WO1995019553A1 - Optical radiation sensor device - Google Patents

Optical radiation sensor device Download PDF

Info

Publication number
WO1995019553A1
WO1995019553A1 PCT/CA1995/000020 CA9500020W WO9519553A1 WO 1995019553 A1 WO1995019553 A1 WO 1995019553A1 CA 9500020 W CA9500020 W CA 9500020W WO 9519553 A1 WO9519553 A1 WO 9519553A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
radiation
inlet
filter
disinfection system
Prior art date
Application number
PCT/CA1995/000020
Other languages
French (fr)
Inventor
Stewart James Hayes
Richard Pearcey
Philip Thomas White
Peter Robert Andreae
Mark Richards Lowenstine
Original Assignee
Trojan Technologies Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trojan Technologies Inc. filed Critical Trojan Technologies Inc.
Priority to AU14108/95A priority Critical patent/AU1410895A/en
Publication of WO1995019553A1 publication Critical patent/WO1995019553A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0418Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using attenuators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0437Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using masks, aperture plates, spatial light modulators, spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/32Details relating to UV-irradiation devices
    • C02F2201/326Lamp control systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J2001/0276Protection
    • G01J2001/0285Protection against laser damage

Definitions

  • the present invention relates to an optical radiation sensor device. More specifically, the present invention relates that an optical radiation sensor device with improved resistance to damage from the radiation which it is employed to measure.
  • Optical radiation sensors are known and find widespread use in a number of applications.
  • One of the principal applications of optical radiation sensors is in the field of ultraviolet radiation fluid disinfection systems.
  • UV600 Ultraviolet water disinfection units
  • UV600 employs this principle to disinfect water for human consumption.
  • water to be disinfected passes through a pressurized stainless steel cylinder which is flooded with ultraviolet radiation.
  • Large scale municipal wastewater treatment equipment such as that commercially available from Trojan Technologies Inc. under the tradename UV3000, employ this same principle to disinfect treated wastewater.
  • ultraviolet radiation emitting lamps are submerged in an open channel wherein the treated wastewater is exposed to radiation as it flows past the lamps.
  • United States patents 4,482,809; 4,872,980 and 5,006,244 and copending United States patent application 08/026,572 the contents of each of which is incorporated herein by reference.
  • One solution proposed to reduce degradation of the sensor device is to relocate the sensor device further from the radiation source. Practically, this creates other problems relating to geometry or size constraints of the sensor device and/or the fluid disinfection system.
  • Another solution proposed to reduce degradation of the sensor device in harsh environments involves the use of special filters and coatings for the radiation sensing device.
  • One example involves the use of a filter glass that is placed between the radiation source and the sensor device in order to attenuate the radiation or to remove unwanted wavelengths, or both.
  • the filter glass is separate from the sensor device.
  • the filter glass may, itself, be subject to degradation because of the radiation present or other influences associated with the environment which have a degrading effect. Further, the filtering effect provided may change over time, reducing the accuracy of the sensed values.
  • Another example involves the precipitation of a phosphorus coating onto the face of the sensor device to provide a wavelength conversion effect thereby minimizing degradation of the sensor. Unfortunately, the phosphorous coating itself is subject to degradation along with the sensor device.
  • optical radiation sensor device which has an improved resistance to the degradation that results from prolonged use in an ultraviolet radiation environment.
  • the present invention provides an optical radiation sensor comprising a housing having an inlet which allows radiation to enter the housing, and further comprising the following elements serially disposed after the inlet in the path of the radiation: attenuating aperture means, filter means and sensor means. While the invention will be described with reference to an optical radiation sensor device for use in a fluid disinfection systems, it will be appreciated by those of skill in the art that the sensor device may be readily adapted for other applications. More specifically, the invention will be described with reference to an optical radiation sensor device for use in an ultraviolet radiation fluid disinfection system. BRIEF DESCRIPTION OF THE DRAWINGS
  • Figure 1 illustrates a first embodiment of the optical radiation sensor device of the invention
  • Figure 2 illustrates a second embodiment of the optical radiation sensor device of the present invention
  • Figure 3 is a sectional view along line 3-3 in Figure 1;
  • Figure 4 is a sectional view along line 4-4 in Figure 1.
  • Lamp 10 comprising a lamp unit 12 and a protective quartz sleeve 14 surrounding lamp unit 12.
  • Lamp 10 in normal operation, emits ultraviolet radiation having a wavelength of about 253.7 nanometers.
  • Lamp 10 is commercially available from Voltarc (Connecticut) and Light Sources (Connecticut).
  • lamp 10 further comprises a protective quartz sleeve which defmes a surrounding air layer (neither shown).
  • an optical sensor device 20 Adjacent to lamp 10, there is provided an optical sensor device 20.
  • Sensor device 20 comprises a body 30.
  • the end of body 30 which is nearest to lamp 10 comprises an inlet in which is disposed a quartz window 40.
  • Within body 30 there is disposed, in series, a first spacer 50, an attenuating aperture disk 60, a second spacer 70, a baffle 80, a third spacer 90 and a radiation sensor 100.
  • Radiation sensor 100 comprises a filter glass 110, a photodiode sensor 120 and electrical wiring 130 which connects sensor 120 to a suitable electronic circuit (not shown) for control or monitoring.
  • Quartz window 40 may be constructed of natural or synthetic quartz.
  • Non-limiting examples of synthetic quartz are commercially available under the tradename SUPRASIL (Heraeus Amersil, Duluth, Georgia).
  • SUPRASIL Heraeus Amersil, Duluth, Georgia
  • Another example of quartz which may be use to construct quartz window 40 is clear fused silica, commercially available from General Electric Company under product number GE124/CFQ.
  • quartz window 40 is constructed of synthetic quartz.
  • a window constructed of fused silica e.g. VITREOSIL, commercially available from Thermal Syndicates (England)).
  • Attenuating aperture disk 60 and baffle 80 are preferably constructed from stainless steel which is relatively resistant to degradation from the radiation to which these elements are exposed. Attenuating aperture disk 60 comprises a first aperture 65 ( Figure 3). Baffle 80 comprises a second aperture 85 ( Figure 4).
  • Figures 1 and 2 illustrate optical filter 110 and photodiode sensor 120 as being integral in radiation sensor 100.
  • the purpose of optical filter 110 is to remove any component of the incoming radiation having a wavelength in the visible region of the electromagnetic spectrum. This minimizes or eliminates the possibility of photodiode sensor 120 from sensing and reacting to visible radiation thereby generating false readings. It will be appreciated by those of skill in the art that optical filter 110 and photodiode sensor 120 need not be integral however this is the preferred configuration of radiation sensor 100.
  • Optical filter 110 may be constructed of a coloured glass filter.
  • Photodiode sensor 120 is preferably a photodiode which detects and responds to ultraviolet radiation. Such a photodiode is commercially available from United Detector Technology Components Group, UDT Sensors Inc. (Hawthorne, California) and EG & G Optoelectronics, EG & G Canada Ltd. (Vaudreuil, Quebec). Alternatively, it is possible to use as photodiode sensor 120 a photodiode which has a phosphorus coating thereon.
  • the phosphorus coating converts the incoming radiation to visible radiation and the photodiode selected is one which will detect and respond to this type of radiation.
  • a photodiode sensor is commercially available from Silonex Inc. (Montreal, Quebec).
  • the components which are subject to performance-affecting degradation during the anticipated life of the device when exposed to ultraviolet radiation are the photodiode sensor 120 and optical filter 110. Sufficient degradation of these components results in reduced accuracy of the monitoring signals and failure of radiation sensor 100 thereby necessitating servicing and/or replacement of components or the entire assembly.
  • sensor device 20 The remaining components of sensor device 20 are manufactured from materials that are not readily susceptible to degradation upon prolonged exposure to ultraviolet radiation. Such materials included stainless steel (for body 30, spacers 50, 70 and 90, baffle 80 and attenuating aperture disk 60), high quality quartz (for window 40) and selected adhesives (not shown) for securing the components and sealing the assembly.
  • these principles may be used to apply the invention in other embodiments involving measurement of destructive radiation.
  • the diameter of quartz window 40, the diameter of attenuating aperture disk 60, the diameter of baffle 80, the spacing between quartz window 40 and ultraviolet lamp 10 and the lengths of the spacers 50, 70 and 90 are chosen to provide an optical pathway 140 as illustrated in Figure 1. As optical pathway 140 progresses through sensor device 20, only a small portion of the radiation passes through attenuating aperture disk 60 to reach radiation sensor 100.
  • the radiation that reaches radiation sensor 100 is fully representative of the light level at the quartz window 40 but is significantly attenuated.
  • the rate of degradation of optical filter 110 and photodiode sensor 120 of radiation sensor 100 is directly determined by the magnitude of radiation that reaches them. Attenuation of the destructive radiation level through in this manner serves to prolong the life of radiation sensor 100, while not sacrificing accuracy or the advantage of optimum placement of sensor device 20 with respect to ultraviolet lamp 10.
  • lamp 10, quartz window 40 and attenuating aperture disk 60 may be designed as follows. Initially, it is necessary to set a design objective which will result in the irradiance at radiation sensor 100 being reduced to a level which is commensurate with the desired lifetime of radiation sensor 100. Typically, one would set the design objective as a fraction of the irradiance at the radiation sensor at a fixed closed proximity (e.g. 1 cm) to lamp 10. Thereafter, by knowing the active surface area of photodiode sensor 120 and the distance of lamp 10 to quartz window 40 it is possible to empirically determine the optimal placement of quartz window 40, attenuating aperture disk 60 and photodiode sensor 120 with respect to one another.
  • sensor device 20 For this application, optimum performance is achieved if contamination (including moisture) of sensor device 20 is minimized or eliminated.
  • all internal components and surfaces thereof be cleaned with low-residue solvents or distilled deionized water and are air dried. Assembly of the components to produce sensor device 20 is accomplished through permanent adhesion of quartz window 40 into body 30, followed by placement and adhesion, in order, of spacer 70, attenuating aperture disk 60, spacer 70, baffle 80 and spacer 90.
  • sensor device 20 Another consideration to be observed in the construction of sensor device 20 is sealing.
  • an adhesive material used may have an organic or other component susceptible to degradation when directly subjected to the destructive radiation being monitored. Also, it is desirable that liquids in the monitored area not reach electrical wiring 130 of photodiode sensor 100 since this may cause damage. To this end, the sealing of sensor device 20 should be considered carefully and will be further discussed with reference to Figure 2.
  • a suitable adhesive is placed in the accommodating groove (not shown) disposed in body 30.
  • spacer 50 is inserted into body 30, with adhesive either applied in the interstitial space between spacer 50 and body 30 (or, alternatively, on the interior wall of body 30 to the end of the spacer 50).
  • Subsequent insertion and adhesion of attenuating aperture disk 60, spacer 70, baffle 80 and spacer 90 are accomplished in a similar fashion, all at or amount the same time as the installation and adhesion of the spacer 50.
  • the interior of body 30 is flooded with dry air or nitrogen to remove all moisture and radiation sensor 100 is inserted into body 30 with a full and continuous circumference application of a suitable sealing adhesive.
  • the end of sensor 20 having quartz window 40 is inserted in a mounting port 45.
  • the inside diameter of mounting port 45 is selected so as to have a tight sliding fit with the outside diameter of body 30.
  • the size of the opening defined in the centre of mounting port 45 is selected so that no direct exposure of potentially destructive radiation can reach the adhesive applied to hold quartz window 40 into place in body 30.
  • the application locations for the adhesives which retain the interior stainless steel components are not exposed to direct radiation.
  • a suitable seal must be provided between mounting port 45 and the outside diameter of body 30. The choice of how to accomplish this depends upon resistance of available sealing materials to the fluid medium being purified and also on the desired permanency of the seal.
  • accommodating lands (not shown) for an O-ring are designed into mounting port 45 and body 30. The O-ring is suitably compressed by a locking nut (not shown).
  • Another contemplated modification relates to the use of means other than adhesive to affix quartz window 40 and, if present, spacers 50, 70 and 90. Yet another modification contemplated by the inventors is elimination of baffle 80 by roughening of the interior of body 30 thereby reducing the amount of stray radiation to which radiation sensor 100 is exposed. Yet another modification contemplated by the inventors is the use of more than one aperture in attenuating aperture disk 60 and, if present, baffle 80.

Abstract

An optical radiation sensor comprising a housing having an inlet which allows radiation to enter the housing, and further comprising the following elements serially disposed after the inlet in the path of the radiation: attenuating aperture means, filter means and sensor means. The attenuating aperture means reduce the amount of UV radiation on the sensor means and improve the sensors resistance to degradation in a high intensity UV radiation environment. A fluid disinfection system incorporating the sensor is also described.

Description

OPTICAL RADIATION SENSOR DEVICE TECHNICAL FIELD
The present invention relates to an optical radiation sensor device. More specifically, the present invention relates that an optical radiation sensor device with improved resistance to damage from the radiation which it is employed to measure.
BACKGROUND ART
Optical radiation sensors are known and find widespread use in a number of applications. One of the principal applications of optical radiation sensors is in the field of ultraviolet radiation fluid disinfection systems.
It is known that irradiation of water with ultraviolet light will disinfect the water by inactivation of microorganisms in the water, provided the irradiance and exposure duration are above a minimum "dose" level (often measured in units of microWatt seconds per square centimeter). Ultraviolet water disinfection units, such as those commercially available from Trojan Technologies Inc. under the tradename UV600, employ this principle to disinfect water for human consumption. Generally, water to be disinfected passes through a pressurized stainless steel cylinder which is flooded with ultraviolet radiation. Large scale municipal wastewater treatment equipment, such as that commercially available from Trojan Technologies Inc. under the tradename UV3000, employ this same principle to disinfect treated wastewater. Specifically, ultraviolet radiation emitting lamps are submerged in an open channel wherein the treated wastewater is exposed to radiation as it flows past the lamps. For further disclosure of fluid disinfection systems employing ultraviolet radiation see United States patents 4,482,809; 4,872,980 and 5,006,244 and copending United States patent application 08/026,572, the contents of each of which is incorporated herein by reference.
In many applications it is desirable to monitor the level of ultraviolet radiation present within the water under treatment. In this way, it is possible to assess, on a continuous or semi-continuous basis, the level of ultraviolet radiation, and thus, the overall effectiveness and efficiency of the disinfection process.
It is known in the art to monitor the ultraviolet radiation level by deploying one or more passive sensor devices near the operating lamps in specific locations and orientations. These passive sensor devices may be photodiodes, photoresistors, or other devices that respond to the impingement of the particular radiation wavelength or a range of radiation wavelengths of interest by producing a repeatable signal level (in volts or amperes) on output leads. Generally, the measurement of relatively high intensity radiation can be problematic due to the harshness of the environment in which the sensor device must be disposed and used. For instance, in an environment with a relatively high ultraviolet radiation level, an unprotected photodiode is subject to the immediate onset of rapid and irreversible degradation of the sensor device. Moreover the rate of degradation increases at increasing radiation levels. Degradation of the sensing device is characterised by reduced accuracy of the sensor device output signals, and eventually by outright failure of the sensor device.
One solution proposed to reduce degradation of the sensor device is to relocate the sensor device further from the radiation source. Practically, this creates other problems relating to geometry or size constraints of the sensor device and/or the fluid disinfection system.
Another solution proposed to reduce degradation of the sensor device in harsh environments involves the use of special filters and coatings for the radiation sensing device. One example involves the use of a filter glass that is placed between the radiation source and the sensor device in order to attenuate the radiation or to remove unwanted wavelengths, or both. In this case, the filter glass is separate from the sensor device. Unfortunately, the filter glass may, itself, be subject to degradation because of the radiation present or other influences associated with the environment which have a degrading effect. Further, the filtering effect provided may change over time, reducing the accuracy of the sensed values. Another example involves the precipitation of a phosphorus coating onto the face of the sensor device to provide a wavelength conversion effect thereby minimizing degradation of the sensor. Unfortunately, the phosphorous coating itself is subject to degradation along with the sensor device.
It would be desirable to have an optical radiation sensor device which has an improved resistance to the degradation that results from prolonged use in an ultraviolet radiation environment.
DISCLOSURE OF THE INVENTION
It is an object of the present invention to provide an optical radiation sensor device. Accordingly, the present invention provides an optical radiation sensor comprising a housing having an inlet which allows radiation to enter the housing, and further comprising the following elements serially disposed after the inlet in the path of the radiation: attenuating aperture means, filter means and sensor means. While the invention will be described with reference to an optical radiation sensor device for use in a fluid disinfection systems, it will be appreciated by those of skill in the art that the sensor device may be readily adapted for other applications. More specifically, the invention will be described with reference to an optical radiation sensor device for use in an ultraviolet radiation fluid disinfection system. BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the present invention will be described with reference to the accompanying drawings, in which like numerals refer to like parts and in which:
Figure 1 illustrates a first embodiment of the optical radiation sensor device of the invention;
Figure 2 illustrates a second embodiment of the optical radiation sensor device of the present invention; Figure 3 is a sectional view along line 3-3 in Figure 1; and
Figure 4 is a sectional view along line 4-4 in Figure 1.
BEST MODE FOR CARRYING OUT THE INVENTION
With reference to Figure 1, there is illustrated an ultraviolet radiation lamp 10 comprising a lamp unit 12 and a protective quartz sleeve 14 surrounding lamp unit 12. Lamp 10, in normal operation, emits ultraviolet radiation having a wavelength of about 253.7 nanometers. Lamp 10 is commercially available from Voltarc (Connecticut) and Light Sources (Connecticut). Preferably, lamp 10 further comprises a protective quartz sleeve which defmes a surrounding air layer (neither shown).
Adjacent to lamp 10, there is provided an optical sensor device 20. Sensor device 20 comprises a body 30. The end of body 30 which is nearest to lamp 10 comprises an inlet in which is disposed a quartz window 40. Within body 30 there is disposed, in series, a first spacer 50, an attenuating aperture disk 60, a second spacer 70, a baffle 80, a third spacer 90 and a radiation sensor 100. Radiation sensor 100 comprises a filter glass 110, a photodiode sensor 120 and electrical wiring 130 which connects sensor 120 to a suitable electronic circuit (not shown) for control or monitoring. Quartz window 40 may be constructed of natural or synthetic quartz. Non-limiting examples of synthetic quartz are commercially available under the tradename SUPRASIL (Heraeus Amersil, Duluth, Georgia). Another example of quartz which may be use to construct quartz window 40 is clear fused silica, commercially available from General Electric Company under product number GE124/CFQ. Preferably quartz window 40 is constructed of synthetic quartz. Alternatively, it is possible to use, in place of quartz window 40, a window constructed of fused silica (e.g. VITREOSIL, commercially available from Thermal Syndicates (England)).
Attenuating aperture disk 60 and baffle 80 are preferably constructed from stainless steel which is relatively resistant to degradation from the radiation to which these elements are exposed. Attenuating aperture disk 60 comprises a first aperture 65 (Figure 3). Baffle 80 comprises a second aperture 85 (Figure 4).
Figures 1 and 2 illustrate optical filter 110 and photodiode sensor 120 as being integral in radiation sensor 100. The purpose of optical filter 110 is to remove any component of the incoming radiation having a wavelength in the visible region of the electromagnetic spectrum. This minimizes or eliminates the possibility of photodiode sensor 120 from sensing and reacting to visible radiation thereby generating false readings. It will be appreciated by those of skill in the art that optical filter 110 and photodiode sensor 120 need not be integral however this is the preferred configuration of radiation sensor 100. Optical filter 110 may be constructed of a coloured glass filter.
Such a filter is commercially available from Schott Glass Technologies Inc. (Duryea, Pennsylvania). Alternatively, optical filter 110 may be constructed of an interference filter. Such a filter is commercially available from Baird Atomic. Photodiode sensor 120 is preferably a photodiode which detects and responds to ultraviolet radiation. Such a photodiode is commercially available from United Detector Technology Components Group, UDT Sensors Inc. (Hawthorne, California) and EG & G Optoelectronics, EG & G Canada Ltd. (Vaudreuil, Quebec). Alternatively, it is possible to use as photodiode sensor 120 a photodiode which has a phosphorus coating thereon. In this case, the phosphorus coating converts the incoming radiation to visible radiation and the photodiode selected is one which will detect and respond to this type of radiation. Such a photodiode sensor is commercially available from Silonex Inc. (Montreal, Quebec).
In sensor device 20, the components which are subject to performance-affecting degradation during the anticipated life of the device when exposed to ultraviolet radiation are the photodiode sensor 120 and optical filter 110. Sufficient degradation of these components results in reduced accuracy of the monitoring signals and failure of radiation sensor 100 thereby necessitating servicing and/or replacement of components or the entire assembly.
The remaining components of sensor device 20 are manufactured from materials that are not readily susceptible to degradation upon prolonged exposure to ultraviolet radiation. Such materials included stainless steel (for body 30, spacers 50, 70 and 90, baffle 80 and attenuating aperture disk 60), high quality quartz (for window 40) and selected adhesives (not shown) for securing the components and sealing the assembly.
In a similar manner, these principles may be used to apply the invention in other embodiments involving measurement of destructive radiation. Thus, it is generally preferred to select for the radiation sensor those materials which in use provide the best combination of low cost and resistance to damage during the anticipated product lifetime. Through judicious selection, within the purview of a person skilled in the art, the diameter of quartz window 40, the diameter of attenuating aperture disk 60, the diameter of baffle 80, the spacing between quartz window 40 and ultraviolet lamp 10 and the lengths of the spacers 50, 70 and 90 are chosen to provide an optical pathway 140 as illustrated in Figure 1. As optical pathway 140 progresses through sensor device 20, only a small portion of the radiation passes through attenuating aperture disk 60 to reach radiation sensor 100. As a result, the radiation that reaches radiation sensor 100 is fully representative of the light level at the quartz window 40 but is significantly attenuated. The rate of degradation of optical filter 110 and photodiode sensor 120 of radiation sensor 100 is directly determined by the magnitude of radiation that reaches them. Attenuation of the destructive radiation level through in this manner serves to prolong the life of radiation sensor 100, while not sacrificing accuracy or the advantage of optimum placement of sensor device 20 with respect to ultraviolet lamp 10.
The placement of lamp 10, quartz window 40 and attenuating aperture disk 60 may be designed as follows. Initially, it is necessary to set a design objective which will result in the irradiance at radiation sensor 100 being reduced to a level which is commensurate with the desired lifetime of radiation sensor 100. Typically, one would set the design objective as a fraction of the irradiance at the radiation sensor at a fixed closed proximity (e.g. 1 cm) to lamp 10. Thereafter, by knowing the active surface area of photodiode sensor 120 and the distance of lamp 10 to quartz window 40 it is possible to empirically determine the optimal placement of quartz window 40, attenuating aperture disk 60 and photodiode sensor 120 with respect to one another.
For this application, optimum performance is achieved if contamination (including moisture) of sensor device 20 is minimized or eliminated. In constructing sensor device 20, it is preferred that all internal components and surfaces thereof be cleaned with low-residue solvents or distilled deionized water and are air dried. Assembly of the components to produce sensor device 20 is accomplished through permanent adhesion of quartz window 40 into body 30, followed by placement and adhesion, in order, of spacer 70, attenuating aperture disk 60, spacer 70, baffle 80 and spacer 90.
Another consideration to be observed in the construction of sensor device 20 is sealing. Depending on the type of application of sensor device 20, an adhesive material used may have an organic or other component susceptible to degradation when directly subjected to the destructive radiation being monitored. Also, it is desirable that liquids in the monitored area not reach electrical wiring 130 of photodiode sensor 100 since this may cause damage. To this end, the sealing of sensor device 20 should be considered carefully and will be further discussed with reference to Figure 2.
With reference to Figure 2, prior to insertion of quartz window 40 into body 30, a suitable adhesive is placed in the accommodating groove (not shown) disposed in body 30. After the adhesive is solidified and cured, spacer 50 is inserted into body 30, with adhesive either applied in the interstitial space between spacer 50 and body 30 (or, alternatively, on the interior wall of body 30 to the end of the spacer 50). Subsequent insertion and adhesion of attenuating aperture disk 60, spacer 70, baffle 80 and spacer 90 are accomplished in a similar fashion, all at or amount the same time as the installation and adhesion of the spacer 50. Once all of all interior components (spacers 50, 70 and 90, attenuating aperture disk 60 and baffle 80) are in place, and the supporting adhesive is solidified and cured, the interior of body 30 is flooded with dry air or nitrogen to remove all moisture and radiation sensor 100 is inserted into body 30 with a full and continuous circumference application of a suitable sealing adhesive. The end of sensor 20 having quartz window 40 is inserted in a mounting port 45. The inside diameter of mounting port 45 is selected so as to have a tight sliding fit with the outside diameter of body 30. The size of the opening defined in the centre of mounting port 45 is selected so that no direct exposure of potentially destructive radiation can reach the adhesive applied to hold quartz window 40 into place in body 30. Similarly, the application locations for the adhesives which retain the interior stainless steel components (spacers 50, 70 and 90, attenuating aperture disk 60 and baffle 80) are not exposed to direct radiation. In order to sufficiently protect electrical wiring 130 from damage resulting from exposure to the liquid in the monitored environment, a suitable seal must be provided between mounting port 45 and the outside diameter of body 30. The choice of how to accomplish this depends upon resistance of available sealing materials to the fluid medium being purified and also on the desired permanency of the seal. For the illustrative application discussed herein, accommodating lands (not shown) for an O-ring (not shown) are designed into mounting port 45 and body 30. The O-ring is suitably compressed by a locking nut (not shown). It should be understood that, while exemplary embodiments of the present invention have been described herein, the present invention is not limited to these exemplary embodiments and that variations and other alternatives may occur to those of skill in the art without departing from the intended scope of the invention as defined by the attached claims. For example, it is contemplated that the use of one or more of spacers 50, 70 and 90 may be avoided by designing the interior of body 30 to have shoulders at the points at which attenuating aperture disk 60 and baffle 80 are to be disposed. Thus, in this modification the diameter of the interior of body 30 increases in a step-wise manner progressing from quartz window 40 to radiation sensor 100. Another contemplated modification relates to the use of means other than adhesive to affix quartz window 40 and, if present, spacers 50, 70 and 90. Yet another modification contemplated by the inventors is elimination of baffle 80 by roughening of the interior of body 30 thereby reducing the amount of stray radiation to which radiation sensor 100 is exposed. Yet another modification contemplated by the inventors is the use of more than one aperture in attenuating aperture disk 60 and, if present, baffle 80.

Claims

What is claimed is:
1. An optical radiation sensor comprising a housing having an inlet which allows radiation to enter the housing, and further comprising the following elements serially disposed after the inlet in the path of the radiation: attenuating aperture means, filter means and sensor means.
2. The sensor defined in claim 1, further comprising baffle means disposed between said aperture and said filter means.
3. The sensor defined in claim 1, wherein said filter means and said sensor means are integral.
4. The sensor defined in claim 1, wherein said inlet comprises a quartz window.
5. The sensor defined in claim 1, wherein each of said inlet, said attenuating aperture means and said filter means are separated by spacers.
6. The sensor defined in claim 2, wherein each of said inlet, said attenuating aperture means, said baffle means and said filter means are separated by spacers.
7. The sensor defined in claim 4, wherein said inlet further comprises a mounting port partially cover said quartz window.
8. The sensor defined in claim 1, wherein said filter means is an optical filter.
9. The sensor defined in claim 1, wherein said sensor means is capable of detecting ultraviolet radiation.
10. The sensor defined in claim 1, wherein said body is constructed of stainless steel.
11. A fluid disinfection system comprising at least on ultraviolet radiation lamp and an optical radiation sensor comprising a housing having an inlet which allows radiation to enter the housing, and further comprising the following elements serially disposed after the inlet in the path of the radiation: attenuating aperture means, filter means and sensor means.
12. The fluid disinfection system defined in claim 11, wherein said optical radiation sensor further comprises baffle means disposed between said aperture and said filter means.
13. The fluid disinfection system defined in claim 11, wherein said filter means and said sensor means are integral.
14. The fluid disinfection system defined in claim 11, wherein said inlet of said optical radiation sensor comprises a quartz window.
15. The fluid disinfection system defined in claim 11, wherein each of said inlet, said attenuating aperture means and said filter means are separated by spacers.
16. The fluid disinfection system defined in claim 12, wherein each of said inlet, said attenuating aperture means, said baffle means and said filter means are separated by spacers.
17. The fluid disinfection system defined in claim 11, wherein said inlet further comprises a mounting port partially cover said quartz window.
18. The fluid disinfection system defined in claim 11, wherein said filter means is an optical filter.
19. The fluid disinfection system defined in claim 11, wherein said sensor means is capable of detecting ultraviolet radiation.
20. The fluid disinfection system defined in claim 11, wherein said body is constructed of stainless steel.
PCT/CA1995/000020 1994-01-13 1995-01-13 Optical radiation sensor device WO1995019553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU14108/95A AU1410895A (en) 1994-01-13 1995-01-13 Optical radiation sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/181,205 US5514871A (en) 1994-01-13 1994-01-13 Optical radiation sensor device
US08/181,205 1994-01-13

Publications (1)

Publication Number Publication Date
WO1995019553A1 true WO1995019553A1 (en) 1995-07-20

Family

ID=22663325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1995/000020 WO1995019553A1 (en) 1994-01-13 1995-01-13 Optical radiation sensor device

Country Status (4)

Country Link
US (1) US5514871A (en)
AU (1) AU1410895A (en)
CA (1) CA2140227C (en)
WO (1) WO1995019553A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037978A1 (en) * 1998-01-27 1999-07-29 Povl Kaas A device for intensity measurement of uv light from a lamp and a uv-treatment plant equipped with such a device
WO2009064666A1 (en) * 2007-11-13 2009-05-22 Access Business Group International Llc Water treatment system with moisture detector

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005249A (en) * 1997-03-18 1999-12-21 Smithsonian Environmental Research Center Cosine corrected optical pathway of a spectral radiometer
US6201250B1 (en) 1997-08-22 2001-03-13 Richard C. Morlock Sensor housing for UV curing chamber
US6015229A (en) * 1997-09-19 2000-01-18 Calgon Carbon Corporation Method and apparatus for improved mixing in fluids
US6327284B1 (en) 1998-10-14 2001-12-04 Lambda Physik Ag Detector with frequency converting coating
US6188063B1 (en) * 1999-03-29 2001-02-13 Lancer Partnership, Ltd. Radiation sensing system for detecting electromagnetic radiation and transmitting a sensory signal therefrom
US6278120B1 (en) * 1999-04-28 2001-08-21 Electronic Instrumentation And Technology, Inc. UV sensor
US6451202B1 (en) * 1999-06-21 2002-09-17 Access Business Group International Llc Point-of-use water treatment system
US6556289B1 (en) * 2000-06-28 2003-04-29 Roygbiv, Llc System for measuring radiance
US7365833B1 (en) 2000-06-28 2008-04-29 Delta E System for measuring radiance, transmittance and reflectance
US7049602B2 (en) * 2002-07-31 2006-05-23 Eugene Tokhtuev Radiation sensor
US20040200975A1 (en) * 2003-04-14 2004-10-14 Brown Dale Marius Ultraviolet sensors for monitoring energy in the germicidal wavelengths
CA2540589A1 (en) * 2003-09-29 2005-04-07 Trojan Technologies Inc. Radiation sensor device and radiation source module containing same
EP1697702A4 (en) * 2003-12-01 2009-11-04 Trojan Techn Inc Improved optical radiation sensor system
JP2005233775A (en) * 2004-02-19 2005-09-02 Denso Corp Distance detector
EP2074393A4 (en) * 2006-09-20 2012-12-26 Trojan Techn Inc Optical radiation sensor system
US8084752B2 (en) * 2008-03-03 2011-12-27 Vioguard Corporation Ultraviolet treatment device
CN106768310B (en) * 2017-01-22 2018-04-10 中国工程物理研究院应用电子学研究所 A kind of superlaser detector array sampling attenuating device
US11679171B2 (en) 2021-06-08 2023-06-20 Steribin, LLC Apparatus and method for disinfecting substances as they pass through a pipe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2136112A (en) * 1983-02-23 1984-09-12 Hanovia Ltd Apparatus for monitoring the intensity of a uv source
DE3902028A1 (en) * 1988-01-25 1989-07-27 Eberhard Gerstel UV-sensor

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR421296A (en) * 1910-10-10 1910-12-17 Marius Paul Otto Apparatus for sterilizing water by ultraviolet rays
FR16092E (en) * 1911-04-11 1912-11-14 Paul Gabriel Triquet Apparatus for the industrial sterilization of water by means of electric mercury lamps with quartz tubes, immersed in water
US2413704A (en) * 1944-12-04 1947-01-07 Art Metal Company Ultraviolet sterilizer
US2670439A (en) * 1950-07-05 1954-02-23 Hanovia Chemical & Mfg Co Apparatus for irradiating liquids
DE855521C (en) * 1950-12-28 1952-11-13 Siemens Ag Method and device for treating, preferably cleaning, sewage and other fluids
US3062958A (en) * 1959-05-20 1962-11-06 Edward J Warner Radiation detector
US3182193A (en) * 1962-01-03 1965-05-04 Ultra Dynamics Corp Electronically monitored liquid purification or sterilizing system
US3182191A (en) * 1963-02-14 1965-05-04 Puretest Water Purifier Co Water purifying apparatus with an automatically actuated wiper for the ultra-violet source
US3140054A (en) * 1963-04-25 1964-07-07 Oharenko Vladimir Safety inspection light
US3427489A (en) * 1965-07-02 1969-02-11 Bull & Roberts Inc Compact radiation detector with superimposed filter,phosphor,glass and photosensitive layers
US3462597A (en) * 1966-07-29 1969-08-19 Ultra Dynamics Corp Ultraviolet fluid purifier having manually operable wiper means
US3456107A (en) * 1967-05-16 1969-07-15 Aquacare Intern Ltd Water sterilizing apparatus
US3637342A (en) * 1969-05-07 1972-01-25 Louis P Veloz Sterilization of fluids by ultraviolet radiation
US3837800A (en) * 1971-05-06 1974-09-24 Meltzer H Method and apparatus for purifying fluids
DE2300273C3 (en) * 1972-01-07 1982-05-06 Toray Industries, Inc., Tokyo Device for wastewater treatment
DE2213658C3 (en) * 1972-03-21 1974-08-15 Katadyn Produkte Ag, Wallisellen (Schweiz) Water disinfection system
US3948772A (en) * 1975-04-16 1976-04-06 Sidney Ellner Split stream ultraviolet purification device
US4103167A (en) * 1976-08-16 1978-07-25 Sidney Ellner Ultraviolet liquid purification system
US4255663A (en) * 1977-03-24 1981-03-10 Lewis James H Disposable liquid sterilizer unit
US4204956A (en) * 1978-10-02 1980-05-27 Flatow Robert E Water purification system
US4367410A (en) * 1979-07-09 1983-01-04 Pure Water Systems, Inc. Waste purification apparatus and method
US4296328A (en) * 1980-02-11 1981-10-20 Regan Michael D Apparatus for producing high purity water
US4400270A (en) * 1980-04-18 1983-08-23 Adco Aerospace, Inc. Ultraviolet apparatus for disinfection and sterilization of fluids
US4490777A (en) * 1981-06-25 1984-12-25 Tanner Stephen E Selective color illumination device for electronic drafting tables
US4435744A (en) * 1981-08-10 1984-03-06 Pauluhn Electric Manufacturing Co., Inc. Explosion-proof fluorescent light fixture
US4471225A (en) * 1981-11-09 1984-09-11 Adco Aerospace Ultraviolet apparatus for disinfection and sterilization of fluids
CA1163086A (en) * 1981-11-30 1984-03-06 Jan Maarschalkerweerd Ultraviolet fluid purifying device
NL8300115A (en) * 1983-01-13 1984-08-01 Philips Nv RADIATION DEVICE.
FI841491A (en) * 1983-04-25 1984-10-26 Christian Lumpp ANORDING FOR COMMANDING REFLECTION OF INFRARED ELLER ULTRAVIOLET STRAOLNING.
US4535247A (en) * 1983-07-11 1985-08-13 Kurtz Mark E Water sterilization system
DE3441535A1 (en) * 1984-11-14 1986-06-26 Erich 7632 Friesenheim Rasche Apparatus for water sterilisation by ultraviolet radiation
US4700101A (en) * 1985-02-07 1987-10-13 Sidney Ellner Elongated tubular lamp construction
JPS61230203A (en) * 1985-03-29 1986-10-14 東芝ライテック株式会社 Lamp unit
GB8510426D0 (en) * 1985-04-24 1985-05-30 Hanovia Ltd Radiation sensor
US4757205A (en) * 1986-06-10 1988-07-12 Arlat Inc. Ultraviolet water treatment apparatus
US4755292A (en) * 1986-08-11 1988-07-05 Merriam Theodore D Portable ultraviolet water sterilizer
US4767932A (en) * 1986-09-26 1988-08-30 Ultraviolet Purification System, Inc. Ultraviolet purification device
US4825078A (en) * 1987-10-22 1989-04-25 Atlas Electric Devices Co. Radiation sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2136112A (en) * 1983-02-23 1984-09-12 Hanovia Ltd Apparatus for monitoring the intensity of a uv source
DE3902028A1 (en) * 1988-01-25 1989-07-27 Eberhard Gerstel UV-sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037978A1 (en) * 1998-01-27 1999-07-29 Povl Kaas A device for intensity measurement of uv light from a lamp and a uv-treatment plant equipped with such a device
US6459087B1 (en) 1998-01-27 2002-10-01 Povl Kaas Sensor device for intensity measurement of UV light and a photochemical UV treatment system
WO2009064666A1 (en) * 2007-11-13 2009-05-22 Access Business Group International Llc Water treatment system with moisture detector
US7883619B2 (en) 2007-11-13 2011-02-08 Access Business Group International Llc Water treatment system with moisture detector
CN101855176B (en) * 2007-11-13 2013-02-06 捷通国际有限公司 Water treatment system with moisture detector

Also Published As

Publication number Publication date
AU1410895A (en) 1995-08-01
US5514871A (en) 1996-05-07
CA2140227A1 (en) 1995-07-14
CA2140227C (en) 2001-03-27

Similar Documents

Publication Publication Date Title
CA2140227C (en) Optical radiation sensor device
CA2664021C (en) Optical radiation sensor system
JP4168348B2 (en) Ultraviolet illuminance measurement device and ultraviolet irradiation device
EP0722423B1 (en) Photodetector apparatus
EP1051599B1 (en) A device for intensity measurement of uv light from a lamp and a uv-treatment plant equipped with such a device
US20060006339A1 (en) Radiation sensor device and fluid treatment system containing same
JP2004502959A (en) Optical radiation sensor system and method for measuring radiation transmission of a fluid
US6570173B1 (en) Device for disinfecting water flowing through a sanitary facility
US6518577B1 (en) Optical radiation sensor system with cleaning device
US7102140B2 (en) Radiation source assembly and radiation source module containing same
US7282720B2 (en) Radiation sensor device and radiation source module containing same
US6188063B1 (en) Radiation sensing system for detecting electromagnetic radiation and transmitting a sensory signal therefrom
CA2548116C (en) Improved optical radiation sensor system
RU2172484C2 (en) Apparatus for controlling parameters of process for disinfecting liquid by uv-irradiation
EP1216203A1 (en) Fluid treatment system, radiation source assembly and radiation source module
US20020070348A1 (en) Shutter for a UV sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CH CN CZ DE DK EE ES FI GB GE HU JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NL NO NZ PL PT RO RU SD SE SI SK TJ TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase