WO1995016125A1 - Electromagnetic valve - Google Patents

Electromagnetic valve Download PDF

Info

Publication number
WO1995016125A1
WO1995016125A1 PCT/DE1994/001389 DE9401389W WO9516125A1 WO 1995016125 A1 WO1995016125 A1 WO 1995016125A1 DE 9401389 W DE9401389 W DE 9401389W WO 9516125 A1 WO9516125 A1 WO 9516125A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
armature
core
stop
wear
Prior art date
Application number
PCT/DE1994/001389
Other languages
German (de)
French (fr)
Inventor
Ferdinand Reiter
Martin Maier
Jörg HEYSE
Norbert Keim
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4421947A external-priority patent/DE4421947A1/en
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to RU95120217A priority Critical patent/RU2131992C1/en
Priority to JP7515871A priority patent/JPH08506876A/en
Priority to BR9406081A priority patent/BR9406081A/en
Priority to DE59405392T priority patent/DE59405392D1/en
Priority to EP95900659A priority patent/EP0683861B1/en
Publication of WO1995016125A1 publication Critical patent/WO1995016125A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0682Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the body being hollow and its interior communicating with the fuel flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps
    • F02M2200/505Adjusting spring tension by sliding spring seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings

Definitions

  • the invention is based on an electromagnetically actuated valve according to the preamble of the main claim.
  • Various electromagnetically actuated valves in particular fuel injection valves, are already known, in which components subject to wear are provided with wear-resistant layers.
  • DE-OS 38 10 826 describes a fuel injection valve in which at least one stop surface is designed in the form of a spherical cap in order to achieve an extremely precise air gap, a round-body insert made of non-magnetic, high-strength material being formed in the center of the stop surface.
  • a fuel injection valve is also known from EP-OS 0 536 773, in which a hard metal layer is applied to the armature on its cylindrical circumferential surface and annular stop surface by electroplating.
  • This layer of chrome or nickel has a thickness of 15 to 25 ⁇ m, for example.
  • a slightly wedge-shaped layer thickness distribution occurs, a minimally thicker layer being achieved on the outer edges. Due to the galvanically deposited layers, the layer thickness distribution is physically predetermined and can hardly be influenced. After a certain operating time, the abutment surface widens undesirably due to wear, which results in changes in the armature's pull-in and fall-out times.
  • the electromagnetically actuated valve according to the invention with the characterizing features of the main claim has the advantage that at least one of the abutting components is designed in such a way that after the creation of a wear-resistant surface it is ensured that the abutment surface even after a long period of operation is not undesirably increased by wear, so that the pulling and falling times of the movable component remain almost constant. That will achieved by at least one of the abutting components already having a stepped surface prior to the generation of the wear resistance. This stepped surface can be precisely adapted to different conditions to achieve a magnetic and hydraulic optimum.
  • the stepped surface shape of the at least one component, eg. B. the armature, also allows that non-galvanic and magnetic wear-resistant layers can be applied without the requirement for a very small stop area remains unfulfilled.
  • a particular advantage is that the surface of the stop area of at least one of the abutting components is made wear-resistant by using a method known per se, e.g. B. a nitriding process such as plasma nitriding or gas nitriding or the like is hardened.
  • a nitriding process such as plasma nitriding or gas nitriding or the like is hardened.
  • a small, ring-shaped and precisely defined stop area is provided if a step is advantageously introduced on at least one component surface serving as a stop.
  • the ring-shaped stop region with a defined stop surface width which corresponds to the contact width, remains constant over the entire service life, since wear of the stop surface during continuous operation by the step does not lead to an increase in the contact width.
  • the impact security is fully guaranteed. Hydraulic gluing is impossible due to the small stop surface. Since a constant contact width is guaranteed over the entire service life, the hydraulic conditions in the gap between the striking parts, e.g. B. between core and anchor, constant.
  • FIG. 1 shows a fuel injection valve
  • FIG. 2 shows an enlarged stop of the injection valve in the region of the core and armature
  • FIG. 3 shows a first exemplary embodiment of an armature graded according to the invention
  • FIG. 4 shows a second exemplary embodiment of a stepped armature
  • FIG. 5 shows a third embodiment Example of a stepped anchor. Description of the embodiments
  • the electromagnetically actuated valve shown in FIG. 1, for example, in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines has a core 2, which is surrounded by a magnetic coil 1 and serves as a fuel inlet connection and is, for example, tubular here and has a constant outer diameter over its entire length.
  • a tubular metal intermediate part 12 is tightly connected concentrically to a longitudinal valve axis 10, for example by welding, and thereby partially axially surrounds the core end 9.
  • the stepped coil body 3 partially overlaps the core 2 and, with a step 15 of larger diameter, the intermediate part 12 at least partially axially.
  • a tubular valve seat carrier 16 extends downstream of the bobbin 3 and the intermediate part 12 and is, for example, firmly connected to the intermediate part 12.
  • a longitudinal bore 17 runs in the valve seat support 16 and is formed concentrically to the valve longitudinal axis 10.
  • a tubular valve needle 19 Arranged in the longitudinal bore 17 is, for example, a tubular valve needle 19 which, at its downstream end 20, has a spherical valve closing body 21, on the circumference of which, for example, five flats 22 are provided for the fuel to flow past, for example is connected by welding.
  • the injection valve is actuated electromagnetically in a known manner.
  • the electromagnetic circuit with the magnet coil 1, the core 2 and an armature 27 is used for the axial movement of the valve needle 19 and thus for opening against the spring force of a return spring 25 or closing the injection valve.
  • the armature 27 is with the valve closing body 21 facing away from the end of the valve needle 19 by a first weld 28 and aligned to the core 2.
  • a cylindrical valve seat body 29 which has a fixed valve seat, is tightly mounted in the longitudinal bore 17 by welding.
  • a guide opening 32 of the valve seat body 29 is used to guide the valve closing body 21 during the axial movement of the valve needle 19 with the armature 27 along the valve longitudinal axis 10.
  • the spherical valve closing body 21 interacts with the valve seat of the valve seat body 29 which tapers in the direction of a truncated cone in the direction of flow.
  • the valve seat body 29 On its end facing away from the valve closing body 21, the valve seat body 29 is connected concentrically and firmly to a spray-perforated disk 34, for example in the form of a pot. At least one runs in the base part of the spray perforated disk 34, for example four spray openings 39 formed by eroding or stamping.
  • the insertion depth of the valve seat body 29 with the cup-shaped spray perforated disk 34 determines the presetting of the stroke of the valve needle 19.
  • Position of the valve needle 19 when the magnet coil 1 is not excited is determined by the contact of the valve closing body 21 on the valve seat of the valve seat body 29, while the other end position of the valve needle 19 when the magnet coil 1 is excited results from the contact of the armature 27 at the core end 9 , that is to say exactly in the area which is formed according to the invention and is characterized in more detail by a circle.
  • An adjusting sleeve 48 which is pushed into a flow bore 46 of the core 2 concentrically to the longitudinal axis 10 of the valve and which is formed, for example, from rolled spring steel sheet, serves to adjust the spring preload of the return spring 25 resting on the adjusting sleeve 48, which in turn is with its opposite side supported on the valve needle 19.
  • the injection valve is largely enclosed in a plastic encapsulation 50, which extends from the core 2 in the axial direction via the solenoid coil 1 to the valve seat carrier 16. About this plastic encapsulation
  • molded-on electrical connector 52 includes, for example, a molded-on electrical connector 52.
  • a fuel filter 61 projects into the flow bore 46 of the core 2 at its inlet end 55 and provides for the filtering out of those fuel components which, because of their size, could cause blockages or damage in the injection valve.
  • FIG. 2 shows the area of the one end position of the valve needle 19 marked with a circle in FIG. 1, in which the armature 27 strikes the core end 9 of the core 2, on a different scale.
  • metallic layers 65 to the core end 9 of the core 2 and to the armature 27, for example chrome or nickel layers, by means of electroplating.
  • the layers 65 are applied both to an end face 67 running perpendicular to the longitudinal valve axis 10 and at least partially to a peripheral face 66 of the armature 27.
  • These layers 65 are particularly wear-resistant and, with their small surface area, reduce hydraulic sticking of the abutting surfaces, but without being able to reliably prevent it.
  • Layer thickness of these layers 65 is generally between 10 and 25 microns.
  • part of the anchor 27 according to the invention is shown in the area of its upper end face 67 in FIG. 3, which already before the coating or the production. has a step section 70 due to the wear resistance of the surface.
  • the step of the anchor 27 before the coating or the generation of the wear resistance can be predetermined and manufactured in accordance with the required values so that a magnetic and hydraulic optimum is achieved in each case.
  • the step section 70 of the end face 67 also allows non-galvanic, wear-resistant layers, which may also be magnetic, to be applied without the requirement for a very small stop area remaining unfulfilled.
  • the end face 67 at least in the area of its stop section 69, can be made wear-resistant by treating the surface by means of a hardening process.
  • a hardening process e.g. the known nitriding processes such as plasma nitriding or gas nitriding are suitable.
  • the step section 70 has the consequence that the precisely defined annular stop section 69 is formed on the end face 67.
  • the stop section 69 of the upper end face 67 of the armature 27, which serves as a stop now clearly protrudes over a step bottom 71.
  • the protruding, ring-shaped stop section 69 with a width b between 20 and 500 ⁇ m thus serves as a stop, which in the embodiment according to FIG. 3 lies between the peripheral surface 66 and the step section 70, which is formed inwardly offset.
  • This stop section 69 maintains a constant width b over the entire operating time. The abovementioned wear therefore no longer has any influence on the stop surface width or contact width.
  • Hydraulic gluing is excluded due to the small stop surface. Since a constant contact width is guaranteed over the entire service life, the hydraulic conditions in the gap between the striking parts, here between core 2 and armature 27, remain a great advantage. Compared to the flat stop surface of the stop section 69, the advantages of the invention are obtained at an axial distance of 5 ⁇ m from the step floor 71.
  • the hydraulic and magnetic optimum is achieved by a suitable choice of the width b and the depth of the step base 71, which is between 5 and 15 ⁇ m, for example.
  • both the armature 27 and the core 2 can be coated with a corresponding step before coating or generating a wear-resistant surface.
  • section 70 are provided, so that very precisely defined annular stop sections 69 are formed on both abutting sides, as shown in FIG.
  • this step section 70 it is possible to provide this step section 70 only on the core 2, while the armature 27 is given a flat end face, for example.
  • FIGS. 4 and 5 show further exemplary embodiments of anchors 27 designed according to the invention. It is conceivable that the stop section 69 is formed on the end face 67 towards the longitudinal axis 10 of the valve, while the step section 70 is offset axially outward toward the peripheral face 66 lies ( Figure 4).
  • FIG. 5 shows an exemplary embodiment of the armature 27, in which the stop section 69 is surrounded on the inside and outside, that is to say to the peripheral surface 66 and to the valve longitudinal axis 10, by step sections 70.
  • step section 70 is already present on at least one end face 67 of the armature 27 and / or core 2, as already mentioned, the application of
  • Processes deviating from chromium or nickel layers are used to increase the quality by improving the wear resistance of the end face 67.
  • hardening processes e.g. Plasma nitriding, gas nitriding or carburizing, by means of which the surface structure on the anchor 27 and / or core 2 is changed, can even be completely dispensed with methods for direct coating.

Abstract

In already known fuel injection valves, wearing parts such as the armature and the core are provided with wear-resistant layers made for example of chromium, molybdenum or nickel. If the parts of the injection valve are galvanically coated, a desired wedge-shaped distribution of the layer thicknesses is achieved that creates only a small bearing area but which is physically predetermined and practically impossible to influence. The new valve has at least one part, for example the armature (27) that has a stepped surface before the wear-resistant layer is applied. The stepped surface may be produced in a variable manner depending on the desired optimum magnetic and hydraulic properties. The ring-shaped bearing section (69) formed by the step has a defined bearing surface or contact width (b) that remains constant during the whole service life of the part, as wearing of the bearing surface in continuous duty does not cause the contact width to increase. This valve is particularly suitable for use in fuel injection systems of mixture compressing, spark-ignited internal combustion engines.

Description

Elektromagnetisch betätigbares VentilElectromagnetically actuated valve
Stand der TechnikState of the art
Die Erfindung geht aus von einem elektromagnetisch betä¬ tigbaren Ventil nach der Gattung des Hauptanspruchs. Es sind bereits verschiedene elektromagnetisch betätigbare Ventile, insbesondere Brennstoffeinspritzventile bekannt, bei denen verschleißbeanspruchte Bauteile mit verschlei߬ festen Schichten versehen sind.The invention is based on an electromagnetically actuated valve according to the preamble of the main claim. Various electromagnetically actuated valves, in particular fuel injection valves, are already known, in which components subject to wear are provided with wear-resistant layers.
Aus der DE-OS 29 42 928 ist bereits bekannt, verschleißfe- ste diamagnetische Materialschichten an verschleißbean¬ spruchten Teilen, wie Anker und Düsenkörper, aufzutragen. Diese aufgebrachten Schichten dienen der Begrenzung des Hubes der Ventilnadel, wodurch die Auswirkungen des Rest¬ magnetismus auf die bewegten Teile des Brennstoffein- spritzventils minimiert werden.It is already known from DE-OS 29 42 928 to apply wear-resistant diamagnetic material layers to parts subject to wear, such as anchors and nozzle bodies. These applied layers serve to limit the stroke of the valve needle, as a result of which the effects of residual magnetism on the moving parts of the fuel injector are minimized.
Aus der DE-OS 32 30 844 ist ebenfalls bekannt, Anker und Anschlagfläche eines Brennstoffeinspritzventils mit ver¬ schleißfesten Oberflächen zu versehen. Diese Oberflächen können beispielsweise vernickelt, also mit einer zusätz¬ lichen Schicht versehen sein, oder nitriert, also durch Einlagerung von Stickstoff gehärtet sein.From DE-OS 32 30 844 it is also known to provide the armature and stop surface of a fuel injector with wear-resistant surfaces. These surfaces can, for example, be nickel-plated, that is to say provided with an additional layer, or nitrided, that is to say hardened by the incorporation of nitrogen.
Außerdem ist bereits aus der DE-OS 37 16 072 bekannt, für durch Verschleiß und Korrosion besonders beanspruchteIn addition, it is already known from DE-OS 37 16 072 for those particularly stressed by wear and corrosion
Teile eines Einspritzventils Molybdänhartschichten zu ver¬ wenden, die dünn ausgebildet sind und nachträglich mit Diamanten bearbeitet werden können. In der DE-OS 38 10 826 ist ein Brennstoffeinspritzventil beschrieben, bei dem wenigstens eine Anschlagfläche ku- gelkalottenförmig ausgeführt ist, um einen äußerst exakten Luftspalt zu erreichen, wobei mittig an der Anschlagfläche ein Rundkδrpereinsatz aus nichtmagnetischem, hochfestem Werkstoff ausgebildet ist.Parts of an injection valve to use hard molybdenum layers which are thin and can be subsequently machined with diamonds. DE-OS 38 10 826 describes a fuel injection valve in which at least one stop surface is designed in the form of a spherical cap in order to achieve an extremely precise air gap, a round-body insert made of non-magnetic, high-strength material being formed in the center of the stop surface.
Aus der EP-OS 0 536 773 ist ebenfalls ein Brennstoffein¬ spritzventil bekannt, bei dem am Anker an dessen zylindri- scher Umfangsflache und ringförmiger Anschlagfläche eine Hartmetallschicht durch Galvanisieren aufgetragen ist. Diese Schicht aus Chrom oder Nickel besitzt beispielsweise eine Dicke von 15 bis 25 μm. Infolge der galvanischen Be¬ schichtung entsteht eine gering keilige Schichtdickenver- teilung, wobei an den äußeren Kanten eine minimal dickere Schicht erreicht wird. Durch die galvanisch abgeschiedenen Schichten ist die Schichtdickenverteilung physikalisch vorgegeben und kaum beeinflußbar. Nach einer gewissen Be¬ triebszeit verbreitert sich die Anschlagfläche durch Ver- schleiß in unerwünschter Weise, wodurch sich Änderungen bei der Anzugs- und Abfallzeit des Ankers ergeben.A fuel injection valve is also known from EP-OS 0 536 773, in which a hard metal layer is applied to the armature on its cylindrical circumferential surface and annular stop surface by electroplating. This layer of chrome or nickel has a thickness of 15 to 25 μm, for example. As a result of the galvanic coating, a slightly wedge-shaped layer thickness distribution occurs, a minimally thicker layer being achieved on the outer edges. Due to the galvanically deposited layers, the layer thickness distribution is physically predetermined and can hardly be influenced. After a certain operating time, the abutment surface widens undesirably due to wear, which results in changes in the armature's pull-in and fall-out times.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße elektromagnetisch betätigbare Ventil mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß wenigstens eines der anein¬ ander anschlagenden Bauteile so gestaltet ist, daß nach dem Erzeugen einer verschleißfesten Oberfläche gewährlei- stet ist, daß die Anschlagfläche auch nach längerer Be¬ triebszeit nicht durch Verschleiß in unerwünschter Weise vergrößert wird, so daß die Anzugs- und Abfallzeiten des beweglichen Bauteils nahezu konstant bleiben. Das wird da- durch erreicht, daß wenigstens eines der aneinander an¬ schlagenden Bauteile bereits vor dem Erzeugen der Ver¬ schleißfestigkeit eine gestufte Oberfläche besitzt. Diese gestufte Oberfläche läßt sich zur Erzielung eines magneti- sehen und hydraulischen Optimums jeweils an verschiedene Gegebenheiten genau anpassen.The electromagnetically actuated valve according to the invention with the characterizing features of the main claim has the advantage that at least one of the abutting components is designed in such a way that after the creation of a wear-resistant surface it is ensured that the abutment surface even after a long period of operation is not undesirably increased by wear, so that the pulling and falling times of the movable component remain almost constant. That will achieved by at least one of the abutting components already having a stepped surface prior to the generation of the wear resistance. This stepped surface can be precisely adapted to different conditions to achieve a magnetic and hydraulic optimum.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen elektromagnetisch betätigba¬ ren Ventils, insbesondere Brennstoffeinspritzventils mög¬ lich.The measures listed in the subclaims permit advantageous developments and improvements of the electromagnetically actuated valve specified in the main claim, in particular fuel injection valve.
Besonders vorteilhaft ist es, die äußerst genaue Oberflä- chengestalt wenigstens eines der anschlagenden Bauteile mechanisch mit einem geschliffenen Senkwerkzeug herzu¬ stellen. So sind sehr präzise Abmessungen erreichbar. Mit Hilfe der sehr genau geschliffenen Werkzeuge können engere Fertigungstoleranzen als bisher eingehalten werden, so daß es beim Betrieb des Einspritzventils zu einer sehr gerin¬ gen Streuung der Anzugs- und insbesondere Abfallzeit des Ankers kommt.It is particularly advantageous to produce the extremely precise surface shape of at least one of the striking components mechanically using a ground countersinking tool. In this way, very precise dimensions can be achieved. With the aid of the very precisely ground tools, tighter manufacturing tolerances can be maintained than before, so that there is very little variation in the pull-in and, in particular, fall-out times of the armature during operation of the injection valve.
Die gestufte Oberflächengestalt des mindestens einen Bau- teils, z. B. des Ankers, erlaubt es zudem, daß auch nicht¬ galvanische und magnetische verschleißfeste Schichten aufgebracht werden können, ohne daß die Forderung nach ei¬ nem sehr kleinen Anschlagbereich unerfüllt bleibt.The stepped surface shape of the at least one component, eg. B. the armature, also allows that non-galvanic and magnetic wear-resistant layers can be applied without the requirement for a very small stop area remains unfulfilled.
Ein besonderer Vorteil besteht darin, daß die Oberfläche des Anschlagbereichs wenigstens eines der aneinanderan- schlagenden Bauteile dadurch verschleißfest gemacht wird, daß sie mittels eines an sich bekannten Verfahrens, z. B. einem Nitrierverfahren wie Plasmanitrieren oder Gasnitrie¬ ren o.a. gehärtet wird.A particular advantage is that the surface of the stop area of at least one of the abutting components is made wear-resistant by using a method known per se, e.g. B. a nitriding process such as plasma nitriding or gas nitriding or the like is hardened.
Ein kleiner, ringförmiger und in seiner Größe genau defi- nierter Anschlagbereich ist dann gegeben, wenn in vor¬ teilhafter Weise an wenigstens einer als Anschlag dienen¬ den Bauteiloberfläche eine Stufe eingebracht ist. Der so¬ mit ringförmige Anschlagbereich mit einer definierten An¬ schlagflächenbreite, die der Kontaktbreite entspricht, bleibt nämlich über die gesamte Lebensdauer konstant, da ein Anschlagflächenverschleiß bei Dauerbetrieb durch die Stufe nicht zu einer Vergrößerung der Kontaktbreite führt. Die Anschlagsicherheit ist vollständig gewährleistet. Ein hydraulisches Kleben ist aufgrund der kleinen Anschlagtlä- ehe ausgeschlossen. Da über die gesamte Lebensdauer eine konstante Kontaktbreite gewährleistet ist, bleiben auch als großer Vorteil die hydraulischen Verhältnisse im Spalt zwischen den anschlagenden Teilen, z. B. zwischen Kern und Anker, konstant.A small, ring-shaped and precisely defined stop area is provided if a step is advantageously introduced on at least one component surface serving as a stop. The ring-shaped stop region with a defined stop surface width, which corresponds to the contact width, remains constant over the entire service life, since wear of the stop surface during continuous operation by the step does not lead to an increase in the contact width. The impact security is fully guaranteed. Hydraulic gluing is impossible due to the small stop surface. Since a constant contact width is guaranteed over the entire service life, the hydraulic conditions in the gap between the striking parts, e.g. B. between core and anchor, constant.
Zeichnungdrawing
Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschrei- bung näher erläutert. Es zeigen Figur 1 ein Brennstoffein- spritzventil, Figur 2 einen vergrößerten Anschlag des Einspritzventils im Bereich von Kern und Anker, Figur 3 ein erstes Ausführungsbeispiel eines erfindungsgemäß ge¬ stuften Ankers, Figur 4 ein zweites Ausführungsbeispiel eines gestuften Ankers und Figur 5 ein drittes Ausfüh¬ rungsbeispiel eines gestuften Ankers. Beschreibung der AusführungsbeispieleExemplary embodiments of the invention are shown in simplified form in the drawing and are explained in more detail in the following description. FIG. 1 shows a fuel injection valve, FIG. 2 shows an enlarged stop of the injection valve in the region of the core and armature, FIG. 3 shows a first exemplary embodiment of an armature graded according to the invention, FIG. 4 shows a second exemplary embodiment of a stepped armature and FIG. 5 shows a third embodiment Example of a stepped anchor. Description of the embodiments
Das in der Figur 1 beispielsweise dargestellte elektroma¬ gnetisch betätigbare Ventil in der Form eines Einspritz- ventils für Brennstoffeinspritzanlagen von gemischverdich¬ tenden, fremdgezündeten Brennkraftmaschinen hat einen von einer Magnetspule 1 umgebenen, als Brennstoffeinlaßstutzen dienenden Kern 2, der beispielsweise hier rohrförmig aus¬ gebildet ist und über seine gesamte Länge einen konstanten Außendurchmesser aufweist. Ein in radialer Richtung gestufter Spulenkörper 3 nimmt eine Bewicklung der Ma¬ gnetspule 1 auf und ermöglicht in Verbindung mit dem einen konstanten Außendurchmesser aufweisenden Kern 2 einen be¬ sonders kompakten Aufbau des Einspritzventils im Bereich der Magnetspule 1.The electromagnetically actuated valve shown in FIG. 1, for example, in the form of an injection valve for fuel injection systems of mixture-compressing, spark-ignited internal combustion engines has a core 2, which is surrounded by a magnetic coil 1 and serves as a fuel inlet connection and is, for example, tubular here and has a constant outer diameter over its entire length. A coil body 3, which is stepped in the radial direction, receives a winding of the magnetic coil 1 and, in conjunction with the core 2, which has a constant outer diameter, enables a particularly compact design of the injection valve in the area of the magnetic coil 1.
Mit einem unteren Kernende 9 des Kerns 2 ist konzentrisch zu einer Ventillängsachse 10 dicht ein rohrförmiges metal¬ lenes Zwischenteil 12 beispielsweise durch Schweißen ver- bunden und umgibt dabei das Kernende 9 teilweise axial.With a lower core end 9 of the core 2, a tubular metal intermediate part 12 is tightly connected concentrically to a longitudinal valve axis 10, for example by welding, and thereby partially axially surrounds the core end 9.
Der gestufte Spulenkörper 3 übergreift teilweise den Kern 2 und mit einer Stufe 15 größeren Durchmessers das Zwi¬ schenteil 12 zumindest teilweise axial. Stromabwärts des Spulenkörpers 3 und des Zwischenteils 12 erstreckt sich ein rohrförmiger Ventilsitzträger 16, der beispielsweise fest mit dem Zwischenteil 12 verbunden ist. In dem Ven¬ tilsitzträger 16 verläuft eine Längsbohrung 17, die kon¬ zentrisch zu der Ventillängsachse 10 ausgebildet ist. In der Längsbohrung 17 ist eine zum Beispiel rohrförmige Ven- tilnadel 19 angeordnet, die an ihrem stromabwärtigen En¬ de 20 mit einem kugelförmigen Ventilschließkörper 21, an dessen Umfang beispielsweise fünf Abflachungen 22 zum Vorbeiströmen des Brennstoffs vorgesehen sind, beispiels- weise durch Schweißen verbunden ist.The stepped coil body 3 partially overlaps the core 2 and, with a step 15 of larger diameter, the intermediate part 12 at least partially axially. A tubular valve seat carrier 16 extends downstream of the bobbin 3 and the intermediate part 12 and is, for example, firmly connected to the intermediate part 12. A longitudinal bore 17 runs in the valve seat support 16 and is formed concentrically to the valve longitudinal axis 10. Arranged in the longitudinal bore 17 is, for example, a tubular valve needle 19 which, at its downstream end 20, has a spherical valve closing body 21, on the circumference of which, for example, five flats 22 are provided for the fuel to flow past, for example is connected by welding.
Die Betätigung des Einspritzventils erfolgt in bekannter Weise elektromagnetisch. Zur axialen Bewegung der Ventil- nadel 19 und damit zum Öffnen entgegen der Federkraft ei¬ ner Rückstellfeder 25 bzw. Schließen des Einspritzventils dient der elektromagnetische Kreis mit der Magnetspule 1, dem Kern 2 und einem Anker 27. Der Anker 27 ist mit dem dem Ventilschließkörper 21 abgewandten Ende der Ventilna- del 19 durch eine erste Schweißnaht 28 verbunden und auf den Kern 2 ausgerichtet. In das stromabwärts liegende, dem Kern 2 abgewandte Ende des Ventilsitzträgers 16 ist in der Längsbohrung 17 ein zylinderförmiger Ventilsitzkörper 29, der einen festen Ventilsitz aufweist, durch Schweißen dicht montiert.The injection valve is actuated electromagnetically in a known manner. The electromagnetic circuit with the magnet coil 1, the core 2 and an armature 27 is used for the axial movement of the valve needle 19 and thus for opening against the spring force of a return spring 25 or closing the injection valve. The armature 27 is with the valve closing body 21 facing away from the end of the valve needle 19 by a first weld 28 and aligned to the core 2. In the downstream end of the valve seat carrier 16 facing away from the core 2, a cylindrical valve seat body 29, which has a fixed valve seat, is tightly mounted in the longitudinal bore 17 by welding.
Zur Führung des Ventilschließkörpers 21 während der Axial¬ bewegung der Ventilnadel 19 mit dem Anker 27 entlang der Ventillängsachse 10 dient eine Führungsöffnung 32 des Ven- tilsitzkörpers 29. Der kugelförmige Ventilschließkörper 21 wirkt mit dem sich in Strömungsrichtung kegelstumpfförmig verjüngenden Ventilsitz des Ventilsitzkörpers 29 zusammen. An seiner dem Ventilschließkörper 21 abgewandten Stirn¬ seite ist der Ventilsitzkörper 29 mit einer beispielsweise topfförmig ausgebildeten Spritzlochscheibe 34 konzentrisch und fest, verbunden. Im Bodenteil der Spritzlochscheibe 34 verläuft wenigstens eine, beispielsweise verlaufen vier durch Erodieren oder Stanzen ausgeformte Abspritzöffnungen 39.A guide opening 32 of the valve seat body 29 is used to guide the valve closing body 21 during the axial movement of the valve needle 19 with the armature 27 along the valve longitudinal axis 10. The spherical valve closing body 21 interacts with the valve seat of the valve seat body 29 which tapers in the direction of a truncated cone in the direction of flow. On its end facing away from the valve closing body 21, the valve seat body 29 is connected concentrically and firmly to a spray-perforated disk 34, for example in the form of a pot. At least one runs in the base part of the spray perforated disk 34, for example four spray openings 39 formed by eroding or stamping.
Die Einschubtiefe des Ventilsitzkörpers 29 mit der topfförmigen Spritzlochscheibe 34 bestimmt die Voreinstel¬ lung des Hubs der Ventilnadel 19. Dabei ist die eine End- Stellung der Ventilnadel 19 bei nicht erregter Magnetspule 1 durch die Anlage des Ventilschließkörpers 21 am Ventil¬ sitz des Ventilsitzkörpers 29 festgelegt, während sich die andere Endstellung der Ventilnadel 19 bei erregter Magnet- spule 1 durch die Anlage des Ankers 27 am Kernende 9 er¬ gibt, also genau in dem Bereich, der erfindungsgemäß aus¬ gebildet und durch einen Kreis näher gekennzeichnet ist.The insertion depth of the valve seat body 29 with the cup-shaped spray perforated disk 34 determines the presetting of the stroke of the valve needle 19. Position of the valve needle 19 when the magnet coil 1 is not excited is determined by the contact of the valve closing body 21 on the valve seat of the valve seat body 29, while the other end position of the valve needle 19 when the magnet coil 1 is excited results from the contact of the armature 27 at the core end 9 , that is to say exactly in the area which is formed according to the invention and is characterized in more detail by a circle.
Eine in eine konzentrisch zur Ventillängsachse 10 verlau- fende Strömungsbohrung 46 des Kerns 2 eingeschobene Ein¬ stellhülse 48, die beispielsweise aus gerolltem Feder¬ stahlblech ausgeformt ist, dient zur Einstellung der Fe¬ dervorspannung der an der Einstellhülse 48 anliegenden Rückstellfeder 25, die sich wiederum mit ihrer gegenüber- liegenden Seite an der Ventilnadel 19 abstützt.An adjusting sleeve 48, which is pushed into a flow bore 46 of the core 2 concentrically to the longitudinal axis 10 of the valve and which is formed, for example, from rolled spring steel sheet, serves to adjust the spring preload of the return spring 25 resting on the adjusting sleeve 48, which in turn is with its opposite side supported on the valve needle 19.
Das Einspritzventil ist weitgehend mit einer Kunststoffum- spritzung 50 umschlossen, die sich vom Kern 2 ausgehend in axialer Richtung über die Magnetspule 1 bis zum Ventil- sitzträger 16 erstreckt. Zu dieser KunststoffumspritzungThe injection valve is largely enclosed in a plastic encapsulation 50, which extends from the core 2 in the axial direction via the solenoid coil 1 to the valve seat carrier 16. About this plastic encapsulation
50 gehört beispielsweise ein mitangespritzter elektrischer Anschlußstecker 52.50 includes, for example, a molded-on electrical connector 52.
Ein Brennstoffilter 61 ragt in die Strömungsbohrung 46 des Kerns 2 an dessen Zulaufseitigem Ende 55 hinein und sorgt für die Herausfiltrierung solcher Brennstoffbestandteile, die aufgrund ihrer Größe im Einspritzventil Verstopfungen oder Beschädigungen verursachen könnten.A fuel filter 61 projects into the flow bore 46 of the core 2 at its inlet end 55 and provides for the filtering out of those fuel components which, because of their size, could cause blockages or damage in the injection valve.
In der Figur 2 ist der in Figur 1 mit einem Kreis gekenn¬ zeichnete Bereich der einen Endstellung der Ventilnadel 19, in dem der Anker 27 an dem Kernende 9 des Kerns 2 an¬ schlägt, in einem anderen Maßstab dargestellt. Bereits be- kannt ist das Aufbringen von metallischen Schichten 65 auf dem Kernende 9 des Kerns 2 und auf dem Anker 27, bei¬ spielsweise von Chrom- oder Nickelschichten, mittels Gal- vanisierens. Dabei werden die Schichten 65 sowohl auf eine senkrecht zur Ventillängsachse 10 verlaufende Stirnfläche 67 als auch zumindest teilweise auf eine Umfangsfläche 66 des Ankers 27 aufgebracht. Diese Schichten 65 sind besonders verschleißfest und reduzieren mit ihrer kleinen Oberfläche ein hydraulisches Kleben der anschlagenden Flä- chen, ohne es jedoch sicher verhindern zu können. DieFIG. 2 shows the area of the one end position of the valve needle 19 marked with a circle in FIG. 1, in which the armature 27 strikes the core end 9 of the core 2, on a different scale. Already loaded it is known to apply metallic layers 65 to the core end 9 of the core 2 and to the armature 27, for example chrome or nickel layers, by means of electroplating. The layers 65 are applied both to an end face 67 running perpendicular to the longitudinal valve axis 10 and at least partially to a peripheral face 66 of the armature 27. These layers 65 are particularly wear-resistant and, with their small surface area, reduce hydraulic sticking of the abutting surfaces, but without being able to reliably prevent it. The
Schichtdicke dieser Schichten 65 beträgt im allgemeinen zwischen 10 und 25 μm.Layer thickness of these layers 65 is generally between 10 and 25 microns.
Für die Funktion des Einspritzventils ist es notwendig, daß Kern 2 und Anker 27 nur in einem relativ kleinen Be¬ reich, beispielsweise nur im äußeren, von der Ventillängs¬ achse 10 abgewandten Bereich der oberen Stirnfläche des Ankers 27 anschlagen. Diese Forderung wird gerade durch die galvanische Beschichtung erreicht. Bei der galvani- sehen Beschichtung tritt an den Kanten der zu beschichten¬ den Teile, hier Kern 2 und Anker 27, eine Feldlinienkon¬ zentration auf, die dazu führt, daß eine keilige Schicht¬ dickenverteilung, wie sie in Figur 2 angedeutet ist, auf¬ tritt. Die aufgebrachte keilige Schicht 65 wird also beim Betrieb des Einspritzventils nur in einem kleinen Bereich beansprucht. Beim Dauerbetrieb liegt allerdings nicht mehr eine definierte Anschlagfläche vor, da durch mehrere Mil¬ lionen Anschläge Teile der Schicht 65 abgetragen werden, so daß sich die Anschlagfläche immer weiter vergrößert und somit die Keiligkeit ständig weiter reduziert wird.For the function of the injection valve, it is necessary for core 2 and armature 27 to strike only in a relatively small area, for example only in the outer region of the upper end face of armature 27 facing away from valve longitudinal axis 10. This requirement is met by the galvanic coating. In the galvanic coating, a field line concentration occurs at the edges of the parts to be coated, here core 2 and armature 27, which leads to a wedge-shaped layer thickness distribution, as indicated in FIG. 2 ¬ occurs. The wedge-shaped layer 65 applied is therefore only stressed in a small area during the operation of the injection valve. In continuous operation, however, there is no longer a defined stop surface, since parts of the layer 65 are removed by several million stops, so that the stop surface increases ever further and thus the wedge is continuously reduced.
Demgegenüber ist in der Figur 3 ein Teil des erfindungsge¬ mäßen Ankers 27 im Bereich seiner oberen Stirnfläche 67 gezeigt, die bereits vor der Beschichtung oder dem Erzeu- gen der Verschleißfestigkeit der Oberfläche einen Stufen¬ abschnitt 70 aufweist.In contrast, part of the anchor 27 according to the invention is shown in the area of its upper end face 67 in FIG. 3, which already before the coating or the production. has a step section 70 due to the wear resistance of the surface.
Während die bei galvanisch abgeschiedenen Schichten 65 entstehende Schichtdickenverteilung physikalisch vorgege¬ ben und kaum beeinflußbar ist, kann die Stufe des An¬ kers 27 vor der Beschichtung bzw. dem Erzeugen der Ver¬ schleißfestigkeit entsprechend geforderter Werte so vor¬ bestimmt und gefertigt werden, daß bei der Benutzung je- weils ein magnetisches und hydraulisches Optimum erreicht wird. Mit Hilfe sehr genau geschliffener Senkwerkzeuge können enge Fertigungstoleranzen für die Stufe eingehalten werden, so daß es beim Betrieb des Einspritzventils zu einer äußerst geringen Streuung der Anzugs- und Abfallzeit des Ankers 27 kommt. Der Stufenabschnitt 70 der Stirnflä¬ che 67 erlaubt es zudem, daß auch nichtgalvanische, ver¬ schleißfeste Schichten, die auch magnetisch sein dürfen, aufgebracht werden können, ohne daß die Forderung nach ei¬ nem sehr kleinen Anschlagbereich unerfüllt bleibt.While the layer thickness distribution that occurs in the case of electrodeposited layers 65 is physically predetermined and can hardly be influenced, the step of the anchor 27 before the coating or the generation of the wear resistance can be predetermined and manufactured in accordance with the required values so that a magnetic and hydraulic optimum is achieved in each case. With the help of very precisely ground countersinking tools, narrow manufacturing tolerances can be maintained for the step, so that there is an extremely small variation in the pull-in and drop-out times of the armature 27 when the injection valve is in operation. The step section 70 of the end face 67 also allows non-galvanic, wear-resistant layers, which may also be magnetic, to be applied without the requirement for a very small stop area remaining unfulfilled.
Außerdem kann die Stirnfläche 67, zumindest im Bereich ih¬ res Anschlagabschnitts 69, durch eine Behandlung der Ober¬ fläche mittels eines Härteverfahrens verschleißfest ge¬ macht werden. Als Härteverfahren sind hierzu z.B. die be- kannten Nitrierverfahren wie Plasmanitrieren oder Gasni¬ trieren geeignet.In addition, the end face 67, at least in the area of its stop section 69, can be made wear-resistant by treating the surface by means of a hardening process. As a hardening process, e.g. the known nitriding processes such as plasma nitriding or gas nitriding are suitable.
Mit dem Stufenabschnitt 70 in der oberen Stirnfläche 67 des Ankers 27, der so wie es die Figur 3 zeigt, eine Ver- tiefung darstellt, ist die höchste Sicherheit einer über die gesamte Lebensdauer des Einspritzventils konstant bleibenden Anschlagflächenbreite und damit Kontaktbreite gegeben. Der Stufenabschnitt 70 hat zur Folge, daß der ge- nau definierte ringförmige Anschlagabschnitt 69 an der Stirnfläche 67 gebildet wird.The step section 70 in the upper end face 67 of the armature 27, which represents a depression as shown in FIG. The step section 70 has the consequence that the precisely defined annular stop section 69 is formed on the end face 67.
Bei Dauerbetrieb des Einspritzventils können mehrere Mil- lionen Anschläge vom Anker 27 am Kern 2 stattfinden. Das wiederum bedeutet, daß ein minimaler Anschlagflächenver¬ schleiß nicht zu vermeiden ist. Durch den Stufenabschnitt 70 ragt nun der als Anschlag dienende Anschlagabschnitt 69 der oberen Stirnfläche 67 des Ankers 27 über einen Stufenboden 71 deutlich heraus. Als Anschlag dient somit der herausragende, ringförmige Anschlagabschnitt 69 mit einer Breite b zwischen 20 und 500 μm, der bei dem Ausfüh¬ rungsbeispiel nach Figur 3 zwischen der Umfangsflache 66 und dem nach innen versetzt ausgebildeten Stufenabschnitt 70 liegt. Dieser Anschlagabschnitt 69 behält über die ge¬ samte Betriebsdauer eine konstante Breite b. Der bereits erwähnte Verschleiß hat also keinen Einfluß mehr auf die Anschlagflächenbreite bzw. Kontaktbreite. Ein hydrauli¬ sches Kleben ist aufgrund der kleinen Anschlagfläche aus- geschlossen. Da über die gesamte Lebensdauer eine kon¬ stante Kontaktbreite gewährleistet ist, bleiben auch als großer Vorteil die hydraulischen Verhältnisse im Spalt zwischen den anschlagenden Teilen, hier zwischen Kern 2 und Anker 27, konstant. Gegenüber der eben verlaufenden Anschlagfläche des Anschlagabschnitts 69 ergeben sich be¬ reits bei einem axialen Abstand ab 5 μm von dem Stufenbo¬ den 71 die Vorteile der Erfindung. Das hydraulische und magnetische Optimum wird durch eine geeignete Wahl der Breite b und der Tiefe des Stufenbodens 71, die beispiels- weise zwischen 5 und 15 μm beträgt, erzielt.During continuous operation of the injection valve, several million stops from armature 27 on core 2 can take place. This in turn means that minimal wear on the abutment surface cannot be avoided. Through the step section 70, the stop section 69 of the upper end face 67 of the armature 27, which serves as a stop, now clearly protrudes over a step bottom 71. The protruding, ring-shaped stop section 69 with a width b between 20 and 500 μm thus serves as a stop, which in the embodiment according to FIG. 3 lies between the peripheral surface 66 and the step section 70, which is formed inwardly offset. This stop section 69 maintains a constant width b over the entire operating time. The abovementioned wear therefore no longer has any influence on the stop surface width or contact width. Hydraulic gluing is excluded due to the small stop surface. Since a constant contact width is guaranteed over the entire service life, the hydraulic conditions in the gap between the striking parts, here between core 2 and armature 27, remain a great advantage. Compared to the flat stop surface of the stop section 69, the advantages of the invention are obtained at an axial distance of 5 μm from the step floor 71. The hydraulic and magnetic optimum is achieved by a suitable choice of the width b and the depth of the step base 71, which is between 5 and 15 μm, for example.
Es ist auch denkbar, daß sowohl der Anker 27 als auch der Kern 2 vor dem Beschichten bzw. dem Erzeugen einer ver¬ schleißfesten Oberfläche mit einem entsprechenden Stufen- abschnitt 70 versehen werden, so daß an beiden anschla¬ genden Seiten sehr genau definierte ringförmige Anschlag¬ abschnitte 69 gebildet sind, so wie es die Figur 3 zeigt. Außerdem ist es möglich, nur am Kern 2 diesen Stufenab- schnitt 70 vorzusehen, während der Anker 27 beispielsweise eine plane Stirnfläche erhält. Diese nicht dargestellten Beispiele werden sicherlich nicht so häufig zur Anwendung kommen; stellen aber von der Geometrie der Stufe nichts anderes dar als das in der Figur 3 gezeigte Ausführungs- beispiel am Anker 27.It is also conceivable for both the armature 27 and the core 2 to be coated with a corresponding step before coating or generating a wear-resistant surface. section 70 are provided, so that very precisely defined annular stop sections 69 are formed on both abutting sides, as shown in FIG. In addition, it is possible to provide this step section 70 only on the core 2, while the armature 27 is given a flat end face, for example. These examples, not shown, will certainly not be used as often; However, the geometry of the step represents nothing other than the exemplary embodiment shown in FIG. 3 on the armature 27.
Weitere Ausführungsbeispiele von erfindungsgemäß ausgebil¬ deten Ankern 27 zeigen die Figuren 4 und 5. So ist es denkbar, daß der Anschlagabschnitt 69 zur Ventillängsachse 10 hin an der Stirnfläche 67 ausgebildet ist, während der Stufenabschnitt 70 axial versetzt nach außen zur Umfangs- fläche 66 hin liegt (Figur 4) . In der Figur 5 ist ein Aus¬ führungsbeispiel des Ankers 27 dargestellt, bei dem der Anschlagabschnitt 69 innen und außen, also zur Umfangsflä- ehe 66 und zur Ventillängsachse 10 hin, von Sufenabschnit- ten 70 umgeben ist.FIGS. 4 and 5 show further exemplary embodiments of anchors 27 designed according to the invention. It is conceivable that the stop section 69 is formed on the end face 67 towards the longitudinal axis 10 of the valve, while the step section 70 is offset axially outward toward the peripheral face 66 lies (Figure 4). FIG. 5 shows an exemplary embodiment of the armature 27, in which the stop section 69 is surrounded on the inside and outside, that is to say to the peripheral surface 66 and to the valve longitudinal axis 10, by step sections 70.
Da an wenigstens einer Stirnfläche 67 von Anker 27 und/oder Kern 2 bereits der Stufenabschnitt 70 vorliegt, können nun, wie bereits erwähnt, auch vom Aufbringen vonSince the step section 70 is already present on at least one end face 67 of the armature 27 and / or core 2, as already mentioned, the application of
Chrom- oder Nickelschichten abweichende Verfahren zur Qua¬ litätserhöhung durch Verbesserung der Verschleißfestigkeit der Stirnfläche 67 zum Einsatz kommen. Durch den Einsatz von Härteverfahren, wie z.B. Plasmanitrieren, Gasnitrieren oder Carburieren, durch die die Oberflächenstruktur am An¬ ker 27 und/oder Kern 2 verändert wird, kann sogar ganz auf Verfahren zur unmittelbaren Beschichtung verzichtet wer¬ den. Processes deviating from chromium or nickel layers are used to increase the quality by improving the wear resistance of the end face 67. Through the use of hardening processes, e.g. Plasma nitriding, gas nitriding or carburizing, by means of which the surface structure on the anchor 27 and / or core 2 is changed, can even be completely dispensed with methods for direct coating.

Claims

Patentansprüche claims
1. Elektromagnetisch betätigbares Ventil, insbesondere Brennstoffeinspritzventil für Brennstoffeinspritzanlagen von Brennkraftmaschinen, mit einer Ventillängsachse, mit einem Kern aus ferromagnetischem Material, mit einer Ma¬ gnetspule tind mit einem Anker, der ein mit einem festen Ventilsitz zusammenwirkenden Ventilschließkörper betätigt und bei erregter Magnetspule gegen eine Anschlagfläche des Kerns gezogen wird, dadurch gekennzeichnet, daß wenigstens eine der beiden Stirnflächen (67) der Bauteile Anker (27) und Kern (2) , die jeweils zu dem anderen gegenüberliegen¬ den Bauteil gerichtet sind, in einen Anschlagabschnitt (69) und wenigstens einen gegenüber dem Anschlagabschnitt (69) vertieften Stufenabschnitt (70) aufgeteilt ist und der wenigstens eine Anschlagabschnitt (69) eine definierte Breite (b) hat.1. Electromagnetically actuated valve, in particular fuel injection valve for fuel injection systems of internal combustion engines, with a valve longitudinal axis, with a core made of ferromagnetic material, with a solenoid coil with an armature which actuates a valve closing body interacting with a fixed valve seat and against a stop surface when the solenoid coil is excited of the core, characterized in that at least one of the two end faces (67) of the components armature (27) and core (2), which are each directed towards the other opposite component, into a stop section (69) and at least one Compared to the stop section (69) recessed step section (70) and the at least one stop section (69) has a defined width (b).
2. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß der wenigstens eine Anschlagabschnitt (69) an Anker (27) und/oder Kern (2) eine Breite (b) besitzt, die nur einen Bruchteil des Durchmessers der Stirnfläche (67) darstellt.2. Valve according to claim 1, characterized in that the at least one stop portion (69) on armature (27) and / or core (2) has a width (b) which represents only a fraction of the diameter of the end face (67).
3. Ventil nach Anspruch 2, dadurch gekennzeichnet, daß der wenigstens eine Anschlagabschnitt (69) an Anker (27) und/oder Kern (2) eine Breite (b) zwischen 20 und 500 μm besitzt. 3. Valve according to claim 2, characterized in that the at least one stop portion (69) on armature (27) and / or core (2) has a width (b) between 20 and 500 microns.
4. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß sich der wenigstens eine Stufenabschnitt (70) am Kern (2) und/oder Anker (27) ausgehend von dem Anschlagabschnitt4. Valve according to claim 1, characterized in that the at least one step section (70) on the core (2) and / or armature (27) starting from the stop section
(69) in Richtung zu der Ventillängsachse (10) hin er- streckt.(69) extends in the direction of the valve longitudinal axis (10).
5. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß sich der wenigstens eine Stufenabschnitt (70) am Kern (2) und/oder Anker (27) ausgehend von dem Anschlagabschnitt (69) in Richtung von der Ventillängsachse (10) weg er¬ streckt.5. Valve according to claim 1, characterized in that the at least one step section (70) on the core (2) and / or armature (27) starting from the stop section (69) in the direction of the valve longitudinal axis (10) extends er¬ .
6. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß Kern (2) und/oder Anker (27) im Bereich der Stirnfläche (67) beschichtet sind.6. Valve according to claim 1, characterized in that the core (2) and / or armature (27) in the region of the end face (67) are coated.
7. Ventil nach Anspruch 6, dadurch gekennzeichnet, daß die durch das Beschichten aufgebrachte Schicht (65) magnetisch ist.7. Valve according to claim 6, characterized in that the layer (65) applied by the coating is magnetic.
8. Ventil nach Anspruch 1, dadurch gekennzeichnet, daß Kern (2) und/oder Anker (27) im Bereich der Stirnfläche (67) mittels eines Härteverfahrens behandelt sind. 8. Valve according to claim 1, characterized in that the core (2) and / or armature (27) in the region of the end face (67) are treated by means of a hardening process.
PCT/DE1994/001389 1993-12-09 1994-11-24 Electromagnetic valve WO1995016125A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU95120217A RU2131992C1 (en) 1993-12-09 1994-11-24 Electromagnetic valve
JP7515871A JPH08506876A (en) 1993-12-09 1994-11-24 Solenoid operated valve
BR9406081A BR9406081A (en) 1993-12-09 1994-11-24 Electromagnetically actuated valve
DE59405392T DE59405392D1 (en) 1993-12-09 1994-11-24 ELECTROMAGNETICALLY ACTUABLE VALVE
EP95900659A EP0683861B1 (en) 1993-12-09 1994-11-24 Electromagnetic valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4341961 1993-12-09
DEP4341961.5 1993-12-09
DE4421947A DE4421947A1 (en) 1993-12-09 1994-06-23 Electromagnetically actuated valve
DEP4421947.4 1994-06-23

Publications (1)

Publication Number Publication Date
WO1995016125A1 true WO1995016125A1 (en) 1995-06-15

Family

ID=25931898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1994/001389 WO1995016125A1 (en) 1993-12-09 1994-11-24 Electromagnetic valve

Country Status (8)

Country Link
EP (1) EP0683861B1 (en)
JP (2) JPH08506876A (en)
CN (1) CN1055524C (en)
BR (1) BR9406081A (en)
CZ (1) CZ284430B6 (en)
ES (1) ES2113722T3 (en)
RU (1) RU2131992C1 (en)
WO (1) WO1995016125A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051072A1 (en) * 2002-12-04 2004-06-17 Robert Bosch Gmbh Fuel-injection valve
WO2015106864A1 (en) * 2014-01-15 2015-07-23 Robert Bosch Gmbh Adhesive-free gap for valves with solenoid plunger magnetic actuator mechanism
CN107429650A (en) * 2015-03-25 2017-12-01 罗伯特·博世有限公司 Solenoid-operated control valve, the conveying capacity particularly for controlling high-pressure fuel pump

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301757A (en) 2002-04-09 2003-10-24 Aisan Ind Co Ltd Solenoid-operated fuel injection valve
JP3819907B2 (en) * 2004-02-27 2006-09-13 株式会社ケーヒン Electromagnetic fuel injection valve and manufacturing method thereof
JP3819906B2 (en) * 2004-02-27 2006-09-13 株式会社ケーヒン Electromagnetic fuel injection valve and manufacturing method thereof
JP2007205234A (en) * 2006-02-01 2007-08-16 Denso Corp Fuel injection valve
DE102010064097A1 (en) 2010-12-23 2012-06-28 Robert Bosch Gmbh Electromagnetically actuatable valve e.g. fuel injection valve of internal combustion engine, has movable valve needle with lower stopper comprising top stop face with elevations and depressions on which armature rests
JP2012246789A (en) * 2011-05-25 2012-12-13 Denso Corp Fuel injection valve
JP2013072298A (en) 2011-09-27 2013-04-22 Hitachi Automotive Systems Ltd Fuel injection valve
JP6087210B2 (en) 2013-05-24 2017-03-01 日立オートモティブシステムズ株式会社 Fuel injection valve
WO2015136974A1 (en) * 2014-03-14 2015-09-17 日立オートモティブシステムズ株式会社 Electromagnetic valve
JP6381946B2 (en) * 2014-04-14 2018-08-29 日立オートモティブシステムズ株式会社 Fluid control solenoid
JP5862713B2 (en) * 2014-06-27 2016-02-16 株式会社デンソー Fuel injection valve
JP6137296B2 (en) * 2015-12-22 2017-05-31 株式会社デンソー Fuel injection valve
DE102016203083A1 (en) * 2016-02-26 2017-08-31 Robert Bosch Gmbh magnetic valve
JP7358799B2 (en) * 2018-07-19 2023-10-11 浜名湖電装株式会社 vehicle horn
DE102021212791A1 (en) 2021-11-15 2023-05-17 Robert Bosch Gesellschaft mit beschränkter Haftung Electromagnetically actuable valve and method of manufacture
DE102021212790A1 (en) 2021-11-15 2023-05-17 Robert Bosch Gesellschaft mit beschränkter Haftung Electromagnetically actuable valve and method of manufacture
DE102021213142A1 (en) 2021-11-23 2023-05-25 Robert Bosch Gesellschaft mit beschränkter Haftung Electromagnetically operable device and method of manufacturing a magnetic circuit component of an electromagnetically operable device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172591A1 (en) * 1984-07-12 1986-02-26 WEBER S.r.l. Improved electroinjector for feeding fuel to an internal combustion engine
EP0301620A2 (en) * 1987-07-27 1989-02-01 WEBER S.r.l. Electromagnetically controlled fuel injector for feeding fuel to internal combustion engines
EP0536773A1 (en) * 1991-10-11 1993-04-14 MAGNETI MARELLI S.p.A. Electromagnetically actuated fuel atomising and metering valve for a heat engine fuel supply device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3230844A1 (en) * 1982-08-19 1984-02-23 Robert Bosch Gmbh, 7000 Stuttgart ELECTROMAGNETICALLY ACTUABLE VALVE
JPH0735763B2 (en) * 1987-05-27 1995-04-19 株式会社日立製作所 Electromagnetic fuel injection valve with excellent impact resistance and wear resistance
DE3834444A1 (en) * 1988-10-10 1990-04-12 Mesenich Gerhard ELECTROMAGNETIC INJECTION VALVE WITH DIAPHRAGM SPRING
DE3834447A1 (en) * 1988-10-10 1990-04-12 Mesenich Gerhard ELECTROMAGNETIC INJECTION VALVE AND METHOD FOR THE PRODUCTION THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172591A1 (en) * 1984-07-12 1986-02-26 WEBER S.r.l. Improved electroinjector for feeding fuel to an internal combustion engine
EP0301620A2 (en) * 1987-07-27 1989-02-01 WEBER S.r.l. Electromagnetically controlled fuel injector for feeding fuel to internal combustion engines
EP0536773A1 (en) * 1991-10-11 1993-04-14 MAGNETI MARELLI S.p.A. Electromagnetically actuated fuel atomising and metering valve for a heat engine fuel supply device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8020789B2 (en) 2002-03-04 2011-09-20 Robert Bosch Gmbh Fuel injection valve
WO2004051072A1 (en) * 2002-12-04 2004-06-17 Robert Bosch Gmbh Fuel-injection valve
CN100432418C (en) * 2002-12-04 2008-11-12 罗伯特·博世有限公司 Fuel-injection valve
US8656591B2 (en) 2002-12-04 2014-02-25 Robert Bosch Gmbh Fuel injector
WO2015106864A1 (en) * 2014-01-15 2015-07-23 Robert Bosch Gmbh Adhesive-free gap for valves with solenoid plunger magnetic actuator mechanism
CN107429650A (en) * 2015-03-25 2017-12-01 罗伯特·博世有限公司 Solenoid-operated control valve, the conveying capacity particularly for controlling high-pressure fuel pump
US10359017B2 (en) 2015-03-25 2019-07-23 Robert Bosch Gmbh Electromagnetically actuated rate control valve, in particular for controlling the delivery rate of a high-pressure fuel pump
EP3274581B1 (en) * 2015-03-25 2021-04-07 Robert Bosch GmbH High-pressure fuel pump with an electromagnetically actuated rate control valve as an inlet valve in particular for controlling the delivery rate of the high-pressure fuel pump

Also Published As

Publication number Publication date
EP0683861B1 (en) 1998-03-04
CN1055524C (en) 2000-08-16
ES2113722T3 (en) 1998-05-01
RU2131992C1 (en) 1999-06-20
CZ284430B6 (en) 1998-11-11
CZ198095A3 (en) 1996-05-15
JP4755619B2 (en) 2011-08-24
BR9406081A (en) 1996-02-06
JP2007187167A (en) 2007-07-26
JPH08506876A (en) 1996-07-23
EP0683861A1 (en) 1995-11-29
CN1116870A (en) 1996-02-14

Similar Documents

Publication Publication Date Title
EP0683862B1 (en) Electromagnetic valve
DE19654322C2 (en) Electromagnetically actuated valve
EP0683861B1 (en) Electromagnetic valve
EP1042606B1 (en) Electromagnetically actuatable valve
EP0720691B1 (en) Valve needle for an electromagnetic valve and method of producing the same
DE4137994C2 (en) Electromagnetically actuated injection valve with a nozzle holder and method for producing a nozzle holder of an injection valve
DE4109868A1 (en) ADJUSTING SOCKET FOR AN ELECTROMAGNETICALLY ACTUABLE VALVE AND METHOD FOR THE PRODUCTION THEREOF
WO1998042975A1 (en) Fuel-injection valve and method for producing a valve needle of a fuel-injection valve
EP0558715B1 (en) Electromagnetically operable injection valve
EP0975868A2 (en) Electromagnetically controlled valve
EP1062421B1 (en) Fuel injector
EP1919654A1 (en) Rigid housing production method
WO1996008647A1 (en) Method of manufacturing a magnetic circuit for a valve
EP0988447A1 (en) Fuel injection valve
DE4421947A1 (en) Electromagnetically actuated valve
EP1966483A1 (en) Electromagnetically operated valve
EP1001863A1 (en) Method for producing a valve seat body for a fuel injection valve, and corresponding fuel injection valve
EP1966479A1 (en) Electromagnetically operated valve
DE4108665C2 (en) Adjustment socket for an electromagnetically actuated valve
DE3501973A1 (en) Fuel injection nozzle
EP1366283A1 (en) Fuel injection valve comprising an adjusting bush
DE102012210956A1 (en) Method for producing a housing, in particular a valve housing
DE4018317C1 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94190985.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN CZ JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995900659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV1995-1980

Country of ref document: CZ

ENP Entry into the national phase

Ref document number: 1995 501002

Country of ref document: US

Date of ref document: 19950809

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995900659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1995-1980

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1995900659

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1995-1980

Country of ref document: CZ