24 2015-07-14 RXi Parmaceuticals Corporation Reduced size self-delivering RNAi compounds
EP2902013A1 (en) 2008-10-16 2015-08-05 Marina Biotech, Inc. Processes and Compositions for Liposomal and Efficient Delivery of Gene Silencing Therapeutics
US9139827B2 (en) 2008-11-24 2015-09-22 Northwestern University Polyvalent RNA-nanoparticle compositions
US9181551B2 (en) 2002-02-20 2015-11-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US9243246B2 (en) 2010-08-24 2016-01-26 Sirna Therapeutics, Inc. Single-stranded RNAi agents containing an internal, non-nucleic acid spacer
US9260471B2 (en) 2010-10-29 2016-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)
US9271932B2 (en) 2006-04-28 2016-03-01 Children's Hospital Medical Center Fusogenic properties of saposin C and related proteins and peptides for application to transmembrane drug delivery systems
US9340786B2 (en) 2010-03-24 2016-05-17 Rxi Pharmaceuticals Corporation RNA interference in dermal and fibrotic indications
US9376690B2 (en) 2009-10-30 2016-06-28 Northwestern University Templated nanoconjugates
WO2016106405A1 (en) 2014-12-26 2016-06-30 Nitto Denko Corporation Rna interference compositions and methods for malignant tumors
US9493774B2 (en) 2009-01-05 2016-11-15 Rxi Pharmaceuticals Corporation Inhibition of PCSK9 through RNAi
US9657294B2 (en) 2002-02-20 2017-05-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US9714446B2 (en) 2010-02-11 2017-07-25 Nanostring Technologies, Inc. Compositions and methods for the detection of small RNAs
US9890427B2 (en) 2007-02-09 2018-02-13 Northwestern University Particles for detecting intracellular targets
US9889209B2 (en) 2011-09-14 2018-02-13 Northwestern University Nanoconjugates able to cross the blood-brain barrier
US9932566B2 (en) 2014-08-07 2018-04-03 Agilent Technologies, Inc. CIS-blocked guide RNA
US9994853B2 (en) 2001-05-18 2018-06-12 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US10098958B2 (en) 2009-01-08 2018-10-16 Northwestern University Delivery of oligonucleotide functionalized nanoparticles
US10131904B2 (en) 2008-02-11 2018-11-20 Rxi Pharmaceuticals Corporation Modified RNAi polynucleotides and uses thereof
US10184124B2 (en) 2010-03-24 2019-01-22 Phio Pharmaceuticals Corp. RNA interference in ocular indications
US10196637B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Retinoid-lipid drug carrier
US10329617B2 (en) 2008-05-08 2019-06-25 The Johns Hopkins University Compositions and methods for modulating an immune response
US10508277B2 (en) 2004-05-24 2019-12-17 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US10808247B2 (en) 2015-07-06 2020-10-20 Phio Pharmaceuticals Corp. Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
US10900039B2 (en) 2014-09-05 2021-01-26 Phio Pharmaceuticals Corp. Methods for treating aging and skin disorders using nucleic acids targeting Tyr or MMP1
US10934550B2 (en) 2013-12-02 2021-03-02 Phio Pharmaceuticals Corp. Immunotherapy of cancer
EP3816287A1 (en) 2015-12-13 2021-05-05 Nitto Denko Corporation Sirna structures for high activity and reduced off target
US11001845B2 (en) 2015-07-06 2021-05-11 Phio Pharmaceuticals Corp. Nucleic acid molecules targeting superoxide dismutase 1 (SOD1)
US11021707B2 (en) 2015-10-19 2021-06-01 Phio Pharmaceuticals Corp. Reduced size self-delivering nucleic acid compounds targeting long non-coding RNA
US11213593B2 (en) 2014-11-21 2022-01-04 Northwestern University Sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
US11279934B2 (en) 2014-04-28 2022-03-22 Phio Pharmaceuticals Corp. Methods for treating cancer using nucleic acids targeting MDM2 or MYCN
WO2023092102A1 (en) 2021-11-19 2023-05-25 Sanegene Bio Usa Inc. Double stranded rna targeting angiopoietin-like 3 (angptl-3) and methods of use thereof
WO2023220561A1 (en) 2022-05-09 2023-11-16 Sanegene Bio Usa Inc. Double stranded rna targeting 17-beta hydroxysteroiddehydrogenase 13 (hsd17b13) and methods of use thereof
WO2024031101A1 (en) 2022-08-05 2024-02-08 Sanegene Bio Usa Inc. Double stranded rna targeting angiotensinogen (agt) and methods of use thereof
US11932854B2 (en) 2021-10-25 2024-03-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69415343T2 (en) * 1993-10-27 1999-08-26 Ribozyme Pharmaceuticals 2'-AMIDO AND 2'-PEPTIDO-MODIFIED OLIGONUCLEOTIDES
US6159951A (en) * 1997-02-13 2000-12-12 Ribozyme Pharmaceuticals Inc. 2'-O-amino-containing nucleoside analogs and polynucleotides
EP1196631B1 (en) * 1999-04-30 2006-12-06 Cyclops Genome Sciences Limited Modifications of ribonucleic acids
JP2004527220A (en) * 2000-09-13 2004-09-09 アルケミックス コーポレイション Target activated nucleic acid biosensor and method of using same
US7125660B2 (en) * 2000-09-13 2006-10-24 Archemix Corp. Nucleic acid sensor molecules and methods of using same
EP2351855A1 (en) 2000-09-26 2011-08-03 Duke University RNA aptamers and methods for identifying the same
US7300922B2 (en) * 2001-05-25 2007-11-27 Duke University Modulators of pharmacological agents
PL1745062T3 (en) * 2004-04-22 2014-10-31 Regado Biosciences Inc Improved modulators of coagulation factors
EP2619216A4 (en) 2010-09-22 2014-04-02 Alios Biopharma Inc Substituted nucleotide analogs
WO2013096680A1 (en) 2011-12-22 2013-06-27 Alios Biopharma, Inc. Substituted phosphorothioate nucleotide analogs
NZ631601A (en) 2012-03-21 2016-06-24 Alios Biopharma Inc Solid forms of a thiophosphoramidate nucleotide prodrug
NZ630805A (en) 2012-03-22 2016-01-29 Alios Biopharma Inc Pharmaceutical combinations comprising a thionucleotide analog

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000201A1 (en) * 1986-06-24 1988-01-14 California Institute Of Technology, Inc. Novel deoxyribonucleoside phosphoramidites and their use for the preparation of oligonucleotides
WO1991006556A1 (en) * 1989-10-24 1991-05-16 Gilead Sciences, Inc. 2' modified oligonucleotides

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987071A (en) * 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
CA1340323C (en) * 1988-09-20 1999-01-19 Arnold E. Hampel Rna catalyst for cleaving specific rna sequences
AU637800B2 (en) * 1989-08-31 1993-06-10 City Of Hope Chimeric dna-rna catalytic sequences
EP0552178B1 (en) * 1990-10-12 1997-01-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Modified ribozymes
KR930703370A (en) * 1990-12-21 1993-11-29 다이안 제이. 맥마혼 Photodegradable Plastic Composition
DE4216134A1 (en) * 1991-06-20 1992-12-24 Europ Lab Molekularbiolog SYNTHETIC CATALYTIC OLIGONUCLEOTIDE STRUCTURES
US5652094A (en) * 1992-01-31 1997-07-29 University Of Montreal Nucleozymes
JPH08500481A (en) * 1992-05-11 1996-01-23 リボザイム・ファーマシューティカルズ・インコーポレーテッド Methods and agents for inhibiting viral replication
WO1994002595A1 (en) * 1992-07-17 1994-02-03 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of animal diseases
DE69415343T2 (en) * 1993-10-27 1999-08-26 Ribozyme Pharmaceuticals 2'-AMIDO AND 2'-PEPTIDO-MODIFIED OLIGONUCLEOTIDES

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988000201A1 (en) * 1986-06-24 1988-01-14 California Institute Of Technology, Inc. Novel deoxyribonucleoside phosphoramidites and their use for the preparation of oligonucleotides
WO1991006556A1 (en) * 1989-10-24 1991-05-16 Gilead Sciences, Inc. 2' modified oligonucleotides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.CHLADEK ET AL.: "Aminoacyl Derivatives of Nucleosides, Nucleotides and Polynucleotides. XXXII. Synthesis of Aminoacyldinucleoside Phosphates Derived from 2'- and 3'-Aminodeoxyadenosine.", JOURNAL OF CARBOHYDRATES NUCLEOSIDES AND NUCLEOTIDES, vol. 7, no. 5, 1980, pages 297 - 313 *

Cited By (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034009B2 (en) 1995-10-26 2006-04-25 Sirna Therapeutics, Inc. Enzymatic nucleic acid-mediated treatment of ocular diseases or conditions related to levels of vascular endothelial growth factor receptor (VEGF-R)
US5807743A (en) * 1996-12-03 1998-09-15 Ribozyme Pharmaceuticals, Inc. Interleukin-2 receptor gamma-chain ribozymes
US6248878B1 (en) 1996-12-24 2001-06-19 Ribozyme Pharmaceuticals, Inc. Nucleoside analogs
WO1998028317A2 (en) * 1996-12-24 1998-07-02 Ribozyme Pharmaceuticals, Inc. Synthesis of nucleosides and polynucleotides
WO1998028317A3 (en) * 1996-12-24 1998-09-03 Ribozyme Pharm Inc Synthesis of nucleosides and polynucleotides
US6251666B1 (en) 1997-03-31 2001-06-26 Ribozyme Pharmaceuticals, Inc. Nucleic acid catalysts comprising L-nucleotide analogs
US6602858B2 (en) 1997-03-31 2003-08-05 Ribozyme Pharmaceuticals, Inc. Nucleic acid catalysts comprising L-nucleotide analogs
US6280936B1 (en) 1997-06-09 2001-08-28 Ribozyme Pharmaceuticals, Inc. Method for screening nucleic acid catalysts
US6548657B1 (en) 1997-06-09 2003-04-15 Ribozyme Pharmaceuticals, Inc. Method for screening nucleic acid catalysts
US6127173A (en) * 1997-09-22 2000-10-03 Ribozyme Pharmaceuticals, Inc. Nucleic acid catalysts with endonuclease activity
US6656731B1 (en) 1997-09-22 2003-12-02 Max Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Nucleic acid catalysts with endonuclease activity
US6509460B1 (en) 1997-11-05 2003-01-21 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into oligonucleotides
US6127535A (en) * 1997-11-05 2000-10-03 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into oligonucleotides
US6617438B1 (en) 1997-11-05 2003-09-09 Sirna Therapeutics, Inc. Oligoribonucleotides with enzymatic activity
US6673611B2 (en) 1998-04-20 2004-01-06 Sirna Therapeutics, Inc. Nucleic acid molecules with novel chemical compositions capable of modulating gene expression
US6458559B1 (en) 1998-04-22 2002-10-01 Cornell Research Foundation, Inc. Multivalent RNA aptamers and their expression in multicellular organisms
WO1999055857A2 (en) * 1998-04-29 1999-11-04 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into ribozymes
WO1999055857A3 (en) * 1998-04-29 2000-02-24 Ribozyme Pharm Inc Nucleoside triphosphates and their incorporation into ribozymes
US6831171B2 (en) 2000-02-08 2004-12-14 Yale University Nucleic acid catalysts with endonuclease activity
US7022828B2 (en) 2001-04-05 2006-04-04 Sirna Theraputics, Inc. siRNA treatment of diseases or conditions related to levels of IKK-gamma
EP3231445A1 (en) 2001-05-18 2017-10-18 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
EP2415486A2 (en) 2001-05-18 2012-02-08 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US7109165B2 (en) 2001-05-18 2006-09-19 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US9994853B2 (en) 2001-05-18 2018-06-12 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US7833992B2 (en) 2001-05-18 2010-11-16 Merck Sharpe & Dohme Conjugates and compositions for cellular delivery
US7964578B2 (en) 2001-05-18 2011-06-21 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US7491805B2 (en) 2001-05-18 2009-02-17 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US7858625B2 (en) 2001-05-18 2010-12-28 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
US8846894B2 (en) 2002-02-20 2014-09-30 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US9738899B2 (en) 2002-02-20 2017-08-22 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US10662428B2 (en) 2002-02-20 2020-05-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US9657294B2 (en) 2002-02-20 2017-05-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US10351852B2 (en) 2002-02-20 2019-07-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
EP2042510A2 (en) 2002-02-20 2009-04-01 Sirna Therapeutics Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleid acid (siNA)
US9732344B2 (en) 2002-02-20 2017-08-15 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
EP2278004A1 (en) 2002-02-20 2011-01-26 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
EP3354656A1 (en) 2002-02-20 2018-08-01 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
EP2287306A1 (en) 2002-02-20 2011-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
EP2287305A1 (en) 2002-02-20 2011-02-23 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
EP3926046A2 (en) 2002-02-20 2021-12-22 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
US9181551B2 (en) 2002-02-20 2015-11-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
EP3459963A1 (en) 2002-02-20 2019-03-27 Sirna Therapeutics, Inc. Rna interference mediated inhibition of gene expression using short interfering nucleic acid (sina)
US7989612B2 (en) 2002-02-20 2011-08-02 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US10000754B2 (en) 2002-02-20 2018-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US8273866B2 (en) 2002-02-20 2012-09-25 Merck Sharp & Dohme Corp. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SINA)
US7176304B2 (en) 2002-02-20 2007-02-13 Mcswiggen James RNA interference mediated inhibition of vascular endothelial growth factor and vascular endothelial growth factor receptor gene expression using short interfering nucleic acid (siNA)
US9957517B2 (en) 2002-02-20 2018-05-01 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US10889815B2 (en) 2002-02-20 2021-01-12 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
EP2902406A1 (en) 2002-02-20 2015-08-05 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA)
US8202979B2 (en) 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
US7435542B2 (en) 2002-06-24 2008-10-14 Cornell Research Foundation, Inc. Exhaustive selection of RNA aptamers against complex targets
US7956176B2 (en) 2002-09-05 2011-06-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7923547B2 (en) 2002-09-05 2011-04-12 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
WO2005041859A2 (en) 2003-04-30 2005-05-12 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery.
EP3222294A1 (en) 2003-04-30 2017-09-27 Sirna Therapeutics, Inc. Conjugates and compositions for cellular delivery
EP2275116A1 (en) 2003-07-18 2011-01-19 Sanofi-Aventis Deutschland GmbH Use of a Pak inhibitor for the treatment of a joint disease
WO2005010042A1 (en) 2003-07-18 2005-02-03 Charité-Universitäts- Medezin Berlin 7a5/prognostin and use thereof for the diagnostic and therapy of tumors
US8946402B2 (en) 2004-04-23 2015-02-03 The Trustees Of Columbia University In The City Of New York Inhibition of hairless protein mRNA
US8329667B2 (en) 2004-04-23 2012-12-11 The Trustees Of Columbia University In The City Of New York Inhibition of hairless protein mRNA
US8299236B2 (en) 2004-05-04 2012-10-30 Marina Biotech, Inc. Compositions and methods for enhancing delivery of nucleic acids into cells and for modifying expression of target genes in cells
US10508277B2 (en) 2004-05-24 2019-12-17 Sirna Therapeutics, Inc. Chemically modified multifunctional short interfering nucleic acid molecules that mediate RNA interference
US9719089B2 (en) 2005-06-14 2017-08-01 Northwestern University Nucleic acid functionalized nonoparticles for therapeutic applications
US10370661B2 (en) 2005-06-14 2019-08-06 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US8999947B2 (en) 2005-06-14 2015-04-07 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
EP3357490A1 (en) 2006-04-28 2018-08-08 Children's Hospital Medical Center Fusogenic properties of saposin c and related proteins and polypeptides for application to transmembrane drug delivery systems
US9271932B2 (en) 2006-04-28 2016-03-01 Children's Hospital Medical Center Fusogenic properties of saposin C and related proteins and peptides for application to transmembrane drug delivery systems
US9506056B2 (en) 2006-06-08 2016-11-29 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US10370656B2 (en) 2006-06-08 2019-08-06 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
US9890427B2 (en) 2007-02-09 2018-02-13 Northwestern University Particles for detecting intracellular targets
WO2008137758A2 (en) 2007-05-04 2008-11-13 Mdrna, Inc. Amino acid lipids and uses thereof
EP2494993A2 (en) 2007-05-04 2012-09-05 Marina Biotech, Inc. Amino acid lipids and uses thereof
EP3434259A1 (en) 2007-05-04 2019-01-30 Marina Biotech, Inc. Amino acid lipids and uses thereof
EP2826863A1 (en) 2007-05-30 2015-01-21 Northwestern University Nucleic acid functionalized nanoparticles for therapeutic applications
EP2068152A1 (en) 2007-12-06 2009-06-10 Max-Delbrück-Centrum für Molekulare Medizin (MDC) c-Kit as a novel target for the treatment of pain
US10633654B2 (en) 2008-02-11 2020-04-28 Phio Pharmaceuticals Corp. Modified RNAi polynucleotides and uses thereof
US10131904B2 (en) 2008-02-11 2018-11-20 Rxi Pharmaceuticals Corporation Modified RNAi polynucleotides and uses thereof
US10329617B2 (en) 2008-05-08 2019-06-25 The Johns Hopkins University Compositions and methods for modulating an immune response
WO2009155100A1 (en) 2008-05-30 2009-12-23 Yale University Targeted oligonucleotide compositions for modifying gene expression
US8815818B2 (en) 2008-07-18 2014-08-26 Rxi Pharmaceuticals Corporation Phagocytic cell delivery of RNAI
EP2151248A1 (en) 2008-07-30 2010-02-10 Johann Bauer Improved pre-mRNA trans-splicing molecule (RTM) molecules and their uses
US10774330B2 (en) 2008-09-22 2020-09-15 Phio Pharmaceuticals Corp. Reduced size self-delivering RNAI compounds
US10138485B2 (en) 2008-09-22 2018-11-27 Rxi Pharmaceuticals Corporation Neutral nanotransporters
US10041073B2 (en) 2008-09-22 2018-08-07 Rxi Pharmaceuticals Corporation Reduced size self-delivering RNAi compounds
US9175289B2 (en) 2008-09-22 2015-11-03 Rxi Pharmaceuticals Corporation Reduced size self-delivering RNAi compounds
US8796443B2 (en) 2008-09-22 2014-08-05 Rxi Pharmaceuticals Corporation Reduced size self-delivering RNAi compounds
US9938530B2 (en) 2008-09-22 2018-04-10 Rxi Pharmaceuticals Corporation RNA interference in skin indications
US10815485B2 (en) 2008-09-22 2020-10-27 Phio Pharmaceuticals Corp. RNA interference in skin indications
US8664189B2 (en) 2008-09-22 2014-03-04 Rxi Pharmaceuticals Corporation RNA interference in skin indications
US10876119B2 (en) 2008-09-22 2020-12-29 Phio Pharmaceuticals Corp. Reduced size self-delivering RNAI compounds
US9303259B2 (en) 2008-09-22 2016-04-05 Rxi Pharmaceuticals Corporation RNA interference in skin indications
US11396654B2 (en) 2008-09-22 2022-07-26 Phio Pharmaceuticals Corp. Neutral nanotransporters
EP2902013A1 (en) 2008-10-16 2015-08-05 Marina Biotech, Inc. Processes and Compositions for Liposomal and Efficient Delivery of Gene Silencing Therapeutics
US9074211B2 (en) 2008-11-19 2015-07-07 Rxi Pharmaceuticals Corporation Inhibition of MAP4K4 through RNAI
US11254940B2 (en) 2008-11-19 2022-02-22 Phio Pharmaceuticals Corp. Inhibition of MAP4K4 through RNAi
US9844562B2 (en) 2008-11-24 2017-12-19 Northwestern University Polyvalent RNA-nanoparticle compositions
US10391116B2 (en) 2008-11-24 2019-08-27 Northwestern University Polyvalent RNA-nanoparticle compositions
US9139827B2 (en) 2008-11-24 2015-09-22 Northwestern University Polyvalent RNA-nanoparticle compositions
US10167471B2 (en) 2009-01-05 2019-01-01 Rxi Pharmaceuticals Corporation Inhibition of PCSK9 through RNAI
US9493774B2 (en) 2009-01-05 2016-11-15 Rxi Pharmaceuticals Corporation Inhibition of PCSK9 through RNAi
US11633503B2 (en) 2009-01-08 2023-04-25 Northwestern University Delivery of oligonucleotide-functionalized nanoparticles
US10098958B2 (en) 2009-01-08 2018-10-16 Northwestern University Delivery of oligonucleotide functionalized nanoparticles
US10479992B2 (en) 2009-02-04 2019-11-19 Phio Pharmaceuticals Corp. RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
US9745574B2 (en) 2009-02-04 2017-08-29 Rxi Pharmaceuticals Corporation RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
WO2010090762A1 (en) 2009-02-04 2010-08-12 Rxi Pharmaceuticals Corporation Rna duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
US11667915B2 (en) 2009-02-04 2023-06-06 Phio Pharmaceuticals Corp. RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
WO2011019679A1 (en) 2009-08-11 2011-02-17 Allergan, Inc. Ccr2 inhibitors for treating conditions of the eye
US9757475B2 (en) 2009-10-30 2017-09-12 Northwestern University Templated nanoconjugates
US9376690B2 (en) 2009-10-30 2016-06-28 Northwestern University Templated nanoconjugates
EP3434773A2 (en) 2009-12-09 2019-01-30 Nitto Denko Corporation Modulation of hsp47 expression
US10093923B2 (en) 2009-12-09 2018-10-09 Nitto Denko Corporation Modulation of HSP47 expression
US8710209B2 (en) 2009-12-09 2014-04-29 Nitto Denko Corporation Modulation of HSP47 expression
EP3012324A2 (en) 2009-12-09 2016-04-27 Nitto Denko Corporation Modulation of hsp47 expression
US9206424B2 (en) 2009-12-09 2015-12-08 Nitto Denko Corporation Modulation of HSP47 expression
US9714446B2 (en) 2010-02-11 2017-07-25 Nanostring Technologies, Inc. Compositions and methods for the detection of small RNAs
US9340786B2 (en) 2010-03-24 2016-05-17 Rxi Pharmaceuticals Corporation RNA interference in dermal and fibrotic indications
US9963702B2 (en) 2010-03-24 2018-05-08 Rxi Pharmaceuticals Corporation RNA interference in dermal and fibrotic indications
US10184124B2 (en) 2010-03-24 2019-01-22 Phio Pharmaceuticals Corp. RNA interference in ocular indications
US11584933B2 (en) 2010-03-24 2023-02-21 Phio Pharmaceuticals Corp. RNA interference in ocular indications
US11118178B2 (en) 2010-03-24 2021-09-14 Phio Pharmaceuticals Corp. Reduced size self-delivering RNAI compounds
US10913948B2 (en) 2010-03-24 2021-02-09 Phio Pharmaceuticals Corp. RNA interference in dermal and fibrotic indications
US10662430B2 (en) 2010-03-24 2020-05-26 Phio Pharmaceuticals Corp. RNA interference in ocular indications
US10240149B2 (en) 2010-03-24 2019-03-26 Phio Pharmaceuticals Corp. Reduced size self-delivering RNAi compounds
US9080171B2 (en) 2010-03-24 2015-07-14 RXi Parmaceuticals Corporation Reduced size self-delivering RNAi compounds
WO2011120023A1 (en) 2010-03-26 2011-09-29 Marina Biotech, Inc. Nucleic acid compounds for inhibiting survivin gene expression uses thereof
WO2011133584A2 (en) 2010-04-19 2011-10-27 Marina Biotech, Inc. Nucleic acid compounds for inhibiting hras gene expression and uses thereof
WO2011139710A1 (en) 2010-04-26 2011-11-10 Marina Biotech, Inc. Nucleic acid compounds with conformationally restricted monomers and uses thereof
WO2011139843A2 (en) 2010-04-28 2011-11-10 Marina Biotech, Inc. Multi-sirna compositions for reducing gene expression
WO2011139842A2 (en) 2010-04-28 2011-11-10 Marina Biotech, Inc. Nucleic acid compounds for inhibiting fgfr3 gene expression and uses thereof
US9845466B2 (en) 2010-08-24 2017-12-19 Sirna Therapeutics, Inc. Single-stranded RNAi agents containing an internal, non-nucleic acid spacer
US10584335B2 (en) 2010-08-24 2020-03-10 Sirna Therapeutics, Inc. Single-stranded RNAi agents containing an internal, non-nucleic acid spacer
US9243246B2 (en) 2010-08-24 2016-01-26 Sirna Therapeutics, Inc. Single-stranded RNAi agents containing an internal, non-nucleic acid spacer
US9260471B2 (en) 2010-10-29 2016-02-16 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)
US9970005B2 (en) 2010-10-29 2018-05-15 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)
US11193126B2 (en) 2010-10-29 2021-12-07 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)
WO2012080461A1 (en) 2010-12-17 2012-06-21 Sanofi Mirnas in joint disease
WO2012080460A1 (en) 2010-12-17 2012-06-21 Sanofi Mirnas in joint disease
WO2012084709A1 (en) 2010-12-17 2012-06-28 Sanofi Mirnas in joint disease
WO2012080459A1 (en) 2010-12-17 2012-06-21 Sanofi Mirnas in joint disease
WO2012118910A2 (en) 2011-03-03 2012-09-07 Quark Pharmaceuticals, Inc. Compositions and methods for treating lung disease and injury
WO2012170957A2 (en) 2011-06-08 2012-12-13 Nitto Denko Corporation Retinoid-liposomes for enhancing modulation of hsp47 expression
US9456984B2 (en) 2011-06-08 2016-10-04 Nitto Denko Corporation Method for treating fibrosis using siRNA and a retinoid-lipid drug carrier
EP3075855A1 (en) 2011-06-08 2016-10-05 Nitto Denko Corporation Retinoid-liposomes for enhancing modulation of hsp47 expression
US10196637B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Retinoid-lipid drug carrier
US8741867B2 (en) 2011-06-08 2014-06-03 Nitto Denko Corporation Retinoid-liposomes for treating fibrosis
US10195145B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Method for treating fibrosis using siRNA and a retinoid-lipid drug carrier
US8664376B2 (en) 2011-06-08 2014-03-04 Nitto Denko Corporation Retinoid-liposomes for enhancing modulation of HSP47 expression
WO2012168453A1 (en) 2011-06-10 2012-12-13 Sanofi Methods and uses relating to the diagnosis or prognosis of pain-related tissue states or pain-related diseases such as pain
EP2532755A1 (en) 2011-06-10 2012-12-12 Sanofi-Aventis Methods and uses based on Slfn2 expression and relating to the identification and profiling of compounds for use in the treatment or prevention of pain
WO2012168452A1 (en) 2011-06-10 2012-12-13 Sanofi Methods and uses based on slfn2 expression and relating to the identification and profiling of compounds for use in the treatment or prevention of pain
US9751909B2 (en) 2011-09-07 2017-09-05 Marina Biotech, Inc. Synthesis and uses of nucleic acid compounds with conformationally restricted monomers
WO2013036868A1 (en) 2011-09-07 2013-03-14 Marina Biotech Inc. Synthesis and uses of nucleic acid compounds with conformationally restricted monomers
US10398784B2 (en) 2011-09-14 2019-09-03 Northwestern Univerity Nanoconjugates able to cross the blood-brain barrier
US9889209B2 (en) 2011-09-14 2018-02-13 Northwestern University Nanoconjugates able to cross the blood-brain barrier
US11161899B2 (en) 2012-06-27 2021-11-02 The Trustees Of Princeton University Method using split inteins to generate protein conjugates
WO2014004336A2 (en) 2012-06-27 2014-01-03 The Trustees Of Princeton University Split inteins, conjugates and uses thereof
EP4219549A1 (en) 2012-06-27 2023-08-02 The Trustees of Princeton University Split inteins, conjugates and uses thereof
EP3431497A1 (en) 2012-06-27 2019-01-23 The Trustees of Princeton University Split inteins, conjugates and uses thereof
US10526401B2 (en) 2012-06-27 2020-01-07 The Trustees Of Princeton University Method of using split inteins, conjugates to generate protein conjugates
WO2014043291A1 (en) 2012-09-12 2014-03-20 Quark Pharmaceuticals, Inc. Double-stranded nucleic acid compounds
WO2015049277A1 (en) 2013-10-01 2015-04-09 Ruprecht-Karls-Universität Heidelberg S100 based treatment of cardiac power failure
EP2857501A1 (en) 2013-10-03 2015-04-08 ETH Zurich Reprogramming of pluripotent stem cells for improved control of their differentiation pathways
US10934550B2 (en) 2013-12-02 2021-03-02 Phio Pharmaceuticals Corp. Immunotherapy of cancer
US11279934B2 (en) 2014-04-28 2022-03-22 Phio Pharmaceuticals Corp. Methods for treating cancer using nucleic acids targeting MDM2 or MYCN
US9932566B2 (en) 2014-08-07 2018-04-03 Agilent Technologies, Inc. CIS-blocked guide RNA
US11926828B2 (en) 2014-09-05 2024-03-12 Phio Pharmaceuticals Corp. Methods for treating aging and skin disorders using nucleic acids targeting TYR or MMP1
US10900039B2 (en) 2014-09-05 2021-01-26 Phio Pharmaceuticals Corp. Methods for treating aging and skin disorders using nucleic acids targeting Tyr or MMP1
US11213593B2 (en) 2014-11-21 2022-01-04 Northwestern University Sequence-specific cellular uptake of spherical nucleic acid nanoparticle conjugates
EP3683309A1 (en) 2014-12-26 2020-07-22 Nitto Denko Corporation Rna interference agents for gst-pi gene modulation
EP3798308A1 (en) 2014-12-26 2021-03-31 Nitto Denko Corporation Rna interference compositions and methods for malignant tumors
WO2016106405A1 (en) 2014-12-26 2016-06-30 Nitto Denko Corporation Rna interference compositions and methods for malignant tumors
US11001845B2 (en) 2015-07-06 2021-05-11 Phio Pharmaceuticals Corp. Nucleic acid molecules targeting superoxide dismutase 1 (SOD1)
US10808247B2 (en) 2015-07-06 2020-10-20 Phio Pharmaceuticals Corp. Methods for treating neurological disorders using a synergistic small molecule and nucleic acids therapeutic approach
US11021707B2 (en) 2015-10-19 2021-06-01 Phio Pharmaceuticals Corp. Reduced size self-delivering nucleic acid compounds targeting long non-coding RNA
EP3816287A1 (en) 2015-12-13 2021-05-05 Nitto Denko Corporation Sirna structures for high activity and reduced off target
US11932854B2 (en) 2021-10-25 2024-03-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using short interfering nucleic acids (siNA)
WO2023092102A1 (en) 2021-11-19 2023-05-25 Sanegene Bio Usa Inc. Double stranded rna targeting angiopoietin-like 3 (angptl-3) and methods of use thereof
WO2023220561A1 (en) 2022-05-09 2023-11-16 Sanegene Bio Usa Inc. Double stranded rna targeting 17-beta hydroxysteroiddehydrogenase 13 (hsd17b13) and methods of use thereof
WO2024031101A1 (en) 2022-08-05 2024-02-08 Sanegene Bio Usa Inc. Double stranded rna targeting angiotensinogen (agt) and methods of use thereof

Also Published As

Publication number Publication date
ES2127948T3 (en) 1999-05-01
EP0725788B1 (en) 1998-12-16
CA2174339A1 (en) 1995-05-04
US6379954B1 (en) 2002-04-30
AU8088694A (en) 1995-05-22
DE69415343D1 (en) 1999-01-28
US5783425A (en) 1998-07-21
JPH09504297A (en) 1997-04-28
ATE174600T1 (en) 1999-01-15
US6093555A (en) 2000-07-25
EP0725788A1 (en) 1996-08-14
DE69415343T2 (en) 1999-08-26
DK0725788T3 (en) 1999-08-23

Similar Documents

Publication Publication Date Title
EP0725788B1 (en) 2'-amido and 2'-peptido modified oligonucleotides
US6017756A (en) Method and reagent for inhibiting hepatitis B virus replication
US5989906A (en) Method and reagent for inhibiting P-glycoprotein (mdr-1-gene)
EP0748382B1 (en) Non-nucleotide containing enzymatic nucleic acid
US5750390A (en) Method and reagent for treatment of diseases caused by expression of the bcl-2 gene
EP0786522A2 (en) Enzymatic RNA molecules for treatment of stenotic conditions
US6489465B2 (en) Xylofuranosly-containing nucleoside phosphoramidites and polynucleotides
EP0728205B1 (en) Reagent for treatment of arthritic conditions
US5616490A (en) Ribozymes targeted to TNF-α RNA
US5599704A (en) ErbB2/neu targeted ribozymes
US5801158A (en) Enzymatic RNA with activity to RAS
US5622854A (en) Method and reagent for inhibiting T-cell leukemia virus replication
US5639655A (en) PML-RARA targeted ribozymes
US6258585B1 (en) Method and reagent for inhibiting influenza virus replication
WO1994029452A2 (en) Enzymatic rna molecules and their application in the treatment of fibrosis and fibrous tissue disease
US6544755B1 (en) Method and reagent for treatment of diseases by expression of the c-Myc gene
US6492512B1 (en) Method and reagent for treatment of lung cancer and other malignancies caused by the deregulation of L-MYC gene expression
AU730934B2 (en) Non-nucleotide containing enzymatic nucleic acid
AU1457195A (en) Non-nucleotide containing enzymatic nucleic acid
AU5661700A (en) Method and reagent for treatment of animal diseases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2174339

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994932003

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994932003

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994932003

Country of ref document: EP