WO1995015816A1 - Substance multifonction a effet photocatalytique et procede de production - Google Patents

Substance multifonction a effet photocatalytique et procede de production Download PDF

Info

Publication number
WO1995015816A1
WO1995015816A1 PCT/JP1994/002077 JP9402077W WO9515816A1 WO 1995015816 A1 WO1995015816 A1 WO 1995015816A1 JP 9402077 W JP9402077 W JP 9402077W WO 9515816 A1 WO9515816 A1 WO 9515816A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
particles
photocatalyst
photocatalytic function
photocatalytic
Prior art date
Application number
PCT/JP1994/002077
Other languages
English (en)
French (fr)
Inventor
Toshiya Watanabe
Eiichi Kojima
Keiichiro Norimoto
Tamon Kimura
Mitsuyosi Machida
Makoto Hayakawa
Atsushi Kitamura
Makoto Chikuni
Yoshimitsu Saeki
Tatsuhiko Kuga
Yasushi Nakajima
Original Assignee
Toto, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP5310165A external-priority patent/JPH07155598A/ja
Priority claimed from JP5348073A external-priority patent/JPH07191011A/ja
Priority claimed from JP25424294A external-priority patent/JP3309591B2/ja
Priority claimed from JP6274165A external-priority patent/JPH08103488A/ja
Priority claimed from JP28238294A external-priority patent/JP3225761B2/ja
Priority claimed from JP29776094A external-priority patent/JP3246235B2/ja
Priority claimed from JP6271499A external-priority patent/JPH08131524A/ja
Priority claimed from JP6311398A external-priority patent/JPH08131834A/ja
Priority claimed from JP31396794A external-priority patent/JP3653761B2/ja
Priority to AT95902937T priority Critical patent/ATE235314T1/de
Priority to EP95902937A priority patent/EP0684075B1/en
Priority to ES95902937T priority patent/ES2191043T3/es
Priority to US08/501,110 priority patent/US5853866A/en
Priority to AU11998/95A priority patent/AU1199895A/en
Application filed by Toto, Ltd. filed Critical Toto, Ltd.
Priority to DE69432348T priority patent/DE69432348T8/de
Priority to CA 2155822 priority patent/CA2155822C/en
Priority claimed from JP6310896A external-priority patent/JPH0866635A/ja
Publication of WO1995015816A1 publication Critical patent/WO1995015816A1/ja
Priority to US09/167,323 priority patent/US6268050B1/en
Priority to US09/167,327 priority patent/US6294247B1/en
Priority to US09/167,324 priority patent/US6027797A/en
Priority to HK98113672A priority patent/HK1017810A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J35/30
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4562Photographic methods, e.g. making use of photo-sensitive materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/477Titanium oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/148Light sensitive titanium compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • Y10T428/24909Free metal or mineral containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249971Preformed hollow element-containing
    • Y10T428/249974Metal- or silicon-containing element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • Y10T428/249985Composition of adhesive or bonding component specified

Definitions

  • the present invention relates to a multifunctional material exhibiting functions such as a deodorizing function, an antibacterial function, a sterilizing function, and an antifouling function, and a method for producing the same.
  • T i0 2 particles crystal forms anatase type is highly effective as a photocatalyst, conventionally from the wall material, a tile, glass (mirror), the circulating Proposals have been made to form a photocatalytic layer on the surface of a filtration device or sanitary ware.
  • the equipment becomes large-scale and the yield is poor, so that the production cost increases.
  • the photocatalyst particles such as TiO 2 particles to exhibit the effect as a photocatalyst
  • the photocatalyst particles were kneaded in a binder and applied to a substrate as in Japanese Patent Application Laid-Open No. Many photocatalyst particles are buried in the binder layer and do not reach the ultraviolet rays or do not come in contact with odorous gas, etc., and cannot exhibit a sufficient catalytic function.
  • an alkoxide method disclosed in Japanese Utility Model Laid-Open No. 5-73394 is known.
  • a titanium alkoxide is applied on a glass substrate, dried, and then baked at a temperature of several hundred degrees centigrade to form a photocatalyst layer. To resolve.
  • the alkoxide method described above is excellent in that a thin film can be formed at a relatively low temperature, and uses a base material such as Pyrex glass or quartz glass which is not easily softened to about 500 ° C.
  • a force that is effective for example, when a material having a low melting point, such as soda glass, is used as a substrate, the substrate starts to deteriorate at the temperature at which the thin film is formed, and the formed photocatalytic thin film is It is buried in the base material, which causes a problem that light does not reach the photocatalyst layer and the photocatalyst function cannot be exhibited.
  • one 2 8 8 3 2 1 No. would thus cover the entire surface of the film at T i 0 2 low S n0 2 active than. Furthermore, cracks are likely to occur when trying to increase the film strength. That is, as shown in FIG. 1 (a), a sol containing TiO 2 particles 101 is applied to the surface of the tile 100, and the sol is heat-treated (sintered), as shown in FIG. 1 (b). Cracks 102 occur. The reason for this is that the phase transition to the rutile type causes volume shrinkage (increase in density), and before sintering, as shown in Fig. 2 (a), between the Ti 0 2 particles 101 The interval is L.
  • Japanese Patent Publication No. 4-46609 discloses a method for purifying a vehicle interior odor by decomposing or reforming a malodorous substance contained in the odor in the vehicle interior air.
  • a photocatalyst layer made of a semiconductor, an ultraviolet lamp and a heating element provided opposite to the photocatalyst layer, and a blower are provided so that the entire photocatalyst layer is sequentially heated.
  • a deodorizing device using a layer or a heating element, or a photocatalyst layer and a photocatalyst in which the heating element moves is disclosed.By heating to around 4 O CTC, dirt such as polymers and dust is removed, and the photocatalytic layer is regenerated. I'm trying.
  • Japanese Patent Publication No. Hei 6-79006 discloses a method of irradiating a photocatalyst with light having high ultraviolet intensity to remove a bad smell in a home office.
  • the decomposition rate of offensive odors differs depending on the structure of the photocatalyst.
  • the base material is porous, sufficient mechanical strength can be obtained by a method such as impregnation.
  • the base material is a non-porous material such as a glazed tile or a relatively dense ceramic, etc. High mechanical strength cannot be obtained.
  • titanium oxide sol produced by a hydrothermal method or a sulfuric acid method is easily aggregated because it is composed of ultrafine particles. Applying agglomerates to the substrate surface may cause uneven gloss and cracks. Therefore, in order to prevent agglomeration, a method of attaching an organic dispersant such as tolueneamine to the surface of the titanium oxide sol has conventionally been used.
  • an organic dispersant such as triethanolamine
  • the organic dispersant is firmly fixed at the active site of the titanium oxide sol, and does not sufficiently evaporate and decompose even in the firing step. Therefore, the member obtained in such a manner does not have a sufficient photocatalytic action, and has a deodorizing property and antibacterial property. Sex is not enough.
  • Japanese Patent Application Laid-Open No. H5-253454 discloses a method in which anatase-type titanium oxide is kneaded into a binder, applied to the surface of a substrate, and heat-treated.
  • one layer of a binder is formed on the surface of a plate-like member constituting a wall surface, a floor surface, or a ceiling surface of a living space, and a photocatalyst fine powder mainly composed of ana-type titanium oxide is formed on the surface of the binder layer.
  • an object of the present invention is to provide a multifunctional material that can sufficiently exhibit a photocatalytic effect by exposing a photocatalyst layer from a substrate and is excellent in holding the photocatalyst layer by the substrate.
  • Another object of the present invention is to form a photocatalytic layer that is difficult to peel off on a relatively dense substrate such as glass, tile, metal, and plastic.
  • Another object of the present invention is to form a photocatalytic layer on a low-melting-point substrate, for example, soda glass which is relatively inexpensive and easy to process.
  • Another object of the present invention is to provide a multifunctional material which is hardly adhered with dirt, has antibacterial properties or deodorant properties capable of preventing functional deterioration due to dirt, and has excellent mechanical strength.
  • the present invention may be a photocatalyst layer composed mainly of anatase one peptidase type T i 0 2, and an object thereof is to provide a multifunctional material having excellent exfoliation strength.
  • the present invention aims to improve the photocatalytic activity of the photocatalyst layer consisting mainly of rutile type T i0 2.
  • the present invention while by supporting the A g improve the photocatalytic activity to a photocatalyst layer consisting mainly of rutile type T i0 2, the purpose to improve the appearance decolorized photocatalytic layer.
  • the present invention also aims to provide a 3 0 O e that Yusuke also good photocatalytic function at a low temperature heat treatment of less than C multifunctional material. Disclosure of the invention
  • the multifunctional material according to the present invention can be used as a photocatalyst layer directly on the surface of a base material such as ceramics such as tiles, sanitary ware, glass, resin, metal, and wood, or via a binder layer.
  • a base material such as ceramics such as tiles, sanitary ware, glass, resin, metal, and wood
  • the type of the photocatalyst particles constituting the photocatalyst layer, the particle size, the gap formed between the photocatalyst particles, the porosity, the relationship between the binder layer and the photocatalyst layer, the gap between the photocatalyst particles are filled.
  • the photocatalyst of the photocatalyst layer such as deodorization, it is also a multifunctional product with excellent antibacterial properties and abrasion resistance.
  • Material BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 (a) shows a state before sintering of a conventional TiO 2 sol
  • FIG. 1 (b) shows a state after rutile type sintering.
  • FIG. 2 (a) shows a state before sintering of conventional TiO 2 particles
  • FIG. 2 (b) shows a state after sintering.
  • FIG. 3 schematically shows a state in which, among the multifunctional materials having a photocatalytic function according to the present invention, the photocatalyst particles constituting the photocatalyst layer are mutually bonded by potential energy.
  • FIG. 4 is a diagram schematically showing a state in which the photocatalyst particles constituting the photocatalyst layer are bonded to each other by solid phase sintering in the multifunctional material.
  • FIG. 5 is a diagram schematically showing a state in which small particles are filled in a gap formed between photocatalyst particles constituting a photocatalyst layer in the multifunctional material.
  • FIG. 6 is a diagram schematically showing a state in which metal particles are fixed on the surfaces of the photocatalyst particles of the multifunctional material shown in FIG.
  • FIG. 7 is a diagram schematically showing a state in which metal particles are fixed on the surfaces of the photocatalyst particles of the multifunctional material shown in FIG.
  • FIG. 8 is a diagram schematically showing a state in which metal particles are fixed on the surfaces of the photocatalytic particles of the multifunctional material shown in FIG.
  • Fig. 9 schematically shows a state in which the photocatalyst layer of the multifunctional material is bonded to a base material via a binder layer, and the photocatalyst particles constituting the photocatalyst layer are mutually bonded by potential energy.
  • FIG. 10 shows that, of the multifunctional material, the photocatalytic layer is in contact with the base material via the binder layer.
  • FIG. 4 is a diagram schematically showing a state in which the photocatalyst particles constituting the photocatalyst layer are combined with each other by solid-phase sintering.
  • Fig. 11 schematically shows the photocatalyst layer of the multifunctional material, in which the photocatalyst layer is bonded to the substrate via the binder layer, and the gaps formed between the photocatalyst particles are filled with small particles.
  • FIG. 12 is a diagram schematically showing a state in which metal particles are fixed on the surfaces of the photocatalytic particles of the multifunctional material shown in FIG.
  • FIG. 13 is a view schematically showing a state in which metal particles are fixed on the surfaces of the photocatalyst particles of the multifunctional material shown in FIG.
  • FIG. 14 is a diagram schematically showing a state in which metal particles are fixed on the surfaces of the photocatalytic particles of the multifunctional material shown in FIG.
  • FIG. 15 is a diagram illustrating a method for producing a multifunctional material having a photocatalytic function according to the present invention.
  • FIG first 7 view (a) ⁇ (c) is for explaining the mechanism of sintering T i 0 2 particles.
  • FIG. 18 is a graph showing the test results of the antibacterial test.
  • FIG. 19 is a graph comparing the test results on the amount of supported Cu with and without the drying step before the irradiation of the BLB lamp.
  • FIG. 20 is a graph showing the relationship between the amount of Cu carried and the amount of Cu applied.
  • FIG. 21 is a view showing a manufacturing process of another embodiment.
  • FIG. 22 is a graph showing the test results of the antibacterial test.
  • FIG. 23 is a graph comparing the test results of the amount of supported Cu with and without the drying step before the irradiation of the BLB lamp.
  • FIG. 24 is a graph showing the relationship between the amount of Cu carried and the amount of Cu applied.
  • FIG. 25 is a graph showing the relationship between the amount of Ag carried and the survival rate of the bacteria.
  • Fig. 26 is a conceptual diagram of the basic profile when the cross-sectional direction of the multifunctional material was observed with an EPM A (Electron Beam Microanalyzer).
  • FIG. 27 is a conceptual diagram of the basic profile when the cross-sectional direction of the multifunctional material is observed with an EPMA (Electron Beam Microanalyzer).
  • FIG. 28 is a graph showing the relationship between the composition of TiO 2 and SnO 2 and the film strength and photoactivity.
  • FIG. 29 is a graph showing the relationship between the heat treatment temperature and the photoactivity.
  • FIG. 30 is a diagram illustrating a method for measuring the activity of a photocatalytic thin film.
  • FIG. 31 is a diagram illustrating a method for measuring the activity of a photocatalytic thin film.
  • FIG. 32 illustrates a method for measuring the activity of a photocatalytic thin film.
  • FIG. 33 is a graph showing the relationship between ultraviolet irradiation time and the amount of change in pH.
  • Figure 34 shows R 3 . 7 is a graph showing the relationship between pH and the amount of change in pH.
  • FIG. 35 is a graph showing the relationship between porosity and deodorant (Rao) and abrasion resistance.
  • FIG. 36 is a graph showing the relationship between film thickness and deodorant properties (R 3 ).
  • FIG. 37 is a graph showing the relationship between the film thickness and the deodorant properties (R 30 ) and peel resistance.
  • Figure 38 is a graph showing the relationship between the amount of SnO 2 added and the deodorant properties (R 3 ) and abrasion resistance.
  • FIG. 39 is a graph showing the relationship between the amount of SnO 2 added and the difficulty of soiling.
  • the FIG. 40 the relationship between the open pore width of S Itashita 2 amount and T i 0
  • FIG. 41 graph illustrating a relationship between the open porosity of the second layer surface S Itashita 2 amount and T i 0 2-layer surface Graph o
  • Figure 42 shows the amount of SnO 2 added and the deodorant R 3 .
  • 4 is a graph showing the relationship between (L) and peel resistance.
  • FIG. 43 is graph showing the relationship between the porosity and the deodorant (R 30 (L) and peeling resistance.
  • Fig. 44 is a graph showing the relationship between the number of coatings and the resistance to dirt.
  • Fig. 45 is a graph showing the relationship between the number of coatings and wear resistance.
  • FIG. 46 showing the relation between the open porosity of the coating times and Ti0 2 layer surface.
  • FIG. 47 is a view showing a state in which the thermosetting resin on the photocatalyst particles is preferentially decomposed and vaporized by irradiating ultraviolet rays to expose the medium particles to the outside air.
  • FIG. 48 is a view similar to FIG. 47 showing another embodiment.
  • FIG. 49 is a view similar to FIG. 47 showing another embodiment.
  • FIG. 50 is a diagram showing a state where small particles are filled in the gaps between the photocatalyst particles. Proc view showing a manufacturing step of the fifth 1 FIG multifunctional material using rutile T i 0 2.
  • FIG. 52 is a graph showing the relationship between the Cu solution concentration and the photoactivity when the Cu solution was dried and photoreduced.
  • FIG. 53 is a graph showing the relationship between the Cu solution concentration and photoactivity when the Cu solution was photoreduced without drying.
  • FIG. 54 shows the Cu solution concentration and the malodor removal rate R 3 when the metal supported on the rutile type TiO 2 thin film is Cu. (Reduction of metal ion was performed after drying metal salt aqueous solution)
  • FIG. 57 is a graph showing the relationship between the solution concentration of Ag and Cu and the color difference.
  • Figure 58 shows the porosity and R 3 . 4 is a graph showing the relationship between the resistance and wear resistance.
  • FIG. 59 is a graph showing the relationship between the amount of copper carried and the bacterial survival rate.
  • FIG. 60 is a graph showing the relationship between the amount of copper applied and the amount of copper carried.
  • FIG. 61 is a graph showing the relationship between the amount of silver carried and the bacterial viability.
  • FIG. 62 is a graph showing the relationship between the amount of silver carried and the color difference.
  • FIG. 63 is a graph showing the effect of the decolorization treatment using a KI aqueous solution.
  • Fig. 64 shows the pH change and odor removal rate R 3 of the KI aqueous solution before and after the decolorization treatment with the KI aqueous solution.
  • the graph which shows the relationship with the Eich.
  • Fig. 65 is a graph comparing antibacterial effects
  • FIG. 66 is a graph showing the abrasion resistance with respect to the weight ratio of tin oxide in the thin film.
  • FIG. 67 is a graph showing the photoactivity with respect to the tin oxide weight ratio in the thin film.
  • Fig. 68 is a graph showing the abrasion resistance against the tin oxide weight ratio in the thin film as a comparative example.
  • FIG. 69 is a graph showing the photoactivity versus tin oxide weight ratio in a thin film as a comparative example.
  • FIG. 70 is a graph showing the relationship between the amount of silver carried and the bacterial survival rate.
  • FIGS. 3 to 14 show the structure of the multifunctional material having a photocatalytic function according to the present invention classified by type.
  • the multifunctional material having a photocatalytic function according to the present invention belongs to any one of the structures. .
  • a photocatalyst layer 2 having a photocatalytic function is directly provided on the surface of a base material 1, and this photocatalyst layer 2 is composed of fine photocatalyst particles 3 that have potential potentials such as surface energy and curved surface energy. It is configured to be connected by energy.
  • a photocatalyst layer 2 having a photocatalytic function is directly provided on the surface of a substrate 1, and this photocatalyst layer 2 is formed by bonding photocatalyst particles 3 by solid phase sintering. ing.
  • a photocatalyst layer 2 having a photocatalytic function is directly provided on the surface of a substrate 1, and a gap formed between photocatalyst particles 3 constituting the photocatalyst layer 2 Are also filled with small particles 4, and the photocatalyst particles 3 are connected to each other via the small particles 4.
  • the particles 4 may be filled at least in the gaps of the photocatalyst particles 3 in the surface layer. That is, since the transmission of external force is attenuated internally in the mechanical strength of the photocatalyst layer, it is considered that bonding on the outermost surface is important. Therefore, only the gaps between the photocatalyst particles in the surface layer need to be filled with fine particles. However, at this time, the inside photocatalyst particles are bonded by the potential energy, and in order to obtain sufficient strength of the photocatalyst layer, the average particle size of the photocatalyst particles is preferably 0.0 power.
  • the multifunctional material shown in FIG. 6 has a photocatalyst layer 2 formed directly on the surface of a substrate 1.
  • the resulting photocatalyst particles 3 are mutually coupled by potential energy, and electron capture particles 5 such as Ag, Cu, and Cu 20 are immobilized on the surface of the photocatalyst particles 3.
  • the photocatalyst particles 3 constituting the photocatalyst layer 2 formed directly on the surface of the base material 1 are bonded to each other by solid-phase sintering, and the surface of the photocatalyst particles 3 Metal particles 5 such as Ag and Pt are immobilized.
  • a photocatalyst layer 2 having a photocatalytic function is directly provided on the surface of a substrate 1, and a gap formed between photocatalyst particles 3 constituting the photocatalyst layer 2
  • the photocatalyst particles 3 are connected to each other via the small particles 4, and metal particles 5 such as Ag and Pt are immobilized on the surface of the photocatalyst particles 3.
  • a photocatalyst layer 2 having a photocatalytic function is provided on the surface of a base material 1 via a binder layer 6, and the photocatalyst layer 2 has a surface layer portion exposed to the outside and a lower layer. The portion is buried in the binder layer 6, and the surface layer portion is formed by bonding fine photocatalyst particles 3 to each other with potential energy.
  • the multifunctional material shown in FIG. 10 has a photocatalyst layer 2 also provided with a binder layer 6 interposed therebetween, and the surface layer of the photocatalyst layer 2 is formed by bonding photocatalyst particles 3 to one another by solid phase sintering. Have been.
  • a photocatalyst layer 2 is provided on a base material 1 via a binder layer 6, and a gap formed between photocatalyst particles 3 constituting the photocatalyst layer 2 Are also filled with small particles 4, and the photocatalytic particles 3 are connected to each other via the small particles 4.
  • a photocatalyst layer 2 is formed on the surface of a base material 1 via a binder layer 6, and the photocatalyst particles 3 constituting the photocatalyst layer 2 are combined with each other with a potential energy. Further, electron capture particles 5 such as Ag, Cu, and Cu 20 are immobilized on the surface of the photocatalyst particles 3.
  • a photocatalyst layer 2 is formed on the surface of a base material 1 via a binder layer 6, and the photocatalyst particles 3 constituting the photocatalyst layer 2 are bonded to each other by solid-state sintering. Further, the surface of the photocatalyst particles 3 captures electrons such as Ag, Cu, and Cu 20. The trapped particles 5 are immobilized.
  • the multifunctional material shown in FIG. 14 has a photocatalyst layer 2 provided on a base material 1 with a binder layer 6 interposed therebetween, and a gap formed between photocatalyst particles 3 constituting the photocatalyst layer 2.
  • the photocatalyst particles 3 are connected to each other via the small particles 4, and metal particles 5 such as Ag and Pt are immobilized on the surface of the photocatalyst particles 3.
  • the substrate 1 may be any of ceramics such as tiles, sanitary ware, glass, resin, metal, wood or a composite thereof.
  • the photocatalyst particles 3 are semiconductor particles having sufficient band and gear to exhibit a photocatalytic function such as an antibacterial function and a deodorizing function.
  • Photocatalyst particles have antibacterial properties because of the theory that they can be electrocuted when a voltage higher than a specified voltage is applied.In general, it is considered that active oxygen is generated during light irradiation, similar to the deodorizing function. . In order to generate active oxygen, one of the conduction bands of the semiconductor must be above the hydrogen generation potential when represented by the band 'model, and the upper end of the valence band must be below the oxygen generation potential.
  • the electron trapping particles are particles that capture electrons when the photocatalyst is irradiated with light to generate electrons and holes, and prevent recombination of the electrons and holes.
  • Ag, Cu, P t, Pd , Ni, Co, F e, include Cu 2 0 like force.
  • the binder layer 6 is made of a thermoplastic material such as glaze, inorganic glass, thermoplastic resin, and solder. By configuring the binder layer with a thermoplastic material in this manner, the photocatalyst can be applied on the binder layer at a normal temperature by a simple and inexpensive method such as a spray coating method. The binder layer 6 and the photocatalyst layer 2 can be firmly bonded, which is advantageous in manufacturing cost.
  • the multifunctional material having a photocatalytic function is formed by laminating or partially burying a photocatalyst layer made of photocatalyst particles on a sheet-like binder layer made of a thermoplastic material. If such a sheet-shaped multifunctional material is pasted on existing tiles, sanitary ware, building materials, etc., and then heated, the existing tiles will be deodorized, stainproof, antibacterial, Functions such as antifungal properties can be added.
  • the average particle diameter of the photocatalyst particles 3 constituting the photocatalyst layer 2 is preferably less than 0.3 in order to increase the specific surface area and enhance the photocatalytic activity.
  • the photocatalyst layer 2 preferably has a thickness of 0.1 / im to 0.9. If the thickness is less than 0.1 zm, the photocatalyst particles are locally embedded in the binder layer 6 and a partial force that cannot exert catalytic activity on the surface of the multifunctional material is generated, and bacteria accumulate in that portion. The sex worsens. On the other hand, when the thickness exceeds 0.9 zm, the variation in thickness becomes large, and the stain force ⁇ adheres to the sample, making it difficult to remove dirt.
  • the thickness of the photocatalyst layer includes the portion from the outermost surface of the photocatalyst thin film to the portion embedded in the lower layer of the glaze. Specifically, elemental analysis such as EPMA (electron beam analyzer) is performed. The measurement is performed by calculating the distance from the top to the outermost surface of the part where the value of the principal component constituting the glaze layer increases and becomes almost constant.
  • EPMA electron beam analyzer
  • a design effect can be obtained.
  • the thickness is set to 0.4 to less than 0.4 m
  • an iris pattern can be formed by the interference effect of light on the photocatalyst layer film thickness portion, and the ground of the base material in appearance can be obtained. If only the color, pattern or their combination is desired, the above-mentioned parts that cause light interference are excluded.
  • Photocatalyst layer at 0.1 l / zm or more and less than 0.2 ⁇ m or 0.4 m or more and less than 1 // m What is necessary is just to produce a film thickness part.
  • Such a method can be applied to a wide range of tiles, wash basins, bathtubs, large and small urinals, sinks, cooktops, and the like.
  • sintering must be performed at a considerably high temperature.
  • adsorption the specific surface area of the photocatalyst particles is significantly increased and the packing property is improved. Otherwise, the binding property will not be sufficient, and the method will be limited in order to produce a multifunctional material with sufficient catalytic activity and abrasion resistance, such as consuming only the active site adsorption of the photocatalyst particles. become.
  • the gap between the photocatalyst particles means a neck portion between the photocatalyst particles 3 as shown in FIG. 16 (a), and a photocatalyst particle 3 as shown in FIG. 16 (b).
  • 3 refers to both pores. Therefore, the particle 4 having a smaller particle size than the gap between the photocatalyst particles as used herein refers to a particle smaller than the larger gap between the neck portion between the photocatalyst particles and the pores between the photocatalyst particles. This is a particularly effective means for bonding the photocatalyst particles to each other as shown in Fig. 16 (b).
  • the material of the small particles 4 to be filled in the gaps between the photocatalyst particles 3 is not basically limited, but those having excellent adsorption power are preferable. Materials with extremely low adsorptivity cannot achieve the purpose of bonding the photocatalyst particles to each other, and materials with extremely strong adsorptivity cover active points on the surface of the photocatalyst particles rather than being inserted into gaps. This is because the probability of occurrence increases.
  • the material of the particles is filled in the gap of the photocatalyst particles, S n, T i, A g, Cu, Z n, F e, P t, Co, Pd, a metal such as N i
  • zeolite, activated carbon, clay, and the like which are oxides and conventionally used as an adsorption carrier, are not preferred.
  • tin oxide is preferred because of its appropriate adsorption capacity, and metals or oxides such as Ag and Cu are used not only for binding photocatalyst particles to each other but also for Since it has antibacterial properties and deodorant properties, it is preferable because it has the function of assisting the action of the photocatalyst especially in the absence of light irradiation in applications utilizing this function. That is, the metal particles 5 may be used as the small particles 4 filling the gaps between the photocatalyst particles 3.
  • the average particle size of the particles 4 filled in the gaps between the photocatalyst particles 3 is The average particle diameter of the particles 3 is preferably 4/5 or less.
  • the particles 4 that fill the gaps between the photocatalyst particles 3 adhere to the photocatalyst particles to some extent in addition to the gap between the photocatalyst particles in the current manufacturing method. If the particle size of the particles filling the gap exceeds the average particle size of the photocatalyst particles of 4 to 5, the probability of adhering to the surface of the photocatalyst particles is higher than that of the space between the photocatalyst particles. Strength decreases. If the particles that fill the gap are larger than the photocatalyst particles, they will partially cover the photocatalyst particles, and the catalytic activity cannot be exerted on the surface of the multifunctional material. Therefore, the antibacterial property may be significantly degraded.
  • the average particle diameter of the particles 4 filled in the gaps of the photocatalyst particles 3 is preferably less than 0.01 m because the force specific surface area is increased, and a suitable adsorption force is obtained.
  • the amount of the particles 4 filled in the gaps between the photocatalyst particles 3 with respect to the total amount of the photocatalyst particles 3 and the filled particles 4 is preferably 10% or more and 60% or less in molar ratio.
  • the photocatalyst layer is fixed to the base material via a binder by heat treatment in a temperature range where sintering of the photocatalyst particles does not occur, if the amount of particles filling the gap is too small, the photocatalyst particles do not bond strongly, On the other hand, if the amount of particles that fill the gap is too large, the amount of particles that cover the photocatalyst particles will increase, causing a portion of the surface of the multifunctional material that cannot exhibit catalytic activity, and bacteria will be able to accumulate in that portion. Particularly, the above range is preferable because the antibacterial property is significantly deteriorated.
  • a substance constituting the particles 4 filled in the gaps of the photocatalyst particles 3 a substance whose vapor pressure is higher than the vapor pressure of the substance constituting the photocatalyst particles is selected, and the particles filled in the gaps of the photocatalyst particles are selected. Is preferably aggregated at the neck between the photocatalyst particles. This is because, in order to obtain stronger bonding between the photocatalyst particles and increase the peel strength of the photocatalyst layer, it is better not only to fill but also to sinter. Further, if a substance having such a high vapor pressure is selected as the particles 4 for filling the gaps, it also functions as a sintering aid and can lower the sintering temperature.
  • the thickness of the layer containing the particles 4 filled in the gaps between the photocatalyst particles 3 is preferably 0.1 m or more. If the thickness of this layer is less than 0.1, photocatalyst particles (and particles that fill gaps depending on the manufacturing method) are locally embedded in the binder layer 6, and a portion where the catalytic activity cannot be exhibited on the surface of the multifunctional material occurs. Bacteria can accumulate in the area, especially the antibacterial activity ⁇ remarkably deteriorates.
  • the thickness of the layer containing the particles filled in the gaps between the photocatalyst particles includes the portion from the outermost surface to the portion embedded in the lower layer of the binder, and has a uniform thickness.
  • FIG. 15 is a view for explaining an example of a method for producing a multifunctional material having a photocatalytic function according to the present invention.
  • a binder layer 6 is formed on the surface of the substrate 1 as shown in FIG.
  • a material having a softening temperature lower than that of the base material 1 is selected.
  • the substrate 1 is a tile, a porch or a ceramic
  • the glaze layer or the printed layer can be used as the binder layer 6 as it is.
  • the photocatalyst layer 2 only needs to be mounted on the binder layer 6 with such a bonding force that the photocatalyst layer 2 does not fall off from the binder layer 6 in the subsequent firing.
  • the photocatalyst layer 2 is formed on the binder layer 6 as shown in FIG. May be placed on the device.
  • the softening temperature of the binder layer 6 is 20.
  • the lower layer of the photocatalyst layer 2 on the side of the binder layer is partially settled in the molten binder layer, and the binder layer solidifies, so that the part is buried in the binder layer and is firmly held.
  • the photocatalyst particles 3 constituting the surface layer of the photocatalyst layer 2 which is in contact with the outside air are shown in FIG. 16 (a) by sintering by the potential energy, the intermolecular force and the sintering. One part is connected as shown, and the other part is separated as shown in Fig. 16 (b). That is, the surface of the photocatalyst particles is substantially exposed to the outside in the surface layer.
  • the reason why the heat treatment temperature was set to be higher than the softening temperature of the binder layer 6 in the range of more than 20 ° C and less than 320 ° C is that if the temperature is lower than 20 ° C, the time required for the softening of the binder layer becomes longer.
  • the temperature exceeds 320 ° C, the photocatalyst particles are buried in the binder layer due to rapid melting of the binder layer, and irregularities are generated. Due to the generation of holes, the temperature should be 40 ° C or more and 300 ° C or less.
  • the relationship is 0 ⁇ 6t-db ⁇ 3.0, preferably 0.5 ⁇ ⁇ 5t-5b ⁇ 2.0. To do. This is because if the difference in specific gravity between the photocatalyst particles and the binder layer is too small, the melting speed of the binder layer will slow down the vertical movement speed of the photocatalyst particles in the binder layer, causing the photocatalyst particles to immediately separate after firing.
  • the specific gravity difference between the photocatalyst particles and the binder layer is too large, the vertical movement speed of the photocatalyst particles increases, and most of the photocatalyst particles may be buried in the binder layer. If this occurs, the bacteria will stay on the bottom and the antibacterial properties will decrease.
  • the second binder having 0 ⁇ (t— ⁇ 5b ⁇ 3.0) is placed between the binder layer and the photocatalyst particles. What is necessary is just to interpose a layer.
  • particles 4 metal or oxides such as Sn, Ti, Ag, Cu, Zn, Fe, Pt, Co, Pd, and Ni
  • particles 4 having a smaller particle size than the gap are used to bind the photocatalyst particles to each other. May be filled.
  • a binder layer 6 made of a thermoplastic material is formed on a substrate 1 made of ceramic, resin, metal, or the like, and then the photocatalyst particles 3 and particles 4 having a small particle size
  • the photocatalyst layer 2 is formed by applying the mixture mixed in a body state, and then the binder layer 6 is softened so that a part of the lower layer of the photocatalyst layer 2 is embedded in the binder layer 6 and then solidified. You may.
  • the photocatalyst layer is formed by applying a mixture obtained by mixing the particles 4 and the photocatalyst particles 3 in a sol or a precursor state in advance and filling the gaps in advance, thereby forming the photocatalyst layer. This is convenient for controlling the mixing ratio of the particles 4 that fill the gap.
  • a photocatalyst particle 3 and a particle 4 having a small particle size are formed on a sheet-like binder layer 6 made of a thermoplastic material by a sol or a precursor.
  • the photo-catalyst layer 2 is formed by applying the mixture mixed in the above state, and the sheet-like binder layer 6 on which the photo-catalyst layer 2 is formed is placed or pasted on a substrate made of ceramic, resin or metal. After that, the binder layer may be diced, a part of the lower layer of the photocatalyst layer may be embedded in the binder layer, and then solidified.
  • a binder layer 6 made of a thermoplastic material is formed on a base material 1 made of ceramic, resin, metal, or the like.
  • a photocatalyst layer 2 composed of photocatalyst particles 3 is formed on the binder layer 6, and thereafter, the binder layer 6 is softened, a part of the lower layer of the photocatalyst layer 2 is embedded in the binder layer, and then the binder layer is solidified.
  • the solution containing the small-sized particles may be applied to the photocatalyst layer and heat-treated to fix the small-sized particles 4 to the photocatalyst particles.
  • This method can be carried out relatively easily when the particles that fill the gap are oxides, and when a relatively porous photocatalytic layer is formed, it is possible to attach a large amount of particles that fill the gap. it can.
  • a photocatalyst layer 2 composed of photocatalyst particles 3 is formed on a sheet-like binder layer 6 composed of a thermoplastic material.
  • the sheet-like binder layer formed with The binder layer 6 is placed or adhered on a substrate 1 made of ceramic, resin, metal, or the like, and then the binder layer 6 is softened so that a part of the lower layer of the photocatalyst layer 2 is embedded in the binder layer 6.
  • the layer having a small particle size may be fixed to the photocatalyst particles 3 by solidifying the layer, further applying a solution containing the metal particles 4 to the photocatalyst layer, and performing a heat treatment.
  • a binder layer 6 made of a thermoplastic material is formed on a base material 1 made of ceramic, resin, metal, or the like.
  • a photocatalyst layer 2 composed of photocatalyst particles 3 is formed on the binder layer 6, and thereafter, the binder layer is degraded, a part of the lower layer of the photocatalyst layer is embedded in the binder layer, and then the binder layer is solidified.
  • a solution containing the ions of the small metal particles 4 may be applied to the photocatalyst layer, and then irradiated with light including ultraviolet rays to reduce the metal ions and fix them to the photocatalyst particles.
  • the lamp used for ultraviolet irradiation may be any of an ultraviolet lamp, a BLB lamp, a xenon lamp, a mercury lamp, and a fluorescent lamp.
  • a photocatalytic layer composed of photocatalytic particles is formed on a sheet-like binder layer composed of a thermoplastic material, and then this photocatalytic layer is formed.
  • the formed sheet-like binder layer 6 is placed or adhered on a base material 1 made of ceramic, resin, metal, or the like, and thereafter, the binder layer 6 is softened so that a part of the lower layer of the photocatalyst layer is formed.
  • the binder layer 6 is solidified, and a solution containing the ions of the metal particles 4 having the small particle diameter is applied to the photocatalyst layer 2, and thereafter, the metal ions are irradiated by irradiating light containing ultraviolet rays. You may make it reduce and fix to a photocatalyst particle.
  • a binder layer 6 made of a thermoplastic material is formed on a base material 1 made of ceramic, resin, metal, or the like.
  • a photocatalyst layer 2 composed of photocatalyst particles 3 is formed on the binder layer 6, and the photocatalyst layer 2 is formed of the small-sized metal particles 4.
  • a solution containing a binder is applied, and thereafter, a metal ion is reduced by irradiating light containing ultraviolet rays to fix the metal ions to the photocatalyst particles 3.
  • the binder layer 6 is changed to a part of the lower layer of the photocatalyst layer to form a binder. It may be embedded in the layer, and then the binder layer is solidified. .
  • the heat treatment process can be performed only once, so that productivity is improved.
  • a photocatalyst layer 2 made of photocatalyst particles 3 is formed on a sheet-like binder layer 6 made of a thermoplastic material.
  • a solution containing ions of the metal particles 4 having a small particle diameter is applied to the surface, and then, a light containing ultraviolet rays is irradiated to reduce the metal ions to fix the metal ions on the photocatalyst particles 3 and further form a sheet on which the photocatalyst layer 2 is formed.
  • the binder layer is placed or adhered on a substrate 1 made of ceramic, resin, metal, or the like, and thereafter, the binder layer 6 is softened, and a part of the lower layer of the photocatalyst layer 2 is embedded in the binder layer. Next, the binder layer may be solidified.
  • the photocatalyst particles and Z nO, the metal particles 4 that will be filled in the gap of the photocatalyst particles may be a Ag or Ag 2 0.
  • Ag or Ag 20 particles not only strengthen the bond between the ZnO particles that are photocatalysts, but also enhance the photocatalytic effect of ZnO, and have antibacterial and deodorant effects themselves.
  • ZnO as a photocatalyst, coloring due to Ag ions can be eliminated, and the design effect of the base color, pattern, or combination thereof can be improved.
  • a solution containing a salt that forms an insoluble, colorless or white salt with the metal ion filled in the gap between the photocatalyst particles is brought into contact with the photocatalyst layer, and thereafter, light containing ultraviolet light is irradiated. You may do so.
  • the photocatalyst particles 3 T i0 2 and then, the heat treatment temperature for allowing soften the binder layer 6 8 0 0 or more 1 0 0 0 Hand may be less.
  • the photocatalyst particles and Ti0 2 the particles 4 to be filled in the gap of the photocatalyst particles and Ag, a solution containing salts that form a colorless or white salt is insoluble in between the Ag ions KI, KC1, may also be an aqueous halide solution, such as FeCl 3.
  • Ag forms an insoluble, colorless or white salt such as Agl and AgCl with an alkali halide, so that it is possible to improve the design of the base color, pattern, or the combination of the two. .
  • a dispersant for dispersing the sol or precursor to be the photocatalyst particles in the dispersion step in the solution includes: It is preferable to use only components that evaporate at a temperature lower than the heat treatment temperature for softening the binder layer. In the prior art, 32 had no deodorant below CTC, the dispersion process your stomach Ti0 2 and dispersant force sufficiently vaporized attached to the particle surface, in order remaining in the not evaporate, the TiO 2 particle surface This is because the photocatalyst function was insufficient due to insufficient exposure to the outermost surface of the substrate.
  • an organic dispersant having a molecular weight of 10,000 or less and a phosphoric acid-based dispersant are preferable.
  • the TiO 2 sol aqueous solution is, for example, a crystallite diameter obtained by hydrolyzing TiCl in an autoclave under hydrothermal conditions in the range of TC to 0.007 to 0.007. Nitric 0. about 2 m anatase Ti0 2 sol state, in a basic aqueous solution such as an acidic aqueous solution or ammonia such as hydrochloric acid, which was dispersed several% to several tens%, in order to improve the dispersibility
  • an organic acid salt of triethanolamine and trimethylolamine as a surface treatment agent, benzoyl erythritol, trimethylolpropane, etc. are added in a range of 0.5% or less.
  • Ti0 2 sol having a particle diameter by an image processing S EM observation the crystallite size was calculated from the integration width of the powder X-ray diffraction.
  • the application method was spray-coating, but similar results could be expected with dip-coating and spin-coating methods.
  • For antibacterial activity the bactericidal effect on Escherichia coli (Escherichia coli W3110 strain) was tested. 0.15 ml (1 to 5 x 10 4 CFU) of the bacterial solution is dropped on the outermost surface of the multifunctional material that has been sterilized with 70% ethanol in advance, and placed on a glass plate (10 x 1 Ocm). The sample was brought into close contact with the sample.
  • Wear resistance was evaluated by sliding wear using a plastic eraser and comparing changes in appearance.
  • binder Si0 2 - shows the antibacterial, abrasion resistance changes with changes in firing temperature when using A1 2 0 3 one NaZK 2 0 Prefectural bets.
  • the photocatalyst layer (Ti0 2 film) ⁇ Here, S i0 2 used as a binder - A1 2 0 3 - the specific gravity of NaZK 2 0 flip I 2.4, coating
  • the film thickness was 200 m and the softening temperature was 680.
  • the Ti0 2 obtained in (Table 1) was No. 1 to No. 3 (or anatase type, specific gravity was 3.9, No. 4 and 5 were rutile type, and specific gravity was 4.2). Atsuta.
  • the firing temperature of No. 1 was 20 higher than the softening temperature of the binder. Mr. C or not high, 5 to binder viscosity does not become sufficiently low, anatase Ti 0 2 particles constituting the outermost layer of the photocatalyst layer is not sufficiently embedded in the binder layer, the abrasion resistance test for the Scratched and peeled after 10 slides.
  • antibacterial properties it should be an anatase type having excellent photocatalytic activity, and 300.
  • TG-DTA observed on the organic components of the above C is T i0 2 sol almost decomposed, and vaporized, dispersant such as a surface treatment agent adhered to the T iO 2 surface naturalized
  • the firing temperature was 700 ° C, which is much higher than the firing temperature.
  • the firing temperature was 800 ° C or more and 1000 ° C or less, and in each case, the durability was extremely excellent without any change even in a sliding test of 40 times or more. This may be due, Generating neck due to initial firing of Ti0 2 particles on the surface are considered. Further, when the treatment was performed at 110 o e c, after the cooling and solidification, the cracking force was generated in the TiO 2 layer on the surface of the multifunctional material taken out from the roller hearth kiln. It was judged from TMA measurement of Ti0 2 test beads is believed to be due metaphase sintering with a significant volume shrinkage Ti0 2 particles.
  • binder layer is Si0 2 - A1 2 0 3 - Na, the following things when the K 2 0 frit was confirmed.
  • the cause is the viscosity of the binder in the above temperature range. It is considered that the force T i 0 2 is adjusted to a value that can be appropriately embedded in the binder layer.
  • alumina substrate 100X100X5 alumina purity 96%)
  • a sol aqueous solution (same as in Example 1) is applied by a spray-coating method to form a Ti0 2 layer having a thickness of 0, and then a base material laminated with a binder layer and a Ti0 2 layer is rolled into a roller hearth kiln. After heating and sintering at different ambient temperatures for each example, the mixture was cooled and solidified to obtain a multifunctional material.
  • No. 6 was scratched and peeled by sliding less than 10 times because the firing temperature was 2 (TC only higher than the softening temperature of the binder, and the viscosity of the binder did not become sufficiently low. to be because not sufficiently embedded Inda layer anatase Ti0 2 particle element forces rather constituting the outermost layer of the photocatalyst layer.
  • Si0 2 - A1 2 0 3 - BaO Furitsuto was melted ⁇ cooled and solidified in the mold and processed to 1 00X 1 00 X 1 in manufactured glass sheets, 1 ⁇ 0 2 sol solution of 15% on it (same as in example 1) was applied by spray co one plating method, the film thickness was formed Ti0 2 layer of 0. 8 m. Then, the glass sheet was placed on an alumina substrate (100 X 100 X 5), and the ambient temperature was set in a silicon knit furnace. After heating and baking differently for each case, it was cooled and solidified to obtain a multifunctional material.
  • Table 3 shows the changes in the antibacterial and abrasion resistances of the above multifunctional materials with changes in the firing temperature.
  • Si0 used as a binder 2 - A1 2 0 3 - Softening Temperature is 620 ° C of BaO frit, specific gravity 2.8, crystal form T i 0 2 on multifunctional material No.11-13 was an anatase type and No. 14 was a rutile type.
  • No.11 was scratched and peeled by sliding less than 10 times because the firing temperature was 20 ° C higher than the softening temperature of the binder, the force was not high, and the viscosity of the binder did not become sufficiently low As a result, the anatomical TiO 2 that forms the lowermost layer of the photocatalytic layer This is probably because the particles were not sufficiently embedded in the binder layer.
  • the method of applying a TiO 2 particle to a binder in advance, applying the TiO 2 particles to a substrate, and firing the same to obtain a multifunctional material also applies a binder to the surface of the substrate, and then applies Tio 2 particles.
  • Table 4 shows the changes in antibacterial and abrasion resistance of the above multifunctional materials with changes in firing temperature.
  • No.l 5 was used as a 15% Ti0 2 sol solution of Example 1 using.
  • No.16 After hydrolyzing the TiC1 aqueous solution in a autoclave at 110 to 150 ° C, the product was adjusted to pHO.8 with nitric acid and dispersed without using a surface modifier, The one from which the aggregate was removed was used. In this case, spray coating was performed immediately after removing the aggregates.
  • Ti0 2 of specific gravity 3.9, crystalline anatase, the ratio of the acrylic resin heavy temperature at which the viscosity corresponding to 0.9, the glass softening point is 70 ° C.
  • a binder layer made of different flipped preparative like specific gravity from one implementation 15% of 7 ⁇ 0 2 sol solution was dried Subure ⁇ A Ti0 2 layer with a thickness of 0.8 is formed by the coating method, and then the base material on which the binder layer and the Ti0 2 are laminated is heated to an ambient temperature of 750 using a roller hearth kiln. After heating and firing as C, it was cooled and solidified to obtain a multifunctional material.
  • Table 5 shows the change in antibacterial and abrasion resistance of the above-mentioned multi-functional materials with changes in firing temperature.
  • the firing temperature is 30 ° C or more higher than the softening temperature of the binder. high in o ° c below the range, and because the range of the difference between the firing temperature and the binder softening temperature, the viscosity of the bus Inda Ti0 2 has been made in the adjustment value to moderately buried it may value the binder layer Conceivable.
  • N0.17 was damaged by sliding less than 5 times, and the peeled-off force No.18-20 was not damaged by sliding more than 10 times.
  • the cause unlike other in N0.17, since towards the specific gravity of the binder is greater than the specific gravity of TiO 2, anatase TiO 2 particles constituting the outermost layer of the photocatalytic layer is sufficiently embedded in Bruno Inda layer Probably because it was not.
  • the stirred aqueous solution was applied by a spray-coating method, fired at 75 CTC, and solidified by cooling to obtain a multifunctional material.
  • Ti0 2 sol concentration was adjusted to PH 11 with NH 3 aqueous solution at 4 ⁇ 6Wt%, the crystallite diameter of the TiO 2 particles is 0. 01 m, the crystallite through the Sn0 2 particles, at 0. 0035 ⁇ is there.
  • the multifunctional material produced Ti0 2 and Sn0 2 of the total amount for the Sn 0 2 (molar ratio) or less
  • substrate earthenware electrolyte tile
  • binder - Si0 2 -AI 2 0 3 -BaO Prefectural Bok photocatalyst Ti0 2
  • gap particles Sn0 2 (0.0035 mu m)
  • the abrasion resistance test improved with an increase in the amount of SnO 2. With the addition of 10% or more, even in 40 sliding tests, no damage was caused and no change occurred.
  • the antibacterial test if it was up to 20% or more, it was +++ as in the case of no addition, and if it was up to 60%, it stopped at ++. When more was added, the probability of covering the TiO 2 particles on the substrate surface increased, and the antibacterial property deteriorated.
  • Sn0 2 amount added to a molar ratio Ti0 2 and Sn0 2 of the total amount 10% or more than 60%, preferably multifunctional excellent in wear resistance to antimicrobial if 20% or less than 10% Material can be provided.
  • Example 6 and Si0 on the surface of the pottery quality tile substrate 150 square Like 2 - A1 2 0 3 one BaO frit (softening temperature 620 ° C) force to form a Ranaru binder layer, Ti0 2 sol thereon
  • T i 0 2 sol concentration was adjusted to PH 11 with NH 3 aqueous solution. 4 to 6 wt%, formation of the crystallite size of the particles in Example 6 in the same manner as in 0.
  • O l ⁇ m a is the force Sn0 2 particles Akiko Kai used particles slightly larger than 0.008.
  • substrate earthenware electrolyte tile
  • gap particles SnO 2 (0.0080 mu m)
  • Size of more than that Sn0 2 particles should fill the gap between Ti0 2 particles from the relative T iO 2 particle size is preferably less than 4 5.
  • the wear resistance test improved with an increase in the amount of SnO 2. With the addition of a molar ratio of 20% or more, no damage was caused even in the 40-time sliding test, and no change occurred.
  • the antibacterial test if it was up to 20% or more, it was +++ as in the case of no addition, and if it was up to 60%, it stopped at ++. When added more, the probability of covering the Ti 02 particles on the surface of the base material increased, and the antibacterial property deteriorated.
  • the size of the Cu particles fixed to the photocatalyst layer was about 0.04 on average.
  • Table 9 shows the results of the antibacterial test and the abrasion resistance test performed on the multifunctional material thus manufactured.
  • substrate earthenware electrolyte tile
  • gap particles 0 ⁇ 0.004
  • the wear resistance test improved with an increase in the amount of Cu. With the addition of a molar ratio of 20% or more, no damage was caused even in the 40 times of the sliding test, and no change occurred.
  • a BLB lamp was used as the irradiation lamp, and irradiation was performed for several minutes.
  • Ti0 2 was a phase transition to rutile anatase heat treatment step.
  • T i 0 2 of thickness spray - was adjusted to 0. 4 ⁇ m upon 'Koti ring.
  • the antibacterial test is shown in Figure 18. Bad and + Ti0 2 because of rutile when the additive-free. In addition, the antibacterial property of adding Cu was improved. In addition, the amount of supported Cu is reduced not only during BL B lamp irradiation but also during non-irradiation.
  • the antibacterial activity becomes ++, and if it becomes 2 or more, the antibacterial activity becomes ++, and if the carrying amount becomes more than 1.2 ⁇ gZcm 2 , the antibacterial activity becomes ++.
  • the amount of supported Cu is preferably 0.7 gZcm 2 or more, more preferably 1.2 ⁇ / cm 2 or more. .
  • Fig. 19 shows the relationship. This is thought to be due to the higher metal ion concentration during photoreduction when dried.
  • the amount of Cu supported is maximized when the amount of Cu applied is optimized (Fig. 20, Fig. 20 is an example of copper acetate with a Cu concentration of lwt%). . 7 g / cm to 2 or more 0. 2mg Roh cm 2 or more 2. 7mg / cm 2 In the following, to make it 1.2 gZcm 2 or more, it is necessary to make it 0. SmgZcm 2 or more and 2.4 mg, cm 2 or less.
  • Ti 0 2 was a phase transition to rutile anatase heat treatment step.
  • Ti0 2 of the film thickness was adjusted to 0. 4 ⁇ m at the time of spray coating.
  • Fig. 70 shows the antibacterial test. When it is not added, TiO 2 is rutile, which is extremely poor. Addition of Ag increased antibacterial properties. And not BLB La Nbu upon irradiation alone, irradiated A g supported amount even when no is 0. 05 gZc m 2 or more antibacterial activity if the + + next to Ag loading amount 0. l gZcm 2 than on Then the antibacterial activity will be +++.
  • the amount of supported Ag is preferably 0.05 gZcm 2 or more, and more preferably 0.1 gZcm 2 or more.
  • the Ag carrying amount is 0.05 gZcm Lhl gZcm 2 or less, more preferably 0.1 gZcm 2 or more and 1 g NO cm 2 or less.
  • irradiation was performed for several minutes using a BLB lamp as the irradiation lamp.
  • the Ti 0 2 was a phase transition to rutile from Ana evening over Ze heat treatment step.
  • the wear test by changing the thickness of the Ti0 2 to various values, was performed antibacterial test and stain resistance test.
  • Ti0 2 of thickness may have more than 0. 1 m, preferably 0. Above 2 m is good.
  • Si0 2 - the BaO frit (softening temperature 62 binder layer was formed consisting of (TC), zinc aqueous solution or Ti0 2 sol chloride solution thereon - A1 2 0 3 Spray ⁇ Coating method and after drying, apply silver nitrate aqueous solution and then fix to the photocatalyst layer while reducing silver ions by irradiating with light including ultraviolet rays, then firing at 900 ° C or more and 1000 eC or less After cooling and solidification, a multifunctional material was obtained.
  • the antibacterial test is shown in Fig. Bad and because + Ti0 2 is of rutile when the additive-free. Addition of Ag increased antibacterial properties.
  • An aqueous silver nitrate solution is applied to the composite member that has been baked at 900 ° C or higher and 1000 ° C or lower and cooled and solidified after application by the one-ting method, and then irradiated with light including ultraviolet rays to reduce the silver ions and reduce the photocatalytic layer.
  • a 0.1 lmo 1/1 KI aqueous solution was applied thereon at a rate of 0.1 ccZcm 2 and further irradiated with ultraviolet rays for about 5 seconds to obtain a multifunctional material.
  • the supported amount of Ag was 2 g / cm 2 .
  • the KI aqueous solution of lmo 1 11 was applied at a rate of 0.1 cc ⁇ cm 2 and further irradiated with ultraviolet light for about 5 seconds, so that the brown and black multifunctional material was decolorized to white, Appearance improved.
  • the Ti0 2 sol water solution onto the spray ⁇ 820 after coating by coating method On the surface of the pottery quality tile substrates 150 square, Si0 2 - A1 2 0 3 - BaO frits (softening temperature 620 ° C) force to form a Ranaru binder layer, the Ti0 2 sol water solution onto the spray ⁇ 820 after coating by coating method.
  • the multifunctional material obtained by firing and cooling and solidifying at C is placed at an angle, and while irradiating light including ultraviolet rays onto the multifunctional material, the bath water collected in a public bath is circulated over the multifunctional material. Then, the solution was dropped continuously and the change of bath water was observed. For comparison, a similar device was also dropped on a substrate having no photocatalyst layer.
  • the bath water dripped on the multifunctional material showed a unique difference in the degree of turbidity as compared with the bath water dripped on the substrate without the photocatalytic layer. Although it was not possible, there was a difference in water odor. In other words, the bath water dropped on the base material without the four-medium layer shows a rather strong water odor, and the base material does not have a slime-like appearance. While drilling and organic precipitates were observed, none of the bath water dropped on the multifunctional material was observed. Based on the above simulation experiments, it is considered that this multifunctional material can be used as artificial waterfalls and fountain paving stones in the water circulation system in parks and debates.
  • the photocatalyst particles are fixed via the binder layer made of a material lower than the softening temperature of the base material.
  • the photocatalyst particles are substantially in a state where their surfaces are exposed to the outside, and the photocatalytic effect can be sufficiently exerted.
  • the holding power of the photocatalyst layer is greatly improved, and the force such as peeling is less likely to occur.
  • FIG. 21 is a view showing a manufacturing process of another embodiment.
  • a thermoplastic material such as inorganic glass or a thermoplastic resin is used as the base material 1 and the thermoplastic base material 1 is used.
  • the photocatalyst layer 2 is formed directly on the surface of the substrate.
  • thermoplastic substrate 1 is prepared, and then, as shown in FIG. 21 (b), photocatalytic particles such as TiO 2 particles are formed on the surface of the thermoplastic substrate 1.
  • a photocatalyst layer 2 is formed. Thereafter, by performing a heat treatment, the lower layer of the photocatalytic layer 2 on the side of the thermoplastic substrate settles down on the thermoplastic substrate as shown in FIG. It is embedded in a plastic substrate and is held firmly. Further, the photocatalyst particles 3 constituting the surface layer of the photocatalyst layer 2 which is in contact with the outside air are connected by potential energy, intermolecular force or sintering.
  • a 5% T i0 2 sol solution was applied by spray co one plating method, the film thickness Forms a 0.8 Tm Ti0 2 layer, and then places the glass substrate laminated with a Ti0 2 layer into a ceramic mold with good mold release, After heating and baking at different ambient temperatures for each example, the mixture was cooled and solidified to obtain a multifunctional glass.
  • Ti0 2 The sol solution, for example TiCl 4 Otokurebu in 100 ⁇ 200 ° C in the range of hydrothermal conditions hydrolyzed crystallite size from 0.007 to 0 obtained at.
  • a basic aqueous solution such as an acidic aqueous solution or ammonia such as hydrochloric acid, which was dispersed several% to several tens%, triethyl evening as a surface treatment agent to improve the dispersibility
  • Organic acid salts of nolamine and trimethylolamine, benzoyl erythritol, trimethylol pulp bread, etc. added in a range of 0.5% or less.
  • the particle size of Ti0 2 sol by image processing of S EM observation, the crystallite size was calculated from the integration width of the powder X-ray diffraction.
  • the application method was spray-coating, but similar results are expected with dip-coating and spin-coating.
  • the resulting multifunctional glass was evaluated for its antibacterial properties and abrasion resistance.
  • the bactericidal effect on Escherichia coli was tested. 0.15 ml (1 to 5 ⁇ 10 4 CFU) of bacterial solution is dropped on the outermost surface of the multifunctional glass sterilized with 70% ethanol in advance, placed on a glass plate (10 ⁇ 10 cm), and adhered to the outermost surface of the glass substrate. A sample was used. After irradiating with a white light (3500 lux) for 30 minutes, the bacteria solution of the irradiated sample and the sample maintained under light-shielding conditions were wiped with sterile gauze, collected in 10 ml of physiological saline, and the survival rate of the bacteria was determined and evaluated. Index.
  • the abrasion resistance was evaluated by sliding wear using a plastic eraser and comparing changes in appearance.
  • the firing temperature of No. 1 was 20 higher than the softening temperature of the glass substrate.
  • C and power, not high because the result is not the viscous force of the glass substrate ⁇ sufficiently low, anatase T i 0 2 particles constituting the outermost layer of the photocatalyst layer is not sufficiently embedded set in the glass substrate, As a result, in the abrasion resistance test, it was scratched and peeled after 5 to 10 times of operation.
  • the firing temperature was 800 ° C. or more and 1000 ° C. or less.
  • the durability did not change even after a sliding test of 40 times or more, and was extremely excellent. This may be due to the formation of a neck due to the initial baking of the TiO 2 particles on the surface.
  • treated with 1100 ° C had a crack force ⁇ occur Ti0 2 layer was removed from the cooled and solidified after Roraha Sukirun multifunctional glass surface. It was judged from TMA measurement of Ti0 2 test beads is believed to be due metaphase sintering with significant volume shrinkage Ti0 2 particles.
  • Example 16 that is at least photocatalyst Ti0 2, when the glass substrate is a Si Oz-AUOs-Na / KzO composition was confirmed that:.
  • substrate Si0 2 -AI 2 0 3 -PbO glass
  • the resulting Ti0 2 crystal forms were all anatase type.
  • the reason for scratching and peeling after 10 times of sliding in .6 is that the firing temperature is only 20 higher than the softening temperature of the glass substrate, and the viscosity of the glass substrate does not become sufficiently low For this reason, it is considered that the analog-type Ti02 particles constituting the lowermost layer of the photocatalyst layer were not sufficiently embedded in the glass substrate.
  • TiO 2 sol solution on a glass substrate of 100 X 100 X 5 consisting of BaO composition was applied by Subure co one ting method, thickness was formed Ti0 2 layer of 0. 8 m. Thereafter, Ti 0 placed 2 layers of glass substrates are stacked in a good type of ceramic releasability, after the firing at different ambient temperatures for each Example in Shirikoni' preparative furnace, cold It was solidified to obtain a multifunctional glass.
  • Table 12 shows the change in antibacterial and abrasion resistance of the above multifunctional glass with the change in firing temperature.
  • Analysts data No. 14 was a rutile type.
  • Table 13 shows the changes in the antibacterial and abrasion resistances of the above multifunctional glass with changes in the specific gravity of the glass substrate.
  • the firing temperature is higher than the softening temperature of the glass substrate in the range of 30 ° C. or more and 300 ° C. or less, and the range of the difference between the firing temperature and the softening temperature of the glass substrate increases the viscosity of the glass substrate.
  • T i 0 2 is considered because it was adjusted values to the values that can be reasonably embedded in the glass substrate.
  • No.15 was scratched by sliding less than 5 times, and peeled force No.16-18 was not damaged by sliding more than 10 times.
  • the cause unlike other In No.15, because towards the specific gravity of the glass substrate is greater than the specific gravity of Ti 0 2, Ana evening one peptidase type Ti 0 2 particles constituting the outermost layer of the photocatalyst layer is a glass It is considered that they were not sufficiently buried in the base material.
  • T i 0 2 sol concentration is adjusted to p H 11 with NH 3 aqueous solution. 4 to 6 wt%, crystallite strange of Ti0 2 particles are 0. 01 m, the crystallite size of Sn0 2 particles, 0 0035 m.
  • Photocatalyst Ti0 2
  • gap particles SnO 2 (0.0035 ⁇ m)
  • the abrasion resistance test improved with an increase in the amount of SnO 2. With the addition of 10% or more, no damage was caused even in 40 sliding tests, and no change occurred.
  • Sn0 2 amount added to a molar ratio Ti0 2 and Sn0 2 of the total amount 10% or more than 60%, preferably multi excellent in wear resistance antimicrobial if 20% or less than 10% Functional glass can be provided.
  • the mechanism described with reference to FIG. 17 improves the wear resistance with an increase in the amount of SnO 2 .
  • Example 20 similarly to the 150 square Si0 2 - A1 2 0 3 - the surface of the glass base material made of BaO composition (softening temperature 6 20 ° C), mixed Ding 10 2 sol and 5110 2 sol was ⁇ 750 after applying the aqueous solution by spray coating method. Fired at C After cooling and solidification, a multifunctional glass was obtained.
  • T i 0 2 sol concentration is adjusted to p H 11 with NH 3 aqueous solution. 4 to 6 wt%, the crystallite of the crystallite size is likewise 0. 01 m as in Example 5 is force Sn0 2 particles having a particle Particles with a diameter as large as 0.008 m were used.
  • Photocatalyst Ti0 2
  • gap particles SnO 2 (0.0080 m)
  • the size of the Sn0 2 particles should fill the gap between Ti0 2 particles from the above, compared T iO 2 particle size is preferably less than 4/5.
  • Table 17 shows the results of the antibacterial and abrasion resistance tests performed on the multifunctional glass thus produced.
  • the wear resistance test improved with an increase in the amount of Cu. With the addition of a molar ratio of 20% or more, no damage occurred and no change occurred even after 40 times of the automatic test.
  • the photocatalytic action by the TiO 2 particle layer is dominant when the amount of Cu added is small, and the action by Cu is dominant when the amount of Cu is large.
  • Cu elutes gradually when used in a liquid, so it can be considered that L has no photocatalyst and its life is shorter than that of the case.
  • a large amount of Cu increases the cost. Therefore, it does not seem meaningful to set the Cu amount too high.
  • irradiation was performed for several minutes using a BLB lamp as the irradiation lamp.
  • Ti0 2 was phase transition in rutile from Anakuze in the heat treatment process.
  • T i 0 2 of the film thickness was adjusted to 0. 4 / zm during spray one 'coating.
  • Fig. 22 shows the antibacterial test.
  • TiO 2 is rutile, which is very bad.
  • the addition of Cu increased antibacterial properties.
  • the antibacterial activity becomes ++ when the Cu loading is 0.7 ⁇ g / cm 2 or more, not only when the BLB lamp is irradiated but also when the irradiation is not performed, and the Cu loading is 1.2 g / z 2 or more
  • the antibacterial activity becomes +++.
  • the amount of supported Cu is preferably at least 0, more preferably at least 1.2 ⁇ g / cm 2 .
  • Fig. 24 shows an example of copper acetate with lwt% Cu concentration).
  • 2 GZcm 2 or more coating amounts 0. 3 mg Roh cm 2 or more 2. 4mgZcm 2 may be set to the following.
  • irradiation was performed for several minutes using a BLB lamp as the irradiation lamp.
  • the Ti 0 2 was a phase transition to rutile anatase heat treatment step.
  • Ti0 2 film thickness was adjusted to 0.4 during the spraying. Koti ring.
  • Fig. 25 shows the antibacterial test.
  • TiO 2 is rutile, which is extremely poor.
  • Addition of Ag increased antibacterial properties.
  • BLB La Nbu upon irradiation only come irradiated Ag supported amount even when no is 0. 05 g Z cm 2 or more antibacterial activity if the + + becomes, Ag loading amount 0. l gZcm 2 or more If the antibacterial activity is +++.
  • the amount of supported Ag is preferably 0.05 gZcm 2 or more, and more preferably 0.1 g ⁇ cm 2 or more.
  • the amount of supported Ag is preferably from 0.05 gZcm 2 to 1 igZcm 2 , and more preferably from 0.1 gZcm 2 to 1 ⁇ gZcm 2 .
  • the multifunctional glass prepared the abrasion test by changing the film thickness of the Ti 0 2 to various values, was performed antibacterial test and stain resistance test.
  • the film thickness is ++ at a film thickness of 0.1111 or more and ++ at a film thickness of 0.2 / m or more.
  • T i0 2 film thickness may more than 0. lm, preferably 0. Good than 2 / m.
  • the photocatalyst particles were fixed to the thermoplastic base material, and in particular, the photocatalyst particles constituting the surface layer of the photocatalyst layer were prevented from being buried in the thermoplastic base material. The surface is exposed to the outside, and the photocatalytic effect can be sufficiently exhibited. Further, among the photocatalyst particles, the particles constituting the lower layer of the photocatalyst layer are partially embedded in the thermoplastic base material, so that the holding power of the photocatalyst layer is greatly improved, and peeling or the like is less likely to occur.
  • Fig. 26 and Fig. 27 are conceptual diagrams of the basic profile when the cross-sectional direction of the multi-functional material is observed with EPMA (Electron Beam Micro Analyzer).
  • EPMA Electro Beam Micro Analyzer
  • region A was defined as the photocatalytic layer
  • region B was defined as the amorphous layer
  • region C between them was defined as the intermediate layer.
  • Fig. 26 is only a conceptual diagram for convenience of explanation, and in actuality, as shown in Fig. 27, the part where the concentration is constant in Fig. Often fluctuates.
  • the areas that reach the minimum density of the areas corresponding to the fixed areas are the A 'area, C' area, and B 'area, respectively.
  • C ' were considered as the boundaries of the region.
  • the thickness of the photocatalyst layer is the thickness of the region A or A 'region
  • the thickness of the intermediate layer is the thickness of the region C or C'.
  • the thickness of the intermediate layer can be changed by controlling the moving speed and the moving time of the photocatalyst particles into the softening amorphous layer.
  • the moving speed can be controlled by the specific gravity difference between the photocatalyst particles and the amorphous layer, the firing temperature, the atmospheric pressure, and the like.
  • the movable time can be changed by changing the holding time at the temperature of the amorphous material ⁇ softening.
  • the adhesion can be further improved.
  • a copper acetate aqueous solution was coated by spray coating to the anatase Ti0 2 thin film, the halo reduction (light source 20 Watto BLB lamp, the distance 1 0 cm from the light source to the sample, irradiation time 30 seconds) To obtain a sample.
  • the obtained sample was subjected to elemental analysis (Ti, Si) of the cross section by E PMA to measure the film thickness, and evaluated the antibacterial and abrasion resistance.
  • E. coli Escherichiacoli W
  • Bacterial solution 0.15 ml (1 to 50000 CFU) is dripped on the outermost surface of the multifunctional material previously sterilized with 70% ethanol, placed on a glass plate (100X100), and adhered to the outermost surface of the substrate And used as a sample. After irradiating with a white light (3500 lux) for 30 minutes, the bacterial solution of the irradiated sample was wiped with sterile gauze and collected in 10 ml of physiological saline, and the survival rate of the bacteria was determined and used as an index for evaluation. The evaluation criteria are the same as in the above (Table 1).
  • the average particle diameter of 0. 01 m of Ti0 2 sol ammonia dispersion 10 cm ⁇ 10 cm alumina substrate to spray U - was applied by coating method, which 850. And fired at C having a thickness of 1 Anna evening to form a one-zero-type Ti0 2 thin film.
  • an aqueous solution of copper acetate is applied to the anatase-type TiO 2 thin film by a spray-coating method, followed by photoreduction (the light source is a 20-bit BLB lamp, the distance from the light source to the sample is 10 cm, and the irradiation time is 30 seconds. ) To obtain a sample.
  • the antibacterial properties and abrasion resistance of the obtained samples were evaluated.
  • the antibacterial property was as good as +++, but the abrasion resistance was as unsatisfactory as ⁇ .
  • the photocatalyst layer is held on the surface of the base material via the amorphous layer, the photocatalyst layer is exposed so that the upper layer is in contact with the outside air, and the photocatalyst layer has particles bonded to each other.
  • the amorphous layer and the photocatalytic layer have an intermediate layer between which the concentrations of both components continuously change. By doing so, the adhesion between the photocatalytic thin film and the substrate was increased, and the peeling resistance was improved. Further, when the thickness of the intermediate layer was 1/3 or more of the thickness of the photocatalyst layer, the adhesion could be further increased.
  • FIG. 1 (a) is a diagram showing the state before sintering of the conventional TiO 2 particles
  • (b) is a diagram showing the state after sintering, and the base material is shown in Fig. 1 (a).
  • a sol containing TiO 2 particles 3 is applied to the surface of 1 and heat-treated (sintered) to increase the film strength, cracks 2a are likely to occur as shown in FIG. 1 (b).
  • SnO 2 is condensed on the neck portion of the TiO 2 particles 3 bonded by sintering, and the neck portion is thickened to strengthen the bond between the TiO 2 particles 3, thereby increasing the film strength.
  • the mixing S nO 2 sol T i 0 2 sol is coated on the substrate 1 by stirring, heat-treated at a predetermined temperature range (sintering) to.
  • Ding 10 2 sol concentration was about 4 ⁇ 6Wt%, adjusted to pH 11 with NH 3 solution, the average primary particle Kai Ding 10 2 particles and 0. 01 ⁇ (10nm), Sn0 2 zo le concentration Is about 1 Owt%, the pH is adjusted to pH 11 with an NH 3 solution, and the average primary particle size of the SnO 2 particles is 0.0035 ⁇ m.
  • the average primary particle size shown here is the crystallite size (primary particle) determined from the half-width of the XRD (X-ray diffraction) diffraction line.
  • the mixing ratio indicates the weight ratio of the solid content contained in each sol.
  • the photoactivity was evaluated by decomposing methyl mercaptan, and the removal rate (R 3 ) after 30 minutes of light irradiation was used as an index.
  • a 150-square tile with a photocatalytic coating formed in a 11-liter glass container is placed at a distance of 8 cm from the light source (BLB fluorescent lamp 4 W), and the intensity of methyl mercaptan gas is set to 3 to 5 ppm. After confirming that there was no adsorption in the dark, the fluorescent lamp was turned on and the concentration change was measured over time by gas chromatography.
  • the evaluation of the film strength was performed by sliding wear using a plastic eraser and comparing changes in appearance.
  • the evaluation criteria ⁇ , ⁇ , ⁇ , and X are the same as in the above (Table 1).
  • FIG. 29 is a graph showing the relationship between the heat treatment temperature and the optical activity, the addition of organic stabilizers in Ti0 2 sol, the light activity is reduced, any odor even heat treatment temperature is 300 to 850 ° C.
  • This 300 ° C Not Mitsurude heat treatment temperature is because, if the activity is more than hardly 850 ° C occur Ti0 2 of structure changes to the rutile anatase.
  • a sol containing titanium oxide particles and a substance having a higher vapor pressure than the titanium oxide is applied to tiles and the like, and sintered at a predetermined temperature to form a film by sintering by a vaporization-condensation mechanism. Since the heat treatment is performed, the intervals between the titanium oxide particles before and after sintering are substantially equal, and cracks are unlikely to occur. In addition, since the SnO 2 equivalent force ⁇ condensation occurs at the neck between the titanium oxide particles, the peel strength of the coating film is high. It becomes.
  • the measuring device in the method of measuring R 30 by gas chromatography, the measuring device is expensive, inefficient not only it can measure one sample for one device.
  • P is t like of metals are photoactive by to be supported on the T i 0 2 known force can be improved, due to the effect of gas adsorption by the metal In the photocatalyst film of this structure It is difficult to determine what the net photoactivity is.
  • the activity of the photocatalytic thin film formed on the surface cannot be measured by gas chromatography.
  • a method of evaluating photoactivity without using gas chromatography a method of examining the survival rate of bacteria killed by a photocatalyst after light irradiation can be considered, but the operation is more troublesome than gas chromatography, and it supports metals.
  • it is difficult to determine the net photoactivity because the bacteria are also killed by the antimicrobial activity of the metal itself. Therefore, it is also possible to apply the following method for measuring the activity of a photocatalytic thin film.
  • the first method dropwise halide al Chikarari aqueous solution of iodide force Riumu or chloride force potassium and T i 0 2 formed on the substrate surface to the surface of the photocatalytic film mainly, was then added dropwise halogen
  • the aqueous alkali halide solution is irradiated with ultraviolet rays for a predetermined time, and the magnitude of the activity of the photocatalytic thin film is determined from the difference between the pH of the aqueous halogenated alkali solution before irradiation and the pH after irradiation.
  • a mixed solution prepared by adding p H indicator on the surface of the photocatalytic film halide al Chikarari aqueous solution of iodide force potassium or chloride force helium mainly of T i 0 2 formed on the substrate surface The mixture is dropped and irradiated with ultraviolet light for a predetermined time, and the degree of activity of the photocatalytic thin film is determined based on the change in color of the mixture.
  • the T i 0 2 formed on the substrate surface is brought into close contact with the active measuring film on the surface of the photocatalytic film mainly, to the activity measurement fill ⁇ in this state Irradiate ultraviolet light for a predetermined time, and determine the degree of activity of the photocatalytic thin film based on the change in color of the activity measurement film.
  • FIG. 3 0 Figure is a diagram illustrating the first and second activity measurement method, this surface of the substrate 1 photocatalyst layer 2 mainly composed of T i 0 2 is formed, the photocatalytic thin film such as a photocatalyst Can be applied.
  • the first method dropwise halide al Chikarari aqueous solution of iodide force Riumu or chloride force potassium and T i 0 2 formed on the substrate surface to the surface of the photocatalytic film mainly, was then added dropwise halogen
  • the aqueous alkali halide solution is irradiated with ultraviolet rays for a predetermined time, and the magnitude of the activity of the photocatalytic thin film is determined from the difference between the pH of the aqueous halogenated alkali solution before irradiation and the pH after irradiation.
  • a mixed solution of a photocatalytic thin film mainly composed of TiO 2 formed on the surface of a substrate and a pH indicator added to an aqueous solution of halogenated alkali such as lithium iodide or lithium chloride is added.
  • the mixture is dropped and irradiated with ultraviolet light for a predetermined time, and the degree of activity of the photocatalytic thin film is determined based on the change in color of the mixture.
  • the T i 0 2 formed on the substrate surface is brought into close contact with the active measuring film on the surface of the photocatalytic film made mainly by irradiating a predetermined time ultraviolet to the activity measurement film in this state, the activity measured film
  • the magnitude of the activity of the photocatalytic thin film is also determined by the change in color.
  • FIG. 3 0 Figure is a diagram illustrating the first and second activity measurement method, this surface of the substrate 1 photocatalyst layer 2 mainly composed of T i 0 2 is formed, Hikarikatsu of the photocatalyst layer 2 To check whether or not there is, an aqueous alkali halide such as potassium iodide or potassium chloride 30 is dropped on the surface of the photocatalyst layer 2, and then the aqueous alkali halide 30 is dropped.
  • an aqueous alkali halide such as potassium iodide or potassium chloride 30
  • Ultraviolet light is irradiated by an ultraviolet lamp 40 for a predetermined time, and the magnitude of the activity of the photocatalyst layer 2 is determined from the difference between the pH of the aqueous alkali halide solution before the irradiation and the pH after the irradiation.
  • Fig. 33 is a graph showing the relationship between the UV irradiation time and the amount of change in pH.
  • concentration of the halogenated alkaline aqueous solution 30 was 0.1 mol / l
  • the UV lamp 4 was a BLB fluorescent lamp 20 W.
  • the distance between the photocatalyst layer 2 and the ultraviolet lamp 4 is 2 Ocm
  • the test was performed with an irradiation time of 60 minutes.
  • the halogenated aqueous solution is used until the irradiation time of ultraviolet rays becomes 30 minutes. PH 30 increases.
  • the reason why the pH of the aqueous alkali halide solution 30 is increased by the irradiation of ultraviolet light is that the following oxidation reaction and reduction reaction occur simultaneously, and OH '(hydroxyl ion) is generated by the reduction reaction.
  • FIG. 34 is a graph showing the relationship between R 30 and pH variation.
  • R 30 is the ratio (%) of gas (methyl mercaptan, etc.) that decreased 30 minutes after irradiation with ultraviolet light. From this figure, it can be seen that there is a positive correlation between R 30 and the amount of change in pH. You. That is, the amount of change in pH is an indicator of the presence or absence of photoactivity.
  • the amount of change in pH is measured by a force measured by a pH meter or a pH measurement sheet 5.
  • a pH indicator is added to an aqueous solution of halogenated alcohol 30.
  • the liquid is dropped on the surface of the photocatalyst layer 2, and then the dropped liquid is irradiated with ultraviolet light for a predetermined time, and the magnitude of the activity of the photocatalyst layer 2 is determined based on a change in the color of the mixed liquid.
  • methyl red is suitable since the pH of the halogenated aqueous solution 30 before UV irradiation is about 4.5 and the pH after UV irradiation is 5.5 to 6.5.
  • an aqueous alkali halide solution 30 or a mixed solution obtained by adding a pH indicator to an aqueous alkali halide solution 30 is applied to the surface of the photocatalyst layer 2.
  • the spread of the dropped liquid varies, and a constant liquid thickness cannot be secured, and the reaction area may differ from substrate to substrate.
  • the method shown in Fig. 31 solves this problem.
  • an aqueous solution of halogenated alcohol 30 is dropped on the surface of the photocatalyst layer 2, and then the glass is removed.
  • a transparent plate 60 such as a plate presses the halogenated aqueous solution 30 down to a certain thickness and prevents drying.
  • the liquid such as the halogenated aqueous solution 30 since the liquid such as the halogenated aqueous solution 30 must have the surface of the substrate 1 horizontal, the activity of the photocatalytic thin film formed on the vertical surface such as the existing wall surface or the ceiling surface is determined. It is difficult.
  • the activity measurement film 7 is brought into close contact with the surface of the photocatalyst layer 2 formed on the surface of the substrate 1, and in this state, the activity is measured.
  • the measurement film 7 is irradiated with ultraviolet light, and the change in the color of the activity measurement film 7 is used to determine the magnitude of the activity of the photocatalytic layer 2.
  • the activity measurement film 70 is obtained by drying a mixed solution obtained by adding an aqueous solution of an alkali halide such as potassium iodide or a saline chloride and a pH indicator to an organic binder to form a film. .
  • the porosity of the photocatalyst layer 2 will be considered.
  • the porosity refers to an open porosity, and the porosity is 10% or more and less than 40%, preferably 10% or more and 30% or less.
  • the crystal diameter of the photocatalyst particles should be less than 0.1 ⁇ m, preferably not more than 0.04 m. It is considered that the smaller the crystal grain size L, the larger the effective reaction area per unit volume.
  • the film thickness should be 0.5 m or more, preferably 0.6 m or more.
  • particles having a crystal diameter of less than 0.01 m, preferably 0.08 // m or less may be added between the photocatalyst particles constituting the photocatalyst layer formed on the substrate surface.
  • the gap between the photocatalyst particles can be filled, and the force for improving the particle packing ratio and the surface smoothness can be improved, thereby improving the film strength against shear stress. be able to.
  • the smoothness of the surface dirt can be hardly attached.
  • the porosity decreases, but the pore diameter buried here is less than 0.01 zm in crystal diameter, preferably 0.00 zm. It has a size that allows particles of 8 m or less to enter and is large compared to the size of the gas (several A), so it does not affect odor control.
  • the type of particles having a crystal diameter of less than 0.01 m, preferably 0.08 or less may be basically any type, but may fill the gaps of the photocatalyst particles and may partially cover the surface.
  • the method of adding particles having a crystal diameter of less than 0.01 / m, preferably 0.08 m or less may be basically any method.
  • ultrafine particles are formed by hydrothermal treatment or the like, and the sol dispersed in an appropriate dispersion liquid is applied on the photocatalyst layer by a spray coating method.
  • the organic dispersant may be evaporated by heat treatment.
  • an alkoxide or an organic metal salt may be applied on the photocatalyst layer and heat-treated to evaporate a diluent, an organic component and the like.
  • metal particles having a pore size smaller than that of the photocatalyst layer formed on the substrate surface may be fixed. Since the metal particles are fixed, the photocatalytic activity is improved due to the electron trapping effect as compared with the case of using the photocatalyst layer alone, and the deodorization property is improved.
  • the type of the metal particles is a substance capable of trapping electrons. Anything is fine. Examples include Cu, Ag, Pt and the like.
  • the size of the metal particles needs to be smaller than the average pore diameter on the surface of the photocatalyst layer.
  • the average porosity on the surface of the photocatalyst layer is required to be smaller than the diameter of the photocatalyst, because the average porosity of the sample having a porosity of 10% or more and less than 40% is almost equal to the diameter of the photocatalyst when observed with an electron microscope. .
  • the diameter is smaller than the photocatalyst particle size of the starting material.
  • a starting material for the photocatalyst layer generally, a raw material having a size of 0.05 m or less is used. Therefore, the starting material is preferably 0.05 m or less.
  • specific examples regarding the porosity will be described.
  • Crystal diameter 0. 0 1 / m Ding 10 2 sol ammonia peptization type suspension 1 5 cm square of tile substrates in spray co - by plating method was applied while changing the amount of coating This was fired at 700 ° C or higher and 900 ° C or lower to form a photocatalyst layer. Crystal diameter of the obtained sample for anatase Ti0 2 particles, open porosity of the layer surface, deodorant, abrasion resistance was evaluated peeling resistance.
  • R 30 (L) is the removal rate after light irradiation.
  • the surface where the photocatalytic thin film of the sample was formed in an 11-liter glass container was 8 cm from the light source (BLB fluorescent lamp 4W). It is obtained by measuring the change in concentration when methylmercaptan gas is injected into the vessel at an initial concentration of 3 ppm and irradiated with light for 30 minutes at a distance.
  • Abrasion resistance was evaluated by sliding wear using a plastic eraser and comparing changes in appearance. The evaluation indices are the same as described above and are shown below.
  • the peeling resistance test is a test in which the conditions of the abrasion resistance test are stricter, and a sand eraser (LION TYPEWR I TERERAS ER 502) to which a large shearing force is applied instead of a plastic eraser is used.
  • the specific evaluation method is performed by rubbing the sample surface 20 times evenly with a sand eraser and visually comparing the standard sample with the scratched state. The evaluation criteria are shown below. ⁇ : No change
  • Fig. 35 shows the relationship between porosity, odor prevention and abrasion resistance when the thickness of the photocatalytic thin film is 0.8 m.
  • Deodorization increases with increasing porosity, exceeding 50% at 10% and reaching 80% or more at 30%.
  • the abrasion resistance was ⁇ up to 30%, but 40 at 40%, and ⁇ or X beyond that.
  • the porosity of the medium thin film needs to be 10% or more and less than 40%, preferably 10% or more and 30% or less.
  • FIG. 36 shows the dependency of the deodorant film thickness when the crystal diameter of the photocatalyst particles constituting the photocatalyst thin film having a porosity of 20 to 30% was changed.
  • the dependence of R 30 (L) on the film thickness was observed, and the thinner the film, the lower the deodorant properties.
  • no dependency on the film thickness was observed below 0.04, and even at a film thickness of 0.1 m, good deodorant properties were exhibited. From the above, by setting the crystal diameter of the photocatalyst particles to be less than 0., preferably 0.04 m or less, good deodorizing properties can be secured even if the photocatalytic thin film is reduced to a thickness of about 0.1. It turned out to be possible.
  • FIG. 37 shows the photocatalytic particle yarns constituting the photocatalytic thin film having a porosity of 20 to 30%; the film thickness dependence of the odor prevention and peeling resistance when the diameter and the bonding state are changed.
  • the deodorizing power becomes dependent on the film thickness, and the thicker the film, the more the deodorizing property.
  • R 30 (L) exceeds 50% at a film thickness of 0.5 um, and reaches 80% or more at 0.6 m. From the above results, it is possible to sufficiently improve the strength of the thin film by solid-phase sintering the photocatalytic particles to form a neck portion between the particles and growing the particles until the crystal diameter becomes 0.1 m or more. In this case, when the crystal diameter is increased to 0.1 zm or more, the effective reaction area per unit volume is reduced. Therefore, it is necessary to make the film thickness 0.3 or more, preferably 0.6 or more.
  • Ammonia peptization-type suspension of Ti0 2 sol crystal diameter 0. 01 m was applied by 15 cm square spray coating method to the tile substrate, which 750. C was fired to form a photocatalytic thin film.
  • the porosity of the T i 0 2 thin film of this stage 45%, the crystal diameter of Cho ⁇ 0 2 particles was 0. 02 / m.
  • That 3110 2 sol each spray co - was applied by coating method to obtain a sample was dried at 110 ° C. The obtained sample was evaluated for deodorization and abrasion resistance o
  • the abrasion resistance was improved by adding particles having a crystal size of less than 0.01, preferably 0.008 ⁇ m or less, between the photocatalyst particles.
  • the crystal diameter of the photocatalyst particles was 0.1 lm.
  • the obtained sample was evaluated for deodorization and abrasion resistance.
  • R 30 (L) was 89% and abrasion resistance was ⁇ .
  • R 30 by copper carrying (L) was significantly improved from 18% to 89%.
  • the photocatalytic thin film having a porosity of 10% or more and less than 40%, preferably 10% or more and 30% or less is formed on the surface of the base material. It is possible to provide a member having the same function.
  • the gap generated in the photocatalyst layer is filled with particles smaller than the gap. An embodiment will be described.
  • the gap in the present embodiment refers to both the gap between the separated particles and the concave portion of the neck portion.
  • the denser the photocatalyst layer the better in terms of film strength and the resistance to contamination, but generally the temperature at which the photocatalyst layer is formed increases, and the material of the base material is limited.
  • the porosity of the photocatalyst layer before the addition of the gap particles may be 10% or more.
  • a film having a porosity of 10% or more is excellent in odor prevention.
  • Particles smaller than the gaps filled in the gaps are made of an inorganic crystalline material, and preferably have a force ⁇ preferably, and more preferably have photocatalytic activity, so that Ti 0 2 , Sn 0 2 , ZnO, S rTi 0 3 , F e 2 0 3, B i 2 0 3, W0 oxide 3 semiconductor good.
  • the size of the particles smaller than the gap is basically required to be smaller than the average value of the generated pore diameter. In terms of the improvement of surface smoothness and the reduction of surface defects by reducing gaps and particles adhering to the surface of the particles having a photocatalytic function, it is possible to improve the strength of the film by making it difficult to adhere to stains.
  • the starting material of the Ti 0 2 thin film having photocatalytic activity is generally less than 0.05 / ⁇ m. . 0 5 // m or less.
  • the porosity of the surface of the layer having the photocatalytic function in which the gaps are filled with the particles is desirably 0.04 or less.
  • the porosity means the open porosity of the surface of the base material
  • the maximum width of the open pore is the distance between two adjacent particles of the photocatalytic particles constituting the surface of the base material. (Mean + 3 x standard deviation).
  • the porosity of the layer having a photocatalytic function before filling the gap with particles has a porosity of around 10%, the porosity is reduced to less than 10%.
  • the pore diameter is large enough to contain particles with a crystal diameter of less than 0.01 m, and is large compared to the size of the gas (several A). It has been porosity 1 0% or more T i 0 2 thin film equivalent to odor characteristics can and child hold.
  • the formed layer having the photocatalytic function is mainly made of crystalline photocatalyst particles
  • the dirt does not adhere in a strong adhesion form such that the glass adheres, and even if it adheres, it is relatively small. It can be easily wiped off.
  • the gap is formed by applying, drying, and heating using a metal alkoxide, an organic metal salt, a sulfate, or the like.
  • the step of using a metal alkoxide is performed by applying a solution obtained by mixing a metal alkoxide with an appropriate diluent and hydrochloric acid on the outermost surface of the photocatalyst layer, followed by drying and heat treatment.
  • suitable diluents include alcohols such as ethanol, propanol and methanol, but are not limited thereto. However, it is better not to include water as much as possible. If water is contained, the hydrolysis of metal alkoxide is explosively promoted, which contributes to crack generation.
  • the reason for adding hydrochloric acid is to prevent cracking force from entering during drying or heat treatment.
  • the method of applying the metal alkoxide is usually, but not limited to, the force applied in flow coating.
  • the flow coating is preferably performed in dry air. Coating with ordinary air (atmosphere) promotes hydrolysis by moisture in the air, making it difficult to control the film thickness.
  • the coating may be performed once or several times. It is determined by the filling property of the photocatalyst layer before coating. After that, when left for several minutes in dry air, a film filled with particles in the gaps between the photocatalyst layers is formed.
  • the layer before applying the filler particles and the filler particles are made of the same material, Since the coefficient of thermal expansion is the same, it is desirable because a film having excellent mechanical strength can be formed.
  • Ti alkoxide coating amount per one time was applied to further photocatalyst layer surface of Ti alkoxide in extent E of drying heat treatment, Ti alkoxide coating amount per one time, and to be a 10 ⁇ gZcm 2 or 100 cm 2 or less in terms of Ti0 2. If the amount is too small, the number of coatings must be increased, which is inefficient. If the amount is too large, the film thickness per coating becomes too large, and cracks occur during drying or heat treatment.
  • the heat treatment temperature was set to 400 ° C or higher and 800 ° C or lower. Is less than 400 ° C amorphous T i 0 2 is not crystallized in anatase T i 0 2, resulting abrupt grain growth at 800 ° C or more, or we photoactive decreases.
  • the amount of hydrochloric acid based on the Ti alkoxide in the coating solution was adjusted to 1% by weight or more and 10% by weight or less. If the content is less than 1% by weight, the effect of preventing cracking is not sufficient, and if it exceeds 10% by weight, hydrochloric acid is usually a 36% aqueous solution, so that a large amount of water enters and hydrolysis is promoted too much, and cracks are generated. When the amount of hydrochloric acid is large, it is better to use more diluent. This is because the diluent suppresses hydrolysis.
  • the ratio is preferably hydrochloric acid (excluding water): diluent is 1: 100 to 1: 1000.
  • a layer having a photocatalytic function is formed, and the gap formed on the surface of the layer is filled with particles smaller than the gap.
  • at least one metal selected from the group consisting of Cu, Ag, Zn, Fe, Co, Ni, Pd, and Pt may be fixed thereon.
  • the size of the metal to be fixed is preferably large enough to occupy the highly adsorptive site of the photocatalyst layer in advance, and small enough to maintain the strength and the high activity. From this viewpoint, several nm or more: about L 0 nm is preferable.
  • a photoreduction method As a method for fixing the metal described above, a photoreduction method, a heat treatment method, a sputter method, a CVD method, or the like can be used, but it is a relatively simple and robust method that does not require large-scale equipment.
  • the photoreduction method is preferable because it can be fixed.
  • the step using photoreduction is performed by applying an aqueous solution containing at least one metal ion of Ag, Cu, Zn, Fe, Co, Ni NPd, and Pt, and irradiating light containing ultraviolet rays.
  • Aqueous solutions containing at least one metal ion of Ag, Cu, Zn, Fe, Co, Ni, Pd, and Pt include copper acetate, silver nitrate, copper carbonate, copper sulfate, cuprous chloride, and chloride chloride. Examples include dicopper, chloroplatinic acid, palladium chloride, nickel chloride, zinc nitrate, cobalt chloride, ferrous chloride, and ferric chloride.
  • the method of applying the aqueous metal salt solution may be basically any method, but a spray-coating method or a dip-coating method is simple.
  • the coating method is more preferable.
  • the light source that irradiates light containing ultraviolet light may be any light source that can irradiate light containing ultraviolet light, and specifically may be any of an ultraviolet lamp, a BLB lamp, a xenon lamp, a mercury lamp, and a fluorescent lamp.
  • the sample is arranged so that the light is irradiated perpendicularly to the irradiation surface.
  • the irradiation time is preferably about 10 seconds to 10 minutes. If the irradiation time is too short, the above-mentioned metal species does not sufficiently adhere to the site having a high adsorptivity of the photocatalyst layer, so that alkali metals, calcium, etc. in the dust components may adhere to the photocatalytic layer and cause loss of photocatalytic activity. This is because the metal species adheres too much and light hardly reaches the photocatalyst layer, and the photocatalytic activity decreases.
  • the distance of the sample from the light source is preferably 1 cm to 30 cm.
  • the entire sample surface will not be irradiated with light with almost uniform Variations in the adhesion of the metal species are likely to occur. If the distance is too long, the illuminance of the irradiated light decreases in inverse proportion to the square of the distance, making it difficult to adhere the metal species firmly.
  • Ammonia peptization-type suspension of Ti0 2 sol crystal size 0.01 was applied by spray 'coating to the tile substrate 15 cm square to which the anatase type T i 0 2 thin film was fired at 750 ° C Formed.
  • the porosity of the T i 0 2 thin film of this stage 45%, the crystal diameter of the Ti0 2 particles was 0.02.
  • Sn 02 sols having different crystal morphologies were applied thereon by spray coating, respectively, and dried at 11 O e C to obtain samples. The obtained samples were evaluated for deodorization, abrasion resistance, and resistance to dirt.
  • the evaluation of the deodorant property was evaluated by measuring R 30 (L).
  • Abrasion resistance was evaluated by sliding wear using a plastic eraser and comparing changes in appearance.
  • the evaluation index is shown below.
  • the evaluation of the degree of stain resistance was made by drawing a line on the surface of the base material with a thick black magic ink, drying the ink, and wiping the ink with ethanol. The evaluation index is shown.
  • FIG. 39 shows the resistance to contamination with respect to the amount of SnO 2 added.
  • Sn The addition amount of the 02 are tables at a rate of S ⁇ 2 weight for weight the sum of the amount of T i 0 2 and S nO 2. With the addition of 30% or more of SnO 2 , the dirt is hardly noticeable. I understand that the reason is the following three points. This is because the porosity is reduced to less than 20% by the addition first in Sn0 2 3 0% or more ( Figure 40). Secondly, the addition of SnO 2 reduces pores with large pore diameters. 4 1 figure summer quite small as 0.04 in amount of force SnO 2 showing the maximum width of the open pores to that S n 0 2 addition amount 3 0% or more. Third Sn0 2 of surface roughness by hydrogenation pressure is understood to have also influence it has improved.
  • FIG. 42 shows the deodorant properties and abrasion resistance with respect to the amount of SnO 2 added.
  • the porosity is reduced to less than 10%, but pores of about 0.02 ⁇ m still remain from FIG. 41, and the crystal diameter of the particles filling the gaps is also 0.0035 ⁇ , indicating that the gas has Because the size is larger than the size (number), there is no phenomenon that the gas passage is closed under these conditions without grain growth.
  • the effect when the added amount of SnO 2 was 30% or more depended on the crystal size of the SnO 2 sol. That is, when particles having a particle size of 0.008 m or less were added, they increased to ⁇ or ⁇ , but at 0.01 / zm, the effect was not recognized.
  • the amount of SnO 2 added is equal to or less than 30% by weight relative to the total weight of T i 0 2 and S nO 2, dirt is hard to regard also improves wear resistance. (3) If the Sn0 amount of 2 to 50% by weight, relative to the total weight of Ti0 2 and Sn0 2, deodorant can remain good.
  • the cooled sample was further coated with a mixed solution of titanate tetraethoxide, 36% hydrochloric acid and ethanol in a ratio of 10: 1: 400 (weight ratio) by a dry air carrier and dried by a flow coating method.
  • the coating amount was in Ti0 2 40 ⁇ 50 ⁇ g cm 2. Then, it was baked at 500 ° C for 10 minutes. This Ti alkoxide coating step was repeated 1 to 5 times.
  • the obtained samples were evaluated for deodorant properties, antibacterial properties, abrasion resistance, and resistance to dirt.
  • Antibacterial activity was tested using Escherichia coli (Escherichia coli W31 10 strain).
  • Escherichia coli Escherichia coli W31 10 strain.
  • the best of multifunctional materials previously sterilized with 70% ethanol 0.15 ml (1 to 50000 CFU) of the bacterial solution was dropped on the surface, placed on a glass plate (100 ⁇ 100), and brought into close contact with the outermost surface of the base material to prepare a sample. After irradiating with a white light (3500 lux) for 30 minutes, the bacterial solution of the irradiated sample was wiped off with sterile gauze and collected in 1 Om1 of physiological saline, and the survival rate of the bacteria was determined. , +10, 10, and 1 are the same as above.
  • the deodorant property is R 3 .
  • (L) was more than 80%, and the antibacterial property was +++.
  • the resistance to contamination (Fig. 44) and the abrasion resistance (Fig. 45) depended on the number of times of Ti alkoxide application and TiO 2 film thickness. Increasing the number of Ti alkoxide applications improved the resistance to dirt and abrasion resistance. The Ti0 2 film thickness difficulty attached dirt thin as small Ti alkoxide coating frequency and wear resistance was improved. Reduction in porosity of more than that of one as Ti alkoxide coating that by the Ti0 2 layer surface reasons are conceivable.
  • FIG. 46 shows the relationship between the gas porosity and T i alkoxide coating frequency and T i 0 2 thickness of Ti0 2 layer surface.
  • the porosity of the surface of the Ti 0 2 layer decreases as the number of times of Ti alkoxide application increases, and decreases with the same number of times of Ti alkoxide application as the Ti 0 2 film thickness decreases. corresponds well with the relationship between the Ti alkoxide number of applications and Ti0 2 film thickness and dirt attached difficulty and wear resistance of. In particular, with respect to the difficulty in soiling, as in the case of Example 31, when the porosity was less than 20%, all were evaluated as ⁇ .
  • the antibacterial properties after long-term use were tested as follows. First, the surface of the obtained sample was thoroughly washed with ethanol or the like, and dried at 50 ° C. Next, the bath water collected in a public bath was placed in a sterilized beaker, and the sample was immersed in it and left for one month. Thereafter, the sample was taken out and washed with ethanol or the like, and the outermost surface of the multifunctional material was sterilized with 70% ethanol. Next, 0.15 ml (1 to 50000 CFU) of a bacterial solution of Escherichia coli (Escher_ichaicoli W3110 strain) was placed on a glass plate (100 ⁇ 100) and brought into close contact with the outermost surface of the substrate to obtain a sample.
  • Escherichia coli Escherichia coli
  • the bacterial solution of the irradiated sample was wiped with sterile gauze and recovered in 10 ml of physiological saline, and the survival rate of the bacteria was determined and used as an index for evaluation. Evaluation indices are the same as in the antibacterial test in Example 3.
  • Example 33 For comparison, the sample used in Example 33 was also tested.
  • the initial antibacterial properties of both the sample prepared in this example and the sample prepared in Example 33 were +++, but the antibacterial property after one month was between the two. Made a difference.
  • the antibacterial property of the sample prepared in Example 33 was significantly deteriorated, but the sample prepared in this example showed +++, which is the same value as the initial value. It is understood that this is because silver occupies sites with high adsorptivity on the surface of the TiO 2 layer, thereby preventing dust and the like from adhering to sites having high adsorptivity during use.
  • a layer having a photocatalytic function was formed on the surface of the substrate, and the gaps formed on the surface of the layer were filled with particles smaller than the gaps.
  • the membrane strength is improved while maintaining the deodorant and antibacterial properties, and polymers, dust, fungi, etc., which constitute the dirt component Can be difficult to adhere
  • a material having a low melting point such as soda glass
  • the substrate starts to degrade at this photocatalytic thin film forming temperature, and the formed photocatalytic thin film is buried in the substrate.
  • a problem occurs in that light does not reach the photocatalyst layer and the photocatalytic function cannot be exerted.
  • the photocatalyst particles are fixed to the base material via a layer having a higher melting point than the base material such as SiO 2 coat. Specific examples will be described below.
  • the silica coating on the 10 cm square soda glass surface was performed by the following method. First, tetraethoxysilane, 36% hydrochloric acid, pure water, and ethanol are mixed in a weight ratio of 6: 2: 6: 86. Since heat is generated at this time, leave it for about 1 hour. This was flow-coated on soda glass.
  • the coating solution was prepared by mixing titanium-to-tetraethoxide and ethanol at a ratio of 1: 9 (weight ratio), and further adding 36% hydrochloric acid to the titanate tetraethoxide by adding 10% by weight.
  • the amount of 6% hydrochloric acid is 1% by weight or more and 30% by weight or less, preferably 5% by weight or more and 20% by weight or less based on titanate tetraethoxide.
  • this solution is flow-coated on the surface of the soda glass substrate in dry air.
  • dry air does not mean air that does not contain any moisture, but air that has less moisture than ordinary air.
  • the hydrolysis of titanate tetraethoxide is accelerated by the moisture in the air, and the amount of one coating film becomes excessively large, so that drying in the subsequent process is performed. Cracks are easily formed during drying and firing. Also, accelerated hydrolysis makes it difficult to control the amount of the coating. It is preferable to prevent cracking once loading amount of the titanium oxide is 1 0 0 g Roh cm 2 or less. In this case, the amount of titanium oxide carried at one time was 45 ⁇ g Z cm 2 .
  • Titanium oxide is obtained by the above steps according to the following principle.
  • the starting material is titanate tetraethoxide, which is a kind of titanium alkoxide (the same principle occurs in principle even if another titanium alkoxide is used).
  • This titanate tetraethoxide mainly undergoes a hydrolysis reaction with water in dry air during flow coating to produce titanium hydroxide. Furthermore, a dehydration condensation reaction occurs during drying, and amorphous titanium oxide is formed on the substrate.
  • the titanium oxide particles produced at this time have a high purity of about 3 to 150 nm. Therefore, this titanium oxide is characterized by sintering at a lower temperature than titanium oxide obtained by other manufacturing methods.
  • the composite member obtained by the above method was further fired at 300 to 500 ° C. to obtain a multifunctional material. If necessary, the steps from the coating of titanium tetraethoxide to baking were repeated to apply thick titanium oxide.
  • Wear resistance was evaluated by sliding wear using a plastic eraser and comparing changes in appearance.
  • the evaluation indices ⁇ , ⁇ , ⁇ , and X at that time are the same as described above.
  • the antibacterial properties were tested using Escherichia coli (Escherichia-co1iW3110 strain). 0.15 ml (1 to 50,000 CFU) of bacterial solution is dropped on the outermost surface of the multifunctional material previously sterilized with 70% ethanol, placed on a glass plate (100 ⁇ 100), and brought into close contact with the outermost surface of the base material. did. After irradiating with a white light (5200 lux) for 30 minutes, the bacterial solution of the irradiated sample and the sample kept under the light-shielded condition was wiped with sterile gauze, collected into 1 Om1 of saline, and the viability of the bacteria was determined. It was used as an index for evaluation. Evaluation indices + + +, + ten, ten,-are the same as above o
  • the sliding test shows good results as ⁇ , but R 3 . (D also improved to about 60%. The antibacterial property also became +. In addition, the sliding test also showed good results as ⁇ at 500 mm, but R 3 (L) also increased to about 60%. Has improved.
  • the soda glass substrate deformed at 550 ° C, and multifunctional materials could not be manufactured.
  • the loading of the metal particles was performed by the following method.
  • the solution of the metal salt was flow coated on the photocatalyst, and irradiated with a 20 W BLB fluorescent lamp at a distance of 20 cm for 1 minute.
  • a metal salt solution a lwt% ethanol solution of copper acetate was used when copper was supported, and a 1 wt% aqueous solution of silver nitrate and 1Z1 ethanol solution of silver nitrate was used for silver. After irradiation, they were washed and dried.
  • the reason that the solution containing ethanol was used instead of the aqueous solution of the metal salt is that the metal salt solution has good wettability to the sample.
  • Example 37 The procedure of Example 35 was repeated, except that L was not subjected to silica coating. That is, a 10 cm square soda glass was coated with titanium oxide. The results are shown in (Table 21).
  • the material of the base material is not limited to plastic having poor heat resistance, but may be basically any material such as ceramic, ceramic, metal, glass, or a composite thereof.
  • the base material may be of any shape, including simple shapes such as spheres, cylinders, cylinders, and plates such as tiles, walls, floors, etc., sanitary ware, wash basins, bathtubs, Complex shapes such as sinks and toilet seats may be used. Further, the surface of the substrate may be porous or dense.
  • the type of binder may be a thermoplastic material such as an inorganic glassy material, a thermoplastic resin, or solder, or a thermosetting material such as a fluororesin, a siloxane resin, or a silicon resin.
  • a thermoplastic material such as an inorganic glassy material, a thermoplastic resin, or solder
  • a thermosetting material such as a fluororesin, a siloxane resin, or a silicon resin.
  • a light-corrosion-resistant material is preferable because light including ultraviolet rays is irradiated in a later step.
  • a thermoplastic material can be softened at 30 CTC or less, and a thermosetting material can be softened at 30 CTC or less.
  • a material that satisfies these conditions is preferably a borate-based vitreous material, a solder, an acrylic resin, or the like for a thermoplastic material, a fluororesin, a siloxane resin, or the like for a thermosetting material. Silicon resin and the like can be mentioned.
  • the binder component does not necessarily need to match the binder composition at the time of completion of the member.
  • the binder is made of inorganic glassy material
  • the applied material may be a suspension of an inorganic glassy composition such as granules, frit, lumps, powders, or a mixture of salts containing constituent metal components. Good.
  • the binder is a resin
  • a solution of the resin having the composition may be used, or another method may be used.
  • the applied binder layer Before applying the photocatalyst particles on the binder layer, the applied binder layer may be dried to evaporate water and the like.
  • the drying method at this time includes a method of leaving at room temperature and a method of heating together with the substrate.
  • the applied binder layer is heated to a temperature lower than the softening temperature of the base material, and the binder layer changes to the binder composition at the time of completing the member, and is further softened. Good.
  • the binder layer becomes smoother in advance, so that a small amount of photocatalyst particles to be applied can exert a sufficient effect.
  • thermosetting material When a thermosetting material is used, a method of mixing a binder with a curing agent and applying the mixture to a substrate is, for example, to add a diluent to a thermosetting resin, and then add a curing agent to obtain a mixed solution. Is applied to the surface of the base material.
  • the viscosity is not less than 105 poise and less than 107 poise.
  • the method of applying the photocatalyst particles on the surface of the binder layer is basically performed by applying an appropriate treatment to the starting material on the binder layer.
  • a sol suspension of a photocatalyst composition material is desirable, but a suspension of fine particles of a photocatalyst composition can also be used.
  • a surface treatment agent such as a dispersant to prevent the photocatalyst composition in the suspension from aggregating.
  • the coating on the binder layer includes a spray coating method, a roll 'coating method, a dip' coating method, etc., and any of these methods may be used, and any other method may be used. Good.
  • the embedding thickness of the photocatalyst layer in the binder layer is preferably 1 Z4 or more of the thickness of the photocatalyst layer in view of the bonding strength with the force base material.
  • the thickness of the photocatalyst layer is determined by analysis of the constituent elements of the photocatalyst particles in the cross-sectional direction by EPMA or the like, and the upper layer portion where the amount of the constituent elements constituting the photocatalyst particles is substantially constant and the components forming the photocatalyst particles
  • the buried portion is located between the depth at which the amount of element starts to decrease and the depth at which the amount of component element constituting the binder starts to be constant.
  • the surface treatment agent attached to the photocatalyst mainly consists of components added to disperse the sol as a starting material of the photocatalyst particles.
  • Specific examples include pentaerythritol, trimethylolpropane, triethanolamine, trimethylamine-lamine, silicon resin, and alkylchlorosilane.
  • BLB fluorescent lamps, ultraviolet lamps, germicidal lamps, xenon lamps, mercury lamps, and the like can be cited as light sources containing light having a wavelength of 390 nm or less and at least 1.
  • ⁇ mW / cm 2 . 3 9 0 nm 1 light of a wavelength. 7 mW / cm 2 or more shall reason be included in order to have a dispersing agent component some light corrosion resistance such as silicon resin, ultraviolet intensity of this level is no If they do not break down.
  • the shorter the ultraviolet wavelength the faster the dispersant decomposes, but depending on the type of binder, the binder may also decompose and is harmful to the human body. From this, it is better to be 250 nm or more.
  • the illuminance also 3 mW / cm up to about 2, but the decomposition rate quickened with increasing irradiation degree, does not contribute much to be decomposed speedup increases the illuminance at higher, sufficient 3 m WZ cm 2 or less It is.
  • the above steps are schematically shown in FIG.
  • the photocatalyst layer 2 is formed on the base material 1 with a part of the lower layer embedded in the binder layer 6 via the binder layer 6.
  • 6a is a layer composed of a surface treatment agent or the like that inhibits photocatalytic activity.
  • UV 3 9 This refers to light containing light of a wavelength of 0 nm or less and 1.7 mWZ cm 2 or more.
  • thermosetting resin in this way, the photocatalyst particles 3 are firmly fixed to the substrate, and a light containing 3 9 0 nm 1 light of a wavelength.
  • the irradiation causes a photocatalytic reaction in the light-irradiated portion of the photocatalyst particle surface, and the surface treatment agent and the thermosetting resin in the direction of the light source are preferentially decomposed and vaporized, exposing the photocatalyst particles to the outside air. Sufficient photocatalytic activity can be obtained.
  • a method of forming a layer mainly composed of photocatalyst particles and a thermosetting resin is, for example, a mixing method obtained by adding a thermosetting resin, a diluent, and a curing agent to a well-dispersed photocatalyst sol suspension in this order.
  • the liquid is applied to the surface of the substrate and heat-treated.
  • the sol in the photocatalytic sol suspension preferably has a crystal diameter of 0.05 m or less, more preferably 0.01 m or less. This is because the smaller the crystal strength, the higher the photocatalytic activity. It is also desirable that the sol in the photocatalytic sol suspension be as monodispersed as possible. This is because the better the dispersibility, the more uniform the coating film.
  • thermosetting resin used here has photo-corrosion resistance to white light or ordinary fluorescent lamp level light. This is because it has excellent durability when used. In that sense, siloxane resins and fluorine resins are particularly preferred.
  • the diluent is added to reduce the viscosity of the mixed liquid composed of the photocatalytic sol and the thermosetting resin, and to facilitate the application of the mixed liquid to the substrate surface. Therefore, the diluent used here may be basically any solvent as long as it can achieve this purpose. For example, water, ethanol, propanol and the like can be used.
  • the method of applying the mixed liquid to the base material includes a spray 'coating method, a roll coating method, a dip' coating method, and a spin coating method, and any of these methods may be used. Other methods may be used.
  • an electric furnace, a gas furnace, a vacuum furnace, a pressure furnace, etc. are generally used, but the heat treatment is not limited to this.
  • thermosetting resin layer or the photocurable resin layer disposed between the substrate and the photocatalyst layer provides an extremely smooth surface before applying the photocatalyst layer. Since a uniform surface can be formed, the photocatalyst layer can be easily and uniformly formed. In addition, since the thermosetting resin layer or the photocurable resin layer disposed between the base material and the photocatalyst layer can sufficiently bond with the base material, even if the surface of the base material has irregularities, the photocatalytic particles can be used.
  • thermosetting resin the 3 9 0 nm or less of the light wavelength which is a later step 1. 7 mW / cm 2 or more
  • the step of irradiating the light including the light can be completed in a shorter time.
  • a layer composed of photocatalyst particles and a thermosetting resin is present on the upper surface, ultraviolet light having sufficient strength to be decomposed and vaporized during later processes and during use is placed between the thermosetting resin layer and the photocurable resin. Since it does not reach the conductive resin layer, the thermosetting resin in this part can be selected arbitrarily. For example, an inexpensive epoxy resin may be selected for cost reduction, or a colored resin may be used for design.
  • the method of forming the thermosetting resin layer disposed between the base material and the photocatalyst layer is, for example, to add a diluent to the thermosetting resin, and then add a mixed solution obtained by adding the curing agent to the surface of the base material. And solidified by heat treatment or standing.
  • the layer disposed in the middle of the photocatalyst layer is a photocurable resin layer, light containing ultraviolet rays is irradiated instead of heat treatment.
  • the diluent is added in order to reduce the viscosity of the mixed solution and facilitate application of the mixed solution on the surface of the base material. Therefore, the diluent used here can be basically any solvent that can achieve this purpose. For example, water, ethanol, propanol and the like can be used.
  • the gap formed in the photocatalyst layer exposed on the substrate surface by the above method is filled with particles smaller than the gap (gap particles: 4).
  • the size of the particles smaller than the desired gap will basically be It is sufficient if the average value of the protrusions is smaller than the average value, and the amount of particles smaller than the gap is desirably added so that the open porosity of the surface is less than 20%. Dirt is deposited difficulty rather than 7 by force, it is et al.
  • Titanium oxide (average particle diameter: 0.01 m) (dispersed with an amine-based dispersant), 10% by weight of siloxane resin, diluent, and hardener
  • the mixed solution obtained by adding in this order was applied and baked at 150 ° to obtain a comparative sample.
  • the sample was irradiated with various light sources for a predetermined time to obtain a sample.
  • the obtained sample was evaluated for its deodorant property R 30 (L) during light irradiation.
  • the deodorant characteristic R 3 upon light irradiation For (L), the sample surface was placed in a glass container of 11 liters at a distance of 8 cm from the light source (8 to 8 fluorescent lamps 4 ⁇ ), so that methyl mercaptan gas was kept at an initial concentration of 3 ppm. This is the rate of change in concentration after 30 times of spectral irradiation.
  • UV lamp 2.0 3 74 UV lamp 3.0 1 82 As a result, more than 50% of deodorant properties by ultraviolet intensity 1. 69 mWZ cm 2 or more, deodorizing properties in 2 mWZ cm 2 or R 3. (L) showed good results exceeding 70%.
  • UV intensity that showed good results in 1. 69 mW / cm 2 or more the photocatalytic reaction occurs at the light irradiated portion of the photocatalyst particle surface, the thermosetting resin is preferentially located surface treatment agent and in the light source direction It is considered that the photocatalyst particles were decomposed and vaporized, and the photocatalyst particles were exposed to the outside air.
  • a solution of a siloxane resin to which a diluent and a curing agent have been applied is applied to the surface of a 10 cm square alumina substrate, dried at room temperature for about 6 hours, and then titanium oxide sol with an average particle size of 0.01 m (an amine dispersant)
  • the mixture obtained by adding 10% by weight of a siloxane resin, a diluent, and a curing agent in this order was applied to the mixture, and baked at 150 ° C to obtain a comparative sample. .
  • the sample was irradiated with various light sources for a predetermined time to obtain a sample.
  • the deodorant property R 3 of the obtained sample upon light irradiation. (L) was evaluated.
  • a solution of a siloxane resin to which a diluent and a curing agent have been applied is applied to the surface of a 10 cm square alumina substrate, dried at room temperature for about 6 hours, and then titanium oxide sol with an average particle size of 0.01 m (an amine dispersant)
  • the mixture obtained by adding 10% by weight of a siloxane resin, a diluent, and a curing agent in this order was applied to the mixture (150). Fired in C. At this stage, the average particle gap on the member surface was about 0.1 to 0.2; / m.
  • fine metal particles are immobilized on the surface of the titanium oxide sol before adding a surface treatment agent such as a dispersant and a surfactant to the titanium oxide sol produced by a hydrothermal method or a sulfuric acid method.
  • a surface treatment agent such as a dispersant and a surfactant
  • metal fine particles refer to metal fine particles that can capture electrons when titanium oxide is irradiated with light to generate electrons and holes when supported on titanium oxide. Specifically, Ag, Cu , Pt, Pd, Ni, Fe, Co, etc.
  • a simple method for immobilizing metal fine particles on the surface of titanium oxide sol is the photoreduction method. is there.
  • the titanium oxide sol used here has a force produced by a hydrothermal method or a sulfuric acid method ⁇ preferable, but not limited thereto.
  • the sulfuric acid method is a method for synthesizing titanium oxide by the following procedure.
  • ilmenite ore is reacted with sulfuric acid to convert Ti, Fe, etc. into water-soluble sulfate, and extracted with water to prepare a sulfate solution of the main components Ti, Fe.
  • insoluble suspensions such as Si02 are removed.
  • it is cooled to 10 to 15 ° C to precipitate and remove iron sulfate.
  • the titanyl sulfate in the solution is hydrolyzed to produce hydrous titanium oxide.
  • the obtained hydrous titanium oxide is crystallized by hydrothermal treatment using a pressure device such as an autoclave under high-temperature and high-pressure water (generally under a saturated vapor pressure of 110 ° C or more and less than 200 ° C). Obtain titanium oxide sol.
  • the hydrothermal method means that a titanium source such as titanium tetrachloride or titanium sulfate is subjected to high-temperature high-pressure water using a pressure device such as an autoclave (generally under a saturated vapor pressure of 110 to less than 200).
  • a pressure device such as an autoclave (generally under a saturated vapor pressure of 110 to less than 200).
  • This is a method of obtaining a titanium oxide sol by hydrolysis by hydrothermal treatment in).
  • a method for immobilizing metal fine particles on the surface of a titanium oxide sol by a photoreduction method specifically, the method described below.
  • a titanium oxide sol suspension prepared by a hydrothermal method or a sulfuric acid method is made acidic or alkaline. This is because the isoelectric point of titanium oxide is P H 6.5, and it tends to aggregate when neutral. In order to adjust the strength, it is preferable to use ammonia. Alkali metals such as Na and K tend to adhere strongly to titanium oxide, and if these metals occupy the active site of titanium oxide first, photocatalytic activity decreases, and Ag, Cu, Pt, P This is because d, Ni, Fe, Co, and the like prevent adhesion to the active sites of titanium oxide.
  • the metal salt solution refers to a solution comprising a salt and a solvent containing a metal capable of capturing electrons when the titanium oxide is irradiated with light and electrons and holes are generated when the titanium oxide is supported on titanium oxide.
  • the metal salt solution refers to a solution comprising a salt containing Ag, Cu, Pt, Pd, Ni, Fe, Co, and the like, and a solvent.
  • Examples include silver nitrate, copper acetate, copper carbonate, copper sulfate, cuprous chloride, cupric chloride, chloroplatinic acid, palladium chloride, nickel chloride, cobalt chloride, ferrous chloride, ferric chloride and the like.
  • Water, ethanol, propanol and the like can be used as the solvent, but it is preferable to use the same type as the titanium oxide sol suspension as much as possible.
  • Add a pH adjuster to the solvent if necessary. Use nitric acid, sulfuric acid, hydrochloric acid, etc. as a pH adjuster for the acid side. Ammonia is used as a pH adjuster for the alkaline side.
  • the light source may be one that emits light containing ultraviolet light, and specific examples include an ultraviolet lamp, a BLB lamp, a xenon lamp, a mercury lamp, and a fluorescent lamp.
  • the method of irradiating light including ultraviolet rays is basically not limited, but first, it is better to irradiate from above the container. This is because ultraviolet rays are not absorbed by the container.
  • the distance between the light source and the container is preferably several cm to several 1 Ocm. If it is too close, the heat generated from the light source may cause the upper surface of the sample solution to dry, and if it is too far, the illuminance will decrease.
  • the irradiation time varies depending on the illuminance of the light source, the metal adheres firmly to the photocatalyst particles when irradiated for several seconds to several ten minutes.
  • a multifunctional material having a photocatalytic action is formed by forming a thin film formed by applying and heat-treating the above metal-supported titanium oxide sol on the substrate surface.
  • the heat treatment is usually performed by baking in the air using an electric furnace or a gas kiln or hydrothermal treatment using an autoclave or the like, but is not limited thereto.
  • the average particle diameter of the titanium oxide particles in the titanium oxide film obtained by such a method is preferably 1 or less. If the particle size is larger, the catalytic activity is reduced due to the decrease in the specific surface area.
  • thermoplastic thermoplastic Specific examples of the binder include thermoplastic binder such as acryl resin, inorganic glass such as glaze, and solder.
  • thermosetting binder include a fluorine resin, an epoxy resin, and a siloxane resin.
  • thermoplastic binder When a thermoplastic binder is used, a member having a photocatalytic action is produced by the following procedure. First, a thermoplastic binder is applied to the substrate surface. Next, a titanium oxide sol carrying metal particles is applied thereon and heat-treated. Here, the heat treatment is performed at a temperature lower than the heat resistant temperature of the base material and higher than the softening point of the thermoplastic binder. By performing the heat treatment at such a temperature, a part of the lower layer of the titanium oxide layer supporting the metal particles is embedded in the binder layer, thereby firmly bonding the substrate and the titanium oxide thin film supporting the metal particles. Can be done. When a thermosetting binder is used, a member having a photocatalytic action is produced by the following procedure.
  • thermosetting binder a mixed solution prepared by sequentially adding a diluent and a curing agent to a thermosetting binder is applied to a base material, and cured by a method such as heat treatment.
  • a mixed solution prepared by sequentially adding a thermosetting resin, a diluent, and a hardening agent to a titanium oxide sol carrying metal particles thereon is applied, and cured by a method such as heat treatment.
  • a photocurable binder can be used in place of the thermosetting binder as well.
  • a titanium oxide sol prepared by a method such as a hydrothermal method or a sulfuric acid method Ag, Cu, Pt, Pd, and N are added before adding a surface treatment agent such as a dispersant and a surfactant.
  • a surface treatment agent such as a dispersant and a surfactant.
  • the surface treatment agent such as a dispersant or a surfactant can stably disperse the photocatalyst sol, form a uniform film on the surface of the base material, and simultaneously bake at a low temperature of less than 300 ° C.
  • a surface treatment agent such as a dispersant and a surfactant adhering to active sites of the photocatalyst particle layer formed on the surface of the base material, and to reduce the activity of the titanium oxide sol.
  • Ag, Cu, Pt, Pd, Ni, Fe The photocatalytic activity is improved by the electron capturing effect of metal particles such as Co and Co.
  • a liquid obtained by adding water to titanium tetrachloride in a cold water bath was hydrothermally treated at 140 ° C. in an autoclave to obtain an analog-type titanium oxide sol.
  • the obtained titanium oxide sol was dispersed in nitric acid.
  • the pH of this dispersion was 0.8.
  • a 3 to 5 wt% aqueous solution of copper sulfate whose pH was adjusted to approximately 0.8 with nitric acid was added thereto, and light containing ultraviolet rays was irradiated from above the container.
  • a 4 W BLB lamp was used as a light source, and 15 spectra were irradiated at a distance of about 10 cm from the solution.
  • a sol was stabilized by adding a dispersant comprising an organic acetate to this solution. This sol was applied on a tile substrate of 15 cm square and heat-treated at 150 ° C to obtain a sample. The deodorant property R 3 of the obtained sample upon light irradiation. (L) and antimicrobial properties were measured.
  • E. coli Esscherichiaciacoli
  • a bacterial solution (0.15 ml, 10,000 to 50,000 CFU) was dropped on the outermost surface of the sample previously sterilized with 70% ethanol, placed on a glass plate (100 ⁇ 100), and brought into close contact with the outermost surface of the substrate to obtain a sample. After irradiating with a white light (3500 lux) for 30 minutes, the bacterial solution of the irradiated sample was wiped with sterilizing gauze and collected in 10 ml of physiological saline, and the survival rate of the bacteria was determined and used as an index for evaluation. Evaluation criteria ++ ten, ++, ten, one are the same as above.
  • R 30 (L) was 85%, and the antibacterial activity was +++, which was a good result.
  • a liquid substance obtained by adding water to titanium tetrachloride in a cold water bath was subjected to hydrothermal treatment at 140 ° C. in an autoclave to obtain an anatase type titanium oxide sol.
  • the obtained anatase-type titanium oxide sol was dispersed in nitric acid.
  • P of this dispersion H was 0.8.
  • a dispersant consisting of an organic acetate was added to this solution.
  • This sol was applied on a tile substrate of 15 cm square and heat-treated at 150 ° C to obtain a sample.
  • the deodorant property R 3 of the obtained sample upon light irradiation. (L) and antimicrobial properties were measured.
  • a liquid substance obtained by adding water to titanium tetrachloride in a cold water bath was hydrothermally treated at 140 ° C. in an autoclave to obtain an anatase type titanium oxide sol.
  • the obtained anatase type titanium oxide sol was dispersed in nitric acid.
  • the pH of this dispersion was 0.8.
  • a 4 W BLB lamp was used as a light source, and 15 spectra were irradiated at a distance of about 10 cm from the solution.
  • a sol was stabilized by adding a dispersant comprising an organic acetate to this solution.
  • a mixed liquid prepared by sequentially adding a diluent propanol and a curing agent to a siloxane resin in advance was applied to the surface of a 10 cm square alumina substrate 100.
  • a mixture prepared by sequentially adding 20% by weight, based on the amount of titanium oxide, of a siloxane resin, a propanol, and a hardener is applied to the sol prepared by the above method on the member dried in C.
  • the sample was fired at 150 ° C to obtain a sample.
  • the obtained sample had a deodorizing property R 3 when irradiated with light. (L) was measured.
  • R 30 (L) showed a favorable result of 80%.
  • a liquid obtained by adding water to titanium tetrachloride in a cold water bath is placed in an autoclave.
  • an anatase type titanium oxide sol was obtained.
  • the obtained anatase-type titanium oxide sol was dispersed in nitric acid.
  • the pH of this dispersion was 0.8.
  • a dispersant consisting of an organic acetate was added to stabilize the sol.
  • a mixture prepared by sequentially adding a diluent propanol and a curing agent to a siloxane resin in advance was applied, and dried at 100 ° C.
  • FIG. 51 is a proc views showing a manufacturing process of the multifunctional material using rutile Ti0 2, the present invention first forms a rutile Ti0 2 thin film on the substrate surface of the tile or the like.
  • an organic acid, a phosphoric acid-based dispersant, a surface treatment agent, and a surfactant may be further added to these dispersion liquids.
  • the average particle size of the TiO 2 sol is 0.05 / m or less, preferably 0. Ol / zm or less is good.
  • Spray coating, dip coating, roll coating, spin coating, CVD of the above materials are applied to the substrate. This is desirable because it does not require special equipment as compared with electron beam evaporation, sputtering, etc., and can be applied at low cost.
  • baking in the air using an electric furnace or a gas kiln, or hydrothermal treatment using an autoclave or the like can be used.
  • the application of the metal salt aqueous solution may be any method as long as the metal salt aqueous solution does not flow to the back surface of the substrate.
  • the solution in the metal salt solution can be used, such as water and ethanol. When water is used, it is also effective to add alcohol, unsaturated hydrocarbon, or the like as a sacrificial oxidizing agent.
  • an ethanol solution as a solution is not harmful compared to other solvents such as ether, acetone, and methanol because, for example, it does not cause the generation of cracks due to the metal base material and the drying speed is increased. Desirable in point.
  • the metal salt solution is dried at room temperature to about 110 ° C., and the metal salt is irradiated with illumination including a wavelength of 39 Onm or less, and the metal ions are reduced to reduce the rutile type TiO 2.
  • the metal is deposited on the thin film and fixed.
  • the lamp used for irradiation is an ultraviolet lamp, BLB (black light blue).
  • the irradiation is preferably performed so that the light strikes the irradiation surface vertically to improve the irradiation efficiency. Specific examples will be described below.
  • FIGS. 52 and 53 are graphs showing the relationship between the Cu concentration in the solution and the photoactivity A (L), and FIG. 52 shows the photoreduction after drying the sprayed copper acetate aqueous solution.
  • Fig. 53 shows the photoreduction of an aqueous solution of copper acetate that has been sprayed but not dried.
  • An ammonia dispersion of a 7 ⁇ 2 sol having an average particle size of 0.011 111 is applied to a 15 cm square glass substrate by a spray coating method, which is baked at various temperatures to form rutile Ti0. Two thin films were formed. Then, the rutile Ti0 2 film vinegar copper aqueous spray co - applied with plating method, the halo reduction (light source 2 0 Wa Tsu preparative BLB lamp, distance 10 cm from the light source to the sample, irradiation time 10 Seconds) to obtain a sample. Deodorant properties R 3 of the obtained sample. Was evaluated.
  • a value of 30 is better than only rutile without metal.
  • R 3 is obtained for a sample that does not support metal.
  • the value dropped sharply, and a slight decrease was observed in the Cu-added sample.
  • the deodorant properties are lower at 1000 ° C than at 900 ° C.
  • One is a reduction in the area of the rutile T i O 2 thin film of the photocatalyst that can come into contact with the decomposition gas due to a decrease in the open porosity. It is considered that the reason why the deodorant property was lowered in the sample not supporting metal was mainly for this reason.
  • Another reason is that as the open porosity decreases, the area where metal particles deposited by the photoreduction method can exist also decreases. This is because the mean free path in the movement of electrons is large.
  • FIG. 57 shows the relationship between the Ag and Cu concentrations in the solution at the time of coating and the color difference. From this figure, it can be seen that Cu is smaller than Ag in both the color difference and the change in brightness, and the coloring is inconspicuous. In addition, this difference in coloring is due to the fact that, for Cu systems, zero and monovalent Cu are detected by analysis using ESCA (electron beam spectroscopy for chemical analysis). However, it is considered that this monovalent component, which is difficult to be colored, has an effect.
  • ESCA electron beam spectroscopy for chemical analysis
  • the wear resistance can be increased to ⁇ or more.
  • Wear resistance was evaluated by sliding wear using a plastic eraser and comparing changes in appearance.
  • the evaluation index is shown below.
  • An ammonia dispersion of TiO 2 sol having an average particle size of 0.01 m is applied by a spray coating method on a 10 cm square alumina substrate on which a glaze layer has been formed in advance, and this is applied at a temperature of 850 ° C or more for 1000 ° C or more. ° and fired at less than ⁇ to form rutile 1 ⁇ 0 2 thin film. Then, the rutile Ti0 2 film in an aqueous solution of silver nitrate spray co - applied with tee ring method, the halo reduction (light source 20 watts BLB lamp, distance 10 cm from the light source to the sample, irradiation time 10 seconds) To obtain a sample.
  • Escherichia coli Esscheriichiacco1iW31
  • the peeling resistance test is a test in which the conditions of the abrasion resistance test are stricter. Use a sand eraser (LI OK TYPEWR I TER ERASER 502), which applies a large shear force instead of the tick eraser. A specific evaluation method is performed by rubbing the sample surface 20 times evenly with a sand eraser, and visually comparing the standard sample with the scratched state. The evaluation criteria are shown below. ⁇ : No change
  • the stain resistance test is a test for the resistance to staining.
  • the specific evaluation method is to make a stain on the sample surface with a 0.5% methylene blue aqueous solution, dry, wash with water, and visually observe the presence or absence of the stain. Below evaluation criteria
  • the alkali resistance, after 120 hours immersion in 5% N a OH solution was evaluated by observing abnormal visual rutile T i 0 2 thin film layer carrying the A g of the substrate surface.
  • the evaluation criteria are shown below.
  • Ag coloring property was evaluated by visual comparison with a sample to which Ag was not added. The evaluation criteria are shown below.
  • the tendency of the antibacterial activity to depend on the firing temperature is that the antibacterial activity of the composite member produced by the method of the present invention is different from that of the rutile type TiO 2 thin film except for the antibacterial effect of Ag. This indicates that they are involved (since Ag is loaded after calcination as described above).
  • the sinking of the photocatalytic thin film into the glaze layer due to the softening of the glaze layer is considered to occur to some extent in all samples.
  • the photocatalytic thin film is gray It was confirmed that the outermost layer of the storage layer could be maintained.
  • the thickness of the photocatalytic thin film when the thickness of the photocatalytic thin film is 0.4 lm or more and 0.4 m or less, it becomes ⁇ , when it is 0.4 m or more and 0.9 / m or less, it becomes ⁇ , and when it is 1 m, it becomes X. A tendency to worsen with increasing was observed.
  • the thickness of the photocatalyst thin film produced in this example was in the range of 0.1 to 1 m.
  • was from 0.4 m to 1
  • was from 0.1 m to 0.4 m. The smaller the film thickness, the more preferable the value.
  • the thickness of the photocatalytic thin film produced in this example was in the range of 0.1 ⁇ m or more and 1 / m or less. However, when the value was 0.4 or more and 1 or less, the value was ⁇ , and when the value was 0.1 / m or more and 0.4 m or less, the value was ⁇ .
  • the thickness of the photocatalytic thin film is ⁇ from 0.1 l / um to 0.4 m, ⁇ from 0.4111 to 0.9 m, and 1/111. It was observed that the tendency became worse with the increase in the concentration. This trend is consistent with stain resistance.
  • the thickness of the photocatalytic thin film is preferably not less than 0.1 lm and not more than 0.9 m, more preferably not less than 0.1 m and not more than 0.1 m. New It was also found that the abrasion resistance was improved by fixing the photocatalyst thin film to the substrate via the glaze.
  • the design characteristics also change with the film thickness.
  • the thickness is 0.2 m or more and less than 0.4 / im, interference between visible light and the photocatalytic thin film causes an iris-colored stripe pattern, giving a unique appearance.
  • the iris stripe pattern does not occur, and the color, pattern, or appearance related to the combination of the base material or the glaze can be used as it is.
  • the average particle diameter of 0. 01 m of Ti0 2 sol ammonia dispersion 15 cm angle of evening spray co on I Le substrate - coated with plating method, which thickness and baked at 900 ° C of 0.8 ; / rutile m Ti0 was formed 2 thin film.
  • the tile surface was applied by a spray coating method while changing the amount of copper acetate aqueous solution (solution concentration: 0.2% by weight, 0.5% by weight, 1% by weight), and then applied.
  • a sample was obtained by photoreduction (the light source was a 20-M BLT lamp, the distance from the light source to the sample was 10 cm, and the irradiation time was 30 seconds).
  • the antibacterial properties of the obtained samples were evaluated.
  • the amount of Cu carried was determined by measuring the difference between the initial amount of copper and the amount of recovered copper after recovering the residual aqueous solution after irradiation.
  • Figure 59 shows the relationship between the amount of supported Cu and the cell viability during light irradiation (L) and darkness (D). The following can be seen from the figure.
  • the antibacterial property is improved by supporting Cu.
  • the antibacterial property is improved when the light irradiation (L) is smaller than in the dark (D) with a smaller amount of Cu supported. This is the time of light irradiation (L) is to work the photocatalytic action of the rutile Ti0 2 film recovered photoactive by Cu supported.
  • FIG than 0. 12 ⁇ GZcm 2 or more in addition + ten 0. 3 improves the GZcm 2 or more to + + + + In addition.
  • This ability to reduce the amount of Cu supported is an important property, especially when this composite member is used around water, and is used in environments where Cu can be eluted into water, such as washbasins and sanitary ware. When used on a ball surface or the like, the elution amount can be reduced to a small extent.
  • the amount of supported Cu 0. 7 g / cm 2 or more, more preferably 1. or without irradiation with light by the 2 g / cm 2 or more, it is possible to obtain satisfactory antimicrobial .
  • Fig. 60 shows the relationship between the amount of Cu applied and the amount of Cu carried when the Cu concentration in the solution is lWt%. does not increase, in the amount of supported copper 0. 7 gZcm 2 above 0. 2 mgZcm 2 or 2. 7 mg / cm 2 or less, 1. to a 2 g / cm 2 or more is 0. Smg / cm 2 or 2. may be set to 4 mg / cm 2 or less.
  • the average particle diameter of 0. 01 m of the Ti0 2 sol ammonia dispersions was coated with evening spray coating method on I le substrate 15 cm square, which 900. It was formed Ruchinore type Ti0 2 film having a thickness of 0.8 and baked at C. Next, the tile surface was spray-coated with varying amounts of silver nitrate aqueous solution (solution concentration: 0.2% by weight, 0.5% by weight, 1% by weight), and then photoreduction (light source) The sample was obtained using a 20-watt BLB lamp, the distance from the light source to the sample was 10 cm, and the irradiation time was 30 seconds. The antibacterial properties of the obtained samples were evaluated. Note that Ag The residual capacity was calculated from the difference between the initial amount of silver and the amount of silver recovered after recovering the residual aqueous solution after irradiation.
  • Figure 61 shows the relationship between the amount of supported Cu and the bacterial viability during light irradiation (L) and darkness (D). The following can be seen from the figure.
  • FIG. 62 shows the relationship between the amount of silver supported and the color difference between a sample that does not support silver, and if the amount of silver supported exceeds 1 ⁇ gZcm 2 , the color difference sharply increases and exceeds 2 .
  • the color difference is 2 or more, the color difference becomes conspicuous. If silver adheres, the color changes from brown to black, which makes the appearance unsightly. Therefore, it is preferable that the color difference is suppressed to 2 or less, and it is understood that the silver carrying amount may be reduced to 1 cm 2 or less.
  • the color difference was measured with a spectrophotometer (manufactured by Tokyo Denshoku Co., Ltd.).
  • the active site of the fine particles having photocatalytic activity was determined in order to prevent the deterioration of the formation due to the surface treatment agent nocturnal molecular substance, dust or the like being covered with the active site of the photocatalyst or to recover the activity as much as possible.
  • the decolorization method that maintains the high photocatalytic property and does not impair the design of the base material such as color and pattern.
  • the basic method is to fix fine metal particles to particles having photocatalytic activity. And forming a colorless or white salt at least on the surface of the metal fine particles by reacting the metal particles with an aqueous solution or gas to produce a catalyst containing the metal fine particles.
  • the order in which the above two steps are performed is not limited, and it does not matter which one is used. That is, after fixing the colored metal fine particles to the particles having photocatalytic activity, the metal fine particles may be reacted with an aqueous solution or gas to form a colorless or white salt on at least the surface of the metal fine particles. The fine particles may be reacted with an aqueous solution or gas to form a colorless or white salt on at least the surface of the fine metal particles, and then immobilized on particles having photocatalytic activity.
  • the particles having photocatalytic activity and the colored metal fine particles may be mixed and then fixed to a substrate.
  • a step of mixing particles having photocatalytic activity with colored metal fine particles a step of applying the mixture to a substrate, a step of baking to fix the mixture to the substrate, and reacting with a gas
  • the step of baking and fixing the mixture to the substrate and the step of reacting with a gas to form a colorless or white salt on at least the surface of the metal fine particles can be performed simultaneously.
  • the colored metal fine particles are metal fine particles having a low ionization tendency, such as silver, copper, platinum, palladium, gold, nickel, iron, cobalt, and zinc, which are easily reduced.
  • the formed colorless or white salt is preferably slightly soluble or insoluble.
  • the catalyst containing the metal fine particles may be prepared after particles having photocatalytic activity are fixed to the substrate in advance, or the metal fine particles may be used. After preparing a catalyst containing the catalyst, the catalyst may be fixed to a substrate. In the case of preparing a catalyst containing fine metal particles after fixing the particles having photocatalytic activity to the base material in advance, a colored metal layer is formed on the base material after forming the particle layer having photocatalytic activity on the base material. Fixing the fine particles, the colored metal fine particles By sequentially performing the step of forming a colorless or white salt to cover.
  • the solution capable of forming a colorless or white salt on at least the surface of the metal fine particles by reacting with the colored metal fine particles may be used.
  • the white or colorless salt of the colored metal fine particles is preferably a sparingly soluble or insoluble salt. This is because a salt can be easily formed on at least the surface of the metal fine particles by an aqueous solution reaction, and can be used stably in an environment with water.
  • the white or colorless salt of the above colored metal fine particles includes, for example, silver chloride, silver bromide, silver iodide, silver oxalate, silver thiosulfate, silver cyanide, silver rhodanide, cuprous chloride , Cuprous bromide, cuprous cyanide, cuprous rhodanide, cuprous oxide, zinc phosphate, zinc oxalate, zinc cyanide, palladium cyanide, zinc sulfide, zinc carbonate, ferrous carbonate The deprivation of zinc oxide.
  • Examples of the solution capable of forming the above salt include, in the case of silver chloride, a lithium chloride solution, a sodium chloride solution, an ammonium chloride solution, a ferric chloride solution, and the like, and in the case of silver iodide, a silver iodide solution.
  • Examples include, but are not limited to, permeate solution, sodium iodide solution, ferric iodide solution, hydrogen peroxide solution, ozone water, etc. Can be widely used.
  • a reaction gas capable of forming the above-mentioned salts can be widely used as long as there is a northern source containing the y-ion element of each salt.
  • the salt is zinc oxide, if oxides such as cuprous oxide, in air, oxygen, by heating in steam, or by reacting with an acid agent 0 3, etc., metal fine particle surface Can be oxidized to form an oxide layer on the surface.
  • a titanium oxide sol having an average particle size of 0.015 m was applied to the surface of a 15 cm square tile base material, and then heat-treated at 900 ° C. to form a rutile-type titanium oxide thin film.
  • the sample stopped at this stage is designated as Comparative Sample 1.
  • an aqueous solution of silver nitrate was applied by a spray-coating method, and 10 spectral irradiations were performed using a 20 W BLB lamp as a light source to fix silver on the rutile-type titanium oxide thin film.
  • the supported amount of silver was 1.2 g / cm 2 , and the product was colored brown.
  • the sample stopped at this stage is referred to as Comparative Sample 2.
  • Antibacterial activity was tested using Escherichia coli (Escherichia coli W3110 strain). 0.15 ml (2 ⁇ 10 4 CFU) of bacterial solution was dropped on the surface of the sample previously sterilized with 70% ethanol, placed on a glass plate (100 XI 00), and brought into close contact with the outermost surface of the substrate to obtain a sample. A sample (L) irradiated with a white light (3500 lux) for a predetermined period of time and a sample (D) maintained under light-shielding conditions (D) The number of bacteria was wiped off with sterile gauze, collected in 10 ml of physiological saline, and the number of viable bacteria was determined. evaluated.
  • Comparative sample 1 does not carry silver, and therefore has no antibacterial effect in the dark (D).
  • the silver surface changed to a compound due to the decolorization treatment, Antibacterial effect was observed.
  • L light irradiation
  • a stronger antibacterial effect was observed.
  • a photocatalytic activity recovery effect of the rutile titanium thin film was also observed.
  • an aqueous solution of silver nitrate was applied thereon, and ultraviolet rays were applied to deposit silver on the titanium oxide thin film. Further, an aqueous solution of ferric chloride was applied thereon, and when it was irradiated with ultraviolet light, it was decolorized, and the color difference was reduced from 3 to 0.3.
  • the antibacterial property was confirmed to be less than 10% of the original number of bacteria by contacting the sample for 30 minutes both in the light irradiation and in the dark, showing good results.
  • aqueous solution of silver nitrate was applied thereon, and ultraviolet rays were applied to deposit silver on the titanium oxide thin film.
  • the sample was further decolorized by leaving it in a desiccator equipped with an ozonizer (ozone concentration lOppm) for about 2 hours. It was confirmed that less than 10% of the original number of bacteria was viable, showing good results.
  • the photocatalytic thin film is formed by one of the following two methods.
  • T i 0 2 sol and oxide sol are carried out in basic aqueous solution. Both show good dispersion because they are electrochemically viewed from the electrochemical side.
  • basic aqueous solution ammonia, a hydroxide containing an alkali metal or an alkaline earth metal can be cited. Ammonia is particularly preferred because it does not generate metal contaminants after heat treatment.
  • an organic or phosphoric acid-based dispersant, a surface treatment agent, or a surfactant may be further added to these dispersion liquids.
  • the above mixed solution is applied by spray coating, dip coating, mouth coating, spin coating, CVD, electron beam evaporation, sputtering, etc.
  • spray coating, dip Coating, Roll 'Coating does not require special equipment compared to CVD, E-beam evaporation, sputtering, etc.
  • the film may be dried before firing. Drying is preferably carried out at room temperature to about 1 ° C.
  • the firing is performed at a temperature sufficient to generate rutile under these conditions. Its temperature is 83 (TC or more) in the presence of tin oxide under normal pressure.
  • Another method is to form a rutile-type TiO 2 thin film, add tin oxide sol from above, and fire it.
  • a starting material containing Ti is applied to a substrate.
  • a Ti O 2 sol, a Ti alkoxide, a Ti sulfate, a Ti chloride solution and the like are used as a starting material.
  • T i0 2 sol since the isoelectric point of 2 is PH 6. 5 foot pot neutral, use an aqueous solution prepared by dispersing an acid or alkaline t, Te when applied to the substrate uniformly Easy to apply.
  • an alkali dispersion is preferred from the viewpoint of corrosion resistance.
  • any of acid and alkali dispersions may be used.
  • Examples of the acid include nitric acid, sulfuric acid, hydrochloric acid, acetic acid, phosphoric acid, and organic acids.
  • Examples of the alkaline aqueous solution include hydroxides containing ammonium hydroxide, alkaline metal or alkaline earth metal, but ammonia is particularly preferred because metal contaminants are not generated after the heat treatment.
  • an organic or phosphoric acid-based dispersant, a surface treatment agent, or a surfactant may be further added to these dispersion liquids. Note the average particle size of the Ti 0 2 sol starting materials 0. 0 5 m or less, preferably less 0. 0 1 m.
  • the method of applying to the base material is to apply these by spray coating, dip coating, roll coating, spin coating, CVD, electron beam evaporation, sputtering, etc. I The deviation may be used, or another method may be used. However, spray coating
  • Dip coating and roll coating have the advantage that they do not require special equipment and can be applied at low cost compared to CVD, electron beam deposition, and spac.
  • the film may be dried before firing. Drying is preferably performed at room temperature to about 100 ° C.
  • the applied composite member is fired.
  • the firing is performed at a temperature at which rutile is generated. Its temperature is above 900 ° C under normal pressure.
  • a starting material serving as a Sn source includes tin oxide sol and the like.
  • a basic aqueous solution may be used for the tin oxide sol. This is because tin oxide sol is electrochemically stable on the alkaline side. Examples of the basic aqueous solution include hydroxides containing ammonia, alkali metal or alkaline earth metal, but ammonia is particularly preferable because no metal contaminants are formed after the heat treatment.
  • an organic or phosphoric acid-based dispersant, a surface treatment agent, or a surfactant may be further added to these dispersion liquids. Spray coating, die coating, roll coating, spin coating, c coating are applied to the substrate.
  • VD vacuum deposition
  • electron beam evaporation electron beam evaporation
  • sputtering any of these methods may be used, or any other method may be used.
  • spray coating, dip 'coating, roll' coating has the advantage that it does not require special equipment and can be coated at low cost compared to CVD, electron beam evaporation, sputtering, etc.
  • the film may be dried before firing. Drying at room temperature ⁇ 1
  • the firing temperature may be a temperature at which the organic additive component evaporates from tin oxide. Its temperature is more than 300 ° C under normal pressure. Also
  • a thin film composed of a mixture of rutile-type TiO 2 and tin oxide with a crystallinity of less than 0.01 / m is formed on the substrate surface, and Cu, Ag, Pt, and Fe are further formed thereon.
  • C o, N i, Pd may be fixed with at least one metal selected from Cu 2 0.
  • the aqueous metal salt solution may basically be such that the metal species is dissolved as a cation. Specifically, copper acetate, silver nitrate, copper carbonate, copper sulfate, cuprous chloride, cupric chloride, chloroplatinic acid, palladium chloride, nickel chloride, cobalt chloride, ferrous chloride, ferric chloride, etc. Is raised.
  • Spray coating method or dip coating method can be used to apply the metal salt aqueous solution.However, when the amount used is small, it can be applied uniformly, the film thickness can be easily controlled, and it is not necessary to attach it to the back side. The spray-coating method is more preferable because it is possible.
  • the crystal size 0.0 1 rutile type T i0 2 to reduce the metal Ion is irradiated with light containing ultraviolet light;
  • C u on the thin film made of a mixture of tin oxide is less than , a g, P t, F e, C o, N i, immobilizing least one metal selected from P d, Cu 2 0.
  • the light source that emits light containing ultraviolet light may be any light source that can emit light containing ultraviolet light, and specifically, may be any of an ultraviolet lamp, a BLB lamp, a xenon lamp, a mercury lamp, a fluorescent lamp, and the like. .
  • the distance of the sample from the light source is preferably 1 cm to 30 cm.
  • the metal is then fixed by heating to a temperature sufficient to fix the metal.
  • the temperature is preferably 100 ° C or higher. However, if the metal is treated at a high temperature of, for example, 800 ° C or more, the metal is oxidized.
  • the metal is not limited to a metal that does not lose its electron capturing effect or does not lose its antibacterial properties even if it is oxidized. That is, it is limited to Ag and Cu.
  • the following manufacturing method is also possible, because the effect of capturing electrons or antibacterial properties is not lost even when firing at a high temperature. That is, the TiO 2 sol and the tin oxide sol are preliminarily mixed and applied to the surface of the substrate, and then an aqueous metal salt solution is applied and then fired. According to this method, the firing process can be performed once, which is effective in improving productivity and reducing manufacturing costs.
  • the Ti0 2 sol crystal diameter 0. 01 m to prepare a suspension A was added 4-6% by weight ammonia aqueous solution adjusted to PH 11.
  • a suspension B was prepared by adding 10% by weight of tin oxide sol having a crystal diameter of 0.0035 to an aqueous ammonia solution adjusted to pH 11 to another container. After mixing Suspension A and Suspension B at a predetermined ratio, apply it to the surface of a 15 cm square tile substrate by spray coating, dry, and sinter 85 (TC for 2 hours to prepare a sample).
  • the crystal form of Tio 2 in the obtained sample was rutile, and the lattice constant of Tio 2 was measured by powder X-ray diffraction, and the solid oxide of tin oxide in the TiO 2 lattice was obtained. Photoactivity and abrasion resistance of the obtained sample were evaluated.
  • an aqueous potassium iodide solution was dropped on the surface of the sample, and the dropped aqueous solution of lithium iodide was irradiated with ultraviolet rays for 30 minutes.
  • the iodination power before irradiation and the iodination force after irradiation The evaluation was made based on the difference between the pH of the aqueous solution and the pH. In other words, according to this method, if the photoactivity on the sample surface is high, the oxidation-reduction reaction as described below progresses further, so that the PH after irradiation becomes higher than the pH before irradiation.
  • Figure 66 shows the change in wear resistance with respect to the weight ratio of tin oxide in the thin film. Regardless of the presence or absence of tin oxide, the abrasion resistance showed good results, and was evaluated as ⁇ or ⁇ . It is considered that the sintering force was generated due to the treatment at a high temperature of 850 ° C, and the particles in the film were strongly bonded.
  • FIG. 67 shows the change in photoactivity with respect to the weight ratio of tin oxide in the thin film. Samples responsible di C u rutile Ti0 2 exhibit good antimicrobial and deodorizing properties for comparison (R 3. 60%) anatase Ti0 2 showing the ⁇ and very good antimicrobial and deodorizing properties of Sample 3 .
  • Aqueous ammonia solution to Ti0 2 sol crystal diameter 0. 01 m was adjusted to PH 11 was added to the mixture to prepare a suspension A.
  • a suspension B was prepared by adding tin oxide sol having a crystal diameter of 0.01 / m to an aqueous ammonia solution adjusted to PH 11 by 10% by weight. After mixing the suspension A and the suspension B at a predetermined ratio, apply them to the surface of the tile base of 15 cm square by a spray coating method, and after drying, bake at 850 ° C for 2 hours to obtain a sample. I got Ti0 2 crystalline forms in the resulting sample was found to be rutile. The Measurement of the lattice constant of T i 0 2 by powder X-ray diffraction, solid solution of tin oxide to the Ti0 2 lattice was observed. This sample was evaluated for photoactivity and abrasion resistance.
  • Figure 68 shows the change in wear resistance with respect to the weight ratio of tin oxide in the thin film. Regardless of the presence or absence of tin oxide, the abrasion resistance showed good results and was evaluated as ⁇ .
  • FIG. 69 shows the change in photoactivity with respect to the weight ratio of tin oxide in the thin film.
  • Ana show good antimicrobial and rutile T i 0 2 showing the deodorizing characteristic C u the responsible lifting the sample ⁇ PH and very good antimicrobial and deodorizing properties for comparison evening - peptidase type T i 0 2 The ⁇ PH of the sample is also shown.
  • the Ti0 2 sol crystal diameter 0. 01 zm to prepare a suspension A was added 4-6% by weight ammonia aqueous solution adjusted to PH 11.
  • Suspension B was prepared by adding 10% by weight of a tin oxide sol having a crystal diameter of 0.003 5 m to an aqueous ammonia solution adjusted to PH 11 in another container. After mixing Suspension A and Suspension B at a specified ratio, apply them to the surface of a 15 cm square tile substrate by spray-coating method. I got The resulting T i 0 2 crystal form of definitive the composite member was found to be rutile. The weight ratio of tin oxide in the thin film was 60%.
  • R 30 is determined by the following tests. Methylmerbutane is used as the decomposition gas, and the sample is placed in a cylindrical vessel with a diameter of 26 cm and a height of 21 cm adjusted to an initial concentration of methylmercaptan of 2 ppm.
  • the deodorant property R 30 (L) during light irradiation is determined by irradiating a 4 W BLB fluorescent lamp 8 cm away from the sample with light for 30 minutes and calculating the rate of decrease in methyl mercaptan concentration.
  • the deodorant property R 30 (D) of dark B is calculated by calculating the rate of decrease in methyl mercaptan concentration after 30 minutes without light. The results are shown in (Table 26). For comparison, the samples prepared in Example 55 and Comparative Example 56 (60% by weight of tin oxide) were also tested. From Table 26, it was found that the addition of Cu had the following effects.
  • the photocatalytic activity can be further improved by an electron trapping action.
  • the multifunctional materials having antibacterial properties, antifouling properties, deodorizing properties, and a photocatalytic function of decomposing harmful substances such as NOx include wall materials, tiles, glass, mirrors, and circulation filtration devices.
  • stone materials used as artificial waterfalls and fountains with water circulation system sanitary ware such as toilets and wash basins, equipment in hospitals to prevent infection of bacteria such as MRS A in hospitals, housing equipment, anti-mold Suitable for equipment, anti-virus equipment, etc.

Description

明 細 書 光触媒機能を有する多機能材及びその製造方法 技術分野
この発明は、 脱臭機能、 抗菌機能、 殺菌機能、 防汚機能等の機能を発揮す る多機能材とその製造方法に関する。 背景技術
従来から、 紫外線を照射することで、悪臭成分等の有機化合物に対して酸 素分子の吸着或いは脱着を起こさせ、 分解 (酸化) を促進する機能を発揮す る物質として、 Ti 02、 V 205、 Z n O、 W03等が知られており、 特に結晶 型がアナターゼ型の T i02粒子は光触媒としての効果が高いので、 従来から 壁材、 タイル、 ガラス (鏡) 、 循環濾過装置或いは衛生陶器等の表面に光触 媒層を形成する提案がなされている。
上記の光触媒層を形成する方法として、 プラスチック、 セラミック、 樹脂 等の基材表面に、 C V D法、 スパッタリング法、 電子ビーム蒸着法等によつ て直接 T i 02粒子等からなる光触媒層を形成する方法が知られている。
しかしながら、 C V D法、 スパッタリング法、 電子ビーム蒸着法等を用い る場合には、 設備が大規模になり、 また歩留りも悪いため製造コストが高く なる。
また、 光触媒層を形成する他の方法として、光触媒粒子をバインダーに混 練してスブレー ·コーティング法等によって基材表面に塗布したり、 ディッ プ ·コーティング法により浸漬塗布した後に、 熱処理する方法 (特開平 5— 2 0 1 7 4 7号公報) が知られている。
しかしながら、 T iO 2粒子等の光触媒粒子が光触媒としての効果を発揮す るには、 光触媒粒子に紫外線が照射されることと、 光触媒粒子が悪臭ガス等 の分解対象物質に接触することが必要であるが、 特開平 5— 2 0 1 7 4 7号 公報のように光触媒粒子をバインダに混練して基材に塗布していたのでは、 多くの光触媒粒子がバインダー層中に埋もれ、 紫外線が届かなかったり、 悪 臭ガス等に接触しないことになり、 充分な触媒機能を発揮することができな い。
また、 光触媒層を形成する他の方法として、 実開平 5— 7 3 9 4号公報に 開示されるアルコキシド法が知られている。 この方法は、 ガラス基材上にチ タンアルコキシドを塗布し、 乾燥後数 1 0 0 °Cで焼成することで、 光触媒層 を形成し、 この光触媒層に紫外線を照射することにより、 水中の有機物の分 解をする。
上記のアルコキシド法は、 比較的低温で薄膜を形成できる点で、 優れてい るおり、 基材としてパイレックスガラスや石英ガラスといったのような 5 0 0 °C程度まで軟化しにくい基材を原料とした場合には有効である力 例えば 、 ソーダガラスなどの融点の低い素材を基材として利用する場合には、 薄膜 を形成する温度ですでに基材の钦化が始まり、 形成された光触媒薄膜が、 基 材中に埋没してしまい、 そのため光が光触媒層に届かず光触媒機能を発揮で きないといった不具合を生じてしまう。
また特開平 1—2 8 8 3 2 1号公報では、 T i O 2ゾルを繊維質材料である セラミ ックベーパにスブレーして 4 0 0〜7 0 0 °Cで熱処理した後、 S n02 ゾルをスプレーし 4 0 0〜7 0 0 °Cで熱処理することでアルデヒド類の酸化 分解を高め得る光触媒被膜を形成するようにしている。
特開平 1一 2 8 8 3 2 1号公報に開示される方法にあっては、 T i 02より も活性の低い S n02にて被膜の全表面を覆ってしまうことになる。 更に、 膜 強度を高めようとした際には、 クラックが発生しやすい。 即ち、 第 1図 (a ) に示すようにタイル 1 0 0の表面に Ti O 2粒子 1 0 1を含むゾルを塗布し 、 これを熱処理 (焼結) すると、第 1図 (b ) に示すようにクラック 1 0 2 が発生する。 この原因は、 ルチル型への相転移が体積収縮 (密度が高くなる ) を起こす他に、焼結前にあっては第 2図 (a ) に示すように T i02粒子 1 0 1間の間隔は L。であったものが、 ルチル型で焼結後は第 2図 (b ) に示 すように相手方への体積拡散により粒子間の間隔は 1^ ( L ! < L 0) と短く なり、 その結果としてクラック力生じると考えられる。 一方、 特公平 4一 4 6 6 0 9号公報では、 車室内空気中の臭気に含まれる 悪臭物質を分解あるいは改質して車室内臭気を浄化する方法であって、 半導 体に金属または金属酸化物を担持した半導体の固体光触媒に光を照射すると 共に該光触媒に浄化すべき車室内空気を接触させることにより、 該空気中の 臭気に含まれる悪臭物質を光化学反応により分解あるいは改質することを特 徴とする車室内臭気の浄化方法について開示されている。
しかし基材表面に光触媒を塗布した基材を、 例えば汚水中や外壁のような 環境で用いると、 大気中あるいは水中に含まれる高分子、 塵芥、 菌類等によ り、 汚れが付着しやすく、 汚れの種類によってはその汚れの付着のために光 触媒機能が低下する場合もある。
従来における汚れ付着による光触媒機能の低下の対策としては特公平 6— 7 9 0 5号公報がある。 特公平 6— 7 9 0 5号公報では、 半導体からなる光 触媒層と、 それに対向して設けられた紫外線灯および発熱体と、 送風機から なり、 光触媒層全体が順次加熱されるように、光触媒層あるいは発熱体、 ま たは光触媒層及び発熱体が移動する光触媒による脱臭装置について開示され ており、 4 O CTC付近まで加熱することにより高分子、 塵芥等による汚れを 取り除き、光触媒層の再生を図っている。
し力、しな力 ら、 かかる光触媒の再生による方法では、 室内に取り付けた設 備に用いた部材についてこれを行うのは現実的に困難である。 したがって、 光触媒層に汚れ力付着してから取り除くのではなく、 むしろ光触媒層に汚れ が付着しにくい、 または汚れの付着により光触媒機能力 <低下しないようにす るというより根本的な解決が望まれる。
また特公平 6 - 7 9 0 6号公報においては、 光触媒に紫外線強度の強い光 を照射することにより家庭ゃォフィス内の悪臭を除去する方法が開示されて いる。 しかしながら、 紫外線強度の強い光照射するものでは、光触媒の構造 により、 悪臭の分解率が異なる。 また、上記先行例では基材が多孔質なので 含浸等の方法で充分な機械的強度が得られるが、 基材が施釉タイル、 比較的 緻密質のセラミック等の多孔質でない素材の場合には充分な機械的強度が得 られない。 また、 T i O 2にはアナタ一ゼ型、 ブルカイ ト型及びルチル型の異なる結晶 型があり、 光活性についてはアナターゼ型が優れており、 他の結晶型の場合 には光活性がそれほど大きくはない。 し力、し、 ルチル型の T i 0 2であっても 、 p t、 Ag等の金属を担持させることで光活性が向上することが雑誌 「表面 」 1 9 8 7、 V 0 1 2 5に報告されている力、 悪臭除去率、 緻密性及び密着 性の点で十分ではない。 特に添加金属として Agや AgOを用いるとこれらは 黒色であるので、 タイルや建材等には不向きである。
また、 水熱法または硫酸法等により作製した酸化チタンゾルは超微粒子か らなるために凝集しやすい。 凝集物を基材表面に塗布すると光沢ムラやクラ ックを生じる原因になる。 そのため従来より凝集を防止するために、 トリェ 夕ノールアミン等の有機分散剤を酸化チタンゾル表面に付着させる方法がと られてきた。
しかし、 トリエタノールァミン等の有機分散剤を酸化チタンゾル表面に付 着させる方法で単分散させた酸化チタンゾルを樹脂基材等の耐熱性の低 、基 材に塗布し、 3 O CTC未満で焼成固定させると、 酸化チタンゾルの活性点に 有機分散剤が強固に固定されかつ焼成工程でも充分に蒸発分解しないため、 そのようにして得た部材は充分な光触媒作用を有せず、 防臭性や抗菌性が充 分でない。
また、 特開平 5— 2 5 3 5 4 4号公報には、 アナタ一ゼ型酸化チタンをバ イング一に混練し、 これを基材表面に塗布して熱処理する方法が開示されて いる。 この方法は居住空間の壁面、 床面あるいは天井面を構成する板状部材 の表面にバインダ一層を形成し、 このバインダ—層の表面にアナ夕一ゼ型酸 化チタンを主体とする光触媒微粉末をその一部がバインダ一層から露出する ように吹き付けて付着させ、 次いで 3 0 (TC以上 9 0 O eC未満の範囲で加熱 してバインダー層を溶融せしめた後、 冷却してバインダー層を固化せしめる ようにしている。
しかしながらこの方法では、 3 0 0 °C以上 9 0 0 °C未満で熱処理すれば脱 臭性が良好だが、 3 0 0 °C未満の低温で良好な脱臭特性が得られない。 した がって耐熱性のないプラスチック等の基材に、 優れた脱臭特性等の良好な光 触媒活性を付加することは困難であった。 その理由として基材に光触媒粒子 を均一に塗布するためには前工程にお 、て光触媒微粒子を懸濁液中に単分散 させる必要があり、 そのために有機系の分散剤を添加しており、 その分散剤 が 3 0 0 °C未満では充分に分解、 気化せず、 光触媒粒子上の活性なサイ トを 覆うように残留しているためと考えられる。 従って、 本発明は、 基材から光触媒層を露出させることで光触媒効果を十 分に発揮できるとともに基材による光触媒層の保持に優れた多機能材を提供 することを目的としている。
また本発明は、 ガラス、 タイル、 金属、 プラスチックといった比較的緻密 な基材上に剥離しにく L、光触媒層を形成することを目的とする。
また本発明は、 低融点の基材、 例えば、 比較的安価で加工しやすいソーダ ガラスなどの上に光触媒層を形成することを目的とする。
また本発明は、 汚れが付着しにくく、 なおかつ汚れを原因とする機能低下 を防止しうる抗菌性または防臭性を有し、 機械的強度に優れた多機能材を提 供することを目的とする。
また本発明は、 アナタ一ゼ型 T i 02を主体とした光触媒層であっても、 剥 離強度に優れた多機能材を提供することを目的とする。
また本発明は、 ルチル型 T i02を主体とした光触媒層の光触媒活性を向上 させることを目的とする。
また本発明は、 ルチル型 T i02を主体とした光触媒層に A gを担持させて 光触媒活性を向上させつつ、 光触媒層を脱色して見栄えをよくすることを目 的とする。
また本発明は、 3 0 O eC未満の低温の熱処理でも良好な光触媒機能を有す る多機能材を提供することを目的とする。 発明の開示
本発明に係る多機能材は、 タイル、 衛生陶器、 ガラス等のセラミック、 樹 脂、 金属、 木材等の基材の表面に直接、 或いはバインダ層を介して光触媒層 を形成したものであり、 特に光触媒層を構成する光触媒粒子の種類、 粒子径 、 光触媒粒子間に形成される隙間、 気孔率、 バインダ層と光触媒層との関係 、 光触媒粒子間の間隙に充填される粒子、 更には光触媒粒子表面に固定化さ れる金属粒子等について工夫をなし、 これらにより、 脱臭等の光触媒層の光 触媒としての効果はもとより、 抗菌性ゃ耐摩耗性にも優れた多機能材とした ものである。 図面の簡単な説明
第 1図の (a ) は従来の T iO 2ゾルの焼結前の状態を示す図、 (b ) はル チル型焼結後の状態を示す図。
第 2図の (a ) は従来の T iO 2粒子の焼結前の状態を示す図、 (b ) は焼 結後の状態を示す図。
第 3図は、 この発明に係る光触媒機能を有する多機能材のうち、 光触媒層 を構成する光触媒粒子が互 、にポテンシャルエネルギにて結合することによ り構成している状態を模式的に示した図。
第 4図は、 同多機能材のうち、光触媒層を構成する光触媒粒子が互いに固 相焼結にて結合している状態を模式的に示した図。
第 5図は、 同多機能材のうち、光触媒層を構成する光触媒粒子間に形成さ れる間隙に小さな粒子が充填されている状態を模式的に示した図。
第 6図は、 第 3図に示した多機能材の光触媒粒子の表面に金属粒子が固定 化されている状態を模式的に示した図。
第 7図は、 第 4図に示した多機能材の光触媒粒子の表面に金属粒子が固定 化されている状態を模式的に示した図。
第 8図は、 第 5図に示した多機能材の光触媒粒子の表面に金属粒子が固定 化されている状態を模式的に示した図。
第 9図は、 同多機能材のうち、光触媒層がバインダ層を介して基材に接合 され、 光触媒層を構成する光触媒粒子が互いにポテンシャルエネルギにて結 合している状態を模式的に示した図。
第 1 0図は、 同多機能材のうち、 光触媒層がバインダ層を介して基材に接 合され、 光触媒層を構成する光触媒粒子が互いに固相焼結にて結合している 状態を模式的に示した図。
第 1 1図は、 同多機能材のうち、 光触媒層がバインダ層を介して基材に接 合され、 光触媒粒子間に形成される間隙に小さな粒子が充填されている状態 を模式的に示した図。
第 1 2図は、 第 9図に示した多機能材の光触媒粒子の表面に金属粒子が固 定化されている状態を模式的に示した図。
第 1 3図は、 第 1 0図に示した多機能材の光触媒粒子の表面に金属粒子が 固定化されている状態を模式的に示した図。
第 1 4図は、 第 1 1図に示した多機能材の光触媒粒子の表面に金属粒子が 固定化されている状態を模式的に示した図。
第 1 5図は、 本発明に係る光触媒機能を有する多機能材の製造方法を説明 した図。
第 1 6図の (a ) 及び (b ) は T i02粒子間の拡大図。
第 1 7図の (a ) 〜 (c ) は T i 02粒子の焼結の機構を説明した図。 第 1 8図は抗菌性試験についての試験結果を示すグラフ。
第 1 9図は B L Bランプ照射前に乾燥工程を入れた場合と入れない場合の C u担持量についての試験結果を比較したグラフ。
第 2 0図は C u担持量と C u塗布量との関係を示すグラフ。
第 2 1図は別実施例の製造工程を示す図。
第 2 2図は抗菌性試験についての試験結果を示すグラフ。
第 2 3図は B L Bランプ照射前に乾燥工程を入れた場合と入れない場合の C u担持量についての試験結果を比較したグラフ。
第 2 4図は C u担持量と C u塗布量との関係を示すグラフ。
第 2 5図は A g担持量と菌生存率との関係を示すグラフ。
第 2 6図は多機能材の断面方向を E P M A (電子線マイクロアナライザ一 ) で観察したときの基本プロファイルの概念図。
第 2 7図は多機能材の断面方向を E P MA (電子線マイクロアナライザー ) で観察したときの基本プロファイルの概念図。 第 28図は Ti02と SnO 2の配合と膜強度及び光活性の関係を示すグラフ 第 29図は熱処理温度と光活性の関係を示すグラフ。
第 30図は光触媒薄膜の活性測定方法を説明した図。
第 31図は光触媒薄膜の活性測定方法を説明した図。
第 32図は光触媒薄膜の活性測定方法を説明した図。
第 33図は紫外線照射時間と p Hの変化量との関係を示すグラフ。
第 34図は R3。と pHの変化量との関係を示すグラフ。
第 35図は気孔率と防臭性 (Rao) 及び耐磨耗性との関係を示すグラフ。 第 36図は膜厚と防臭性 (R3。) との関係を示すグラフ。
第 37図は膜厚と防臭性 (R30) 及び耐剥離性との関係を示すグラフ。 第 38図は SnO 2添加量と防臭性 (R3。) 及び耐磨耗性との関係を示すグ ラフ。
第 39図は SnO 2添加量と汚れのつきにくさとの関係を示すグラフ。 第 40図は S ηθ 2添加量と T i 02層表面の開気孔率との関係を示すグラフ 第 41図は S ηθ 2添加量と T i 02層表面の開気孔幅との関係を示すグラフ o
第 42図は SnO 2添加量と防臭性 R 3。 (L) 及び耐剥離性との関係を示す グラフ。 t
第 43図は気孔率と防臭性 (R30 (L) 及び耐剥離性との関係を示すグラ フ。
第 44図はコ一ティング回数と汚れのつきにくさとの関係を示すグラフ。 第 45図はコーティング回数と耐摩耗性との関係を示すグラフ。
第 46図はコーティング回数と Ti02層表面の開気孔率との関係を示すグ ラフ。
第 47図は紫外線を照射して、光触媒粒子上の熱硬化性樹脂を優先的に分 解、気化させて 媒粒子を外気に露出させる状態を示す図。
第 48図は別実施例を示す第 47図と同様の図。
第 49図は別実施例を示す第 47図と同様の図。 第 5 0図は光触媒粒子の隙間に小さな粒子を充填した状態を示す図。 第 5 1図はルチル型 T i 0 2を利用した多機能材の製造工程を示すプロック 図。
第 5 2図は C u溶液を乾燥させて光還元した場合の C u溶液濃度と光活性 との関係を示すグラフ。
第 5 3図は C u溶液を乾燥させないで光還元した場合の C u溶液濃度と光 活性との関係を示すグラフ。
第 5 4図はルチル型 T i O 2薄膜に担持する金属を C uとした場合の C u溶 液濃度と悪臭除去率 R 3。との関係を示すグラフ (金属ィォンの還元は金属塩 水溶液を乾燥せしめた後に行った)
第 5 5図は基板を壁タイルとし、 ルチル型 T i 0 2薄膜に担持する金属を C uとした場合の C u溶液濃度と悪臭除去率 R 30との関係を示すグラフ (金属 ィォンの還元は金属塩水溶液を乾燥せしめた後に行った)
第 5 6図はルチル型 T i 02薄膜を形成するための焼成温度と、 C u固定化 後の悪臭除去率 R 3。を示したグラフ。
第 5 7図は A g及び C uの溶液濃度と色差との関係を示すグラフ。
第 5 8図は気孔率と R 3。及び耐摩耗性との関係を示すグラフ。
第 5 9図は銅の担持量と菌生存率との関係を示すグラフ。
第 6 0図は銅の塗布量と銅の担持量との関係を示すグラフ。
第 6 1図は銀の担持量と菌生存率との関係を示すグラフ。
第 6 2図は銀の担持量と色差との関係を示すグラフ。
第 6 3図は K I水溶液による脱色処理の効果を示すグラフ。
第 6 4図は K I水溶液による脱色処理の前後における K I水溶液の p H変 化及び悪臭除去率 R 3。の変ィヒとの関係を示すグラフ。
第 6 5図は抗菌作用を比較したグラフ
第 6 6図は薄膜中の酸化すず重量比に対する耐磨耗性を示すグラフ。 第 6 7図は薄膜中の 化すず重量比に対する光活性を示すグラフ。
第 6 8図は比較例としての薄膜中の酸化すず重量比に対する耐磨耗性を示 すグラフ 第 6 9図は比較例としての薄膜中の酸化すず重量比に対する光活性を示す グラフ。
第 7 0図は銀の担持量と菌生存率との関係を示すグラフ。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する o
第 3図乃至第 1 4図は本発明に係る光触媒機能を有する多機能材の構造を タイプ毎に分けたものであり、 本発明に係る光触媒機能を有する多機能材は いずれかの構造に属する。
第 3図に示す多機能材は、 基材 1の表面に光触媒機能を有する光触媒層 2 が直接設けられ、 この光触媒層 2は微細な光触媒粒子 3が互いに表面エネル ギゃ曲面エネルギ等のポテンシャルェネルギにて結合すること構成されてい る。
第 4図に示す多機能材は、 基材 1の表面に光触媒機能を有する光触媒層 2 が直接設けられ、 この光触媒層 2は光触媒粒子 3が固相焼結にて結合するこ とで構成されている。
第 5図に示す多機能材は、 基材 1の表面に光触媒機能を有する光触媒層 2 が直接設けられ、 この光触媒層 2を構成する光触媒粒子 3間に形成される間 隙に、 当該間隙よりも小さな粒子 4が充填され、 この小さな粒子 4を介して 光触媒粒子 3相互が結合されることで構成されている。
尚、 図においては、 粒子 4を内部の間隙にまで充填した構造を示している が、粒子 4は、 少なくとも表層の光触媒粒子 3の間隙に充填されていれば良 い。 即ち、光触媒層の機械的強度は、 外力の伝達が内部で減衰するため、 最 表面の結合が重要と考えられるので、 表層の光触媒粒子の間隙にのみ微粒子 を充填すれば良い。 但し、 この時内部の光触媒粒子はポテンシャルエネルギ によって、 結合することになり、 光触媒層の十分な強度を得るためには、 光 触媒粒子の平均粒径は 0. 0 力望ましい。
第 6図に示す多機能材は、 基材 1の表面に直接形成される光触媒層 2を構 成する光触媒粒子 3が、 互いにポテンシャルエネルギにて結合され、 更に光 触媒粒子 3の表面には Ag、 Cuや C u2 0等の電子捕捉粒子 5が固定化されて いる。
第 7図に示す多機能材は、 基材 1の表面に直接形成される光触媒層 2を構 成する光触媒粒子 3が、 互いに固相焼結にて結合され、 更に光触媒粒子 3の 表面には A gや P t等の金属粒子 5が固定化されている。
第 8図に示す多機能材は、 基材 1の表面に光触媒機能を有する光触媒層 2 が直接設けられ、 この光触媒層 2を構成する光触媒粒子 3間に形成される間 隙に、 当該間隙よりも小さな粒子 4が充填され、 この小さな粒子 4を介して 光触媒粒子 3相互が結合され、 更に光触媒粒子 3の表面には Agや P t等の金 属粒子 5が固定化されている。
第 9図に示す多機能材は、 基材 1の表面にバインダ層 6を介して光触媒機 能を有する光触媒層 2が設けられ、 この光触媒層 2は表層部が外部に露出す るとともに、 下層部がバインダ層 6に埋設され、 また表層部は微細な光触媒 粒子 3が互 L、にポテンシャルエネルギにて結合することで構成されて L、る。 第 1 0図に示す多機能材は、 同じくバインダ層 6を介して光触媒層 2が設 けられ、 この光触媒層 2の表層部は光触媒粒子 3が互いに固相焼結にて結合 することで構成されている。
第 1 1図に示す多機能材は、 バインダ層 6を介して基材 1上に光触媒層 2 が設けられ、 この光触媒層 2を構成する光触媒粒子 3間に形成される間隙に 、 当該間隙よりも小さな粒子 4力充填され、 この小さな粒子 4を介して光触 媒粒子 3相互が結合されている。
第 1 2図に示す多機能材は、 基材 1の表面にバインダ層 6を介して光触媒 層 2が形成され、 この光触媒層 2を構成する光触媒粒子 3が、 互いにポテン シャルエネルギにて結合され、 更に光触媒粒子 3の表面には Ag、 C uや C u2 0等の電子捕捉粒子 5が固定化されている。
第 1 3図に示す多機能材は、 基材 1の表面にバインダ層 6を介して光触媒 層 2が形成され、 この光触媒層 2を構成する光触媒粒子 3が、 互いに固相焼 結にて結合され、 更に光触媒粒子 3の表面には Ag、 Cuや C u20等の電子捕 捉粒子 5が固定化されている。
第 1 4図に示す多機能材は、 バインダ層 6を介して基材 1上に光触媒層 2 が設けられ、 光触媒層 2を構成する光触媒粒子 3間に形成される間隙に、 当 該間隙よりも小さな粒子 4が充填され、 この小さな粒子 4を介して光触媒粒 子 3相互が結合され、 更に光触媒粒子 3の表面には Agや P t等の金属粒子 5 が固定化されている。
以上において、 基材 1としては、 タイル、 衛生陶器、 ガラス等のセラミッ ク、 樹脂、 金属、 木材またはその複合物等のいずれでもよい。
また、 光触媒粒子 3とは、 抗菌機能、 脱臭機能等の光触媒機能を発揮する のに十分なバンド ·ギヤッブを有する半導体粒子のことである。 光触媒粒子 が抗菌性を有する理由としては所定以上の電圧が印加されることにより感電 死するという説もある力 一般には脱臭機能と同様に、 光照射時に生じる活 性酸素のためと考えられている。 活性酸素を生成するためには、 半導体の伝 導帯の一がバンド'モデルで表わすとき水素発生電位より上方にあり、 かつ 価電子帯の上端が酸素発生電位より下方にあることを要する。 この条件を満 たす半導体には、 T i02、 S rT i03、 ZnO、 S i C、 リン化ガリウム、 Cd S、 Cd S e、 MoS 3等がある。 また微粒化すると伝導帯の位置は上方に移動 するので、 1〜: L 0 n m程度の微粒子ならば S n02、 W03、 F e203、 B i2 03等も活性酸素を生成し得る可能性がある。 このうち化学的に安定で、 安 価に活性の高い微粒子を得ることができることから、 アナタ一ゼ型 T i 02が 特に好ましい。
また、 電子捕捉粒子とは、 前記光触媒に光が照射され電子と正孔が生成し たときに電子を補足し、 電子と正孔との再結合を防止するものをいい、 具体 的には、 Ag、 Cu、 P t、 Pd、 Ni、 Co、 F e、 Cu20等力挙げられる。 また、 前記バインダ層 6は、 例えば釉薬、 無機ガラス、 熱可塑性樹脂、 半 田等の熱可塑性材料にて構成する。 このようにバインダ層を熱可塑性材料に て構成することで、 バインダ層上にスプレーコティング法等の簡便且つ安価 な方法によって光触媒を常温で塗布でき、 また加熱処理のみで、 基材 1、 バ ィンダ層 6及び光触媒層 2を強固に結合でき、 製造コスト上有利となる。 また、 本発明に係る光触媒機能を有する多機能材は、 光触媒粒子からなる 光触媒層を熱可塑性材料からなるシート状バインダ層の上に積層またはその 一部を埋設して構成される。 このようなシート状の多機能材を、 既存のタイ ノレ、 衛生陶器、 建材等の上に貼着後加熱すれば.、 既存のタイル等に後から防 臭性、 防汚性、 抗菌性、 抗カビ性等の機能を付加することができる。
前記光触媒層 2を構成する光触媒粒子 3の平均粒径は、 比表面積を大きく して光触媒活性を高めるため、 0. 3 未満とするのが好ましい。
前記光触媒層 2の厚さは 0. l /i m〜0. 9 であることが好ましい。 0. 1 z m未満では局所的に光触媒粒子がバインダ層 6内に埋め込まれて、 多機能材表面上触媒活性を発揮できない部分力生じ、 その部分に菌が滞留す るようになるので、 特に抗菌性が悪化する。 また 0. 9 z mを越えると、 厚 みのバラつきが大きくなり、 サンプルに染み力 <付着した際に汚れが落ちにく くなる。 ここで、光触媒層の厚さとは、光触媒薄膜の最表面からグレーズの 下層に埋め込まれている部分までを含み、 具体的には、 E P MA (電子線マ イク口アナライザー) 等の元素分析を行い、 グレーズ層を構成する主成分元 素の値が増加し、 ほぼ一定となる部分の最上部から最表面までの距離を求め ることによって測定する。
また、 光触媒層 2の厚さを変化させることで意匠的な効果も得られる。 即 ち、厚さを 0. 以上 0. 4 m未満にすれば、 光触媒層膜厚部に対す る光の干渉作用により虹彩色模様を付することができ、 また、 外観上基材の 地の色、 模様若しくはそれらの結合のみにしたければ、 上記光の干渉作用を 生じる部分を除外した 0. l /z m以上 0. 2 ^ m未満もしくは 0. 4 m以 上 1 // m未満に光触媒層膜厚部を作製すればよい。 斯かる手法は、 タイル、 洗面台、 浴槽、 大 ·小便器、 流し台、 調理台等広範な範囲に応用可能である 光触媒粒子 3のみで互いに結合する場合には、 光触媒粒子同士のポテンシ ャルエネルギ (吸着) または焼結によるしかない。 しかしながら光触媒粒子 相互の焼結作用を利用する場合はかなり高温で焼結しなければならず、 一方 吸着による場合には光触媒粒子の比表面積をよほど大きく し且つ充填性をよ く しなければ結合性は充分にならず、 光触媒粒子の活性点吸着分だけ消費す る等、 充分な触媒活性と耐摩耗性を有する多機能材を製造するには方法が制 限されることになる。
また、 光触媒粒子 3の結合を強化するために、 光触媒粒子 3の間隙よりも 大きな粒子を用いると、 充分な結合力を得られないのみならず、 多機能材表 面に露出する光触媒粒子を部分的に覆ってしまうことになり、 多機能材表面 上触媒活性を発揮できない部分が生じ、 その部分に菌が滞留することになる ので、 抗菌性が著しく悪化する。
尚、 ここでいう光触媒粒子間の間隙とは、 第 1 6図 (a ) に示すような、 光触媒粒子 3, 3間のネック部、 第 1 6図 (b ) に示すような、 光触媒粒子 3, 3間の気孔の双方を指す。 したがって、 ここでいう光触媒粒子の間隙よ りも粒径の小さな粒子 4とは、 光触媒粒子間のネック部、 光触媒粒子間の気 孔のいずれか多い方の間隙よりも小さな粒子をいう。 光触媒粒子同士を結合 させる手段として第 1 6図 (b ) のような場合に特に有効な手段である。 光触媒粒子 3の間隙に充填される小さな粒子 4としては、 基本的には材質 は制限されないが、 吸着力に優れたものがよい。 吸着能が極端に弱い材質で は光触媒粒子同士を互いに結合せしめるという目的を達成できず、 また、 吸 着能が極端に強い材質では間隙に挿入されるよりも、 光触媒粒子表面の活性 点を覆ってしまう確率が大きくなつてしまうからである。 この点からみて、 光触媒粒子の間隙に充填される粒子の材質として好ましいのは、 S n、 T i、 Ag、 Cu、 Z n、 F e、 P t、 Co、 Pd、 N i等の金属または酸化物であり、 従 来から吸着担体として使用されているゼォライト、 活性炭、 粘土等は好まし くない。 上記の金属または酸化物のうち、 適度な吸着能を有する点で好まし いのは酸化スズであり、 また Ag、 Cu等の金属または酸化物は、 光触媒粒子 同士を互いに結合せしめる以外に独自に抗菌性、 防臭性を有するので、 この 機能を活用する用途における特に光の照射のないときの光触媒の作用を補助 する機能を合わせ持つ点で好ましい。 即ち、 前記光触媒粒子 3の間隙に充填 される小さな粒子 4として、 前記金属粒子 5を用いてもよい。
また、 前記光触媒粒子 3の間隙に充填される粒子 4の平均粒径は、 光触媒 粒子 3の平均粒径の 4 / 5以下であることが好ましい。
光触媒粒子 3の間隙を埋める粒子 4は、 現行の製造方法では光触媒粒子同 士の間隙のみでなく、 光触媒粒子上にもある程度付着してしまう。 そして間 隙を埋める粒子の粒径が光触媒粒子の平均粒径の 4ノ 5を越えると、 光触媒 粒子の間隙よりも光触媒粒子表面に付着する確率の方が高くなり、 光触媒粒 子 3同士の結合強度が低下する。 また間隙を埋める粒子が光触媒粒子よりも 大きいと、 光触媒粒子を部分的に覆ってしまうことになり、 多機能材表面上 触媒活性を発揮できな 、部分が生じ、 その部分に菌が滞留し得るようになる ので、 特に抗菌性が著しく悪化してしまうおそれもある。
また、 前記光触媒粒子 3の間隙に充填される粒子 4の平均粒径は、 0. 0 1 m未満であること力 比表面積を大きく し、 適度の吸着力が得られるの で好ましい。
また、 前記光触媒粒子 3の間隙に充填される粒子 4の、 光触媒粒子 3と充 填粒子 4の合計量に対する量は、 モル比で 1 0 %以上 6 0 %以下であること が好ましい。 光触媒粒子同士の焼結が生じない温度領域で熱処理して基材に バインダを介して光触媒層を固定する場合、 間隙を埋める粒子の量が少なす ぎると、 光触媒粒子同士が強固に結合せず、 一方間隙を埋める粒子の量が多 すぎると、 光触媒粒子を覆う粒子の量が多くなり、 多機能材表面上触媒活性 を発揮できない部分が生じ、 その部分に菌が滞留し得るようになるので、 特 に抗菌性が著しく悪化するので上記範囲が好ましい。
また、 前記光触媒粒子 3の間隙に充填される粒子 4を構成する物質として 、 その蒸気圧が光触媒粒子を構成する物質の蒸気圧よりも高いものを選定し 、 光触媒粒子の間隙に充填される粒子を光触媒粒子間のネック部に凝集せし めることが好ましい。 これは、 より強固な光触媒粒子同士の結合を得、 光触 媒層の剥離強度を高めるためには、 充填させるだけでなく焼結させる方がよ いからである。 また、 間隙を埋める粒子 4にこのような蒸気圧の高い物質を 選べば、 焼結助剤としても機能し、 焼結温度を低下させることもできる。 このような蒸気圧の高い物質としては、 酸化スズ、 酸化ビスマス、 酸化亜 鉛等があるが、 安全性の点で酸化スズが好ましい。 また、 前記光触媒粒子 3の間隙に充填される粒子 4を含む層の厚さは、 0 . 1 m以上あることが好ましい。 この層の厚さが 0 . 未満では局所 的に光触媒粒子 (及び製造方法によっては間隙を埋める粒子) がバインダ層 6内に埋め込まれて多機能材表面上触媒活性を発揮できない部分が生じ、 そ の部分に菌が滞留し得るようになるので、 特に抗菌性力 <著しく悪化してしま う。 ここで、 光触媒粒子の間隙に充填される粒子を含む層の厚さとは最表面 からバインダの下層に埋め込まれている部分までを含み、 それぞれの凹凸を 均した厚みである。
第 1 5図は本発明に係る光触媒機能を有する多機能材の製造方法の一例を 説明した図であり、 本発明にあっては先ず第 1 5図 (a ) に示すように、 基 材 1を用意し、 同図 (b ) に示すように基材 1の表面にバインダ層 6を形成 する。 バインダ層 6としてはその軟化温度が基材 1の軟化温度よりも低い材 料からなるものを選定する。 一例を挙げれば、 基材 1がタイル、 ホー口一ま たは陶磁器である場合には、 バインダ層 6としては釉薬層または印刷層をそ のまま利用することができる。
次いで、 同図 (c ) に示すようにバインダ層 6の上に T i 02粒子等の光触 媒粒子からなる光触媒層 2を形成する。 この時、 光触媒層 2は後の焼成の際 にバインダ層 6から落ちない程度の結合力でもってバインダ層 6に載ってい ればよい。
あるいは、 基材 1の表面にバインダ層 6を形成する前に同図 (b, ) に示 すようにバインダ層 6上に光触媒層 2を形成しておき、 このバインダ層 6を 基材 1上に載置するようにしてもよい。
この後、 バインダ層 6の軟化温度よりも 2 0。Cを越え 3 2 0 °C未満の範囲 で高く且つ基材 1の軟化温度よりも低い雰囲気温度で加熱処理することで、 同図 (d ) 或いは第 9図乃至第 1 4図に示すように、 光触媒層 2のうち前記 バインダ層側の下層は溶融したバインダ層にその一部カ沈降しバインダ層が 凝固することで当該一部がバインダ層内に埋まり、 強固に保持される。 また 、 光触媒層 2のうち外気に接する表層を構成する光触媒粒子 3は相互間のポ テンシャルエネルギ、 分子間力や焼成による焼結によって第 1 6図 (a ) に 示すようにその一部は結合し、 また他の部分では第 16図 (b) に示すよう に離れている。 即ち、 実質的に表層において光触媒粒子の表面は外部に露出 している。
ここで、 加熱処理温度をバインダ層 6の軟化温度よりも 2 0°Cを越え 3 2 0°C未満の範囲で高く したのは、 20°C未満であると、 バインダ層の軟化に 時間がかかり且つ光触媒粒子 3 aの保持が充分になされず、 一方 3 20°Cを 越えると、 バインダ層の急激な溶融により光触媒粒子のバインダ層内への埋 まりや凹凸面の発生、 更には切れやピンホールが発生することにより、 望ま しくは 40°C以上 300°C以下とする。
また、 光触媒粒子 3の比重を 5t、 バインダ層 6の比重を <5bとした場合、 0≤ 6t- db≤ 3. 0好ましくは 0. 5≤ <5t— 5b≤ 2. 0の関係になるよ うにする。 これは、 光触媒粒子とバインダ層との比重差があまり小さいとバ ィンダ層を溶融させた場合に光触媒粒子のバインダ層内での垂直方向の移動 速度が遅くなり焼成後に光触媒粒子が剥離しやすぐなり、 光触媒粒子とバイ ンダ層との比重差が大きすぎると光触媒粒子の垂直方向の移動速度が増し、 殆どの光触媒粒子がバインダ層中に埋つてしまうそれがあり、 また、 それが 局所的に生じると、 底に菌が滞留して抗菌性が低下するためである。
尚、 この方法の応用手法として、 <5t— 5b>3. 0にしなければならない 場合でも、 バインダ層と光触媒粒子との間に 0≤ ( t— <5b≤ 3. 0である第 2のバインダ層を介在せしめればよい。
また <5t— Sb< 0のときには、加熱処理時に加圧すれば比重差 51— 5 bを 増すのと同様の効果がある。 したがって、 H I P処理、 ホッ トプレス処理に より、 0≤5t— (5b≤ 3. 0のときと同様の効果が得られる。
また、 バインダ層 6から露出する部分を構成する光触媒粒子の間隙、 具体 的には第 16図 (a) に示す光触媒粒子 3 bのネック部、 或いは第 1 6図 ( b) に示す光触媒粒子 3の間に、 当該間隙よりも粒径の小さな粒子 4 (Sn 、 Ti、 Ag、 Cu、 Zn、 Fe、 Pt、 Co、 Pd、 Ni等の金属または酸化物等 ) を光触媒粒子同士を結合するために充填してもよい。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 セラミック、 樹脂或いは金属製等の基材 1上に熱可塑性材料からなるバイ ンダ層 6を形成し、 次いで、 このバインダ層 6の上に光触媒粒子 3と粒径の 小さな粒子 4をブルまたは前駆体の状態で混合した混合物を塗布して光触媒 層 2を形成し、 この後、 前記バインダ層 6を軟化させて光触媒層 2の下層の 一部をバインダ層 6に埋設し、 次いで固化するようにしてもよい。
この方法によれば、 簡便であるとともに、 予め間隙を埋める粒子 4と光触 媒粒子 3をゾルまたは前駆体の状態で混合した混合物を塗布して光触媒層を 形成するので、 光触媒粒子 3と間隙を埋める粒子 4の混合比率を制御するの に便利である。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 熱可塑性材料からなるシート状バインダ層 6の上に、 光触媒粒子 3と粒径 の小さな粒子 4をゾルまたは前駆体の状態で混合した混合物を塗布して光触 媒層 2を形成し、 この光触媒層 2を形成したシート状バインダ層 6をセラミ ック、 樹脂或いは金属製等の基材上に載置または貼着し、 この後、 前記バイ ンダ層を钦ィヒさせて光触媒層の下層の一部をバインダ層に埋設し、 次いで固 化するようにしてもよい。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 セラミック、 樹脂或いは金属製等の基材 1上に熱可塑性材料からなるバイ ンダ層 6を形成し、 次いで、 このバインダ層 6の上に光触媒粒子 3からなる 光触媒層 2を形成し、 この後、 前記バインダ層 6を軟化させて光触媒層 2の 下層の一部をバインダ層に埋設し、 次いでバインダ層を固化せしめ、 更に光 触媒層に前記粒径の小さな粒子を含む溶液を塗布し、 熱処理することで前記 粒径の小さな粒子 4を光触媒粒子に固定化するようにしてもよい。
この方法は間隙を埋める粒子が酸化物である場合に比較的簡便に実施し得 る方法であり、 且つ比較的多孔質の光触媒層を作成した場合に間隙を埋める 粒子を多量に付着させることができる。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 熱可塑性材料からなるシート状バインダ層 6の上に光触媒粒子 3からなる 光触媒層 2を形成し、 次いでこの光触媒層を形成したシート状バインダ層を セラミック、 樹脂或いは金属製等の基材 1上に載置または貼着し、 この後、 前記バインダ層 6を軟化させて光触媒層 2の下層の一部をバインダ層 6に埋 設し、 次いでバインダ層を固化せしめ、 更に光触媒層に金属粒子 4を含む溶 液を塗布し、 熱処理することで前記粒径の小さな粒子を光触媒粒子 3に固定 化するようにしてもよい。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 セラミック、 樹脂或いは金属製等の基材 1上に熱可塑性材料からなるバイ ンダ層 6を形成し、 次いで、 このバインダ層 6の上に光触媒粒子 3からなる 光触媒層 2を形成し、 この後、 前記バインダ層を软化させて光触媒層の下層 の一部をバインダ層に埋設し、 次いでバインダ層を固化せしめ、 更に光触媒 層に小さな金属粒子 4のイオンを含む溶液を塗布し、 この後紫外線を含む光 を照射して金属ィォンを還元して光触媒粒子に固定化するようにしてもよい この方法は、 間隙を埋める粒子が金属である場合に比較的簡便に実施し得 る方法であり、 また金属の固定を極めて短時間 (数分) で行うことができる 。 また、 紫外線照射に用いるランプは、 紫外線ランプ、 B L Bランプ、 キセ ノンランプ、 水銀灯、 蛍光灯のいずれでもよい。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 熱可塑性材料からなるシート状バインダ層の上に光触媒粒子からなる光触 媒層を形成し、 次いでこの光触媒層を形成したシ一ト状バインダ層 6をセラ ミック、 樹脂或いは金属製等の基材 1上に載置または貼着し、 この後、 前記 バインダ層 6を軟化させて光触媒層の下層の一部をバインダ層 6に埋設し、 次いでバインダ層 6を固化せしめ、 更に光触媒層 2に前記粒径の小さな金属 粒子 4のィォンを含む溶液を塗布し、 この後紫外線を含む光を照射して金属 ィォンを還元して光触媒粒子に固定化するようにしてもよい。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 セラミック、 樹脂或いは金属製等の基材 1上に熱可塑性材料からなるバイ ンダ層 6を形成し、 次いで、 このバインダ層 6の上に光触媒粒子 3からなる 光触媒層 2を形成し、 この光触媒層 2に前記粒径の小さな金属粒子 4のィォ ンを含む溶液を塗布し、 この後紫外線を含む光を照射して金属ィォンを還元 して光触媒粒子 3に固定化し、 更に前記バインダ層 6を钦化させて光触媒層 の下層の一部をバインダ層に埋設し、 次いでバインダ層を固化せしめるよう にしてもよい。 .
この方法によれば加熱処理工程を一回で済ますことができるので生産性が 向上する。
また、 本発明に係る光触媒機能を有する多機能材の別の製造方法としては 、 熱可塑性材料からなるシート状バインダ層 6の上に光触媒粒子 3からなる 光触媒層 2を形成し、 この光触媒層 2に粒径の小さな金属粒子 4のイオンを 含む溶液を塗布し、 この後紫外線を含む光を照射して金属イオンを還元して 光触媒粒子 3に固定化し、 更に光触媒層 2を形成したシ一ト状バインダ層を セラミック、 樹脂或いは金属製等の基材 1上に載置または貼着し、 この後、 前記バインダ層 6を軟化させて光触媒層 2の下層の一部をバインダ層に埋設 し、 次いでバインダ層を固化せしめるようにしてもよい。
ここで、 前記光触媒粒子を Z nOとし、 この光触媒粒子の間隙に充填され る金属粒子 4を Agまたは Ag20とすることが可能である。 Agまたは Ag20 粒子は、 光触媒である Z nO粒子同士の結合を強化するだけでなく、 Z nOの 光触媒効果を增進し、 且つ自ら抗菌、 防臭の効果も有する。 また Z nOを光 触媒として選択することにより、 Agィォンによる着色を解消することがで き、 基材の地の色、 模様もしくはそれらの結合による意匠的効果を向上する ことができる。
また、 前記光触媒粒子の間隙に充填される金属のィォンとの間で不溶性で 無色または白色の塩を形成する塩類を含む溶液を、 光触媒層に接触しせしめ 、 この後紫外線を含む光を照射するようにしてもよい。
このようにすることで、 ZnOと Agまたは Ag20の組合せによらなくても 、 間隙を埋める粒子によるによる着色を解消することができ、 基材の地の色 、 模様もしくはそれらの結合による意匠的効果を向上することができる。 また、 前記光触媒粒子 3を T i02とし、 バインダ層 6を軟化せしめるため の熱処理温度を 8 0 0 以上 1 0 0 0て以下としてもよい。 8 0 0 °C以上で は T i 02粒子同士の間に初期焼結によるネック部が生成するため、 T i 02粒 子同士の結合強度が向上するが、 1000°Cを越えると、 中期焼結過程に移 行し、 T i 02の固相焼結に伴う光触媒層の体積収縮が顕著になるためクラッ クカ生じやすくなる。 ,
また、 前記光触媒粒子を Ti02とし、 この光触媒粒子の間隙に充填される 粒子 4を Agとし、 この Agイオンとの間で不溶性で無色または白色の塩を形 成する塩類を含む溶液を KI、 KC1、 FeCl3等のハロゲン化物水溶液とし てもよい。 Agはハロゲン化アルカリとの間に Agl、 AgCl等の不溶性で無 色または白色の塩を形成するので、 基材の地の色、 模様若しくはそれらの結 合による意匠的な向上を図ることができる。
また、 光触媒粒子をバインダ層上に塗布する工程の前工程として分散工程 を備える場合には、 この分散工程における光触媒粒子となるべきゾルまたは 前駆体を溶液中に分散させるための分散剤には、 バインダ層を軟化せしめる ための熱処理温度より低温で気化する成分のみを使用するのが好ましい。 従来技術において、 32 CTC未満で防臭性がなかったのは、 分散工程にお いて Ti02粒子表面に付着した分散剤力充分に気化、 蒸発せずに残留してい たために、 TiO 2粒子表面が基材最表面に充分に露出されず、 光触媒機能が 不充分になったためである。 尚、低温で気化する分散剤としては、 分子量が 1万以下である有機分散剤、 リン酸系分散剤が好まし 、。
以下に具体的な実施例を挙げる。
(実施例 1 )
150角の陶磁器タイル基材の表面に、 Si02— A1203— NaZK20フ リットからなるバインダ層をスプレー ·コーティング法により形成し乾燥し た後、 15%の Ti02ゾル水溶液をスプレー ·コーティング法により塗布し 、 膜厚が 0. 8 mの Ti02層を形成し、 次いで、 バインダ層と Ti02層が 積層された基材をローラ一ハースキルンにて雰囲気温度を実施例毎に異なら せて加熱焼成した後、 冷却固化して多機能材を得た。
ここで TiO 2ゾル水溶液とは、 例えば TiClをォートクレーブ中 100~ 20 (TCの範囲の水熱条件下で加水分解して得られた結晶子径 0. 007〜 0. 2 m程度のアナターゼ型 Ti02をゾル状態で硝酸、 塩酸等の酸性水溶 液またはアンモニア等の塩基性水溶液中に、 数%〜数十%分散させたもので 、 分散性を向上させるために表面処理剤としてトリエタノールアミン及びト リメチロールァミンの有機酸塩、 ベン夕エリ トリッ ト、 トリメチロールプロ パン等を 0. 5%以下の範囲で添加したものである。 尚、 Ti02ゾルの粒径 は S EM観察の画像処理により、 結晶子径は粉末 X線回折の積分幅から計算 した。
また、 塗布方法はスプレー ·コーティング法で行ったが、 ディ ップ' コー ティング法、 スピン · コーティング法でも同様な結果力得られると予想され 得られた多機能材について抗菌性及び耐摩耗性についての評価を行った。 抗菌性については大腸菌 (Escherichia coli W3110株) に対する殺菌効果 を試験した。 予め、 70%エタノールで殺菌した多機能材の最表面に菌液 0 . 15m l (1〜5 X 104CFU) を滴下し、 ガラス板 (10 X 1 Ocm) に載せて基材最表面に密着させ、 試料とした。 白色灯 (3500ルクス) を 3 0分間照射した後、 照射した試料と遮光条件下に維持した試料の菌液を滅菌 ガーゼで拭いて生理食塩水 10m 1に回収し、 菌の生存率を求め、 評価の指 しフ^ · o
耐摩耗性についてはプラスチック消しゴムを用いた摺動摩耗を行い、 外観 の変化を比較し評価した。
以下の (表 1) に基材として陶磁器タイル、 バインダに Si02— A1203 一 NaZK20フリツ トを用いた時の焼成温度の変化に伴う抗菌性、 耐摩耗性 の変化を示す。
(表 1 )
基材 =陶器質タイル、 ノ インダー = Si〇2-AI23-NaZK20フリツ 卜 光触媒 = Ti02
+ + + 大腸菌の生存率 10%未満
+ + 大腸菌の生存率 10%レ: 1上 30%未満
+ 大腸菌の生存率 30%以上 70%未満
大腸菌の生存率 70%レ 1上
◎ 40回往復に対して変化なし
〇 10-40回の摺動で傷が入り、 光触媒層(Ti02膜)が剝離
△ 5-10回の摺動で傷が入り、 光触媒層 (Ti02膜)が剝離
X 5回以下の摺動で傷が入り、 光触媒層 (Ti02膜)が剝離 ここで、 バインダとして用いた S i02— A1203— NaZK 20フリッ卜の 比重は 2. 4、 塗布した時の膜厚は 2 0 0 m、 軟化温度は 6 8 0。Cであつ た。 また (表 1 ) において得られた T i02は No. l〜3について (まアナターゼ 型であり、 比重は 3. 9、 No.4 , 5についてはルチル型であり、 比重は 4. 2であつた。
(表 1 ) において、 No.1は焼成温度がバインダの軟化温度よりも 2 0。Cし か高くなく、 バインダの粘性が充分に低くならなかったために、 光触媒層の 最下層を構成するアナターゼ型 Ti 02粒子がバインダ層中に充分埋設されず 、 そのため耐摩耗性試験において 5〜1 0回の摺動で傷が入り、 剥離してし まった。 また抗菌性に関しては光触媒活性に優れるアナターゼ型であること 、 および 3 0 0。C以上 は T i02ゾルの T G— D T A観察上有機成分はほぼ 分解、 気化しており、 T iO 2表面に付着した表面処理剤等の分散剤は帰化し ていると解されるが、 焼成温度が 700°Cでそれよりはるかに高い処理温度 であることより、 + +という優れた値となった。
No.3〜5は焼成温度が 800°C以上 1000 °C以下の場合であるが、 いず れも耐久性は、 40回以上の摺動試験でも変化なく、 極めて優れたものとな つた。 この原因としては、 表面の Ti02粒子の初期焼成に伴うネック部の生 成が考えられる。 また 110 oecで処理した場合は、 冷却固化後ローラハー スキルンより取り出した多機能材表面の TiO 2層にクラック力 <生じていた。 これは Ti02テストビースの TMA測定から判断して、 Ti02粒子の顕著な 体積収縮を伴う中期焼結によるものと考えられる。
No.4, 5では抗菌性がいずれも—と悪くなつた。 これには 2つの原因が考 えられる。 1つは TiO 2粒子がルチル型に相転移していることであり、 もう 1つは焼成温度がバインダの軟化温度よりも 300°Cを越えて高く、 バイン ダの粘性が低くなりすぎて光触媒層を構成する TiO 2粒子がバインダ層中に 埋設されてしまったこと力考えられる。 ここで、 TiO 2粒子がルチノレ型に相 転移していることだけが原因だと考えることはできない。 ルチル型 Ti02に おいても、 アナタ一ゼ型 Ti02には劣るものの、 光触媒活性は若干あるから である。 例えば多孔質アルミナ基材に直接丁102ゾルをスプレーコートし、 950°Cで焼成後、 冷却固化した資料の抗菌性は +であった。 従って焼成温 度がバインダの軟化温度よりも 300°Cを越えて高く、 バインダの粘性が低 くなりすぎて、 光触媒層を構成する TiO 2粒子がバインダ層中に埋設されて しまったことも一因をなしていると解される。
また、 試料の断面方向の E PMA等による Tiおよび Si (バインダの主成 分) の元素分析により、 Tiと Siの混在した層が観察され、 光触媒粒子であ る T i 02力 <埋設されていること力 <確認された。
以上の実施例 1、 つまり少なくとも光触媒が Ti02、 バインダ層が Si02 — A1203— Na,K20フリットのときには以下のことが確認された。
①焼成温度がバインダの軟化温度よりも 20eCを越えて高く、 300°Cを越 えて高くない条件で多機能材を製造した時、 抗菌性も耐摩耗性もともに良好 な多機能材を製作できる。 その原因は前記温度範囲においてバインダの粘性 力 T i 02が'くィンダ層中に適度に埋設され得る値に調整されるためと考えら れる。
②①で作製した多機能材は、 Ti02粒子のバインダ層への埋設が確認ざれた ③焼成温度が 800°C以上 1000°C以下の場合には、 いずれも耐摩耗性は 、 40回以上の摺動試験でも変化なく、 極めて優れたものとなった。 Ti02 粒子間のネック部生成に伴う強固な結合によると考えられる。
(実施例 2 )
100X100X5のアルミナ基材 (アルミナ純度 96%) の表面に、 S i02— A1203— PbOフリツ 卜からなるバインダ層をスプレー ·コーティン グ法により形成し乾燥した後、 15 %の T i 02ゾル水溶液 (実施例 1と同じ ) をスプレー ·コーティング法により塗布し、膜厚が 0. の Ti02層 を形成し、 次いで、 バインダ層と Ti02層力積層された基材をローラーハー スキルンにて雰囲気温度を実施例毎に異ならせて加熱焼成した後、 冷却固化 して多機能材を得た。
以下の (表 2) に基材としてアルミナ、 バインダに Si02— Al203—Pb 0フリットを用いた時の焼成温度の変化に伴う抗菌性、 耐摩耗性の変化を示 す。
(表 2) 基材=アルミナ板(100x100x5)、 バインダー = Si02-AI203-PbOフリッ 光触媒 =Ti02
No. 6 7 8 9 10 焼成温度 (°c) 560 580 740 840 860 軟化温度との差 ( ) 20 40 200 300 320 抗菌性 + + + + + + + + + + + 耐摩耗性 Δ 〇 〇 ◎ ◎ ここで、 バインダとして用いた Si02— A1203— PbOフリッ 卜の軟化温 度は 540°C、 比重は 3. 8、 塗布した時の膜厚は 150 μιηであった。 ま た得られた TiO 2の結晶型はすべてアナターゼ型であった。
(表 2) の耐摩耗性試験において、 No.6は 10回以下の摺動で傷が入り、 剥離してしまったが、 No.7, 8は 10回以上の摺動でも傷が入らず、 更に、 No.9, 10は 40回以上の摺動でも傷が入らないという良好な結果が得られ た。
No.9, 10で 40回以上の摺動でも傷が入らなかったのは、 焼成温度が 8 00°C以上であるため、 TiO 2粒子間にネックが生成し、 Ti02粒子同士が 強固に結合したためと考えられる。
No.6で 10回以下の摺動で傷が入り、剥離してしまったのは、 焼成温度が バインダの軟化温度よりも 2 (TCしか高くなく、 バインダの粘性が充分に低 くならなかったために、 光触媒層の最下層を構成するアナターゼ型 Ti02粒 子力 くィンダ層中に充分埋設されなかったためと考えられる。
それに対し、 No.7, 8で 10回以上の摺動でも傷が入らなかったのは、 ネ ック部が生成される温度には至らないものの焼成温度とバインダの軟化温度 との差が、 バインダの粘性を Ti02がバインダ層中に適度に埋設され得る値 に調整されたからと考えられる。
一方、 (表 2) の抗菌性試験において、 Να6~9は + + +または + +と良 好な結果を得た力 <、 No.10は +になった。 これは焼成温度がバインダの軟化 温度よりも 320 Cも高く、 バインダの粘性が低くなりすぎて、 光触媒層を 構成する Ti02粒子がバインダ層中に埋設されてしまったためと考えられる o
(実施例 3 )
Si02— A1203— BaOフリツトを型内で溶融巿冷却固化させた後、 加工 して 1 00X 1 00 X 1のガラスシートを作製し、 その上に 15%の1^02 ゾル水溶液 (実施例 1と同じ) をスプレー ·コ一ティング法により塗布し、 膜厚が 0. 8 mの Ti02層を形成した。 その後、 ガラスシートをアルミナ 基材 (1 00 X 1 00 X 5) に載せ、 シリコニット炉で雰囲気温度を実施例 毎に異ならせて加熱焼成した後、 冷却固化して多機能材を得た。
以下の (表 3) に上記の多機能材の焼成温度の変化に伴う抗菌性、 耐摩耗 性の変化を示す。
(表 3) 基材=アルミナ板(100x100 x 5)、 ノ ィンダー = Si02-AI203-BaOシート 光触媒- ΤιΌ2
ここで、 バインダとして用いた Si02— A1203— BaOフリットの軟化温 度は 620 °C、 比重は 2. 8、 多機能材上の T i 02の結晶型は No.11-13 はアナタ一ゼ型、 No.14はルチル型であった。
(表 3) の耐摩耗性試験において、 No.11は 10回以下の摺動で傷が入り 、 剥離してしまったが、 No.12は 10回以上の摺動でも傷が入らず、更に、 No.13, 14は 40回以上の摺動でも傷が入らないという良好な結果が得ら れた。
No.13, 14で 40回以上の摺動でも傷が入らなかったのは、 焼成温度が 80 CTC以上であるため、 Ti02粒子間にネックが生成し、 Ti02粒子同士 が強固に結合したためと考えられる。
No.11で 10回以下の摺動で傷が入り、 剥離してしまったのは、 焼成温度 がバインダの軟化温度よりも 20°Cし力、高くなく、 バインダの粘性が充分に 低くならなかったために、 光触媒層の最下層を構成するアナ夕一ゼ型 TiO 2 粒子がノ ィンダ層中に充分埋設されなかったためと考えられる。
それに対し、 No.12で 10回以上の摺動でも傷が入らなかったのは、 ネッ ク部が生成される温度には至らないものの焼成温度とバインダの軟化温度と の差が、 バインダの粘性を Ti02がバインダ層中に適度に埋設され得る値に 調整されたからと考えられる。
一方、 (表 3) の抗菌性試験において、 No.11〜13は + + +または + + と良好な結果を得たが、 No.14は一になつた。 これは Ti02がルチル型であ ることと、 焼成温度がバインダの軟化温度よりも 320°Cも高く、 バインダ の粘性が低くなりすぎて、 光触媒層を構成する TiO 2粒子がバインダ層中に 埋設されてしまったことの 2つの原因によると考えられる。
以上のことから、 バインダに予め TiO 2粒子を塗布後、 基材に貼着し焼成 して多機能材を得る方法においても、 基材表面にバインダを塗布し、 その後 T i 02粒子を塗布して多機能材を得る方法と同様の効果が得られることが確
6<忍さ レ ο
(実施例 4)
1 00 X 1 00X 5のポリイミ ド系樹脂からなる基材の表面に、 アクリル 樹脂ノくインダを塗布後、 15 % T i 02ゾル水溶液をスプレー 'コーティング 法により塗布し、 膜厚が 0. 8 mの Ti02層を形成し、 次いでバインダ層 と Ti02層が積層された基材をニクロム炉にて 150°Cで焼成し多機能材を 得た。
以下の (表 4) に上記の多機能材の焼成温度の変化に伴う抗菌性、 耐摩耗 性の変化を示す。
(表 4) 基材 =ポリイミド樹脂、 バインダ一 =ァクリル樹脂
光触媒- Ti02、 焼成温度 150°C
尚、 (表 4) において、 15%1^02ゾル水溶液の調整方法は下記のよう に変化させた。
No.l 5 :実施例 1使用の 15%Ti02ゾル水溶液をそのまま用いた。
No.16.: T i C 1水溶液をォ一トクレーブ中 110〜 150 °Cで加水分解後 、 生成物を硝酸にて pHO. 8に調整して表面改質剤を用いずに分散させ、 次いで凝集物を除去したものを用いた。 この場合スプレー ·コーティングは 凝集体除去後直ちに行った。
ここで、 Ti02の比重は 3. 9、 結晶型はアナターゼ、 アクリル樹脂の比 重は 0. 9、 ガラス軟化点に対応する粘性になる温度は 70°Cである。
耐摩耗性に関しては、 No.15 , 16のいずれかの条件でも 10回以上の摺 動でも傷がはいらなかった。 このことは焼成温度とバインダの钦化温度との 差の範囲が、 バインダの粘性を Ti02がバインダ層中に適度に埋設されうる 値に調整しうる値であったためと考えられる。
一方、 抗菌性試験に関しては NO.15は、 一になつた力、 NO.16は + +と 良好な結果を得たことで、 3 (TC未満においても抗菌性を有する多機能材が 製造可能であることを見出だした。 この違いは DTA— TGにおいて、 NO. 15の Ti02ゾルでは 200〜350°Cで分解、 蒸発する成分があるが、 NO .16では認められないことから T i 02を覆う有機成分の有無が原因となつ ていると考えられる。 またここではアナターゼとァクリル樹脂の比重差は 3だが、 この程度の差 であれば光触媒層を構成する Ti02粒子がバインダ層中に埋設されることな く良好な抗菌性を有することも確認された。
(実施例 5 )
100X 100 X 5のアルミナ基材の表面に、 実施毎に比重の異なるフリ ッ ト等からなるバインダ層をスプレー ·コ一ティング法により成形後、 乾燥 後 15%の7^02ゾル水溶液をスブレー · コ一ティング法により膜厚 0. 8 の Ti02層を形成し、 次いでバインダ層と Ti02が積層された基材をロ 一ラーハースキルンにて雰囲気温度を 750。Cとして加熱焼成後冷却固化し て多機能材を得た。
以下の (表 5) に上記の多機能材の焼成温度の変化に伴う抗菌性、 耐摩耗 性の変化を示す。
(表 5) 某材=アルミナ板(100x100 x 5)、 光触媒 = Ti02
抗菌性試験に関しては NO.17〜20のいずれも + + +と良好な結果を得 た。 いずれにおいても焼成温度がバインダの軟化温度よりも 30°C以上 30 o°c以下の範囲で高く、 焼成温度とバインダの軟化温度との差の範囲が、 バ ィンダの粘性を Ti02がバインダ層中に適度に埋設され得る値に調整された 値であつたためと考えられる。
耐摩耗性に関しては、 N0.17は、 5回以下の摺動で傷が入り、 剥離して しまった力 NO.18〜20は 10回以上の摺動でも傷が入らなかった。 その原因としては、 N0.17では他と異なり、 バインダの比重の方が TiO 2の比重よりも大きいため、 光触媒層の最下層を構成するアナターゼ型 TiO 2粒子がノ ィンダ層中に充分埋設されなつかたためと考えられる。
したがって、 多機能材の耐摩耗性には、 Ti02とバインダとの比重も影響 し、 バインダの比重の方が Ti02の比重よりも大きいと悪化することが判明 した。
(実施例 6 )
150角の陶器質タイル基材の表面に Si02— A1203— BaOフリッ 卜 ( 軟化温度 620°C) からなるバインダ層を形成し、 その上に Ti02ゾルと S n02ゾルを混合、攪拌した水溶液をスプレー ·コーティング法にて塗布後、 75 CTCにて焼成し冷却固化して多機能材を得た。
なお Ti02ゾル濃度は 4〜6wt %で NH3水溶液で PH 11に調整され 、 TiO 2粒子の結晶子径は 0. 01 mであり、 Sn02粒子の結晶子経は、 0. 0035 πιである。
こうして作製した多機能材について Ti02と Sn02の合計量に対する Sn 02量 (モル比) を種々に変化させたときの抗菌性試験および耐摩耗性試験 を行った結果を以下の (表 6) に示す。
(表 6) 基材=陶器質タイル、 バインダー- Si02-AI203-BaOフリツ 卜 光触媒 = Ti02、 間隙粒子 = Sn02( 0.0035 μ m)
耐摩耗性試験については Sn02の量の増加に伴って向上し、 10%以上の 添加により、 40回の摺動試験においても傷力《入ることもなく、 変化も生じ なくなつた。
抗菌性試験については 20%以上までの範囲ならば、無添加のときと同様 に + + +であり、 60%までならば ++で止った。 それ以上加えると、 基材 表面の TiO 2粒子を覆う確率が高くなり、 抗菌性は悪化し、 100%では一 となった。
したがって Sn02の添加量をモル比で Ti02と Sn02の合計量の 10%以 上 60 %以下、 好ましくは 10 %以上 20 %以下にすれば抗菌 にも耐摩耗 性にも優れた多機能材を提供できる。
ここで耐摩耗性が Sn02の量の増加に伴い向上するのは以下に示す機構に よる。 即ち、 Sn02は Ti02よりも 600°C以上の高温では蒸気圧力高いた め、 焼結前にあっては Ti02粒子 3 bの間隔は第 17図 (a) に示すように L。である力、 Ti02粒子 3の正の曲率をもつ表面では蒸気圧が高く、 負の 曲率をもつ表面、 つまり 2つの Ti02粒子 3 bが当接するネック部の表面は 蒸気圧が低くなる。 その結果、 第 17図 (b) に示すようにネック部には T i02よりも蒸気圧が高い Sn02が入り込み、 第 17図 (c) に示すように凝 縮し、 気化一凝縮機構によって焼結が行われている。 そして、 気化—凝縮機構によって焼結が行われると、 焼結後の Ti02粒子 の間隔 L 2は焼結前の間隔 L。と略等しいため、 クラック等は発生しな 、。 このように基材表面にノくィンダを介して T i 02粒子層が保持された複合部 材において、 最表面に露出し Ti02粒子の間隙に Sn02粒子を充填して 60 0°C以上で焼成すれば、 クラックを発生することなく、 Ti02粒子間のネッ ク部を結合することができるので、 耐摩耗特性が向上する。
(比較例 7 )
実施例 6と同様に 150角の陶器質タイル基材の表面に Si02— A1203 一 BaOフリット (軟化温度 620°C) 力、らなるバインダ層を形成し、 その 上に Ti02ゾルと 3102ゾルを混合、 攪拌した水溶液をスプレー .コーティ ング法にて塗布後、 750°Cにて焼成し冷却固化して多機能材を得た。 なお T i 02ゾル濃度は 4〜 6 w t %で N H 3水溶液で P H 11に調整され、 粒子の結晶子径は実施例 6と同様に 0. O l ^mである力 Sn02粒子の結 晶子怪は 0. 008 とやや大きい粒子を用いた。
こうして作製した多機能材について抗菌性試験および耐摩耗性試験を行い 、 実施例 6と比較した結果を以下の (表 7) に示す。
(表 7) 基材=陶器質タイル、 バインダー = Si02-AI203-BaOフリット 光触媒 =Ti02、 間隙粒子 = SnO2(0.0080 μ m)、 熱処理 750°C
その結果、 0. 008 mの Sn02粒子の耐摩耗性向上の効果は、 0. 0 035 の Sn02粒子を用いた場合よりも弱く、 Ti02と Sn02の合計量 に対するモル比が 60%以上でようやく 40回の摺動試験においても傷が入 ることもなく、 変化も生じなくなった。
抗菌性試験については 0. 0035 mの Sn02粒子を用いた場合と同様 に、 20%以上までの範囲ならば、 無添加のときと同様に + + +であり、 6 0%以下ならば ++で止った。 それ以上加わると、 基材表面の TiO 2粒子を 覆う確率が高くなり、 抗菌性は悪化し、 100%では—となった。
した力つて 0. 01 mの Ti02粒子を用いた場合には 0. 008〃mの S ηθ 2粒子を添加して抗菌性にも耐摩耗性にも優れた多機能材を提供するの は困難である。 この原因としては SnO 2粒子の蒸気圧は粒経が大きくなると 小さくなること、 気化せずに残存する Sn02粒子が 0. 0035 mの場合 は Ti02粒子間の間隙に存在し、結合強度を向上し得たのに対し、 0. 00 8 //mでは Ti02粒子間の間隙と比較して Sn02粒子が大きいために、 Sn 02粒子が間隙に入れず、 むしろ Ti02粒子上にくる確率が高くなつている ためと考えられる。
以上のことから Ti02粒子の間隙を埋めるべき Sn02粒子の大きさは、 T iO 2粒子径に対し、 4 5未満であることが好ましい。
(実施例 8 )
150角の陶器質タイル基材の表面に、 Sn02— Al203—Ba07U (軟化温度 62CTC) 力、らなるバインダ層を形成し、 その上に Ti02ゾル水 溶液をスプレー ·コ一ティング法にて塗布後、 750°Cにて焼成し冷却固化 した複合部材に、 Sn02ゾル水溶液をスプレー 'コ一ティング法にて塗布後 、 110°Cで熱処理し多機能材を得た。 このとき Ti02ゾル水溶液には実施 例 6と同じものを用い、 SnO ^には 0. 0035 / mの方を用いた。 こうして作製した多機能材について抗菌製試験および耐摩耗性試験を行つ た結果を以下の (表 8) に示す。 (表 8) 基材=陶器質タイル、 ノ インダー = Si02-AI203-BaOフリツ 卜 光触媒 = Ti02、 間隙粒子- SnO2(0.0035ym)、 熱処理 750°C/110°C
耐摩耗性試験については SnO 2の量の増加に伴って向上し、 モル比 20% 以上の添加により、 40回摺動試験においても傷が入ることもなく、 変化も 生じなくなった。
抗菌性試験については 20%以上までの範囲ならば、 無添加のときと同様 に + + +であり、 60%までならば ++で止った。 それ以上加わると、 基材 表面の T i 02粒子を覆う確率が高くなり、 抗菌性は悪化し、 100%では 一となつた。
本試験では SnO 2ゾルは 110°Cという低温で熱処理しているので、 実施 例 6で示した気化一凝縮機構による焼結は生じない。 にもかかわらず耐摩耗 性が向上したが、 これは Ti02粒子よりも粒径が小さい、 すなわち比表面積 が大きく吸着力に優れる Sn02粒子が Ti02粒子の間隙を埋めたことにより 、 Ti02粒子同士の結合が強化されたためと考えられる。
(実施例 9 )
150角の陶器質タイル基材の表面に、 Si02— A1203— BaOフリッ ト (軟化温度 620。C) 力、らなるバインダ層を形成し、 その上に Ti02ゾル水 溶液をスブレー ·コ一ティング法にて塗布後、 Ί 50°Cにて焼成し冷却固化 した複合部材に、 酢酸銅水溶液を塗布し乾燥させ、 その後紫外線を含む光を 照射して銅イオンを還元しつつ光触媒層に固定し、 多機能材を得た。 ここで 照射ランプには水銀灯ランプを用いた。
ここで光触媒層に固定された C u粒子の大きさは平均 0. 0 0 4 程度 であった。
こうして作製した多機能材について抗菌性試験および耐摩耗性試験を行つ た結果を (表 9 ) に示す。
(表 9 ) 基材=陶器質タイル、 バインダー = Si02-AI203-BaOフリット 光触媒 = Ti02、 間隙粒子=0^0.004 )、 熱処理 750°CZ光還元
耐摩耗性試験については C u量の増加に伴って向上し、 モル比 2 0 %以上 の添加により、 4 0回の摺動試験においても傷が入ることもなく、 変化も生 じなくなった。
抗菌性試験については 2 0 %以上までの範囲ならば、 無添加のときと同様 に + + +であった。 C uの場合はそれ自体抗菌力を有するので、 多量添加す ることによる抗菌性の悪化は認められなかった。
しかしおそらく C uの添加量が少量のときは T i 02粒子層による光触媒作 用が支配的であり、 C uの添加量が多量のときは C uによる作用が支配的で あると考えてよいだろう。 C uのみの作用に期待する場合、 C uは液体中で 用いたときは徐々に溶出するので、 光触媒のない場合と比較して寿命が短い と考えられる。 また C uの添加量が多量になるとその分コスト高にもなる。 したがって C u量をあまり多量に設定することは意味がないと思われる。 この実施例により S n0 2のような酸化物だけでなく、 C uのような金属も T i 02粒子層の間隙を埋める粒子となり得ることが確認された。
(実施例 10 )
150角の陶器質タイル基材の表面に、 Si02—Al203— BaOフリツ 卜 (軟化温度 620°C) からなるバインダ層を形成し、 その上に Ti02ゾル水 溶液をスプレー ·コ一ティング法にて塗布後、 950°Cにて焼成し冷却固化 した複合部材に、 酢酸銅水溶液を塗布し、 その後紫外線を含む光を照射して 銅ィォンを還元しつつ光触媒層に固定し多機能材を得た。
このとき照射ランプには BL Bランプを用い、 数分間照射した。 Ti02は 熱処理の工程でアナターゼからルチルに相転移した。 T i 02の膜厚はスプレ — 'コーティ ングの際に 0. 4 ^mに調整した。
こうして作製した多機能材について抗菌性試験および耐摩耗性試験を行つ た。 耐摩耗性試験については、 無添加でもこの温度域では良好な結果を示す 。 C uを添加しても無添加のときと同様に 40回の摺動試験においても傷が 入ることもなく、 変化を生じなかった。
抗菌性試験については第 18図に示す。 無添加のときは Ti02がルチルの ため +と悪い。 それに Cuを添加していく抗菌性が增した。 そして BL Bラ ンプ照射時のみならず、 照射していない時も Cu担持量が 0.
2以上になれば抗菌活性が + +となり、 じ11担持量が1. 2^ gZcm2以上 になれば抗菌活性が + + +となる。
以上のことから抗菌性にも耐摩耗性にも優れた多機能材を提供するには、 Cu担持量が 0. 7 gZcm2以上がよく、 より好ましくは 1. 2 β / cm2以上がよい。
ところで C u担持量は酢酸銅水溶液塗布後 B L Bランブ照射前に乾燥工程 を入れると飛躍的に向上する。 その関係については第 19図に示す。 これは 乾燥させた場合の方が光還元するときの金属イオン濃度が高いからと考えら れる。
また C u担持量は C u塗布量を最適にしたときに最大となる (第 20図、 第 20図は Cu濃度 lwt%の酢酸銅の例) 、 この第 20図の場合、 塗布量を 0 . 7 g/cm2以上にするには 0. 2mgノ cm2以上 2. 7mg/cm2 以下に、 1. 2 gZcm2以上にするには 0. SmgZcm2以上 2. 4m g,c m2以下にすればよい。
(実施例 11 )
150角の陶器質タイル基材の表面に、 Si02— Al203—BaOフリッ ト (軟化温度 680°C) からなるバインダ層を形成し、 その上に丁102ゾル水 溶液をスプレー ·コーティング法にて塗布後、 950°Cにて焼成し冷却固化 した複合部材に、 硝酸銀水溶液を塗布、 乾燥し、 その後紫外線を含む光を照 射して銀ィォンを還元しつつ光触媒層に固定し多機能材を得た。
このとき照射ランプには BLBランプを用い、 数分間照射した。 また Ti 02は熱処理の工程でアナターゼからルチルに相転移した。 Ti02の膜厚は スプレー ·コーティングの際に 0. 4^mに調整した。
こうして作製した多機能材について抗菌性試験および耐摩耗性試験を行つ た。 耐摩耗性試験については、 無添加でもこの温度域では良好な結果を示す 。 Agを添加しても無添加のときと同様に 40回の摺動試験においても傷が 入ることもなく、 変化も生じなかった。
抗菌性試験について第 70図に示す。 無添加のときは TiO 2がルチルのた め十と悪い。 それに Agを添加していくと抗菌性が増した。 そして BLBラ ンブ照射時のみならず、 照射していない時も A g担持量が 0. 05 gZc m 2以上になれば抗菌活性が + +となり、 Ag担持量が 0. l gZcm2以 上になれば抗菌活性が + + +となる。
したがって抗菌性にも耐摩耗性にも優れた多機能材を提供するには、 Ag 担持量が 0. 05 gZcm2以上がよく、 より好ましくは 0. l ^ gZc m 2以上がよい。
ただし Ag担持量が多いと茶色から黒色に着色され、 外観上見栄えが悪い 。 しかし Ag担持量が 1 gZcm2以下ならば着色はない。
以上のことから Ag担持量は 0. 05 gZcm Lhl gZcm2以下 がよく、 より好ましくは 0. 1 gZcm2以上 1 gノ cm2以下がよい。 (実施例 12 )
150角の陶器質タイル基材の表面に、 Si02— A1203— BaOフリッ ト (軟化温度 680°C) 力、らなるバインダ層を形成し、 その上に Ti02ゾル水 溶液をスプレー ·コーティング法にて塗布後、 950°Cにて焼成し冷却固化 した複合部材に、 硝酸銀水溶液を塗布、 乾燥し、 その後紫外線を含む光を照 射して銀ィォンを還元しつつ光触媒層に固定し多機能材を得た。
このとき照射ランプには BLBランプを用い、 数分間照射した。 また Ti 02は熱処理の工程でアナ夕ーゼからルチルに相転移した。
こうして作製した多機能材について、 Ti02の膜厚を種々の値に変化させ て耐摩耗試験、 抗菌性試験および耐汚染性試験を行った。
耐摩耗試験については今回試験した 2 /m以内の範囲ではいずれも良好な 結果を示し、 40回の摺動試験においても傷が入ることもなく、 変化も生じ なかった。
抗菌性試験については膜厚 0. l m以上で +十、 0. 2//m以上で + + +となる。 したがって Ti02の膜厚は 0. 1 m以上がよく、 好ましくは 0 . 2 m以上がよい。
(実施例 13)
150角の陶器質タイル基材の表面に、 Si02— A1203— BaOフリット (軟化温度 62 (TC) からなるバインダ層を形成し、 その上に塩化亜鉛水溶 液あるいは Ti02ゾル水溶液をスプレー ·コーティング法にて塗布し乾燥後 、 硝酸銀水溶液を塗布し、 その後紫外線を含む光を照射して銀イオンを還元 しつつ光触媒層に固定した。 その後 900°C以上 1000eC以下にて焼成し 冷却固化し多機能材を得た。
このとき照射ランプには BLBランプを用い、 数分間照射した。 また Ti 02は熱処理の工程でアナ夕ーゼからルチルに相転移した。 また表面の固定 された Agは熱処理に伴い、 茶黒色から白色に変化したことから、焼成中に 酸化銀に変化したと考えられる。 ただし Agの付着固定は離散的になされて おり、 観察により焼成前後における Ag粒子の成長はほとんど認められなか つ丁:0
こうして作製した多機能材について抗菌性試験および耐摩耗性試験を行つ た。 耐摩耗性試験については、 無添加でもこの温度域では良好な結果を示す。 A gを添加しても無添加のときと同様に 40回の摺動試験にお L、ても傷が入る こともなく、 変化も生じなくなった。
抗菌性試験については第 図に示す。 無添加のときは Ti02がルチルのた め +と悪い。 それに Agを添加していくと抗菌性が増した。
(実施例 14 )
150角の陶器質タイル基材の表面に、 Si02— A1203— BaOフリッ 卜 (軟化温度 620°C) からなるバインダ層を形成し、 その上に Ti02ゾル水 溶液をスプレー · コ一ティング法にて塗布後、 900°C以上 1000°C以下 にて焼成し冷却固化した複合部材に、 硝酸銀水溶液を塗布し、 その後紫外線 を含む光を照射して銀ィォンを還元しつつ光触媒層に固定し、 さらにその上 に 0. lmo 1 /1の K I水溶液を 0. 1 c cZcm2の割合で塗布し、 更 に紫外線を 5秒程度照射し多機能材を得た。 その際 Agの担持量は 2 g/ cm2とした。
0. lmo 1ノ 1の K I水溶液を 0. 1 c cゾ c m2の割合で塗布し、 更に紫外線を 5秒程度照射したことにより、 茶黒色だつた多機能材は白色に 脱色され、 外観上の見栄えが向上した。
(実施例 15 )
150角の陶器質タイル基材の表面に、 Si02— A1203— BaOフリッ ト (軟化温度 620°C) 力、らなるバインダ層を形成し、 その上に Ti02ゾル水 溶液をスプレー ·コーティング法にて塗布後、 820。Cにて焼成し冷却固化 して得た多機能材を傾斜させて配置し、 紫外線を含む光を多機能材上に照射 しながら、 多機能材の上に公衆浴場で採取した風呂水を循環させながら、 連 続的に滴下し、 風呂水の変化を観察した。 同様の装置を比較のため、光触媒 層を設けていない基材の上にも滴下した。 14日後の観察では、 前記多機能 材上に滴下していた風呂水は光触媒層を設けていない基材の上に滴下してい た風呂水と比較して、 濁り具合には特異な差カ認められないものの、 どぶ水 臭に差が認められた。 すなわち ¾«4媒層を設けていない基材の上に滴下して いた風呂水ではかなり強いどぶ水臭が認めれ、 また基材上にスライ厶状のぬ めりおよび有機系沈殿物が観察されたのに対し、 前記多機能材上に滴下して いた風呂水ではそのいずれもが認められなかった。 以上の模擬実験により、 この多機能材は公園、 デバ一ト等にある水循環方式の人工的な滝や噴水の敷 石として利用できると考えられる。
以上の説明より、 基材の軟化温度よりも低い材料からなるバインダ層を介 して光触媒粒子を固定するようにし、 特に光触媒層の表層部を構成する光触 媒粒子はバインダ層に埋もれないようにしたので、 光触媒粒子は実質的にそ の表面が外部に露出した状態となり、 光触媒効果を充分に発揮することがで きる。 また、 光触媒粒子のうち光触媒層の下層を構成する粒子はその一部が バインダ層内に埋設されるので、 光触媒層の保持力が大幅に向上し、 剥離等 力 <生じにくくなる。
第 2 1図は別実施例の製造工程を示す図であり、 この実施例にあっては、 基材 1として無機ガラスや熱可塑性樹脂等の熱可塑性のものを用い、 この熱 可塑性基材 1の表面に直接光触媒層 2を形成している。
即ち、 第 2 1図 (a ) に示すように、 熱可塑性基材 1を用意し、 次いで、 同図 (b ) に示すように熱可塑性基材 1の表面に T iO 2粒子等の光触媒粒子 からなる光触媒層 2を形成する。 この後、 加熱処理することで、 同図 (c ) に示すように、 光触媒層 2のうち前記熱可塑性基材側の下層が熱可塑性基材 に沈降し熱可塑性基材が凝固することで熱可塑性基材内に埋まり、強固に保 持される。 また、光触媒層 2のうち外気に接する表層を構成する光触媒粒子 3はポテンシャルエネルギ、 相互間の分子間力或いは焼結によって結合して いる。
この実施例に関する好ましい条件等については、 前記実施例と同様である が、 以下に具体的な実施例について述べる。
(実施例 1 6 )
1 5 0角の S i02— A 1203— NaZK20 組成からなるガラス基材の表面 に、 1 5 %の T i02ゾル水溶液をスプレー ·コ一ティング法により塗布し、 膜厚が 0. 8 yt mの T i02層を形成し、次いで、 T iO 2層力積層されたガラ ス基材をセラミック製の離型性の良い型の中に入れ、 ローラーハースキルン にて雰囲気温度を実施例毎に異ならせて加熱焼成した後、 冷却固化して多機 能ガラスを得た。
ここで Ti02ゾル水溶液とは、 例えば TiCl4 をォートクレーブ中 100 〜 200 °Cの範囲の水熱条件下で加水分解して得られた結晶子径 0. 007 〜0. 2 /m程度のアナターゼ型 Ti02をゾル状態で硝酸、 塩酸等の酸性水 溶液またはアンモニア等の塩基性水溶液中に、 数%〜数十%分散させたもの で、 分散性を向上させるために表面処理剤としてトリエ夕ノールァミン及び トリメチロールァミンの有機酸塩、 ベン夕エリ トリッ ト、 トリメチロールプ 口パン等を 0. 5%以下の範囲で添加したものである。 尚、 Ti02ゾルの粒 径は S EM観察の画像処理により、 結晶子径は粉末 X線回折の積分幅から計 算した。
また、 塗布方法はスプレー ·コ一ティング法で行ったが、 ディ ップ'コー ティング法、 スピン · コ一ティング法でも同様な結果が得られると予想され o
得られた多機能ガラスにつ L、て抗菌性及び耐摩耗性につ、、ての評価を行つ た。
抗菌性については大腸菌 (Escherichia coli W3110株) に対する殺菌効果 を試験した。 予め、 70%エタノールで殺菌した多機能ガラスの最表面に菌 液 0. 15m l (1〜5X104 CFU) を滴下し、 ガラス板 (10x10 cm) に載せてガラス基材最表面に密着させ、 試料とした。 白色灯 (3500 ルクス ) を 30分間照射した後、 照射した試料と遮光条件下に維持した試料の 菌液を滅菌ガーゼで拭いて生理食塩水 10m 1に回収し、 菌の生存率を求め 、 評価の指標とした。
耐摩耗性についてはブラスチック消しゴムを用いた摺動摩耗を行い、 外観 の変化を比較し評価した。
以下の (表 10) に Si02— A1203— NaZK20 組成のガラス基材を用 いた時の焼成温度の変化に伴う抗菌性、 耐摩耗性の変化を示す。 (表 1 o) 基材=5 2-八1203-^/1<20ガラス
光触媒 = Ti02
+ + + 大腸菌の生存率 10%未満
+ + 大腸菌の生存率 10%以上 30%未満
+ 大腸菌の生存率 30%以上 70%未満
大腸菌の生存率 70%以上
◎ 40回往復に対して変化なし
〇 10-40回の摺動で傷が入リ、 光触媒層 (Ti02膜)が剝離
Δ 5-10回の摺動で傷が入り、 光触媒層 (Ti02膜)が剝離
X 5回以下の摺動で傷が入り、 光触媒層 (Ti02膜)が剝離
ここで、 Si02_Al203— Na,K20 組成のガラス基材の比重は 2. 4 、 軟化温度は 680°Cであった。 また (表 10) において得られた Ti02は No. 1~3についてはアナターゼ型であり、 比重は 3. 9、 No. 4, 5につ いてはルチル型であり、 比重は 4. 2であった。
(表 10) において、 No.1は焼成温度がガラス基材の軟化温度よりも 2 0。Cし力、高くなく、 ガラス基材の粘性力 <充分に低くならなかったために、 光 触媒層の最下層を構成するアナターゼ型 T i 02粒子がガラス基材中に充分埋 設されず、 そのため耐摩耗性試験において 5〜10回の搢動で傷が入り、 剥 離してしまった。 また抗菌性に関しては光触媒活性に優れるアナ夕ーゼ型で あること、 および 300°〇以上では1^02ゾルの丁0— 0丁八観察上有機成 分はほぼ分解、 気化しており、 Ti02表面に付着した表面処理剤等の分散剤 は気化していると解されるが、 焼成温度が 700°Cでそれよりはるかに高い 処理温度であることより、 + +という優れた値となった。
No.3~5は焼成温度が 800°C以上 1000 °C以下の場合であるが、 い ずれも耐久性は、 40回以上の摺動試験でも変化なく、 極めて優れたものと なった。 この原因としては、 表面の TiO 2粒子の初期焼成に伴うネック部の 生成が考えられる。 また 1100°Cで処理した場合は、 冷却固化後ローラハ ースキルンより取り出した多機能ガラス表面の Ti02層にクラック力 <生じて いた。 これは Ti02テストビースの TMA測定から判断して、 Ti02粒子の 顕著な体積収縮を伴う中期焼結によるものと考えられる。
No.4, 5では抗菌性がいずれも一と悪くなつた。 これには 2つの原因が 考えられる。 1つは TiO 2粒子がルチル型に相転移していることであり、 も う 1つは焼成温度がガラス基材の軟化温度よりも 300 高く、 ガラス基材 の粘性が低くなりすぎて光触媒層を構成する T i 02粒子がガラス基材中に埋 設されてしまったことが考えられる。 ここで、 TiO 2粒子がルチル型に相転 移していることだけが原因だと考えることはできない。 ルチル型 TiO 2にお いても、 アナターゼ型 Ti02には劣るものの、 光触媒活性は若干あるからで ある。 例えば多孔質アルミナ基材に直接 Ti02ゾルをスプレーコートし、 9 50°Cで焼成後、 冷却固化した資料の抗菌性は十であった。 従って焼成温度 がガラス基材の軟化温度よりも 300。C高く、 ガラス基材の粘性が低くなり すぎて、 光触媒層を構成する T i 02粒子がガラス基材中に埋設されてしまつ たことも一因をなしていると解される。
また、 試料の断面方向の EPMA等による Ti及び Si (ガラス基材の主成 分) の元素分析により、 Tiと Siの混在した層が観察され、 光触媒粒子であ る Ti02が埋設されていること力確認された。
以上の実施例 16、 つまり少なくとも光触媒が Ti02、 ガラス基材が Si Oz-AUOs-Na/KzO 組成のときには以下のことが確認された。
①:焼成温度がガラス基材の钦化温度よりも 20 °Cを越えて高く、 300 °C 以上に高くな 、条件で多機能ガラスを製造した時、 抗菌性も耐摩耗性もとも に良好な多機能ガラスを製作できる。 その原因は前記温度範囲においてガラ ス基材の粘性が T i 02がガラス基材中に適度に埋設され得る値に調整される ためと考えられる。
②:①で作製した多機能ガラスは、 TiO 2粒子のガラス基材への埋設が確認 された。
③:焼成温度が 800°C以上 1000°C以下の場合には、 いずれも耐摩耗性 は、 40回以上の摺動試験でも変化なく、 極めて優れたものとなった。 Ti 02粒子間のネック部生成に伴う強固な結合によると考えられる。
(実施例 17 )
100X100X5の Si02— A1203— PbO組成からなるガラス基材の 表面に、 15%の Ti02ゾル水溶液 (実施例 16と同じ) をスプレー 'コ一 ティング法により塗布し、膜厚が 0. 8 の Ti02層を形成し、 次いで、 Ti02層が積層されたガラス基材をセラミック製の離型性の良い型の中に入 れ、 ローラ一ハースキルンにて雰囲気温度を実施例毎に異ならせて加熱焼成 した後、 冷却固化して多機能ガラスを得た。
以下の (表 11) に Si02— A1203— PbO組成のガラス基材を用いた時 の焼成温度の変化に伴う抗菌性、 耐摩耗性の変化を示す。
1) 基材 = Si02-AI203-PbOガラス
光触媒- Ti02
No. 6 7 8 9 10 焼成温度 (^) 560 580 740 840 860 軟化温度との差 (°c) 20 40 200 300 320 抗菌性 + + + + + + + + + + + 耐摩耗性 Δ 〇 〇 ◎ ◎ ここで、 Si02— A1203— PbO組成のガラス基材の軟化温度は 540°C 、 比重は 3. 8であった。 また得られた Ti02の結晶型はすべてアナターゼ 型であった。
(表 11) の耐摩耗性試験において、 .6は10回以下の摺動で傷が入 り、 剥離してしまった力 <、 No.7, 8は 10回以上の摺動でも傷が入らず、 更に、 No.9, 10は 40回以上の摺動でも傷が入らないという良好な結果 が得られた。
No.9, 10で 40回以上の摺動でも傷が入らなかったのは、 焼成温度が 800°C以上であるため、 Ti02粒子間にネックが生成し、 Ti02粒子同士 が強固に結合したためと考えられる。
.6で10回以下の摺動で傷が入り、 剥離してしまったのは、 焼成温度 がガラス基材の軟化温度よりも 20 しか高くなく、 ガラス基材の粘性が充 分に低くならなかったために、 光触媒層の最下層を構成するアナ夕一ゼ型 T i 02粒子がガラス基材中に充分埋設されなかったためと考えられる。
それに対し、 No.7, 8で 10回以上の摺動でも傷が入らなかったのは、 ネック部が生成される温度には至らないものの焼成温度とガラス基材の軟化 温度との差が、 ガラス基材の粘性を TiO 2がガラス基材中に適度に埋設され 得る値に調整されたからと考えられる。
一方、 (表 11) の抗菌性試験において、 No.6〜9は + + +または + + と良好な結果を得たが、 No.10は +になった。 これは焼成温度がガラス基 材の钦化温度よりも 320 °Cも高く、 ガラス基材の粘性が低くなりすぎて、 光触媒層を構成する T iO 2粒子がガラス基材中に埋設されてしまったためと 考えられる。
(実施例 18 )
Si02— A1203— BaO組成からなる 100 X 100 X 5のガラス基材の 上に 15%の TiO 2ゾル水溶液 (実施例 1と同じ) をスブレー ·コ一ティン グ法により塗布し、 膜厚が 0. 8 mの Ti02層を形成した。 その後、 Ti 02層が積層されたガラス基材をセラミック製の離型性の良い型の中に入れ 、 シリコニッ ト炉で雰囲気温度を実施例毎に異ならせて加熱焼成した後、 冷 却固化して多機能ガラスを得た。
以下の (表 12) に上記の多機能ガラスの焼成温度の変化に伴う抗菌性、 耐摩耗性の変化を示す。
(表 12) 基材 = Si02-AI203-BaOガラス
光触媒- Ti02
ここで、 Si02— Al203— BaO組成のガラス基材の軟化温度は 620°C 、 比重は 2. 8、 多機能ガラス上の Ti02の結晶型は No.11~13はアナ タ一ゼ型、 No.14はルチル型であった。
(表 12) の耐摩耗性試験において、 No.l 1は 5回以下の摺動で傷が入 り、 剥離してしまった力、 No.l 2は 10回以上の摺動でも傷が入らず、 更 に、 No.13, 14は 40回以上の摺動でも傷が入らないという良好な結果 が得られた。
No.13, 14で 40回以上の摺動でも傷が入らなかったのは、 焼成温度 が 800 °C以上であるため、 T i 02粒子間にネックが生成し、 T i 02粒子同 士が強固に結合したためと考えられる。
No.11で 10回以下の摺動で傷力 <入り、剥離してしまったのは、 焼成温 度がガラス基材の軟化温度よりも 20 eCしか高くなく、 ガラス基材の粘性が 充分に低くならなかったために、 光触媒層の最下層を構成するアナターゼ型 TiO 2粒子がガラス基材中に充分埋設されなかったためと考えられる。 それに対し、 No.12で 10回以上の摺動でも傷力入らなかったのは、 ネ ック部が生成される温度には至らないものの焼成温度とガラス基材の軟ィ匕温 度との差が、 ガラス基材の粘性を TiO 2がガラス基材中に適度に埋設され得 る値に調整されたからと考えられる。
一方、 (表 12) の抗菌性試験において、 No.11~13は + + +または + +と良好な結果を得たが、 No.14は—になった。 これは Ti02がルチル 型であることと、 焼成温度がガラス基材の軟化温度よりも 320 °Cも高く、 ガラス基材の粘性が低くなりすぎて、 光触媒層を構成する Ti02粒子がガラ ス基材中に埋設されてしまったことの 2つの原因によると考えられる。 (実施例 19 )
実施例毎に比重の異なる 1 00 X 1 00 X 5のガラス基材の表面に、 15 %の Ti02ゾル水溶液をスプレー ·コーティング法により膜厚 0. 8^mの Ti02層を形成し、 次いで、 Ti02が積層されたガラス基材をセラミック製 の離型性の良い型の中に入れ、 ローラ一ハースキルンにて雰囲気温度を 75 0 として加熱焼成後冷却固化して多機能ガラスを得た。
以下の (表 13) に上記の多機能ガラスのガラス基材比重の変化に伴う抗 菌性、 耐摩耗性の変化を示す。
(表 13)
光触媒 =Ti02
No. 15 16 17 18
ガラス基材種類 Si02-AI203-PbO Si02-AI203-PbO
ガラス基材比重 5.3 3.8 2.8 2.4
Ti02比重 3.9 3.9 3.9 3.9
ガラス基材軟化温度 480 540 620 680
焼成温度(て) 750 750 750 750 抗菌性 + + + + + + + + + + + 耐摩耗性 X 〇 〇 〇 抗菌性試験に関しては No.15〜18のいずれも + + +と良好な結果を得 た。 いずれにおいても焼成温度がガラス基材の軟化温度よりも 30°C以上 3 00°C以下の範囲で高く、 焼成温度とガラス基材の軟化温度との差の範囲が 、 ガラス基材の粘性を T i 02がガラス基材中に適度に埋設され得る値に調整 された値であったためと考えられる。
耐摩耗性に関しては、 No.15は、 5回以下の摺動で傷が入り、 剥離して しまった力 No.16〜18は 10回以上の摺動でも傷が入らなかった。 その原因としては、 No.15では他と異なり、 ガラス基材の比重の方が Ti 02の比重よりも大きいため、 光触媒層の最下層を構成するアナ夕一ゼ型 Ti 02粒子がガラス基材中に充分埋設されなかったためと考えられる。
したがって、 多機能ガラスの耐摩耗性には、 Ti02とガラス基材との比重 も影響し、 ガラス基材の比重の方が Ti02の比重よりも大きいと悪化するこ と力 <判明した。
(実施例 20 )
150角の Si02— Al203— BaO組成 (軟化温度 620。C) からなるガ ラス基材の表面に、 Ti02ゾルと Sn02ゾルを混合、 攪拌した水溶液をスプ レー ·コーティング法にて塗布後、 Ί 5 (TCにて焼成し冷却固化して多機能 ガラスを得た。
なお T i 02ゾル濃度は 4〜 6 w t %で N H 3 水溶液で p H 11に調整され 、 Ti02粒子の結晶子怪は 0. 01 mであり、 Sn02粒子の結晶子径は、 0. 0035 mである。
こうして作製した多機能ガラスについて TiO 2と SnO 2の和に対する Sn 02量 (モル比) を種々に変化させたときの抗菌性試験および耐摩耗性試験 を行った結果を以下の (表 14) に示す。 (表 14) 基材=5 2-八1203-830ガラス
光触媒 = Ti02、 間隙粒子 = SnO2(0.0035 μ m)
耐摩耗性試験については Sn02の量の増加に伴って向上し、 10%以上の 添加により、 40回の摺動試験においても傷が入ることもなく、 変化も生じ なくなつた。
抗菌性試験については 20%までの範囲ならば、 無添加のときと同様に + + +であり、 60%までならば + +で止った。 それ以上加えると、 ガラス基 材表面の Ti02粒子を覆う確率力 <高くなり、 抗菌性は悪化し、 100%では 一と"つた。
したがって Sn02の添加量をモル比で Ti02と Sn02の合計量の 10%以 上 60 %以下、 好ましくは 10 %以上 20 %以下にすれば抗菌性にも耐摩耗 性にも優れた多機能ガラスを提供できる。
ここで耐摩耗性が SnO 2の量の増加に伴い向上するのは前記第 17図に基 づいて説明した機構による。
このようにガラス基材表面にガラス基材を介して T i 02粒子層が保持され た複合部材において、 最表面に露出し T i 02粒子の間隙に SnO 2粒子を充填 して 600°C以上で焼成すれば、 クラックを発生することなく、 Ti02粒子 間のネック部を結合することができるので、 耐摩耗特性が向上する。
(比較例 21 )
実施例 20と同様に 150角の Si02— A1203— BaO組成 (軟化温度 6 20°C) からなるガラス基材の表面に、 丁102ゾルと51102ゾルを混合、 攪 拌した水溶液をスプレー ·コーティング法にて塗布後、 750。Cにて焼成し 冷却固化して多機能ガラスを得た。
なお T i 02ゾル濃度は 4〜 6 w t %で N H 3 水溶液で p H 11に調整され 、 粒子の結晶子径は実施例 5と同様に 0. 01 mである力 Sn02粒子の 結晶子径は 0. 008 mとやや大きい粒子を用いた。
こうして作製した多機能ガラスについて抗菌性試験および耐摩耗性試験を 行い、 実施例 5と比較した結果を以下の (表 15) に示す。
(表 15) 基材=5 2-八1203- BaOカラス
光触媒 = Ti02、 間隙粒子 = SnO2(0.0080 m)、 熱処理 750°C
その結果、 0. 008 の Sn02粒子の耐摩耗性向上の効果は、 0. 0 035 //mの Sn02粒子を用いた場合よりも弱く、 Ti02粒子と Sn02粒子 の合計に対するモル比が 60%以上でようやく 40回の摺動試験においても 傷力入ることもなく、 変化も生じなくなった。
抗菌性試験については 0. 0035 mの Sn02粒子を用いた場合と同様 に、 20%までの範囲ならば、 無添加のときと同様に + + +であり、 60% 以下ならば ++で止った。 それ以上加わると、 ガラス基材表面の Ti02粒子 を覆う確率が高くなり、 抗菌性は悪化し、 100%では一となつた。
したがって 0. 01 mの Ti02粒子を用いた場合には 0. 008 zmの Sn02 粒子を添加して抗菌性にも耐摩耗性にも優れた多機能ガラスを提供 するのは困難である。 との原因としては Sn02粒子の蒸気圧は粒径力大きく なると小さくなること、 気化せずに残存する SnO 2粒子が 0. 0035 m の場合は TiO2粒子間の間隙に存在し、 結合強度を向上し得たのに対し、 0 . 008 mでは Ti02粒子間の間隙と比較して Sn02粒子が大きいために 、 SnO 2粒子が間隙に入れず、 むしろ Ti02粒子上に来る確率が高くなつて いるためと考えられる。
以上のことから Ti02粒子の間隙を埋めるべき Sn02粒子の大きさは、 T iO 2粒子径に対し、 4/5未満であることが好ましい。
(実施例 22 )
150角の Sn02— A1203— BaO組成 (軟化温度 620°C) からなるガ ラス基材の表面に、 TiO 2ゾル水溶液をスプレー 'コ一ティング法にて塗布 後、 75 CTCにて焼成し冷却固化した複合部材に、 Sn02ゾル水溶液をスプ レー .コーティ ング法にて塗布後、 110°Cで熱処理し多機能ガラスを得た 。 このとき丁丄02ゾル水溶液には実施例 5と同じものを用い、 Sn02ゾルに は 0. 0035 mの方を用いた。
こうして作製した多機能ガラスについて抗菌製試験および耐摩耗性試験を 行った結果を以下の (表 16) に示す。
(表 16)
基材 = Si02-AI203-BaOガラス
光触媒 = ΤιΌ2、 間隙粒子 = SnO2(0.0035ym)、 熱処理 750°C 110°C
No. 29 30 31 32 33
Sn02量(mol%) 0 10 20 60 100 抗菌性 + + + + + + + + + + + 耐摩耗性 〇 〇 ◎ ◎ ◎ 耐摩耗性試験については SnO 2の量の増加に伴って向上し、 モル比 20% 以上の添加により、 40回摺動試験においても傷が入ることもなく、 変化も 生じなくなった。
抗菌性試験については 20%までの範囲ならば、 無添加のときと同様に + ++であり、 60%までならば ++で止った。 それ以上加わると、 ガラス基 材表面の TiO 2粒子を覆う確率が高くなり、 抗菌性は悪化し、 100%では 一となつた。
本試験では SnO 2ゾルは 110てという低温で熱処理しているので、 実施 例 5で示した気化一凝縮機構による焼結は生じない。 にもかかわらず耐摩耗 性が向上したが、 これは Ti02粒子よりも粒径が小さい、 すなわち比表面積 が大きく吸着力に優れる Sn02粒子が Ti02粒子の間隙を埋めたことにより 、 Ti02粒子同士の結合が強化されたためと考えられる。
(実施例 23 )
150角の Si02— A1203— BaO組成 (軟化温度 620°C) からなるガ ラス基材の表面に、 TiO 2ゾル水溶液をスプレー ·コ一ティング法にて塗布 後、 750eCにて焼成し冷却固化した複合部材に、 酢酸銅水溶液を塗布し乾 燥させ、 その後紫外線を含む光を照射して銅イオンを還元しつつ光触媒層に 固定し、 多機能ガラスを得た。 ここで照射ランプには水銀灯ランプを用いた ここで光触媒層に固定された Cu粒子の大きさは平均 0. 004 im程度 であった。
こうして作製した多機能ガラスについて抗菌性試験および耐摩耗性試験を 行った結果を (表 17) に示す。
(表 17) 基材=5^)2-八1203-830カラス
光触媒 = ΤιΌ2、 間隙粒子=^(0.004 )、 熱処理 750 光還元
耐摩耗性試験については Cu量の増加に伴って向上し、 モル比 20%以上 の添加により、 40回の搢動試験においても傷が入ることもなく、 変化も生 じなくなった。
抗菌性試験については 20%以上までの範囲ならば、 無添加のときと同様 に + + +であった。 Cuの場合はそれ自体抗菌力を有するので、 多量添加す ることによる抗菌性の悪化は認められなかった。
しかしおそらく Cuの添加量が少量のときは TiO 2粒子層による光触媒作 用が支配的であり、 Cuの添加量が多量のときは Cuによる作用が支配的であ ると考えてよいだろう。 Cuのみの作用に期待する場合、 Cuは液体中で用い たときは徐々に溶出するので、 光触媒のな L、場合と比較して寿命が短 L、と考 えられる。 また Cuの添加量が多量になるとその分コスト高にもなる。 した がって C u量をあまり多量に設定することは意味がないと思われる。
この実施例により Sn02のような酸化物だけでなく、 Cuのような金属も TiO 2粒子層の間隙を埋める粒子となり得ることが確認された。
(実施例 24 )
150角の Si02— A1203— BaO組成 (軟化温度 620°C) からなるガ ラス基材の表面に、 TiO 2ゾル水溶液をスプレー ·コ一ティング法にて塗布 後、 95 (TCにて焼成し冷却固^:した複合部材に、 酢酸銅水溶液を塗布し、 その後紫外線を含む光を照射して銅ィォンを還元しつつ光触媒層に固定し多 機能ガラスを得た。
このとき照射ランプには B L Bランプを用い、 数分間照射した。 Ti02は 熱処理の工程でアナクーゼからルチルに相転 した。 T i 02の膜厚はスプレ 一'コーティングの際に 0. 4 /zmに調整した。
こうして作製した多機能ガラスについて抗菌性試験および耐摩耗性試験を 行った。 耐摩耗性試験については、 無添加でもこの温度域では良好な結果を 示す。 Cu を添加しても無添加のときと同様に 40回の摺動試験においても 傷が入ることもなく、 変化を生じなかった。
抗菌性試験については第 22図に示す。 無添加のときは TiO 2がルチルの ため十と悪い。 それに Cuを添加していくと抗菌性が増した。 そして B L B ランプ照射時のみならず、照射していない時も Cu担持量が 0. 7 ^ g/c m2以上になれば抗菌活性が + +となり、 Cu担持量が 1. 2 g/z 2 以上になれば抗菌活性が + + +となる。
以上のことから抗菌性にも耐摩耗性にも優れた多機能ガラスを提供するに は、 Cu担持量が 0. 以上がよく、 より好ましくは 1. 2 β g/cm2 以上がよい。
ところで Cu担持量は酢酸銅水溶液塗布後 B L Bランブ照射前に乾燥工程 を入れると飛躍的に向上する。 その関係については第 23図に示す。 これは 乾燥させた場合の方が光還元するときの金属イオン濃度が高いからと考えら れる。
また Cu担持量は Cu塗布量を最適にしたときに最大となる (第 24図は Cu濃度 lwt%の酢酸銅の例) 、 この第 24図の場合、担持量を 0.
/cm2 以上にするには塗布量を 0. 2mgZcm2 以上 2. 7mg/cm 2 以下に、 担持量を 1. 2 gZcm2 以上にするには塗布量を 0. 3mg ノ cm2 以上 2. 4mgZcm2 以下にすればよい。
(実施例 25 )
1 50角の Si02— A1203— BaO組成 (軟化温度 680。C) からなるガ ラス基材の表面に、 TiO 2ゾル水溶液をスプレー ·コーティング法にて塗布 後、 950°Cにて焼成し冷却固化した複合部材に、 硝酸銀水溶液を塗布、 乾 燥し、 その後紫外線を含む光を照射して銀ィォンを還元しつつ光触媒層に固 定し多機能ガラスを得た。
このとき照射ランプには BLBランプを用い、 数分間照射した。 また Ti 02は熱処理の工程でアナターゼからルチルに相転移した。 Ti02の膜厚は スプレー . コーティ ングの際に 0. 4 に調整した。
こうして作製した多機能ガラスについて抗菌性試験および耐摩耗性試験を 行った。 耐摩耗性試験については、 無添加でもこの温度域では良好な結果を 示す。 Agを添加しても無添加のときと同様に 40回の摺動試験においても 傷が入ることもなく、 変化も生じなかった。
抗菌性試験について第 25図に示す。無添加のときは TiO 2がルチルのた め十と悪い。 それに Agを添加していくと抗菌性が増した。 そして BLBラ ンブ照射時のみならず、 照射していない時も Ag担持量が 0. 05 g Z c m2 以上になれば抗菌活性が + +となり、 Ag担持量が 0. l gZcm2 以上になれば抗菌活性が + + +となる。
したがって抗菌性にも耐摩耗性にも優れた多機能ガラスを提供するには、 Ag担持量が 0. 05 gZcm2 以上がよく、 より好ましくは 0. l ^ g cm2 以上がよい。
ただし Ag担持量が多いと茶色から黒色に着色され、 外観上見栄えが悪い 。 しかし Ag担持量が 1 //gZcm2 以下ならば着色はない。
以上のことから Ag担持量は 0. 05 gZcm2 以上 1 igZcm2 以 下がよく、 より好ましくは 0. 1 gZcm2 以上 1 ^gZcm2 以下がよ い。
(実施例 26 )
150角の Si02— Al203—BaO組成 (軟化温度 680。C) からなるガ ラス基材の表面に、 TiO 2ゾル水溶液をスプレー ·コ一ティング法にて塗布 後、 950eCにて焼成し冷却固化した複合部材に、 硝酸銀水溶液を塗布、 乾 燥し、 その後紫外線を含む光を照射して銀ィォンを還元しつつ光触媒層に固 定し多機能ガラスを得た。 このとき照射ランプには B L Bランプを用い、 数分間照射した。 また T i 02は熱処理の工程でァナターゼからルチルに相転移した。
こうして作製した多機能ガラスについて、 Ti 02の膜厚を種々の値に変化 させて耐摩耗試験、 抗菌性試験および耐汚染性試験を行った。
耐摩耗試験については今回試験した膜厚 2 // m以内の範囲ではいずれも良 好な結果を示し、 4 0回の摺動試験においても傷が入ることもなく、 変化も 生じなかった。
抗菌性試験については膜厚 0. 1 111以上で+ +、 0. 2 / m以上で + + +となる。 したがって T i02の膜厚は 0. l m以上がよく、 好ましくは 0 . 2 / m以上がよい。
以上の説明より、 熱可塑性基材に光触媒粒子を固定するようにし、 特に光 触媒層の表層部を構成する光触媒粒子は熱可塑性基材に埋もれないようにし たので、 光触媒粒子は実質的にその表面が外部に露出した状態となり、 光触 媒効果を充分に発揮することができる。 また、光触媒粒子のうち光触媒層の 下層を構成する粒子はその一部力《熱可塑性基材内に埋設されるので、 光触媒 層の保持力が大幅に向上し、 剥離等が生じにくくなる。
第 2 6図及び第 2 7図は多機能材の断面方向を E P M A (電子線マイクロ アナライザー) で観察したときの基本プロファイルの概念図である。 これら の図から分るように、 外気に触れる表面からしばらく光触媒層 2を構成する 成分の濃度がほぼ一定の領域が続き (A領域) 、 その後光触媒層を構成する 成分は減少する。 また非晶質層 (バインダ層) を構成する成分は表面にはな いかあっても少なく、 内部にいくほど濃度が増加する。 そしてある膜厚まで くると成分濃度がほぼ一定となる (B領域) 。 ここで A領域を光触媒層、 B 領域を非晶質層、 その中間の C領域を中間層と定義した。 ただし、 第 2 6図 はあくまで説明の便宜上の概念図であり、実際には第 2 7図に示すように第 2 6図で濃度一定と説明した部分に、製造工程上の理由で生じる濃度の変動 を伴うことが多い。 この場合には第 2 7図に示すように、 一定領域に対応す る領域 (A '領域、 B '領域) の濃度の最小値に達する部分をそれぞれ A ' 領域と C '領域、 B '領域と C '領域の境界とみなした。 ここで、 光触媒層の厚さとは A領域または A '領域の厚さのことであり、 中間層の厚さとは C領域または C '領域の厚さのことである。
この中間層の厚さは、 光触媒粒子が、 軟化する非晶質層内への移動速度と 移動可能な時間を制御することにより、 変化させることができる。 移動速度 は、 光触媒粒子と非晶質層との比重差、 焼成温度、 雰囲気圧力等により制御 できる。 また、 移動可能な時間は非晶質材料力 <軟化する温度での保持時間を 変化させることにより変化させることができる。
この中間層の厚さを光触媒層の厚さの 1 Z 3以上にするとより密着性を增 すことができる。
以下に、 具体的な実施例について述べる。
(実施例 27 )
1 0 cm角のアルミナ基板上に Si02— A1203— NaZK20系の非晶質層 をスプレー ·コーティング法により形成し乾燥焼成後、 平均粒径 0. 0 1 mの 1^02ゾル水溶液をスプレー ·コ—ティング法により塗布し、 これを 8 50°Cで保持時間を変化させ焼成して膜厚 0. 2 μπι、 0. 5 μτη^ 1 m のアナタ一ゼ型 Ti02薄膜を形成した。 次いで、 このアナターゼ型 Ti02薄 膜に酢酸銅水溶液をスプレー ·コーティング法で塗布し、 この後光還元 (光 源は 20ヮット B L Bランプ、 光源から試料までの距離 1 0 cm、 照射時間 30秒) して試料を得た。 得られた試料について E PMAによる断面の元素 分析 (Ti、 Si) による膜厚測定、 抗菌性および耐摩耗性を評価した。 抗菌性評価については、 大腸菌 (E s c h e r i c h i a c o l i W
3 1 1 0株) を用いて試験した。 予め 70%エタノールで殺菌した多機能部 材の最表面に菌液 0. 1 5m l (1〜50000 C FU) を滴下し、 ガラス 板 (1 00X 1 00) に載せて基材最表面に密着させ、試料とした。 白色灯 (3500ルクス) を 30分間照射後、照射した試料の菌液を滅菌ガーゼで 拭いて生理食塩水 1 0m 1に回収し、 菌の生存率を求め、 評価の指標とした 。 評価基準については.前記 (表 1) の場合と同様である。
結果を (表 1 8) にまとめて示す。 抗菌性についてはすべて + + +であった 耐摩耗性も◎または〇と良好な結果を示した。 特に中間層の厚さと光触媒層 の厚さとの比が 1/3以上の試料ではすべて ©となつた。
(表 1 8)
(比較例 28)
平均粒径 0. 01 mの Ti02ゾルのアンモニア分散液を 10 cm角のアル ミナ基板上にスプレー ·コ—ティング法で塗布し、 これを 850。Cで焼成し て膜厚 1 のアナ夕一ゼ型 Ti02薄膜を形成した。 次いで、 このアナター ゼ型 TiO 2薄膜に酢酸銅水溶液をスプレー 'コ—ティング法で塗布し、 この 後光還元 (光源は 20ヮッ卜 BLBランプ、 光源から試料までの距離 10 c m、 照射時間 30秒) して試料を得た。 得られた試料について抗菌性および 耐摩耗性を評価した。
その結果、 抗菌性については + + +と良好であつたが、 耐摩耗性は△と不充 分であった。
以上の説明より、 基材表面に非晶質層を介して光触媒層が保持され、 光触 媒層はその上層部が外気と接するように露出され、 かつ光触媒層は粒子同士 が互 、に結合されている光触媒機能を有する多機能材におレ、て、 非晶質層と 光触媒層はその間に連続的に双方の成分の濃度が変化する中間層を有するよ うにすることにより、 光触媒薄膜と基材との密着性を増加し、 耐剥離性を向 上させることができた。 さらに前記中間層の厚さを光触媒層の厚さの 1/3 以上にするとより密着性を増すことができた。
次に光触媒層 2を焼結によって形成する場合について述べる。 第 1図 (a ) は従来の TiO 2粒子の焼結前の状態を示す図、 (b) は焼結後の状態を示 す図であり、 第 1図 (a) に示すように基材 1の表面に TiO 2粒子 3を含む ゾルを塗布し、 膜強度を高めるためこれを熱処理 (焼結) すると、 第 1図 ( b) に示すようにクラック 2 aが発生しやすい。
この原因は、 ルチル型への相転移が体積収縮 (密度が高くなる) を起こす 他に、 焼結前にあっては TiO 2粒子 101間の間隔は L。であったもの力 ルチル型で焼結後は相手方への体積拡散により粒子間の間隔は L (Li<L o) と短くなり、 その結果としてクラック力《生じると考えられる。
そこで、 焼結にて結合される TiO 2粒子 3のネック部に SnO 2を凝縮させ 、 ネック部を太くして Ti02粒子 3同士の結合を強め、結果として膜強度を 高くしている。
以上のような光触媒層 2を形成するには、 T i 02ゾルに S nO 2ゾルを混合 ,攪拌して基板 1上に塗布し、 所定の温度範囲で熱処理 (焼結) する。
尚、 丁102ゾル濃度は 4〜6wt%程度とし、 NH3溶液で pH 11に調整 し、 丁102粒子の平均1次粒怪は0. 01 μπι (10nm) とし、 Sn02ゾ ル濃度は約 1 Owt%程度とし、 NH3溶液で pHl 1に調整し、 Sn02粒子 の平均 1次粒径は 0. 0035 ^mとする。 ここで示した平均 1次粒径は、 XRD (X線回折) の回折線の半値幅から求めた結晶子サイズ (1次粒子) のことである。
ここで、 Sn02は Ti02よりも蒸気圧が高いため、 焼結前にあっては Ti 02粒子 3の間隔は第 17図 (a) に示すように L。である力 酸化チタン粒 子 3の正の曲率をもつ表面では蒸気圧が高く、 負の曲率をもつ表面、 つまり 2つの酸化チタン粒子 3が当接するネック部の表面は蒸気圧が低くなる。 そ の結果、 第 17図 (b) に示すようにネック部には酸化チタンよりも蒸気圧 が高い 51102が入り込み、 第 17図 (c) に示すように凝縮し、 気化—凝縮 機構によつて焼結が行われる。
そして、 気化一凝縮機構によって焼結が行われると、 焼結後の Ti02粒子 の間隔 L2は焼結前の間隔 L。と略等しいため、 クラック等は発生しない。 上記したように、 焼結の前後で TiO 2粒子の間隔を実質的に変化させずに 、 しかも光触媒被膜としての光活性 (R30) を 50%以上とするには、 図 2 8に示すように Sn02の Ti02に対する割合 (内比) を 20~70%にする 必要がある。
尚、 配合割合は、 それぞれのゾルに含まれる固形分の重量比を示す。 また 、 光活性の評価は、 メチルメルカブタンの分解で行い、 光照射 30分後の除 去率 (R3。) を指標とした。 詳細には、 11 Lのガラス容器内に光触媒被膜 を形成した 150角タイルを光源 (BLB蛍光灯 4W) 力、ら 8 cmの距離に 配置し、 メチルメルカブタンガスを 3 ~5 p pmとなるように容器内に注入 し、 暗時の吸着がないことを確認した後、 蛍光灯を点灯し、 ガスクロマトグ ラフィにて経時的に濃度変化を測定した。
ここで、 R30= (x。一 x30) /x。X 100%
但し、 χ0=初期濃度 [ppm] x 30= 30分後の濃度 [ppm]
また、 膜強度の評価はプラスチック消しゴムを用いた摺動摩耗を行い、 外 観の変化を比較し評価した。 評価の基準◎、 〇、 △、 Xについては前記 (表 1) と同様である。
また、 第 29図は熱処理温度と光活性の関係を示すグラフであり、 Ti02 ゾルに有機安定剤を添加した場合には、光活性が低下するが、 いずれにおい ても熱処理温度は 300〜850°Cとする。 これは熱処理温度が 300°C未 満では活性が生じにくく 850°Cを超えると Ti02の構造がアナターゼから ルチルに変化するからである。
以上の説明より、 酸化チタン粒子とこの酸化チタンよりも蒸気圧力高い物 質とを含むゾルをタイル等に塗布し、 所定の温度で焼結することで、 気化一 凝縮機構による焼結で被膜形成が行われるようにしたので、 焼結の前後にお いて酸化チタン粒子の間隔が略等しくクラックが発生しにくい。 また、 酸化 チタン粒子間のネック部には SnO 2等力 <凝縮するため、被膜の剥離強度が高 くなる。
特に、 S n02等の添加量 (T i 02との内比) を 2 0〜7 0 %とすることで 、 膜強度と光活性の双方を満足することができ、 また 3 0 0 °C以上 8 5 0 °C 以下の範囲で熱処理することで、 充分な光活性を得ることができる。
ところで、 ガスクロマトグラフィにて R 30を測定する方法では、 測定装置 が高価で、 装置 1台についてサンプル 1枚しか測定できず効率が悪い。 また、 P t等の金属を T i 02に担持させることで光活性が向上すること力 知られているが、 このような構造の光触媒薄膜にあっては金属によるガス吸 着の影響のため、 正味の光活性がどの程度のものか判断しにくい。
更に、 タイル等を壁面として一旦施工した後に、 その表面に形成されてい る光触媒薄膜の活性をガスクロマトグラフでは測定することはできない。 また、 ガスクロマトグラフを用いない光活性の評価方法として、 光触媒に よって死滅する細菌の光照射後の生存率を調べる方法も考えられるが、 ガス クロマトグラフ以上に操作が面倒で、 また金属を担持した光触媒薄膜にあつ ては、 金属自体の抗菌力によっても細菌が死滅するので、 正味の光活性を判 定しにくい。 そこで、 以下のような光触媒薄膜の活性測定方法を適用するこ とも可能である。
第 1の方法としては、 基板表面に形成した T i 02を主体とする光触媒薄膜 の表面にヨウ化力リゥム或いは塩化力リウム等のハロゲン化アル力リ水溶液 を滴下し、 次いで、 滴下したハロゲン化アルカリ水溶液に所定時間紫外線を 照射し、 照射前のハロゲン化アル力リ水溶液の p Hと照射後の p Hとの差か ら光触媒薄膜の活性の大きさを判断する。
第 2の方法としては、 基板表面に形成した T i 02を主体とする光触媒薄膜 の表面にヨウ化力リウム或いは塩化力リウム等のハロゲン化アル力リ水溶液 に p H指示薬を添加した混合液を滴下し、 次いで、 滴下した混合液に所定時 間紫外線を照射し、 混合液の色の変化でもつて光触媒薄膜の活性の大きさを 判断する。
第 3の方法としては、 基板表面に形成した T i 02を主体とする光触媒薄膜 の表面に活性測定フィルムを密着させ、 この状態で当該活性測定フィル厶に 所定時間紫外線を照射し、 活性測定フィルムの色の変化でもって光触媒薄膜 の活性の大きさを判断する。
第 3 0図は第 1及び第 2の活性測定方法を説明した図であり、 この基板 1 表面には T i 02を主体とする光触媒層 2が形成され、 この光触媒のような光 触媒薄膜の活性測定方法を適用することも可能である。
第 1の方法としては、 基板表面に形成した T i 02を主体とする光触媒薄膜 の表面にヨウ化力リゥム或いは塩化力リウム等のハロゲン化アル力リ水溶液 を滴下し、 次いで、 滴下したハロゲン化アルカリ水溶液に所定時間紫外線を 照射し、 照射前のハロゲン化アル力リ水溶液の p Hと照射後の p Hとの差か ら光触媒薄膜の活性の大きさを判断する。
第 2の方法としては、 基板表面に形成した T i O 2を主体とする光触媒薄膜 の表面にヨウ化力リゥム或いは塩化力リウム等のハロゲン化アル力リ水溶液 に p H指示薬を添加した混合液を滴下し、 次いで、 滴下した混合液に所定時 間紫外線を照射し、 混合液の色の変化でもつて光触媒薄膜の活性の大きさを 判断する。
第 3の方法としては、 基板表面に形成した T i 02を主体とする光触媒薄膜 の表面に活性測定フィルムを密着させ、 この状態で当該活性測定フイルムに 所定時間紫外線を照射し、 活性測定フィルムの色の変化でもつて光触媒薄膜 の活性の大きさを判断する。
第 3 0図は第 1及び第 2の活性測定方法を説明した図であり、 この基板 1 表面には T i 02を主体とする光触媒層 2が形成され、 この光触媒層 2に光活 性があるか否かをチエックするには、 光触媒層 2の表面にョゥ化カリゥム或 いは塩化カリウム等のハロゲン化アルカリ水溶液 3 0を滴下し、 次いで、 滴 下したハロゲン化ァルカリ水溶液 3 0に紫外線ランプ 4 0によつて所定時間 紫外線を照射し、照射前のハロゲン化アルカリ水溶液の p Hと照射後の p H との差から光触媒層 2の活性の大きさを判断する。
第 3 3図は紫外線照射時間と p Hの変化量との関係を示すグラフでありく ハロゲン化アル力リ水溶液 3 0の濃度は 0.1mol/l、 紫外線ランプ 4としては B L B蛍光灯 2 0Wを用い、 光触媒層 2と紫外線ランプ 4との距離は 2 O cm 、 照射時間は 60分として試験を行った。
この図から分るように、 アナターゼ型、 金属担持型、 ルチル型のいずれの 夕ィプの光触媒層 2にあっても、 紫外線の照射時間が 30分になるまではハ ロゲン化アル力リ水溶液 30の pHが高くなる。
このように紫外線の照射によってハロゲン化アルカリ水溶液 30の pHが 高くなるのは以下の酸化反応と還元反応が同時に起こり、 還元反応によって OH' (水酸イオン) が生じるからである。
酸化反応: 2 I -+2 h + = I 2
還元反応: 02+2H20+4 e- -40H- したがって、 紫外線の照射によってハロゲン化アルカリ水溶液 30の pH が高くなれば、 その光触媒層 2は光活性を有しているといえる。
第 34図は R30と pHの変化量との関係を示すグラフである。 ここで、 R 30は紫外線照射後 30分で減少したガス (メチルメルカブタン等) の割合 ( %) であり、 この図から R30と pHの変化量とは正の相関関係があることが 分る。 即ち、 pHの変化量は光活性の有無の指標となる。
上記第 1の方法にあっては p Hの変化量は p Hメータ或いは p H測定シー ト 5によって行う力 第 2の方法にあってはハロゲン化アル力リ水溶液 30 に pH指示薬を添加した混合液を光触媒層 2表面に滴下し、 次いで、 滴下し た混合液に所定時間紫外線を照射し、 混合液の色の変化でもって光触媒層 2 の活性の大きさを判断する。
pH指示薬としては、 ハロゲン化アル力リ水溶液 30の紫外線照射前の p Hが約 4. 5、 紫外線照射後の pHが 5. 5~6. 5であるので、 メチルレ ッ ドが適当である。
また、 前記した第 1の方法及び第 2の方法にあっては、 光触媒層 2表面に ハロゲン化アルカリ水溶液 30或いはハロゲン化アルカリ水溶液 30に p H 指示薬を添加した混合液を滴下する力 基板毎に滴下した液体の広がりがま ちまちで一定の液厚を確保できず、 反応面積が基板毎に異なることがある。 これを解消するのが第 31図に示す方法であり、 この方法にあっては、 ハ ロゲン化アル力リ水溶液 30などを光触媒層 2の表面に滴下した後、 ガラス 板等の透明板 6 0によってハロゲン化アル力リ水溶液 3 0を押え付け、 一定 の厚さにするとともに乾燥するのを防止している。
また、 ハロゲン化アル力リ水溶液 3 0等の液体は基板 1の表面が水平であ ることが条件になるので、 既設の壁面等の垂直面や天井面に形成した光触媒 薄膜の活性を判定することが困難である。
これを解消するのが第 3 2図に示す方法であり、 この方法にあっては、 基 板 1表面に形成した光触媒層 2の表面に活性測定フィルム 7を密着させ、 こ の状態で当該活性測定フィルム 7に紫外線を照射し、 活性測定フイルム 7の 色の変化でもつて光触媒層 2の活性の大きさを判断するようにしている。 ここで、 活性測定フィルム 7 0は有機バインダにヨウ化カリウム或いは塩 化力リゥム等のハロゲン化アル力リ水溶液及び p H指示薬を添加した混合液 を乾燥してフィルム状に成形することで得られる。
次に、 光触媒層 2の気孔率につき考察する。 ここで、 気孔率とは、 開気孔 率のこといい、 気孔率は 1 0 %以上 4 0 %未満、 好ましくは 1 0 %以上 3 0 %以下とする。
この場合、 光触媒粒子の結晶径は 0. 1 μ m未満、 好ましくは 0. 0 4 m以下であるようにするとよい。 結晶粒径が小さ L、ほど単位体積あたりの反 応有効面積が増加するためと考えられるため光触媒層の膜厚は、 0.
程度でよい。 また、 光触媒粒子同士を固相燒結させて、 ネック部を形成させ ることで、 層強度を向上させる場合には結晶径が 0 . 1 m以上に増大し、 単位体積当たりの反応有効面積が減少するので、 膜厚を 0 . 5 m以上、 好 ましくは、 0 . 6 m以上とする。
また、 基材表面に形成された光触媒層を構成する光触媒粒子間に、 結晶径 0. 0 1 m未満、 好ましくは 0. 0 0 8 // m以下の粒子を添加してもよい 。 このような粒子力添加されることにより、 光触媒粒子間の間隙を埋めるこ とカ<でき、 粒子充填率および表面の平滑性を向上させること力 <でき、 それに より剪断応力に対する膜強度を向上させることができる。 表面の平滑性向上 により汚れをつきにくくすることができる。 この場合気孔率の減少を招くが 、 ここで埋設される気孔径は結晶径 0. 0 1 z m未満、 好ましくは 0. 0 0 8 m以下の粒子が入る大きさであり、 ガスの大きさ (数 A) と比較して大 きいので防臭性に影響を及ぼすことはない。
ここで結晶径 0. 0 1 m未満、 好ましくは 0. 0 0 8 以下の粒子の 種類は、 基本的に何でもよいが、 光触媒粒子の間隙を埋める他、 一部表面を 覆うおそれもあるので、 光触媒活性を損なわない T i O 2、 S n02、 ZnO、 S rT i 03、 F e203、 B i203、 W03等の酸化物半導体あるいは Ag、 Cu等 の金属が好ましい。 また結晶径 0. 0 1 / m未満、 好ましくは 0. 0 0 8 m以下の粒子の添加方法も基本的にどのような方法でもよい。 例えば、 水熱 処理等によりこのような超微粒子を生成し適当な分散液により分散させたゾ ルをスプレー ·コ—ティング法にて光触媒層上に塗布し、 粒成長の生じない 程度の低温で熱処理して有機分散剤を蒸発させてもよい。 またアルコキシド や有機金属塩を光触媒層上に塗布、 熱処理し、 希釈剤、 有機成分等を蒸発さ せてもよい。
また、 基材表面に形成された光触媒層の気孔径ょり小さな金属粒子を固定 してもよい。 金属粒子が固定されていることにより、 電子捕捉効果により光 触媒層単独のときと比較して光触媒活性が向上し、 防臭性がより良好となる ここで金属粒子の種類は電子を捕捉しうる物質であれば何でもよい。 例え ば、 Cu、 Ag、 P t等があげられる。
金属粒子の大きさは平均粒径が光触媒層表面の平均気孔径ょり小さいこと が必要である。 また光触媒層表面の平均気孔怪は気孔率が 1 0 %以上 4 0 % 未満の試料では電子顕微鏡で観察すると、 おおむね光触媒粒子径とほぼ等し いことから光触媒粒子径より小さいことが要請される。 好ましくは出発原料 の光触媒粒子径より小さい方がよい。 光触媒層の出発原料は一般的に 0. 0 5 m以下の原料が使用されるので、 0. 0 5 m以下であるのがよい。 以下に気孔率に関する具体的な実施例を挙げる。
(実施例 2 8 )
結晶径 0. 0 1 / mの丁102ゾルのアンモニア解膠型懸濁液を 1 5 c m角 のタイル基板にスプレー ·コ—ティング法により塗布量を変化させて塗布し 、 これを 700°C以上 900°C以下で焼成して光触媒層を形成した。 得られ た試料についてアナターゼ Ti02粒子の結晶径、 層表面の開気孔率、 防臭性 、 耐摩耗性、 耐剥離性を評価した。
防臭性の評価は R30 (L) を測定することにより評価した。 R30 (L) と は光照射後の除去率のことで、 具体的には 11リッ トルのガラス容器内に試 料の光触媒薄膜を形成した面を光源 (BLB蛍光灯 4W) から 8 cmの距離 に配置し、 メチルメルカブタンガスを初期濃度 3 p pmとなるように容器内 に注入し、 30分間光照射したときの濃度変化を測定することで得られる。 耐摩耗性はブラスチック消しゴムを用いた摺動摩耗を行い、 外観の変化を 比較し、 評価した。 評価指標は前記と同様であり下記に示す。
◎ : 40回往復に対して変化なし
〇: 10回以上 40回未満の摺動で傷が入り、 光触媒層 (Ti02膜) が剥離 Δ: 5回以上 10回未満の摺動で傷が入り、 光触媒層 (Ti02膜) 力《剥離 X : 5回未満の摺動で傷力 <入り、 光触媒層 (Ti02膜) 力剥離
耐剥離性試験は、耐摩耗性試験の条件をより厳しく した試験であり、 プラス チック消しゴムのかわりにより大きな剪断力の加わる砂消しゴム (L I ON TYPEWR I TERERAS ER 502) を用いる。 具体的な評価方 法は、 砂消しゴムで試料表面を均等な力で 20回こすり、 標準サンプルと傷 の入つた状態を目視で比較することにより行う。 評価基準を下記に示す。 ◎ :全く変化なし
〇:光加減でわずかに変化確認
△:わずかな変化確認
X :一目で変化確認
結果を第 35図〜第 37図に示す。
第 35図は光触媒薄膜の厚さを 0. 8 mとしたときの、 気孔率と防臭性 および耐摩耗性の関係を示している。 防臭性は気孔率の増加とともに増大し 、 10%で 50%をこえ、 30%では 80%以上に達する。 逆に耐摩耗性は 30%までは◎だが、 40%では〇、 それをこえると△もしくは Xとなった 。 以上のことから防臭特性と耐摩耗性を兼ね備えた部材を作製するには光触 媒薄膜の気孔率を 10%以上40%未満、 好ましくは 10%以上 30%以下 にする必要がある。
第 36図は気孔率 20-30%の光触媒薄膜を構成する光触媒粒子の結晶 径を変化させたときの防臭性の膜厚依存性を示している。 結晶径が 0. 1 mでは R30 (L) の膜厚依存性がみられ、 薄くなると防臭性は低下した。 し かし 0. 04 以下では膜厚依存性が認められず、 膜厚 0. 1 mでも良 好な防臭特性を示した。 以上のことから光触媒粒子の結晶径が 0. 未 満、 好ましくは 0. 04 m以下であるようにすることにより、 光触媒薄膜 を膜厚 0. 1 程度に薄膜化しても良好な防臭特性を確保できるようにな ることが判明した。
第 37図は気孔率 20〜30%の光触媒薄膜を構成する光触媒粒子の糸; ΠΗΒ 径および結合状態を変化させたときの防臭性および耐剥離性の膜厚依存性を 示している。 機械的強度の要求値が耐剥離性試験レベルまで上がると、 ネッ ク部を有していな L、試料では△もしくは Xとなった。 また光触媒粒子同士の 固相焼結で機械的に充分なネック結合を形成するには光触媒粒子の成長は 0 . 04 /mでは不充分であり、 0. 1 zm程度まで成長することが必要であ つた。 ただし光触媒粒子を 0. 1 m程度まで成長させると、 防臭性力膜厚 依存性を有するようになり、 膜厚が厚いほど防臭性は増加する。 具体的には 膜厚 0. 5 umで R30 (L) が 50%をこえ、 0. 6 mで 80%以上に達 する。 以上の結果から光触媒粒子同士を固相焼結させて粒子間にネック部を 生成させ、 結晶径が 0. 1 m以上になるまで粒成長させると薄膜の強度を 充分に向上させることができる。 この場合には結晶径が 0. 1 zm以上に増 大することにより単位体積あたりの反応有効面積が減少するので膜厚を 0. 以上好ましくは 0. 6 以上にする必要がある。
(実施例 29 )
結晶径 0. 01 mの Ti02ゾルのアンモニア解膠型懸濁液を 15 cm角 のタイル基板にスプレー ·コーティング法により塗布し、 これを 750。Cで 焼成して光触媒薄膜を形成した。 この段階の T i 02薄膜の気孔率は 45%、 丁丄02粒子の結晶径は0. 02 /mであった。 さらにその上に結晶径の異な る 31102ゾルをそれぞれスプレー ·コ—ティング法により塗布し、 110°C で乾燥して試料を得た。 得られた試料について防臭性、 耐摩耗性を評価した o
結果を第 38図に示す。 防臭性に関しては Sn02ゾルの結晶径を 0. 00 35 imから 0. 01 /mまで変化させてもほとんど変化なく、 良好な結果 を示した。 それに対し耐摩耗性は 30重量%以上添加したときの効果が Sn 02ゾルの結晶径によって異なった。 すなわち 0. 008 /m以下の粒子を 添加した場合は◎または〇へと向上するが、 0. 01 mでは添加効果は認 められなかった。
以上のことから光触媒粒子間に結晶怪 0. 01 未満、 好ましくは 0. 008 ^ m以下の粒子が添加されることにより耐摩耗性が向上することが判 明した。
(実施例 30 )
結晶径 0. 01 zmの Ti02ゾルのアンモニア解膠型懸濁液を 15 cm角 のタイル基板にスブレー ·コーティング法により塗布量を変化させて塗布し 、 これを 850°Cで焼成して膜厚 0. 2 mの光触媒薄膜を形成した。 次い でこの光触媒薄膜に酢酸銅水溶液をスプレー ·コーティング法で塗布し、 こ の後光還元 (光源は 20ワット BLBランブ、光源から試料までの距離 10 cm、 照射時間 10秒) して試料を得た。 このとき担持された銅の量は 2 / g cm その粒径は数 nm〜l Onmであった。 また光触媒粒子の結晶 径は 0. l mであった。 得られた試料について防臭性、 耐摩耗性を評価し その結果 R30 (L) は 89%、耐摩耗性は◎であった。 したがって第 36 図と比較すると銅を担持したことにより R30 (L) が 18%から 89%へと 飛躍的に向上した。
以上の説明より、 基材表面に気孔率が 10%以上 40%未満、 好ましくは 10%以上 30%以下である光触媒薄膜が形成されているようにしたことに より、 防臭特性と耐摩耗性を兼ね備えた部材を提供することができる。 次に、 光触媒層に生成された間隙に当該間隙よりも小さな粒子を充填する 実施例について述べる。 本実施例でいう間隙とは離間した粒子間の隙間及び ネック部の凹部の双方をさす。
尚、 光触媒層は、 緻密な方が膜強度、 汚れのつきにくさの点で、 優れてい るものの、 一般に光触媒層を形成させる温度が、 高くなり、 基材の材質が限 定されるので、 後工程でこの間隙に粒子を充填する本願によると間隙粒子添 加前の光触媒層の気孔率は、 1 0 %以上あってもよい。 また、 1 0 %以上の 気孔率の膜は防臭性に優れているので、 充填量を調整することで、 防汚性、 防臭性の両面に優れた多機能材を提供できる。
間隙に充填される間隙よりも小さな粒子は、 無機結晶質の素材からなるこ と力《好ましく、 より好ましくは光触媒活性を有することから T i 02、 S n02 、 ZnO、 S rT i 03、 F e203、 B i203、 W03の酸化物半導体がよい。 間隙よりも小さな粒子の大きさは、 基本的には生成する気孔径の平均値よ り小さければよい。 間隙の減少及び光触媒機能を有する粒子表面に付着する 粒子を減少させることによる表面平滑性の向上および表面欠陥の減少により 、 汚れのつきにくさと膜強度の向上を図れる点で、 具体的には、 0. 0 1 /2 m未満、 好ましくは 0. 0 0 8 m以下の小さな粒子が良い。 ただし、 T i 02薄膜がアナタ―ゼで、 8 5 (TC以下で熱処理して基材上に固定した場合 には、 電子顕微鏡で観察すると、 おおむね平均気孔径と T iO粒子径が等し いことから T i 0粒子径ょり小さければよ、、。 光触媒活性を有する T i 02薄 膜の出発原料は一般的に 0. 0 5 /^ m以下の原料が使用されるので、 0. 0 5 // m以下であるのがよい。
ここで、 間隙に粒子を充填した光触媒機能を有する層の表面の気孔率が 2 0 %未満であるようすることで、 より汚れがつきにくくなる。 更に、 その開 気孔の最大幅は、 0. 0 4 以下であることが望ましい。
ここで、気孔率とは、 基材表面の開気孔率をいい、 開気孔の最大幅とは、 基材表面を構成する光触媒機能を有する粒子のうちの隣接した 2つの粒子間 の隙間の距離の最大値 (平均値 + 3 X標準偏差) のことである。
尚、 上記間隙に粒子を充填する前の光触媒機能を有する層の気孔率を 1 0 %近傍のものを利用すると気孔率は 1 0 %未満に減少するが、 ここで埋設さ れる気孔径は結晶径 0. 0 1 m未満の粒子が入る大きさであり、 ガスの大 きさ (数 A) と比較して大きいので、 防臭性に影響を及ぼすことはなく、 予 め作製された気孔率 1 0 %以上の T i 0 2薄膜と同等の防臭特性を保持するこ とができる。
また、 形成された光触媒機能を有する層を主として結晶質の光触媒粒子と することで、 ミズあかが、 ガラスの付着するよう強固な付着形態で汚れが付 着しなくなると共にたとえ付着しても比較的容易にふき取れるようになる。 また、 水回りに利用した際いは、 藻が生えにくくなるといった効果がある。 ここで、 結晶質の光触媒粒子とは、 部材から剥がした光触媒粒子を 5 O k V— 3 0 O m Aの条件で粉末 X線回折したときに結晶の最大ピーク (例えば 、 T i 02粒子において、 アナターゼでは 2 6 = 2 5 . 3 ° 、 ルチルでは 2 = 2 7 . 4 ° ) 力 <検出される程度に結晶化した光触媒粒子のことである。 上記間隙に粒子を充填する方法としては、 金属アルコキシド、 有機金属塩 、 硫酸塩等を用いて、 塗布、 乾燥、 熱 理を行うことにより形成する。 例え ば、 金属アルコキシドを用いる工程は、 金属アルコキシドを適当な希釈剤及 び塩酸と混合した溶液を光触媒層の最表面に塗布後乾燥熱処理して行う。 こ こで適当な希釈剤とはエタノール、 ブロパノール、 メタノール等のアルコ一 ル類が好ましいがそれに限定されるものではない。 ただし水はできる限り含 まないほうがよい。 水が含まれると金属アルコキシドの加水分解が爆発的に 促進され、 クラック発生の一因をなすからである。 また塩酸を添加するのは 、 乾燥時や熱処理時にクラック力 <入るのを防ぐためである。 金属アルコキシ ドの塗布方法は通常はフロー ' コーティングで行う力 <、 それに限定されるも のではない。 フロー ·コ—ティングは、乾燥空気中で行うのが好ましい。 通 常の空気 (大気) でコーティングすると、 空気中の水分で加水分解が促進さ れて、 膜厚の制御が困難になる。 コ—ティングは 1回の塗布でもよいし、 数 回の塗布でもよい。 それは塗布前の光触媒層の充填性により決定する。 その 後乾燥空気中で数分放置すると、光触媒層の間隙に粒子が充填された膜が形 成される。
ここで、 充填粒子を塗布する前の層と充填粒子を同じ素材にしておくと、 熱膨張率が同じこともあり、 機械的強度に優れた膜を形成できる点で望まし い。
尚、 具体例として、 Tiアルコキシドを用いたものについて更に説明を加 える。 Tiアルコキシドをさらに光触媒層表面に塗布し、 乾燥熱処理するェ 程において、 1回当りの Tiアルコキシド塗布量は、 Ti02に換算して 10 μ gZcm2以上 100 c m2以下であるようにした。 量が少なすぎる と塗布回数を增加させねばならないので能率的でなく、 逆に量が多すぎると 1回の塗布当りの膜厚が厚くなりすぎて乾燥時や熱処理時にクラックが入る からである。
上記乾燥熱処理する工程において、 熱処理温度は 400°C以上 800°C以 下であるようにした。 400 °C未満では無定型 T i 02がアナターゼ型 T i 02 に結晶化せず、 800°C以上では急激な粒成長が生じ、 光活性が低下するか らである。
また、 塗布液中の Tiアルコキシドに対する塩酸量は 1重量%以上 10重 量%以下であるようにした。 1重量%未満ではクラック防止効果が充分でな く、 10重量%をこえると塩酸は通常 36%水溶液なので水分が多量に入り 加水分解が促進されすぎてクラックが生成するからである。 塩酸の量が多 L、 ときは希釈剤も多いほうがよい。 希釈剤は加水分解を抑制するからである。 その比は塩酸 (水分除く) :希釈剤が 1 : 100〜1 : 1000程度がよい 更に、 光触媒機能を有する層が形成され、 その層の表面に生成した間隙に その間隙よりも小さな粒子が充填された層のさらにその上に C u、 Ag、 Z n、 F e、 Co、 N i、 Pd、 P tのうちの少なくとも 1種の金属が固定さ れているようにしてもよい。 このような構成にすることにより、 光触媒機能 を有する層の吸着性の高いサイトを前記金属が予め占有するので、 この部分 に塵芥成分中のアル力リ金属、 カルシウム等が付着して光触媒活性を失うこ とはない。 したがつ 光触媒による抗菌作用が損なわれにくく、 菌類の付着 による汚れも防止できる。 さらに上記金属として、 Ag、 Cu、 Znを用い れば、 これらの金属自体が抗菌性を有するのでより菌類の付着による汚れを 有効に防止できる。 さらにこれら金属の電子捕捉効果により光触媒層の光活 性が向上する。
固定される金属の大きさは、 光触媒層の吸着性の高いサイ トを予め占有し うる程度に大きく、 力、つ高い活性を維持する程度に小さい方がよい。 この観 点から数 nm〜: L 0 nm程度が好ましい。
ここで上記した金属を固定する方法としては、 光還元法、 熱処理法、 スパ ッタ法、 CVD法等が利用できるが、 大規模な設備を要さず比較的簡便な方 法で且つ強固に固定できる点で、 光還元法が望ましい。 光還元を用いる工程 は、 Ag、 Cu、 Zn、 Fe、 Co、 N iヽ Pd、 P tのうちの少なくとも 1種の金属ィォンを含む水溶液を塗布し、 紫外線を含む光を照射して行う。 Ag、 Cu、 Zn、 Fe、 Co、 N i、 Pd、 P tのうちの少なくとも 1種 の金属イオンを含む水溶液には、 酢酸銅、 硝酸銀、 炭酸銅、 硫酸銅、 塩化第 一銅、 塩化第二銅、 塩化白金酸、 塩化パラジウム、 塩化ニッケル、 硝酸亜鉛 、 塩化コバルト、塩化第一鉄、 塩化第二鉄などがあげられる。 これら金属塩 水溶液の塗布方法は基本的にどのような方法でもよいが、 スプレー 'コーテ ィング法またはディッブ ·コ—ティング法が簡便である。 その両者を比較す ると、 使用する溶液の量力《少なくてすむこと、均一に塗布できること、 膜厚 を制御しゃすいこと、 裏面に付けたくないときにそれが可能であることなど の理由によりスプレー ·コ一ティング法がより好ましい。 紫外線を含む光を 照射する光源は、紫外線を含む光を照射しうるものであればよく、 具体的に は紫外線ランプ、 BLBランプ、 キセノンランプ、 水銀灯、 蛍光灯のいずれ でもよい。 紫外線を含む光の照射方法は、 照射面に垂直に光があたるように 試料を配置するのが好ましい。 照射効率が最も優れるからである。 照射時間 は 10秒〜 10分程度が好ましい。 照射時間が短すぎると光触媒層の吸着性 の高いサイトに充分に上記金属種が付着しないので塵芥成分中のアルカリ金 属、 カルシウム等が付着して光触媒活性を失う原因となり、 時間が長すぎる と上記金属種が付着しすぎて光触媒層に充分に光が到達しにくくなり光触媒 活性が低下するためである。 試料の光源からの距離は 1 cm〜30 cmが好 ましい。 距離が短すぎると試料面全体にほぼ均一な照度で光が照射されず上 記金属種の付着にばらつきが生じやすくなり、 距離が長すぎると照射される 光の照度が距離の二乗に反比例して小さくなるので、 金属種を強固に付着す ることが困難になる。
以下に光触媒層に生成された間隙に当該間隙よりも小さな粒子を充填する ものの具体的な実施例を挙げる。
(実施例 31 )
結晶径 0. 01 の Ti02ゾルのアンモニア解膠型懸濁液を 15 cm角 のタイル基板にスプレー 'コーティング法により塗布し、 これを 750°Cで 焼成してアナターゼ型 T i 02薄膜を形成した。 この段階の T i 02薄膜の気孔 率は 45%、 Ti02粒子の結晶径は 0. 02 であった。 次にその上に結 晶怪の異なる S n 02ゾルをそれぞれスプレー ·コーティング法により塗布 し、 11 OeCで乾燥して試料を得た。 得られた試料について防臭性、 耐摩耗 性、 汚れのつきにくさについて評価した。
防臭性の評価は R30 (L) を測定することにより評価した。
耐摩耗性はブラスチック消しゴムを用いた摺動摩耗を行い、 外観の変化を 比較し、 評価した。 評価指標を下記に示す。
◎ : 40回往復に対して変化なし
〇: 10回以上 40回未満の摺動で傷が入り、 Ti02層が剥離
Δ: 5回以上 10回未満の摺動で傷が入り、 Ti02層が剥離
X : 5回未満の摺動で傷が入り、 Ti02層が剥離
汚れのつきにくさの評価は、 基材表面に黒色の太いマジックインクで線を 引き、 乾燥後エタノールでインクを拭き取った後の汚れ具合で評価した。 評 価指標を示す。
◎:完全に跡が消える。
〇:かすかに跡力残る。
△ :灰青色の跡が残る。
X :黒色の跡が残る。
結果を第 39図〜第 46図に示す。
第 39図は SnO 2の添加量に対する汚れのつきにくさを示す。 ここで Sn 02の添加量は T i 02と S nO 2の量の重量和に対する S ηθ 2重量の割合で表 している。 3 0%以上の Sn02添加では汚れは飛躍的につきにく くなつてい る。 この理由は下言己 3点であると解する。 第一に Sn02を 3 0%以上添加し たことにより気孔率が 20%未満と減少したためである (第 40図) 。 第二 に Sn02の添加により気孔径の大きな気孔が減少したためである。 第 4 1図 は S n 02添加量に対する開気孔の最大幅を示している力 SnO 2の添加量が 3 0%以上では 0. 04 とかなり小さくなつている。 第三に Sn02の添 加により表面粗度が向上したことも影響していると解する。
第 42図は SnO 2の添加量に対する防臭特性および耐摩耗性を示す。
防臭性に関しては Sn02ゾルの結晶径を 0. 0035 /mから 0. 0 1 / mまで変化させてもほとんど変化なく、 良好な結果を示した。 また S n 02の 量に対しては 50%以下では R30が 80%以上と良好な結果を示した。 第 3 9図の SnO 2の添加量と気孔率との関係と比較すると、 Sn02の添加量 40 %以上 50%以下では気孔率 1 0%未満だが、 防臭性が良好となっている。 この傾向は間隙を埋める粒子を添加しない場合の気孔率と防臭性との関係 ( 第 35図) とは異なった結果となっている。 その理由は次のように考えられ る。 即ちこの場合気孔率は 1 0%未満に減少するが、 第 41図よりなお 0. 02 μ m程度の気孔が残留しており、 また間隙を埋める粒子の結晶径も 0. 0035 μπιとガスの大きさ (数 ) と比較して大きいので、 粒成長なしの 本条件ではガスの通路が閉鎖されるような現象は生じないからである。
耐摩耗性に関しては SnO 2の添加量 30 %以上のときの効果が S nO 2ゾル の結晶径によって異なった。 すなわち 0. 008 m以下の粒子を添加した 場合は◎または〇へと向上するが、 0. 01 /zmでは添加効果は認められな 力、つた。
以上本実験より以下のことがわかった。
(1) 基材に Ti02膜を形成し、 その薄膜の表面に生成した間隙に、 その間 隙より小さな粒子 (Sn02ゾル) を添加すると、 汚れがつきにくくなる。
(2) SnO 2の添加量が T i 02と S nO 2の総重量に対して 30重量%以上で あれば、 汚れがつきにくく、 耐摩耗性も向上する。 (3) Sn02の添加量が Ti02と Sn02の総重量に対して 50重量%以下で あれば、 防臭性は良好なまま維持できる。
(4) 気孔率を 20%未満、 開気孔の最大幅を 0. 04^m以下にすれば汚 れがっきにく くなる。
(実施例 32 )
小便器のサナの光の当らな L、側面部分にアナターゼ型 T i 02膜を形成した ものを設置し、 2週間実地試験を行い、 通常のアナ夕—ゼ型 Ti02膜を形成 しないものと比較した。 その結果、 両者ともに菌類と尿石に起因する黄色い 染みが付着した。 しかしながら通常の便器のサナではこする程度では染みが 落ちないのに対し、 側面部分にアナターゼ型 Ti02膜を形成したものではこ すると染みの黄色がほとんど目立たなくなった。
サナ側面部 (こは光が照射されていないことからこの結果はアナ夕—ゼ型 T i 02膜の光触媒効果ではなく、 むしろ染みが強固に付着しにく L、結晶質の了 ナ夕—ゼ型 Ti02膜を表面に形成したためと解される。
(実施例 33)
15 cm角の陶器質タイルの表面に Si02— A1203— NaZK20フリッ トを塗布し、 次いでその表面に結晶径 0. 01 /mの Ti02ゾルのアンモニ ァ解膠型懸濁液をスプレー ·コーティング法により塗布し、 750°Cで 2時 間焼成して、 Ti02薄膜の膜厚で 0. 2 m、 0. 4 m、 0. の 3 種類を作製した。 この段階の TiO 2薄膜の気孔率は 45 %、 Ti02粒子の結 晶径は 0. 02 mであった。 冷却した上記試料にさらにチタネ一トテトラ ェトキシドと 36%塩酸とエタノールとの 10 : 1 : 400 (重量比) 混合 液を乾燥空気をキヤリャ—としてフロー ·コ—ティング法で塗布し乾燥した 。 塗布量は Ti02で 40~50 μ g cm2とした。 その後 500°Cで 10 分間焼成した。 この Tiアルコキシド塗布工程を 1〜5回繰り返した。 得ら れた試料について防臭性、 抗菌性、 耐摩耗性、 汚れのつきにくさについて評 価した。
抗菌性については、 大腸菌 (E s c he r i c h i a— c o l— i W31 10株) を用いて試験した。 予め 70%エタノールで殺菌した多機能材の最 表面に菌液 0. 15m l (1~50000 CFU) を滴下し、 ガラス板 (1 00X 100) に載せて基材最表面に密着させ、 試料とした。 白色灯 (35 00ルクス) を 30分間照射後、 照射した試料の菌液を滅菌ガーゼで拭いて 生理食塩水 1 Om 1に回収し、 菌の生存率を求め、 評価の指標である + + + 、 +十、 十、 一については前記と同様である。
上記いずれの条件においても、 防臭性は R3。 (L) で 80%以上、 抗菌性は + + +であった。
汚れのつきにくさ (第 44図) および耐摩耗性 (第 45図) については T iアルコキシド塗布回数と TiO 2膜厚に依存した。 Tiアルコキシド塗布回数 を多くすれば汚れのつきにくさおよび耐摩耗性は向上した。 また Ti02膜厚 が薄いほど少ない Tiアルコキシド塗布回数で汚れのつきにくさおよび耐摩 耗性は向上した。 以上のことの理由の 1つとして Tiアルコキシド塗布によ る Ti02層表面の気孔率の減少が考えられる。 第 46図に Ti02層表面の気 孔率と T iアルコキシド塗布回数および T i 02膜厚との関係を示す。 T i 02 層表面の気孔率は、 Tiアルコキシド塗布回数を多くするほど減少し、 力、つ また T i 02膜厚力薄 、ほど同じ T iアルコキシド塗布回数では減少しており 、 この関係は Tiアルコキシド塗布回数および Ti02膜厚と汚れのつきにく さおよび耐摩耗性との関係とよく対応している。 特に汚れのつきにくさにお いては、 実施例 31の場合と同様に気孔率 20%未満ではいずれも◎となつ た。
(実施例 34 )
15 cm角の陶器質タイルの表面に Si02— Al203— Na/K20フリッ トを塗布し、 次いでその表面に結晶径 0. 01 zmの 1^02ゾルのアンモニ ァ解膠型懸濁液をスプレー ·コーティング法により塗布し、 Ί 50eCで 2時 間焼成した。 この段階の TiO 2薄膜の膜厚 0. 4 zm、 気孔率は 45%、 T i02粒子の結晶径は 0. 02 mであった。 ?令却した上記試料にさらにチタ ネートテトラエトキシドと 36%塩酸とエタノールとの 10 : 1 : 400 ( 重量比) 混合液を乾燥空気をキヤリヤーとしてフロー ·コーティング法で塗 布し乾燥した。 塗布量は丁102で40~50 £ ;1112とした。 その後 5 00 °Cで 10分間焼成した。 この T iアルコキシド塗布工程を 3回繰り返し た。 その後さらに試料上に 1重量%の硝酸銀水溶液を塗布し、 光還元 (光源 は 20ワッ ト B L Bランプ、 光源から試料までの距離 10 c m、 照射時間 3 0秒) して試料を得た。 ここで試料表面に担持された銀の量は 0. Ί ng/ cm 2、 銀の粒径は平均 40 nm程度であった。 得られた試料について抗菌 性および長期使用後の抗菌性について測定した。
長期使用後の抗菌性については、 以下のように試験した。 まず得られた試 料の表面をエタノール等でよく洗浄し、 50°Cで乾燥させた。 次に滅菌した ビーカーに公衆浴場で採取した浴槽水を入れ、 その中に試料を浸漬させ 1か 月放置した。 その後試料を取り出しエタノール等で洗浄後、 多機能材の最表 面を 70%エタノールで滅菌した。 次いで大腸菌 (E s c h e r_i c h i a c o l i W3110株) の菌液 0. 15m l ( 1〜 50000 C F U) を ガラス板 (100X 100) に載せて基材最表面に密着させ、 試料とした。 白色灯 (3500ルクス) を 30分間照射後、照射した試料の菌液を滅菌ガ ーゼで拭いて生理食塩水 10m 1に回収し、 菌の生存率を求め、 評価の指標 とした。 評価指標は実施例 3の抗菌性試験と同様である。
比較のため実施例 33で用いた試料についても試験した。
その結果、 初期の抗菌性については本実施例で作製した試料も、 実施例 3 3で作製した試料もともに + + +となったが、 1力、月後の抗菌性には両者の 間に差を生じた。 すなわち実施例 33で作製した試料では抗菌性は十に悪化 したが、 本実施例で作製した試料では + + +と初期と変わらない値を示した 。 これは TiO 2層表面の吸着性の高いサイトを銀が占有することにより、 使 用中に吸着性の高いサイ卜に塵芥等が付着するのを妨げるためと解される。 以上の説明より、 基材表面に光触媒機能を有する層を形成し、 その層の表 面に生成した間隙にその間隙よりも小さな粒子を充填したので、 従来の光触 媒薄膜よりも表面に存在する間隙の量および大きさが小さくなり、 かつ表面 平滑性が良好になるので、 防臭性、 抗菌性を維持しつつ膜強度を向上し、 か つ汚れ成分を構成する高分子、 塵芥、 菌類等が付着しにくくすることができ る 次に、 ソーダガラスなどの融点の低い素材を基材として利用する場合につ いて述べる。 即ち、 低融点基材表面に光触媒薄膜を形成する場合には、 この 光触媒薄膜形成温度ですでに基材の钦化が始まり、 形成された光触媒薄膜が 、 基材中に埋没してしまい、 そのため光が光触媒層に届かず光触媒機能を発 揮できないといった不具合を生じてしまう。
そこで、 このような場合には、 S i 0 2コート等の基材より融点の高い層を 介して基材に光触媒粒子を固定する。 具体的実施例を以下に述べる。
(実施例 3 5 )
ソーダガラスに酸化チタン · コーティングを行う前に、 ソーダガラス表面に シリカ ·コ一ティングを施した。
1 0 c m角のソーダガラス表面へのシリカ ·コ—ティングは以下の方法で 行った。 まず、 テトラエトキシシラン、 3 6 %塩酸、 純水、 エタノールを 6 : 2 : 6 : 8 6 (重量比) で混合する。 このときに発熱するので、 1時間ほ ど放置する。 これをソーダガラスにフローコ一ティングした。
次に、 コーティング溶液を作製する。 コーティング溶液はチタネ—トテト ラエトキシドとエタノールを 1 : 9 (重量比) で混合したものに、 さらに 3 6 %塩酸をチタネートテトラエトキシドに対し 1 0重量%添加して作製した o ここで添加する 3 6 %塩酸の量はチタネートテトラエトキシドに対し 1重 量%以上 3 0重量%以下、 好ましくは 5重量%以上 2 0重量%以下がよ L、。 適量の塩酸の添加により、後工程の乾燥、 焼成時にクラックが入るのを防止 することができる。 すなわち塩酸の量が少なすぎるとクラック防止が充分に 達成できず、 塩酸の量が多すぎると、 塩酸試薬に含まれる水の量の増加によ りチタネートテトラエトキシドの加水分解が加速され、 均質な塗膜が困難に なる。
次に、 乾燥空気中でこの溶液をソーダガラス基材表面にフローコーティン グする。 ここで乾燥空気とは全く水分を含まない空気という意味ではなく、 通常の空気と比較して水分が少ない空気をさす。 このとき乾燥処理を施さな い通常の空気中でコーティングすると、空気中の水分でチタネートテトラエ トキシドの加水分解が加速されて 1回の塗膜量が多くなりすぎて後工程の乾 燥、 焼成時にクラックが入りやすくなる。 また加水分解が加速されることに より塗膜量の制御が困難となる。 クラック防止のためには酸化チタンの 1回 の担持量は 1 0 0 gノ c m 2以下であることが好ましい。 今回は酸化チタ ンの 1回の担持量は 4 5 μ g Z c m 2とした。
その後乾燥空気中で 1〜1 0分乾燥処理することにより酸化チタン膜が形 成される。 ここまでの工程で酸化チタンが得られるのは以下に示す原理によ る。 ここで出発原料はチタンアルコキシドの一種であるチタネ一トテトラエ トキシドである (他のチタンアルコキシドを用いても原理的には同様のこと が生じる) 。 このチタネートテトラエトキシドが主としてフローコ一ティ ン グ時に乾燥空気中の水と加水分解反応してチタン水酸化物を生成する。 さら に乾燥時に脱水縮合反応を生じ、 基材上に無定形酸化チタンが生成する。 こ のとき生成する酸化チタン粒子は 3〜 1 5 0 n m程度で高純度である。 その ためこの酸化チタンは他の製法で得られた酸化チタンと比較して低温で焼結 する特徴がある。
上記方法により得られた複合部材をさらに 3 0 0 〜5 0 0 °Cで焼成して 多機能材を得た。 必要があればチタネ—トテトラエトキシドの塗膜から焼成 までの工程を繰り返して酸化チタンを厚塗りした。
このようにして得られた試料について防臭特性、 耐摩耗特性、 抗菌特性につ いて評価を行った。 その結果を (表 1 9 ) に示す。
(表 1 9 )
防臭特性については、 メチルメルカブタン初期濃度が 2 p p mに調整され た直径 2 6 c m X高さ 2 1 c mの円筒形容器中に試料を設置し、 4 Wの B L B蛍光灯を試料から 8 cm離して光を照射した場合の 30分後のメチルメル カブタン除去率 (R3。 (L) ) 、 および光を遮蔽した場合の 30分後のメチ ルメルカブタン除去率 (R3。 (D) ) を測定することにより評価した。
耐摩耗特性についてはプラスチック消しゴム.を用いた摺動摩耗を行い、 外 観の変化を比較し、 評価した。 そのときの評価指標◎、 〇、 △、 Xは前記と 同様である。
抗菌特性については、 大腸菌 (E s ch e r i c h i a— c o 1 i W3 110株) を用いて試験した。 予め 70%エタノールで殺菌した多機能材の 最表面に菌液 0. 15m l (1〜50000 CFU) を滴下し、 ガラス板 ( 100 X 100) に載せて基材最表面に密着させ、 試料とした。 白色灯 (5 200ルクス) を 30分間照射後、 照射した試料と遮光条件下に維持した試 料の菌液を滅菌ガーゼで拭いて生理食塩水 1 Om 1に回収し、 菌の生存率を 求め、 評価の指標とした。 評価指標 + + +、 +十、 十、 —は前記と同様であ o
焼成温度 30 CTCでは摺動試験では◎と良好な結果を示すが、 R3。 (L) は 0%であった。 これは無定形酸化チタンからアナタ一ゼに結晶化していな いことによると考えられる。
合成実験で X線的にアナターゼが確認しうるようになる 400 °Cでは、 摺 動試験も◎と良好な結果を示すが、 R3。 (D も 60%程度まで向上した。 また抗菌性も +となった。 また、 500てでも同様に摺動試験も◎と良好な 結果を示すが、 R3。 (L) も 60%程度まで向上している。
さらに温度を増加させた場合は 550°Cで基材のソーダガラスの変形が生 じ、 多機能材は製造できなかった。
(実施例 36 )
実施例 35で得られた試料の光触媒特性をさらに向上させるために金属粒 子を担持した。 光触媒は酸化反応と同時に還元反応も行っている。 もし還元 反応が進まないと、 電子が消費されず粒子が帯電し、 酸化反応も進まなくな る。 実施例 1で R3。 (L) が 60%に止まったのはこのこと力 <原因している と思われる。 これを防ぐには、 酸化チタン粒子に金属粒子を担持させて、 電 子を逃がして帯電を防げばよい。
金属粒子の担持は以下の方法により行つた。 金属塩の溶液を光触媒にフロ 一コーティ ングし、 BL B蛍光灯 20Wを距離 20 cmで 1分照射した。 金 属塩溶液には、 銅担持の場合は酢酸銅の lwt%エタノール溶液を、 銀の場 合には硝酸銀の 1 w t %エタノ—ルノ水 = 1 Z1混合溶液を用いた。 照射後 は、 洗浄して乾燥した。 ここで金属塩水溶液を用いずにエタノールを含む溶 液を用いたのは、 試料に対する金属塩溶液のぬれ性がよいことによる。
こうして得られた試料について防臭特性、 耐摩耗特性、 抗菌性について評 価を行った。 その結果を (表 20) に示す。 尚、 焼成温度は 500°Cで得ら れた試料のみを用いた。
(表 20)
摺動試験は◎と良好な結果を示した。 また R30 (L) は 98%と飛躍的に 向上した。 抗菌性も + + +となった。
(比較例 37 ) 実施例 35において、 シリカコ一ティ ングを施さな L、以外は 同様にした。 即ち、 10 cm角のソーダガラスに酸化チタン 'コーティ ング を行った。 その結果を (表 21) に示す。
(表 21)
焼成温度 ( ) 耐磨耗性 R30 (L) R30 ( D) 抗菌性(L)抗菌性(D)
300 ◎ 0% 0%
400 ◎ 0% 0%
500 ◎ 0 % 0 % (表 2 1 ) から、 3 0 0 °C、 4 0 0 °C、 5 0 0 °C共に摺動試験では◎と良 好な結果を示すが、 R 3。 (L ) はチタネートテトラエトキシドの塗膜から焼 成までの工程を 1 0回繰り返しても 0 %であった。 また抗菌性はいずれも一 であった。
3 0 0 °Cr 、R 3。 ( L ) 力悪いのは、 酸化チタンがいまだ無定形酸化チタン からアナタ一ゼに結晶化していないためと考えられる。
—方、 4 0 0 °Cs 5 0 0°Cではすでに無定形酸化チタンからアナ夕—ゼに 結晶化しており、上記理由では R 3。 ( L ) が悪いことを説明できない。 この 原因は基材のソ一ダガラスが軟化したために酸化チ夕ン膜がガラス中に埋没 したためと考えられる
以上の説明より、 比較的低融点の基材であっても、 光触媒層との間に高融 点の層を介すことで、 防臭性、 抗菌性を有する多機能材を製造可能となった 次に、 耐熱性に劣るブラスチック等の表面に光触媒効果をもたせるために 好適する実施例について述べる。
基材の材質は、 耐熱性に劣るブラスチックに限らず、 陶磁器、 セラミック 、 金属、 ガラス、 あるいはその複合物等基本的に何でもよい。
基材の形状もどのようなものでもよく、 球状物、 円柱物、 円筒物やタイル 、 壁材、 床材等の板状物などの単純形状のものでも、 衛生陶器、 洗面台、 浴 槽、 流し台、 便座シートなどの複雑形状のものでも構わない。 更に、基材表 面は多孔質でも緻密質でもよい。
バインダの種類も、 無機ガラス質、 熱可塑性樹脂、 半田等の熱可塑性材料 でも、 フッ素樹脂、 シロキサン樹脂、 シリコン樹脂等の熱硬化性材料でもよ い。 ただし後工程で紫外線を含む光を照射することから光耐蝕性材料である ことが好ましい。 また、 3 0 0て以下の熱処理しかできない場合に本願の有 用性が特に高いことから、 熱可塑性材料では 3 0 CTC以下で軟化しうる材料 で、 熱硬化性材料では 3 0 (TC以下で硬化しうる材料であること力好ましい 。 これらの条件を満たす材料としては、 熱可塑性材料ではホウ酸系ガラス質 、 半田、 アクリル樹脂等、 熱硬化性材料ではフッ素樹脂、 シロキサン樹脂、 シリコン樹脂等が挙げられる。
これらのバインダ層を基材上に塗布する方法としては、 熱可塑性材料を用 いた場合には、 スプレ— ·コ—ティング法、 ロール'コ—ティング法、 ディ ップ ·コ—ティ ング法等があるが、 そのいずれを用いてもよいし、 それ以外 の方法を用いてもよい。 またバインダー成分は必ずしも部材完成時のバイン ダ一組成と一致している必要はない。 例えばバインダカ <無機ガラス質からな る場合は、 その塗布物は、 粒状、 フリット状、 塊状、 粉末等の無機ガラス質 組成物の懸濁液でもよいし、 構成金属成分を含む塩の混合液でもよい。 バイ ンダが樹脂の場合も、 その組成の樹脂の溶液を用いてもよいしそれ以外の方 法でもよい。
バインダ層の上に光触媒粒子を塗布する前に、 塗布したバインダ層を乾燥 し、 水分等を蒸発させてもよい。 この際の乾燥方法は、 室温放置による方法 、 基材とともに加熱する方法等がある。
また、 バインダ層の上に光触媒粒子を塗布する前に、 塗布したバインダ層 を基材の軟化温度より低く、 バインダ層が部材完成時のバインダ組成に変化 し、 なおかつ軟化する温度で熱処理してもよい。 この方法によれば、 バイン ダ層の上に光触媒粒子を形成する時に予めバインダ層がより平滑になるので 、 塗布する光触媒粒子が少量でも充分な効果を発揮できるようになる。 熱硬化材料を用いた場合には、 バインダを硬化剤と混合して基材に塗布す る方法は、 例えば熱硬化性樹脂に希釈剤を添加し、 次いで硬化剤を添加して 得た混合液を基材表面に塗布することにより行う。
增粘粘性は 1 0 5 p o i s e以上 1 0 7 5 p o i s e未満にすることが望 ましい。 1 0 5 p 0 i s e以上の高粘性値にしてから光触媒粒子を塗布する ことにより、 光触媒粒子がバインダ層中に完全に埋没してしまわない状態で の埋設が可能となり、 また 1 0 7 5 p o i s e未満にすることにより、 光触 媒粒子層の少なくとも最下層部はその一部がバインダ下層に埋設されうるよ うになるからである。
上記光触媒粒子をバインダ層表面に、塗布する方法は、 基本的に出発原料 に適当な処理を施したものをバインダ層上に塗布することにより行う。 出発原料としては、 光触媒組成物質のゾル懸濁液が望ましいが、 その他光 触媒組成の微粒子の懸濁液等も使用できる。 いずれの場合においても均一な 塗膜をするためには、 分散剤等の表面処理剤を添加し懸濁液中の光触媒組成 物が凝集しないようにする必要がある。 バインダ層上への塗布は、 スプレー ·コーティング法、 ロール'コ—ティング法、 ディ ップ' コ—ティング法等 があるが、 そのいずれを用いてもよいし、 それ以外の方法を用いてもよい。 光触媒層のバインダ層への埋設厚さは、 光触媒層の厚さの 1 Z 4以上埋設 されていること力 基材との結合強度上好ましい。 ここで光触媒層の厚さと は、 E P MA等による断面方向の光触媒粒子を構成する成分元素分析により 求め、 光触媒粒子を構成する成分元素量がほぼ一定である上層部と光触媒粒 子を構成する成分元素量が減少し始める深さからバインダを構成する成分元 素量が一定になり始める深さの間にある埋設部からなる。
光触媒に付着する表面処理剤は、 主として光触媒粒子の出発原料のゾルを 分散するために添加される成分からなる。 具体的には、 ペンタエリ トリッ ト 、 トリメチロールプロパン、 トリエタノールァミン、 トリメチ口一ルァミン 、 シリコン樹脂、 アルキルクロロシランなど力 <挙げられる。
3 9 0 n m以下の波長の光を 1 . Ί mW/ c m 2以上含む光の光源として は B L B蛍光灯、 紫外線ランプ、 殺菌灯、 キセノンランプ、 水銀灯などが挙 げられる。 3 9 0 n m以下の波長の光を 1 . 7 mW/ c m 2以上含まなけれ ばならない理由は、 シリコン樹脂等の分散剤成分はある程度の光耐蝕性を有 するため、 この程度の紫外線強度がなければ分解しないためである。 この際 、 紫外線波長は短いほど分散剤の分解は速いが、 バインダの種類によっては バインダも分解するおそれがあり、 かつ人体にも有害である。 このことから 2 5 0 n m以上であるほうがよ 、。 また照度も 3 mW/ c m 2程度までは照 度の増加とともに分解速度が速まるが、 それ以上では照度を増加させても分 解速度向上にはあまり寄与しないので、 3 m WZ c m 2以下で充分である。 以上の工程を第 4 7図に模式的に示す。 基材 1上にバインダ層 6を介して 光触媒層 2が、 バインダ層 6に下層の一部を埋設して形成されている。 6 a は、 光触媒活性を阻害する表面処理剤などからなる層である。 U Vは、 3 9 0 n m以下の波長の光を 1 . 7 mWZ c m 2以上含む光を示す。
次に、 基材表面に、 主として光触媒粒子 3と熱硬化性樹脂 6からなる層を 形成して、 同様に紫外線を照射し、 光触媒層を露出させたものについて、 説 明する。 (第 4 8図参照) この方法でも熱硬化性樹脂により、 光触媒粒子 3 は基材に強固に固定され、 かつ 3 9 0 n m以下の波長の光を 1 . 7 mW/ c m 2以上含む光を照射することにより、 光触媒粒子表面の光照射部分で光触 媒反応が生じ、 表面処理剤および光源方向にある熱硬化性樹脂が優先的に分 解、 気化され、 光触媒粒子を外気に露出させるので、 充分な光触媒活性を得 ることができる。
また、 主として光触媒粒子と熱硬化性樹脂からなる層の形成方法は、 例え ばよく分散された光触媒ゾル懸濁液に熱硬化性樹脂、 希釈剤、 硬化剤をこの 順番で添加して得た混合液を基材表面に塗布し、 熱処理して形成する。 ここで光触媒ゾル懸濁液中のゾルは結晶径 0. 0 5 m以下、 より好まし くは 0. 0 1 m以下がよい。 結晶怪力 <小さいほど光触媒活性が高いからで ある。 また光触媒ゾル懸濁液中のゾルはできるだけ単分散していること力望 ましい。 分散性がよいほど、 均一な塗膜が可能だからである。
ここで使用する熱硬化性樹脂は、 白色光や通常の蛍光灯レベル光に対して は光耐蝕性があるほうが望ましい。 そのほう力 <使用時の耐久性に優れるから である。 その意味でシロキサン樹脂、 フッ素樹脂が特に好ましい。
希釈剤は光触媒ゾルと熱硬化性樹脂からなる混合液の粘性を低下させ、 基 材表面に該混合液を塗布しやすくするために添加する。 したがって、 ここで 使用する希釈剤はこの目的を達成しうる溶媒であれば基本的に何でもよい。 例えば、 水、 エタノール、 ブロパノール等が使用できる。
混合液の基材への塗布方法も、 スプレー 'コ一ティング法、 ロール · コ— ティング法、 ディップ' コ—ティング法、 スピン · コーティング法等がある が、 そのいずれを用いてもよいし、 それ以外の方法でもよい。
熱処理も、 電気炉、 ガス窯、 真空炉、 加圧炉等を用いるのが一般的である が、 それに限られるものではない。
主として光触媒粒子と熱硬化性樹脂からなる層を基材表面に熱硬化性樹脂 層または光硬化性樹脂層 (中間層: C ) を介して形成させてもよい。 (第 4 9図参照) 。
この方法によれば、 基材に凹凸等があっても基材と光触媒層の中間に配し た熱硬化性樹脂層または光硬化性樹脂層により、 光触媒層を塗布する前に極 めて平滑な面を形成できるので、 光触媒層を容易に均一に形成できる。 また 基材と光触媒層の中間に配した熱硬化性樹脂層または光硬化性樹脂層により 基材との結合をを充分にできるので、 基材の表面に凹凸がある場合でも光触 媒粒子と熱硬化性樹脂からなる層を薄く形成できるとともに基材の表面付近 に光触媒粒子を集中させることができるので、 後工程である 3 9 0 n m以下 の波長の光を 1 . 7 mW/ c m 2以上含む光を照射する工程をより短時間で 済ませることができる。 また上面に光触媒粒子と熱硬化性樹脂からなる層が 存在するので、 後工程および使用時に分解、 気化されるのに充分な強度を有 する紫外線は中間に配する熱硬化性樹脂層または光硬化性樹脂層までは到達 しないのでこの部分の熱硬化性樹脂については任意に選べる。 例えば、 低コ スト化のため安価なエポキシ樹脂を選んでもよいし、 意匠性を持たせるため 着色樹脂を用いてもよい。
ここで基材と光触媒層の中間に配した熱硬化性樹脂層の形成方法は、 例え ば熱硬化性樹脂に希釈剤を添加し、 次いで硬化剤を添加して得た混合液を基 材表面に塗布し、 熱処理または放置により固化させて形成する。 また光触媒 層の中間に配した層が光硬化性樹脂層の場合は熱処理の代わりに紫外線を含 む光を照射する。 ここで希釈剤は、 混合液の粘性を低下させ、 基材表面に 該混合液を塗布しやすくするために添加する。 したがって、 ここで使用する 希釈剤はこの目的を達成しうる溶媒であれば基本的に何でもよい。 例えば、 水、 エタノール、 ブロパノール等が使用できる。
更に、 第 5 0図 (a ) 、 ( b ) に示すように、 上記方法により基材表面に 露出した光触媒層に形成された間隙にその間隙よりも小さな粒子 (間隙粒子 : 4 ) を充填させことにより、 耐摩耗性をさらに向上できるので、 望ましい 間隙よりも小さな粒子の大きさは、 基本的には生成する気孔怪あるいは凹 凸の平均値より小さければよく、 間隙よりも小さな粒子の量は、 表面の開気 孔率が 20%未満になる程度に加えることが望ましい。 汚れが付着しにく く 7よる力、らである。
以下に具体的な実施例を挙げる。
(実施例 38 )
10 cm角のアルミナ基材の表面に、 平均粒径 0. 01 mの酸化チタンゾ ル (ァミン系分散剤で分散処理を施したもの) に、 10重量%のシロキサン 樹脂および希釈剤、 硬化剤をこの順番で添加して得た混合液を塗布し、 15 0てで焼成し、 比較試料を得た。 この試料に種々の光源を所定時間照射して 試料を得た。 得られた試料について光照射時の防臭特性 R30 (L) を評価し た。
ここで光照射時の防臭特性 R 3。 (L) は、 11リツ トルのガラス容器内に 試料面を光源 (8し8蛍光灯4^ ) 力、ら 8 cmの距離に配置し、 メチルメル カプタンガスを初期濃度 3 p pmとなるように容器内に注入し、 30分光照 射した後の濃度変化率である。
結果を (表 22) に示す。
(表 22)
光源 紫外線強度 (WZcm2) 照射時間(日) R30 (L) (%) な し 30
Bし B 0.3 7 32
Bし B 1.69 5 52 紫外線ランプ 2.0 3 74 紫外線ランプ 3.0 1 82 その結果、 紫外線強度が 1. 69 mWZ c m 2以上では防臭特性が 50% をこえ、 2 mWZ cm2以上では防臭特性が R 3。 (L) が 70%をこえる良 好な結果を示した。 ここで紫外線強度が 1. 69 mW/ cm 2以上で良好な 結果を示したのは、 光触媒粒子表面の光照射部分で光触媒反応が生じ、 表面 処理剤および光源方向にある熱硬化性樹脂が優先的に分解、 気化され、 光触 媒粒子が外気に露出されたためと解される。
(実施例 39 )
10 cm角のアルミナ基材の表面にシロキサン樹脂に希釈剤と硬化剤を添 加した溶液を塗布し、 室温で約 6時間乾燥後、 平均粒径 0. 01 mの酸化 チタンゾル (ァミン系分散剤で分散処理を施したもの) に、 10重量%のシ ロキサン樹脂および希釈剤、 硬化剤をこの順番で添加して得た混合液を塗布 し、 150°Cで焼成し、 比較試料を得た。 この試料に種々の光源を所定時間 照射して試料を得た。 得られた試料について光照射時の防臭特性 R3。 (L) を評価した。
結果を (表 23) に示す。
(表 23)
その結果、 紫外線強度が 1. 69 mWZ cm2以上では防臭特性が 60% をこえ、 2 mWZ cm 2以上では防臭特性 R 30 (L) が 80%をこえる良好 な結果を示した。 ここで紫外線強度が 1. 69 mWZ cm 2以上で良好な結 果を示したのは、光触媒粒子表面の光照射部分で光触媒反応が生じ、 それに より熱処理により気化、 分解できない光触媒粒子表面のうちの光照射面に付 着した表面処理剤を優先的に分解、 気化させることができ、 その結果光触媒 粒子が外気に露出されたためと解される。
(実施例 40 )
10 cm角のアルミナ基材の表面にシロキサン樹脂に希釈剤と硬化剤を添 加した溶液を塗布し、 室温で約 6時間乾燥後、 平均粒径 0. 01 mの酸化 チタンゾル (ァミン系分散剤で分散処理を施したもの) に、 10重量%のシ ロキサン樹脂および希釈剤、 硬化剤をこの順番で添加して得た混合液を塗布 し、 150。Cで焼成した。 この段階での部材表面の粒子間隙は平均して 0. 1〜0. 2;/m程度であった。 この後、 紫外線強度が 2 m WZ cm 2の光 (紫 外線ランプ) を 3日間照射後、 R30 (L) が 80%をこえることを確認した 後、 平均粒径 0. 0035 /mの酸化スズゾルを酸化チタンに対して 70重 量%表面に塗布し、 110°Cで乾燥して試料を得た。 この試料においても R so (L) は 81%と良好な結果を示した。 またプラスチック消しゴムを用い た摺動試験をすると、 酸化スズを添加しなかった試料では 5回未満の摺動で 傷が入り、 酸化チタンが剥離したが、 酸化スズを添加した試料では 10回以 上の摺動でも変化がなくなった。 以上のことから部材の表面に形成された間 隙にその間隙よりも小さな酸化スズ粒子を充填させることにより、 耐摩耗性 が向上することが確認された。
以上の説明より、 300て未満の低温で処理した光触媒作用を有する層を 形成した場合であつても、 良好な光触媒活性を有する部材を提供できる。 次に、 UV照射による露出と同じ目的ではあるが、 異なる手段にて、 30 0 °c未満の低温で焼成しても充分な光触媒作用を有する多機能材を提供する 方法を以下に述べる。
この方法は、 水熱法または硫酸法等により作製した酸化チタンゾルを分散 剤、 界面活性剤等の表面処理剤を添加する前に、 金属微粒子を酸化チタンゾ ル表面に固定化させる。
ここで金属微粒子とは、 酸化チタンに担持した場合、 酸化チタンに光が照 射され電子と正孔が生成したときに電子を捕捉しうる金属微粒子を 、い、 具 体的には Ag、 Cu、 P t、 Pd、 N i、 F e、 C o等をいう。
金属微粒子を酸化チタンゾル表面に固定化する方法は、 光還元法が簡便で ある。 ここで用いる酸化チタンゾルは水熱法または硫酸法により作製したも の力 <好ましいが、 それに限定されるものではない。 ここで、 硫酸法とは、 以 下に示す手順で行う酸化チタンの合成法のことである。
まずィルメナイト鉱を硫酸と反応させ、 T i、 F eなどを水可溶性の硫酸 塩に変え、 水で抽出して主成分 T i、 F eの硫酸塩溶液を作製する。 次に S i 0 2等の不溶性懸濁物を除去する。 次に 1 0〜1 5 °Cに冷却して硫酸鉄を 析出させて分離除去する。 次に溶液中の硫酸チタニルを加水分解して含水酸 化チタンを生成させる。 得られた含水酸化チタンはォ—トクレーブ等の圧力 装置を用いて高温高圧水中下 (一般には 1 1 0 °C以上 2 0 0 °C未満の飽和蒸 気圧下) で水熱処理して結晶化し、 酸化チタンゾルを得る。
また、 水熱法とは、 四塩化チタン、 硫酸チタン等のチタン源を、 ォ—トク レーブ等の圧力装置を用いて高温高圧水中下 (一般には 1 1 0 以上 2 0 0 未満の飽和蒸気圧下) で水熱処理することにより加水分解して酸化チ夕ン ゾルを得る方法である。 光還元法による酸化チタンゾル表面への金属微粒子 の固定化方法具体的には以下に示す方法で行う。
まず、 水熱法または硫酸法等にて作製した酸化チタンゾル懸濁液を酸性ま たはアルカリ性にする。 酸化チタンの等電点は P H 6. 5であり、 中性では 凝集しやすいからである。 またアル力リ性に調整するためにはアンモニアを 用いるの力好ましい。 N a、 K等のアルカリ金属は、 酸化チタンに強固に付 着しやすく、 これら金属が先に酸化チタンの活性点を占有すると光触媒活性 を減少させるとともに、 A g、 C u、 P t、 P d、 N i、 F e、 C o等が酸 化チタンの活性点に付着することを妨害するからである。
次に酸化チタンゾル懸濁液とほぼ P Hを同じく した金属塩溶液を酸化チタ ンゾル懸濁液に混合し、 紫外線を含む光を照射して金属を固定する。 必要な らば過剰の金属を沈殿させて溶液から除去する。 ここで金属塩溶液とは酸化 チタンに担持した場合、 酸化チタンに光が照射され電子と正孔が生成したと きに電子を捕捉しうる金属を含む塩と溶媒からなる溶液をいい、 より具体的 には A g、 C u、 P t、 P d、 N i、 F e、 C o等を含む塩と溶媒からなる 溶液をいう。 A g、 C u、 P t、 P d、 N i、 F e、 C o等を含む塩として は硝酸銀、 酢酸銅、 炭酸銅、 硫酸銅、 塩化第一銅、 塩化第二銅、 塩化白金酸 、 塩化パラジウム、 塩化ニッケル、 塩化コバルト、 塩化第一鉄、 塩化第二鉄 などが挙げられる。 また溶媒としては水、 エタノール、 プロパノール等が使 用できるが、 なるべく酸化チタンゾル懸濁液と同じ種類を用いるのがよい。 溶媒には必要に応じて P H調整剤を加える。 酸側への P H調整剤としては硝 酸、 硫酸、 塩酸等を用いる。 またアルカリ側への P H調整剤としてはアンモ ニァを用いる。
紫外線を含む光の照射は以下に示す点に留意して行う。 まず光源は紫外線 を含む光を照射するものであればよく、 具体的には紫外線ランプ、 B L Bラ ンプ、 キセノンランプ、 水銀灯、 蛍光灯などが挙げられる。 紫外線を含む光 の照射方法も基本的には問わないが、 第一に容器上方から照射するほうがよ い。 容器による紫外線の吸収がないからである。 第二に光源と容器との距離 は数 c m〜数 1 O c m程度がよい。 近すぎると光源から発する熱により試料 溶液の上面が乾くおそれがあり、 遠すぎると照度が低下するからである。 照 射時間は光源の照度により異なるが数秒〜数 1 0分程度照射すれば金属が光 触媒粒子に強固に付着する。
次に、 上記した金属担持酸化チタンゾルを塗布、 熱処理してなる薄膜を基 材表面に形成され光触媒作用を有する多機能材を形成する。
熱処理は、 電気炉やガス窯等を用いた大気中焼成またはオートクレープ等 を用いた水熱処理によるのが普通であるが、 それに限られるものではない。 このような方法により得られた酸化チタン膜中の酸化チタン粒子の平均粒 径は 1 以下であることが好ましい。 それ以上の粒径では比表面積の減少 により触媒活性が低下するからである。
また、 光触媒作用を有する部材を請求項 1に記載されたゾルを塗布、 熱処 理してなる薄膜が基材表面にバインダを介して形成されているようにした。 バインダを介することにより、 基材との密着性を向上させることができる。 その具体的方法は、 バインダに熱可塑性バインダを用いるか熱硬化性バイ ンダを用いるかで異なる。 次にそれぞれの 1実施態様を示すが上記構成を満 たせば他の方法によつてもよいことはいうまでもない。 ここで熱可塑性バイ ンダとしては、 具体的にはァクリル樹脂等の熱可塑性バインダ、 釉薬等の無 機ガラス質、 半田などが挙げられる。 また熱硬化性バインダとしては、 フッ 素樹脂、 エポキシ樹脂、 シロキサン樹脂などが挙げられる。
熱可塑性バインダを用いる場合は光触媒作用を有する部材は以下に示す手 順で作製する。 まず基材表面に熱可塑性バインダを塗布する。 次にその上に 金属粒子を担持した酸化チタンゾルを塗布し、 熱処理する。 ここで熱処理は 、 基材の耐熱温度よりも低く、 なおかつ熱可塑性バインダの軟化点より高い 温度で行う。 このような温度で熱処理することにより、 金属粒子を担持した 酸化チタン層の下層の一部がバインダ層内に埋設され、 それにより基材と金 属粒子を担持した酸化チタン薄膜とを強固に結合させることができる。 また、 熱硬化性バインダを用いる場合は光触媒作用を有する部材は以下に 示す手順で作製する。 まず基材に熱硬化性バインダに希釈剤、 硬化剤を順次 添加して作製した混合液を塗布し、 熱処理等の方法により硬化する。 次にそ の上に金属粒子を担持した酸化チタンゾルに熱硬化剤樹脂、 希釈剤、 硬化剤 を順次添加して作製した混合液を塗布し、 熱処理等の方法により硬化する。 尚、 熱硬化性バインダの代わりとして光硬化性バインダも同様に利用でき る
このように、 水熱法または硫酸法等の方法により作製した酸化チタンゾル において、 分散剤、 界面活性剤等の表面処理剤を添加する前に、 A g、 C u 、 P t、 P d、 N i、 F e、 C o等の金属粒子を T i02ゾル表面に固定化さ せることにより酸化チタンゾルの活性なサイトを予め A g、 C u、 P t、 P d、 N i、 F e、 C o等の金属粒子で覆っているので、 後工程で分散剤、 界 面活性剤等の表面処理剤を添加してもそれらの物質が酸化チタンゾルの活性 なサイトに吸着して活性を失うことがない。 したがって分散剤、 界面活性剤 等の表面処理剤の働きにより光触媒ゾルを安定的に分散でき基材表面上に均 質な膜を形成しうると同時に、 3 0 0て未満の低温で焼成しても分散剤、 界 面活性剤等の表面処理剤が基材表面に形成された光触媒粒子層の活性なサイ 卜に付着することによる光触媒作用の低下を防止することができると共に酸 化チタンゾルの活性なサイトを占める A g、 C u、 P t、 P d、 N i、 F e 、 C o等の金属粒子の電子捕捉効果により、 光触媒活性が向上する。
以下に具体的な実施例を挙げる。
(実施例 41 )
四塩化チタンに冷水浴槽中で水を添加して得た液状物をォートクレーブ中 140°Cで水熱処理することにより、 アナ夕—ゼ型酸化チタンゾルを得た。 得られたアナ夕—ゼ型酸化チタンゾルを硝酸中に分散した。 この分散液の P Hは 0. 8であった。 この中に硝酸で PHをほぼ 0. 8に調整した 3~5w t %の硫酸銅水溶液を添加し、 容器上方から紫外線を含む光を照射した。 そ の際、 光源には 4 Wの B L Bランプを用い、 溶液から約 10 cm離して 15 分光照射した。 この溶液に有機酢酸塩からなる分散剤を加え、 ゾルを安定化 させた。 このゾルを 15 cm角のタイル基材上に塗布し、 150°Cで熱処理 して試料を得た。 得られた試料について光照射時の防臭特性 R3。 (L) およ び抗菌特性を測定した。
光照射時の防臭特性 R3。 (L) は、 11リツトルのガラス容器内に試料面 を光源 (BLB蛍光灯 4W) から 8 cmの距離に配置し、 メチルメルカプタ ンガスを初期濃度 3 p pmとなるように容器内に注入し、 30分光照射した 後の濃度変化率である。
また、 抗菌特性については、 大腸菌 (E s che r i c h i a c o l i
W3110株) を用いて試験した。 予め 70%エタノールで殺菌した上記 試料の最表面に菌液 0. 15m l (10000~50000 C F U) を滴下 し、 ガラス板 (100X 100) に載せて基材最表面に密着させ、 試料とし た。 白色灯 (3500ルクス) を 30分間照射後、 照射した試料の菌液を滅 菌ガーゼで拭いて生理食塩水 10m 1に回収し、 菌の生存率を求め、 評価の 指標とした。 評価基準 + +十、 + +、 十、 一は前記と同様である。
その結果、 R30 (L) は 85%、 抗菌性は + + +と良好な結果を示した。
(比較例 42 )
四塩化チタンに冷水浴槽中で水を添加して得た液状物をォートクレーブ中 140°Cで水熱処理することにより、 アナターゼ型酸化チタンゾルを得た。 得られたアナターゼ型酸化チタンゾルを硝酸中に分散した。 この分散液の P Hは 0. 8であった。 この溶液に有機酢酸塩からなる分散剤を加え、 ゾルを 安定化させた。 このゾルを 15 cm角のタイル基材上に塗布し、 150°Cで 熱処理して試料を得た。 得られた試料について光照射時の防臭特性 R3。 (L ) および抗菌特性を測定した。
その結果、 R3。 (L) は 5%、 抗菌性は—とともに不充分であった。 (実施例 43 )
四塩化チタンに冷水浴槽中で水を添加して得た液状物をォートクレーブ中 140°Cで水熱処理することにより、 アナタ―ゼ型酸化チタンゾルを得た。 得られたアナタ―ゼ型酸化チタンゾルを硝酸中に分散した。 この分散液の P Hは 0. 8であった。 この中に硝酸で PHをほぼ 0. 8に調整した 3〜5w t%の硫酸銅水溶液を添加し、 容器上方から紫外線を含む光を照射した。 そ の際、 光源には 4 Wの BLBランプを用い、 溶液から約 10 cm離して 15 分光照射した。 この溶液に有機酢酸塩からなる分散剤を加え、 ゾルを安定化 させた。 次に 10 cm角のアルミナ基材表面に予めシロキサン樹脂に希釈剤 のプロパノールおよび硬化剤を順次添加して作製した混合液を塗布し 100 。Cで乾燥させた部材の上に、 上記の方法で作製したゾルに、 酸化チタン量に 対して 20重量%のシロキサン樹脂、 ブロパノールおよび硬ィ匕剤を順次添加 して作製した混合液を塗布し、 150°Cで焼成して試料を得た。 得られた試 料について光照射時の防臭特性 R3。 (L) を測定した。
その結果、 R30 (L) は 80%と良好な結果を示した。
(比較例 44)
四塩化チタンに冷水浴槽中で水を添加して得た液状物をォートクレーブ中 140。Cで水熱処理することにより、 アナターゼ型酸化チタンゾルを得た。 得られたアナターゼ型酸化チタンゾルを硝酸中に分散した。 この分散液の P Hは 0. 8であった。 この溶液に有機酢酸塩からなる分散剤を加え、 ゾルを 安定化させた。 次に 10 cm角のアルミナ基材表面に予めシロキサン樹脂に 希釈剤のプロパノ一ルおよび硬化剤を順次添加して作製した混合液を塗布し 100°Cで乾燥させた部材の上に、 上記の方法で作製したゾルに、 酸化チタ ン量に対して 20重量%のシロキサン樹脂、 プロパノールおよび硬化剤を順 次添加して作製した混合液を塗布し、 150°Cで焼成して試料を得た。 得ら れた試料について光照射時の防臭特性 R3。 (L) を測定した。 その結果、 R so (L) は 22%と不充分な結果となった。
以上の説明より、 水熱法または硫酸法等の方法により作製した酸化チタン ゾルにおいて、 分散剤、 界面活性剤等の表面処理剤を添加する前に、 Ag、 Cu、 P t、 Pd、 N i、 Fe、 C o等の金属粒子を酸化チタンゾル表面に 固定化させることにより耐熱性の無い基材、 例えば、 プラスチックス材上に 300°C未満の低温で焼成しても充分な光触媒作用を有する部材を提供でき 0
以上の実施例は主としてアナターゼ型 Ti02について述べたが、 以下には ルチル型 TiO 2について述べる。
第 51図はルチル型 Ti02を利用した多機能材の製造工程を示すプロック 図であり、 本発明は先ずタイル等の基板表面にルチル型 Ti02 薄膜を形成 する。 ルチル型 Ti02 薄膜の形成方法としては、 原料として Ti02ゾル、 Tiアルコキシド、 Tiの硫酸塩、 Tiの塩化物溶液等を用いて、 基板上に塗 布し、 その後熱処理等を行うことによる。
Ti02ゾルを用いる場合には、 Ti02の等電位点が pH6. 5とほぼ中性 であることから、酸またはアルカリで分散した水溶液を用いて基板上に塗布 すると均一に塗布しやい。 このとき基板が金属のときは耐蝕性の観点からァ ルカリ分散液が好ましい。 酸としては、 硫酸、 塩酸、 酢酸、 リン酸、 有機酸 等が挙げられる。 アルカリの場合は、 アンモニア、 アルカリ金属を含む水酸 化物等が挙げられるが、 熱処理後に金属汚染物が生成しないことからアンモ ニァが特に好ましい。 尚、 これらの分散液に更に、 有機酸、 リン酸系の分散 剤、 表面処理剤、表面活性剤を添加してもよい。 なお、 粒径が小さいと初期 焼結がより低温で生じ、 低い温度で剥離強度に優れた光触媒薄膜を得られる ので、 TiO 2ゾルの平均粒径は、 0. 05 /m以下好ましくは 0. Ol /zm 以下がよい。
基板への塗布方法としては、 上記原料をスプレー ·コーティング、 ディ ッ プ ·コ一ティ ング、 ロール ·コ一ティ ング、 スピン · コ一ティング、 C VD 、 電子ビーム蒸着、 スパッタ等に比較して特別な設備を必要とせず、 安価に 塗膜が可能な点で望ましい。
熱処理は、 電気炉やガス窯等を用いた大気中焼成またはオートクレープ等 を用いた水熱処理が利用できる。
—方、 Cu、 Ag、 F e、 Co、 P t、 N i、 Pd、 Cu20のうち少なく とも一種の溶液 (金属イオンを含む水溶液) を用意しておき、 これをルチル 型 Ti02 薄膜上に塗布する。 ここで、 金属塩水溶液の塗布は、 基板の裏面 まで金属塩水溶液が廻り込まな 、方法であればよい。 金属塩溶液における溶 液は、 水、 エタノール等力 <利用できる。 水を用いる場合には、犠牲酸化剤と して、 アルコール、 不飽和炭化水素等を添加することも効果的である。 尚、 溶液をエタノール溶液とすることは、 例えば、 金属基材による鲭びの発生の 原因にならずまた乾燥速度が速くなる点、 エーテル、 アセトン、 メタノール 等の他の溶媒に比べて無害である点で望ましい。
次いで、 上記金属塩水溶液を担持効率を向上させるため、 室温〜 110°C 程度で乾燥せしめ、 39 Onm以下の波長を含む照明を金属塩に照射し、 金 属イオンを還元してルチル型 TiO 2薄膜に当該金属を析出し固定化する。 こ こで、 照射に用いるランブは紫外線ランブ、 B L B (ブラックライ トブルー
) ランプ、 キセノンランプ、 水銀灯、 蛍光灯などを用いる。 この際照射は、 照射効率を向上させるために照射面に光が垂直に当るようにするとよい。 以下に具体的な実施例を挙げる。
(実施例 45 )
平均粒径 0. 01 mの TiO 2ゾルのアンモニア分散液を 10 cm角のァ ルミナ基板上にスプレー ·コーティング法で塗布し、 これを 900。Cで焼成 してルチル型 Ti02薄膜を形成した。 次いで、 このルチル型 Ti02薄膜に酢 酸銅水溶液をスプレー ·コーティング法で塗布し、 この後光還元 (光源は 2 0ヮット BLBランプ、 光源から試料までの距離 10 cm、 照射時間 10秒 ) して試料を得た。 得られた試料について光活性 A (L) を評価した。 光活性 A (L) は、 ガス濃度を Y軸に、 反応時間を X軸にとったときの反 応曲線を直線近似したときの傾きの絶対値を示す。 すなわち時間 tにおける 濃度を X tとすると、
X t = Xo · 10 -"" t (1)
となる。 したがってある分解ガスを、 紫外線を含む光が照射された光触媒薄 膜上に通し、 時間 t経過時における分解ガス濃度の減少を観察することによ り求められる。 本実験においては、 分解ガスに悪臭成分であるメチルメル力 プ夕ンを用い、 メチルメルカブタン初期濃度が 2 p pmに調整された直径 2 6 cmx高さ 21 cmの円筒形容器に試料を設置し、 4\¥の8し8蛍光灯を 試料から 8 c m離して光を照射した場合のメチルメルカプ夕ン濃度の時間的 変化を観察することにより求めた。
得られた結果を第 52図および第 53図に示す。 ここで第 52図および第 53図は溶液中の Cu濃度と光活性 A (L) との関係を示すグラフであり、 このうち、 第 52図はスプレーした酢酸銅水溶液を乾燥させた後に光還元し た場合を、 第 53図はスプレーしたままで乾燥させない状態の酢酸銅水溶液 を光還元した場合を示す。
第 53図のスプレーしたままで乾燥させない状態の酢酸銅水溶液を光還元 した場合には、 溶液中の Cu濃度を 0. 001重量%から 0. 1重量%に増 加させても、 A (L) は 3X 10— 5程度で変化がなく、 飽和している。 それに対し、 第 52図のスプレーした酢酸銅水溶液を乾燥させた後に光還 元した場合には、 0. 001重量%では 2 X 10-5程度で乾燥させない場 合とほぼ同程度の値だが、 0. 1重量%まで増加させると、 1X10_2程度 へと飛躍的に A (L) が向上する様子が観察された。
(実施例 46 )
実施例 45と同様にして床タイル及び壁タイルにルチル型 T i 02薄膜を形 成し、 このルチル型 Ti02薄膜に光還元によって Cuを固定化 (酢酸銅水溶 液塗布、 乾燥後) した場合の、 溶液中の金属成分の濃度と悪臭除去率 R 30の 関係を調べた結果を第 54図、 第 55図に示す。
これらの図より乾燥させた後に光還元処理をすることにより溶液中の金属 成分濃度がある程度大きければ、 基材がタイル材でも、 悪臭成分を除去しう ることがわかる。 (実施例 47 )
平均粒径 0. 01 111の7^〇2ゾルのァンモニァ分散液を15 cm角の夕 ィル基板上にスプレー ·コ—ティング法で塗布し、 これを種々の温度で焼成 してルチル型 Ti02薄膜を形成した。 次いで、 このルチル型 Ti02薄膜に酢 酸銅水溶液をスプレー ·コ—ティング法で塗布し、 この後光還元 (光源は 2 0ヮッ ト BLBランプ、 光源から試料までの距離 10 cm、 照射時間 10秒 ) して試料を得た。 得られた試料について防臭特性 R3。を評価した。
得られた結果を第 56図に示す。 900°C (開気孔率 10%) における R
30値は金属を担持していないルチルのみの場合よりよい。 また、 温度を上昇 させて 1000°C (開気孔率 3%) にすると、 金属を担持していない試料で は R3。値は激減し、 Cu添加試料でも若干の低下が観察された。 このように 900°Cのときと比較して 1000°Cで防臭特性が低下するのは 2つの理由 による。 1つは開気孔率の低下に伴う分解ガスと接触しうる光触媒のルチル 型 T i 02薄膜の面積の低下である。 金属を担持していない試料で防臭特性が 低下したのは主としてこの理由によると考えられる。 もう 1つの理由は開気 孔率の低下に伴い、 光還元法により析出する金属粒子の存在しうる面積も低 下することがあげられる。 電子の移動における平均自由行程が大きくなるた めでめる。
また、 第 57図に塗膜時の溶液中の A g、 Cu濃度と色差との関係を示す 。 この図より Cuは色差および明度変化のいずれにおいても A gに比べ小さ く着色が目立たないことがわかる。 また、 この着色の違いは、 Cuの系につ いては、 ESCA (化学分析のための電子線分光法) 等による分析により、 C uの 0価と 1価のものが検出されていることから、 この呈色しにくい 1価 の成分が影響しているものと思われる。
(実施例 48)
平均粒径 0. 01 mの TiO 2ゾルのアンモニア分散液を 15 cm角の夕 ィル基板上にスプレー ·コ一ティング法で塗布し、 これを種々の温度で焼成 してルチノレ型 Ti02薄膜を形成した。 次いで、 このルチル型 Ti02薄膜に硝 酸銀水溶液をスプレー ·コーティング法で塗布し、 この後光還元 (光源は 2 0ヮッ 卜 BLBランプ、 光源から試料までの距離 10 c m、 照射時間 10秒 ) して試料を得た。 得られた試料についてルチル型 Ti02薄膜の気孔率と防 臭特性 R 3。及び耐摩耗性についてを評価した結果を第 58図に示す。
気孔率を 10%以上とすることで、 良好な脱臭性を示し、 40%未満とす ることで、 耐摩耗性を〇以上とすることができる。
耐摩耗性についてはプラスチック消しゴムを用いた摺動摩耗を行い、 外観 の変化を比較し、 評価した。 評価指標を下記に示す。
◎ : 40回往復に対して変化なし
〇: 10回以上 40回未満の摺動で傷が入り、 酸化チタン膜が剥離
Δ: 5回以上 10回未満の摺動で傷が入り、 酸化チタン膜が剥離
X : 5回未満の摺動で傷が入り、 酸化チタン膜が剥離
(実施例 49 )
予めグレーズ層が形成された 10 cm角のアルミナ基板上に平均粒径 0. 01 mの TiO 2ゾルのアンモニア分散液をスブレ— ·コ—ティング法で塗 布し、 これを 850°C以上 1000°〇未満で焼成してルチル型1^02薄膜を 形成した。 次いで、 このルチル型 Ti02薄膜に硝酸銀水溶液をスプレー ·コ —ティ ング法で塗布し、 この後光還元 (光源は 20ワット BLBランプ、 光 源から試料までの距離 10 cm、照射時間 10秒) して試料を得た。
得られた試料について、 抗菌性、 耐摩耗性、 耐剥離性、 耐汚染性、 耐酸性 、 耐アルカリ性、 A g着色性について評価した。
抗菌性については、 大腸菌 (Es c he r i c h i a c o 1 i W31
10株) を用いて試験した。 予め 70%エタノールで殺菌した多機能材の最 表面に菌液 0. 15m l (1~50000CFU) を滴下し、 ガラス板 (1 00X 100) に載せて基材最表面に密着させ、 試料とした。 白色灯 (35 00ルクス) を 30分間照射後、 照射した試料と遮光条件下に維持した試料 の菌液を滅菌ガーゼで拭いて生理食塩水 10m 1に回収し、 菌の生存率を求 め、 評価の指標とした。 評価の指標 + + +、 +十、 +、 一については前記と 同様である。
耐剥離性試験は耐摩耗性試験の条件をより厳しく した試験であり、 プラス チック消しゴムのかわりにより大きな剪断力の加わる砂消しゴム (L I OK TYPEWR I TER ERASER 502 ) を用いる。 具体的な評価 方法は、 砂消しゴムで試料表面を均等な力で 20回こすり、 標準サンプルと 傷の入った状態を目視で比較することにより行う。 評価基準を下記に示す。 ◎ :全く変化なし
〇:光加減でわずかに変化確認
△:わずかな変化確認
X :—目で変化確認
耐汚染性試験とは、 染みのつきにくさに関する試験のことである。 具体的 な評価方法は 0. 5%メチレンブルー水溶液でサンプル表面に染みを作り、 乾燥後水洗し、 目視で染みの有無を観察することにより行う。 評価基準を下
◎:完全に染みが消える
〇:染みの色はわからないが、 わずかに残存する
△ :薄く染みの色力 <残る
X :はっきりと染みの色力残る
耐酸性については、 10%H C 1水溶液に 120時間浸漬後、 基材表面の
A gを担持したルチル型 T i 02薄膜層の異常を目視で観察して評価した。 評 価基準を下記に示す。
◎ :変化なし
〇:ごくわずかに変色
Δ:わずかに変色
X :はっきりと変色
耐アルカリ性については、 5%N a OH水溶液に 120時間浸漬後、 基材 表面の A gを担持したルチル型 T i 02薄膜層の異常を目視で観察して評価し た。 評価基準を下記に示す。
◎:変化なし
〇:ごくわずかに変色
△:わずかに変色 X :はっきりと変色
A g着色性については、 A gを添加しない試料との目視による比較により 評価した。 評価基準を下記に示す。
◎:着色なし
〇: ごくわずか着色
Δ:わずかに着色
X :茶色の着色部あり
以上 7項目の評価結果を (表 2 4 ) にまとめて示す。 また、 抗菌性に及ぼ す膜厚、 焼成温度の影響を (表 2 5 ) に示す。
(表 2 4 )
光触媒薄膜の厚みと諸特性との関係
膜厚( μ ηι)抗菌性 (L) 耐磨耗性 耐剝羝性 耐汚染性 耐酸性 耐ァルカリ性 Ag着色性
0.1 + + + ◎ © ◎ ◎ ◎ ©
0.2 + + + © ◎ © ◎ ◎ ©
0.3 + + + ◎ © ◎ ◎ ◎ ◎
0.4 + + + © ◎ ◎ ◎ ◎ ◎
0.5 + + + ◎ 〇 〇 〇 〇 〇
0.6 + + + ◎ 〇 〇 〇 〇 〇
0.7 + + + ◎ 〇 〇 〇 〇 〇
0.8 + + + ◎ 〇 〇 〇 〇 〇
0.9 + + + ◎ 〇 〇 〇 〇 〇
1.0 + + + ◎ X X 〇 Ο X グレーズ無
(0.4) △ (表 2 5 ) 光触媒薄膜の抗菌性に及ぼす膜厚、 焼成温度の影響
抗菌性については、 本実施例で作製した光触媒薄膜の膜厚 0. 1 /z m以上 1 m以下の範囲内ではいずれも焼成温度を適正にすれば、 + + +と良好な 結果を示した。 ただし表 2 4に示すように膜厚が 0. 2 ^ m以下と薄くなる と 9 8 0 °Cの高温で焼成した試料では + +と若干抗菌性が落ちる傾向が認め られた。 これはグレ—ズ層の軟化により光触媒薄膜が局所的にグレーズ層に 埋没したためと考えられる。 また、 A g自体にも抗菌力がある力 この抗菌 性の焼成温度依存の傾向は、 本願方法により作製した複合部材の抗菌力が A gの抗菌作用以外のルチル型 T iO 2薄膜の特性が関与していることを示して いる (A gは前述のように焼成後に担持させているから) 。
またグレ―ズ層の軟化に伴う光触媒薄膜のグレ―ズ層中への沈み込みは、 全ての試料においてある程度生じていると考えられる力《、 本実施例により、 焼成温度を適正にすれば少なくとも 0. 1 以上では光触媒薄膜をグレー ズ層の最表層に保つことができることが確認された。
耐摩耗性については、 本実施例で作製した光触媒薄膜の膜厚 0. 以 上 1 m以下の範囲内ではいずれも◎と良好な結果を示した。 この結果は、 比較のために同様の製造方法でグレ一ズを介さずに作製した試料で△であつ たのに対し、 きわめて優れた結果となっている。 これはグレーズを介するこ とにしたことにより、 焼成時にグレ一ズの钦化により光触媒薄膜の下層の一 部がグレーズ層中に埋設されることによると考えられる。
それに対し耐剥離性試験では、 0. 以上 0. 4 m以下では◎、 0 . 以上 0. 9 / m以下では〇、 1 mでは Xとなり、 光触媒薄膜の膜 厚の増加とともに悪くなる傾向力観察された。 これは膜厚に対するグレーズ への埋設厚さの比が増加したことにより剥離しやすくなつたためと考えられ る。 また耐摩耗試験では異常がなかったのが耐剥離試験で悪化したのは、 剪 断力の大きさの違いによる。
耐汚染性については、 光触媒薄膜の膜厚 0. l m以上 0. 4 m以下で は◎、 0. 4 m以上 0. 9 /m以下では〇、 1 mでは Xとなり、 光触媒 薄膜の膜厚の増加とともに悪くなる傾向が観察された。
耐酸性については、 本実施例で作製した光触媒薄膜の膜厚 0. l /m以上 1 m以下の範囲内ではいずれも良好な結果を示した。 ただし、 0. 4 ^m 以上 1 以下では〇、 0. l m以上 0. 4 m以下では◎であり、 膜厚 が薄いほうが好ましい値を示した。
耐アルカリ性については、 本実施例で作製した光触媒薄膜の膜厚 0. 1 μ m以上 1 / m以下の範囲内ではいずれも良好な結果を示した。 ただし、 0. 4 以上 1 以下では〇、 0. 1 /m以上 0. 4 m以下では©であり 、 膜厚が薄いほうが好ましい値を示した。 Ag着色性については、 光触媒薄 膜の膜厚 0. l /um以上 0. 4 m以下では◎、 0. 4 111以上0. 9 m 以下では〇、 1 /111では となり、 光触媒薄膜の膜厚の増加とともに悪くな る傾向が観察された。 この傾向は耐汚染性と一致している。
以上 7項目の試験より、 光触媒薄膜の膜厚の厚さは 0. l m以上 0. 9 m以下、 より好ましくは 0. 1 m以上 0. 以下であることが好ま しい。 またグレーズを介して光触媒薄膜を基材に固定することにより、 耐摩 耗性が向上することが認められた。
また、 意匠上の特性も膜厚により変化する。 すなわち 0. 2 m以上 0. 4 /im未満では可視光と光触媒薄膜の干渉作用により、 虹彩色の縞模様が生 じ、 外観上特異な印象を与える。 逆に 0. 2 ^m以下や 0. 以上 0.
9 m以下では上記虹彩色の縞模様は生じず、 基材の色あるいはグレーズに より構成される色、 模様もしくはその結合に係わる外観をそのまま活かすこ とができる。
(実施例 50 )
平均粒径 0. 01 mの Ti02ゾルのアンモニア分散液を 15 cm角の夕 ィル基板上にスプレー ·コ—ティング法で塗布し、 これを 900°Cで焼成し て厚さ 0. 8;/mのルチル型 Ti02薄膜を形成した。 次いで、 このタイル表 面に酢酸銅水溶液 (溶液濃度 0. 2重量%、 0. 5重量%、 1重量%) の塗 布量を変化させてスプレー ·コ一ティ ング法で塗布し、 この後光還元 (光源 は 20ヮット BLBランプ、 光源から試料までの距離 10 cm、 照射時間 3 0秒) して試料を得た。 得られた試料につき抗菌性を評価した。 なお Cu担 持量は、 照射後の残留水溶液を回収し、初期の銅量と回収した銅量との差か
^ tBした o
第 59図に Cu担持量と光照射時 (L) および暗時 (D) の菌生存率との 関係を示す。 図より以下のことがわかる。
まず第一に Cuの担持により抗菌性が向上する。 次に光照射時 (L) のほ うが暗時 (D) よりも少ない Cu担持量で抗菌性が向上する。 これは光照射 時 (L) には Cu担持により光活性を回復したルチル型 Ti02薄膜の光触媒 作用が働くためである。 図より 0. 12〃 gZcm2以上の添加で +十、 0 . 3 gZcm2以上の添加で + + +へと向上する。
Cu自体にも抗菌作用があることは知られており、 そのため暗時にも C u の担持量を増加させると抗菌性の向上が認められる。 この場合 0. 7 gZ cm2以上の担持で +十、 1. 2 gZcm2以上の担持で + + +へと向上す したがって、 ++レベルで評価すると 0. 12 gZcm2以上 0. Ί gZcm2未満、 + + +レベルで評価すると 0. S ^ gZcm2以上 1. 2 μ g/ 未満の C u担持量における光照射時 (L) の良好な抗菌性は、 C uと ルチル型 Ti02薄膜が組み合わされたことによる特異な効果と考えられ、 ル チル型 TiO 2薄膜の存在により Cu担持量を少なくできる。 このように C u 担持量を減少できることは、 特にこの複合部材を水まわりに使用するときに は重要な性質であり、 Cuが水中に溶出しうる環境における用途、 例えば洗 面台や衛生陶器におけるボール面等に使用する場合も溶出量を少な 、抑える ことができる。
また、 Cuの場合、 Cu20の形でも同様の効果が得られる。 これは、 光還 元時の表面に E S C Aにより、 Cuの 1価が検出され、 Cu2+→Cu+に部分 的になっているにもかかわらず光活性回復効果が観察されているからである
—方、 Cuの担持量を 0. 7 g/cm2以上、 より好ましくは 1. 2 g / c m2以上にすることにより光の照射の有無にかかわらず、 良好な抗菌 性を得ることができる。
また、 第 60図は溶液中の Cu濃度 lWt %のときの Cuの塗布量と Cu の担持量との関係であり、 この図より Cuの塗布量を単純に多く しても銅の 担持量は増加せず、 銅の担持量を 0. 7 gZcm2以上とするには 0. 2 mgZcm2以上 2. 7mg/cm2以下、 1. 2 g/c m2以上とするに は 0. Smg/cm2以上 2. 4 m g/ c m2以下にすればよい。
(実施例 51 )
平均粒径 0. 01 mの Ti02ゾルのアンモニア分散液を 15 cm角の夕 ィル基板上にスプレー ·コーティング法で塗布し、 これを 900。Cで焼成し て厚さ 0. 8 のルチノレ型 Ti02薄膜を形成した。 次いで、 このタイル表 面に硝酸銀水溶液 (溶液濃度 0. 2重量%、 0. 5重量%、 1重量%) の塗 布量を変化させてスプレー ·コーティング法で塗布し、 この後光還元 (光源 は 20ワット B L Bランプ、 光源から試料までの距離 10 c m、 照射時間 3 0秒) して試料を得た。 得られた試料につき抗菌性を評価した。 なお Ag担 持量は、 照射後の残留水溶液を回収し、 初期の銀量と回収した銀量との差か ら算出した。
第 61図に Cu担持量と光照射時 (L) および暗時 (D) の菌生存率との 関係を示す。 図より以下のことがわかる。
まず Cuの場合と異なり、 光照射時 (L) と暗時 (D) の菌生存率の曲線 が重なつた。 このことは Agの場合に C uの場合とは異なる結果が生じたの ではなく、 むしろ A gの抗菌力が Cuと比較してはるかに大きく、 担持量が 非常に少量で効果が生じたため、 光照射時 (L) と暗時 (D) の必要担持量 の差が実験誤差範囲内に収まつてしまつた結果であると思われる。
また図より Agの担持量を 0. 05 gZcm2以上、 より好ましくは 0 . 1 gZcm2以上にすることにより光の照射の有無にかかわらず、 良好 な抗菌性を得ることができる。
一方、 第 62図は銀の担持量と銀担持していない試料との色差との関係で あり、 銀の担持量が 1 μ gZcm 2をこえると急激に色差が大きくなり 2を こえてしまう。 一般に色差が 2以上になると色の違いが目立つようになる。 銀が付着すると茶から黒色になるので、 外観上見苦しくなるので好ましくな い。 したがって色差は 2以下に抑えることが好ましく、 そのためには銀の担 持量は 1 cm2以下にすればよいことがわかる。 なお色差の測定は分 光式色差計 (東京電色 (株) 製) で測定した。
ところで、 上記実施例において、 光触媒の活性なサイ卜が表面処理剤夜行 分子物質や塵埃等で覆われることによる化成の低下を極力防止または活性を 回復させるために、 光触媒活性を有する微粒子の活性点を銀、 銅、 白金、 パ ラジウム、 金、 ニッケル、鉄、 コバルト、 亜鉛等の金属微粒子で覆う方法を 開示してきたが、 力、かる金属は有色金属であるため、 多量に塗布すると基材 の表面に固有の色が付いて仕舞い、 基材の色、 模様等のデザインを損ってし まラ。
そこで、 高い光触媒 性を維持しつつ基材の色、 模様等のデザインを損わ な L、脱色方法を以下に述べる。
基本的な方法としては、 光触媒活性を有する粒子に金属微粒子を固定化す る工程、 前記金属粒子と水溶液または気体を反応させて少なくとも金属微粒 子表面に無色または白色の塩を形成する工程の 2つの工程により、 金属微粒 子を含む触媒を作製することによる。
ここで、 上記 2つの工程を行う順番は順不同であり、 どちらから行っても かまわない。 すなわち、 有色の金属微粒子を光触媒活性を有する粒子に固定 化した後、 前記金属微粒子と水溶液または気体を反応させて少なくとも金属 微粒子表面に無色または白色の塩を形成してもよいし、 有色の金属微粒子と 水溶液または気体を反応させて少なくとも金属微粒子表面に無色または白色 の塩を形成した後、 光触媒活性を有する粒子に固定化してもよい。
また、 光触媒活性を有する粒子と有色の金属微粒子を混合した後、 基材に 固定してもよい。 この場合、 例えば、 光触媒活性を有する粒子と有色の金属 微粒子を混合する工程、 前記混合液を基材に塗布する工程、 焼成して前記混 合物を基材に固定する工程、 気体と反応させて少なくとも金属微粒子表面に 無色または白色の塩を形成する工程を順次行うことによる。
なお、 焼成して前記混合物を基材に固定する工程と、 気体と反応させて少 なくとも金属微粒子表面に無色または白色の塩を形成する工程は同時に行う こともできる。
有色の金属微粒子とは、 銀、 銅、 白金、 パラジウム、 金、 ニッケル、 鉄、 コバルト、 亜鉛等のイオン化傾向が小さく、 自身が還元されやすい金属微粒 子をいう。
水溶液反応により無色または白色の塩を形成する場合、 または金属微粒子 を含む触媒を液体中で用 ^、る場合は、 形成される無色または白色の塩は難溶 性または不溶性の方がよい。
金属微粒子を含む触媒を基材に固定して使用する場合には、 光触媒活性を 有する粒子を予め基材に固定しておいてから金属微粒子を含む触媒を作製し てもよいし、 金属微粒子を含む触媒を作製した後、 基材に固定してもよい。 光触媒活性を有する粒子を予め基材に固定しておいてから金属微粒子を含 む触媒を作製する場合には、 基材に光触媒活性を有する粒子層を形成するェ 程、 その上に有色の金属微粒子を固定化する工程、 前記有色の金属微粒子を 覆うように無色または白色の塩を形成する工程を順次おこなうことによる。 有色の金属微粒子を覆うように無色または白色の塩を形成する工程は、 例 えば、 上記有色の金属微粒子と反応して金属微粒子の少なくとも表面に無色 または白色の塩を形成しうる溶液を金属微粒子に接触させる方法、 または上 記有色の金属微粒子と反応して金属微粒子の少なくとも表面に無色または白 色の塩を形成しうる反応ガスを金属微粒子に接触させる方法でおこなう。 上記有色の金属微粒子の塩で白色または無色のものは、 難溶性または不溶 性の塩であることが好ましい。 水溶液反応で金属微粒子の少なくとも表面に 塩を容易に形成でき、 また水のある環境で安定に使用できるからである。 上記有色の金属微粒子の塩で白色または無色のものとしては、 例えば、 塩 化銀、 臭化銀、 ヨウ化銀、 シユウ酸銀、 チォ硫酸銀、 シアン化銀、 ロダン化 銀、 塩化第一銅、 臭化第一銅、 シアン化第一銅、 ロダン化第一銅、 酸化第一 銅、 リン酸亜鉛、 シユウ酸亜鉛、 シアン化亜鉛、 シアン化パラジウム、 硫化 亜鉛、 炭酸亜鉛、炭酸第一鉄、 酸化亜鉛奪が挙げられる。 上記塩を形成し得 る溶液は、 例えば塩化銀の場合には、 塩化力リウム溶液、 塩化ナトリウム溶 液、 塩化アンモニゥム溶液、 塩化第二鉄溶液等、 ヨウ化銀の場合には、 ヨウ 化力リゥム溶液、 ョゥ化ナトリゥム溶液、 ョゥ化第二鉄溶液、 過酸化水素水 、 オゾン水等が挙げられるがそれに限定されるものではなく、 各々の塩の陰 ィォンを含む可溶性塩溶液であれば広く使用できる。
また上記塩を形成しうる反応ガスも各々の塩の陰ィォン元素を含む北出あ れば広く使用できる。 例えば上記塩が酸化亜鉛、 酸化第一銅等の酸化物なら ば、 大気中、 酸素中、 水蒸気中で加熱することにより、 または、 0 3等の酸 化剤と反応させることにより、 金属微粒子表面を酸化して表面に酸化物層を 形成させることができる。
以下に具体的な実施例を挙げる。
(実施例 5 2 )
1 5 cm角のタイル基材表面に、平均粒径 0. O l ^ mの酸化チタンゾルを 塗布後、 9 0 0 °Cで熱処理し、 ルチル型酸化チタン薄膜を形成した。 この段 階で止めた試料を比較試料 1とする。 その後、 硝酸銀水溶液をスプレー ·コ一ティング法にて塗布し、 20Wの BLBランプを光源として 10分光照射し、 銀をルチル型酸化チタン薄膜上 に固定した。 この時の銀の担持量は 1. 2 g/cm2であり、 茶色に呈色 した。 この段階で止めた試料を比較試料 2とする。
その後、 0. lmo 1 Zリッ トルのヨウ化カリウム水溶液を比較試料 2上 に 0. 1 c cm2の割合で塗布し反応させた。 その結果、 試料表面は黄 白色へと変化し、 白色化された。 ヨウ化銀層が形成されたためと考えられる 。 この試料を実施試料 1とする。
これら試料について、 色差、 光活性、 防臭特性および抗菌性を評価した。 色差の測定は分光式色差計 (東京電色 (株) 製) で測定した。 その際、 標 準試料は比較試料 1とした。 結果を第 63図に示す。 その結果、 比較試料 2 では色差 3. 5であったのに対し、 ヨウ化カリウム水溶液で処理したことに より、 実施試料 1では色差 1に減少し、 呈色の度合いが減少した。
光活性については Δρ H試験で評価した。 光活性および防臭特性の結果を 第 64図に示す。 比較試料 1と 2との比較により、 銀を担持したことによつ て、 比較試料 2では光活性が回復し、 ΔρΗも R3。 (L) も良好な結果を示 した。 また実施試料 1と比較試料 2とを比較すると、 ΔρΗも R3。 (L) も ともにほぼ同程度の値となり、 脱色処理によっても光活性には変化を生じず 、 良好な特性力維持できることカ《判明した。 、
また抗菌性については、 大腸菌 (E s c he r i c h i a c o l i W 3110株) を用いて試験した。 予め 70%エタノールで殺菌した試料の最 表面に菌液 0. 15m l (2X 104CFU) を滴下し、 ガラス板 (100 XI 00) に載せて基材最表面に密着させ、 試料とした。 白色灯 (3500 ルクス) を所定時間照射した試料 (L) と、 遮光条件下に維持した試料 (D ) 菌数を滅菌ガーゼで拭いて生理食塩水 10m 1に回収し、 生菌数を調べて 評価した。
抗菌性に関する結果を第 65図に示す。 比較試料 1では銀を担持していな いので、 暗時 (D) の抗菌効果は認められない。 それに対し、 実施試料 1で は脱色処理で銀の表面が化合物に変化しているにもかかわらず暗時 (D) の 抗菌効果が認められた。 また光照射時 (L) にはより強い抗菌効果が観察さ れ、 銀の抗菌効果のみならず、 ルチル型チタン薄膜の光触媒活性回復効果も 観察された。
(実施例 53 )
15 cm角の衛生陶器成形素地に釉薬を塗布後、 1100〜 1200°Cで焼 成後、 平均粒径 0. 01 mのアナターゼ酸化チ夕ンゾルを塗布し、 900 -1000°Cで焼成し、 衛生陶器成形素地基材上にルチル型酸化チタン薄膜 を固定した。
この後、 その上に硝酸銀水溶液を塗布し、 紫外線を照射して酸化チタン薄 膜上に銀を析出せしめた。 さらにその上に塩化第二鉄水溶液を塗布し、 紫外 線を照射すると脱色され、 色差が 3から 0. 3に減少した。 また抗菌性は、 光照射時、 暗時ともに試料に 30分接触させることで、 もとの菌数の 10% 未満しか生菌していないことが確認され、 良好な結果を示した。
(実施例 54 )
15 cm角の衛生陶器成形素地に釉薬を塗布後、 1100〜 1200°Cで焼 成後、 平均粒径 0. 01 のアナターゼ酸化チタンゾルを塗布し、 900 〜: L 00 (TCで焼成し、 衛生陶器成形素地基材上にルチル型酸化チタン薄膜 を固定した。
この後、 その上に硝酸銀水溶液を塗布し、 紫外線を照射して酸化チタン薄 膜上に銀を析出せしめた。 さらに試料をォゾナイザー付きのデシケ一夕中 ( オゾン濃度 l O p pm) に約 2時間放置することで脱色した。 もとの菌数の 10%未満しか生菌していないことが確認され、 良好な結果を示した。
(実施例 55 )
15 cm角の衛生陶器成形素地に釉薬を塗布後、 1100〜 120 (TCで焼 成した。 さらにその上に硝酸水溶液中に分散した平均粒径 0. 01 mのァ ナ夕ーゼ酸化チタンゾルと硝酸銀水溶液との混合液を塗布した後焼成し、 衛 生陶器成形素地基材上に酸化チ夕ン薄膜を固定した。 このとき 700て未満 の焼成では茶色に呈色するが、 700°C以上で焼成すると脱色された。 銀表 面が大気中成分と反応したためと解される。 また 850°Cで焼成して衛生陶 器成形素地基材上にアナターゼ型酸化チタン薄膜を固定した試料について抗 菌性を測定すると、 光照射時、 暗時ともに試料に 3時間接触させることで、 もとの菌数の 1 0 %未満しか生菌していないことが確認され、 良好な結果を 示した。
(実施例 5 6 )
1 5 cm角の衛生陶器成形素地に釉薬を塗布後、 1 1 0 0 ~ 1 2 0 0 °Cで焼 成した。 さらにその上に平均粒径 0. 0 1 mのアナターゼ酸化チタンゾル を塗布し、 9 0 0 ~ 1 0 0 0 °Cで焼成し、 衛生陶器成形素地基材上にルチル 型酸化チタン薄膜を固定した。
この後、 その上に硝酸銀水溶液を塗布し、 紫外線を照射して酸化チタン薄 膜上に銀を析出せしめた。 さらにその上に過酸化水素水を塗布すると脱色さ れた。 また抗菌性は、 光照射時、 暗時ともに試料に 3時間接触させることで 、 もとの菌数の 1 0 %未満しか生菌していないことが確認され、 良好な結果 を示した。
次に、 ルチル型 T i02粒子と酸化スズとを混合して光触媒薄膜の緻密性と 密着性を高めるとともに活性の向上を図る点について述べる。
光触媒薄膜の形成方法は、 下記 2つの方法のいずれかによる。
1つは T i 02ゾルと酸化スズゾルを予め混合して基材表面に塗布し、 焼成 する方法である。
T i 02ゾルと酸化スズゾルの混合は、 塩基性水溶液中で行う。 両者共に良 好な分散を示すのは電気化学的にみてアル力リ側だからである。 塩基性水溶 液としてはアンモニア、 アル力リ金属またはアル力リ土類金属を含む水酸化 物があげられる力 <、 熱処理後に金属汚染物が生成しないことからアンモニア が特に好ましい。 なお、 これらの分散液にさらに有機系、 リン酸系の分散剤 、 表面処理剤、 表面活性剤を添加してもよい。
塗布方法としては、 上記混合液をスプレー ·コ—ティング、 ディップ ·コ 一ティ ング、 口一ル · コ一ティ ング、 スピン · コ一ティング、 C V D、 電子 ビーム蒸着、 スパッタなどして塗膜する方法がある力 そのいずれでもよい し、 それ以外の方法でもよい。 ただしスプレー · コ—ティング、 ディップ · コーティ ング、 ロール ' コーティ ングは C V D、 電子ビーム蒸着、 スパッ夕 などと比較して特別の設備を必要とせず、 安価に塗膜可能である利点がある o
塗布後、 焼成する前に膜を乾燥させてもよい。 乾燥は室温〜 1 o o °c程度 で行うのがよい。
焼成温度はこの条件でルチルの生成するのに充分な温度で行う。 その温度 は常圧下では酸化スズ共存下で 8 3 (TC以上である。
T i O 2と酸化スズの固溶体を形成する必要はない。 T i 02と酸化スズの固 溶体を形成するには長時間高温で保持する必要があり、 生産効率が悪くなる からである。
もう 1つの方法はルチル型 T iO 2薄膜の形成後、 酸化スズゾルをその上か ら添加し、 焼成する方法である。
この方法ではまず T iを含む出発原料を基材に塗布する。 ここで出発原料 としては T i O 2ゾル、 T iアルコキシド、 T iの硫酸塩、 T iの塩化物溶液 等を用いる。 T i02ゾルを用いる場合は、 T i02の等電点が P H 6. 5とほ ぼ中性であることから、 酸またはアルカリで分散した水溶液を用 t、て基材上 に塗布すると均一に塗布しやすい。 このとき基材が金属のときは耐食性の観 点からアルカリ分散液が好ましい。 陶磁器、 タイル、 セラミック等の場合は 酸、 アルカリいずれの分散液を用いてもよい。 酸としては硝酸、 硫酸、 塩酸 、 酢酸、 リン酸、 有機酸等があげられる。 アルカリ性水溶液としてはアンモ 二了、 アル力リ金属またはアル力リ土類金属を含む水酸化物があげられるが 、 熱処理後に金属汚染物が生成しないことからアンモニアが特に好ましい。 なお、 これらの分散液にさらに有機系、 リン酸系の分散剤、 表面処理剤、 表 面活性剤を添加してもよい。 なお出発原料の Ti 02ゾルの平均粒径は 0. 0 5 m以下、 好ましくは 0. 0 1 m以下がよい。 粒径が小さいと初期焼結 がより低温で生じるので、 低 ^、温度で剥離強度に優れた光触媒薄膜を生成し うるからである。 基材への塗布方法は、 これらをスプレー · コーティ ング、 ディップ ·コーティ ング、 ロール · コーティ ング、 スビン · コ一ティング、 C V D、 電子ビーム蒸着、 スパッタなどして塗膜する方法があるが、 そのい ずれでもよいし、 それ以外の方法でもよい。 ただしスプレー ·コ—ティ ング
、 ディ ップ. コ—ティ ング、 ロール ' コ—ティ ングは C V D、 電子ビーム蒸 着、 スパックなどと比較して特別の設備を必要とせず、 安価に塗膜可能であ る利点がある。 塗布後、 焼成する前に膜を乾燥させてもよい。 乾燥は室温〜 1 0 0 °C程度で行うのがよい。
次 、で塗布した複合部材を焼成する。 焼成はルチルの生成する温度で行う 。 その温度は常圧下では 9 0 0 °C以上である。
その後冷却固化した複合部材の上にさらに S n源となる出発原料を塗布し 、 焼成する。 S n源となる出発原料としては酸化スズゾル等がある。 酸化ス ズゾルには塩基性水溶液を用いるとよい。 酸化スズゾルは電気化学的にみて アルカリ側で安定だからである。 塩基性水溶液としてはアンモニア、 アル力 リ金属またはアル力リ土類金属を含む水酸化物があげられるが、 熱処理後に 金属汚染物が生成しないことからアンモニア力特に好ましい。 なお、 これら の分散液にさらに有機系、 リン酸系の分散剤、 表面処理剤、 表面活性剤を添 加してもよい。 基材への塗布方法は、 これらをスプレー · コーティ ング、 デ イ ッブ. コーティング、 ロール. コーティ ング、 スピン . コーティ ング、 c
V D、 電子ビーム蒸着、 スパッ夕などして塗膜する方法があるが、 そのいず れでもよいし、 それ以外の方法でもよい。 ただしスプレー · コ—ティング、 ディ ップ'コーティ ング、 ロール' コーティ ングは C V D、 電子ビーム蒸着 、 スパッタなどと比較して特別の設備を必要とせず、 安価に塗膜可能である 利点がある。 塗布後、 焼成する前に膜を乾燥させてもよい。 乾燥は室温〜 1
0 crc程度で行うのがよい。 焼成温度は、 酸化スズから有機添加物成分が蒸 発する温度であればよい。 その温度は常圧下では 3 0 0 °C以上である。 また
T iO 2と酸化スズの固溶体を形成する必要はない。 T iO 2と酸化スズの固溶 体を形成するには長時間高温で保持する必要があり、 生産効率が悪くなるか らである。
また基材表面にルチル型 T i O 2と結晶怪 0. 0 1 / m未満の酸化スズの混 合物からなる薄膜を形成し、 さらにその上に C u、 A g、 P t、 F e、 C o 、 N i、 Pd、 Cu20のうち少なくとも 1種の金属を固定化してもよい。 これらの金属は、 電子捕捉作用があり、 それによりルチル型 T i 02と結晶 径 0. 0 1 m未満の酸化スズの混合物からなる薄膜の光触媒活性が向上す 特に、 C u、 A gではそれ自体に抗菌力があり、 抗菌性に関する暗活性を 付与できるので、 光照射しなくてもある程度の抗菌力を持たせることが可能 となる。 C u、 A g、 P t、 F e、 C o、 N i、 Pd、 Cu20のうち少なく とも 1種の金属の固定化方法は、 これら金属のうちの少なくとも 1種の金属 塩水溶液を塗布し、 この後光還元法または熱処理法により固定化する。 金属塩水溶液は、 金属種が基本的に陽イオンとして溶解していればよい。 具体的には酢酸銅、 硝酸銀、 炭酸銅、 硫酸銅、 塩化第一銅、 塩化第二銅、 塩 化白金酸、 塩化パラジウム、 塩化ニッケル、 塩化コバルト、 塩化第一鉄、 塩 化第二鉄などがあげられる。
金属塩水溶液の塗布方法は、 スプレー · コーティング法またはディップ · コーティング法等があるが、 使用量が少なくてすむこと、 均一に塗布できる こと、 膜厚を制御しやすいこと、裏面に付けたくないときにそれが可能であ ることなどの理由によりスプレー ·コーティング法がより好ましい。
光還元法の場合には、 その後紫外線を含む光を照射して金属ィォンを還元 してルチル型 T i02と結晶径 0. 0 1; 未満の酸化スズの混合物からなる 薄膜の上に C u、 A g、 P t、 F e、 C o、 N i、 P d、 Cu20のうち少な くとも 1種の金属を固定化する。
紫外線を含む光を照射する光源は、紫外線を含む光を照射しうるものであ ればよく、具体的には、 紫外線ランプ、 B L Bランプ、 キセノンランプ、 水 銀灯、 蛍光灯等のいずれでもよい。 紫外線を含む光の照射方法は、 照射面に 垂直に光があたるように試料を配置するのが好ましい。 照射効率が最も優れ るからである。 試料の光源からの距離は 1 c m〜3 0 c mが好ましい。 距離 が短すぎると試料面全体にほぼ均一な照度で光が照射されず上記金属種の付 着にばらつきが生じやすくなり、 距離が長すぎると照射される光の照度が距 離の二乗に反比例して小さくなるので、 金属種を強固に付着することが困難 になる。 熱処理法の場合には、 その後金属が固着するのに充分な温度に加熱して固 定化する。 その温度は 100°C以上が好ましい。 ただし例えば 800°C以上 といった高温で処理すると金属が酸化されるので、 その場合には酸化されて も電子捕捉効果を失わない、 あるいは抗菌性を失わない金属に限定される。 すなわち Ag、 C uに限定されることになる。 Ag、 Cuの場合には高温で 焼成しても電子捕捉効果または抗菌性を失わないので以下に示す製法も可能 である。 すなわち TiO 2ゾルと酸化スズゾルを予め混合して基材表面に塗布 し、 次いで金属塩水溶液を塗布した後焼成する方法である。 この方法によれ ば、 焼成工程を 1回ですますことが可能となり、 生産性向上、 製造コスト低 減に効果がある。
以下に具体的な実施例を挙げる。
(実施例 55 )
結晶径 0. 01 mの Ti02ゾルを PH 11に調整したアンモニア水溶液 に 4〜6重量%添加して懸濁液 Aを作製した。 別の容器に結晶径 0. 003 5 の酸化スズゾルを PH 11に調整したアンモニア水溶液に 10重量% 添加して懸濁液 Bを作製した。 懸濁液 Aと懸濁液 Bを所定の割合で混合させ た後、 15 cm角のタイル基材表面にスプレー ·コ—ティング法により塗布 し、 乾燥後 85 (TCで 2時間焼成して試料を得た。 得られた試料における T i 02の結晶型はルチル型であつた。 また粉末 X線回折で T iO 2の格子定数を 測定したところ、 TiO 2格子中への酸化スズの固溶は認められなかった。 得 られた試料について光活性および耐摩耗性を評価した。
光活性については、 試料表面にヨウ化カリウム水溶液を滴下し、 次いで滴 下したヨウ化力リウム水溶液に 30分間紫外線を照射し、 照射前のヨウ化力 リゥム水溶液の PHと照射後のヨウ化力リゥム水溶液の PHとの差により評 価した。 すなわちこの方法によれば試料表面の光活性が高ければ下記に示す ような酸化還元反応がより進行するので照射後の P Hは照射前の P Hより高 くなつていく。
酸化反応: 2 I— +2 h+= I 2
還元反応: 〇2+2H20 + 4 e— =40H一 また耐摩耗性はプラスチック消しゴムを用いた摺動摩耗を行い、 外観の変 化を比較し、 評価した。 評価指標◎、 〇、 △、 Xについては前記と同様であ o
第 66図に薄膜中における酸化スズの重量比に対する耐摩耗性の変化を示 す。 酸化スズの有無にかかわらず耐摩耗性は良好な結果を示し、 ◎または〇 となった。 850°Cという高温で処理したために焼結力生じ、 膜中の粒子同 士が強固に結合したためと考えられる。
特に酸化スズが 30%をこえると◎となった。 これは出発原料の TiO 2ゾ ル (結晶径 0. 01 rn) と酸化スズゾル (結晶径 0. 0035 /zm) との 粒径比が 2以上であることから、 微粒の酸化スズ粒子が TiO 2粒子の間隙を 埋めることにより充填性が向上し、 膜がより緻密化したためと考えられる。 第 67図に薄膜中における酸化スズの重量比に対する光活性の変化を示す 。 比較のため良好な抗菌性および防臭特性を示すルチル型 Ti02に C uを担 持した試料 (R3。で 60%) の ΔΡΗおよび非常に良好な抗菌性および防臭 特性を示すアナターゼ型 Ti02試料 3。で97%) の ΔΡΗも合わせて示 した。 酸化スズを添加したルチル型 Ti02の ΔΡΗは、 アナ夕—ゼ型 Ti02 には及ばないものの、 酸化スズの添加重量比が 10%をこぇ80%未満好ま しくは 20%以上 70%以下ではルチノレ型 TiO 2に C uを担持した試料の△ P Hより大きな値を示し、 良好な光活性があることが判明した。
このことは、 平均粒径 0 · 01 以上の酸化スズを添加しても光触媒活 性が向上しないのは、 酸化スズが微粒化することによる導電帯の位置の上方 への移行力十分でないために、 活性酸素を生成するに足るバンド ·ギヤップ を酸化スズ粒子が有しないためである。 また、 10%をこえないと充分な光 活性が生じないのは、 酸化スズ粒子の量比の不足による。 一方 80%以上で 効果が弱まるのは光触媒層中の酸化スズが隣接して存在する確率が高くなる ので、 熱処理時に平均粒径 0.01 /m以上に粒成長する頻度が高くなるた めと推測される。
(比較例 56)
結晶径 0. 01 mの Ti02ゾルを PH 11に調整したアンモニア水溶液 に 4〜6重量%添加して懸濁液 Aを作製した。 別の容器に結晶径 0. 01 / mの酸化スズゾルを PH 1 1に調整したアンモニア水溶液に 10重量%添加 して懸濁液 Bを作製した。 懸濁液 Aと懸濁液 Bを所定の割合で混合させた後 、 15 c m角のタイル基材表面にスプレー ·コ—ティング法により塗布し、 乾燥後 850°Cで 2時間焼成して試料を得た。 得られた試料における Ti02 の結晶型はルチル型であつた。 また粉末 X線回折で T i 02の格子定数を測定 したところ、 Ti02格子中への酸化スズの固溶は認められなかった。 この試 料について光活性および耐摩耗性を評価した。
第 68図に薄膜中における酸化スズの重量比に対する耐摩耗性の変化を示 す。 酸化スズの有無にかかわらず耐摩耗性は良好な結果を示し〇となった。
850°Cという高温で処理したために焼結が生じ、 膜中の粒子同士が強固に 結合したためと考えられる。 ただし今回は酸化スズの添加量を增加させても それ以上耐摩耗性を向上させることはできなかった。 これは出発原料の T i 02ゾル (結晶怪 0. 01 ^m) と酸化ズズゾル (結晶径 0. 01 μπι) と の粒径比がほぼ等かつたためと考えられる。
第 69図に薄膜中における酸化スズの重量比に対する光活性の変化を示す 。 比較のため良好な抗菌性および防臭特性を示すルチル型 T i 02に C uを担 持した試料の△ P Hおよび非常に良好な抗菌性および防臭特性を示すアナ夕 —ゼ型 T i 02試料の△ P Hも合わせて示した。 酸化スズを添加したルチル型 Ti02の ΔΡΗは、 今回はアナ夕—ゼ型 Ti02試料の ΔΡΗにもルチル型 T i 02に C uを担持した試料の△ P Hにもはるかに及ばなかつた。
(実施例 57 )
結晶径 0. 01 zmの Ti02ゾルを PH 11に調整したアンモニア水溶液 に 4〜6重量%添加して懸濁液 Aを作製した。 別の容器に結晶径 0. 003 5 mの酸化スズゾルを PH 1 1に調整したアンモニア水溶液に 10重量% 添加して懸濁液 Bを作製した。 懸濁液 Aと懸濁液 Bを所定の割合で混合させ た後、 15 c m角のタイル基材表面にスプレー 'コ—ティング法により塗布 し、 乾燥後 850てで 2時間焼成して複合部材を得た。 得られた複合部材に おける T i 02の結晶型はルチル型であつた。 また薄膜中の酸化スズの重量比 は 60%であった。 また粉末 X線回折で TiO 2の格子定数を測定したところ 、 TiO 2格子中への酸化スズの固溶は認められなかった。 この複合部材にさ らに 5重量%酢酸銅水溶液をスプレー ·コ—ティング法により塗布後乾燥し 、 この後光還元 (光源は 20ヮット BLBランプ、 光源から試料までの距離 10 cm、 照射時間 1分) して試料を得た。 得られた試料について防臭特性 R 3。を評価した。
ここで R30は、 以下に示す試験により求める。 分解ガスにはメチルメル力 ブタンを用い、 メチルメルカブタン初期濃度が 2 p pmに調整された直径 2 6 cmx高さ 21 cmの円筒形容器に試料を設置する。 光照射時の防臭特性 R30 (L) は、 4 Wの BLB蛍光灯を試料から 8 cm離して光を 30分照射 し、 メチルメルカブタンの濃度減少率を算出し求める。 また暗 B の防臭特性 R30 (D) は、 光を当てずに 30分経過したときのメチルメルカプタンの濃 度減少率を算出し求める。 結果を (表 26) に示す。 なお比較のため実施 例 55および比較例 56において作製した試料 (酸化スズの重量比 60%) についても合わせて試験した。 (表 26) より Cuを添加したことにより以 下に示す効果があることが判明した。
(表 26)
( Sn 02 の重呈比はいずれも 60 % )
(表 26) より、 実施例 53の試料と比較して R3。 (L) に若干の向上がみ られた。 これは Cuによる電子捕捉効果によると考えられる。 また実施例 5 3および比較例 54の試料と比較して R3。 (D) が著しく向上した。 この暗 活性の向上は銅の触媒効果によると解される。
以上の説明により、 基材表面に光触媒薄膜を形成した部材において、 光触 媒薄膜の T i 02成分がルチル型となる焼成温度で処理することにより、 充分 な緻密性および Ti02膜強度を持たせることができる。 その際、 ルチル型 T i02以外に結晶径 0. 01 未満の酸化スズがあると、 光触媒薄膜の光触 媒活性を向上させることができる。
さらに光触媒薄膜上に C u、 Ag、 P t、 F e、 Co、 N i、 Pdのうち 少なくとも 1種の金属を固定化することにより、 電子捕捉作用により光触媒 活性をさらに向上させることができる。 産業上の利用可能性
以上のように、 本発明に係る抗菌性、 防汚製、 脱臭性や N Ox等の有害物 質を分解する光触媒機能を有する多機能材は、 壁材、 タイル、 ガラス、 鏡、 循環濾過装置例えば水循環方式の人工的な滝や噴水の敷石として用いる石材 、 或いは便器、 洗面台等の衛生陶器、 MRS A等の細菌の病院内における感 染防止用の病院内器材、 住宅設備機器、 抗カビ器材、 抗ウィルス器材等に用 いるのに適している。

Claims

請 求 の 範 囲
1 . 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部は微細な光触媒 粒子が互いにポテンシャルエネルギにて結合することで構成されていること を特徴とする光触媒機能を有する多機能材。
2. 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部は光触媒粒子が 固相焼結にて結合することで構成されていることを特徴とする光触媒機能を 有する多機能材。
3 . 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部を構成する光触 媒粒子間に形成される間隙に、 当該間隙よりも小さな粒子が充填されている ことを特徴とする光触媒機能を有する多機能材。
4. 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部を構成する光触 媒粒子は互いにポテンシャルエネルギにて結合され、 また少なくとも最表層 部を構成する光触媒粒子間に形成される間隙に、 当該間隙よりも小さな粒子 が充填されていることを特徴とする光触媒機能を有する多機能材。
5 . 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部は微細な光触媒 粒子が互いにポテンシャルエネルギにて結合され、 更に光触媒粒子表面には 電子捕捉粒子が固定化されていることを特徴とする光触媒機能を有する多機 能材。
6 . 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部は光触媒粒子が 固相焼結にて結合することで構成され、 更に光触媒粒子表面には電子捕捉粒 子が固定化されていることを特徴とする光触媒機能を有する多機能材。
7 . 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部を構成する光触 媒粒子間に形成される間隙に、 当該間隙よりも小さな粒子が充填され、 更に 光触媒粒子表面または間隙に充填された小さな粒子表面には電子捕捉粒子が 固定化されていることを特徴とする光触媒機能を有する多機能材。
8 . 基材表面に光触媒機能を有する光触媒層が直接設けられ、 この光触媒層 は少なくとも表層部が外部に露出するとともに、 この表層部を構成する光触 媒粒子は互いにポテンシャルエネルギにて結合され、 また少なくとも最表層 部を構成する光触媒粒子間に形成される間隙に、 当該間隙よりも小さな粒子 が充填され、 更に光触媒粒子表面または間隙に充填された小さな粒子表面に は電子捕捉粒子が固定化されていることを特徴とする光触媒機能を有する多 機能材。
9 . 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けられ 、 この光触媒層は表層部力 <外部に露出するとともに、 下層部がバインダ層に 埋設され、 また表層部は微細な光触媒粒子が互いにポテンシャルエネルギに て結合することで構成されていることを特徴とする光触媒機能を有する多機 能材。
1 0. 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けら れ、 この光触媒層は表層部が外部に露出するとともに、 下層部がバインダ層 に埋設され、 また表層部は光触媒粒子が固相焼結にて結合することで構成さ れていることを特徴とする光触媒機能を有する多機能材。
1 1 . 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けら れ、 この光触媒層は表層部が外部に露出するとともに、 下層部がバインダ層 に埋設され、 また表層部を構成する光触媒粒子間に形成される間隙に、 当該 間隙よりも小さな粒子が充填されていることを特徴とする光触媒機能を有す る多機能材。
1 2. 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けら れ、 この光触媒層は表層部が外部に露出するとともに、 下層部がバインダ層 に埋設され、 また表層部を構成する光触媒粒子は互 、にポテンシャルエネル ギにて結合され、 また少なくとも最表層部を構成する光触媒粒子間に形成さ れる間隙に、 当該間隙よりも小さな粒子が充填されていることを特徴とする 光触媒機能を有する多機能材。
1 3. 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けら れ、 この光触媒層は表層部が外部に露出するとともに、 下層部がバインダ層 に埋設され、 また表層部は微細な光触媒粒子が互いにポテンシャルエネルギ にて結合され、 更に光触媒粒子表面には電子捕捉粒子が固定化されているこ とを特徴とする光触媒機能を有する多機能材。
1 4. 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けら れ、 この光触媒層は表層部が外部に露出するとともに、 下層部がバインダ層 に埋設され、 また表層部は光触媒粒子が固相焼結にて結合することで構成さ れ、 更に光触媒粒子表面には電子捕捉粒子が固定化されていることを特徴と する光触媒機能を有する多機能材。
1 5. 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けら れ、 この光触媒層は表層部が外部に露出するとともに、 下層部がバインダ層 に埋設され、 また前記また表層部を構成する光触媒粒子間に形成される間隙 に、 当該間隙よりも小さな粒子が充填され、 更に光触媒粒子表面または間隙 に充填された小さな粒子表面には電子捕捉粒子が固定化されていることを特 徴とする光触媒機能を有する多機能材。 -
1 6. 基材表面にバインダ層を介して光触媒機能を有する光触媒層が設けら れ、 この光触媒層は表層部が外部に露出するとともに、 下層部がバインダ層 に埋設され、 また表層部を構成する光触媒粒子は互いにポテンシャルェネル ギにて結合され、 また少なくとも最表層部を構成する光触媒粒子間に形成さ れる間隙に、 当該間隙よりも小さな粒子が充填され、 更に光触媒粒子表面ま たは間隙に充填された小さな粒子表面には電子捕捉粒子が固定化されている ことを特徴とする光触媒機能を有する多機能材。
1 7. 請求項 1乃至 1 6に記載の光触媒機能を有する多機能材において、 前 記光触媒層を構成する光触媒粒子は結晶質であることを特徴とする光触媒機 能を有する多機能材。
1 8. 請求項 1乃至 1 6に記載の光触媒機能を有する多機能材において、 前 記光触媒層を構成する光触媒粒子はアナターゼ型 T i02であることを特徴と する光触媒機能を有する多機能材。
1 9. 請求項 1乃至 1 6に記載の光触媒機能を有する多機能材において、 前 記光触媒層を構成する光触媒粒子はルチル型 T i 02であることを特徴とする 光触媒機能を有する多機能材。
2 0. 請求項 1乃至 1 6に記載の光触媒機能を有する多機能材において、 前 記光触媒層の表層部の気孔率は 2 0 %未満であることを特徴とする光触媒機 能を有する多機能材。
2 1 . 請求項 1 9に記載の光触媒機能を有する多機能材において、 前記光触 媒層の表層部の開気孔の最大幅は 0. 0 4 m以下であることを特徴とする 光触媒機能を有する多機能材。
2 2. 請求項 1乃至 1 6に記載の光触媒機能を有する多機能材において、 前 記光触媒層の表層部の気孔率は 1 0 %以上 4 0 %未満であることを特徴とす る光触媒機能を有する多機能材。
2 3. 請求項 1乃至 1 6に記載の光触媒機能を有する多機能材において、 前 記光触媒層を構成する粒子の怪は、 0 . 1 z^ m未満であることを特徴とする 光触媒機能を有する多機能材。
2 4. 請求項 1乃至 1 6に記載の光触媒機能を有する多機能材において、 前 記光触媒層を構成する粒子の径は 0 . 1 /z m以上、 光触媒層の厚さは 0 . 5 μ m以上且つ光触媒層を構成する粒子間にはネック部が形成されていることを 特徴とする光触媒機能を有する多機能材。
2 5. 請求項 3、請求項 4、 請求項 7、請求項 8、 請求項 1 1、 請求項 1 2 、 請求項 1 5または請求項 1 6に記載の光触媒機能を有する多機能材におい て、前記光触媒層の表層部の気孔率は 1 0 %以上 4 0 %未満で、 この気孔内 に粒径 0. 1 未満の粒子が担持されていることを特徴とする光触媒機能 を有する多機能材。
2 6. 請求項 9乃至請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記基材表面に形成されるバインダ層は非晶質層であり、 この非晶質バ ィンダ層と光触媒層はその間に連続的に双方の成分の濃度が変化する中間層 を有することを特徴とする光触媒機能を有する多機能材。
2 7. 請求項 2 6に記載の光触媒機能を有する多機能材において、 前記中間 層の厚さを光触媒層の厚さの 1 Z 3以上としたことを特徴とする光触媒機能 を有する多機能材。
2 8. 請求項 9乃至請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記基材は低融点材料からなり、 この低融点基材の表面に形成されるバ ィンダ層は基材ょり融点の高い材料からなることを特徴とする光触媒機能を 有する多機能材。
2 9. 請求項 2 8に記載の光触媒機能を有する多機能材において、 前記光触 媒層はアルコキシドを出発材料として形成され、 また前記低融点基材の軟化 点は、 当該アルコキシドの結晶化温度より高く、 また前記中間層の軟化点は アルコキシドの結晶化温度と同等かそれよりも高いことを特徴とする光触媒 機能を有する多機能材。
3 0. 請求項 3、 請求項 4、 請求項 7、 請求項 8、 請求項 1 1、 請求項 1 2 、 請求項 1 5または請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記光触媒粒子間に形成される間隙に充填される粒子の粒径は 0. 0 1 m未満であることを特徴とする光触媒機能を有する多機能材。
3 1 . 請求項 5、 請求項 6、 請求項 7、 請求項 8、 請求項 1 3、 請求項 1 4 、 請求項 1 5または請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記電子捕捉粒子は Cu、 Ag、 Zn、 Fe、 Co、 N i、 Pd、 Cu20、 P t のうちの少なくとも一種であることを特徴とする光触媒機能を有する多機能 材。
3 2. 請求項 3、 請求項 4、 請求項 7、請求項 8、 請求項 1 1、 請求項 1 2 、 請求項 1 5または請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記光触媒層の表層部の気孔率は 1 0 %以上であることを特徴とする光 触媒機能を有する多機能材。
3 3. 請求項 3、 請求項 4、 請求項 7、 請求項 8、 請求項 1 1、 請求項 1 2 、 請求項 1 5または請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記光触媒層の表層部の気孔率は 1 0 %以上であり、 且つ前記光^媒層 の表層部には Cu、 Ag、 Zn、 F e、 C o、 N i、 Pd、 C u20、 P tのうちの少 なくとも一種の金属が固定化されていることを特徴とする光触媒機能を有す る多機能材。
3 4. 請求項 1乃至請求項 8に記載の光触媒機能を有する多機能材において 、 前記基材は釉薬、 無機ガラス、 熱可塑性樹脂、 半田等の熱可塑性材料から なるとともにシート状をなすことを特徴とする光触媒機能を有する多機能材
3 5. 請求項 9乃至請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記バインダ層は釉薬、 無機ガラス、 熱可塑性樹脂、 半田等の熱可塑性 材料からなることを特徴とする光触媒機能を有する多機能材。
3 6. 請求項 3、請求項 4、 請求項 7、 請求項 8、 請求項 1 1、 請求項 1 2 、 請求項 1 5または請求項 1 6に記載の光触媒機能を有する多機能材におい て、 前記光触媒粒子間に形成される間隙に充填される粒子の平均粒径は、 光 触媒粒子の平均粒径の 4 5以下であることを特徴とする光触媒機能を有す る多機能材。
3 7. 請求項 3 6に記載の光触媒機能を有する多機能材において、 前記光触 媒粒子の間隙に充填される粒子の光触媒粒子と充填粒子の合計量に対する量 は、 モル比で 1 0 %以上 6 0 %以下であることを特徴とする光触媒機能を有 する多機能材。
3 8. 請求項 3 6に記載の光触媒機能を有する多機能材において、 前記光触 媒粒子の間隙に充填される粒子を構成する物質の蒸気圧は光触媒粒子を構成 する物質の蒸気圧よりも高く、 光触媒粒子の間隙に充填される粒子は光触媒 粒子間のネック部に凝集していることを特徴とする光触媒機能を有する多機 能材。
39. 請求項 38に記載の光触媒機能を有する多機能材において、 前記光触 媒粒子の間隙に充填される粒子は酸化スズであることを特徴とする光触媒機 能を有する多機能材。
40. 請求項 36乃至請求項 37に記載の光触媒機能を有する多機能材にお いて、 前記光触媒粒子の間隙に充填される粒子は、 Ag、 Ag20、 Cu、 Cu2 0、 Zn、 Fe、 Pt、 Co、 Pd、 Cu20、 Niのうちの少なくとも一種を含む ことを特徴とする光触媒機能を有する多機能材。
41. 請求項 30に記載の光触媒機能を有する多機能材において、 前記光触 媒粒子はルチル型 Ti02であり、光触媒粒子の間隙に充填される酸化スズ粒 子の結晶径は 0. 01 / m未満であることを特徴とする光触媒機能を有する 多機能材。
42. 請求項 30に記載の光触媒機能を有する多機能材において、 前記光触 媒粒子はルチル型 Ti02であり、 光触媒粒子の間隙に充填される酸化スズ粒 子の結晶怪は 0. 01 m未満であり、 更に光触媒層の上に Cu、 Ag、 Fe 、 Co、 Pt、 Ni、 Pd、 Cu20のうちの少なくも一種であることを特徴とす る光触媒機能を有する多機能材。
43. 請求項 30に記載のの光触媒機能を有する多機能材において、 前記酸 化スズの重量比が 10%を超え 80%未満であることを特徴とする光触媒機 能を有する多機能材。
44. 請求項 37乃至請求項 39に記載の光触媒機能を有する多機能材にお いて、 前記光触媒粒子の間隙に充填される粒子は、 光触媒活性を有すること を特徴とする光触媒機能を有する多機能材。
45. 請求項 2、 請求項 6、 請求項 10または請求項 14に記載の光触媒機 能を有する多機能材において、 固相焼結にて結合する光触媒粒子はアナター ゼ型の酸化チタン粒子であり、 酸化チタン粒子の間隔は焼結の前後において 略等しく、 且つ酸化チタン粒子間のネック部には酸化チタンよりも蒸気圧が 高 、物質が凝縮していることを特徴とする光触媒機能を有する多機能材。
46. 請求項 5、請求項 6、 請求項 7、 請求項 8、 請求項 13、 請求項 14 、 請求項 15または請求項 16に記載の光触媒機能を有する多機能材におい て、 前記光触媒層はルチル型 Ti02薄膜からなり、 前記電子捕捉粒子は Cu 、 Ag、 Fe、 Co、 Pt、 Ni、 Pd、 Cu20のうちの少なくも一種であること を特徴とする光触媒機能を有する多機能材。
47. 請求項 46に記載の光触媒機能を有する多機能材において、 前記ルチ ル型 Ti02薄膜は 10%以上の気孔率を有する多孔質体であることを特徴と する光触媒機能を有する多機能材。
48. 請求項 46に記載の光触媒機能を有する多機能材において、 前記ルチ ル型 Ti02薄膜の厚さは 0. 1 m以上 0. 9 以下であることを特徴と する光触媒機能を有する多機能材。
49. 請求項 46に記載の光触媒機能を有する多機能材において、 前記 Cu 、 Ag、 Fe、 Co、 Pt、 Ni、 Pd、 Cu20のうちの少なくも一種の粒子径は
T i 02薄膜の気孔径よりも小さいことを特徴とする光触媒機能を有する多機 能材。
50. 請求項 46乃至請求項 49に記載の光触媒機能を有する多機能材にお いて、 前記 Ti02薄膜に固定化される物質は C uまたは Cu20の少なくとも 一種であり、 前記物質の TiO 2薄膜の単位面積当りの固定化量は 0. 1 2 μ g/c m2以上 1. 2 g/ cm2以下であることを特徴とする光触媒機能を 有する多機能材。
5 5 1. 請求項 46乃至請求項 49に記載の光触媒機能を有する多機能材にお 、て、 前記 T iO 2薄膜に固定化される物質は C uまたは Cu20の少なくとも 一種であり、 前記物質の TiO 2薄膜の単位面積当りの固定化量は 0. 7 g / c m 2以上であることを特徴とする光触媒機能を有する多機能材。
10 5 2. 請求項 46乃至請求項 49に記載の光触媒機能を有する多機能材にお いて、 前記 Ti02薄膜に固定化される金属は A gであり、 この A gの Ti02 薄膜の単位面積当りの固定化量は 0. 05 g/cm2以上 1 β gZcm2以 下であることを特徴とする光触媒機能を有する多機能材。
53. 請求項 1乃至請求項 52に記載の多機能材において、 この多機能材は、 水 循環方式の人工的な滝や噴水の敷石として用いられるタイル、 石材であ
ることを特徴とする光触媒機能を有する多機能材。
15 54. 基材表面に光触媒層を形成した後、 この光触媒層の表面に金属アルコ キシドまたは有機金属塩を塗布し、 次いで乾燥熱処理することで光触媒粒子 間に形成される間隙に、 当該間隙よりも小さな粒子を充填するようにしたこ とを特徴とする光触媒機能を有する多機能材の製造方法。
20 55. 基材表面に光触媒層を形成した後、 この光触媒層の表面に金属アルコ キシドまたは有機金属塩を塗布し、 次いで乾燥熱処理することで光触媒粒子 間に形成される間隙に、 当該間隙よりも小さな粒子を充填し、 この後 Cu、 Ag、 Zn、 Fe、 Co、 Ni、 Pd、 Cu20、 P tのうちの少なくとも一種の金 属イオンを含む水溶液を塗布し、 光還元により金属粒子を析出固定化するよ
25 うにしたことを特徴とする光触媒機能を有する多機能材の製造方法。
5 6. 熱可塑性基材上に光触媒粒子からなる光触媒層を形成し、 この後、 前 記熱可塑性基材を軟化させて光触媒層の下層の一部を熱可塑性基材に埋設し 、 次いで固化することを特徴とする光触媒機能を有する多機能材の製造方法
5 7. 光触媒粒子の間隙にこの間隙よりも粒径の小さな粒子が充填され、 光 触媒粒子同士が互 t、に結合された光触媒機能を有する多機能材を製造する方 法であって、 この方法は、 熱可塑性基材上に光触媒粒子と前記粒径の小さな 粒子をゾルまたは前駆体或いは懸濁液の状態で混合した混合物を塗布して光 触媒層を形成し、 この後、 前記熱可塑性基材を軟化させて光触媒層の下層の 一部を熱可塑性基材に埋設し、 次いで固化することを特徴とする光触媒機能 を有する多機能材の製造方法。
5 8. 光触媒粒子の間隙にこの間隙よりも粒径の小さな金属粒子が充填され 、 光触媒粒子同士が互いに結合された光触媒機能を有する多機能材を製造す る方法であって、 この方法は、 熱可塑性基材上に光触媒粒子からなる光触媒 層を形成し、 この後、 前記熱可塑性基材を钦化させて光触媒層の下層の一部 を熱可塑性基材に埋設し、次いで熱可塑性基材を固化せしめ、更に光触媒層 に前記粒径の小さな金属粒子を含む溶液を塗布し、 熱処理することで前記粒 径の小さな金属粒子を光触媒粒子に固定化することを特徴とする光触媒機能 を有する多機能材の製造方法。
5 9. 光触媒粒子の間隙にこの間隙よりも粒径の小さな金属粒子が充填され 、 光触媒粒子同士が互 、に結合された光触媒機能を有する多機能材を製造す る方法であって、 この方法は、 熱可塑性基材上に光触媒粒子からなる光触媒 層を形成し、 この後、 前記熱可塑性基材を軟化させて光触媒層の下層の一部 を熱可塑性基材に埋設し、 次いで熱可塑性基材を固化せしめ、 更に光触媒層 に前記粒径の小さな金属粒子のィォンを含む溶液を塗布し、 この後紫外線を 含む光を照射して金属ィォンを還元して光触媒粒子に固定化することを特徴 とする光触媒機能を有する多機能材の製造方法。
60. 光触媒粒子の間隙にこの間隙よりも粒径の小さな金属粒子が充填され 、 光触媒粒子同士が互いに結合された光触媒機能を有する多機能材を製造す る方法であって、 この方法は、 熱可塑性基材上に光触媒粒子からなる光触媒 層を形成し、 この光触媒層に前記粒径の小さな金属粒子のイオンを含む溶液 を塗布し、 この後紫外線を含む光を照射して金属ィォンを還元して光触媒粒 子に固定化し、 更に前記熱可塑性基材を軟化させて光触媒層の下層の一部を 熱可塑性基材に埋設し、 、で熱可塑性基材を固化せしめることを特徴とす る光触媒機能を有する多機能材の製造方法。
61. 請求項 59または請求項 60に記載の多機能材の製造方法において、 前記光触媒粒子の間隙に充填される金属粒子のイオンを含む溶液の金属種の 少なくとも一種を Cu とし、 Cu担持量を 0. Ί μ g/cm2 以上 10 μ g ノ cm2 以下とすることを特徴とする光触媒機能を有する多機能材の製造方 法。
62. 請求項 59または請求項 60に記載の多機能材の製造方法において、 前記光触媒粒子の間隙に充填される金属粒子のイオンを含む溶液の金属種の 少なくとも一種を Ag とし、 Ag担持量を 0. 05 i gZcm2 以上 l // g ノ c m 2 以下とすることを特徴とする光触媒機能を有する多機能材の製造方
63. 請求項 59または請求項 60に記載の多機能材の製造方法において、 前記紫外線を含む光を照射して金属ィォンを還元して光触媒粒子に固定化す る前に、 前記金属粒子のイオンを含む溶液を塗布された光触媒層を乾燥する ことを特徴とする光触媒機能を有する多機能材の製造方法。
6 4. 請求項 6 3に記載の多機能材の製造方法において、 前記金属粒子のィ ォンを含む溶液の溶媒がエタノールであることを特徴とする光触媒機能を有 する多機能材の製造方法。
6 5. 請求項 5 6乃至請求項 6 4に記載の多機能材の製造方法において、 熱 可塑性基材上に光触媒層を形成するために、 光触媒粒子のゾルまたは前駆体 或いは懸濁液をスプレー · コーティングする際の熱可塑性基材の温度を 2 0 °C以上 8 0 °C未満とすることを特徴とする光触媒機能を有する多機能材の製 造方法。
6 6. 請求項 5 6乃至請求項 6 5に記載の多機能材の製造方法において、 こ の製造方法は光触媒粒子を熱可塑性基材上に塗布する工程の前工程として分 散工程を備え、 この分散工程における光触媒粒子となるべきゾルまたは前駆 体を溶液中に分散させるための分散剤には、 熱可塑性基材を軟化せしめるた めの熱処理温度より低温で気化する成分のみを使用することを特徴とする光 触媒機能を有する多機能材の製造方法。
6 7. 請求項 5 6乃至請求項 6 5に記載の多機能材の製造方法において、 こ の製造方法は光触媒粒子となるべき酸化チタンゾルを水熱法、 硫酸法により 作製し、 またこの酸化チタンゾルに対し、 分散剤、 界面活性剤等の表面処理 剤を添加する前に、 金属微粒子を酸化チタンゾルの粒子表面に固定化させる ことを特徴とする光触媒機能を有する多機能材の製造方法。
6 8. 基材表面に熱可塑性材料からなるバインダ層を形成し、 次いで、 この バインダ層の上に光触媒粒子からなる光触媒層を形成し、 この後、 前記バイ ンダ層を钦化させて光触媒層の下層の一部をバインダ層に埋設し、 次いで固 化することを特徴とする光触媒機能を有する多機能材の製造方法。
6 9. 熱可塑性材料からなるシート状バインダ層の上に光触媒粒子からなる 光触媒層を形成し、 このシート状バインダ層を基材表面に載置または貼着し 、 この後、 前記バインダ層を軟化させて光触媒層の下層の一部をバインダ層 に埋設し、 次 、で固化することを特徴とする光触媒機能を有する多機能材の 製造方法。
7 0. 基材表面にバインダ層を形成し、 その上にバインダ層に下層の一部が 埋設されるように光触媒層を形成後、 3 9 0 n m以下の波長の光を 1 . 7 m W/ c m 2以上含む光を照射して、 光触媒表面に付着した表面処理剤を優先 的に分解、 気化させて光触媒粒子を外気に露出させることを特徴とする光触 媒機能を有する多機能材の製造方法。
7 1 . 請求項 7 0に記載の光触媒機能を有する多機能材の製造方法において 、 前記バインダ層は软化温度が 3 0 0 未満の熱可塑性材料からなり、 前記 バインダ層を基材に塗布し、 さらにその上に光触媒粒子を塗布後、 基材の軟 化温度よりも低く、 バインダ層の軟化温度よりも高い温度で熱処理すること によりバインダを軟化させて、 バインダ層に光触媒層の下層の一部が埋設さ れるように光触媒層を形成することを特徴とする光触媒機能を有する多機能 材の製造方法。
7 2. 請求項 7 0に記載の光触媒機能を有する多機能材の製造方法において 、 前記バインダ層は熱硬化性材料からなり、 前記バインダ層を硬化剤と混合 して基材に塗布し、 熱処理または放置により增粘させた後に光触媒粒子を塗 布することによりバインダ層に ¾½媒層の下層の一部が埋設されるようにし 、 この後熱処理により硬化させることを特徴とする光触媒機能を有する多機 能材の製造方法。
7 3. 基材表面に、 主として光触媒粒子と熱硬化性樹脂からなる層を形成後 、 3 9 0 n m以下の波長の光を 1 . 7 mWZ c m 2以上含む光を照射して、 光触媒粒子上の熱硬化性樹脂を優先的に分解、 気化させて光触媒粒子を外気 に露出させることを特徴とする光触媒機能を有する多機能材の製造方法。
7 4. 基材表面に、 熱硬化性樹脂層または光硬化性樹脂を介して主として光 触媒粒子と熱硬化性樹脂からなる層を形成後、 3 9 0 n m以下の波長の光を
1 . 7 mW/ c m2以上含む光を照射して、光触媒粒子上の熱硬化性樹脂を 優先的に分解、 気化させて光触媒粒子を外気に露出させることを特徴とする 光触媒機能を有する多機能材の製造方法。
7 5. 請求項 7 3または請求項 Ί 4に記載の光触媒機能を有する多機能材の 製造方法において、 前記光触媒粒子と熱硬化性樹脂からなる層中の熱硬化性 樹脂は、 シロキサン樹脂、 フッ素樹脂の少なくとも 1種からなることを特徴 とする光触媒機能を有する多機能材の製造方法。
7 6. 請求項 7 0乃至請求項 7 4に記載の光触媒機能を有する多機能材の製 造方法において、光触媒機能を有する多機能材の表面には間隙を形成し、 こ の間隙にその間隙よりも小さな粒子を充填することを特徴とする光触媒機能 を有する多機能材の製造万法。
7 7. 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であつて、 この 方法は、 基材表面に熱可塑性材料からなるバインダ層を形成し、 次いで、 こ のバインダ層の上に光触媒粒子と前記粒径の小さな粒子をゾルまたは前駆体 或いは懸濁液の状態で混合した混合物を塗布して光触媒層を形成し、 この後 、 前記バインダ層を钦化させて光触媒層の下層の一部をバインダ層に埋設し 、 次いで固化することを特徴とする光触媒機能を有する多機能材の製造方法
7 8. 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であって、 この 方法は、 熱可塑性材料からなるシート状バインダ層の上に、 光触媒粒子と前 記粒径の小さな粒子をゾルまたは前駆体或いは懸濁液の状態で混合した混合 物を塗布して光触媒層を形成し、 この光触媒層を形成したシート状バインダ 層を基材表面に載置または貼着し、 この後、 前記バインダ層を钦化させて光 触媒層の下層の一部をバインダ層に埋設し、 次レ、で固化することを特徴とす る光触媒機能を有する多機能材の製造方法。
7 9 . 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であって、 この 方法は、 基材上に熱可塑性材料からなるバインダ層を形成し、 次いで、 この バインダ層の上に光触媒粒子からなる光触媒層を形成し、 この後、 前記バイ ンダ層を軟化させて光触媒層の下層の一部をバインダ層に埋設し、 次いでバ ィンダ層を固化せしめ、 更に光触媒層に前記粒径の小さな粒子を含む溶液を 塗布し、 熱処理することで前記粒径の小さな粒子を光触媒粒子に固定化する ことを特徴とする光触媒機能を有する多機能材の製造方法。
8 0. 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であつて、 この 方法は、 熱可塑性材料からなるシ一ト状バインダ層の上に光触媒粒子からな る光触媒層を形成し、 次いでこの光触媒層を形成したシ一ト状バインダ層を 基材表面に載置または貼着し、 この後、前記バインダ層を軟化させて光触媒 層の下層の一部をバインダ層に埋設し、 次いでバインダ層を固化せしめ、 更 に光触媒層に前記粒径の小さな粒子を含む溶液を塗布し、 熱処理することで 前記粒径の小さな粒子を光触媒粒子に固定化することを特徴とする光触媒機 能を有する多機能材の製造方法。
8 1 . 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であつて、 この 方法は、 基材表面に熱可塑性材料からなるバインダ層を形成し、 次いで、 こ のバインダ層の上に光触媒粒子からなる光触媒層を形成し、 この後、 前記バ ィンダ層を軟化させて光触媒層の下層の一部をバインダ層に埋設し、 次いで バインダ層を固化せしめ、 更に光触媒層に前記粒径の小さな金属粒子のィォ ンを含む溶液を塗布し、 この後紫外線を含む光を照射して金属ィォンを還元 して光触媒粒子に固定化することを特徴とする光触媒機能を有する多機能材 の製造方法。
8 2 . 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であって、 この 方法は、 熱可塑性材料からなるシ一ト状バインダ層の上に光触媒粒子からな る光触媒層を形成し、 次いでこの光触媒層を形成したシート状バインダ層を 基材表面に載置または貼着し、 この後、前記バインダ層を軟化させて光触媒 層の下層の一部をバインダ層に埋設し、 次いでバインダ層を固化せしめ、 更 に光触媒層に前記粒径の小さな金属粒子のイオンを含む溶液を塗布し、 この 後紫外線を含む光を照射して金属ィォンを還元して光触媒粒子に固定化する ことを特徴とする光触媒機能を有する多機能材の製造方法。
8 3 . 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であって、 この 方法は、 基材表面に熱可塑性材料からなるバインダ層を形成し、 次いで、 こ のバインダ層の上に光触媒粒子からなる光触媒層を形成し、 この光触媒層に 前記粒径の小さな金属粒子のィォンを含む溶液を塗布し、 この後紫外線を含 む光を照射して金属ィォンを還元して光触媒粒子に固定化し、更に前記バイ ンダ層を钦化させて光触媒層の下層の一部をバインダ層に埋設し、 次いでバ ィンダ層を固化せしめることを特徴とする光触媒機能を有する多機能材の製 造方法。
8 4 . 互いに結合された光触媒粒子の間隙にこの間隙よりも粒径の小さな粒 子が充填された光触媒機能を有する多機能材を製造する方法であって、 この 方法は、 熱可塑性材料からなるシート状バインダ層の上に光触媒粒子からな る光触媒層を形成し、 この光触媒層に前記粒径の小さな金属粒子のイオンを 含む溶液を塗布し、 この後紫外線を含む光を照射して金属ィォンを還元して 光触媒粒子に固定化し、 更に光触媒層を形成したシート状バインダ層を基材 表面に載置または貼着し、 この後、 前記バインダ層を軟化させて光触媒層の 下層の一部をバインダ層に埋設し、 次いでバインダ層を固化せしめることを 特徴とする光触媒機能を有する多機能材の製造方法。
8 5. 請求項 8 3または請求項 8 4に記載の光触媒機能を有する多機能材 の製造方法において、 前記光触媒粒子は Z nOであり、 この光触媒粒子の間 隙に充填される金属粒子は Agまたは Ag20であることを特徴とする光触媒 機能を有する多機能材の製造方法。
8 6. 請求項 7 7乃至請求項 8 5に記載の光触媒機能を有する多機能材の 製造方法において、 前記光触媒粒子の間隙に充填される金属のイオンとの間 で不溶性で無色または白色の塩を形成する塩類を含む溶液を、 光触媒層に接 触しせしめ、 この後紫外線を含む光を照射するようにしたことを特徴とする 光触媒機能を有する多機能材の製造方法。
8 7. 請求項 6 8乃至請求項 8 5に記載の光触媒機能を有する多機能材の製 造方法において、前記光触媒粒子は T i02であり、 バインダ層を軟化せしめ るための熱処理温度は 8 0 0 °C以上 1 0 0 0 °C以下であることを特徴とする 光触媒機能を有する多機能材の製造方法。
8 8. 請求項 8 6に記載の光触媒機能を有する多機能材の製造方法において 、 前記光触媒粒子は T iO 2であり、 この光触媒粒子の間隙に充填される金属 粒子は Agであり、 この金属のイオンとの間で不溶性で無色または白色の塩 を形成する塩類を含む溶液は K I、 K C 1、 F e C l3等のハロゲン化物水溶液 であることを特徴とする光触媒機能を有する多機能材の製造方法。
8 9 . 請求項 6 8乃至請求項 8 8に記載の光触媒機能を有する多機能材の製 造方法において、 前記バインダ層は基材の軟化温度よりも低い軟化温度を有 するものを選定し、 このバインダ層の軟化温度よりも 2 0。Cを越え 3 2 0 °C 未満の範囲で且つ基材の軟化温度よりも低い雰囲気温度で加熱処理すること を特徴とする光触媒機能を有する多機能材の製造方法。
9 0. 請求項 6 8乃至請求項 8 9に記載の光触媒機能を有する多機能材の製 造方法において、 この製造方法は光触媒粒子をバインダ層上に塗布する工程 の前工程として分散工程を備え、 この分散工程における光触媒粒子となるベ きゾルまたは前駆体或いは懸濁液を溶液中に分散させるための分散剤には、 バインダ層を軟化せしめるための熱処理温度より低温で気化する成分のみを 使用することを特徴とする光触媒機能を有する多機能材の製造方法。
9 1 . 請求項 6 8乃至請求項 9 0に記載の光触媒機能を有する多機能材の製 造方法において、前記光触媒粒子の比重を 51、 前記バインダ層の比重を 5 b とした場合、 0≤5 t— ( b≤3 . 0であることを特徴とする光触媒機能を有 する多機能材の製造方法。
9 2. 基材表面にバインダ層を形成し、 次いで表層部がバインダ層から露出 し下層部がバインダ層に埋設される光触媒層を形成した後、 この光触媒層の 表面に金属アルコキシドまたは有機金属塩を塗布し、 次いで乾燥熱処理する ことで光触媒粒子間に形成される間隙に、 当該間隙よりも小さな粒子を充填 するようにしたことを特徴とする光触媒機能を有する多機能材の製造方法。
9 3. 基材表面にバインダ層を形成し、 次いで表層部がバインダ層から露出 し下層部がバインダ層に埋設される光触媒層を形成した後、 この光触媒層の 表面に金属アルコキシドまたは有機金属塩を塗布し、 次いで乾燥熱処理する ことで光触媒粒子間に形成される間隙に、 当該間隙よりも小さな粒子を充填 し、 この後、 Ni、 Pd、 Ptのうちの少なくとも一種の金属イオンを含む水 溶液を塗布し、 光還元により金属粒子を析出固定化するようにしたことを特 徴とする光触媒機能を有する多機能材の製造方法。
94. 請求項 54、 請求項 55、 請求項 92または請求項 93に記載の光触 媒機能を有する多機能材の製造方法において、 前記光触媒層の表面に塗布す る金属アルコキシドは Tiアルコキシドであり、 この Tiアルコキシドの塗布 量は Ti02に換算して 10^ £ノじ1112以上1 O O/zgZcm2であることを 特徴とする光触媒機能を有する多機能材の製造方法。
95. 請求項 54、 請求項 55、 請求項 92または請求項 93に記載の光触 媒機能を有する多機能材の製造方法において、 前記光触媒層の表面に塗布す る金属アルコキシドは Tiアルコキシドであり、 この Tiアルコキシドの熱処 理温度は 400て以上 800°C以下であることを特徴とする光触媒機能を有 する多機能材の製造方法。
96. 請求項 54、 請求項 55、 請求項 92または請求項 93に記載の光触 媒機能を有する多機能材の製造方法において、前記光触媒層の表面に塗布す る金属アルコキシドは Tiアルコキシドであり、 塗布液中の Tiアルコキシド に対する塩酸量は 1重量%以上 10重量%以下であることを特徴とする光触 媒機能を有する多機能材の製造方法。
97. 酸化チタンのゾルと酸化チタンよりも蒸気圧が高い物質のゾルとを混 合し、 この混合ゾルを基板上に塗布した後に、 ルチル型への相転移温度以下 の温度で焼結するようにしたことを特徴とする光触媒機能を有する多機能材 の製造方法。
98. 基材表面に光触媒活性を有する粒子と有色の金属微粒子を固定するェ 程、 前記金属微粒子と溶液または気体を反応させて少なくとも金属微粒子表 面に無色または白色の塩を形成する工程からなることを特徴とする光触媒機 能を有する多機能材の製造方法。
9 9. 請求項 9 8に記載の光触媒機能を有する多機能材の製造方法において 、 前記金属粒子と反応させる液体は、 ハロゲン化塩溶液、 過酸化水素水、 ォ ゾン水としたことを特徴とする光触媒機能を有する多機能材の製造方法。
1 0 0. 請求項 9 8に記載の光触媒機能を有する多機能材の製造方法におい て、 前記金属粒子と反応させる気体は、 酸素、 オゾンとしたことを特徴とす る光触媒機能を有する多機能材の製造方法。
1 0 1 . 請求項 9 8に記載の光触媒機能を有する多機能材の製造方法におい て、 前記金属粒子と反応させる液体または気体は、 酸化剤であることを特徴 とする光触媒機能を有する多機能材の製造方法。
1 0 2. 基板表面にルチル型 T iO 2薄膜を形成し、 次いでこの薄膜上に N i 、 Pd、 P tのうち少なくとも一種の金属塩の水溶液または金属塩のエタノー ル溶液を塗布し、 この後、紫外線を含む光を照射して金属イオンを還元して ルチル型 T i 02薄膜に金属を固定化するようにしたことを特徴とする光触媒 機能を有する多機能材の製造方法。
1 0 3. 請求項 1 0 2に記載の光触媒薄膜の形成方法において、 前記ルチル 型 T i 02薄膜は 1 0 %以上の気孔率を有する多孔質体であることを特徴とす る光触媒機能を有する多機能材の製造方法。
1 0 4. 請求項 1 0 2に記載の光触媒薄膜の形成方法において、 前記紫外線 を含む光を照射して行なう金属イオンの還元は、 塗布した金属塩の水溶液ま たは金属塩のェ夕ノ一ル溶液を乾燥せしめた後に行なうようにしたことを特 徴とする光触媒機能を有する多機能材の製造方法。
105. 請求項 102に記載の光触媒薄膜の形成方法において、 前記ルチル 型 Ti02薄膜は基板表面にバインダ層を介して形成することを特徴とする光 触媒機能を有する多機能材の製造方法。
106. 請求項 105に記載の光触媒薄膜の形成方法において、 前記ルチル 型 Ti02薄膜の厚みを 0. l /m〜0. 9 としたことを特徴とする光触 媒機能を有する多機能材の製造方法。
107. 基板表面にルチル型 Ti02薄膜を形成し、 次いでこの薄膜上に Cu 塩水溶液を塗布し、 この後、 紫外線を含む光を照射して Cuイオンを還元し てルチル型 Ti02薄膜に Cu金属を 1. 2^ gZcm2〜: L O gZcm2固 定化するようにしたことを特徴とする光触媒機能を有する多機能材の製造方 法。
108. 基板表面にルチル型 Ti02薄膜を形成し、 次いでこの薄膜上に Ag 塩水溶液を塗布し、 この後、 紫外線を含む光を照射して Agイオンを還元し てルチル型 Ti02薄膜に Ag金属を 0. ノ cm2 〜l gZcm2固定 化するようにしたことを特徴とする光触媒機能を有する多機能材の製造方法
PCT/JP1994/002077 1993-10-12 1994-12-09 Substance multifonction a effet photocatalytique et procede de production WO1995015816A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES95902937T ES2191043T3 (es) 1993-12-10 1994-12-09 Material multifuncional dotado de funcion fotocatalitica y metodo para producirlo.
US08/501,110 US5853866A (en) 1993-12-10 1994-12-09 Multi-functional material with photocalytic functions and method of manufacturing same
EP95902937A EP0684075B1 (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
AU11998/95A AU1199895A (en) 1993-12-10 1994-12-09 Multi-functional material having photo-catalytic function and production method therefor
AT95902937T ATE235314T1 (de) 1993-12-10 1994-12-09 Multifunktionelles material mit photokatalytischer funktion und verfahren zur dessen herstellung
CA 2155822 CA2155822C (en) 1993-12-10 1994-12-09 Multi-functional material with photocatalytic functions and method of manufacturing same
DE69432348T DE69432348T8 (de) 1993-12-10 1994-12-09 Multifunktionelles material mit photokatalytischer funktion und verfahren zur dessen herstellung
US09/167,323 US6268050B1 (en) 1993-10-12 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,327 US6294247B1 (en) 1993-10-12 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,324 US6027797A (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
HK98113672A HK1017810A1 (en) 1993-12-10 1998-12-16 Multi-functional material having photo-catalytic function and production method therefor

Applications Claiming Priority (30)

Application Number Priority Date Filing Date Title
JP5/310165 1993-12-10
JP5310165A JPH07155598A (ja) 1993-12-10 1993-12-10 光触媒被膜及び光触媒被膜の形成方法
JP31306193 1993-12-14
JP5/313062 1993-12-14
JP5/313061 1993-12-14
JP31306293 1993-12-14
JP5348073A JPH07191011A (ja) 1993-12-24 1993-12-24 光触媒薄膜の活性測定方法及び活性測定フィルム
JP5/348073 1993-12-24
JP14347394 1994-06-24
JP6/143473 1994-06-24
JP25424294A JP3309591B2 (ja) 1993-12-28 1994-09-22 光触媒機能を有する多機能材
JP6/254242 1994-09-22
JP27191294 1994-09-29
JP6/271912 1994-09-29
JP6274165A JPH08103488A (ja) 1994-09-30 1994-09-30 光触媒機能を有する多機能材
JP6/274165 1994-09-30
JP6/282382 1994-10-11
JP28238294A JP3225761B2 (ja) 1994-10-11 1994-10-11 光触媒機能を有する多機能材
JP6/297760 1994-10-24
JP29776094A JP3246235B2 (ja) 1994-10-24 1994-10-24 光触媒機能を有する多機能材及びその製造方法
JP6/307173 1994-11-04
JP6271499A JPH08131524A (ja) 1994-11-04 1994-11-04 光触媒機能を有する多機能材及びその製造方法
JP30717394 1994-11-04
JP6/271499 1994-11-04
JP6/311398 1994-11-09
JP6311398A JPH08131834A (ja) 1994-11-09 1994-11-09 光触媒用酸化チタンゾルおよび光触媒作用を有する多機能部材
JP6/313967 1994-11-11
JP31396794A JP3653761B2 (ja) 1994-11-11 1994-11-11 光触媒を有する部材の形成方法
JP6310896A JPH0866635A (ja) 1993-12-14 1994-12-14 光触媒薄膜及びその形成方法
JP6/310896 1994-12-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/167,325 Division US6294246B1 (en) 1993-12-10 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same
US09/167,327 Division US6294247B1 (en) 1993-10-12 1998-10-07 Multi-functional material with photocatalytic functions and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO1995015816A1 true WO1995015816A1 (fr) 1995-06-15

Family

ID=27585382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002077 WO1995015816A1 (fr) 1993-10-12 1994-12-09 Substance multifonction a effet photocatalytique et procede de production

Country Status (5)

Country Link
US (6) US5853866A (ja)
KR (4) KR100357482B1 (ja)
CA (1) CA2155822C (ja)
HK (1) HK1085719A1 (ja)
WO (1) WO1995015816A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007069A1 (en) * 1995-08-18 1997-02-27 Adam Heller Self-cleaning glass and method of making thereof
EP0792687A1 (en) * 1994-11-16 1997-09-03 Toto Ltd. Photocatalytic functional material and method of production thereof
US6335061B1 (en) * 1999-01-19 2002-01-01 Jsr Corporation Method of making coating layers containing photocatalyst and a photocatalyst coating film formed thereby
WO2002018287A1 (en) 2000-09-01 2002-03-07 Pilkington Plc Process for coating glass
US6368668B1 (en) * 1998-07-30 2002-04-09 Toto Ltd. Method and apparatus for producing a photocatalytic material
US6673433B1 (en) 1998-10-19 2004-01-06 Toto Ltd. Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
US6680135B2 (en) 1995-09-15 2004-01-20 Saint-Gobain Glass France Substrate with a photocatalytic coating
US6722159B2 (en) 1997-03-14 2004-04-20 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
CN102489295A (zh) * 2011-12-07 2012-06-13 中国科学院福建物质结构研究所 一种金属负载型钛基催化剂及其制备方法
CN102500363A (zh) * 2011-03-10 2012-06-20 中国科学院福建物质结构研究所 贵金属定向负载二氧化钛光催化剂及其制备方法
CN109988451A (zh) * 2019-04-10 2019-07-09 重庆建工住宅建设有限公司 一种自清洁预制构件的光催化施工工艺及检测方法
US11557490B2 (en) * 2016-08-29 2023-01-17 Infineon Technologies Ag Method for producing a metal-ceramic substrate with at least one via

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2155822C (en) * 1993-12-10 2004-02-17 Toshiya Watanabe Multi-functional material with photocatalytic functions and method of manufacturing same
US6228480B1 (en) 1995-06-19 2001-05-08 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
US6159421A (en) * 1995-10-17 2000-12-12 Ebara Corporation Method of cleaning gases
US6090489A (en) * 1995-12-22 2000-07-18 Toto, Ltd. Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
JP3690864B2 (ja) * 1996-03-29 2005-08-31 株式会社ティオテクノ 光触媒体の製造法
US6238738B1 (en) 1996-08-13 2001-05-29 Libbey-Owens-Ford Co. Method for depositing titanium oxide coatings on flat glass
WO1998011984A1 (fr) * 1996-09-20 1998-03-26 Daiken Chemical Co., Ltd. Photocatalyseur supportant des particules metalliques ultra-fines, materiau a fonctionnalite elevee charge a l'aide de ce photocatalyseur et procede de fabrication de ces derniers
US6365545B1 (en) * 1996-09-20 2002-04-02 Daiken Chemical Co., Ltd. Highly functional base material
JP3275032B2 (ja) * 1997-03-03 2002-04-15 独立行政法人産業技術総合研究所 環境浄化材料及びその製造方法
US7096692B2 (en) 1997-03-14 2006-08-29 Ppg Industries Ohio, Inc. Visible-light-responsive photoactive coating, coated article, and method of making same
TW472028B (en) * 1997-05-23 2002-01-11 Kyrosha Co Ltd Titanium oxide-containing material and process for preparing the same
FR2780417B1 (fr) * 1998-06-26 2004-04-09 Kobe Steel Ltd Alliage presentant un effet antibacterien et un effet sterilisant
US7029768B1 (en) 1998-12-09 2006-04-18 Showa Denko Kabushiki Kaisha Food container using titanium oxide particle and production method thereof
EP1016458B1 (en) * 1998-12-28 2004-09-29 Orient Chemical Industries, Ltd. Photocatalyst comprising organic-inorganic hybrid materials, and processes for preparing the same
JP3417862B2 (ja) * 1999-02-02 2003-06-16 新東工業株式会社 酸化チタン光触媒高担持シリカゲルおよびその製造方法
FR2789591B1 (fr) * 1999-02-17 2002-10-04 Rhodia Chimie Sa Utilisation de dispersions filmogenes de dioxyde de titane pour la desinfection des surfaces dures, dispersions filmogenes de dioxyde de titane et procede de desinfection
JP2000325796A (ja) * 1999-05-24 2000-11-28 Japan Organo Co Ltd 光触媒担持体及びその製造方法
KR100313891B1 (ko) * 1999-05-27 2001-11-15 구자홍 광촉매필터, 그 제조방법 및 그를 이용한 공기정화장치
GB9913315D0 (en) 1999-06-08 1999-08-11 Pilkington Plc Improved process for coating glass
US6383980B1 (en) * 1999-09-08 2002-05-07 Showa Denko Kabushiki Kaisha Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
JP3060017B1 (ja) * 1999-09-09 2000-07-04 名古屋大学長 中空構造を有するセラミックス多孔体の低温製造方法
US6531215B2 (en) 1999-11-19 2003-03-11 Central Glass Company, Limited Article with antifogging film and process for producing same
EP1101748B1 (en) 1999-11-19 2005-01-26 Central Glass Company, Limited Article with antifogging film and process for producing same
US6653356B2 (en) * 1999-12-13 2003-11-25 Jonathan Sherman Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof
EP1296760B1 (en) 2000-06-30 2008-01-23 Ecole Polytechnique Fédérale de Lausanne (EPFL) Carboxylate-containing photocatalytic body, manufacture and use thereof
JP2004512246A (ja) 2000-09-11 2004-04-22 カーディナル・シージー・カンパニー 仮保護カバーを保有する親水性表面
US6921579B2 (en) * 2000-09-11 2005-07-26 Cardinal Cg Company Temporary protective covers
WO2002062716A1 (en) 2001-02-08 2002-08-15 Cardinal Cg Company Edge treatments for coated substrates
US6902813B2 (en) * 2001-09-11 2005-06-07 Cardinal Cg Company Hydrophilic surfaces carrying temporary protective covers
US7612015B2 (en) * 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
US6679978B2 (en) 2002-02-22 2004-01-20 Afg Industries, Inc. Method of making self-cleaning substrates
AU2003268049A1 (en) 2002-07-31 2004-02-16 Cardinal Cg Compagny Temperable high shading performance coatings
US6902397B2 (en) * 2002-08-01 2005-06-07 Sunstar Americas, Inc. Enhanced dental hygiene system with direct UVA photoexcitation
US20040149307A1 (en) * 2002-12-18 2004-08-05 Klaus Hartig Reversible self-cleaning window assemblies and methods of use thereof
WO2004061151A1 (en) * 2002-12-31 2004-07-22 Cardinal Cg Company Coater having substrate cleaning device and coating deposition methods employing such coater
CN100394654C (zh) * 2003-01-16 2008-06-11 松下电器产业株式会社 光电子放出板及使用该板的负粒子发生装置
US6960327B2 (en) * 2003-01-30 2005-11-01 The Regents Of The University Of California Methods for removing organic compounds from nano-composite materials
EP1544269A4 (en) * 2003-04-30 2009-12-09 Ube Nitto Kasei Co PHOTO CATALYSER LACQUER, PHOTO CATALYST FILM AND PHOTO CATALYST ORGAN
US20040229540A1 (en) * 2003-05-15 2004-11-18 Kuraray Co. Ltd. Dustproof clothing
JP4629997B2 (ja) * 2003-06-02 2011-02-09 株式会社リコー 薄膜トランジスタ及び薄膜トランジスタアレイ
US7241500B2 (en) 2003-10-06 2007-07-10 Certainteed Corporation Colored roofing granules with increased solar heat reflectance, solar heat-reflective shingles, and process for producing same
US7174485B2 (en) * 2003-11-21 2007-02-06 Seagate Technology Llc Reverse error correction coding with run length limited constraint
US7354650B2 (en) * 2004-05-28 2008-04-08 Ppg Industries Ohio, Inc. Multi-layer coatings with an inorganic oxide network containing layer and methods for their application
US7354624B2 (en) * 2004-05-28 2008-04-08 Ppg Industries Ohio, Inc. Multi-layer coatings and related methods
US7959980B2 (en) * 2004-05-28 2011-06-14 Ppg Industries Ohio, Inc. Hydrophilic compositions, methods for their production, and substrates coated with such compositions
DE602005003234T2 (de) 2004-07-12 2008-08-28 Cardinal Cg Co., Eden Prairie Wartungsarme beschichtungen
WO2006031012A1 (en) * 2004-09-15 2006-03-23 Lg Chem, Ltd. Films or structural exterior materials using coating composition having self-cleaning property and preparation method thereof
EP1797017B1 (en) * 2004-10-04 2010-11-24 Cardinal CG Company Thin film coating and temporary protection technology, insulating glazing units, and associated methods
WO2006053099A2 (en) * 2004-11-08 2006-05-18 Cardinal Cg Company Surface treating methods, compositions and articles
WO2006080968A2 (en) 2004-11-15 2006-08-03 Cardinal Cg Company Methods and equipment for depositing coatings having sequenced structures
US7923114B2 (en) * 2004-12-03 2011-04-12 Cardinal Cg Company Hydrophilic coatings, methods for depositing hydrophilic coatings, and improved deposition technology for thin films
US8092660B2 (en) 2004-12-03 2012-01-10 Cardinal Cg Company Methods and equipment for depositing hydrophilic coatings, and deposition technologies for thin films
WO2006062102A1 (ja) * 2004-12-06 2006-06-15 Nippon Sheet Glass Company, Limited 光触媒機能および熱線反射機能を有するガラス部材、ならびに、それを用いた複層ガラス
US8062552B2 (en) * 2005-05-19 2011-11-22 Brookhaven Science Associates, Llc Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
US20070022911A1 (en) * 2005-08-01 2007-02-01 C.L. Industries, Inc. Method of manufacturing luminescent tiles and products made therefrom
US7342716B2 (en) 2005-10-11 2008-03-11 Cardinal Cg Company Multiple cavity low-emissivity coatings
US8631583B2 (en) 2005-10-31 2014-01-21 Dennis Moss Bagel slicer
US20080127497A1 (en) * 2005-10-31 2008-06-05 Dennis Moss Blade assembly
US7651559B2 (en) 2005-11-04 2010-01-26 Franklin Industrial Minerals Mineral composition
US8679587B2 (en) * 2005-11-29 2014-03-25 State of Oregon acting by and through the State Board of Higher Education action on Behalf of Oregon State University Solution deposition of inorganic materials and electronic devices made comprising the inorganic materials
CN101326133B (zh) * 2005-12-12 2011-12-28 秦皇岛易鹏特种玻璃有限公司 抗菌溶胶-凝胶镀液、抗菌溶胶-凝胶镀液的制法、抗菌制品以及制备抗菌制品的方法
US7989094B2 (en) 2006-04-19 2011-08-02 Cardinal Cg Company Opposed functional coatings having comparable single surface reflectances
US7892662B2 (en) 2006-04-27 2011-02-22 Guardian Industries Corp. Window with anti-bacterial and/or anti-fungal feature and method of making same
US7846492B2 (en) * 2006-04-27 2010-12-07 Guardian Industries Corp. Photocatalytic window and method of making same
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
DE102006038593A1 (de) * 2006-08-17 2008-02-21 Siemens Ag Selbstreinigende Oberflächenbeschichtung (Photokatalyse)
US20080078268A1 (en) 2006-10-03 2008-04-03 H.C. Starck Inc. Process for preparing metal powders having low oxygen content, powders so-produced and uses thereof
KR100765825B1 (ko) 2006-12-06 2007-10-10 (주)세인테크 광촉매 필터 및 그 제조방법
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
MX2009008853A (es) 2007-02-20 2009-08-28 Microban Products Vidriado ceramico que tiene propiedades anti-microbianas.
US8017247B2 (en) * 2007-03-30 2011-09-13 Alcoa Inc. Self cleaning aluminum alloy substrates
US8920926B2 (en) * 2007-04-02 2014-12-30 Certainteed Corporation Photocatalytic colored roofing granules
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
US7910220B2 (en) * 2007-07-25 2011-03-22 Alcoa Inc. Surfaces and coatings for the removal of carbon dioxide
US20090075093A1 (en) * 2007-08-14 2009-03-19 Scf Technologies A/S Method and compositions for producing optically clear photocatalytic coatings
WO2009036284A1 (en) 2007-09-14 2009-03-19 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US7824626B2 (en) 2007-09-27 2010-11-02 Applied Nanotech Holdings, Inc. Air handler and purifier
JP4730400B2 (ja) * 2007-10-09 2011-07-20 住友化学株式会社 光触媒体分散液
US10159255B2 (en) 2008-02-16 2018-12-25 Microban Products Company Biocidal glazing composition, method, and article
JP5082950B2 (ja) * 2008-03-13 2012-11-28 住友化学株式会社 揮発性芳香族化合物の分解方法
FR2932796B1 (fr) * 2008-06-19 2011-01-21 Saint Gobain Verre ancien autonettoyant
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
CN101445340B (zh) * 2008-12-30 2011-06-08 程卫国 一种自洁式透水砖及其制备方法
FI20090057A0 (fi) * 2009-02-17 2009-02-17 Beneq Oy Antibakteerinen lasi
US8236599B2 (en) 2009-04-09 2012-08-07 State of Oregon acting by and through the State Board of Higher Education Solution-based process for making inorganic materials
JP2011005475A (ja) * 2009-05-29 2011-01-13 Sumitomo Chemical Co Ltd 光触媒体分散液およびそれを用いた光触媒機能製品
EP2443076B1 (en) * 2009-06-19 2014-04-09 Granitifiandre S.p.A. Photocatalytic ceramic article and method for its production
US8617665B2 (en) * 2009-08-03 2013-12-31 Alcoa, Inc. Self-cleaning substrates and methods for making the same
JP2011224534A (ja) * 2009-09-16 2011-11-10 Sumitomo Chemical Co Ltd 光触媒複合体、およびこれを用いた光触媒機能製品
US8558106B2 (en) * 2009-10-20 2013-10-15 Industrial Technology Research Institute Solar cell device and method for fabricating the same
JP5662450B2 (ja) * 2010-07-30 2015-01-28 京セラ株式会社 絶縁シート、その製造方法及びその絶縁シートを用いた構造体の製造方法
KR101234609B1 (ko) * 2010-11-30 2013-02-19 한국교통대학교산학협력단 오염 물질 분해 효과를 갖는 미세 다공질 세라믹 패널 및 그 제조 방법
US20120141691A1 (en) * 2010-12-01 2012-06-07 Chun-Ting Lin Method of applying a metallic precursor to a titanium oxide coating to form a composite coating or material
TW201243384A (en) * 2011-04-27 2012-11-01 Hon Hai Prec Ind Co Ltd Touch screen
CN102784645A (zh) * 2011-05-17 2012-11-21 王东宁 金属粒子组合TiO2光触媒强化杀菌组成物及制造方法
US9248432B2 (en) 2011-06-27 2016-02-02 The University Of Tokyo Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
RU2466791C1 (ru) * 2011-08-11 2012-11-20 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" (СГТУ) Способ получения титанатного фотокатализатора, активного в видимой области спектра
US9108273B2 (en) 2011-09-29 2015-08-18 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
US20140301897A1 (en) * 2011-10-26 2014-10-09 Koninklijke Philips N.V. Photocatalytic purification of media
KR101465299B1 (ko) * 2012-05-25 2014-12-04 (주)엘지하우시스 광촉매재, 그 제조 방법 및 광촉매 장치
EP2871961A1 (en) * 2012-07-16 2015-05-20 Next Technology Tecnotessile Societa' Nazionale di Ricerca R.L. Bactericidal and virucidal covering material and method for making the covering material
CN103801292A (zh) 2012-11-02 2014-05-21 财团法人工业技术研究院 光触媒材料及其制造方法
CN103266737A (zh) * 2013-04-22 2013-08-28 上海龙人建设集团有限公司 一种用于建筑石材表面的防腐蚀结构及其防腐工艺
CN104084203B (zh) * 2014-07-14 2015-12-30 东南大学 一种Cu-Ti与TiO2复合薄膜材料的制备方法
CN104098937B (zh) * 2014-07-23 2016-04-27 天津市职业大学 一种太阳电池玻璃自清洁减反射光转换涂料
CN104140693B (zh) * 2014-07-25 2017-08-18 天津市职业大学 一种太阳电池玻璃自清洁减反射光转换涂料的生产方法
CN104276766B (zh) * 2014-10-07 2018-03-27 天津市职业大学 一种太阳电池玻璃减反射光转换双功能镀膜液的生产方法
CN105154915B (zh) * 2015-08-18 2018-06-19 中南大学 一种钛基复合阳极及其制备方法和应用
GB201520463D0 (en) 2015-11-20 2016-01-06 Huntsman P&A Uk Ltd Coatings
WO2017100118A1 (en) 2015-12-11 2017-06-15 Cardinal Cg Company Method of coating both sides of a substrate
US10899657B1 (en) 2016-03-09 2021-01-26 Microban Products Company Ceramic additive formulation and method of making
US9974310B2 (en) 2016-03-09 2018-05-22 Microban Products Company Ceramic additive formulation and method of making
JP6436952B2 (ja) 2016-09-15 2018-12-12 キヤノン株式会社 チタン化合物ゾル溶液、それを用いたコーティング膜、ソーラーパネル、およびコーティング膜の製造方法
US11844351B2 (en) 2016-10-31 2023-12-19 Microban Products Company Method of treating a glazed ceramic article
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
DE102016225106A1 (de) * 2016-12-15 2018-06-21 Lynatox Gmbh Verfahren zum bindemittelfreien Aufbringen photokatalytischer Beschichtungen
ES2608931B1 (es) 2017-01-19 2018-01-23 System-Pool, S.A. Procedimiento de obtención de un polímero fotocatalítico
US10611679B2 (en) 2017-10-26 2020-04-07 Guardian Glass, LLC Coated article including noble metal and polymeric hydrogenated diamond like carbon composite material having antibacterial and photocatalytic properties, and/or methods of making the same
CN107675850A (zh) * 2017-11-06 2018-02-09 佛山市简陶瓷有限公司 一种可降解甲醛的大理石瓷砖及其制备方法
CN108837697A (zh) * 2018-06-08 2018-11-20 佛山市简陶瓷有限公司 一种耐久性光催化除甲醛瓷砖及其制备方法
CN109395746B (zh) * 2018-11-09 2021-09-17 济南大学 一种柔性纸基光催化剂及其制备方法
JP6973359B2 (ja) * 2018-11-26 2021-11-24 昭和電工マテリアルズ株式会社 真空断熱機器
CN110526740A (zh) * 2019-08-31 2019-12-03 窦传勇 一种用于室内室外瓷砖的液体修复膜及其制备方法
KR102438146B1 (ko) * 2020-11-13 2022-08-30 한국생산기술연구원 내수코팅층을 포함하는 선택적 촉매환원반응용 촉매의 제조 방법 및 이를 이용한 내수코팅층을 포함하는 촉매환원반응용 촉매
US11253842B1 (en) * 2021-04-02 2022-02-22 TiCoat, Inc. Titanium dioxide containing peroxo titanium complex and methods of manufacturing and application of the same
WO2023187668A1 (en) * 2022-03-29 2023-10-05 Granitifiandre S.P.A. Microparticles with photocatalytic activity and process for the preparation thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288321A (ja) * 1988-05-13 1989-11-20 Matsushita Electric Ind Co Ltd 光触媒による脱臭方法
JPH0559562A (ja) * 1991-08-30 1993-03-09 Hitachi Ltd 酸化チタン薄膜の製法並びに該薄膜を用いた光化学反応器の製法
JPH06278241A (ja) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd 建築材料
JPH06293519A (ja) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd 酸化チタンの粒子と膜の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380833A (ja) * 1986-09-25 1988-04-11 Toyota Central Res & Dev Lab Inc 車室内臭気の浄化方法及び装置
US5244811A (en) * 1987-03-02 1993-09-14 Commonwealth Scientific And Industrial Research Organization Method and system for determining organic matter in an aqueous solution
JPH067905B2 (ja) * 1989-04-20 1994-02-02 松下電器産業株式会社 光触媒による脱臭装置
US5137607A (en) * 1990-04-27 1992-08-11 Wisconsin Alumni Research Foundation Reactor vessel using metal oxide ceramic membranes
JP3033995B2 (ja) * 1990-08-03 2000-04-17 オキツモ株式会社 脱臭材およびそれを用いた製品
JPH057394A (ja) * 1991-06-27 1993-01-14 Matsushita Electric Ind Co Ltd スピーカ
JP3083373B2 (ja) * 1991-11-05 2000-09-04 住友大阪セメント株式会社 釉 薬
JP2667331B2 (ja) * 1992-03-13 1997-10-27 東陶機器株式会社 光触媒機能を有する部材及びその製造方法
US5595813A (en) * 1992-09-22 1997-01-21 Takenaka Corporation Architectural material using metal oxide exhibiting photocatalytic activity
CA2155822C (en) * 1993-12-10 2004-02-17 Toshiya Watanabe Multi-functional material with photocatalytic functions and method of manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288321A (ja) * 1988-05-13 1989-11-20 Matsushita Electric Ind Co Ltd 光触媒による脱臭方法
JPH0559562A (ja) * 1991-08-30 1993-03-09 Hitachi Ltd 酸化チタン薄膜の製法並びに該薄膜を用いた光化学反応器の製法
JPH06293519A (ja) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd 酸化チタンの粒子と膜の製造方法
JPH06278241A (ja) * 1992-09-22 1994-10-04 Takenaka Komuten Co Ltd 建築材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0684075A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792687A1 (en) * 1994-11-16 1997-09-03 Toto Ltd. Photocatalytic functional material and method of production thereof
EP0792687A4 (en) * 1994-11-16 1998-05-06 Toto Ltd PHOTOCATALYTIC FUNCTIONAL MATERIAL AND PROCESS FOR PRODUCING THE SAME
WO1997007069A1 (en) * 1995-08-18 1997-02-27 Adam Heller Self-cleaning glass and method of making thereof
US6680135B2 (en) 1995-09-15 2004-01-20 Saint-Gobain Glass France Substrate with a photocatalytic coating
US6722159B2 (en) 1997-03-14 2004-04-20 Ppg Industries Ohio, Inc. Photocatalytically-activated self-cleaning article and method of making same
US6368668B1 (en) * 1998-07-30 2002-04-09 Toto Ltd. Method and apparatus for producing a photocatalytic material
US6673433B1 (en) 1998-10-19 2004-01-06 Toto Ltd. Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
US6335061B1 (en) * 1999-01-19 2002-01-01 Jsr Corporation Method of making coating layers containing photocatalyst and a photocatalyst coating film formed thereby
WO2002018287A1 (en) 2000-09-01 2002-03-07 Pilkington Plc Process for coating glass
CN102500363A (zh) * 2011-03-10 2012-06-20 中国科学院福建物质结构研究所 贵金属定向负载二氧化钛光催化剂及其制备方法
CN102489295A (zh) * 2011-12-07 2012-06-13 中国科学院福建物质结构研究所 一种金属负载型钛基催化剂及其制备方法
US11557490B2 (en) * 2016-08-29 2023-01-17 Infineon Technologies Ag Method for producing a metal-ceramic substrate with at least one via
US11804383B2 (en) 2016-08-29 2023-10-31 Infineon Technologies Ag Method for producing a metal-ceramic substrate with electrically conductive vias
CN109988451A (zh) * 2019-04-10 2019-07-09 重庆建工住宅建设有限公司 一种自清洁预制构件的光催化施工工艺及检测方法

Also Published As

Publication number Publication date
US5853866A (en) 1998-12-29
US6210779B1 (en) 2001-04-03
HK1085719A1 (en) 2006-09-01
CA2155822C (en) 2004-02-17
KR100357482B1 (ko) 2003-03-10
US6294247B1 (en) 2001-09-25
KR100358851B1 (ko) 2002-11-01
US6027797A (en) 2000-02-22
KR100361563B1 (ko) 2003-01-24
CA2155822A1 (en) 1995-06-15
KR100361564B1 (ko) 2002-11-22
US6294246B1 (en) 2001-09-25
US6268050B1 (en) 2001-07-31

Similar Documents

Publication Publication Date Title
WO1995015816A1 (fr) Substance multifonction a effet photocatalytique et procede de production
EP0684075A1 (en) Multi-functional material having photo-catalytic function and production method therefor
EP1157741B1 (en) Photocatalyst composite and process for producing the same
JP3309591B2 (ja) 光触媒機能を有する多機能材
US6191062B1 (en) Photocatalytic functional material and method for producing the same
JP6352527B2 (ja) 光触媒機能性フィルム及びこの製造方法
JP2006021994A (ja) 光触媒機能を有する多機能材の製造方法
JP6352526B2 (ja) 光触媒機能性フィルム及びこの製造方法
CN100378038C (zh) 具有光催化功能的多功能瓷砖及其制造方法
JP3027739B2 (ja) 光触媒体およびその製造方法
JP3246235B2 (ja) 光触媒機能を有する多機能材及びその製造方法
JP3952238B2 (ja) 光触媒による有害物質等の除去方法
JP4629700B2 (ja) 光触媒体およびそれを形成するための塗料組成物のセット
JP4347925B2 (ja) 光触媒体およびその製造方法
JP2004154779A (ja) 光触媒皮膜を塗布した基材および光触媒皮膜を基材上に形成する方法
TW406031B (en) Multi-functional material having photo-catalytic function and production method therefor
JP3844875B2 (ja) 光触媒体およびその製造方法
JPH11124546A (ja) 塗料組成物
JPH08224481A (ja) 光触媒作用を有する部材
JP2001200627A (ja) 光触媒機能を有するタイル及びそのタイルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94191730.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU KE KG KR KZ LK LR LT LU LV MD MG MN MW NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2155822

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1995902937

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08501110

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995902937

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09167326

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1995902937

Country of ref document: EP