WO1995031326A1 - Verfahren und vorrichtung zum herstellen eines dreidimensionalen objektes - Google Patents

Verfahren und vorrichtung zum herstellen eines dreidimensionalen objektes Download PDF

Info

Publication number
WO1995031326A1
WO1995031326A1 PCT/EP1995/001742 EP9501742W WO9531326A1 WO 1995031326 A1 WO1995031326 A1 WO 1995031326A1 EP 9501742 W EP9501742 W EP 9501742W WO 9531326 A1 WO9531326 A1 WO 9531326A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sensor
bundling
solidified
focus
Prior art date
Application number
PCT/EP1995/001742
Other languages
English (en)
French (fr)
Inventor
Jürgen Serbin
Johannes Reichle
Hans J. Langer
Original Assignee
Eos Gmbh Electro Optical Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25936575&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995031326(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE4416988A external-priority patent/DE4416988A1/de
Priority claimed from DE4416901A external-priority patent/DE4416901A1/de
Application filed by Eos Gmbh Electro Optical Systems filed Critical Eos Gmbh Electro Optical Systems
Priority to DE59501852T priority Critical patent/DE59501852D1/de
Priority to JP52933195A priority patent/JP3520310B2/ja
Priority to US08/727,532 priority patent/US5753171A/en
Priority to EP95920004A priority patent/EP0758952B1/de
Publication of WO1995031326A1 publication Critical patent/WO1995031326A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0288Controlling heating or curing of polymers during moulding, e.g. by measuring temperatures or properties of the polymer and regulating the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the invention relates to a method according to the preamble of claim 1 or 11, or a device according to the preamble of claim 15 or 16.
  • Such a device or such a method is known under the term “stereography” and, as described for example in EP-A-0 171 069, can be carried out by layer-by-layer solidification of a liquid, photopolymerizable material by means of a bundled laser beam. This method can also be carried out by sintering powder using the laser beam (see EP-A-0 287 657).
  • the problem arises that the production speed cannot be increased arbitrarily, since with a given bundling of the laser beam a scanning speed of the laser beam which is dependent on the type of laser and the material to be solidified cannot be exceeded.
  • a possible misalignment of the laser beam cannot be determined either (see EP-A-0 287 657).
  • the problem arises that, for example, due to vibrations, aging of the laser or other influences There is a misalignment of the beam or a deterioration in the beam quality and thus the manufacturing accuracy is deteriorated.
  • a method according to the preamble of claims 1 and 11 and a device according to the preamble of claims 15 and 16 are known from WO 88/02677.
  • a device which has a light source with deflecting mirrors and which has an individual position detector which is automatically moved to the points of a grid on a work surface. At the respective points, the instructions to the deflecting mirror are stored which are necessary for a beam from the light source to reach the points. This makes it possible to calibrate the deflection mirror.
  • a stereolithographic device with a resin tank is known, in which two sensors are attached to the side of the resin tank in order to measure the intensity profile of the beam.
  • the object is achieved according to the invention by a method with the features of claim 1 or 11 or by a device with the features of claim 15 or 16.
  • the beam used for solidification is measured as directly as possible directly above the surface of the material layer, that is to say immediately prior to the action on the material, preferably at a plurality of points distributed over the layer and compared with reference values.
  • a possible dusting or misalignment of the optics, a defect in the optical or electronic components for in- The position of the beam and a beam change due to signs of aging are determined, displayed and, if necessary, corrected.
  • the bundling of the beam used for solidification can be changed and measured, so that depending on the area of the layers to be solidified, the type of laser used and the material, bundling and alignment of the beam are optimal in terms of the production speed and accuracy can be adjusted. Furthermore, any dusting or misalignment of the optics, a defect in the optical or electronic components for adjusting the beam and a beam change due to signs of aging can be determined, displayed and, if necessary, corrected.
  • Fig. 1 is a schematic representation of the device according to the invention.
  • Fig. 3 is an illustration of depending on the to be solidified
  • Region of different beam bundling preferably when using a pulsed laser
  • FIG. 4 shows a perspective, schematic representation of a positioning device for a sensor according to the invention
  • FIG. 5 shows an illustration of a first embodiment of the sensor
  • Fig. 6 shows a second embodiment of the sensor.
  • FIG. 1 shows a layer 1 of a material that can be solidified by means of electromagnetic radiation, for example a polymerizable liquid or paste or a sinterable powder material, and a device 2 arranged above this layer for solidifying the Layer 1 material at the points corresponding to the object to be produced.
  • the reinforcement device 2 has a radiation source 3 in the form of a laser, which directs a bundled light beam 4 onto a deflection device 5, by means of which the light beam 4 can be deflected to the desired locations of the layer 1.
  • the deflection device is connected to a control unit 6 for the corresponding control of the deflection device 5.
  • a light modulator 7 and a variable focus device 8 are arranged one after the other, which are also connected to the control unit 6 for control in the manner described below.
  • the modulator can be designed, for example, as an acousto-optical, electro-optical or mechanical modulator and serves as a "switch" for switching through or interrupting the beam 4.
  • the variable focus device 8 serves to change the bundling of the beam 4.
  • it has a diverging lens 9 and subsequently a converging lens 10 in the direction of the beam 4 in the manner shown in more detail in FIG. 2.
  • the converging lens 10 can be positioned in the direction of the beam 4, for example between the dashed position in FIG. 2 and the position drawn in solid lines, and thus changes the focus and thus the diameter of the beam on a work depending on its position - or reference plane 11, which for example the upper surface of layer 1 can be.
  • the shifting of the collecting lens 10 takes place by means of a shifting device (not shown) using a stepping motor or servo motor which is connected to the control unit 6.
  • the deflection device 5 can also have deflection mirrors with an adjustable, variable radius of curvature.
  • the bundling of the beam 4 can be changed by changing the radius of curvature of the deflecting mirror.
  • the positioning device 13 is designed as an X, Y positioning device, the sensor 12 being displaceable in a first X direction along the top of a stripper 14 extending in the X direction over the layer 1, which in turn is in the Y direction over the layer 1 can be moved to set a desired layer thickness of the material.
  • the sensor can also be positioned independently of the wiper. The output of the sensor is connected to the control unit 6.
  • FIG. 5 A first embodiment of the sensor 12 is shown in FIG. 5.
  • the sensor 12 according to FIG. 5 is designed as a quadrant sensor with a light-sensitive element in the form of a photodiode 15, 16, 17, 18 arranged in each quadrant.
  • the photodiode 18 of a quadrant is covered by a radiation-impermeable cover, for example a metal plate 19, in the middle of which there is an aperture 20.
  • the sensor 12 is a single sensor with only one Field formed, wherein a light-sensitive element in the form of a photodiode 21 is arranged in the field, which in turn is covered with a radiation-impermeable cover, for example a metal plate, except for a central aperture.
  • the diameter of the aperture 20, 23 is about 20 to 50 microns, preferably 35 microns.
  • the laser beam 4 is first measured in terms of its position, power and its diameter.
  • the position is determined, for example, by means of the sensor 12 shown in FIG. 5 in that the sensor 12 is positioned at a specific defined X, Y position and the deflection device 5 is controlled by the control unit 6 in such a way that the deflected beam 4 sweeps the sensor 12 and thereby migrates from the field of the photodiode 15 to that in the photodiode 16.
  • the output signals emitted by both photodiodes are compared; in the case of equality, the position of the beam 4 corresponds exactly to the transition between the two photodiode fields and thus to the center position of the sensor 12.
  • the same measurement is also carried out for the transition from the photodiode 15 to the photodiode 17.
  • the control is corrected in the control unit 6 or the device is readjusted.
  • the position measurement is carried out by moving the sensor 12 to positions distributed over the layer surface 1 by means of the positioning device 13 at any point within the exposure field, so that the positioning accuracy on the hardening device 2 can be determined exactly.
  • the power of the beam 4 can be made by directly evaluating the output signals of the photodiodes 15, 16 and 17 whose amplitude corresponds to the power.
  • the use of pyro elements is also conceivable here.
  • an error in the solidification device 2 can again be determined, for example dusting of the optics, aging or even failure of optical or electronic components.
  • the deflection device 5 and / or the positioning device 13 is controlled such that the deflected beam 4 follows the aperture 20 of the sensor according to FIG. 5 or the aperture 23 of the sensor 6 sweeps in two coordinate directions.
  • the intensity profile of the beam 4 is scanned and the focus or diameter of the beam 4 is calculated from the intensity data of the profile obtained.
  • This measurement can be carried out in the entire exposure field or only at selected points, for example in connection with the power measurement.
  • a deviation can again be determined, for example due to the aging of the laser or a misalignment of the optical system. In this case, a correction can be made to a certain extent by changing the focus by actuating the variable focus unit 8.
  • the position and power of the beam 4 are determined on the basis of calculations, specifically the position by determining the intensity maximum and the power by integrating the profile. Such calculation methods are known so that they do not have to be explained in more detail here.
  • a material layer 1 is applied and solidified by targeted irradiation of the layer 1 by means of the deflected beam 4 at the points corresponding to the object.
  • FIG. 3 shows an area 24 which is to include, for example, the locations of the object of this layer that are to be solidified. This area is divided into an outer envelope region 25 and an inner core region 26 for consolidation, the envelope region 25 preferably completely enclosing the core region 26.
  • control unit 6 controls the variable focus unit 8, the deflection device 5 and the laser 3 such that the layer 1 in the manner indicated in FIG. 3 by the small circles in the envelope region 25 with a small beam diameter or focus and in the core region 26, indicated by the larger circles, is irradiated with a larger beam diameter or focus.
  • the deflection device 5 is simultaneously controlled so that the speed at which the deflected beam 4 sweeps over the layer 1 (ie the scanning speed) is higher in the core area 26 than in the envelope area 25, then also significantly reduce the manufacturing time.
  • the power when the envelope region 25 is solidified can be reduced in order to set the energy or power density to a value suitable for the solidification.
  • the method described above finds a particularly preferred application when using a pulsed laser as the radiation source 3.
  • the pulse rate of such lasers is in the Usually too low to achieve high scan speeds with a small focus. Rather, only individual, spaced apart locations are then solidified. On the other hand, the average power of this laser decreases from a certain pulse rate. Furthermore, the pulse duration of frequency-multiplied LC lasers, for example, is very short (approx. 30ns).
  • the adjustment of the energy or power density introduced into the material is no longer possible via the scan speed, but only by weakening, the repetition rate of the laser and / or the adjustment of the beam diameter.
  • the setting of the beam diameter has been found according to the invention. For a given value of the beam diameter, an optimal repetition rate results in connection with a maximum scan speed.
  • the energy input can be increased if the scanning speed is lower, and the overlap between the points is also increased.
  • the scan speed and the repetition rate are set such that in both Areas that overlap areas 27 solidified with each pulse and thus solidify a continuous line.
  • This fact is shown in FIG. 3: Since the permissible scan speed is proportional to the diameter of the beam or focus 27 shown in FIG. 3, the scan speed in the core area 26 can be increased by the same factor compared to that of the envelope area 25 by which the diameter in the core area is enlarged. In addition, fewer sweeps are required in the core area 26. The production time is thus reduced with the square of the relative diameter increase. In both areas 25, 26, the repetition rate and the beam focus and thus the average power of the laser result from the corresponding scan speed, so that in the Result in envelope area 25 with lower average power and in core area 26 with greater average power.
  • control unit 6 changes the position of the converging lens 10 relative to the diverging lens 9 by axial displacement, depending on whether the deflection device 5 is deflecting the beam 4 straight onto the core region 26 or the envelope region 25.
  • the corresponding control data are stored in the control unit 6.
  • the envelope region 25 is first consolidated with a small focus setting, then the focus is enlarged and the core region 26 is consolidated with the magnification that has been set once.
  • a measurement and correction of the focus setting of the beam is in turn possible by means of the sensor 12 in the manner set out above.
  • the other layers of the object are applied and solidified in the same way.
  • the measurement of the beam in the manner described above can be carried out before the production of an object, but also between the solidification of individual layers or even at greater distances, e.g. on a daily basis. Detected deviations from permissible values can also be shown on a display device.
  • Diode-pulsed neodymium YAG lasers or diode-pulsed neodymium YLF lasers with a power of approximately 300 mW are preferably used as the FK laser.

Abstract

Bei der Herstellung eines Objektes durch aufeinanderfolgendes Verfestigen von Materialschichten (1) an den jeweiligen dem Objekt entsprechenden Stellen tritt das Problem auf, daß die Herstellungsgeschwindigkeit beschränkt ist, da bei einer für die genaue Auflösung benötigten Bündelung des zur Verfestigung verwendeten Lichtstrahles (4) die Scan-Geschwindigkeit oder die Laserleistung, mit der der Lichtstrahl über die Materialschicht (1) geführt wird, nicht beliebig erhöht werden kann. Dieses Problem wird erfindungsgemäß dadurch gelöst, daß im Lichtstrahl (4) eine variable Fokuseinheit (8) vorgesehen ist, mittels der die Bündelung des Lichtstrahles (4) bei der Verfestigung einer Schicht (1) verändert wird; damit kann in verschiedenen Bereichen der Schicht (1) mit unterschiedlicher Fokussierung, Laserleistung und Scan-Geschwindigkeit gearbeitet werden.

Description

Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objektes
Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruches 1 oder 11, bzw. eine Vorrichtung nach dem Oberbe¬ griff des Anspruches 15 oder 16.
Eine derartige Vorrichtung bzw. ein derartiges Verfahren ist unter dem Begriff "Stereographie" bekannt und kann, wie bei¬ spielsweise in der EP-A-0 171 069 beschrieben, durch schicht- weises Verfestigen eines flüssigen, photopolymerisierbaren Materials mittels eines gebündelten Laserstrahles erfolgen. Ebenso kann dieses Verfahren auch durch Sinterung von Pulver mittels des Laserstrahles durchgeführt werden (siehe EP-A-0 287 657) . In allen Fällen tritt das Problem auf, daß die Her¬ stellungsgeschwindigkeit nicht beliebig erhöht werden kann, da bei vorgegebener Bündelung des Laserstrahles eine vom Typ des Lasers und des zu verfestigenden Materiales abhängige Scan- Geschwindigkeit des Laserstrahles nicht überschritten werden kann. Auch kann eine eventuelle Dejustage des Laserstrahles nicht festgestellt werden (siehe EP-A-0 287 657) . In allen Fällen tritt das Problem auf, daß beispielsweise durch Erschütterungen, Alterung des Lasers oder sonstige Einwirkun- gen eine Dejustierung des Strahles oder einer Verschlechterung der Strahlenqualität stattfindet und damit die Herstellungs¬ genauigkeit verschlechtert wird.
Aus der WO 88/02677 ist ein Verfahren nach dem Oberbegriff des Anspruches l und 11 und eine Vorrichtung nach dem Oberbegriff des Anspruches 15 und 16 bekannt.
Aus der EP 0 375 097 A2 ist eine Vorrichtung bekannt, die eine Lichtquelle mit Ablenlenkspiegeln aufweist und die einen ein¬ zelnen Positionsdetektor aufweist, der automatisch zu Punkten eines Gitters auf einer Arbeitsoberfläche bewegt wird. An den jeweiligen Punkten werden die Anweisungen an die Ablenkspiegel gespeichert, die notwendig sind, damit ein Strahl der Licht¬ quelle die Punkte erreicht. Dadurch ist eine Kalibrierung der Ablenkspiegel möglich. Weiterhin ist eine stereolithographi¬ sche Vorrichtung mit einem Harztank bekannt, bei der seitlich des Harztankes zwei Sensoren angebracht sind, um das Intensi¬ tätsprofil des Strahles zu messen.
Es ist daher Aufgabe der Erfindung, die Geschwindigkeit und Genauigkeit bei der Herstellung des Objektes zu verbessern und eine konstante Qualität bei der Herstellung des Objektes sicherzustellen. Ferner soll ein effizienter Betrieb auch bei Einsatz von gepulsten Lasern möglich sein.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruches 1 oder 11 bzw. durch eine Vorrichtung mit den Merkmalen des Anspruches 15 oder 16 gelöst.
Erfindungsgemäß wird der zur Verfestigung verwendete Strahl möglichst unmittelbar über der Oberfläche der Materialschicht, also unmittelbar vor der Einwirkung auf das Material, vorzugs¬ weise an einer Mehrzahl von über die Schicht verteilten Stel¬ len gemessen und mit Referenzwerten verglichen. Damit kann eine eventuelle Verstaubung oder Dejustierung der Optik, ein Defekt der optischen oder elektronischen Komponenten zur Ein- Stellung des Strahles und eine Strahländerung aufgrund von Alterungserscheinungen festgestellt, angezeigt und gegebenen¬ falls korrigiert werden.
Erfindungsgemäß läßt sich die Bündelung des zur Verfestigung verwendeten Strahles verändern und messen, so daß je nach dem zu verfestigenden Bereich der Schichten, dem Typ des verwende¬ ten Lasers und des Materiales jeweils eine bezüglich der Her¬ stellungsgeschwindigkeit und Genauigkeit optimale Bündelung und Ausrichtung des Strahles eingestellt werden kann. Ferner kann eine eventuelle Verstaubung oder Dejustierung der Optik, ein Defekt der optischen oder elektronischen Komponenten zur Einstellung des Strahles und eine Strahländerung aufgrund von Alterungserscheinungen festgestellt, angezeigt und gegebenen¬ falls korrigiert werden.
Die Erfindung wird im weiteren anhand von Ausführungsbeispie¬ len unter Bezug auf die Figuren beschrieben. Von den Figuren zeigen:
Fig. 1 eine schematische Darstellung der erfindungsgemäßen Vorrichtung;
Fig. 2 eine Darstellung des Prinzips zur Veränderung der Bündelung des Strahles;
Fig. 3 eine Darstellung der je nach zu verfestigendem
Bereich unterschiedlichen Bündelung des Strahles vorzugsweise bei Verwendung eines gepulsten Lasers;
Fig. 4 eine perspektivische, schematische Darstellung einer Positioniervorrichtung für einen erfindungsgemäßen Sensor;
Fig. 5 eine Darstellung einer ersten Ausführungsform des Sensors; und Fig. 6 eine Darstellung einer zweiten Ausführungsform des Sensors.
Die Darstellung der erfindungsgemäßen Vorrichtung in Fig. l zeigt eine Schicht 1 eines mittels elektromagnetischer Strah¬ lung verfestigbaren Materiales, beispielsweise einer polymeri- sierbaren Flüssigkeit oder Paste oder eines sinterbaren Pul¬ vermaterials, sowie eine über dieser Schicht angeordnete Vor¬ richtung 2 zum Verfestigen des Materiales der Schicht 1 an den dem herzustellenden Objekt enstsprechenden Stellen. Die Verfe¬ stigungsvorrichtung 2 weist eine Strahlungsquelle 3 in Form eines Lasers auf, die einen gebündelten Lichtstrahl 4 auf eine Ablenkeinrichtung 5 richtet, mittels der der Lichtstrahl 4 auf die gewünschten Stellen der Schicht 1 abgelenkt werden kann. Zu diesem Zweck ist die Ablenkeinrichtung mit einer Steuerein¬ heit 6 zur entsprechenden Steuerung der Ablenkeinrichtung 5 verbunden.
Zwischen der Strahlungsquelle 3 und der Ablenkeinrichtung 5 ist dem Lichtstrahl 4 nacheinander ein Modulator 7 und eine variable Fokuseinrichtung 8 angeordnet, die ebenfalls mit der Steuereinheit 6 zur Steuerung in der weiter unten beschriebe¬ nen Weise verbunden sind. Der Modulator kann beispielsweise als akusto-optischer, elektro-optischer oder mechanischer Modulator ausgebildet sein und dient als "Schalter" zum Durch¬ schalten bzw. Unterbrechen des Strahles 4.
Die variable Fokuseinrichtung 8 dient dazu, die Bündelung des Strahles 4 zu verändern. Zu diesem Zweck weist sie in der in Fig. 2 genauer dargestellten Weise in Richtung des Strahles 4 eine Zerstreuungslinse 9 und nachfolgend eine Sammellinse 10 auf. Die Sammellinse 10 ist in Richtung des Strahles 4 bei¬ spielsweise zwischen der gestrichelten Position in Fig. 2 und der in durchgezogen Linien gezeichneten Position positionier¬ bar und bewirkt damit je nach ihrer Position eine Veränderung des Fokus und damit des Durchmessers des Strahles an einer Arbeits- oder Referenzebene 11, die beispielsweise die Ober- fläche der Schicht 1 sein kann. Die Verschiebung der Sammel¬ linse 10 erfolgt durch eine (nicht gezeigte) Verschiebevor¬ richtung unter Verwendung eines Schrittmotors oder Servomo¬ tors, die mit der Steuereinheit 6 verbunden ist. Anstelle der Anordnung mit zwei Linsen 9, 10 kann auch jede andere geeig¬ nete Mehrlinsenanordnung verwendet werden, bei der die Fokusänderung durch Verschieben von zwei Linsen relativ zuein¬ ander erfolgt. Anstatt der variablen Fokuseinheit 8 kann die Ablenkeinrichtung 5 auch Umlenkspiegel mit einem einstellba¬ ren, variablen Krümmungsradius aufweisen. In diesem Fall kann die Bündelung des Strahles 4 durch Ändern des Krümmungsradius der Umlenkspiegel verändert werden.
Zwischen der Ablenkeinrichtung 5 und der Schicht 1 ist ferner ein Sensor 12 angeordnet, der mittels der in Fig. 4 näher dar¬ gestellten Positioniervorrichtung 13 in einer Ebene parallel zu und vorzugsweise unmittelbar oberhalb der Schicht 1 an jede Stelle oberhalb der Schicht 1 verschoben werden kann. Die Positioniervorrichtung 13 ist als X, Y-Positioniervorrichtung ausgebildet, wobei der Sensor 12 in einer ersten X-Richtung entlang der Oberseite eines sich in X-Richtung über die Schicht 1 erstreckenden Abstreifers 14 verschiebbar ist, der wiederum in Y-Richtung über die Schicht 1 zum Einstellen einer gewünschten Schichtdicke des Materiales verschoben werden kann. Gemäß einer anderen Ausführungsform kann der Sensor aber auch unabhängig vom Abstreifer positioniert werden. Der Aus¬ gang des Sensors ist mit der Steuereinheit 6 verbunden.
Eine erste Ausführungsform des Sensors 12 ist in Fig. 5 darge¬ stellt. Der Sensor 12 nach Fig. 5 ist als Quadrantensensor mit einem in jedem Quadranten angeordneten lichtempfindlichen Ele¬ ment in Form einer Photodiode 15, 16, 17, 18 ausgebildet. Die Photodiode 18 eines Quadranten ist mittels einer strahlungsun¬ durchlässigen Abdeckung, beispielsweise eines Metallplättchens 19, abgedeckt, in deren Mitte sich eine Blendenöffnung 20 befindet. Gemäß einer in Fig. 6 gezeigten zweiten Ausführungs¬ form ist der Sensor 12 als Einzelsensor mit nur einem einzigen Feld ausgebildet, wobei in dem Feld ein lichtempfindliches Element in Form einer Photodiode 21 angeordnet ist, die wie¬ derum mit einer strahlungsundurchlässigen Abdeckung, bei¬ spielsweise einem Metallplätten, bis auf eine zentrale Blen¬ denöffnung abgedeckt ist. Der Durchmesser der Blendenöffnung 20, 23, ist etwa 20 bis 50μm, vorzugsweise 35μm.
Im Betrieb wird zunächst der Laserstrahl 4 bezüglich seiner Position, Leistung und seines Durchmessers gemessen. Die Posi- tonsbestimmung erfolgt dabei beispielsweise mittels des in Fig. 5 gezeigten Sensors 12 dadurch, daß der Sensor 12 an einer bestimmten definierten X, Y-Stelle positioniert wird und die Ablenkeinrichtung 5 von der Steuereinheit 6 so gesteuert wird, daß der abgelenkte Strahl 4 den Sensor 12 überstreicht und dabei vom Feld der Photodiode 15 zu dem in der Photodiode 16 wandert. Dabei werden die von beiden Photodioden abgegebe¬ nen Ausgangssignale verglichen; bei Gleichheit entspricht die Position des Strahles 4 genau dem Übergang zwischen den beiden Photodiodenfeldern und damit der Mittenposition des Sensors 12. Dieselbe Messung wird auch für den Übergang von der Pho¬ todiode 15 zur Photodiode 17 vorgenommen. Durch Vergleich der erhaltenen Positionsdaten mit der entsprechenden Positionsvor¬ gabe für die Ablenkeinrichtung 5 wird festgestellt, ob die Steuerung für den Strahl 4 korrekt ist oder ob eine Dejustie¬ rung vorliegt. Im letzteren Fall wird eine Korrektur der Steuerung in der Steuereinheit 6 oder auch eine Neujustage der Vorrichtung vorgenommen. Die Positionsmessung wird durch Verfahren des Sensors 12 an über die Schichtoberfläche 1 ver¬ teilte Positionen mittels der Positioniervorrichtung 13 an beliebigen Stellen innerhalb des Belichtungsfeldes vorgenom¬ men, so daß die Positioniergenauigkeit an der Verfestigungs¬ vorrichtung 2 exakt bestimmbar ist. Ebenso ist es allerdings auch möglich, nur an ausgewählten Punkten, beispielsweise an zwei Punkten, zu messen, um eine globale Drift beispielweise aufgrund von Temperaturänderung festzustellen. Diese kann wiederum durch entsprechende Korrektur der Steuereinheit 6 bzw. der darin gespeicherten Steuersoftware kompensiert werden.
Die Leistung des Strahles 4 kann durch direkte Auswertung der Ausgangssignale der Photodioden 15, 16 und 17 deren Amplitude der Leistung entspricht, vorgenommen werden. Hier ist auch der Einsatz von Pyroelementen denkbar. Durch Vergleich mit Soll¬ werten kann wiederum ein Fehler in der Verfestigungsvorrich¬ tung 2 festgestellt werden, beispielsweise eine Verstaubung der Optik, eine Alterung oder auch ein Ausfall von optischen oder elektronischen Komponenten.
Für die Messung des Durchmessers bzw. des Fokus des Strahles 4 wird die Ablenkeinrichtung 5 und/oder die Positioniervorrich¬ tung 13 so gesteuert, daß der abgelenkte Strahl 4 die Blenden¬ öffnung 20 des Sensors nach Fig. 5 oder die Blendenöffnung 23 des Sensors nach Fig. 6 in zwei Koordinatenrichtungen über¬ streicht. Dadurch wird das Intensitätsprofil des Strahles 4 abgetastet und aus den gewonnenen Intensitätsdaten des Profils der Fokus bzw. Durchmesser des Strahles 4 berechnet. Diese Messung kann im gesamten Belichtungsfeld oder auch nur an aus¬ gewählten Punkten, beispielsweise in Verbindung mit der Leistungsmessung, durchgeführt werden. Durch Vergleich mit entsprechenden Sollwerten kann wiederum eine Abweichung bei¬ spielsweise aufgrund der Alterung des Lasers oder einer Dejustage des optischen Systems festgestellt wp**den. In diesem Fall kann in gewissem Rahmen eine Korrektur durch Veränderung des Fokus mittels Ansteuerung der variablen Fokueinheit 8 vor¬ genommen werden.
Bei Verwendung des in Fig. 6 gezeigten Sensors 12 wird die Position und Leistung des Strahles 4 aufgrund von Berechnungen ermittelt, und zwar die Position durch Bestimmung des Intensi- tätsmaximums und die Leistung durch Integration des Profils. Derartige Rechenverfahren sind bekannt, so daß sie hier nicht näher erläutert werden müssen. Nach der Einstellung und Messung des Strahles 4 wird eine Materialschicht 1 aufgetragen und durch gezieltes Bestrahlen der Schicht 1 mittels des abgelenkten Strahles 4 an den dem Objekt entsprechenden Punkten verfestigt. In Fig. 3 ist ein Bereich 24 dargestellt, der beispielhaft die zu verfestigenden Stellen des Objektes dieser Schicht umfassen soll. Dieser Bereich wird für die Verfestigung in einen äußeren Hüllbereich 25 und einen inneren Kernbereich 26 aufgeteilt, wobei der Hüllbereich 25 den Kernbereich 26 vorzugsweise vollständig umschließt. Zur Verfestigung steuert die Steuereinheit 6 die variable Fokuseinheit 8, die Ablenkeinrichtung 5 und den Laser 3 derart, daß die Schicht 1 in der in der Fig. 3 durch die kleinen Kreise angedeuteten Weise im Hüllbereich 25 mit einem kleinen Strahldurchmesser bzw. Fokus und im Kernbereich 26, angedeutet durch die größeren Kreise, mit einem größeren Strahldurchmesser bzw. Fokus bestrahlt wird. Damit wird im Hüllbereich eine feinere und genauere Verfestigung des Mate¬ riales im Hüllbereich 25, der die Oberfläche bzw. die Kontur des Objektes bildet, erreicht. Wird gleichzeitig gemäß einer bevorzugten Weiterbildung die Ablenkeinrichtung 5 so gesteu¬ ert, daß die Geschwindigkeit, mit der der abgelenkte Strahl 4 über die Schicht 1 streicht (d.h. die Scan-Geschwindigkeit) , im Kernbereich 26 höher als im Hüllbereich 25 ist, dann läßt sich auch die HerStellungszeit wesentlich verkürzen. Diese Maßnahme ist insbesondere bei hohen Leistungen des Lasers 3 sinnvoll, da dann auch bei größerem Strahldurchmesser oder Fokus eine ausreichende Leistungsdichte vorhanden ist, um eine Verfestigung auch bei höheren Scan-Geschwindigkeiten zu errei¬ chen. Bei Einsatz einer Strahlungsquelle mit einstellbarer Leistung kann in diesem Fall die Leistung bei der Verfestigung des Hüllbereiches 25 verringert werden, um die Energie- bzw. Leistungsdichte auf einen für die Verfestigung geeigneten Wert einzustellen.
Eine besonders bevorzugte Anwendung findet das oben beschrie¬ bene Verfahren bei Verwendung eines gepulsten Lasers als Strahlungsquelle 3. Die Pulsrate derartiger Laser ist in der Regel zu niedrig um bei kleinem Fokus hohe Scan-Geschwindig¬ keiten zu erzielen. Vielmehr werden dann nur noch einzelne voneinander beabstandete Stellen verfestigt. Andererseits nimmt die mittlere Leistung dieses Lasers ab einer bestimmten Pulsrate ab. Weiterhin ist die Pulsdauer von beispielsweise frequenzvervielfachten FK-Lasern sehr kurz (ca. 30ns) . Die Einstellung der in das Material eingebrachten Energie- bzw. Leistungsdichte ist nicht mehr über die Scan-Geschwindigkeit, sondern nur noch durch Abschwächung, die Repetitionsrate des Lasers und/oder die Einstellung des Strahldurchmessers mög¬ lich. Für einen Betrieb mit größtmöglicher Effizienz hat sich erfindungsgemäß die Einstellung des Strahldurchmessers heraus¬ gestellt. Für einen vorgegebenen Wert des Strahldurchmessers ergibt sich dann eine optimale Repetitionsrate in Verbindung mit einer maximalen Scan-Geschwindigkeit. Bei geringerer Scan- Geschwindigkeit kann man den Energieeintrag erhöhen, bei ebenso erhöhtem Überlapp zwischen den Punkten.
Erfindungsgemäß wird damit zur Erzielung einer kurzen Herstel¬ lungszeit bei trotzdem hoher Strukturauflösung bei gepulsten Lasern im Hüllbereich 25 mit kleinerem Fokus und im Kernbe¬ reich 26 mit größerem Fokus verfestigt und die Scan-Geschwin¬ digkeit und die Repetitionsrate jeweils so eingestellt, daß in beiden Bereichen die bei jedem Puls verfestigten Bereiche 27 überlappen und damit eine durchgehende Linie verfestigt wird. Dieser Sachverhalt ist in Fig. 3 dargestellt: Da die damit zulässige Scan-Geschwindigkeit proportional zum Durchmesser des in Fig. 3 kreisförmig dargestellten Strahles oder Fokus 27 ist, kann die Scan-Geschwindigkeit im Kernbereich 26 gegenüber derjenigen des Hüllbereiches 25 um den selben Faktor erhöht werden, um den der Durchmesser im Kernbereich vergrößert ist. Außerdem sind im Kernbereich 26 auch entsprechend weniger Überstreichungen erforderlich. Damit reduziert sich die Her¬ stellungszeit mit dem Quadrat der relativen Durchmesserver¬ größerung. In beiden Bereichen 25, 26 ergibt sich aus der ent¬ sprechenden Scan-Geschwindigkeit die Repetitionsrate und der Strahlfokus und damit mittlere Leistung des Lasers, so daß im Ergebnis im Hüllbereich 25 mit kleinerer mittlerer Leistung und im Kernbereich 26 mit größerer mittlerer Leistung gefahren wird.
Zur Einstellung des Fokus wird von der Steuereinheit 6 je nachdem, ob die Ablenkeinrichtung 5 den Strahl 4 gerade auf den Kernbereich 26 oder den Hüllbereich 25 ablenkt, die Posi¬ tion der Sammellinse 10 relativ zur Zerstreuungslinse 9 durch Axialverschiebung verändert. Die entsprechenden Steuerdaten sind in der Steuereinheit 6 gespeichert. Vorzugsweise wird zunächst mit einer kleinen Fokuseinstellung der Hüllbereich 25 verfestigt, danach der Fokus vergrößert und mit der einmal eingestellten Vergrößerung der Kernbereich 26 verfestigt. Eine Messung und Korrektur der Fokuseinstellung des Strahles ist wiederum mittels des Sensors 12 in der oben dargelegten Weise möglich.
Die weiteren Schichten des Objektes werden in der gleichen Weise aufgetragen und verfestigt.
Die Messung des Strahles in der oben beschriebenen Weise kann vor der Herstellung eines Objektes, aber auch zwischen der Verfestigung einzelner Schichten oder auch in größeren Abstän¬ den, z.B. tageweise, vorgenommen werden. Festgestellte Abwei¬ chungen von zulässigen Werten können auch auf einer Anzeige¬ vorrichtung dargestellt werden.
Als FK-Laser werden bevorzugt diodengepulste Neodym YAG-Laser oder diodengepulste Neodym YLF-Laser mit einer Leistung von etwa 300mW verwendet.

Claims

Patentansprüche
1. Verfahren zum Herstellen eines dreidimensionalen Ob¬ jekts, bei dem aufeinanderfolgende Schichten eines durch elektromagnetische Strahlung verfestigbaren Materials aufge¬ tragen und durch Bestrahlung mittels eines gebündelten Strahls an den dem Objekt entsprechenden Stellen der Schich¬ ten verfestigt werden, dadurch gekennzeichnet, daß die Bündelung des Strahls bei der Verfestigung verändert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß die Bündelung in Abhängigkeit von der zu verfestigenden Stelle der Schicht verändert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß in einem einem Randbereich des Objekts entsprechenden ersten Bereich die Bündelung zur Bil¬ dung eines kleineren Fokus verstärkt wird und in einem einem Innenbereich des Objekts entsprechenden zweiten Bereich die Bündelung zur Bildung eines größeren Fokus verringert wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Bündelung in Abhängigkeit von der Leistung der Strahlungsquelle für den gebündelten Strahl verändert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Bündelung in Abhängigkeit von einer Geschwindigkeit, mit der der gebündelte Strahl über die Schicht bewegt wird, verändert wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß eine gepulste Strahlungsquelle verwendet wird und die Bündelung in Abhängigkeit von der Pulsenergie eingestellt wird.
7. Verfahren nach den Ansprüchen 3 bis 6, dadurch gekennzeichnet, daß die Verfestigung im ersten Be¬ reich mit einer starken Bündelung und einer niedrigen Ge¬ schwindigkeit und im zweiten Bereich mit einer schwächeren Bündelung und einer höheren Geschwindigkeit durchgeführt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß im zweiten Bereich die Strahllei¬ stung bzw. bei Verwendung eines gepulsten Lasers die mittlere Strahlleistung erhöht ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Position, die Leistung und/ oder der Fokusdurchmesser des Strahls an einer Stelle vor¬ zugsweise unmittelbar oberhalb der zu verfestigenden Schicht gemessen wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Bündelung in Abhängigkeit vom Meßergebnis verändert wird.
11. Verfahren zum Herstellen eines dreidimensionalen Ob¬ jekts, bei dem aufeinanderfolgende Schichten eines durch elektromagnetische Strahlung verfestigbaren Materials aufgetragen und durch Bestrahlung mittels eines gebündelten Strahls an den dem Objekt entsprechenden Stellen der Schichten verfestigt werden. dadurch gekennzeichnet, daß die Position, die Leistung und/ oder der Durchmesser des Strahls an einer Stelle vorzugsweise unmittelbar oberhalb der zu verfestigenden Schicht gemessen wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das Meßergebnis mit vorgegebenen Referenzwerten verglichen wird und aufgrund des Vergleiches eine Fehleranzeige oder Korrektur des Strahls vorgenomen wird.
13. Verfahren nach einem der Ansprüche 9 oder 12, dadurch gekennzeichnet, daß die Messung an einer Mehrzahl von Stellen oberhalb der Materialschicht vorgenommen wird.
14. Verfahren nach einem der Ansprüche l bis 13, dadurch gekennzeichnet, daß als Strahl ein Strahl eines FK- Lasers verwendet wird.
15. Vorrichtung zur Herstellung eines dreidimensionalen Ob¬ jekts durch aufeinanderfolgendes Verfestigen von Schichten eines durch Einwirkung elektromagnetischer Strahlung verfe¬ stigbaren Materials, mit einer Vorrichtung zum Erzeugen einer Schicht (1) des Materials, einer Strahlungsquelle (3) zur Er¬ zeugung eines gebündelten Strahls (4) der elektromagnetischen Strahlung und einer Ablenkvorrichtung (5) zum Ablenken des gerichteten Strahls (4) auf dem Objekt entsprechende Stellen der Schicht (1) , dadurch gekennzeichnet, daß zwischen der Ablenkeinrichtung (5) und der Schicht (1) ein Sensor (12) zur Messung des Strahls (4) angeordnet ist.
16. Vorrichtung zur Herstellung eines dreidimensionalen Ob¬ jekts durch aufeinanderfolgendes Verfestigen von Schichten eines durch Einwirkung elektromagnetischer Strahlung ver¬ festigbaren Materials, mit einer Vorrichtung zum Erzeugen einer Schicht (1) des Materials, einer Strahlungsquelle (3) zur Erzeugung eines gebündelten Strahls (4) der elektromag¬ netischen Strahlung und einer Ablenkvorrichtung (5) zum Ab¬ lenken des gerichteten Strahls (4) auf dem Objekt entspre¬ chende Stellen der Schicht (1), dadurch gekennzeichnet, daß die Strahlungsquelle (3) einen FK-Laser aufweist.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, daß eine im Strahl (4) angeordnete variable Fokuseinheit (8) zur Veränderung der Bündelung des Strahls (4) vorgesehen ist.
18. Vorrichtung nach Anspruch 16 oder 17, dadurch gekennzeichnet, daß der FK-Laser ein Neodym YAG-Laser oder ein Neodym YLF-Laser ist.
19. Vorrichtung nach einem der Ansprüche 17 bis 18, dadurch gekennzeichnet, daß die variable Fokuseinheit (8) zwischen der Strahlungsquelle (3) und der Ablenkvorrichtung (5) angeordnet ist.
20. Vorrichtung nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß die variable Fokuseinheit (8) im Strahl zwei in Axialrichtung relativ zueinander verschiebbare Linsen (9, 10) aufweist.
21. Vorrichtung nach einem der Ansprüche 17 bis 20, dadurch gekennzeichnet, daß im Strahl (4) ein Modulator (7) zum gesteuerten Unterbrechen bzw. Durchlassen des Strahls an¬ geordnet ist.
22. Vorrichtung nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß die variable Fokuseinheit (8) und die Ablenkvorrichtung (5) und gegebenenfalls der Modulator (7) mit einer Steuereinheit (6) zur Veränderung des Fokus des Strahls (4) in Abhängigkeit von der Ablenkung verbunden sind.
23. Vorrichtung nach einem der Ansprüche 16 bis 27, dadurch gekennzeichnet, daß zwischen der Ablenkeinrichtung (5) und der Schicht (1) ein Sensor (12) zur Messung des Strahls (4) angeordnet ist.
24. Vorrichtung nach Anspruch 15 oder 23, dadurch gekennzeichnet, daß der Sensor (12) mit einer Posi¬ tioniervorrichtung (13) zum Positionieren des Sensors an einer Mehrzahl von Stellen in einer Ebene parallel zur Schicht (1) verbunden ist.
25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, daß die Positioniervorrichtung (13) als x, y-Positioniervorrichtung ausgebildet ist.
26. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, daß eine sich in einer ersten Richtung (X) quer über die Schicht (1) erstreckende und in einer zweiten Richtung (Y) über die Schicht (1) verfahrbare AbstreifVorrichtung vorgesehen ist und daß der Sensor (12) an der Abstreifvorrichtung in der ersten Richtung (X) verschieb¬ bar angeordnet ist.
27. Vorrichtung nach einem der Ansprüche 15, 23 bis 26, dadurch gekennzeichnet, daß der Sensor (12) zur Messung der Position, der Leistung und/oder des Durchmessers des Strahls (4) ausgebildet ist.
28. Vorrichtung nach einem der Ansprüche 15, 23 bis 27, dadurch gekennzeichnet, daß der Sensor (12) als Quadrantende¬ tektor mit mindestens drei Detektorsektoren (15, 16, 17) aus¬ gebildet ist.
29. Vorrichtung nach einem der Ansprüche 15, 23 bis 27, dadurch gekennzeichnet, daß der Sensor (12) einen Einzelde¬ tektor mit einer bis auf eine Blendenöffnung (23) strahlungs- undurchlässig abgedeckten, strahlungsempfindlichen Detektor¬ oberfläche (21) aufweist.
30. Vorrichtung nach Anspruch 28 und 29, dadurch gekennzeichnet, daß der Einzeldetektor in einem der Quadranten angeordnet ist.
31. Vorrichtung nach einem der Ansprüche 15, 23 bis 30, dadurch gekennzeichnet, daß der Sensor (12) und/oder die Po¬ sitioniervorrichtung (13) mit der Steuereinheit verbunden sind.
PCT/EP1995/001742 1994-05-13 1995-05-09 Verfahren und vorrichtung zum herstellen eines dreidimensionalen objektes WO1995031326A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59501852T DE59501852D1 (de) 1994-05-13 1995-05-09 Verfahren und vorrichtung zum herstellen dreidimensionaler objekte
JP52933195A JP3520310B2 (ja) 1994-05-13 1995-05-09 3次元物体の製造方法及び装置
US08/727,532 US5753171A (en) 1994-05-13 1995-05-09 Method and apparatus for producing a three-dimensional object
EP95920004A EP0758952B1 (de) 1994-05-13 1995-05-09 Verfahren und vorrichtung zum herstellen dreidimensionaler objekte

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4416988A DE4416988A1 (de) 1994-05-13 1994-05-13 Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DEP4416988.4 1994-05-13
DE4416901A DE4416901A1 (de) 1994-05-13 1994-05-13 Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
DEP4416901.9 1994-05-13

Publications (1)

Publication Number Publication Date
WO1995031326A1 true WO1995031326A1 (de) 1995-11-23

Family

ID=25936575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/001742 WO1995031326A1 (de) 1994-05-13 1995-05-09 Verfahren und vorrichtung zum herstellen eines dreidimensionalen objektes

Country Status (5)

Country Link
US (1) US5753171A (de)
EP (1) EP0758952B1 (de)
JP (1) JP3520310B2 (de)
DE (1) DE59501852D1 (de)
WO (1) WO1995031326A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042132A1 (de) * 2000-08-28 2002-03-28 Concept Laser Gmbh Selektives Randschichtschmelzen
EP1405714A1 (de) * 2002-09-30 2004-04-07 EOS GmbH Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen von dreidimensionalen Objekten
US10303157B2 (en) 2015-12-22 2019-05-28 Industrial Technology Research Institute Additive manufacturing method for three-dimensional object
EP3266594B1 (de) 2016-07-07 2020-03-11 Technische Universität Wien Verfahren und vorrichtung zur lithographiebasierten generativen fertigung von dreidimensionalen bauteilen
EP3160719B1 (de) 2014-06-26 2020-05-06 Université Grenoble Alpes Vorrichtung zum dreidimensionalen drucken

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3412278B2 (ja) * 1994-09-20 2003-06-03 株式会社日立製作所 光造形装置及び方法
US7037382B2 (en) * 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
US6007318A (en) * 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
US6051179A (en) * 1997-03-19 2000-04-18 Replicator Systems, Inc. Apparatus and method for production of three-dimensional models by spatial light modulator
JP3516860B2 (ja) * 1998-03-18 2004-04-05 株式会社アスペクト 形状設計支援装置及び造形方法
US6406658B1 (en) * 1999-02-08 2002-06-18 3D Systems, Inc. Stereolithographic method and apparatus for production of three dimensional objects using multiple beams of different diameters
US6537052B1 (en) * 1999-08-23 2003-03-25 Richard J. Adler Method and apparatus for high speed electron beam rapid prototyping
WO2001034371A2 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
US20010050031A1 (en) * 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
SE521124C2 (sv) * 2000-04-27 2003-09-30 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US6833234B1 (en) * 2000-08-04 2004-12-21 Massachusetts Institute Of Technology Stereolithographic patterning with variable size exposure areas
US6544465B1 (en) * 2000-08-18 2003-04-08 Micron Technology, Inc. Method for forming three dimensional structures from liquid with improved surface finish
US7087109B2 (en) * 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
SE524432C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524421C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
SE524420C2 (sv) * 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
JP2007503342A (ja) * 2003-05-23 2007-02-22 ズィー コーポレイション 三次元プリント装置及び方法
GB0317387D0 (en) * 2003-07-25 2003-08-27 Univ Loughborough Method and apparatus for combining particulate material
US20050059757A1 (en) * 2003-08-29 2005-03-17 Z Corporation Absorbent fillers for three-dimensional printing
US7387359B2 (en) * 2004-09-21 2008-06-17 Z Corporation Apparatus and methods for servicing 3D printers
DE102005030067A1 (de) * 2005-06-27 2006-12-28 FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes durch ein generatives 3D-Verfahren
US20070126157A1 (en) * 2005-12-02 2007-06-07 Z Corporation Apparatus and methods for removing printed articles from a 3-D printer
KR101537494B1 (ko) * 2006-05-26 2015-07-16 3디 시스템즈 인코오퍼레이티드 3d 프린터 내에서 재료를 처리하기 위한 인쇄 헤드 및 장치 및 방법
EP2089215B1 (de) 2006-12-08 2015-02-18 3D Systems Incorporated Dreidimensionales druckmaterialsystem
JP5129267B2 (ja) 2007-01-10 2013-01-30 スリーディー システムズ インコーポレーテッド 改良された色、物品性能及び使用の容易さ、を持つ3次元印刷材料システム
FR2912620B1 (fr) * 2007-02-21 2010-08-13 Chanel Parfums Beaute Procede de fabrication d'un applicateur de produit cosmetique, applicateur, emballage comprenant cet applicateur et lot d'applicateurs.
WO2008103450A2 (en) 2007-02-22 2008-08-28 Z Corporation Three dimensional printing material system and method using plasticizer-assisted sintering
US8568649B1 (en) * 2007-03-20 2013-10-29 Bowling Green State University Three-dimensional printer, ceramic article and method of manufacture
US8475946B1 (en) 2007-03-20 2013-07-02 Bowling Green State University Ceramic article and method of manufacture
DE102007062129B3 (de) 2007-12-21 2009-06-18 Eos Gmbh Electro Optical Systems Verfahren zum Herstellen eines dreidimensionalen Objekts
US20120132627A1 (en) 2009-04-28 2012-05-31 Bae Systems Plc Additive layer fabrication method
FR2949988B1 (fr) * 2009-09-17 2011-10-07 Phenix Systems Procede de realisation d'un objet par traitement laser a partir d'au moins deux materiaux pulverulents differents et installation correspondante
DE102010008960A1 (de) * 2010-02-23 2011-08-25 EOS GmbH Electro Optical Systems, 82152 Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts, das sich insbesondere für den Einsatz in der Mikrotechnik eignet
JP5739010B2 (ja) * 2010-11-29 2015-06-24 スリーディー システムズ インコーポレーテッド 内部レーザ変調を使用したステレオリソグラフィー・システムおよび方法
US9075409B2 (en) 2011-06-28 2015-07-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification
JP6019113B2 (ja) 2011-06-28 2016-11-02 ガルフ・フィルトレイション・システムズ・インコーポレイテッドGulf Filtration Systems Inc. 3次元物体を線形凝固を用いて形成するための装置および方法
WO2013132840A1 (ja) 2012-03-09 2013-09-12 パナソニック株式会社 三次元形状造形物の製造方法
GB201205591D0 (en) * 2012-03-29 2012-05-16 Materials Solutions Apparatus and methods for additive-layer manufacturing of an article
JP5993224B2 (ja) * 2012-06-18 2016-09-14 ローランドディー.ジー.株式会社 三次元造形装置
US9931785B2 (en) 2013-03-15 2018-04-03 3D Systems, Inc. Chute for laser sintering systems
JP2014184659A (ja) * 2013-03-25 2014-10-02 Honda Motor Co Ltd 三次元造形方法
WO2014165643A2 (en) 2013-04-04 2014-10-09 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Apparatus and method for forming three-dimensional objects using linear solidification with travel axis correction and power control
EP3415254A1 (de) * 2013-06-10 2018-12-19 Renishaw PLC Vorrichtung und verfahren für selektive lasererstarrung
GB201310398D0 (en) 2013-06-11 2013-07-24 Renishaw Plc Additive manufacturing apparatus and method
DE102013213547A1 (de) * 2013-07-10 2015-01-15 Eos Gmbh Electro Optical Systems Kalibriereinrichtung und Kalibrierverfahren für eine Vorrichtung zum schichtweisen Herstellen eines Objekts
US20150102531A1 (en) 2013-10-11 2015-04-16 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Apparatus and method for forming three-dimensional objects using a curved build platform
US9586364B2 (en) 2013-11-27 2017-03-07 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification with contourless object data
BE1024052B1 (nl) * 2013-12-03 2017-11-08 Layerwise N.V. Werkwijze en inrichting voor het kalibreren van meerdere energiestralen voor het additief vervaardigen van een object
US9527244B2 (en) 2014-02-10 2016-12-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects from solidifiable paste
US10144205B2 (en) 2014-02-20 2018-12-04 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US10011076B2 (en) 2014-02-20 2018-07-03 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
US11104117B2 (en) 2014-02-20 2021-08-31 Global Filtration Systems Apparatus and method for forming three-dimensional objects using a tilting solidification substrate
EP3115181A4 (de) * 2014-03-05 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Verfahren zur herstellung eines dreidimensionalen formartikels
KR101795994B1 (ko) 2014-06-20 2017-12-01 벨로3디, 인크. 3차원 프린팅 장치, 시스템 및 방법
WO2016026706A1 (en) 2014-08-20 2016-02-25 Etxe-Tar, S.A. Method and system for additive manufacturing using a light beam
US10449692B2 (en) 2014-12-08 2019-10-22 Tethon Corporation Three-dimensional (3D) printing
DE102014226243A1 (de) * 2014-12-17 2016-06-23 MTU Aero Engines AG Vorrichtung zur generativen Herstellung eines Bauteils
DE102015202347A1 (de) * 2015-02-10 2016-08-11 Trumpf Laser- Und Systemtechnik Gmbh Bestrahlungseinrichtung, Bearbeitungsmaschine und Verfahren zum Herstellen einer Schicht eines dreidimensionalen Bauteils
GB201505458D0 (en) 2015-03-30 2015-05-13 Renishaw Plc Additive manufacturing apparatus and methods
US9902112B2 (en) 2015-04-07 2018-02-27 Global Filtration Systems Apparatus and method for forming three-dimensional objects using linear solidification and a vacuum blade
EP3370948A4 (de) 2015-11-06 2019-07-24 Velo3d Inc. Professionelles dreidimensionales drucken
DE102015224130A1 (de) * 2015-12-03 2017-06-08 MTU Aero Engines AG Ermitteln einer Scangeschwindigkeit einer Fertigungsvorrichtung zum additiven Herstellen eines Bauteils
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
DE102016001355B4 (de) 2016-02-08 2022-03-24 Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung Verfahren und Vorrichtung zur Analyse von Laserstrahlen in Anlagen für generative Fertigung
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
US10286452B2 (en) 2016-06-29 2019-05-14 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
FR3056593B1 (fr) * 2016-09-28 2020-06-26 Ecole Centrale De Marseille Procede pour la realisation d’un objet tridimensionnel par un processus de photo-polymerisation multi-photonique et dispositif associe
WO2018128695A2 (en) 2016-11-07 2018-07-12 Velo3D, Inc. Gas flow in three-dimensional printing
DE102016222186B3 (de) 2016-11-11 2018-04-12 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Kalibrieren zweier Scannereinrichtungen jeweils zur Positionierung eines Laserstrahls in einem Bearbeitungsfeld und Bearbeitungsmaschine zum Herstellen von dreidimensionalen Bauteilen durch Bestrahlen von Pulverschichten
DE102016222261A1 (de) 2016-11-14 2018-05-17 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zur schichtweisen additiven Fertigung von Bauteilen und zugehöriges Computerprogrammprodukt
TWI617073B (zh) 2016-11-25 2018-03-01 財團法人工業技術研究院 電池電極結構及其製作方法
US20180186081A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
CN110430989B (zh) 2017-03-22 2021-11-05 爱尔康公司 具有光滑弯曲表面的人工晶状体的3d打印
US20180281283A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US11550295B2 (en) * 2017-03-31 2023-01-10 Eos Gmbh Electro Optical Systems Continuous exposure
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
JP6912092B2 (ja) * 2018-03-30 2021-07-28 株式会社アスペクト 粉末床溶融結合造形物及びその作製方法
EP3564034A1 (de) * 2018-05-04 2019-11-06 CL Schutzrechtsverwaltungs GmbH Vorrichtung zur generativen fertigung dreidimensionaler objekte
JP6848010B2 (ja) * 2019-06-11 2021-03-24 株式会社ソディック 積層造形装置
JP6990725B2 (ja) * 2020-01-30 2022-01-12 株式会社ソディック 積層造形装置および三次元造形物の製造方法
JP7374861B2 (ja) * 2020-06-25 2023-11-07 株式会社ディーメック 樹脂型の製造方法
JP7409997B2 (ja) * 2020-08-19 2024-01-09 株式会社神戸製鋼所 積層造形物の製造方法
JP2023020486A (ja) * 2021-07-30 2023-02-09 三菱重工業株式会社 積層造形方法及び積層造形装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011085A1 (en) * 1988-04-18 1989-11-16 3D Systems, Inc. Stereolithographic beam profiling
JPH0295830A (ja) * 1988-10-01 1990-04-06 Matsushita Electric Works Ltd 三次元形状の形成方法
EP0406513A1 (de) * 1989-07-07 1991-01-09 Mitsui Engineering and Shipbuilding Co, Ltd. Optisches Formverfahren

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
DE3750931T3 (de) * 1986-10-17 1999-12-02 Univ Texas Verfahren und vorrichtung zur herstellung von formkörpern durch teilsinterung.
JP2715527B2 (ja) * 1989-03-14 1998-02-18 ソニー株式会社 立体形状形成方法
US5014207A (en) * 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
DE4003699A1 (de) * 1990-02-07 1991-08-22 Wild Heerbrugg Ag Verfahren und anordnung zur pruefung optischer komponenten oder systeme
JP3173088B2 (ja) * 1991-12-27 2001-06-04 ジェイエスアール株式会社 光学的立体像形成方法および装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011085A1 (en) * 1988-04-18 1989-11-16 3D Systems, Inc. Stereolithographic beam profiling
JPH0295830A (ja) * 1988-10-01 1990-04-06 Matsushita Electric Works Ltd 三次元形状の形成方法
EP0406513A1 (de) * 1989-07-07 1991-01-09 Mitsui Engineering and Shipbuilding Co, Ltd. Optisches Formverfahren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 14, no. 300 (M - 991)<4243> 28 June 1990 (1990-06-28) *
TAKASHI NAKAI ET AL: "FABRICATION OF THREE-DIMENSIONAL OBJECTS USING LASER LITHOGRAPHY", SYSTEMS & COMPUTERS IN JAPAN, vol. 20, no. 3, 1 March 1989 (1989-03-01), pages 58 - 66, XP000071510 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042132A1 (de) * 2000-08-28 2002-03-28 Concept Laser Gmbh Selektives Randschichtschmelzen
DE10042132B4 (de) * 2000-08-28 2012-12-13 Cl Schutzrechtsverwaltungs Gmbh Selektives Randschichtschmelzen
EP1405714A1 (de) * 2002-09-30 2004-04-07 EOS GmbH Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen von dreidimensionalen Objekten
EP3160719B1 (de) 2014-06-26 2020-05-06 Université Grenoble Alpes Vorrichtung zum dreidimensionalen drucken
US10303157B2 (en) 2015-12-22 2019-05-28 Industrial Technology Research Institute Additive manufacturing method for three-dimensional object
EP3266594B1 (de) 2016-07-07 2020-03-11 Technische Universität Wien Verfahren und vorrichtung zur lithographiebasierten generativen fertigung von dreidimensionalen bauteilen

Also Published As

Publication number Publication date
EP0758952B1 (de) 1998-04-08
JP3520310B2 (ja) 2004-04-19
JPH10505799A (ja) 1998-06-09
DE59501852D1 (de) 1998-05-14
US5753171A (en) 1998-05-19
EP0758952A1 (de) 1997-02-26

Similar Documents

Publication Publication Date Title
EP0758952B1 (de) Verfahren und vorrichtung zum herstellen dreidimensionaler objekte
WO2017118569A1 (de) Verfahren zum kalibrieren einer vorrichtung zum herstellen eines dreidimensionalen objekts
DE102017202725B3 (de) Vorrichtung und Verfahren zum Kalibrieren eines Bestrahlungssystems, das zum Herstellen eines dreidimensionalen Werkstücks verwendet wird
EP3300885B1 (de) Verfahren zum kalibrieren einer vorrichtung zum herstellen eines dreidimensionalen objekts und zum durchführen des verfahrens ausgebildete vorrichtung
EP2280816B1 (de) Verfahren und vorrichtung zum kalibrieren einer bestrahlungsvorrichtung
EP3374161A1 (de) Vorrichtung und verfahren zum kalibrieren einer vorrichtung zum generativen herstellen eines dreidimensionalen objekts
DE102007062129B3 (de) Verfahren zum Herstellen eines dreidimensionalen Objekts
WO2015003937A1 (de) Kalibriereinrichtung und kalibrierverfahren für eine vorrichtung zum schichtweisen herstellen eines objekts
WO2001000390A1 (de) Verfahren und vorrichtung zum herstellen eines objektes mittels stereolithographie
EP3625029B1 (de) Messsystem für eine vorrichtung zum generativen herstellen eines dreidimensionalen objekts
DE19732668C2 (de) Vorrichtung und Verfahren zur Kalibrierung von Strahlabtastvorrichtungen
DE2164397A1 (de) Optische Spurvorrichtung
DE4416901A1 (de) Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
EP0482240A1 (de) Verfahren zur massgenauen Bearbeitung von flachen oder leicht gewölbten Werkstücken
WO2000072092A1 (de) Lithographie-belichtungseinrichtung und lithographie-verfahren
DE10024634A1 (de) Elektronenstrahl-Belichtungsvorrichtung und Elektronenstrahl-Belichtungsverfahren
WO2023161223A1 (de) Vorrichtung, system und verfahren zum kalibrieren einer lasereinrichtung
DE4416988A1 (de) Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
EP3888887B1 (de) Verfahren und vorrichtung zur lithographiebasierten generativen fertigung eines dreidimensionalen bauteils
WO2020249460A1 (de) Vorrichtung und verfahren zur referenzierung und kalibrierung einer laseranlage
WO2022018148A1 (de) Fertigungseinrichtung und verfahren zum additiven herstellen eines bauteils aus einem pulvermaterial, sowie verfahren zum erzeugen eines bestimmten intensitätsprofils eines energiestrahls
EP4043186A1 (de) Verfahren und vorrichtung zur ansteuerung einer lithographiebasierten additiven fertigungsvorrichtung
EP3702132B1 (de) Verfahren zur lithographiebasierten generativen fertigung eines dreidimensionalen bauteils
DE102022121238A1 (de) Fertigungsvorrichtung und Verfahren zum additiven Fertigen von Bauteilen aus einem Pulvermaterial und Verfahren zum Ermitteln einer Korrekturfunktion für eine solche Fertigungsvorrichtung oder ein solches Verfahren
EP4316782A1 (de) Verfahren und vorrichtung zur lithographiebasierten generativen fertigung eines dreidimensionalen bauteils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995920004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08727532

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995920004

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995920004

Country of ref document: EP