WO1995032002A1 - Covalent microparticle-drug conjugates for biological targeting - Google Patents

Covalent microparticle-drug conjugates for biological targeting Download PDF

Info

Publication number
WO1995032002A1
WO1995032002A1 PCT/US1995/006180 US9506180W WO9532002A1 WO 1995032002 A1 WO1995032002 A1 WO 1995032002A1 US 9506180 W US9506180 W US 9506180W WO 9532002 A1 WO9532002 A1 WO 9532002A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
matter
biologically
moiety
active compound
Prior art date
Application number
PCT/US1995/006180
Other languages
French (fr)
Inventor
Milton B. Yatvin
Michael H. B. Stowell
Vincent S. Gallicchio
Michael J. Meredith
Original Assignee
State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University filed Critical State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University
Priority to AU26393/95A priority Critical patent/AU2639395A/en
Priority to EP95921275A priority patent/EP0759784A1/en
Publication of WO1995032002A1 publication Critical patent/WO1995032002A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/543Lipids, e.g. triglycerides; Polyamines, e.g. spermine or spermidine
    • A61K47/544Phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/06Pyrimidine radicals
    • C07H19/10Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/811Peptides or proteins is immobilized on, or in, an inorganic carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/812Peptides or proteins is immobilized on, or in, an organic carrier
    • Y10S530/813Carrier is a saccharide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/812Peptides or proteins is immobilized on, or in, an organic carrier
    • Y10S530/813Carrier is a saccharide
    • Y10S530/814Cellulose or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S530/00Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
    • Y10S530/81Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
    • Y10S530/812Peptides or proteins is immobilized on, or in, an organic carrier
    • Y10S530/815Carrier is a synthetic polymer

Definitions

  • compositions of matter and pharmaceutical embodiments of such compositions comprising conjugates of such biologically-active compounds covalently linked to paniculate carriers generally termed microparticles.
  • Particular embodiments of such compositions include compositions wherein the biologically-active compounds are antimicrobial drugs.
  • the antimicrobial drug is covalently linked to a microparticle via an organic linker molecule which is the target of a microorganism- specific protein having enzymatic activity.
  • the invention provides cell targeting of drugs wherein the targeted drug is only released in cells infected with a particular microorganism.
  • Such specific drug delivery compositions also contain polar lipid carrier molecules.
  • Particular embodiments of such conjugates comprise antimicrobial drugs covalently linked both to a microparticle via an organic linker molecule and to a polar lipid compound, to facilitate targeting of such drugs to particular subcellular organelles within the cell.
  • a major goal in the pharmacological arts has been the development of methods and compositions to facilitate the specific delivery of therapeutic and other agents to the appropriate cells and tissues that would benefit from such treatment, and the avoidance of the general physiological effects of the inappropriate delivery of such agents to other cells or tissues of the body.
  • the most common example of the need for such specificity is in the field of antineoplastic therapy, in which the amount of a variety of anti-neoplastic agents that can be safely administered to a patient is limited by their cytotoxic effects.
  • A. Drug Targeting It is desirable to increase the efficiency and specificity of administration of a therapeutic agent to the cells of the relevant tissues in a variety of pathological states. This is particularly important as relates to antimicrobial drugs. These drugs typically have pleiotropic antibiotic and cytotoxic effects that damage or destroy uninfected cells as well as infected cells. Thus, an efficient delivery system which would enable the delivery of such drugs specifically to infected cells would increase the efficacy of treatment and reduce the associated "side effects" of such drug treatments, and also serve to reduce morbidity and mortality associated with clinical administration of such drugs.
  • receptor targeting involves linking the therapeutic agent to a ligand which has an affinity for a receptor expressed on the desired target cell surface.
  • an antimicrobial agent or drug is intended to adhere to the target cell following formation of a ligand- receptor complex on the cell surface. Entry into the cell could then follow as the result of internalization of ligand-receptor complexes. Following internalization, the antimicrobial drug may then exert its therapeutic effects directly on the cell.
  • receptor targeting approach lies in the fact that there are only a finite number of receptors on the surface of target cells. It has been estimated that the maximum number of receptors on a cell is approximately one million (Darnell et al, 1986, Molecular Cell Biology, 2d ed. , W.H. Freeman: New York,
  • Liposomes have also been used to attempt cell targeting.
  • Rahman et al., 1982, Life Sci. 3_1 : 2061-71 found that liposomes which contained galactolipid as part of the lipid appeared to have a higher affinity for parenchymal cells than liposomes which lacked galactolipid.
  • efficient or specific drug delivery has not been predictably achieved using drug-encapsulated liposomes.
  • Cell-specific targeting is also an important goal of antimicrobial therapy, particularly in the event that a specific cell type is a target of acute or chronic infection.
  • Targeting in the case of infection of a specific cell type would be advantageous because it would allow administration of biologically-toxic compounds to an animal suffering from infection with a microbial pathogen, without the risk of non-specific toxicity to uninfected cells that would exist with nontargeted administration of the toxic compound.
  • An additional advantage of such targeted antimicrobial therapy would be improved pharmacokinetics that would result from specific concentration of the antimicrobial agent to the sites of infection, i.e. , the infected cells.
  • Phagocytic cells such as monocytes and macrophages are known to be specific targets for infection of certain pathogenic microorganisms.
  • Sturgill-Koszycki et al, 1994, Science 263: 678-681 disclose that the basis for lack of acidification of phagosomes in M. avium and M. tuberculosis-infected macrophages is exclusion of the vesicular proton-ATPase.
  • Sierra-Honigman et al, 1993, J. Neuroimmunol. 45: 31-36 disclose Borna disease virus infection of monocytic cells in bone marrow.
  • Maciejewski et al, 1993, Virol. 195: 327-336 disclose human cytomegalovirus infection of mononucleated phagocytes in vitro.
  • Kanno et al, 1993, J. Virol 67: 2075-2082 disclose that Aleutian mink disease parvovirus replication depends on differentiation state of the infected macrophage.
  • Kanno et al, 1992, J. Virol. 66: 5305-5312 disclose that Aleutian mink disease parvovirus infects peritoneal macrophages in mink.
  • Narayan et al, 1992, J. Rheumatol. 32: 25-32 disclose arthritis in animals caused by infection of macrophage precursors with lentivirus, and activation of quiescent lentivirus infection upon differentiation of such precursor cells into terminally-differentiated macrophages.
  • Panuska et al, 1990, J. Clin. Invest. 86: 113-119 disclose productive infection of alveolar macrophages by respiratory syncytial virus.
  • Clarke et al, 1990, AIDS 4: 1133-1136 disclose human immunodeficiency virus infection of alveolar macrophages in lung.
  • L. pneumophila survives in infected phagocytic cells at least in part by inhibiting reduction of intraphagosomic hydrogen ion concentration (pH).
  • L. pneumophila is an obligate intracellular parasite that is phagocytized into a phagosome wherein fusion with lysosome is inhibited.
  • Chang, 1979, Exp. Pa ⁇ sitol 48: 175-189 disclose Leischmania donovani infection of macrophages.
  • Embretson et al, 1993, Nature 362: 359-361 disclose covert infection of macrophages with HIV and dissemination of infected cells throughout the immune system early in the course of disease.
  • liver macrophages Kuppfer cells
  • McEntee et al, 1991, J. gen. Virol. 72: 317-324 disclose persistent infection of macrophages by HIV resulting in destruction of T lymphocytes by fusion with infected macrophages, and that the macrophages survive fusion to kill other T lymphocytes.
  • LMWP low molecular weight proteins
  • Bai et al, 1992, J. Pharm. Sci. 81: 113-116 report intestinal cell targeting using a peptide carrier-drug system wherein the conjugate is cleaved by an intestine-specific enzyme, prolidase.
  • Monoclonal antibodies have been used in the prior art for drug targeting.
  • Bickel et al, 1993, Proc. Natl. Acad. Sci. USA 90: 2618-2622 discloses the use of a chimeric protein vector for targeting across blood-brain barrier using anti- transferrin monoclonal antibody.
  • Senter et al 1991, in Immunobiologv of Peptides and Proteins. Vol. VI, pp.97- 105 discloses monoclonal antibodies linked to alkaline phosphatase or penicillin- V amidase to activate prodrugs specifically at site of antibody targeting, for therapeutic treatment of solid tumors.
  • Drug-carrier conjugates have been used in the prior art to provide time-release drug delivery agents
  • microcapsule vesicular
  • microsphere disersed matrix
  • (1-250 ⁇ m)-based drug delivery systems based on degradation of particle with drug release, to provide time release of drugs, oral delivery via transit through the intestinal mucosa and delivery to Kupffer cells of liver.
  • Ryser et al U.S. Patent No. 4,847,240, issued July 11, 1989, provides cationic polymers for conjugation to compounds that are poorly transported into cells.
  • Examples include the antineoplastic drug methotrexate conjugated with polylysine and other polycationic amino acids are the carriers.
  • Saffran et al, 1986, Science 233: 1081-1084 disclose drug release from a particulate carrier in the gut resulting from degradation of the carrier by enzymes produced by intestinal microflora.
  • the present invention is directed to an improved method for delivering biologically-active compounds to phagocytic cells and cellular organelles of such phagocytic cells in vivo and in vitro.
  • This delivery system achieves such specific delivery of biologically-active compounds to phagocytic cells through conjugating the compound with a particular microparticle via an cleavable linker moiety.
  • specific delivery is achieved by impregnating the biological compound into a porous microparticle which is then coated with an organic coating material.
  • specific release of biologically-active compounds is achieved by enzymatic or chemical release of the biological compound from the microparticle by cleavage of the cleavable linker moiety or the organic coating material in specific phagocytic cells.
  • cell-targeted biologically-active compounds are further targeted to specific subcellular organelles through conjugating the compounds with a polar lipid carrier.
  • This invention has the specific advantage of facilitating the delivery of such compounds to specific subcellular organelles via the polar lipid carrier, achieving effective intracellular concentrations of such compounds more efficiently and with more specificity than conventional delivery systems.
  • phagocytic cellular targets include phagocytic hematopoietic cells, preferably macrophages and phagocytic neutrophiles.
  • microparticle-conjugated biologically active compounds of the invention are phagocytic cells, preferably macrophages and phagocytic neutrophiles that are infected with any of a variety of pathological or disease-causing microorganisms.
  • the embodiments of the microparticle-conjugated biologically active compounds of the invention are comprised of cleavable linker moieties whereby chemical or enzymatic cleavage of said linker moieties is specific for infected phagocytic cells. This provides for the specific release of biologically-active compounds, such as antimicrobial drugs, to such infected cells.
  • microparticle-conjugated biologically active compounds of the invention it is understood that all phagocytic cells will take up such antimicrobial embodiments of the microparticle-conjugated biologically active compounds of the invention.
  • the invention also provides compositions of matter comprising a porous microparticle into which is impregnated a biologically-active compound, the impregnated porous microparticle being further coated with an organic coating material.
  • the organic coating material is specifically degraded inside a phagocytic mammalian cell infected with a microorganism, allowing the release of the biologically-active compound within the infected cell.
  • the organic coating material is a substrate for a protein having an enzymatic activity found specifically in phagocytic cells infected with a pathological or disease-causing microorganism .
  • the organic coating material is chemically cleaved under physiological conditions that are specific for phagocytic cells infected with a pathological or disease-causing microorganism.
  • Preferred biologically active compounds used to impregnate such porous microparticles include antimicrobial compounds, antimicrobial drugs, antimicrobial peptides, antimicrobial toxins and other antibiotic agents.
  • the biologically active compounds of the invention impregnated within porous microparticles may optionally be covalently linked to a polar lipid moiety.
  • Polar lipid moieties comprise one or a plurality of polar lipid molecules.
  • Polar lipid moieties are comprised of one or a plurality of polar lipid molecules of the invention covalently linked to a biologically-active compound, optionally via an organic a spacer molecule having two linker functional groups, wherein the spacer has a first end and a second end and wherein the polar lipid moiety is attached to the first end of the spacer through a first linker functional group and the biologically-active compound is attached to the second end of the spacer through a second linker functional group.
  • the spacer allows the biologically-active compound to act at an intracellular site after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety.
  • the first linker functional group attached to the first end of the spacer is characterized as "strong” and the second linker functional group attached to the second end of the spacer is characterized as "weak", with reference to the propensity of the covalent bonds between each end of the spacer molecule to be broken.
  • the organic spacer allows the facilitated hydrolytic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drug from the microparticle.
  • Other embodiments of the spacer facilitate the enzymatic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drag from the microparticle.
  • the organic spacer molecule is a peptide of formula (amino acid) n , wherein n is an integer between 2 and 100, preferably wherein the peptide comprises a polymer of a particular amino acid.
  • the biologically-active compound of the invention has a first functional linker group, and a polar lipid moiety has a second functional linker group, and the compound is directly covalently linked to the polar lipid moiety by a chemical bond between the first and second functional linker groups.
  • either the biologically-active compound or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle.
  • each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group.
  • Preferred polar lipids include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin and phosphatidic acid.
  • the invention also provides compositions of matter comprising a biologically- active compound linked to a microparticle via a cleavable linker moiety.
  • the cleavable linker moieties of the invention comprise two linker functional groups, wherein the cleavable linker moiety has a first end and a second end.
  • the microparticle is attached to the first end of the cleavable linker moiety through a first linker functional group and the biologically-active compound is attached to the second end of the cleavable linker moiety through a second linker functional group.
  • the cleavable linker moieties of the invention are specifically cleaved inside a phagocytic mammalian cell, for example, a phagocytic cell infected with a microorganism.
  • the cleavable linker moieties of the invention comprise a substrate for a protein having an enzymatic activity found specifically in phagocytic cells infected with a pathological or disease-causing microorganism.
  • the cleavable linker moieties of the invention comprise a moiety that is chemically cleaved under physiological conditions that are specific for phagocytic cells infected with a pathological or disease-causing microorganism.
  • the invention also provides microparticle-conjugated biologically active compounds covalently linked to a polar lipid moiety.
  • Polar lipid moieties comprise one or a plurality of polar lipid molecules.
  • Polar lipid moieties are comprised of one or a plurality of polar lipid molecules of the invention covalently linked to a biologically-active compound, an cleavable linker moiety, or each other.
  • the biologically-active compound is a peptide.
  • the biologically -active compound is a drug, most preferably an antimicrobial drug.
  • Preferred polar lipids include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipinand phosphatidic acid.
  • microparticle-conjugated biologically active compounds of the invention also comprise a spacer molecule having two linker functional groups, wherein the spacer has a first end and a second end and wherein the polar lipid moiety is attached to the first end of the spacer through a first linker functional group and the biologically-active compound is attached to the second end of the spacer through a second linker functional group.
  • the spacer allows the biologically-active compound to act at an intracellular site after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety.
  • the first linker functional group attached to the first end of the spacer is characterized as "strong” and the second linker functional group attached to the second end of the spacer is characterized as “weak”, with reference to the propensity of the covalent bonds between each end of the spacer molecule to be broken.
  • the spacer allows the facilitated hydrolytic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drug from the microparticle.
  • Other embodiments of the spacer facilitate the enzymatic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drug from the microparticle.
  • the spacer molecule is a peptide of formula (amino acid) n , wherein n is an integer between 2 and 100, preferably wherein the peptide comprises a polymer of a particular amino acid.
  • the biologically-active compound of the invention has a first functional linker group, and a polar lipid moiety has a second functional linker group, and the compound is directly covalently linked to the polar lipid moiety by a chemical bond between the first and second functional linker groups.
  • either the biologically-active compound or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle.
  • each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group.
  • compositions of matter comprising a drug covalently linked to a cleavable linker moiety which in turn is linked to a microparticle.
  • the drug is an antimicrobial drug.
  • the drag is covalently linked to a polar lipid moiety.
  • Preferred embodiments also comprise an organic spacer moiety having a first and second functional linker group and wherein the drag has a functional linker group, wherein the drug is covalently linked to the organic spacer moiety by a chemical bond between the first functional linker group of the organic spacer moiety and the functional linker group of the drug.
  • the polar lipid moiety is also comprised of a functional linker group, and the second functional linker group of the organic spacer moiety is covalently linked to the polar lipid moiety by a chemical bond between the second functional linker group of the cleavable linker moiety and the functional linker group of the polar lipid moiety.
  • either the drug or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle.
  • each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group.
  • Preferred polar lipids include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin and phosphatidic acid.
  • compositions of matter comprising a drag, preferably an antimicrobial drug, covalently linked to a microparticle via a cleavable linker moiety that is specifically cleaved in a phagocytic cell infected with a pathological or disease-causing microorganism.
  • the antimicrobial drug is covalently linked to a polar lipid moiety via an organic spacer moiety wherein the spacer allows the drag to act without being released at an intracellular site, after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety.
  • the first linker functional group attached to the first end of the spacer is characterized as "strong” and the second linker functional group attached to the second end of the spacer is characterized as “weak”, with reference to the propensity of the covalent bonds between each end of the spacer molecule to be broken.
  • the spacer allows the facilitated hydrolytic release of the antimicrobial drag at an intracellular site after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety.
  • Other embodiments of the spacer facilitate the enzymatic release of the antimicrobial drags of the invention at an intracellular site.
  • each of the antimicrobial drags of the invention a first functional linker group, and a polar lipid moiety has a second functional linker group, and the antimicrobial drag is directly covalently linked to the polar lipid moiety by a chemical bond between the first and second functional linker groups.
  • either the antimicrobial drag or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle.
  • each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group.
  • the organic spacer moiety is a peptide of formula (amino acid) n , wherein n is an integer between 2 and 100, preferably wherein the peptide comprises a polymer of a particular amino acid.
  • the invention comprehends a conjugate between a microparticle and a biologically-active compound, preferably a drug, more preferably an antimicrobial drag that is specifically taken up by phagocytic mammalian cells.
  • a biologically-active compound preferably a drug, more preferably an antimicrobial drag that is specifically taken up by phagocytic mammalian cells.
  • the microparticle-biologically-active compound conjugates of the invention are comprised of a cleavable linker moiety that is specifically cleaved in particular phagocytic cells, preferably microbially-infected cells.
  • the biologically-active compounds of the invention are covalently linked to a polar lipid moiety wherein the lipid will selectively associate with certain biological membranes, and thereby facilitate subcellular targeting of the drag into specific subcellular organelles.
  • the spacer component of the conjugates of the invention will preferably act to release the drug from the lipid, target the conjugate to a subcellular organelle, incorporate the drag into a viral envelope, or perform other functions to maximize the effectiveness of the drag, all after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety.
  • the microparticle-drag conjugates of this invention have numerous advantages.
  • the drug-microparticle conjugates are specifically taken up by phagocytic mammalian cells.
  • drags preferably antimicrobial drugs comprising the drug-microparticle conjugates of the invention, are linked to the microparticle by an organic linker that is specifically cleaved upon entry into appropriate phagocytic cells, for example, phagocytic cells infected with a pathological or disease-causing microorganism.
  • the drug-polar lipid conjugates of the invention will promote the intracellular targeting of a variety of potentially useful antimicrobial drugs at pharmokinetic rates not currently attainable.
  • the range of targeted subcellular organelles is not limited per se by, for example, any particular, limited biological properties of the subcellular organelle such as the number and type of specific receptor molecules expressed by the organelle.
  • this method may target drags to specific intracellular organelles and other intracellular compartments.
  • the compositions of matter of the invention incorporate a variable spacer region that may allow pharmacologically-relevant rates of drug release from polar lipid moieties to be engineered into the compositions of the invention, thereby increasing their clinical efficacy and usefulness.
  • time-dependent drag release and specific drag release in cells expressing the appropriate degradative enzymes are a unique possibility using the microparticle-drag-lipid conjugates of the invention.
  • the conjugates of the invention can be combined with other drag delivery approaches to further increase specificity and to take advantage of useful advances in the art.
  • One example of antiviral therapy would involve incorporating the conjugates of the invention into the viral envelope, thereby directly modifying its lipid composition and influencing viral infectivity.
  • the prodrug-microparticle conjugates of the invention are intended to encompass prodrags which are biologically inactive unless and until pathogen-infection specific chemical or enzymatic cleavage into an active drag form inside a pahgocytic mammalian cell.
  • the invention also provides a method of killing a microorganism infecting a mammalian cell.
  • This method comprises contacting an infected phagocytic mammalian cells with the compositions of matter of the invention.
  • the invention also provides a method for treating a microbial infection in a human wherein the infecting microbe is present inside a phagocytic cell in the human, the method comprising administering a therapeutically effective amount of the compositions of matter of the invention to the human in a pharmaceutically acceptable carrier.
  • the invention also provides pharmaceutical compositions comprising the compositions of matter of the invention in a pharmaceutically acceptable carrier.
  • the invention provides compositions of matter for targeting biologically active compounds to phagocytic cells.
  • the invention provides compositions of matter and methods for the specific release of biologically active compounds inside phagocytic cells.
  • the invention in yet a third aspect provides methods and compositions for intracellular delivery of targeted biologically active compounds to phagocytic cells.
  • the invention also provides for organelle-specific intracellular targeting of biologically active compounds, specifically to phagolysosomes.
  • compositions and methods for organelle specific intracellular targeting using polar lipid moiety-linked compounds are also provided.
  • the invention provides methods and reagents for delayed, sustained or controlled intracellular release of biologically active compounds impregnated within a coated, porous microparticle, wherein the degradation of either the coating or the microparticle or both provides said delayed, sustained or controlled intracellular release of the biologically active compound.
  • Figure 1 depicts the synthetic scheme put forth in Example 1.
  • Figure 2 depicts the synthetic scheme put forth in Example 2.
  • FIG. 3 depicts the synthetic scheme put forth in Example 3.
  • FIG. 4 depicts the synthetic scheme put forth in Example 4.
  • Figure 5 depicts the synthetic scheme put forth in Example 5.
  • Figure 6 depicts the synthetic scheme put forth in Example 6.
  • Figure 7 depicts the synthetic scheme put forth in Example 7.
  • Figure 8 depicts the synthetic scheme put forth in Example 8.
  • FIGS 9 A through 9D depict prodrags tested as in Example 9.
  • compositions of matter and methods for facilitating the entry biologically-active compounds into phagocytic cells are intended to encompass all naturally-occurring or synthetic compounds capable of eliciting a biological response or having an effect, either beneficial or cytotoxic, on biological systems, particularly cells and cellular organelles.
  • These compounds are intended to include but are not limited to all varieties of drags, particularly antimicrobial drugs such as antiviral, antibacterial, fungicidal and anti-protozoal, especially anti- plasmodial drags, and antineoplastic drags, particularly methotrexate and 5- fluorouracil and other antineoplastic drugs, as well as peptides including antimicrobial peptides.
  • antimicrobial drugs such as antiviral, antibacterial, fungicidal and anti-protozoal
  • anti- plasmodial drags especially anti- plasmodial drags
  • antineoplastic drags particularly methotrexate and 5- fluorouracil and other antineoplastic drugs, as well as peptides including antimicrobial peptides.
  • This invention provides microparticle-linked antimicrobial agents for specific cell targeting to phagocytic mammalian cells.
  • phagocytic mammalian cells include but are not limited to monocytes, macrophages, alveolar macrophages, peritoneal macrophages, Kuppfer cells of the liver, macrophage cells resident in the central nervous system and the skin, all tissue inflammatory and noninflammatory macrophages, and phagocytic bone marrow cells.
  • This invention provides microparticle-linked antimicrobial agents wherein an antimicrobial drag is linked to a microparticle via a cleavable linker moiety.
  • antimicrobial drag is intended to encompass any pharmacological agent effective in inhibiting, attenuating, combatting or overcoming infection of phagocytic mammalian cells by a microbial pathogen in vivo or in vitro.
  • Antimicrobial drags as provided as components of the antimicrobial agents of the invention include but are not limited to penicillin and drugs of the penicillin family of antimicrobial drugs, including but not limited to penicillin-G, penicillin-V, phenethicillin, ampicillin, amoxacillin, cyclacillin, bacampicillin, hetacillin, cloxacillin, dicloxacillin, methicillin, nafcillin, oxacillin, azlocillin, carbenicillin, mezlocillin, piperacillin, ticaricillin, and imipenim; cephalosporin and drags of the cephalosporin family, including but not limited to cefadroxil, cefazolin, caphalexn,
  • Antiviral drags including but not limited to acyclovir, gangcyclovir, azidothymidine, cytidine arabinoside, ribavirin, amantadine, iododeoxyuridine, poscarnet, and trifluridine are also encompassed by this definition and are expressly included therein.
  • the invention also provides microparticle-linked antimicrobial agents wherein an antimicrobial agent is a toxin capable of specific cytotoxicity against the microbe, its host cell or both.
  • an antimicrobial agent is a toxin capable of specific cytotoxicity against the microbe, its host cell or both.
  • toxin is intended to encompass any pharmacological agent capable of such toxicity, including for example ricin from jack bean, diptheria toxin, and other naturally-occurring and man-made toxins.
  • said antimicrobial drugs are linked to microparticles that are specifically phagocytized by phagocytic mammalian cells. It is an advantage of the present invention that antimicrobial drugs are specifically targeted to phagocytic mammalian cells, including, inter alia, monocytes and macrophages as provided further below, by attachment to the microparticles that are a component of the antimicrobial agents of the invention.
  • microparticle as used herein is intended to encompass any particulate bead, sphere, particle or carrier, whether biodegradable or nonbiodegradable, comprised of naturally-occurring or synthetic, organic or inorganic materials, that is specifically phagocytized by phagocytic mammalian cells.
  • said microparticle is a porous particle having a defined degree of porosity and comprised of pores having a defined size range, wherein the antimicrobial drags are impregnated within the pores of the microparticle.
  • a chemically or enzymatically-degradable coating covers the surface or outside extent of the microparticle, wherein the coating is specifically chemically or enzymatically degraded within the particular infected phagocytic cell after phagocytosis.
  • the microparticle is either a porous or a nonporous particle.
  • the surface or outside extent of the microparticle comprises chemically functional groups that form covalent linkages with the antimicrobial drag component of the antimicrobial agents of the invention, preferably via a chemically or enzymatically cleavable linker moiety.
  • the cleavable linked moiety is specifically chemically or enzymatically cleaved within the particular infected phagocytic cell after phagocytosis.
  • the microparticle component of the antimicrobial agents of the invention include any particulate bead, sphere, particle or carrier having a diameter of about 1 to about 1000 nanometers (about 0.001-1 ⁇ m).
  • the microparticles of the invention are provided comprised of polystyrene, cellulose, silica, and various polysaccharides including dextran, agarose, cellulose and modified, crosslinked and derivatized embodiments thereof.
  • microparticles of the invention include polystyrene, cellulose, dextran crosslinked with epichlorohydrin (SephadexTM, Pharmacia, Uppsala, Sweden), polyacrylamide crosslinked with bisacrylamide (BiogelTM, BioRad, USA), agar, glass beads and latex beads.
  • Derivatized microparticles include microparticles derivatized with carboxyalkyl groups such as carboxymethyl, phosphoryl and substituted phosphoryl groups, sulfate, sulfhydryl and sulfonyl groups, and amino and substituted amino groups.
  • the microparticles and antimicrobial drags are linked via a chemically or enzymatically cleavable linker moiety.
  • the antimicrobial drugs are impregnated within porous microparticles coated with a chemically or enzymatically degradable coating. In both aspects, specific release of the antimicrobial drag is dependent on specific chemical or enzymatic cleavage of the coating or linker moieties inside infected phagocytic cells after phagocytosis of the antimicrobial agent.
  • the specificity of the cleavage of the linker or coating moieties as provided by this invention is the result of the combination of particular linker or coating moieties which are selected to be specifically cleaved inside the infected phagocytic cell.
  • such specific cleavage is due to an chemical linkage which is labile within the infected phagocytic cell due to conditions caused by or that result from infection of the phagocytic cell with a particular microbial pathogen.
  • such specific cleavage is due to an enzymatic activity which is produced either by the microbial pathogen itself or by the phagocytic cell as the result of infection with said microbial pathogen, wherein the linkage is enzymatically cleaved by the enzymatic activity.
  • Examples of such combinations resulting in specific release of the antimicrobial drag component of the antimicrobial agents of the invention within infected phagocytic cells include but are not limited to a urea-based linker for use against a pathogen which produces urease (e. g. , Mycobacteria spp. and B. pe ⁇ ussis); a peptide linker comprised of (AlaAlaAlaAla) n , wherein n can be an integer from 1- 5, for use against a pathogen that produces the protease oligopeptidase A (e.g.
  • a peptide comprised of from 3 to about 20 amino acids comprising the sequence — Pro-Xaa-Pro--, where Xaa is any amino acid, for use against a pathogen that produced proline peptidase (e.g.
  • HIV-1 protease a peptide comprising the amino acid sequence: -Ala-Xaa-Cys Acm -Tyr-Cys- Arg-Ile-Pro-Ala-Cys Acm -Ile-Ala-Gly-Asp-Arg-Arg-Tyr-Gly-Thr-Cys Acm -Ile-Tyr-Gln-
  • pneumophila (-Cys Acm -) represent cysteine residues having the sidechain sulfur atom protected by covalent linkage to an acetamidomethyl group (it will be recognized that embodiments of such peptides having alternative sulfur protecting groups are also within the scope of the disclosure herein) and Xaa is either absent or Asp; said peptides are also useful as components of the microparticulate antimicrobial compounds of the invention against a pathogen such as Legionella spp. producing a 39 kDa metalloprotease; hippurate esters that are hydrolyzed by pathogen-specific (e.g. , L. pneumophila and Listeria spp.
  • pathogen-specific e.g. , L. pneumophila and Listeria spp.
  • hydrolase nicotinic acid amides cleaved by nicotinamidases, pyrazinamides cleaved by pyrazinamidase; allolactose linkages cleaved by 3-galactosidase; and allantoate linkages cleaved by allantoicase (e.g. , Mycobacte ⁇ um spp.).
  • combinations or mixtures of the antimicrobial agents of the invention will comprise the therapeutic pharmaceutical agents of the invention, as provided below.
  • said mixtures will include compositions of matter comprising a microparticle covalently linked to an enzyme having an activity that recognizes and cleaves the linker or coating moiety of the other antimicrobial agent component of the mixture, said enzyme-linked microparticles having activity as drug release accelerators.
  • said antimicrobial agents are optionally comprised of a polar lipid targeting moiety comprised of one or a plurality of polar lipid molecules.
  • the polar lipid moiety in such embodiments is covalently linked to either the antimicrobial drag or to both the antimicrobial drug and the cleavable linker moiety.
  • the polar lipid moiety is linked to the antimicrobial drug through an organic spacer moiety comprising a first functional linker group and a second functional linker group.
  • polar lipid moiety as defined herein is intended to mean any polar lipid having an affinity for, or capable of crossing, a biological membrane.
  • Polar lipid moieties comprising said embodiments of the invention include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin, phosphatidic acid, sphingomyelin and other sphingolipids, as these terms are understood in the art (see, Lehninger, Biochemistry, 2d ed., Chapters 11 & 24, Worth Publishers: New York, 1975).
  • organic spacer comprising a first end and a second end, each end of the spacer having a functional linking group.
  • organic spacer or “organic spacer moiety” is intended to encompass any chemical entity that links a biologically-active compound such as an antimicrobial drag and a polar lipid moiety.
  • Such organic spacer moieties may be designed to facilitate, influence, modulate or regulate the release of the biologically-active compound at a desired intracellular target site.
  • Such organic spacers may also facilitate enzymatic release at certain intracellular sites.
  • Functional organic spacer groups include, but are not limited to aminohexanoic acid, poly gly cine, polyamides, polyethylenes, and short functionalized polymers having a carbon backbone which is from one to about twelve carbon molecules in length.
  • Particularly preferred embodiments of such spacer moieties comprise peptides of formula (amino acid) n , wherein n is an integer between 2 and 100 and the peptide is a polymer of a particular amino acid.
  • linker functional group is defined as any functional group for covalently linking the polar lipid moiety or biologically-active agent to the organic spacer group. This definition also includes functional groups comprising a biologically active compound or a microparticle or both covalently linking the biologically active compound or the microparticle to a cleavable linker moiety.
  • Linker functional groups can be designated either “weak” or “strong” based on the stability of the covalent bond which the linker functional group will form.
  • the weak functionalities include, but are not limited to phosphoramide, phosphoester, carbonate, amide, carboxyl-phosphoryl anhydride, ester and thioester.
  • the strong functionalities include, but are not limited to ether, thioether, amine, amide and ester.
  • Strong linker functional groups comprise the functional covalent linkages between the microparticles, the biologically active compounds and the cleavable linker moieties of the invention. Strong linker functional groups between the organic spacer group and the biologically-active compound will tend to decrease the rate at which the compound will be released at an intracellular target site, whereas the use of a weak linker functional group between the organic spacer moiety and the compound may act to facilitate release of the compound at the intracellular target site. Enzymatic release is also possible, but such enzyme-mediated modes of release will not necessarily be correlated with bond strength in such embodiments of the invention.
  • Organic spacer moieties comprising enzyme active site recognition groups, such as spacer groups comprising peptides having proteolytic cleavage sites therein, are envisioned as being within the scope of the present invention.
  • the antimicrobial agents of this invention are useful in inhibiting, attenuating, arresting, combatting and overcoming infection of phagocytic mammalian cells with pathogenic microorganisms in vivo and in vitro.
  • the antimicrobial agents of the invention are administered to an animal infected with a pathogenic microorganism acutely or chronically infecting phagocytic mammalian cells.
  • the antimicrobial agents of the invention for this use are administered in a dosage and using a therapeutic protocol sufficient to have an antimicrobial effect in the phagocytic cells of the animal.
  • compositions useful in the methods provided by the invention are also provided.
  • An antimicrobial agent is prepared by conjugating a specifically-cleavable peptide to a derivatized microparticle as follows.
  • An derivatized microparticle comprising unconjugated amino groups is reacted with a proteolytically-inert peptide in which the terminal amine and any of the constituent amino acid sidechain reactive amines are covered by tert-butoxycarbonyl (t-Boc) protecting groups in the presence of triphenyl phosphine as described by Kishimoto (1975, Chem. Phys. Lipids 15: 33- 36).
  • the peptide/microparticle conjugate is then reacted in the presence of pyridine hydrofluoride as described by Matsuura et al. (1976, J. Chem.
  • HIV1 protease inhibitor compound 8
  • Sphingosine is conjugated to sphingosine as follows. Sphingosine is reacted with 1,3 bw(trimethylsilyl)urea as described by Verbloom et al (1981, Synthesis 1032: 807-809) to give a trimethylsilyl derivative of sphingosine.
  • the sphingosine derivative is then conjugated with the antigenically-active peptide in which the terminal amine and any of the constituent amino acid sidechain reactive amines are covered by te/ ⁇ -butoxycarbonyl (t-Boc) protecting groups in the presence of diethylazo-dicarboxylate (DEAD) and triphenyl phosphine as described by Kishimoto (1975, Chem. Phys. Lipids 15: 33-36).
  • DEAD diethylazo-dicarboxylate
  • Kishimoto Chem. Phys. Lipids 15: 33-36
  • the sphingosine/peptide conjugate is then reacted in the presence of pyridine hydrofluoride as described by Matsuura et al. (1976, J. Chem. Soc. Chem. Comm.
  • EXAMPLE 3 An antiviral compound (compound 8) is conjugated to ceramide via a polyglycine spacer as follows and as illustrated in Figure 3. The amino terminus of polyglycine is protected by a t-Boc group. Polyglycine is conjugated through its carboxy terminus to ceramide forming an ester linkage, as described in Anderson et al, ibid. The resulting compound is then conjugated through the amino terminus of the polyglycine residue. The amino terminus of Compound 8 is also protected by a t-Boc protecting group.
  • Conjugation with polyglycyl-sphingosine takes place between the amino terminus of the polyglycyl spacer moiety and the carboxy terminus of the HIV-1 protease inhibitor. This reaction is carried out in the presence of DEAD and triphenyl phosphine as described in Examples 1 and 2. Following this conjugation, the amino terminus of the HIV-1 protease inhibitor residue is deprotected according to the method of Matsuura et al, ibid. Ceremide/drug conjugates are then linked to microparticles as described in Example 1.
  • EXAMPLE 4 An antiviral compound is prepared wherein ceramide is first conjugated to a first end of an oligomeric 3-hydroxy propanoic acid spacer through an ester functional group, and wherein AZT is conjugated to a second end of said polyester spacer through a phosphodiester bond.
  • First a polyester spacer is obtained, having a carboxy 1 at a first end and a triphenylmethyl group esterified to a second end. This spacer is conjugated to ceramide at its first end through an ester functional linker group according to the method of Anderson et al. , ibid.
  • An antiviral compound wherein phosphatidic acid, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol or phosphatidylethanolamine is linked through a phosphoester linker functional group to the antiviral drug azidothymidine (AZT).
  • AZA antiviral drug azidothymidine
  • Phosphatidic acid, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol or phosphatidyl ethanolamine is conjugated to AZT according to the method of Salord et al. (1986, Biochim. Biophys. Acta 886: 64-75). This reaction scheme is illustrated in Figure 5.
  • Phospholipid/drag conjugates are then linked to microparticles as described in
  • EXAMPLE 6 An antiviral compound is prepared wherein aminohexanoyl sphingosine is conjugated to AZT. Aminohexanoyl sphingosine is conjugated with AZT according to the method of Kishimoto (1975, Chem. Phys. Lipid 15: 33-36). This reaction scheme is illustrated in Figure 6 to yield aminohexanoyl sphingosine conjugated to AZT through a phosphoramide bond. Such conjugates are then linked to microparticles as described in Example 1.
  • An antiviral compound consisting of ceramide conjugated to AZT- monophosphate is provided. Ceramide is reacted with AZT-monophosphate in the presence of dicyclohexylcarbodiimide as described in Smith and Khorana (1958, J. Amer. Chem. Soc. 80: 1141) to yield ceramide conjugated through a phosphodiester bond to AZT-monophosphate. This reaction scheme is illustrated in Figure 7. The AZT/polar lipid conjugate is then linked to a microparticle as described in Example 1.
  • EXAMPLE 8 An antiviral compound is prepared wherein ceramide is conjugated through an ester functional group to a first end of a polyglycine spacer, and wherein AZT is conjugated through a phosphoester functional group to a second end of the polyglycine spacer. Ceramide is first conjugated through an ester functional group to a first end of a polyglycine spacer (as described in Example 2). The ceramide- polyglycine compound is then conjugated through a phosphoester bond to a second end of the polyglycine spacer to AZT monophosphate according to the method of Paul and Anderson, ibid. This reaction scheme is illustrated in Figure 8. Conjugates as prepared herein are then linked to prepared microparticles as described in Example 1.
  • EXAMPLE 9 The effect of presenting a biologically active compound such as a drag to mammalian cells as a prodrag covalently linked to a polar lipid carrier moiety was determined as follows.
  • the antifolate drag methotrexate was conjugated with a variety of polar lipid carriers via organic spacer moieties having specific reactive functional groups.
  • FIG. 9 A through 9C A representative sample of such compounds is shown in Figures 9 A through 9C, wherein MC represents Mtx linked to sphingosine via an amide bond to a 6-aminohexanoic acid spacer, ME 6 C represents Mtx linked to sphingosine via an ester linkage to a 6-hydroxyhexanoic acid spacer, and MSC represents Mtx linked to sphingosine via a salicylic acid ester linkage to a 6-aminohexanoic acid spacer. Also studied was a conjugate of azidothymidine linked to sphingosine via an ester linkage to a 6-hydroxyhexanoic acid spacer (N-AZT-ceremide).
  • the compounds were tested for their growth inhibitory effects on murine NIH 3T3 cells growing in cell culture. About one million such cells per PI 00 tissue culture plate were grown in DMEM media supplemented with 10% fetal calf serum (GIBCO, Grand island, NY) in the presence or absence of a growth-inhibitory equivalent of each prodrag. Cell numbers were determined after 70 hours growth in the presence or absence of the prodrag. In a second set of experiments was included in the growth media an amount of a brain homogenate containing an enzymatically-active esterase.
  • N-AZT-ceremide N-AZT-ceremide.
  • Antiviral amounts of the prodrag conjugate were added to NIH 3T3 cell cultures, and the antiviral activity of the prodrag was found to be equivalent to the activity of free AZT.
  • intracellular retention of prodrag was found to be upto 15 -fold higher than free AZT (Table II) over a 23h period.
  • Antimicrobial agents of the invention are used as follows.
  • the antimicrobial agent or a negative control (saline) are administered to an animal infected with a microbial pathogen using both optimal and suboptimal dosages and the most appropriate route of administration.
  • phagocytic cells are collected from the animal and tested for infection with the microbial pathogen.
  • Phagocytic cells from peripheral blood are isolated using conventional methods (Ficoll-Hypaque density gradient centrifugation) and tested for the presence of infectious microbial pathogens using conventional immunological, microbiological and biochemical testing protocols (see

Abstract

This invention provides novel methods and reagents for specifically delivering biologically active compounds to phagocytic mammalian cells. The invention also relates to specific uptake of such biologically active compounds by phagocytic cells and delivery of such compounds to specific sites intracellularly. The invention specifically relates to methods of facilitating the entry of antimicrobial drugs and other agents into phagocytic cells and for targeting such compounds to specific organelles within the cell. The invention specifically provides compositions of matter and pharmaceutical embodiments of such compositions comprising conjugates of such antimicrobial drugs and agents covalently linked to particulate carriers generally termed microparticles. In particular embodiments, the antimicrobial drug is covalently linked to a microparticle via an organic linker molecule which is the targeted of a microorganism-specific protein having enzymatic activity. Thus, the invention provides cell targeting of drugs wherein the target drug is only released in cells infected with a particular microorganism. Alternative embodiments of such specific drug delivery compositions also contain polar lipid carrier molecules effective in achieving intracellular organelle targeting in infected phagocytic mammalian cells. Particular embodiments of such conjugates comprise antimicrobial drugs covalently linked both to a microparticle via an organic linker molecule and to a polar lipid compound, to facilitate targeting of such drugs to particular subcellular organelles within the cell. Also provided are porous microparticles impregnated with antimicrobial drugs and agents wherein the surface or outside extent of the microparticle is covered with a degradable coating that is specifically degraded within an infected phagocytic mammalian cell. Methods of inhibiting, attenuating, arresting, combatting and overcoming microbial infection of phagocytic mammalian cells in vivo and in vitro are also provided.

Description

COVALENT MICROPARTICLE-DRUG CONJUGATES FOR BIOLOGICAL TARGETING
BACKGROUND OF THE INVENTION This invention was made with government support under grant 1-R01-
CA49416 by the National Institutes of Health. The government has certain rights in the invention.
1. Field of the Invention This invention relates to methods of facilitating the entry of biologically-active compounds into phagocytic cells and for targeting such compounds to specific organelles within the cell. The invention specifically provides compositions of matter and pharmaceutical embodiments of such compositions comprising conjugates of such biologically-active compounds covalently linked to paniculate carriers generally termed microparticles. Particular embodiments of such compositions include compositions wherein the biologically-active compounds are antimicrobial drugs. In such compositions the antimicrobial drug is covalently linked to a microparticle via an organic linker molecule which is the target of a microorganism- specific protein having enzymatic activity. Thus, the invention provides cell targeting of drugs wherein the targeted drug is only released in cells infected with a particular microorganism. Alternative embodiments of such specific drug delivery compositions also contain polar lipid carrier molecules. Particular embodiments of such conjugates comprise antimicrobial drugs covalently linked both to a microparticle via an organic linker molecule and to a polar lipid compound, to facilitate targeting of such drugs to particular subcellular organelles within the cell.
2. Background of the Related Art
A major goal in the pharmacological arts has been the development of methods and compositions to facilitate the specific delivery of therapeutic and other agents to the appropriate cells and tissues that would benefit from such treatment, and the avoidance of the general physiological effects of the inappropriate delivery of such agents to other cells or tissues of the body. The most common example of the need for such specificity is in the field of antineoplastic therapy, in which the amount of a variety of anti-neoplastic agents that can be safely administered to a patient is limited by their cytotoxic effects.
It is also recognized in the medical arts that certain subcellular organelles are the sites of pharmacological action of certain drugs or are involved in the biological response to certain stimuli. Specific delivery of diagnostic or therapeutic compounds to such intracellular organelles is thus desirable to increase the specificity and effectiveness of such clinical diagnostic or therapeutic techniques.
A. Drug Targeting It is desirable to increase the efficiency and specificity of administration of a therapeutic agent to the cells of the relevant tissues in a variety of pathological states. This is particularly important as relates to antimicrobial drugs. These drugs typically have pleiotropic antibiotic and cytotoxic effects that damage or destroy uninfected cells as well as infected cells. Thus, an efficient delivery system which would enable the delivery of such drugs specifically to infected cells would increase the efficacy of treatment and reduce the associated "side effects" of such drug treatments, and also serve to reduce morbidity and mortality associated with clinical administration of such drugs.
Numerous methods for enhancing the cytotoxic activity and the specificity of antimicrobial drug action have been proposed. One method, receptor targeting, involves linking the therapeutic agent to a ligand which has an affinity for a receptor expressed on the desired target cell surface. Using this approach, an antimicrobial agent or drug is intended to adhere to the target cell following formation of a ligand- receptor complex on the cell surface. Entry into the cell could then follow as the result of internalization of ligand-receptor complexes. Following internalization, the antimicrobial drug may then exert its therapeutic effects directly on the cell.
One limitation of the receptor targeting approach lies in the fact that there are only a finite number of receptors on the surface of target cells. It has been estimated that the maximum number of receptors on a cell is approximately one million (Darnell et al, 1986, Molecular Cell Biology, 2d ed. , W.H. Freeman: New York,
1990). This estimate predicts that there may be a maximum one million drug- conjugated ligand-receptor complexes on any given cell. Since not all of the ligand- receptor complexes may be internalized, and any given ligand-receptor system may express many-fold fewer receptors on a given cell surface, the efficacy of intracellular drug delivery using this approach is uncertain. Other known intracellular ligand-receptor complexes (such as the steroid hormone receptor) express as few as ten thousand hormone molecules per cell. Id. Thus, the ligand- receptor approach is plagued by a number of biological limitations.
Other methods of delivering therapeutic agents at concentrations higher than those achievable through the receptor targeting process include the use of lipid conjugates that have selective affinities for specific biological membranes. These methods have met with little success, (see, for example, Remy et al., 1962, J. Org.
Chem. 27: 2491-2500; Mukhergee & Heidelberger, 1962, Cancer Res. 22: 815-22; Brewster et al, 1985, J. Pharm. Sci. 77: 981-985).
Liposomes have also been used to attempt cell targeting. Rahman et al., 1982, Life Sci. 3_1 : 2061-71 found that liposomes which contained galactolipid as part of the lipid appeared to have a higher affinity for parenchymal cells than liposomes which lacked galactolipid. To date, however, efficient or specific drug delivery has not been predictably achieved using drug-encapsulated liposomes. There remains a need for the development of cell-specific and organelle-specific targeting drug delivery systems.
B. Phagocytic Cell-Specific Targeting
Cell-specific targeting is also an important goal of antimicrobial therapy, particularly in the event that a specific cell type is a target of acute or chronic infection. Targeting in the case of infection of a specific cell type would be advantageous because it would allow administration of biologically-toxic compounds to an animal suffering from infection with a microbial pathogen, without the risk of non-specific toxicity to uninfected cells that would exist with nontargeted administration of the toxic compound. An additional advantage of such targeted antimicrobial therapy would be improved pharmacokinetics that would result from specific concentration of the antimicrobial agent to the sites of infection, i.e. , the infected cells.
Phagocytic cells such as monocytes and macrophages are known to be specific targets for infection of certain pathogenic microorganisms.
Sturgill-Koszycki et al, 1994, Science 263: 678-681 disclose that the basis for lack of acidification of phagosomes in M. avium and M. tuberculosis-infected macrophages is exclusion of the vesicular proton-ATPase. Sierra-Honigman et al, 1993, J. Neuroimmunol. 45: 31-36 disclose Borna disease virus infection of monocytic cells in bone marrow.
Maciejewski et al, 1993, Virol. 195: 327-336 disclose human cytomegalovirus infection of mononucleated phagocytes in vitro.
Alvarez-Dominguez et al, 1993, Infect. Immun. 61_: 3664-3672 disclose the involvement of complement factor Clq in phagocytosis of Listeria monocytogenes by macrophages.
Kanno et al, 1993, J. Virol 67: 2075-2082 disclose that Aleutian mink disease parvovirus replication depends on differentiation state of the infected macrophage. Kanno et al, 1992, J. Virol. 66: 5305-5312 disclose that Aleutian mink disease parvovirus infects peritoneal macrophages in mink.
Narayan et al, 1992, J. Rheumatol. 32: 25-32 disclose arthritis in animals caused by infection of macrophage precursors with lentivirus, and activation of quiescent lentivirus infection upon differentiation of such precursor cells into terminally-differentiated macrophages.
Horwitz, 1992, Curr. Top. Microbiol. Immunol. 181: 265-282 disclose Legionella pneumophila infections of alveolar macrophages as the basis for Legionnaire's disease and Pontiac fever.
Sellon et al, 1992, J. Virol. 66: 5906-5913 disclose equine infectious anemia virus replicates in tissue macrophages in vivo.
Groisman et α/., 1992, Proc. Natl. Acad. Sci. USA 89: 11939-11943 disclose that S. typhimurium survives inside infected macrophages by resistance to antibacterial peptides.
Friedman et al, 1992, Infect. Immun. 60: 4578-4585 disclose Bordetella pertussis infection of human macrophages.
Stellrecht-Broomhall, 1991, Viral Immunol 4: 269-280 disclose that lymphocytic choriomeningitis virus infection of macrophages promotes severe anemia caused by macrophage phagocytosis of red blood cells.
Frehel et al , 1991, Infect. Immun. 59: 2207-2214 disclose infection of spleen and liver-specific inflammatory macrophages by Mycobacteήum avium, the existence of the microbe in encapsulated phagosomes within the inflammatory macrophages and survival therein in phagolysosomes.
Bromberg et al , 1991, Infect. Immun. 59: 4715-4719 disclose intracellular infection of alveolar macrophages.
Mauel, 1990, J. Leukocyte Biol. 47: 187-193 disclose that Leishmania spp. are intracellular parasites in macrophages. Buchmeier and Heffron, 1990, Science 248: 730-732 disclose that Salmonella typhimurium infection of macrophages induced bacterial stress proteins.
Panuska et al, 1990, J. Clin. Invest. 86: 113-119 disclose productive infection of alveolar macrophages by respiratory syncytial virus.
Cordier et al, 1990, Clin. Immunol. Immunopathol. 55: 355-367 disclose infection of alveolar macrophages by visna-maedi virus in chronic interstitial lung disease in sheep.
Schlessinger and Horwitz, 1990, J. Clin. Invest. 85: 1304-1314 disclose Mycobacteήum leprae infection of macrophages.
Clarke et al, 1990, AIDS 4: 1133-1136 disclose human immunodeficiency virus infection of alveolar macrophages in lung.
Baroni et al, 1988, Am. J. Pathol 133: 498-506 disclose human immunodeficiency virus infection of lymph nodes.
Payne et al, 1987, J. Exp. Med. 166: 1377-1389 disclose Mycobactertium tuberculosis infection of macrophages. Murray et al. , 1987, J. Immunol. 138: 2290-2296 disclose that liver Kupffer cells are the initial targets for L. donovani infection.
Koenig et al, 1986, Science 233: 1089-1093 disclose human immunodeficiency virus infection of macrophages in the central nervous system.
Horwitz and Maxfield, 1984, J. Cell Biol 99: 1936-1943 disclose that L. pneumophila survives in infected phagocytic cells at least in part by inhibiting reduction of intraphagosomic hydrogen ion concentration (pH).
Shanley and Pesanti, 1983, Infect. Immunol 41: 1352-1359 disclose cytomegalo virus infection of macrophages in murine cells.
Horwitz, 1983, J. Exp. Med. 158: 2108-2126 disclose that L. pneumophila is an obligate intracellular parasite that is phagocytized into a phagosome wherein fusion with lysosome is inhibited. Chang, 1979, Exp. Paήsitol 48: 175-189 disclose Leischmania donovani infection of macrophages.
Wyrick and Brownridge, 1978, Infect. Immunol. 19: 1054-1060 disclose Chlamydia psittaci infection of macrophages.
Nogueira and Cohn, 1976, J. Exp. Med. 143: 1402-1420 disclose Trypanosoma cruzi infection of macrophages.
Jones and Hirsch, 1972, J. Exp. Med. 136: 1173-1194 disclose Toxoplasma gondii infection of macrophages.
Persistent infection of phagocytic cells has been reported in the prior art.
Embretson et al, 1993, Nature 362: 359-361 disclose covert infection of macrophages with HIV and dissemination of infected cells throughout the immune system early in the course of disease.
Schnorr et al. , 1993 , /. Virol. 67: 4760-4768 disclose measles virus persistent infection in vitro in a human monocytic cell line.
Meltzer and Gendelman, 1992, Curr. Topics Microbiol. Immunol 181: 239- 263 provide a review of HIV infection of tissue macrophages in brain, liver, lung, skin, lymph nodes, and bone marrow, and involvement of macrophage infection in AIDS pathology.
Blight et al, 1992, Liver Yλ: 286-289 disclose persistent infection of liver macrophages (Kuppfer cells) by hepatitis C virus. McEntee et al, 1991, J. gen. Virol. 72: 317-324 disclose persistent infection of macrophages by HIV resulting in destruction of T lymphocytes by fusion with infected macrophages, and that the macrophages survive fusion to kill other T lymphocytes.
Kondo et al, 1991, /. gen. Virol. 72: 1401-1408 disclose herpes simplex virus 6 latent infection of monocytes activated by differentiation into macrophages.
King et al , 1990, J. Virol. 64: 5611-5616 disclose persistent infection of macrophages with lymphocytic choriomeningitis virus. Schmitt et al, 1990, Res. Virol. U\: 143-152 disclose a role for HIV infection of Kupffer cells as reservoirs for HIV infection.
Gendelman et α/., 1985, Proc. Natl. Acad. Sci. USA 82: 7086-7090 disclose lentiviral (visna-maedi) infection of bone marrow precursors of peripheral blood monocytes/macrophages that provide a reservoir of latently-infected cells.
Halstead et al, 1977, J. Exp. Med. 146: 201-217 disclose that macrophages are targets of persistent infection with dengue virus.
Mauel et al, 1973, Nature New Biol. 244: 93-94 disclose that lysis of infected macrophages with sodium dodecyl sulfate could release live microbes. Attempts at drug targeting have been reported in the prior art.
Rubinstein et al. , 1993, Pharm. Res. 10: 258-263 report colon targeting using calcium pectinate (CaPec)-conjugated drugs, based on degradation of CaPec by colon specific (i.e. , microflora-specific) enzymes and a hydrophobic drug incorporated into the insoluble CaPec matrices. Sintov et al, 1993, Biomateήals 14: 483-490 report colon-specific targeting using conjugation of drug to insoluble synthetic polymer using disaccharide cleaved by enzymes made by intestinal microflora, specifically, 3-glycosidic linkages comprising dextran.
Franssen et al, 1992, J. Med. Chem. 35: 1246-1259 report renal cell/kidney drug targeting using low molecular weight proteins (LMWP) as carriers, using enzymatic/chemical hydrolysis of a spacer molecule linking the drug and LMWP carrier.
Bai et al, 1992, J. Pharm. Sci. 81: 113-116 report intestinal cell targeting using a peptide carrier-drug system wherein the conjugate is cleaved by an intestine- specific enzyme, prolidase.
Gaspar et al, 1992, Ann. Trop. Med. Parasitol. 86: 41-49 disclose primaquine-loaded poly isohexylcyanoacry late nanoparticles used to target Leschmania donovani infected macrophage-like cells in vitro.
Pardridge, 1992, NIDA Res. Monograph 120: 153-168 - opioid-conjugated chimeric peptide carriers for targeting to brain across the blood-brain barrier.
Bai and Amidon, 1992, Pharm. Res. 9: 969-978 report peptide-drug conjugates for oral delivery and intestinal mucosal targeting of drugs. Ashborn et al , 1991, J. Infect. Dis. 163: 703-709 disclose the use of CD4- conjugated Pseudomonas aeruginosa exotoxin A to kill HIV- infected macrophages.
Larsen et al , 1991, Acta Pharm. Nord. 3: 41-44 report enzyme-mediated release of drug from dextrin-drug conjugates by microflora-specific enzymes for colon targeting.
Faulk et al, 1991, Biochem. Int. 25: 815-822 report adriamycin-transferrin conjugates for tumor cell growth inhibition in vitro.
Zhang and McCormick, 1991, Proc. Nail. Acad. Sci. USA 88: 10407-10410 report renal cell targeting using vitamin B6-drug conjugates. Blum et al, 1982, Int. J. Pharm. X2: 135-146 report polystyrene microspheres for specific delivery of compounds to liver and lung.
Trouet et al, 1982, Proc. Natl. Acad. Sci. USA 79: 626-629 report that daunorubicin- conjugated to proteins were cleaved by lysosomal hydrolases in vivo and in vitro. She et al, 1981, Biochem. Biophys. Res. Commun. 102: 1048-1052 report pH-labile N- s-acontinyl spacer moieties.
Monoclonal antibodies have been used in the prior art for drug targeting.
Serino et al, U.S. Patent No. 4,793,986, issued December 27, 1988, provides platinum anticancer drugs conjugated to polysaccharide (dextrin) carrier for conjugation to monoclonal antibodies for tumor cell targeting.
Bickel et al, 1993, Proc. Natl. Acad. Sci. USA 90: 2618-2622 discloses the use of a chimeric protein vector for targeting across blood-brain barrier using anti- transferrin monoclonal antibody.
Rowlinson-Busza and Epenetos, 1992, Curr. Opin. Oncol. 4: 1142-1148 provides antitumor immunotargeting using toxin-antibody conjugates.
Blakey, 1992, Acta Oncol. 3_i: 91-97 provides a review of antitumor antibody targeting of antineoplastic drugs.
Senter et al , 1991, in Immunobiologv of Peptides and Proteins. Vol. VI, pp.97- 105 discloses monoclonal antibodies linked to alkaline phosphatase or penicillin- V amidase to activate prodrugs specifically at site of antibody targeting, for therapeutic treatment of solid tumors.
Drug-carrier conjugates have been used in the prior art to provide time- release drug delivery agents,
Couveur and Puisieux, 1993, Adv. Drug Deliv. Rev. 10: 141-162 provide a review of microcapsule (vesicular), microsphere (dispersed matrix) and microparticle
(1-250 μm)-based drug delivery systems, based on degradation of particle with drug release, to provide time release of drugs, oral delivery via transit through the intestinal mucosa and delivery to Kupffer cells of liver.
Duncan, 1992, Anticancer Drugs 3: 175-210 provide a review of improved pharmokinetic profile of in vivo drug release of anticancer drugs using drug-polymer conjugates. Heinrich et al, 1991, /. Pharm. Pharmacol. 43: 762-765 disclose poly- lactide-glycolide polymers for slow release of gonadotropin releasing hormone agonists as injectable implants.
Wada et al 1991, J. Pharm. Pharmacol. 43: 605-608 disclose sustained- release drug conjugates with lactic acid oligomers. Specifically, polymer-conjugated drugs have been reported in the prior art, and attempts to adapt particulate conjugates have also been reported.
Ryser et al , U.S. Patent No. 4,847,240, issued July 11, 1989, provides cationic polymers for conjugation to compounds that are poorly transported into cells. Examples include the antineoplastic drug methotrexate conjugated with polylysine and other polycationic amino acids are the carriers.
Ellestad et α/., U.S. Patent No. 5,053,394, issued October 1, 1991, provides carrier-drug conjugates of methyltrithiol antibacterial and antitumor agents with a spacer linked to a targeting molecule which is an antibody or fragment thereof, growth factors or steroids. Kopecek et al, U.S. Patent No. 5,258,453, issued November 2, 1993, provides antitumor compositions comprising both an anticancer drug and a photoactivatable drug attached to a copolymeric carrier by functional groups labile in cellular lysosomes, optionally containing a targeting moiety that are monoclonal antibodies, hormones, etc. Negre et al, 1992, Antimicrob. Agents and Chemother. 36: 2228-2232 disclose the use of neutral mannose-substituted polylysine conjugates with an anti- leischmanial drug (allopurinol riboside) to treat murine infected macrophages in vitro.
Yatvin, 1991, Select. Cancer. Therapeut. 7: 23-28 discusses the use of particulate carriers for drug targeting.
Hunter et al , 1988, J. Pharm. Phamacol. 40: 161-165 disclose liposome- mediated delivery of anti-leischmanial drugs to infected murine macrophages in vitro.
Saffran et al, 1986, Science 233: 1081-1084 disclose drug release from a particulate carrier in the gut resulting from degradation of the carrier by enzymes produced by intestinal microflora.
SUMMARY OF THE INVENTION
The present invention is directed to an improved method for delivering biologically-active compounds to phagocytic cells and cellular organelles of such phagocytic cells in vivo and in vitro. This delivery system achieves such specific delivery of biologically-active compounds to phagocytic cells through conjugating the compound with a particular microparticle via an cleavable linker moiety.
Alternatively, specific delivery is achieved by impregnating the biological compound into a porous microparticle which is then coated with an organic coating material. In each case, specific release of biologically-active compounds is achieved by enzymatic or chemical release of the biological compound from the microparticle by cleavage of the cleavable linker moiety or the organic coating material in specific phagocytic cells.
Additionally, such cell-targeted biologically-active compounds are further targeted to specific subcellular organelles through conjugating the compounds with a polar lipid carrier. This invention has the specific advantage of facilitating the delivery of such compounds to specific subcellular organelles via the polar lipid carrier, achieving effective intracellular concentrations of such compounds more efficiently and with more specificity than conventional delivery systems.
The specific delivery of biologically-active compounds achieved by the present invention results from the conjugation of biologically-active compounds to microparticles. Specific intracellular accumulation and facilitated cell entry is mediated by the phagocytic uptake of microparticle-conjugated biologically active compounds by such cells. Preferred embodiments of phagocytic cellular targets include phagocytic hematopoietic cells, preferably macrophages and phagocytic neutrophiles.
Particularly preferred targets of the microparticle-conjugated biologically active compounds of the invention are phagocytic cells, preferably macrophages and phagocytic neutrophiles that are infected with any of a variety of pathological or disease-causing microorganisms. For such cells, the embodiments of the microparticle-conjugated biologically active compounds of the invention are comprised of cleavable linker moieties whereby chemical or enzymatic cleavage of said linker moieties is specific for infected phagocytic cells. This provides for the specific release of biologically-active compounds, such as antimicrobial drugs, to such infected cells. It is understood that all phagocytic cells will take up such antimicrobial embodiments of the microparticle-conjugated biologically active compounds of the invention. However, it is an advantageous feature of the microparticle-conjugated biologically active compounds of the invention that specific release of biologically-active forms of such antimicrobial drugs is dependent on the presence of the infectious microorganism in the phagocytic cell.
The invention also provides compositions of matter comprising a porous microparticle into which is impregnated a biologically-active compound, the impregnated porous microparticle being further coated with an organic coating material. In this aspect of the invention, the organic coating material is specifically degraded inside a phagocytic mammalian cell infected with a microorganism, allowing the release of the biologically-active compound within the infected cell. In preferred embodiments, the organic coating material is a substrate for a protein having an enzymatic activity found specifically in phagocytic cells infected with a pathological or disease-causing microorganism . In additional preferred embodiments , the organic coating material is chemically cleaved under physiological conditions that are specific for phagocytic cells infected with a pathological or disease-causing microorganism.
Preferred biologically active compounds used to impregnate such porous microparticles include antimicrobial compounds, antimicrobial drugs, antimicrobial peptides, antimicrobial toxins and other antibiotic agents.
The biologically active compounds of the invention impregnated within porous microparticles may optionally be covalently linked to a polar lipid moiety. Polar lipid moieties comprise one or a plurality of polar lipid molecules. Polar lipid moieties are comprised of one or a plurality of polar lipid molecules of the invention covalently linked to a biologically-active compound, optionally via an organic a spacer molecule having two linker functional groups, wherein the spacer has a first end and a second end and wherein the polar lipid moiety is attached to the first end of the spacer through a first linker functional group and the biologically-active compound is attached to the second end of the spacer through a second linker functional group. In a particular embodiment of this aspect of the invention, the spacer allows the biologically-active compound to act at an intracellular site after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety. In these embodiments of the invention, the first linker functional group attached to the first end of the spacer is characterized as "strong" and the second linker functional group attached to the second end of the spacer is characterized as "weak", with reference to the propensity of the covalent bonds between each end of the spacer molecule to be broken.
In other embodiments of the compositions of matter of the invention, the organic spacer allows the facilitated hydrolytic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drug from the microparticle. Other embodiments of the spacer facilitate the enzymatic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drag from the microparticle.
In a particular embodiment of this aspect of the invention, the organic spacer molecule is a peptide of formula (amino acid)n, wherein n is an integer between 2 and 100, preferably wherein the peptide comprises a polymer of a particular amino acid.
In other embodiments of the compositions of matter of the invention, the biologically-active compound of the invention has a first functional linker group, and a polar lipid moiety has a second functional linker group, and the compound is directly covalently linked to the polar lipid moiety by a chemical bond between the first and second functional linker groups. In such embodiments, either the biologically-active compound or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle. In preferred embodiments, each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group.
Preferred polar lipids include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin and phosphatidic acid.
The invention also provides compositions of matter comprising a biologically- active compound linked to a microparticle via a cleavable linker moiety. The cleavable linker moieties of the invention comprise two linker functional groups, wherein the cleavable linker moiety has a first end and a second end. The microparticle is attached to the first end of the cleavable linker moiety through a first linker functional group and the biologically-active compound is attached to the second end of the cleavable linker moiety through a second linker functional group.
The cleavable linker moieties of the invention are specifically cleaved inside a phagocytic mammalian cell, for example, a phagocytic cell infected with a microorganism. In preferred embodiments, the cleavable linker moieties of the invention comprise a substrate for a protein having an enzymatic activity found specifically in phagocytic cells infected with a pathological or disease-causing microorganism. In additional preferred embodiments, the cleavable linker moieties of the invention comprise a moiety that is chemically cleaved under physiological conditions that are specific for phagocytic cells infected with a pathological or disease-causing microorganism. The invention also provides microparticle-conjugated biologically active compounds covalently linked to a polar lipid moiety. Polar lipid moieties comprise one or a plurality of polar lipid molecules. Polar lipid moieties are comprised of one or a plurality of polar lipid molecules of the invention covalently linked to a biologically-active compound, an cleavable linker moiety, or each other. In preferred embodiments of the invention, the biologically-active compound is a peptide. In other preferred embodiments, the biologically -active compound is a drug, most preferably an antimicrobial drug. Preferred polar lipids include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipinand phosphatidic acid.
Additional embodiments of the microparticle-conjugated biologically active compounds of the invention also comprise a spacer molecule having two linker functional groups, wherein the spacer has a first end and a second end and wherein the polar lipid moiety is attached to the first end of the spacer through a first linker functional group and the biologically-active compound is attached to the second end of the spacer through a second linker functional group. In a particular embodiment of this aspect of the invention, the spacer allows the biologically-active compound to act at an intracellular site after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety. In these embodiments of the invention, the first linker functional group attached to the first end of the spacer is characterized as "strong" and the second linker functional group attached to the second end of the spacer is characterized as "weak", with reference to the propensity of the covalent bonds between each end of the spacer molecule to be broken.
In other embodiments of the compositions of matter of the invention, the spacer allows the facilitated hydrolytic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drug from the microparticle. Other embodiments of the spacer facilitate the enzymatic release of the biologically-active compound at an intracellular site after infection-specific intracellular release of the drug from the microparticle.
In a particular embodiment of this aspect of the invention, the spacer molecule is a peptide of formula (amino acid)n, wherein n is an integer between 2 and 100, preferably wherein the peptide comprises a polymer of a particular amino acid.
In other embodiments of the compositions of matter of the invention, the biologically-active compound of the invention has a first functional linker group, and a polar lipid moiety has a second functional linker group, and the compound is directly covalently linked to the polar lipid moiety by a chemical bond between the first and second functional linker groups. In such embodiments, either the biologically-active compound or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle. In preferred embodiments, each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group.
In another aspect of the invention is provided compositions of matter comprising a drug covalently linked to a cleavable linker moiety which in turn is linked to a microparticle. In preferred embodiments, the drug is an antimicrobial drug. In particular embodiments of this aspect of the invention, the drag is covalently linked to a polar lipid moiety. Preferred embodiments also comprise an organic spacer moiety having a first and second functional linker group and wherein the drag has a functional linker group, wherein the drug is covalently linked to the organic spacer moiety by a chemical bond between the first functional linker group of the organic spacer moiety and the functional linker group of the drug. In such embodiments, the polar lipid moiety is also comprised of a functional linker group, and the second functional linker group of the organic spacer moiety is covalently linked to the polar lipid moiety by a chemical bond between the second functional linker group of the cleavable linker moiety and the functional linker group of the polar lipid moiety. In such embodiments, either the drug or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle. In preferred embodiments, each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group. Preferred polar lipids include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin and phosphatidic acid.
In this aspect of the invention is provided compositions of matter comprising a drag, preferably an antimicrobial drug, covalently linked to a microparticle via a cleavable linker moiety that is specifically cleaved in a phagocytic cell infected with a pathological or disease-causing microorganism. In additional embodiments of this aspect of the invention, the antimicrobial drug is covalently linked to a polar lipid moiety via an organic spacer moiety wherein the spacer allows the drag to act without being released at an intracellular site, after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety. In these embodiments of the invention, the first linker functional group attached to the first end of the spacer is characterized as "strong" and the second linker functional group attached to the second end of the spacer is characterized as "weak", with reference to the propensity of the covalent bonds between each end of the spacer molecule to be broken. In other embodiments of the compositions of matter of the invention, the spacer allows the facilitated hydrolytic release of the antimicrobial drag at an intracellular site after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety. Other embodiments of the spacer facilitate the enzymatic release of the antimicrobial drags of the invention at an intracellular site.
In still further embodiments of the compositions of matter of the invention, each of the antimicrobial drags of the invention a first functional linker group, and a polar lipid moiety has a second functional linker group, and the antimicrobial drag is directly covalently linked to the polar lipid moiety by a chemical bond between the first and second functional linker groups. In such embodiments, either the antimicrobial drag or the polar lipid moiety comprises yet another functional linker group which is directly covalently linked to the cleavable linker moiety of the invention, which in turn is covalently linked to the microparticle. In preferred embodiments, each of the functional linker groups is a hydroxyl group, a primary or secondary amino group, a phosphate group or substituted derivatives thereof or a carboxylic acid group.
In another embodiment of this aspect of the invention, the organic spacer moiety is a peptide of formula (amino acid)n, wherein n is an integer between 2 and 100, preferably wherein the peptide comprises a polymer of a particular amino acid. As disclosed herein, the invention comprehends a conjugate between a microparticle and a biologically-active compound, preferably a drug, more preferably an antimicrobial drag that is specifically taken up by phagocytic mammalian cells. In the microparticle-biologically-active compound conjugates of the invention are comprised of a cleavable linker moiety that is specifically cleaved in particular phagocytic cells, preferably microbially-infected cells. In additional embodiments, the biologically-active compounds of the invention are covalently linked to a polar lipid moiety wherein the lipid will selectively associate with certain biological membranes, and thereby facilitate subcellular targeting of the drag into specific subcellular organelles. The spacer component of the conjugates of the invention will preferably act to release the drug from the lipid, target the conjugate to a subcellular organelle, incorporate the drag into a viral envelope, or perform other functions to maximize the effectiveness of the drag, all after being released from the microparticle but without being released from the intracellular targeting polar lipid moiety.
The microparticle-drag conjugates of this invention have numerous advantages. First, the drug-microparticle conjugates are specifically taken up by phagocytic mammalian cells. Also, drags, preferably antimicrobial drugs comprising the drug-microparticle conjugates of the invention, are linked to the microparticle by an organic linker that is specifically cleaved upon entry into appropriate phagocytic cells, for example, phagocytic cells infected with a pathological or disease-causing microorganism. Third, the drug-polar lipid conjugates of the invention will promote the intracellular targeting of a variety of potentially useful antimicrobial drugs at pharmokinetic rates not currently attainable. In this aspect, the range of targeted subcellular organelles is not limited per se by, for example, any particular, limited biological properties of the subcellular organelle such as the number and type of specific receptor molecules expressed by the organelle. In contrast to traditional attempts to simply target drags to specific cells, this method may target drags to specific intracellular organelles and other intracellular compartments. Fourth, the compositions of matter of the invention incorporate a variable spacer region that may allow pharmacologically-relevant rates of drug release from polar lipid moieties to be engineered into the compositions of the invention, thereby increasing their clinical efficacy and usefulness. Thus, time-dependent drag release and specific drag release in cells expressing the appropriate degradative enzymes are a unique possibility using the microparticle-drag-lipid conjugates of the invention. Fifth, the conjugates of the invention can be combined with other drag delivery approaches to further increase specificity and to take advantage of useful advances in the art. One example of antiviral therapy would involve incorporating the conjugates of the invention into the viral envelope, thereby directly modifying its lipid composition and influencing viral infectivity. Finally, the prodrug-microparticle conjugates of the invention are intended to encompass prodrags which are biologically inactive unless and until pathogen-infection specific chemical or enzymatic cleavage into an active drag form inside a pahgocytic mammalian cell.
Thus, the invention also provides a method of killing a microorganism infecting a mammalian cell. This method comprises contacting an infected phagocytic mammalian cells with the compositions of matter of the invention. The invention also provides a method for treating a microbial infection in a human wherein the infecting microbe is present inside a phagocytic cell in the human, the method comprising administering a therapeutically effective amount of the compositions of matter of the invention to the human in a pharmaceutically acceptable carrier. Thus, the invention also provides pharmaceutical compositions comprising the compositions of matter of the invention in a pharmaceutically acceptable carrier.
Thus, in a first aspect the invention provides compositions of matter for targeting biologically active compounds to phagocytic cells. In a second aspect, the invention provides compositions of matter and methods for the specific release of biologically active compounds inside phagocytic cells. The invention in yet a third aspect provides methods and compositions for intracellular delivery of targeted biologically active compounds to phagocytic cells. The invention also provides for organelle-specific intracellular targeting of biologically active compounds, specifically to phagolysosomes. In this aspect of the invention are also provided compositions and methods for organelle specific intracellular targeting using polar lipid moiety-linked compounds. In each of these aspects is provided methods and compounds for introducing biologically active compounds into phagocytic mammalian cells wherein the unconjugated compound would not otherwise enter said phagocytic cell. In this aspect is included the introduction of said biologically active compounds in chemical embodiments that would not otherwise enter the cell, for example, as phosphorylated embodiments. In yet another aspect is provided methods and compositions for the specific coordinate targeting of more than one biologically active compound to a specific cell type, that is, phagocytic mammalian cells. In a final aspect, the invention provides methods and reagents for delayed, sustained or controlled intracellular release of biologically active compounds impregnated within a coated, porous microparticle, wherein the degradation of either the coating or the microparticle or both provides said delayed, sustained or controlled intracellular release of the biologically active compound.
Specific preferred embodiments of the present invention will become evident from the following more detailed description of certain preferred embodiments and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 depicts the synthetic scheme put forth in Example 1. Figure 2 depicts the synthetic scheme put forth in Example 2.
Figure 3 depicts the synthetic scheme put forth in Example 3.
Figure 4 depicts the synthetic scheme put forth in Example 4.
Figure 5 depicts the synthetic scheme put forth in Example 5.
Figure 6 depicts the synthetic scheme put forth in Example 6. Figure 7 depicts the synthetic scheme put forth in Example 7.
Figure 8 depicts the synthetic scheme put forth in Example 8.
Figures 9 A through 9D depict prodrags tested as in Example 9.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention provides compositions of matter and methods for facilitating the entry biologically-active compounds into phagocytic cells. For the purposes of this invention, the term "biologically-active compound" is intended to encompass all naturally-occurring or synthetic compounds capable of eliciting a biological response or having an effect, either beneficial or cytotoxic, on biological systems, particularly cells and cellular organelles. These compounds are intended to include but are not limited to all varieties of drags, particularly antimicrobial drugs such as antiviral, antibacterial, fungicidal and anti-protozoal, especially anti- plasmodial drags, and antineoplastic drags, particularly methotrexate and 5- fluorouracil and other antineoplastic drugs, as well as peptides including antimicrobial peptides.
This invention provides microparticle-linked antimicrobial agents for specific cell targeting to phagocytic mammalian cells. As used herein, phagocytic mammalian cells include but are not limited to monocytes, macrophages, alveolar macrophages, peritoneal macrophages, Kuppfer cells of the liver, macrophage cells resident in the central nervous system and the skin, all tissue inflammatory and noninflammatory macrophages, and phagocytic bone marrow cells. This invention provides microparticle-linked antimicrobial agents wherein an antimicrobial drag is linked to a microparticle via a cleavable linker moiety. The term "antimicrobial drag" is intended to encompass any pharmacological agent effective in inhibiting, attenuating, combatting or overcoming infection of phagocytic mammalian cells by a microbial pathogen in vivo or in vitro. Antimicrobial drags as provided as components of the antimicrobial agents of the invention include but are not limited to penicillin and drugs of the penicillin family of antimicrobial drugs, including but not limited to penicillin-G, penicillin-V, phenethicillin, ampicillin, amoxacillin, cyclacillin, bacampicillin, hetacillin, cloxacillin, dicloxacillin, methicillin, nafcillin, oxacillin, azlocillin, carbenicillin, mezlocillin, piperacillin, ticaricillin, and imipenim; cephalosporin and drags of the cephalosporin family, including but not limited to cefadroxil, cefazolin, caphalexn, cephalothin, cephapirin, cephradine, cefaclor, cefamandole, cefonicid, cefoxin, cefuroxime, ceforanide, cefotetan, cefmetazole, cefoperazone, cefotaxime, ceftizoxime, ceftizone, moxalactam, ceftazidime, and cefixime; aminoglycoside drags and drugs of the aminoglycoside family, including but not limited to streptomycin,, neomycin, kanamycin, gentamycin, tobramycin, amikacin, and netilmicin; macrolide and drags of the macrolide family, exemplified by azithromycin, clarithromycin, roxithroniycin, erythromycin, lincomycin, and clindamycin; tetracyclin and drags of the tetracyclin family, for example, tetracyclin, oxytetracyclin, democlocyclin, methacyclin, doxycyclin, and minocyclin; quinoline and quinoline-like drags, such as, for example, naladixic acid, cinoxacin, norfloxacin, ciprofloxacin, ofloxicin, enoxacin, and pefloxacin; antimicrobial peptides, including but not limited to polymixin B, colistin, and bacatracin, as well as other antimicrobial peptides such as defensins (Lehrer et al, 1991, Cell 64: 229-230), magainins (Zasloff, 1987, Proc. Natl Acad. Sci. USA 84: 5449-5453), cecropins (Lee et al, 1989, Proc. Natl Acad. Sci. USA 86: 9159-9162 and Boman et al , 1990, Eur. J. Biochem. 201 : 23-31), and others, provided as naturally-occurring or as the result of engineering to make such peptides resistant to the action of pathogen-specific proteases and other deactivating enzymes; other antimicrobial drugs, including chloramphenicol, vancomycin, rifampicin, metronidazole, ethambutol, pyrazinamide, sulfonamides, isoniazid, and erythromycin. Antiviral drags, including but not limited to acyclovir, gangcyclovir, azidothymidine, cytidine arabinoside, ribavirin, amantadine, iododeoxyuridine, poscarnet, and trifluridine are also encompassed by this definition and are expressly included therein.
The invention also provides microparticle-linked antimicrobial agents wherein an antimicrobial agent is a toxin capable of specific cytotoxicity against the microbe, its host cell or both. The term "toxin" is intended to encompass any pharmacological agent capable of such toxicity, including for example ricin from jack bean, diptheria toxin, and other naturally-occurring and man-made toxins.
In the antimicrobial agents as provided by this invention, said antimicrobial drugs are linked to microparticles that are specifically phagocytized by phagocytic mammalian cells. It is an advantage of the present invention that antimicrobial drugs are specifically targeted to phagocytic mammalian cells, including, inter alia, monocytes and macrophages as provided further below, by attachment to the microparticles that are a component of the antimicrobial agents of the invention. The term "microparticle" as used herein is intended to encompass any particulate bead, sphere, particle or carrier, whether biodegradable or nonbiodegradable, comprised of naturally-occurring or synthetic, organic or inorganic materials, that is specifically phagocytized by phagocytic mammalian cells.
In one embodiment of the antimicrobial agents of the invention, said microparticle is a porous particle having a defined degree of porosity and comprised of pores having a defined size range, wherein the antimicrobial drags are impregnated within the pores of the microparticle. In such embodiments, a chemically or enzymatically-degradable coating covers the surface or outside extent of the microparticle, wherein the coating is specifically chemically or enzymatically degraded within the particular infected phagocytic cell after phagocytosis.
In a second embodiment of the invention, the microparticle is either a porous or a nonporous particle. In such embodiments, the surface or outside extent of the microparticle comprises chemically functional groups that form covalent linkages with the antimicrobial drag component of the antimicrobial agents of the invention, preferably via a chemically or enzymatically cleavable linker moiety. In such embodiments, the cleavable linked moiety is specifically chemically or enzymatically cleaved within the particular infected phagocytic cell after phagocytosis. The microparticle component of the antimicrobial agents of the invention include any particulate bead, sphere, particle or carrier having a diameter of about 1 to about 1000 nanometers (about 0.001-1 μm). The microparticles of the invention are provided comprised of polystyrene, cellulose, silica, and various polysaccharides including dextran, agarose, cellulose and modified, crosslinked and derivatized embodiments thereof. Specific examples of the microparticles of the invention include polystyrene, cellulose, dextran crosslinked with epichlorohydrin (Sephadex™, Pharmacia, Uppsala, Sweden), polyacrylamide crosslinked with bisacrylamide (Biogel™, BioRad, USA), agar, glass beads and latex beads. Derivatized microparticles include microparticles derivatized with carboxyalkyl groups such as carboxymethyl, phosphoryl and substituted phosphoryl groups, sulfate, sulfhydryl and sulfonyl groups, and amino and substituted amino groups.
In the antimicrobial agents of the invention as provided in one aspect, the microparticles and antimicrobial drags are linked via a chemically or enzymatically cleavable linker moiety. In another aspect of the antimicrobial agents of the invention, the antimicrobial drugs are impregnated within porous microparticles coated with a chemically or enzymatically degradable coating. In both aspects, specific release of the antimicrobial drag is dependent on specific chemical or enzymatic cleavage of the coating or linker moieties inside infected phagocytic cells after phagocytosis of the antimicrobial agent. The specificity of the cleavage of the linker or coating moieties as provided by this invention is the result of the combination of particular linker or coating moieties which are selected to be specifically cleaved inside the infected phagocytic cell. In one aspect, such specific cleavage is due to an chemical linkage which is labile within the infected phagocytic cell due to conditions caused by or that result from infection of the phagocytic cell with a particular microbial pathogen. In another aspect, such specific cleavage is due to an enzymatic activity which is produced either by the microbial pathogen itself or by the phagocytic cell as the result of infection with said microbial pathogen, wherein the linkage is enzymatically cleaved by the enzymatic activity.
Examples of such combinations resulting in specific release of the antimicrobial drag component of the antimicrobial agents of the invention within infected phagocytic cells include but are not limited to a urea-based linker for use against a pathogen which produces urease (e. g. , Mycobacteria spp. and B. peήussis); a peptide linker comprised of (AlaAlaAlaAla)n, wherein n can be an integer from 1- 5, for use against a pathogen that produces the protease oligopeptidase A (e.g. , Salmonella spp.); a peptide comprised of from 3 to about 20 amino acids comprising the sequence — Pro-Xaa-Pro--, where Xaa is any amino acid, for use against a pathogen that produced proline peptidase (e.g. , Salmonella spp.); peptides comprising the dipeptide MetMet or Leu Ala, or peptides comprising the amino acid sequence GSHLVEAL, HLVRALYL, VEALYLVC, or EALYLVCG, for use against human immunodeficiency virus 1 producing a specific protease termed HIV-1 protease; a peptide comprising the amino acid sequence: -Ala-Xaa-CysAcm-Tyr-Cys- Arg-Ile-Pro-Ala-CysAcm-Ile-Ala-Gly-Asp-Arg-Arg-Tyr-Gly-Thr-CysAcm-Ile-Tyr-Gln-
Gly-Arg-Leu-Trp-Ala-Phe-CysAcm-CysAcra-, wherein the microbial pathogen expresses an enzymatic activity that specifically disables the endogenous antimicrobial peptide defensin (e.g. , Mycobacteήum spp. and L. pneumophila), (-CysAcm-) represent cysteine residues having the sidechain sulfur atom protected by covalent linkage to an acetamidomethyl group (it will be recognized that embodiments of such peptides having alternative sulfur protecting groups are also within the scope of the disclosure herein) and Xaa is either absent or Asp; said peptides are also useful as components of the microparticulate antimicrobial compounds of the invention against a pathogen such as Legionella spp. producing a 39 kDa metalloprotease; hippurate esters that are hydrolyzed by pathogen-specific (e.g. , L. pneumophila and Listeria spp. ) hydrolase; nicotinic acid amides cleaved by nicotinamidases, pyrazinamides cleaved by pyrazinamidase; allolactose linkages cleaved by 3-galactosidase; and allantoate linkages cleaved by allantoicase (e.g. , Mycobacteήum spp.).
In certain specific embodiments, combinations or mixtures of the antimicrobial agents of the invention will comprise the therapeutic pharmaceutical agents of the invention, as provided below. In other embodiments, said mixtures will include compositions of matter comprising a microparticle covalently linked to an enzyme having an activity that recognizes and cleaves the linker or coating moiety of the other antimicrobial agent component of the mixture, said enzyme-linked microparticles having activity as drug release accelerators.
In yet further embodiments of the antimicrobial agents of the invention, said antimicrobial agents are optionally comprised of a polar lipid targeting moiety comprised of one or a plurality of polar lipid molecules. The polar lipid moiety in such embodiments is covalently linked to either the antimicrobial drag or to both the antimicrobial drug and the cleavable linker moiety. The polar lipid moiety is linked to the antimicrobial drug through an organic spacer moiety comprising a first functional linker group and a second functional linker group. The term "polar lipid moiety" as defined herein is intended to mean any polar lipid having an affinity for, or capable of crossing, a biological membrane. Polar lipid moieties comprising said embodiments of the invention include but are not limited to sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin, phosphatidic acid, sphingomyelin and other sphingolipids, as these terms are understood in the art (see, Lehninger, Biochemistry, 2d ed., Chapters 11 & 24, Worth Publishers: New York, 1975).
These embodiments of the invention may be further comprised of an organic spacer moiety comprising a first end and a second end, each end of the spacer having a functional linking group. For the purposes of this invention, the term "organic spacer" or "organic spacer moiety" is intended to encompass any chemical entity that links a biologically-active compound such as an antimicrobial drag and a polar lipid moiety. Such organic spacer moieties may be designed to facilitate, influence, modulate or regulate the release of the biologically-active compound at a desired intracellular target site. Such organic spacers may also facilitate enzymatic release at certain intracellular sites. Functional organic spacer groups, as described herein, include, but are not limited to aminohexanoic acid, poly gly cine, polyamides, polyethylenes, and short functionalized polymers having a carbon backbone which is from one to about twelve carbon molecules in length. Particularly preferred embodiments of such spacer moieties comprise peptides of formula (amino acid)n, wherein n is an integer between 2 and 100 and the peptide is a polymer of a particular amino acid.
As used herein, the term "linker functional group" is defined as any functional group for covalently linking the polar lipid moiety or biologically-active agent to the organic spacer group. This definition also includes functional groups comprising a biologically active compound or a microparticle or both covalently linking the biologically active compound or the microparticle to a cleavable linker moiety.
Linker functional groups can be designated either "weak" or "strong" based on the stability of the covalent bond which the linker functional group will form. The weak functionalities include, but are not limited to phosphoramide, phosphoester, carbonate, amide, carboxyl-phosphoryl anhydride, ester and thioester.
The strong functionalities include, but are not limited to ether, thioether, amine, amide and ester. Strong linker functional groups comprise the functional covalent linkages between the microparticles, the biologically active compounds and the cleavable linker moieties of the invention. Strong linker functional groups between the organic spacer group and the biologically-active compound will tend to decrease the rate at which the compound will be released at an intracellular target site, whereas the use of a weak linker functional group between the organic spacer moiety and the compound may act to facilitate release of the compound at the intracellular target site. Enzymatic release is also possible, but such enzyme-mediated modes of release will not necessarily be correlated with bond strength in such embodiments of the invention. Organic spacer moieties comprising enzyme active site recognition groups, such as spacer groups comprising peptides having proteolytic cleavage sites therein, are envisioned as being within the scope of the present invention.
The antimicrobial agents of this invention are useful in inhibiting, attenuating, arresting, combatting and overcoming infection of phagocytic mammalian cells with pathogenic microorganisms in vivo and in vitro. To this end, the antimicrobial agents of the invention are administered to an animal infected with a pathogenic microorganism acutely or chronically infecting phagocytic mammalian cells. The antimicrobial agents of the invention for this use are administered in a dosage and using a therapeutic protocol sufficient to have an antimicrobial effect in the phagocytic cells of the animal. Thus, methods of treating microbial infections in a mammal, specifically infections of phagocytic mammalian cells, are provided.
Pharmaceutical compositions useful in the methods provided by the invention are also provided.
The following Examples illustrate certain aspects of the above-described method and advantageous results. The following examples are shown by way of illustration and not by way of limitation.
EXAMPLE 1
An antimicrobial agent is prepared by conjugating a specifically-cleavable peptide to a derivatized microparticle as follows. An derivatized microparticle comprising unconjugated amino groups is reacted with a proteolytically-inert peptide in which the terminal amine and any of the constituent amino acid sidechain reactive amines are covered by tert-butoxycarbonyl (t-Boc) protecting groups in the presence of triphenyl phosphine as described by Kishimoto (1975, Chem. Phys. Lipids 15: 33- 36). The peptide/microparticle conjugate is then reacted in the presence of pyridine hydrofluoride as described by Matsuura et al. (1976, J. Chem. Soc. Chem. Comm. xx: 451-459) to remove the t-Boc protecting groups. The peptide/microparticle is then conjugated to the specifically-cleavable peptide, in which the terminal amine and any of the constituent amino acid sidechain reactive amines are covered by t-Boc protecting groups, as described in the presence of triphenyl phosphine. After deprotection of reactive amines with pyridine hydrofluoride as described, an antimicrobial drag having a reactive carboxylic acid group is conjugated to a free amino group of the microparticle/peptide/specifically-cleavable peptide to yield the antimicrobial agent of the invention. This reaction scheme is illustrated in Figure 1. EXAMPLE 2
An antiviral compound (HIV1 protease inhibitor; compound 8) is conjugated to sphingosine as follows. Sphingosine is reacted with 1,3 bw(trimethylsilyl)urea as described by Verbloom et al (1981, Synthesis 1032: 807-809) to give a trimethylsilyl derivative of sphingosine. The sphingosine derivative is then conjugated with the antigenically-active peptide in which the terminal amine and any of the constituent amino acid sidechain reactive amines are covered by te/τ-butoxycarbonyl (t-Boc) protecting groups in the presence of diethylazo-dicarboxylate (DEAD) and triphenyl phosphine as described by Kishimoto (1975, Chem. Phys. Lipids 15: 33-36). The sphingosine/peptide conjugate is then reacted in the presence of pyridine hydrofluoride as described by Matsuura et al. (1976, J. Chem. Soc. Chem. Comm. xx: 451-459) to remove the t-Boc protecting group, to yield the antigenically-active peptide covalently linked to sphingosine through an amide bond. This reaction scheme is illustrated in Figure 2. Sphingosine/drag conjugates are then linked to microparticles as described in Example 1.
EXAMPLE 3 An antiviral compound (compound 8) is conjugated to ceramide via a polyglycine spacer as follows and as illustrated in Figure 3. The amino terminus of polyglycine is protected by a t-Boc group. Polyglycine is conjugated through its carboxy terminus to ceramide forming an ester linkage, as described in Anderson et al, ibid. The resulting compound is then conjugated through the amino terminus of the polyglycine residue. The amino terminus of Compound 8 is also protected by a t-Boc protecting group. Conjugation with polyglycyl-sphingosine takes place between the amino terminus of the polyglycyl spacer moiety and the carboxy terminus of the HIV-1 protease inhibitor. This reaction is carried out in the presence of DEAD and triphenyl phosphine as described in Examples 1 and 2. Following this conjugation, the amino terminus of the HIV-1 protease inhibitor residue is deprotected according to the method of Matsuura et al, ibid. Ceremide/drug conjugates are then linked to microparticles as described in Example 1.
EXAMPLE 4 An antiviral compound is prepared wherein ceramide is first conjugated to a first end of an oligomeric 3-hydroxy propanoic acid spacer through an ester functional group, and wherein AZT is conjugated to a second end of said polyester spacer through a phosphodiester bond. First a polyester spacer is obtained, having a carboxy 1 at a first end and a triphenylmethyl group esterified to a second end. This spacer is conjugated to ceramide at its first end through an ester functional linker group according to the method of Anderson et al. , ibid. This compound is then conjugated through the second end of the spacer compound to AZT monophosphate by means of a phosphodiester bond according to the method of Baer (1955, Can. J. Biochem. Phys. 34: 288). In this antiviral compound, the bond breakage between the spacer and the drag would be slow in the absence of a phosphohydrolase. This reaction scheme is illustrated in Figure 4. Ceremide/drug conjugates are then linked to microparticles as described in Example 1.
EXAMPLE 5
An antiviral compound wherein phosphatidic acid, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol or phosphatidylethanolamine is linked through a phosphoester linker functional group to the antiviral drug azidothymidine (AZT). Phosphatidic acid, phosphatidyl choline, phosphatidyl serine, phosphatidyl inositol, phosphatidyl glycerol or phosphatidyl ethanolamine is conjugated to AZT according to the method of Salord et al. (1986, Biochim. Biophys. Acta 886: 64-75). This reaction scheme is illustrated in Figure 5. Phospholipid/drag conjugates are then linked to microparticles as described in
Example 1.
EXAMPLE 6 An antiviral compound is prepared wherein aminohexanoyl sphingosine is conjugated to AZT. Aminohexanoyl sphingosine is conjugated with AZT according to the method of Kishimoto (1975, Chem. Phys. Lipid 15: 33-36). This reaction scheme is illustrated in Figure 6 to yield aminohexanoyl sphingosine conjugated to AZT through a phosphoramide bond. Such conjugates are then linked to microparticles as described in Example 1.
EXAMPLE 7
An antiviral compound consisting of ceramide conjugated to AZT- monophosphate is provided. Ceramide is reacted with AZT-monophosphate in the presence of dicyclohexylcarbodiimide as described in Smith and Khorana (1958, J. Amer. Chem. Soc. 80: 1141) to yield ceramide conjugated through a phosphodiester bond to AZT-monophosphate. This reaction scheme is illustrated in Figure 7. The AZT/polar lipid conjugate is then linked to a microparticle as described in Example 1.
EXAMPLE 8 An antiviral compound is prepared wherein ceramide is conjugated through an ester functional group to a first end of a polyglycine spacer, and wherein AZT is conjugated through a phosphoester functional group to a second end of the polyglycine spacer. Ceramide is first conjugated through an ester functional group to a first end of a polyglycine spacer (as described in Example 2). The ceramide- polyglycine compound is then conjugated through a phosphoester bond to a second end of the polyglycine spacer to AZT monophosphate according to the method of Paul and Anderson, ibid. This reaction scheme is illustrated in Figure 8. Conjugates as prepared herein are then linked to prepared microparticles as described in Example 1.
EXAMPLE 9 The effect of presenting a biologically active compound such as a drag to mammalian cells as a prodrag covalently linked to a polar lipid carrier moiety was determined as follows. The antifolate drag methotrexate was conjugated with a variety of polar lipid carriers via organic spacer moieties having specific reactive functional groups. A representative sample of such compounds is shown in Figures 9 A through 9C, wherein MC represents Mtx linked to sphingosine via an amide bond to a 6-aminohexanoic acid spacer, ME6C represents Mtx linked to sphingosine via an ester linkage to a 6-hydroxyhexanoic acid spacer, and MSC represents Mtx linked to sphingosine via a salicylic acid ester linkage to a 6-aminohexanoic acid spacer. Also studied was a conjugate of azidothymidine linked to sphingosine via an ester linkage to a 6-hydroxyhexanoic acid spacer (N-AZT-ceremide). The compounds were tested for their growth inhibitory effects on murine NIH 3T3 cells growing in cell culture. About one million such cells per PI 00 tissue culture plate were grown in DMEM media supplemented with 10% fetal calf serum (GIBCO, Grand island, NY) in the presence or absence of a growth-inhibitory equivalent of each prodrag. Cell numbers were determined after 70 hours growth in the presence or absence of the prodrag. In a second set of experiments was included in the growth media an amount of a brain homogenate containing an enzymatically-active esterase.
The results from these experiments are shown in Table I. As can be seen from these data, the MC prodrag had no effect on the growth and survival of the cells. This result did not change upon co-incubation with the esterase-containing brain extract, which was expected due to the nature of the drag/spacer linkage (an amide bond). A different result was obtained with the ME6C conjugate. The prodrag was ineffective in inhibiting cell growth or survival in the absence of brain extract. Upon addition of the brain extract, a significant increase in Mtx cytotoxicity was observed. This is consistent with cleavage of the ester linkage by the brain extract-derived esterase. A similar result was obtained with the MCS conjugate, indicating that the brain extract esterase activity was capable of cleaving the salicylic acid ester. Table II shows the results of drag uptake studies performed with the prodrag
N-AZT-ceremide. Antiviral amounts of the prodrag conjugate were added to NIH 3T3 cell cultures, and the antiviral activity of the prodrag was found to be equivalent to the activity of free AZT. In addition, upon removal of the prodrag, intracellular retention of prodrag was found to be upto 15 -fold higher than free AZT (Table II) over a 23h period.
These results indicate that for Mtx-containing conjugates, the free drag must be released from the prodrag for biological activity. These results suggest that specific release of this drag, and perhaps others, can be achieved using cleavable linker moieties that are specifically cleaved only in pathogen-infected cells.
TABLE I
Sample1 # cells/plate2 Sample3 # cells/olate4
Control/FBS 7.8 x 106 Control/FBS 13 x 106
ME6C/FBS 6.5 x 106 MSC/FBS 2.1 x 106
ME6C/brain 2.7 x 106 MSC/brain 0.51 x 106
Mtx/FBS 0.16 x 106 Mtx/FBS 0.13 x 106
Mtx/brain 0.09 x 106 Mtx/brain 0.06 x 106
Control/brain N.D. Control/brain 6.2 x 106
10 1 _ cells incubated with drag/FBS or drag/brain extract for 1 hour at 37 °C
2 _ cell growth and survival determined 70 hours after drag addition
3 _
I cells incubated with drag/FBS or drug/brain extract for 2 hours at 37 °C
4 _ cell growth and survival determined 72 hours after drag addition
15
TABLE II
Time1 AZT2 N-AZT-Ceremide2
O hr. 6.49 8.45
23 hr. 0.55 7.78
20 ι _ time between the end of drug treatment and assay for intracellular drug concentration
2 _ nM/lO6 cells
Figure imgf000033_0001
EXAMPLE 10
Antimicrobial agents of the invention are used as follows. The antimicrobial agent or a negative control (saline) are administered to an animal infected with a microbial pathogen using both optimal and suboptimal dosages and the most appropriate route of administration. After an optimal time period (determined from the nature of the infection), phagocytic cells are collected from the animal and tested for infection with the microbial pathogen. Phagocytic cells from peripheral blood are isolated using conventional methods (Ficoll-Hypaque density gradient centrifugation) and tested for the presence of infectious microbial pathogens using conventional immunological, microbiological and biochemical testing protocols (see
Laboratory Test Handbook, Jacobs et al , eds., Lexi-Comp, Inc: Cleveland, OH, 1994; Clinical Laboratory Medicine, McClatchey, ed., Williams & Wiklins: Baltimore, MD, 1994; Clinical Diagnosis and Management by Laboratory, 18th Ed., J.B. Henry, ed., W.B. Saunders: Philadelphia, 1991). It should be understood that the foregoing disclosure emphasizes certain specific embodiments of the invention and that all modifications or alternatives equivalent thereto are within the spirit and scope of the invention as set forth in the appended claims.

Claims

What is claimed is:
1. A composition of matter comprising a biologically-active compound, a microparticle, and a cleavable linker moiety comprising two linker functional groups, wherein the cleavable linker moiety has a first end and a second end and wherein the microparticle is attached to the first end of the linker moiety through a first linker functional group and the biologically-active compound is attached to the second end of the linker moiety through a second linker functional group, and wherein the cleavable linker moiety is specifically cleaved inside a phagocytic mammalian cell infected with a microorganism.
2. The composition of matter of Claim 1 wherein the biologically-active compound is a peptide.
3. The composition of matter of Claim 2 wherein the peptide is an antimicrobial peptide.
4. The composition of matter of Claim 1 wherein the biologically-active compound is a drag.
5. The composition of matter of Claim 4 wherein the drag is an antimicrobial drug.
6. The composition of matter of Claim 1 wherein the biologically-active compound is a toxin.
7. A composition of matter according to Claim 1 wherein the cleavable linker moiety is chemically cleaved inside a mammalian phagocytic cell infected with a microorganism.
8. A composition of matter according to Claim 1 wherein the cleavable linker moiety is a substrate for a protein having an enzymatic activity, said protein being specifically produced in a mammalian cell infected with a microorganism.
9. The composition of matter of Claim 8 wherein the cleavable linker moiety is a substrate for a protein produced by the infected mammalian cell.
10. The composition of matter of Claim 8 wherein the cleavable linker moiety is a substrate for a protein produced by the microorganism infecting the infected mammalian cell.
11. The composition of matter of Claim 1 optionally comprising a polar lipid moiety comprised of one or a plurality of polar lipid molecules, wherein the polar lipid moiety is covalently linked to either the biologically-active compound or to both the biologically-active compound and the cleavable linker moiety.
12. The composition of matter of Claim 11 wherein the polar lipid moiety is linked to the biologically-active compound through an organic spacer moiety comprising a first functional linker group and a second functional linker group.
13. The composition of matter of Claim 12 wherein the organic spacer moiety allows the biologically-active compound to act without being released from the polar lipid moiety at an intracellular site.
14. A composition of matter according to Claim 12 wherein the organic spacer moiety allows the facilitated hydrolytic release of the biologically-active compound at an intracellular site.
15. A composition of matter according to Claim 12 wherein the spacer allows the facilitated enzymatic release of the biologically-active compound at an intracellular site.
16. A composition of matter according to Claim 12 wherein the polar lipid is sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin and phosphatidic acid.
17. A composition of matter according to Claim 3 wherein the peptide is a defensin peptide.
18. A composition of matter comprising a biologically-active compound, a porous microparticle, and an organic coating material, wherein the biologically- active compound is impregnated within the porous microparticle, and said microparticle is coated with the organic coating moiety, and wherein the organic coating material is specifically degraded inside a phagocytic mammalian cell infected with a microorganism to allow release of the biologically-active compound within the infected cell.
19. The composition of matter of Claim 18 wherein the biologically-active compound is a peptide.
20. The composition of matter of Claim 19 wherein the peptide is an antimicrobial peptide.
21. The composition of matter of Claim 18 wherein the biologically-active compound is a drag.
22. The composition of matter of Claim 21 wherein the drag is an antimicrobial drag.
23. The composition of matter of Claim 18 wherein the biologically-active compound is a toxin.
24. A composition of matter according to Claim 18 wherein the organic coating material is chemically degraded inside a mammalian phagocytic cell infected with a microorganism.
25. A composition of matter according to Claim 18 wherein the organic coating material is a substrate for a protein having an enzymatic activity, said protein being specifically produced in a mammalian cell infected with a microorganism.
26. The composition of matter of Claim 25 wherein the organic coating material is a substrate for a protein produced by the infected mammalian cell.
27. The composition of matter of Claim 25 wherein the organic coating material is a substrate for a protein produced by the microorganism infecting the infected mammalian cell.
28. The composition of matter of Claim 18 optionally comprising a polar lipid targeting moiety comprised of one or a plurality of polar lipid molecules, wherein the polar lipid moiety is covalently linked to the biologically-active compound.
29. The composition of matter of Claim 28 wherein the polar lipid moiety is linked to the biologically-active compound through an organic spacer moiety comprising a first functional linker group and a second functional linker group.
30. The composition of matter of Claim 29 wherein the organic spacer moiety allows the biologically-active compound to act without being released from the polar lipid moiety at an intracellular site.
31. A composition of matter according to Claim 29 wherein the organic spacer moiety allows the facilitated hydrolytic release of the biologically-active compound at an intracellular site.
32. A composition of matter according to Claim 29 wherein the spacer allows the facilitated enzymatic release of the biologically-active compound at an intracellular site.
33. A composition of matter according to Claim 29 wherein the polar lipid is sphingosine, ceramide, phosphatidyl choline, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin and phosphatidic acid.
34. A composition of matter according to Claim 20 wherein the peptide is a defensin peptide.
35. A method of killing a microorganism infecting a mammalian cell, the method comprising contacting said cell with the composition of Claim 5.
36. A method of killing a microorganism infecting a mammalian cell, the method comprising contacting said cell with the composition of Claim 22.
37. Use of the composition of matter of Claim 5 for preparing a medicament for treating a microbial infection in a human wherein the infecting microbe is present inside a phagocytic cell in the human.
38. Use of the composition of matter of Claim 22 for preparing a medicament for treating a microbial infection in a human wherein the infecting microbe is present inside a phagocytic cell in the human.
39. A pharmaceutical composition comprising the composition of matter of Claim 1 in a pharmaceutically acceptable carrier.
40. A pharmaceutical composition comprising the composition of matter of Claim 18 in a pharmaceutically acceptable carrier.
41. A composition of matter according to Claim 11 wherein the organic spacer moiety is a peptide of formula (amino acid)n, wherein n is an integer between 2 and 100 and the peptide comprises a polymer of a particular amino acid.
42. A composition of matter according to Claim 28 wherein the organic spacer moiety is a peptide of formula (amino acid)n, wherein n is an integer between
2 and 100, and the peptide comprises a polymer of a particular amino acid.
PCT/US1995/006180 1994-05-19 1995-05-17 Covalent microparticle-drug conjugates for biological targeting WO1995032002A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU26393/95A AU2639395A (en) 1994-05-19 1995-05-17 Covalent microparticle-drug conjugates for biological targeting
EP95921275A EP0759784A1 (en) 1994-05-19 1995-05-17 Covalent microparticle-drug conjugates for biological targeting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/246,941 1994-05-19
US08/246,941 US5543390A (en) 1990-11-01 1994-05-19 Covalent microparticle-drug conjugates for biological targeting

Publications (1)

Publication Number Publication Date
WO1995032002A1 true WO1995032002A1 (en) 1995-11-30

Family

ID=22932860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1995/006180 WO1995032002A1 (en) 1994-05-19 1995-05-17 Covalent microparticle-drug conjugates for biological targeting

Country Status (4)

Country Link
US (7) US5543390A (en)
EP (1) EP0759784A1 (en)
AU (1) AU2639395A (en)
WO (1) WO1995032002A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998003204A1 (en) * 1996-07-23 1998-01-29 Oregon Health Sciences University Covalent polar lipid conjugates with biologically-active compounds for use in salves
US5827819A (en) * 1990-11-01 1998-10-27 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
US5965519A (en) * 1990-11-01 1999-10-12 Oregon Health Sciences University Covalent polar lipid conjugates with biologically-active compounds for use in salves
US6063759A (en) * 1990-11-01 2000-05-16 Oregon Health Sciences University Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting
WO2000033883A1 (en) * 1998-12-04 2000-06-15 Oregon Health Sciences University Covalent polar lipid conjugates with antimicrobial and antineoplastic drugs for targeting to biological protected sites
WO2000067800A2 (en) * 1999-05-07 2000-11-16 Pharmasol Gmbh Medicament vehicle for the controlled administration of an active agent, produced from lipid matrix-medicament conjugates
FR2839310A1 (en) * 2002-05-03 2003-11-07 Pasteur Institut NOVEL PROCESS FOR THE PREPARATION OF ALPHA-GLYCOSYLCERAMIDES, NOVEL ALPHA-GLYCOSYLCERAMIDE DERIVATIVES AND THEIR APPLICATIONS
WO2004096140A2 (en) 2003-04-25 2004-11-11 The Penn State Research Foundation Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
US6821744B2 (en) 2002-10-29 2004-11-23 Roche Diagnostics Operations, Inc. Method, assay, and kit for quantifying HIV protease inhibitors
EP1585509A1 (en) * 2003-01-20 2005-10-19 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Sphingolipids for improvement of the composition of the intestinal flora
WO2009104963A1 (en) * 2008-02-19 2009-08-27 Innopact B.V. Methods and compositions of sphingolipid for preventing and treating microbial infections
US7906488B2 (en) 2004-11-30 2011-03-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Sphingolipids in treatment and prevention of steatosis and of steatosis or of hepatotoxicity and its sequelae
US7968529B2 (en) 2003-01-20 2011-06-28 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Use of sphingolipids for reducing high plasma cholesterol and high triacylglycerol levels
CN114933569A (en) * 2022-04-07 2022-08-23 澳门科技大学 Sphingolipid compound, liposome containing sphingolipid compound and application

Families Citing this family (376)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5981719A (en) 1993-03-09 1999-11-09 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US6090925A (en) 1993-03-09 2000-07-18 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US20020120130A1 (en) * 1993-09-10 2002-08-29 Gilles Gosselin 2' or 3' -deoxy and 2', 3' -dideoxy-beta-L-pentofuranonucleo-side compounds, method of preparation and application in therapy, especially as anti- viral agents
US5670347A (en) 1994-05-11 1997-09-23 Amba Biosciences Llc Peptide-mediated gene transfer
PT831852E (en) 1995-06-07 2007-02-28 Uab Research Foundation Nucleosides with anti-hepatitis b virus activity
US6107102A (en) * 1995-06-07 2000-08-22 Regents Of The University Of California Therapeutic microdevices and methods of making and using same
US20030119724A1 (en) * 1995-11-22 2003-06-26 Ts`O Paul O.P. Ligands to enhance cellular uptake of biomolecules
WO1997035561A1 (en) 1996-03-28 1997-10-02 The Board Of Trustees Of The University Of Illinois Materials and methods for making improved liposome compositions
WO1998022092A1 (en) * 1996-11-22 1998-05-28 The Regents Of The University Of California Transport of liposomes across the blood-brain barrier
EA005097B1 (en) * 1997-03-19 2004-10-28 Эмори Юниверсити Synthesis, anti-human immunodeficiency virus and anti-hepatitis b virus activities of 1,3-oxaselenolane nucleosides
US6096834A (en) * 1997-04-04 2000-08-01 Monsanto Company Hydrolyzable delivery system using crosslinked polymeric resins as vehicles
AU6783498A (en) 1997-04-04 1998-10-30 Monsanto Company Ph-selective delivery system using cross-linked polymeric resins as vehicles
US6054133A (en) * 1997-07-10 2000-04-25 The Regents Of The University Of California Anti-microbial targeting for intracellular pathogens
US6217886B1 (en) 1997-07-14 2001-04-17 The Board Of Trustees Of The University Of Illinois Materials and methods for making improved micelle compositions
US5929049A (en) 1997-08-08 1999-07-27 Dade Behring Marburg Gmbh Polysaccharide conjugates of biomolecules
EP1058686B1 (en) 1998-02-25 2006-11-02 Emory University 2'-fluoronucleosides
US6475985B1 (en) 1998-03-27 2002-11-05 Regents Of The University Of Minnesota Nucleosides with antiviral and anticancer activity
CA2236989A1 (en) * 1998-05-06 1999-11-06 Colin J.D. Ross Novel therapy for treatment of lysosomal storage disease
US6444652B1 (en) * 1998-08-10 2002-09-03 Novirio Pharmaceuticals Limited β-L-2'-deoxy-nucleosides for the treatment of hepatitis B
WO2000009531A2 (en) 1998-08-10 2000-02-24 Novirio Pharmaceuticals Limited β-L-2'-DEOXY-NUCLEOSIDES FOR THE TREATMENT OF HEPATITIS B
EP1431304B1 (en) 1998-08-10 2014-12-03 Novartis AG Beta - L-2'-Deoxy-Nucleosides for the treatment of Hepatitis B
AU5925399A (en) * 1998-09-16 2000-04-03 Oncopharmaceutical, Inc. Treatment of oncologic tumors with an injectable formulation of a golgi apparatus disturbing agent
DK1382343T3 (en) 1998-11-02 2010-04-26 Gilead Sciences Inc Combination therapy to treat hepatitis B virus
US20030114366A1 (en) * 1999-01-11 2003-06-19 Francis J. Martin Microfabricated particles and method for treating solid tumors
US6638977B1 (en) 1999-11-19 2003-10-28 Corvas International, Inc. Plasminogen activator inhibitor antagonists
WO2001036351A2 (en) 1999-11-19 2001-05-25 Corvas International, Inc. Plasminogen activator inhibitor antagonists related applications
US7897140B2 (en) 1999-12-23 2011-03-01 Health Research, Inc. Multi DTPA conjugated tetrapyrollic compounds for phototherapeutic contrast agents
EP1255640B1 (en) 1999-12-28 2008-05-21 Kimberly-Clark Worldwide, Inc. Controlled release anti-microbial wipe for hard surfaces
AU774993B2 (en) 1999-12-28 2004-07-15 Kimberly-Clark Worldwide, Inc. Use-dependent indicator system for absorbent articles
US6670342B2 (en) 2000-03-29 2003-12-30 Georgetown University Method of treating hepatitis delta virus infection
MY164523A (en) 2000-05-23 2017-12-29 Univ Degli Studi Cagliari Methods and compositions for treating hepatitis c virus
EP1294735A2 (en) * 2000-05-26 2003-03-26 Novirio Pharmaceuticals Limited Methods and compositions for treating flaviviruses and pestiviruses
US6787526B1 (en) 2000-05-26 2004-09-07 Idenix Pharmaceuticals, Inc. Methods of treating hepatitis delta virus infection with β-L-2′-deoxy-nucleosides
US20040014652A1 (en) * 2000-06-01 2004-01-22 Andre Trouet Tumor activated prodrug compounds and methods of making and using the same
US6875751B2 (en) * 2000-06-15 2005-04-05 Idenix Pharmaceuticals, Inc. 3′-prodrugs of 2′-deoxy-β-L-nucleosides
DE10118852A1 (en) * 2001-04-17 2002-10-31 Fricker Gert Solid particles for transporting hydrophobic active agents, e.g. drugs or nucleic acids, obtained from organic solvent solution of active agent and water-insoluble and amphiphilic polymers by ultrasonication and dialysis
US6455073B1 (en) 2000-07-10 2002-09-24 Enzrel, Inc. Covalent microparticle-drug conjugates for biological targeting
KR101201552B1 (en) 2000-10-18 2012-11-15 파마셋 인코포레이티드 Modified nucleosides for treatment of viral infections and abnormal cellular proliferation
AU2002217980A1 (en) 2000-12-01 2002-06-11 Cell Works Inc. Conjugates of glycosylated/galactosylated peptide
EP1903041B1 (en) 2001-03-01 2015-02-18 AbbVie Inc. Polymorphic and other crystalline forms of cis-FTC
US20030114385A1 (en) * 2001-04-27 2003-06-19 Cathers Brian E. Viral enzyme activated prototoxophores and use of same to treat viral infections
US6833351B2 (en) 2001-05-21 2004-12-21 Douglas T. Dieterich Method of treating anemia caused by ribavirin treatment of hepatitis C using erythropoietin alpha
US20030108565A1 (en) * 2001-07-10 2003-06-12 Johnson Mark E. Compositions and methods for delivery of proteins and adjuvants encapsulated in microspheres
EP1435974A4 (en) * 2001-09-28 2006-09-06 Idenix Cayman Ltd Methods and compositions for treating hepatitis c virus using 4'-modified nucleosides
US20050065118A1 (en) * 2001-10-16 2005-03-24 Jing Wang Organosulfur inhibitors of tyrosine phosphatases
US6664257B2 (en) 2001-11-05 2003-12-16 Enzrel Inc. Anti-mycobacterial compounds
US20040127506A1 (en) * 2001-11-29 2004-07-01 Yatvin Milton B. Antimycobacterial compounds
SE521676C2 (en) * 2002-01-02 2003-11-25 Dilafor Ab Use of glycosaminoglycans for the prevention and treatment of pain in full-term pregnancy
US7217696B2 (en) 2002-02-28 2007-05-15 A & D Bioscience, Inc. Glycuronamides, glycosides and orthoester glycosides of fluoxetine, analogs and uses thereof
WO2003079980A2 (en) * 2002-03-19 2003-10-02 A & D Bioscience, Inc. Caboxylic acid glycuronides, glycosamides and glycosides of quinolones, penicillins, analogs, and uses thereof
US20050255038A1 (en) * 2002-04-12 2005-11-17 A And D Bioscience, Inc. Conjugates comprising cancer cell specific ligands, a sugar and diagnostic agents and uses thereof
EP1549323A2 (en) * 2002-05-07 2005-07-06 A & D Bioscience, Inc. Conjugates comprising central nervous system active drug
US8829198B2 (en) * 2007-10-31 2014-09-09 Proteotech Inc Compounds, compositions and methods for the treatment of beta-amyloid diseases and synucleinopathies
EP1517684B1 (en) 2002-06-27 2009-07-22 Health Research, Inc. Fluorinated chlorin and bacteriochlorin photosensitizers for photodynamic therapy
US20050215487A1 (en) * 2002-06-27 2005-09-29 Holick Michael F Conjugates comprising an nsaid and a sugar and uses thereof
US7608600B2 (en) * 2002-06-28 2009-10-27 Idenix Pharmaceuticals, Inc. Modified 2′ and 3′-nucleoside prodrugs for treating Flaviviridae infections
CN101172993A (en) 2002-06-28 2008-05-07 埃迪尼克斯(开曼)有限公司 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
KR20050035194A (en) * 2002-06-28 2005-04-15 이데닉스 (케이만) 리미티드 2'-c-methyl-3'-o-l-valine ester ribofuranosyl cytidine for treatment of flaviviridae infections
RS114004A (en) 2002-06-28 2007-02-05 Idenix (Cayman) Limited, Modified 2' and 3'-nucleoside produgs for treating flaviridae infections
TWI244393B (en) * 2002-08-06 2005-12-01 Idenix Pharmaceuticals Inc Crystalline and amorphous forms of beta-L-2'-deoxythymidine
AU2003278816A1 (en) * 2002-09-13 2004-04-30 Idenix (Cayman) Limited ss-L-2'-DEOXYNUCLEOSIDES FOR THE TREATMENT OF RESISTANT HBV STRAINS AND COMBINATION THERAPIES
US20040136926A1 (en) * 2002-11-08 2004-07-15 Periathamby Antony Raj Intra-oral drug delivery system
CN1849142A (en) 2002-11-15 2006-10-18 埃迪尼克斯(开曼)有限公司 2'-branched nucleosides and flaviviridae mutation
US7598373B2 (en) 2002-12-12 2009-10-06 Idenix Pharmaceuticals, Inc. Process for the production of 2-C-methyl-D-ribonolactone
AU2003300434A1 (en) * 2002-12-23 2004-07-22 Idenix (Cayman) Limited Process for the production of 3'-nucleoside prodrugs
KR101064901B1 (en) * 2003-03-20 2011-09-16 나노캐리어 가부시키가이샤 Micellar Preparation Containing Sparingly Water-soluble Anticancer Agent And Novel Block Copolymer
WO2004099162A1 (en) * 2003-04-30 2004-11-18 Ricerca Biosciences, Llc. Polycyclic diazodioxide-based bcl-2 protein antagonist
US20040242886A1 (en) * 2003-04-30 2004-12-02 Sandeep Gupta Monocyclic diazodioxide based Bcl-2 protein antagonists related applications
BRPI0410348A (en) * 2003-05-14 2006-05-30 Torreypines Therapeutics Inc compounds and uses thereof in amyloid-beta modulation
EP2345661A1 (en) 2003-05-30 2011-07-20 Pharmasset, Inc. Modified fluorinated nucleoside analogues
US20100331380A1 (en) * 2009-06-29 2010-12-30 Esposito Luke A Compounds, Compositions, and Methods for the Treatment of Beta-Amyloid Diseases and Synucleinopathies
US8916598B2 (en) 2003-05-30 2014-12-23 Proteotech Inc Compounds, compositions, and methods for the treatment of β-amyloid diseases and synucleinopathies
US20050053658A1 (en) * 2003-09-09 2005-03-10 Venkatesh Gopi M. Extended release systems for macrolide antibiotics
JP2007516216A (en) * 2003-09-12 2007-06-21 バンクラプシー エステート オブ ファークス, インコーポレイテッド Magnetically targetable particles comprising a magnetic component and a biocompatible polymer for site-specific delivery of biologically active agents
WO2005090370A1 (en) * 2004-02-05 2005-09-29 The Regents Of The University Of California Pharmacologically active agents containing esterified phosphonates and methods for use thereof
WO2005094322A2 (en) 2004-03-29 2005-10-13 University Of South Florida Effective treatment of tumors and cancer with triciribine and related compounds
WO2005112913A1 (en) 2004-05-20 2005-12-01 The Scripps Research Institute Transthyretin stabilization
US20060135773A1 (en) * 2004-06-17 2006-06-22 Semple Joseph E Trisubstituted nitrogen modulators of tyrosine phosphatases
EP1912643A2 (en) * 2004-06-23 2008-04-23 Idenix (Cayman) Limited 5-aza-7-deazapurine derivatives for treating infections with flaviviridae
WO2006017124A2 (en) * 2004-07-09 2006-02-16 Cengent Therapeutics, Inc. Oxygen/nitrogen heterocycle inhibitors of tyrosine phosphatases
CN101023094B (en) * 2004-07-21 2011-05-18 法莫赛特股份有限公司 Preparation of alkyl-substituted 2-deoxy-2-fluoro-d-ribofuranosyl pyrimidines and purines and their derivatives
EP1841749A1 (en) * 2004-09-02 2007-10-10 Metabasis Therapeutics, Inc. Derivatives of thiazole and thiadiazole inhibitors of tyrosine phosphatases
AU2005285045B2 (en) * 2004-09-14 2011-10-13 Gilead Pharmasset Llc Preparation of 2'fluoro-2'- alkyl- substituted or other optionally substituted ribofuranosyl pyrimidines and purines and their derivatives
NZ588431A (en) 2004-09-17 2012-02-24 Whitehead Biomedical Inst Using Benzimidazole or Indole compounds with a 1,2-diazole group to Inhibit Alpha-Synuclein Toxicity
CN101023119B (en) 2004-09-22 2010-05-05 日本化药株式会社 Novel block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
US20060067889A1 (en) * 2004-09-27 2006-03-30 Light Sciences Corporation Singlet oxygen photosensitizers activated by target binding enhancing the selectivity of targeted PDT agents
WO2006039369A1 (en) * 2004-09-29 2006-04-13 Alza Corporation Microparticles and nanoparticles containing a lipopolymer
WO2006050058A2 (en) * 2004-10-28 2006-05-11 The General Hospital Corporation Methods of detection and therapy of inflamed tissues using immune modulation
US20080193376A1 (en) * 2004-10-28 2008-08-14 The General Hospital Corporation Methods of Enhanced Detection and Therapy of Inflamed Tissues Using Immune Modulation
US8399428B2 (en) * 2004-12-09 2013-03-19 Regents Of The University Of Minnesota Nucleosides with antiviral and anticancer activity
US7691364B2 (en) * 2005-01-28 2010-04-06 Bezwada Biomedical, Llc Functionalized drugs and polymers derived therefrom
NZ538805A (en) * 2005-03-14 2007-10-26 Otago Innovation Ltd Site specific intra-oral application apparatus
DK1860937T3 (en) * 2005-03-21 2016-09-12 Cytacoat Ab ANTIMICROBIAL AGENT CONTAINING A CYSTEIN COMPOUND COVALENT BOND TO A SUBSTRATE, IN PARTICULAR BY BINDING THROUGH A S-S-BRO BY A SPACER MOLECULE
US8222257B2 (en) 2005-04-01 2012-07-17 The Regents Of The University Of California Phosphono-pent-2-en-1-yl nucleosides and analogs
WO2007002109A2 (en) * 2005-06-20 2007-01-04 The Regents Of The University Of California Multidentate pyrone-derived chelators for medicinal imaging and chelation
WO2008051197A2 (en) * 2005-09-20 2008-05-02 Mayo Foundation For Medical Education And Research Small-molecule botulinum toxin inhibitors
EA200800932A1 (en) * 2005-09-26 2008-10-30 Фармассет, Инк. MODIFIED 4`-NUCLEOSIDE AS ANTI-VIRUS AGENTS
US20090162277A1 (en) * 2005-11-03 2009-06-25 Clemson University Lysophospholipids Solubilized Single-Walled Carbon Nanotubes
EP1976382B1 (en) 2005-12-23 2013-04-24 IDENIX Pharmaceuticals, Inc. Process for preparing a synthetic intermediate for preparation of branched nucleosides
WO2007076160A2 (en) * 2005-12-28 2007-07-05 Acidophil Llc C-10 carbamates of taxanes
DE102006029032A1 (en) * 2006-02-17 2007-08-23 Poly-An Gesellschaft zur Herstellung von Polymeren für spezielle Anwendungen und Analytik mbH Apparatus, method and kit for detecting analytes in a sample
PL2383271T3 (en) * 2006-03-13 2013-12-31 Kyorin Seiyaku Kk Aminoquinolones as GSK-3 Inhibitors
US8895531B2 (en) * 2006-03-23 2014-11-25 Rfs Pharma Llc 2′-fluoronucleoside phosphonates as antiviral agents
BRPI0709699A2 (en) * 2006-03-29 2011-07-26 Foldrx Pharmaceuticals Inc inhibition of alpha synuclein toxicity
KR20090009241A (en) * 2006-05-18 2009-01-22 니폰 가야꾸 가부시끼가이샤 Polymer conjugate of podophyllotoxin
WO2008019217A2 (en) 2006-07-17 2008-02-14 The Research Foundation Of State University Of New York Stereoregular romp polymers
EP2064243A2 (en) 2006-08-28 2009-06-03 Kyowa Hakko Kirin Co., Ltd. Antagonistic human light-specific human monoclonal antibodies
AU2007297597B2 (en) 2006-09-21 2013-02-21 Kyorin Pharmaceuticals Co., Ltd. Serine hydrolase inhibitors
US20090239782A1 (en) * 2006-10-03 2009-09-24 Masaharu Nakamura High-molecular weight conjugate of resorcinol derivatives
JP2010507585A (en) 2006-10-19 2010-03-11 オースペックス・ファーマシューティカルズ・インコーポレイテッド Substituted indole
US20090166560A1 (en) * 2006-10-26 2009-07-02 The Board Of Trustees Of The Leland Stanford Junior University Sensing of biological molecules using carbon nanotubes as optical labels
EP2080779B1 (en) * 2006-11-06 2016-05-18 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
WO2008057604A2 (en) * 2006-11-08 2008-05-15 The Regents Of The University Of California Small molecule therapeutics, syntheses of analogues and derivatives and methods of use
US20080146605A1 (en) 2006-12-19 2008-06-19 Auspex Pharmaceuticals, Inc. Preparation and utility of ccr5 inhibitors
WO2008079371A1 (en) * 2006-12-22 2008-07-03 Encysive Pharmaceuticals, Inc. Modulators of c3a receptor and methods of use thereof
PL2144604T3 (en) 2007-02-28 2012-02-29 Conatus Pharmaceuticals Inc Methods for the treatment of chronic viral hepatitis C using RO 113-0830
WO2008109852A2 (en) * 2007-03-07 2008-09-12 Uti Limited Partnership Compositions and methods for the prevention and treatment of autoimmune conditions
EP3103790B1 (en) 2007-03-15 2018-05-09 Auspex Pharmaceuticals, Inc. Substituted phenethylamine with serotoninergic and/or norepinephrinergic activity
US7964580B2 (en) * 2007-03-30 2011-06-21 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
US7892776B2 (en) 2007-05-04 2011-02-22 The Regents Of The University Of California Screening assay to identify modulators of protein kinase A
CN101801188A (en) * 2007-07-12 2010-08-11 特拉加拉医药品公司 Methods and compositions for the treatment of cancer, tumors, and tumor-related disorders
AU2008299903B2 (en) * 2007-09-11 2013-08-29 Kyorin Pharmaceutical Co., Ltd Cyanoaminoquinolones and tetrazoloaminoquinolones as GSK-3 inhibitors
CN101855229A (en) 2007-09-12 2010-10-06 埃迪威克斯生物科学公司 Spirocyclic aminoquinolones as GSK-3 inhibitors
US20100080773A1 (en) * 2008-09-26 2010-04-01 Sdg, Inc. Orally Bioavailable Lipid-Based Constructs
JP5349318B2 (en) * 2007-09-28 2013-11-20 日本化薬株式会社 Steroids polymer conjugates
US8846053B2 (en) 2008-09-26 2014-09-30 Sdg, Inc. Orally bioavailable lipid-based constructs
US8962015B2 (en) 2007-09-28 2015-02-24 Sdg, Inc. Orally bioavailable lipid-based constructs
US20090264421A1 (en) * 2007-10-05 2009-10-22 Bible Keith C Methods and Compositions for Treating Cancer
WO2009049083A1 (en) 2007-10-09 2009-04-16 Washington University In St. Louis Particles for imaging
WO2009049089A1 (en) 2007-10-09 2009-04-16 Washington University In St. Louis Ligand directed toroidal nanoparticles for therapy and diagnostic imaging
CA2706465A1 (en) 2007-11-21 2009-05-28 Pharmaxis Ltd. Haloallylamine inhibitors of ssao/vap-1 and uses therefor
WO2009111611A2 (en) * 2008-03-05 2009-09-11 Proteotech Inc. Compounds, compositions and methods for the treatment of islet amyloid polypeptide (iapp) accumulation in diabetes
MX2010010172A (en) 2008-03-17 2010-11-25 Ambit Biosciences Corp Quinazoline derivatives as raf kinase modulators and methods of use thereof.
EP2258397B1 (en) * 2008-03-18 2017-10-11 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of physiologically active substance
MX2010010619A (en) 2008-03-28 2010-12-17 Altiris Therapeutics Chemokine receptor modulators.
CA2722308C (en) 2008-04-15 2024-02-27 Rfs Pharma, Llc. Nucleoside derivatives for treatment of caliciviridae infections, including norovirus infections
WO2009136572A1 (en) * 2008-05-08 2009-11-12 日本化薬株式会社 Polymer conjugate of folic acid or folic acid derivative
US8173621B2 (en) 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
IL192262A (en) 2008-06-17 2016-05-31 Z H T Eng Equipment And Tech Ltd Polymer adapted to release bioactive agents in vivo, pharmaceutical composition comprising it and method of preparation thereof
WO2009158633A1 (en) * 2008-06-26 2009-12-30 Curators Of The University Of Missouri On Behalf Of The University Of Missouri-Kansas City Drug conjugates
US9991391B2 (en) * 2008-07-25 2018-06-05 The Board Of Trustees Of The Leland Stanford Junior University Pristine and functionalized graphene materials
CN101658533A (en) * 2008-08-29 2010-03-03 首都医科大学宣武医院 Delivery of stem cells of antitumor medicament
US9187330B2 (en) * 2008-09-15 2015-11-17 The Invention Science Fund I, Llc Tubular nanostructure targeted to cell membrane
SG172361A1 (en) * 2008-12-23 2011-07-28 Pharmasset Inc Nucleoside analogs
AU2009329872B2 (en) 2008-12-23 2016-07-07 Gilead Pharmasset Llc Synthesis of purine nucleosides
AR074897A1 (en) * 2008-12-23 2011-02-23 Pharmasset Inc NUCLEOSID PHOSPHORAMIDATES
WO2010088450A2 (en) 2009-01-30 2010-08-05 Celladon Corporation Methods for treating diseases associated with the modulation of serca
US8568793B2 (en) 2009-02-11 2013-10-29 Hope Medical Enterprises, Inc. Sodium nitrite-containing pharmaceutical compositions
MY159327A (en) * 2009-02-27 2016-12-25 Ambit Biosciences Corp Jak kinase modulating quinazoline derivatives and methods of use thereof
US8193372B2 (en) 2009-03-04 2012-06-05 Idenix Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole HCV polymerase inhibitors
JP2012520314A (en) 2009-03-11 2012-09-06 アムビト ビオスシエンセス コルポラチオン Combination of indazolylaminopyrrolotriazine and taxane for cancer treatment
BRPI1008974A2 (en) * 2009-03-11 2017-06-06 Kyorin Seiyaku Kk compound, pharmaceutical composition, and method for treating, preventing or ameliorating a gsk-3 mediated disease
NZ595372A (en) 2009-03-27 2013-11-29 Vetdc Inc Pyrimidinyl and 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
WO2010110686A1 (en) 2009-03-27 2010-09-30 Pathway Therapeutics Limited Pyrimidinyl and 1,3,5 triazinyl benzimidazoles and their use in cancer therapy
PE20150925A1 (en) 2009-04-22 2015-06-14 Axikin Pharmaceuticals Inc CCR3 ANTAGONISTS OF ARYLSULFONAMIDE 2,5-DISUSTITUID
DK2421829T3 (en) 2009-04-22 2016-01-04 Axikin Pharmaceuticals Inc 2,5-disubstituted aryl sulfonamide CCR3 antagonists
PE20150759A1 (en) 2009-04-22 2015-05-15 Axikin Pharmaceuticals Inc CCR3 ARYLSULFONAMIDE ANTAGONISTS
EP2431403B1 (en) 2009-05-15 2016-09-28 Nipponkayaku Kabushikikaisha Polymer conjugate of bioactive substance having hydroxy group
TWI583692B (en) 2009-05-20 2017-05-21 基利法瑪席特有限責任公司 Nucleoside phosphoramidates
US8618076B2 (en) 2009-05-20 2013-12-31 Gilead Pharmasset Llc Nucleoside phosphoramidates
WO2011003870A2 (en) 2009-07-06 2011-01-13 Creabilis S.A. Mini-pegylated corticosteroids, compositions including same, and methods of making and using same
EP2451802A1 (en) 2009-07-07 2012-05-16 Pathway Therapeutics, Inc. Pyrimidinyl and 1,3,5-triazinyl benzimidazoles and their use in cancer therapy
JP5905387B2 (en) 2009-07-08 2016-04-20 ホープ メディカル エンタープライゼズ,インコーポレイテッド ディービーエー ホープ ファーマシュティカルズHope Medical Enterprises,Inc.Dba Hope Pharmaceuticals Pharmaceutical composition containing sodium thiosulfate
US8404728B2 (en) 2009-07-30 2013-03-26 Mayo Foundation For Medical Education And Research Small-molecule botulinum toxin inhibitors
WO2011017389A1 (en) 2009-08-05 2011-02-10 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors useful against viral infections, particularly hcv
MX2012001974A (en) 2009-08-19 2012-04-11 Ambit Biosciences Corp Biaryl compounds and methods of use thereof.
US8470817B2 (en) * 2009-10-26 2013-06-25 Sunesis Pharmaceuticals, Inc. Compounds and methods for treatment of cancer
WO2011056764A1 (en) 2009-11-05 2011-05-12 Ambit Biosciences Corp. Isotopically enriched or fluorinated imidazo[2,1-b][1,3]benzothiazoles
WO2011057214A2 (en) 2009-11-09 2011-05-12 Neurogenetic Pharmaceuticals, Inc. Gamma-secretase modulatory compounds, methods for identifying same, and uses therefor
WO2011069002A1 (en) 2009-12-02 2011-06-09 Alquest Therapeutics, Inc. Organoselenium compounds and uses thereof
EP2512452B1 (en) 2009-12-17 2018-09-19 The Washington University Antithrombotic nanoparticle
US9808500B2 (en) 2009-12-17 2017-11-07 Washington University Antithrombotic nanoparticle
SG181797A1 (en) 2009-12-18 2012-07-30 Idenix Pharmaceuticals Inc 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors
WO2011079313A1 (en) * 2009-12-23 2011-06-30 Map Pharmaceuticals, Inc. Novel ergoline analogs
WO2011094890A1 (en) 2010-02-02 2011-08-11 Argusina Inc. Phenylalanine derivatives and their use as non-peptide glp-1 receptor modulators
EP2542542B1 (en) 2010-03-02 2015-04-22 Axikin Pharmaceuticals, Inc. Isotopically enriched arylsulfonamide ccr3 antagonists
WO2011112689A2 (en) 2010-03-11 2011-09-15 Ambit Biosciences Corp. Saltz of an indazolylpyrrolotriazine
JP5818873B2 (en) 2010-03-17 2015-11-18 アクシキン ファーマシューティカルズ インコーポレーテッド Arylsulfonamide CCR3 antagonist
US8563530B2 (en) 2010-03-31 2013-10-22 Gilead Pharmassel LLC Purine nucleoside phosphoramidate
EP2752422B1 (en) 2010-03-31 2017-08-16 Gilead Pharmasset LLC Stereoselective synthesis of phosphorus containing actives
CA2796435C (en) * 2010-04-15 2019-05-07 The Washington University Prodrug compositions, prodrug nanoparticles, and methods of use thereof
WO2011150201A2 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl amide compounds and methods of use thereof
WO2011150198A1 (en) 2010-05-27 2011-12-01 Ambit Biosciences Corporation Azolyl urea compounds and methods of use thereof
CN103153309A (en) 2010-06-01 2013-06-12 拜欧赛里克斯公司 Methods of treating hematologic malignancies using 6-cyclohexyl-1-hydroxy-4-methyl-2(1h)-pyridone
MX2012013879A (en) 2010-06-01 2013-04-03 Biotheryx Inc Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating proliferative diseases.
AU2011265047B2 (en) 2010-06-07 2014-10-23 Novomedix, Llc Furanyl compounds and the use thereof
CA2805745C (en) 2010-07-19 2019-01-15 Summa Health System Vitamin c and chromium-free vitamin k, and compositions thereof for treating an nfkb-mediated condition or disease
US20140200270A1 (en) 2013-01-11 2014-07-17 Summa Health System Vitamins c and k for treating polycystic diseases
WO2012030913A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation An optically active pyrazolylaminoquinazoline, and pharmaceutical compositions and methods of use thereof
US20130225615A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 2-cycloquinazoline derivatives and methods of use thereof
JP5872558B2 (en) 2010-09-01 2016-03-01 アムビト ビオスシエンセス コルポラチオン Pyrazolylaminoquinazoline hydrobromide
CN103298805A (en) 2010-09-01 2013-09-11 埃姆比特生物科学公司 Quinazoline compounds and methods of use thereof
US20130225614A1 (en) 2010-09-01 2013-08-29 Ambit Biosciences Corporation 4-azolylaminoquinazoline derivatives and methods of use thereof
EP2611502A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Adenosine a3 receptor modulating compounds and methods of use thereof
WO2012030912A1 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation 7-cyclylquinazoline derivatives and methods of use thereof
US20130317045A1 (en) 2010-09-01 2013-11-28 Ambit Biosciences Corporation Thienopyridine and thienopyrimidine compounds and methods of use thereof
EP2611809A1 (en) 2010-09-01 2013-07-10 Ambit Biosciences Corporation Azolopyridine and azolopyrimidine compounds and methods of use thereof
WO2012030944A2 (en) 2010-09-01 2012-03-08 Ambit Biosciences Corporation Quinoline and isoquinoline compounds and methods of use thereof
KR101972291B1 (en) 2010-09-29 2019-08-16 유티아이 리미티드 파트너쉽 Methods for treating autoimmune disease using biocompatible bioabsorbable nanospheres
WO2012044641A1 (en) 2010-09-29 2012-04-05 Pathway Therapeutics Inc. 1,3,5-triazinyl benzimidazole sulfonamides and their use in cancer therapy
AU2011313906B2 (en) 2010-10-11 2015-08-13 Axikin Pharmaceuticals, Inc. Salts of arylsulfonamide CCR3 antagonists
US9511151B2 (en) 2010-11-12 2016-12-06 Uti Limited Partnership Compositions and methods for the prevention and treatment of cancer
JP5856069B2 (en) 2010-11-17 2016-02-09 日本化薬株式会社 Polymer derivatives of novel cytidine antimetabolites
ES2716158T3 (en) 2010-11-30 2019-06-10 Gilead Pharmasset Llc 2'-spiro-nucleotides for the treatment of hepatitis C
WO2012078649A1 (en) 2010-12-06 2012-06-14 Follica, Inc. Methods for treating baldness and promoting hair growth
WO2012080050A1 (en) 2010-12-14 2012-06-21 F. Hoffmann-La Roche Ag Solid forms of a phenoxybenzenesulfonyl compound
EP2668210B1 (en) 2011-01-26 2020-06-17 Celldex Therapeutics, Inc. Anti-kit antibodies and uses thereof
WO2012106299A1 (en) 2011-01-31 2012-08-09 Celgene Corporation Pharmaceutical compositions of cytidine analogs and methods of use thereof
WO2012109398A1 (en) 2011-02-10 2012-08-16 Idenix Pharmaceuticals, Inc. Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating hcv infections
EP2691388A1 (en) 2011-03-28 2014-02-05 MEI Pharma, Inc. (fused ring arylamino and heterocyclylamino) pyrimidynyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions thereof, and their use in treating proliferative diseases
EP2691389A1 (en) 2011-03-28 2014-02-05 MEI Pharma, Inc. (alpha-substituted cycloalkylamino and heterocyclylamino) pyrimidinyl and 1,3,5-triazinyl benzimidazoles, pharmaceutical compositions thereof, and their use in treating proliferative diseases
WO2012135160A1 (en) 2011-03-28 2012-10-04 Pathway Therapeutics Inc. (alpha- substituted aralkylamino and heteroarylalkylamino) pyrimidinyl and 1,3,5 -triazinyl benzimidazoles, pharmaceutical compositions containing them, and these compounds for use in treating proliferative diseases
US20120252721A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
CN103827113A (en) 2011-06-23 2014-05-28 Map药物公司 Novel fluoroergoline analogs
RU2623426C2 (en) 2011-09-11 2017-06-26 Ниппон Каяку Кабусики Кайся Method of obtaining a block copolymer
WO2013037482A1 (en) 2011-09-15 2013-03-21 Phenex Pharmaceuticals Ag Farnesoid x receptor agonists for cancer treatment and prevention
WO2013056070A2 (en) 2011-10-14 2013-04-18 Ambit Biosciences Corporation Heterocyclic compounds and methods of use thereof
US8889159B2 (en) 2011-11-29 2014-11-18 Gilead Pharmasset Llc Compositions and methods for treating hepatitis C virus
US9089574B2 (en) 2011-11-30 2015-07-28 Emory University Antiviral JAK inhibitors useful in treating or preventing retroviral and other viral infections
CA2859173A1 (en) 2011-12-19 2013-06-27 Map Pharmaceuticals, Inc. Novel iso-ergoline derivatives
WO2013095708A1 (en) 2011-12-21 2013-06-27 Map Pharmaceuticals, Inc. Novel neuromodulatory compounds
WO2013130600A1 (en) 2012-02-29 2013-09-06 Ambit Biosciences Corporation Solid forms comprising optically active pyrazolylaminoquinazoline, compositions thereof, and uses therewith
CN104302640A (en) 2012-03-16 2015-01-21 埃克希金医药品有限公司 3,5-diaminopyrazole kinase inhibitors
US10988516B2 (en) 2012-03-26 2021-04-27 Uti Limited Partnership Methods and compositions for treating inflammation
EP3721863A3 (en) 2012-04-27 2020-12-09 Stichting VU Protection of materials by sphingosine based compounds
SI2844637T1 (en) 2012-05-02 2018-07-31 Boehringer Ingelheim International Gmbh Substituted 3-haloallylamine inhibitors of ssao and uses thereof
EP2861562B1 (en) 2012-06-14 2018-05-09 Mayo Foundation For Medical Education And Research Pyrazole derivatives as inhibitors of stat3
US9012640B2 (en) 2012-06-22 2015-04-21 Map Pharmaceuticals, Inc. Cabergoline derivatives
US9334332B2 (en) 2012-07-25 2016-05-10 Kolltan Pharmaceuticals, Inc. Anti-kit antibodies
US9074186B2 (en) 2012-08-15 2015-07-07 Boston Medical Center Corporation Production of red blood cells and platelets from stem cells
AU2013312420A1 (en) 2012-09-07 2015-02-26 Axikin Pharmaceuticals, Inc. Isotopically enriched arylsulfonamide CCR3 antagonists
WO2014055647A1 (en) 2012-10-03 2014-04-10 Mei Pharma, Inc. (sulfinyl and sulfonyl benzimidazolyl) pyrimidines and triazines, pharmaceutical compositions thereof, and their use for treating proliferative diseases
US9603948B2 (en) 2012-10-11 2017-03-28 Uti Limited Partnership Methods and compositions for treating multiple sclerosis and related disorders
CA2890177A1 (en) 2012-11-08 2014-05-15 Summa Health System Vitamin c, vitamin k, a polyphenol, and combinations thereof for wound healing
US10131682B2 (en) 2012-11-24 2018-11-20 Hangzhou Dac Biotech Co., Ltd. Hydrophilic linkers and their uses for conjugation of drugs to a cell binding molecules
ES2689921T3 (en) 2012-11-30 2018-11-16 Novomedix, Llc Substituted biarylsulfonamides and their uses
US9169214B2 (en) 2012-12-21 2015-10-27 The Board Of Trustees Of The Leland Stanford Junior University Compounds and compositions that bind and stabilize transthyretin and their use for inhibiting transthyretin amyloidosis and protein-protein interactions
SG11201504931SA (en) 2012-12-21 2015-07-30 Map Pharmaceuticals Inc Novel methysergide derivatives
SG11201509982UA (en) 2013-06-06 2016-04-28 Igenica Biotherapeutics Inc
ES2900570T3 (en) 2013-08-27 2022-03-17 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
CN105683182A (en) 2013-08-30 2016-06-15 埃姆比特生物科学公司 Biaryl acetamide compounds and methods of use thereof
NZ631142A (en) 2013-09-18 2016-03-31 Axikin Pharmaceuticals Inc Pharmaceutically acceptable salts of 3,5-diaminopyrazole kinase inhibitors
US20160229866A1 (en) 2013-09-20 2016-08-11 Idenix Pharmaceuticals Inc. Hepatitis c virus inhibitors
EP3065771B1 (en) 2013-11-04 2019-03-20 UTI Limited Partnership Methods and compositions for sustained immunotherapy
JP6870988B2 (en) 2014-02-24 2021-05-19 セルジーン コーポレイション How to use cereblon activators for neuronal amplification and treatment of central nervous system disorders
US10464955B2 (en) 2014-02-28 2019-11-05 Hangzhou Dac Biotech Co., Ltd. Charged linkers and their uses for conjugation
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
EP3114122A1 (en) 2014-03-05 2017-01-11 Idenix Pharmaceuticals LLC Solid forms of a flaviviridae virus inhibitor compound and salts thereof
US10202398B2 (en) 2014-03-20 2019-02-12 Capella Therapeutics, Inc. Benzimidazole derivatives as ERBB tyrosine kinase inhibitors for the treatment of cancer
CA2943220C (en) 2014-03-20 2024-01-16 Capella Therapeutics, Inc. Benzimidazole derivatives as erbb tyrosine kinase inhibitors for the treatment of cancer
AU2015259471A1 (en) 2014-05-12 2016-11-24 Conatus Pharmaceuticals, Inc. Treatment of the complications of chronic liver disease with caspase inhibitors
MA47849A (en) 2014-05-28 2020-01-29 Agenus Inc ANTI-GITR ANTIBODIES AND THEIR METHODS OF USE
US9527815B2 (en) 2014-06-18 2016-12-27 Biotheryx, Inc. Hydroxypyridone derivatives, pharmaceutical compositions thereof, and their therapeutic use for treating inflammatory, neurodegenerative, or immune-mediated diseases
US9499514B2 (en) 2014-07-11 2016-11-22 Celgene Corporation Antiproliferative compounds and methods of use thereof
WO2016025129A1 (en) 2014-08-14 2016-02-18 Alhamadsheh Mamoun M Conjugation of pharmaceutically active agents with transthyretin ligands through adjustable linkers to increase serum half-life
SG10201902137PA (en) 2014-09-12 2019-04-29 Tobira Therapeutics Inc Cenicriviroc combination therapy for the treatment of fibrosis
US10087199B2 (en) * 2014-10-22 2018-10-02 Yale University Super-resolution imaging compositions and methods using same
US20170354639A1 (en) 2014-10-24 2017-12-14 Biogen Ma Inc. Diterpenoid derivatives and methods of use thereof
EP3229838B1 (en) 2014-12-11 2020-09-09 Pierre Fabre Medicament Anti-c10orf54 antibodies and uses thereof
EP3789039A1 (en) 2014-12-22 2021-03-10 The Rockefeller University Anti-mertk agonistic antibodies and uses thereof
MY191736A (en) 2014-12-23 2022-07-13 Axikin Pharmaceuticals Inc 3,5-diaminopyrazole kinase inhibitors
US9657020B2 (en) 2015-01-20 2017-05-23 Xoc Pharmaceuticals, Inc. Ergoline compounds and uses thereof
BR112017015510A2 (en) 2015-01-20 2018-01-30 Xoc Pharmaceuticals Inc compound of formula (i), method of treatment and / or prevention, d2 receptor agonizing method in one individual, d3 receptor antagonizing method in one individual, 5-ht1d receptor agonizing method in one individual, 5-ht1a receptor agonization in one individual, selective 5-ht1d receptor agonizing method instead of 5-ht1b receptor in one individual, 5-ht2c re-receptor selective agonizing method instead of 5-ht2a or 5 receptor -ht2b in one individual, method of 5-ht2c receptor agonization in one individual, method of providing functional antagonist activity at 5-ht2b receptor or 5-ht7 receptor, and, method of providing functional antagonist activity at adrenergic receptors in one individual
CN107428749B (en) 2015-01-28 2020-07-24 上海复旦张江生物医药股份有限公司 Substituted imidazo [1,2- α ] pyridin-2-ylamine compounds, pharmaceutical compositions and methods of use thereof
WO2016139482A1 (en) 2015-03-03 2016-09-09 Kymab Limited Antibodies, uses & methods
CN113876962A (en) 2015-04-07 2022-01-04 纪念斯隆-凯特琳癌症中心 Nanoparticle immunoconjugates
SG10201913957PA (en) 2015-05-06 2020-03-30 Uti Lp Nanoparticle compositions for sustained therapy
SG10201913500TA (en) 2015-05-29 2020-03-30 Agenus Inc Anti-ctla-4 antibodies and methods of use thereof
KR20180015260A (en) 2015-06-23 2018-02-12 뉴로크린 바이오사이언시즈 인코퍼레이티드 VMAT2 inhibitors for the treatment of neurological diseases or disorders
EA201890630A1 (en) 2015-09-01 2018-10-31 Эйдженус Инк. ANTIBODIES AGAINST PD-1 AND METHODS OF THEIR APPLICATION
CN115322188A (en) 2015-10-30 2022-11-11 纽罗克里生物科学有限公司 VALBENAZINE salts and polymorphs thereof
WO2017079566A1 (en) 2015-11-05 2017-05-11 Conatus Pharmaceuticals, Inc. Caspase inhibitors for use in the treatment of liver cancer
US10112924B2 (en) 2015-12-02 2018-10-30 Astraea Therapeutics, Inc. Piperdinyl nociceptin receptor compounds
HUE059065T2 (en) 2015-12-23 2022-10-28 Neurocrine Biosciences Inc Synthetic method for preparation of (s)-(2r,3r,11br)-3-isobutyl-9,10-dimethoxy-2,3,4,6,7,11b-hexahydro-1h-pyrido[2,1,-a]lsoquinolin-2-yl 2-amino-3-methylbutanoate di(4-methylbenzenesulfonate)
CN108697663A (en) 2015-12-31 2018-10-23 科内图斯医药公司 The method that caspase inhibitors are used in liver disease
WO2017120422A1 (en) 2016-01-08 2017-07-13 Celgene Corporation Antiproliferative compounds, and their pharmaceutical compositions and uses
AR107320A1 (en) 2016-01-08 2018-04-18 Celgene Corp SOLID FORMS OF 2- (4-CHLOROPHENYL) -N - ((2- (2,6-DIOXOPIPERIDIN-3-IL) -1-OXOINDOLIN-5-IL) METHYL) -2,2-DIFLUOROACETAMIDE AND ITS PHARMACEUTICAL COMPOSITIONS AND APPLICATIONS
US10960013B2 (en) 2016-03-04 2021-03-30 East Carolina University J-series prostaglandin-ethanolamides as novel therapeutics for skin and/or oral disorders
JP2019513151A (en) 2016-03-08 2019-05-23 ロス ガトス ファーマスーティカルズ, インク.Los Gatos Pharmaceuticals, Inc. Camptothecin derivatives and uses thereof
US10064855B2 (en) 2016-03-08 2018-09-04 Los Gatos Pharmaceuticals, Inc. Composite nanoparticles and uses thereof
EP3442940A1 (en) 2016-04-11 2019-02-20 Clexio Biosciences Ltd. Deuterated ketamine derivatives
WO2017180794A1 (en) 2016-04-13 2017-10-19 Skyline Antiinfectives, Inc. Deuterated o-sulfated beta-lactam hydroxamic acids and deuterated n-sulfated beta-lactams
ES2939373T3 (en) 2016-05-13 2023-04-21 Pasteur Institut Inhibition of beta-2 nicotinic acetylcholine receptors to treat Alzheimer's disease pathology
TWI753910B (en) 2016-05-16 2022-02-01 美商拜歐斯瑞克斯公司 Pyridinethiones, pharmaceutical compositions thereof, and their therapeutic use for treating a proliferative, inflammatory, neurodegenerative, or immune-mediated disease
MX2018014387A (en) 2016-05-27 2019-03-14 Agenus Inc Anti-tim-3 antibodies and methods of use thereof.
KR20190039937A (en) 2016-07-08 2019-04-16 스태튼 바이오테크놀로지 비.브이. Anti-ApoC3 antibodies and methods of use thereof
WO2018035281A1 (en) 2016-08-17 2018-02-22 North Carolina State University Northern-southern route to synthesis of bacteriochlorins
JP2019529419A (en) 2016-09-19 2019-10-17 エムイーアイ ファーマ,インク. Combination therapy
TW202246349A (en) 2016-10-11 2022-12-01 美商艾吉納斯公司 Anti-lag-3 antibodies and methods of use thereof
US11779604B2 (en) 2016-11-03 2023-10-10 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses and methods
WO2018083538A1 (en) 2016-11-07 2018-05-11 Neuracle Scienc3 Co., Ltd. Anti-family with sequence similarity 19, member a5 antibodies and method of use thereof
US10106521B2 (en) 2016-11-09 2018-10-23 Phloronol, Inc. Eckol derivatives, methods of synthesis and uses thereof
CN116987014A (en) 2016-11-09 2023-11-03 诺沃梅迪科斯有限公司 Nitrite salts of 1, 1-metformin, pharmaceutical compositions and methods of use
US10836774B2 (en) 2016-11-30 2020-11-17 North Carolina State University Methods for making bacteriochlorin macrocycles comprising an annulated isocyclic ring and related compounds
US10799503B2 (en) 2016-12-01 2020-10-13 Ignyta, Inc. Methods for the treatment of cancer
TW202345829A (en) 2016-12-02 2023-12-01 美商紐羅克里生物科學有限公司 Use of valbenazine for treating schizophrenia or schizoaffective disorder
MX2019006340A (en) 2016-12-07 2019-11-07 Agenus Inc Anti-ctla-4 antibodies and methods of use thereof.
CA3046082A1 (en) 2016-12-07 2018-06-14 Agenus Inc. Antibodies and methods of use thereof
JP7199361B2 (en) 2017-01-27 2023-01-05 ニューロクライン バイオサイエンシーズ,インコーポレイテッド Methods for administering certain VMAT2 inhibitors
MX2019009764A (en) 2017-02-17 2019-11-11 Eidos Therapeutics Inc Processes for preparing ag-10, its intermediates, and salts thereof.
BR112019017260A2 (en) 2017-02-17 2020-04-14 Camris Int Inc universal antivenom
WO2018164996A1 (en) 2017-03-06 2018-09-13 Neurocrine Biosciences, Inc. Dosing regimen for valbenazine
US11077173B2 (en) 2017-03-13 2021-08-03 Sdg, Inc. Lipid-based nanoparticles and methods using same
WO2018169954A1 (en) 2017-03-13 2018-09-20 Sdg, Inc. Lipid-based nanoparticles with enhanced stability
US20200330590A1 (en) 2017-03-27 2020-10-22 Celgene Corporation Methods and compositions for reduction of immunogenicity
BR112019017241A2 (en) 2017-04-13 2020-04-14 Agenus Inc anti-cd137 antibodies and methods of using them
CN110506056A (en) 2017-04-21 2019-11-26 斯塔滕生物技术有限公司 Anti- APOC3 antibody and its application method
US20200179352A1 (en) 2017-04-26 2020-06-11 Neurocrine Biosciences, Inc. Use of valbenazine for treating levodopa-induced dyskinesia
EP3618863B1 (en) 2017-05-01 2023-07-26 Agenus Inc. Anti-tigit antibodies and methods of use thereof
JOP20190219A1 (en) 2017-05-09 2019-09-22 Cardix Therapeutics LLC Pharmaceutical compositions and methods of treating cardiovascular diseases
US10085999B1 (en) 2017-05-10 2018-10-02 Arixa Pharmaceuticals, Inc. Beta-lactamase inhibitors and uses thereof
WO2018223065A1 (en) 2017-06-01 2018-12-06 Xoc Pharmaceuticals, Inc. Ergoline derivatives for use in medicine
JP7076059B2 (en) 2017-06-27 2022-05-27 ニューラクル サイエンス カンパニー リミテッド Anti-FAM19A5 antibody and its uses
EP3645039A4 (en) 2017-06-27 2021-05-05 Neuracle Science Co., Ltd Use of anti-fam19a5 antibodies for treating fibrosis
EP3645044A4 (en) 2017-06-27 2021-04-28 Neuracle Science Co., Ltd Use of anti-family with sequence similarity 19, member a5 antibodies for the treatment of glaucoma
WO2019003164A1 (en) 2017-06-27 2019-01-03 Neuracle Science Co., Ltd. Use of anti-fam19a5 antibodies for treating cancers
ES2953032T3 (en) 2017-09-01 2023-11-07 Univ East Carolina Ex vivo methods for the activation of immune cells
CN111372567B (en) 2017-09-21 2024-03-15 纽罗克里生物科学有限公司 High dose valphenazine formulations and compositions, methods and kits relating thereto
SG11202003194YA (en) 2017-10-10 2020-05-28 Neurocrine Biosciences Inc Methods for the administration of certain vmat2 inhibitors
US10993941B2 (en) 2017-10-10 2021-05-04 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
CA3080103A1 (en) 2017-10-31 2019-05-09 Staten Biotechnology B.V. Anti-apoc3 antibodies and methods of use thereof
TW201929847A (en) 2018-01-10 2019-08-01 美商克拉治療有限責任公司 Pharmaceutical compositions comprising dicarboxylic acids and their therapeutic applications
US11701334B2 (en) 2018-01-10 2023-07-18 Cura Therapeutics, Llc Pharmaceutical compositions comprising phenylsulfonamides, and their therapeutic applications
EP3768841A4 (en) 2018-03-23 2021-12-08 Eidos Therapeutics, Inc. Methods of treating ttr amyloidosis using ag10
US11634484B2 (en) 2018-04-24 2023-04-25 Neuracle Science Co., Ltd. Use of anti-family with sequence similarity 19, member A5 antibodies for the treatment of neuropathic pain
CN112638387A (en) 2018-06-14 2021-04-09 纽罗克里生物科学有限公司 VMAT2 inhibitor compounds, compositions, and methods related thereto
WO2020006341A1 (en) 2018-06-29 2020-01-02 Conatus Pharmaceuticals, Inc. (s)-3-(2-(4-(benzyl)-3-oxopiperazin-1-yl)acetamido)-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid derivatives and related compounds as caspase inhibitors for treating cardiovascular diseases
BR112021000934A2 (en) 2018-07-20 2021-04-27 Pierre Fabre Medicament receiver for sight
EP3836926A4 (en) 2018-08-15 2022-05-04 Neurocrine Biosciences, Inc. Methods for the administration of certain vmat2 inhibitors
BR112020026493A2 (en) 2018-08-17 2021-03-23 Eidos Therapeutics, Inc. AG10 FORMULATIONS
CN112969503A (en) 2018-10-03 2021-06-15 斯塔滕生物技术有限公司 Antibodies specific for human and cynomolgus macaques APOC3 and methods of use thereof
WO2020084623A2 (en) * 2018-10-24 2020-04-30 Apa- Advanced Technologies Ltd. Fusogenic liposomes for selective imaging of tumor cells
CA3119341A1 (en) 2018-11-16 2020-05-22 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and an immune checkpoint inhibitor
KR20200071198A (en) 2018-12-10 2020-06-19 네오이뮨텍, 인코퍼레이티드 Development of new adoptive T cell immunotherapy by modification of Nrf2 expression
EP3898609A1 (en) 2018-12-19 2021-10-27 Shy Therapeutics LLC Compounds that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US11447468B2 (en) 2019-02-06 2022-09-20 Dice Alpha, Inc. IL-17 ligands and uses thereof
MA55080A (en) 2019-02-26 2022-01-05 Inspirna Inc HIGH AFFINITY ANTI-MERTK ANTIBODIES AND ASSOCIATED USES
WO2020181165A1 (en) 2019-03-07 2020-09-10 Conatus Pharmaceuticals Inc. Caspase inhibitors and methods of use thereof
CN114222803A (en) 2019-05-20 2022-03-22 尼尔瓦纳科学股份有限公司 Narrow emission dyes, compositions comprising the same, and methods of making and using the same
CA3146157A1 (en) 2019-07-11 2021-01-14 Cura Therapeutics, Llc Sulfone compounds and pharmaceutical compositions thereof, and their therapeutic applications for the treatment of neurodegenerative diseases
EP3996813A1 (en) 2019-07-11 2022-05-18 Cura Therapeutics, LLC Phenyl compounds and pharmaceutical compositions thereof, and their therapeutic applications
US10940141B1 (en) 2019-08-23 2021-03-09 Neurocrine Biosciences, Inc. Methods for the administration of certain VMAT2 inhibitors
US11680098B2 (en) 2019-08-30 2023-06-20 Agenus Inc. Antibodies that specifically bind human CD96
WO2021055376A1 (en) 2019-09-16 2021-03-25 Dice Alpha, Inc. Il-17a modulators and uses thereof
CN114945409A (en) 2020-01-13 2022-08-26 新免疫技术有限公司 Methods of treating tumors with combinations of IL-7 proteins and bispecific antibodies
WO2021151001A1 (en) 2020-01-22 2021-07-29 Outpace Bio, Inc. Chimeric polypeptides
AU2021217373A1 (en) 2020-02-05 2022-08-04 Neoimmunetech, Inc. Method of treating a solid tumor with a combination of an IL-7 protein and CAR-bearing immune cells
WO2021242970A1 (en) 2020-05-29 2021-12-02 Boulder Bioscience Llc Methods for improved endovascular thrombectomy using 3,3'-diindolylmethane
EP4168414A1 (en) 2020-06-18 2023-04-26 Shy Therapeutics LLC Substituted thienopyrimidines that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
WO2022061348A1 (en) 2020-09-16 2022-03-24 Biotheryx, Inc. Sos1 protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
WO2022087335A1 (en) 2020-10-23 2022-04-28 Biotheryx, Inc. Kras protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
KR20230104176A (en) 2020-11-02 2023-07-07 네오이뮨텍, 인코퍼레이티드 Use of interleukin-7 for treatment of coronavirus
KR20230104175A (en) 2020-11-05 2023-07-07 네오이뮨텍, 인코퍼레이티드 Methods of Treating Tumors Using Combinations of IL-7 Protein and Nucleotide Vaccines
JP2024500377A (en) 2020-12-14 2024-01-09 バイオセリックス, インコーポレイテッド PDE4 degraders, pharmaceutical compositions, and therapeutic applications
WO2022165000A1 (en) 2021-01-27 2022-08-04 Shy Therapeutics, Llc Methods for the treatment of fibrotic disease
EP4284377A1 (en) 2021-01-27 2023-12-06 Shy Therapeutics LLC Methods for the treatment of fibrotic disease
AU2022232625A1 (en) 2021-03-10 2023-09-28 Dice Molecules Sv, Inc. Alpha v beta 6 and alpha v beta 1 integrin inhibitors and uses thereof
EP4326721A1 (en) 2021-04-22 2024-02-28 Protego Biopharma, Inc. Spirocyclic imidazolidinones and imidazolidinediones for treatment of light chain amyloidosis
EP4347568A1 (en) 2021-05-27 2024-04-10 Protego Biopharma, Inc. Heteroaryl diamide ire1/xbp1s activators
WO2022251644A1 (en) 2021-05-28 2022-12-01 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
EP4347826A1 (en) 2021-06-02 2024-04-10 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
IL309349A (en) 2021-06-14 2024-02-01 argenx BV Anti-il-9 antibodies and methods of use thereof
EP4355741A1 (en) 2021-06-16 2024-04-24 Biotheryx, Inc. Sos1 protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
WO2022266249A1 (en) 2021-06-16 2022-12-22 Biotheryx, Inc. Kras protein degraders, pharmaceutical compositions thereof, and their therapeutic applications
WO2023055045A1 (en) 2021-09-29 2023-04-06 주식회사 엔바이오스 Coiled-coil fusion protein
WO2023081923A1 (en) 2021-11-08 2023-05-11 Frequency Therapeutics, Inc. Platelet-derived growth factor receptor (pdgfr) alpha inhibitors and uses thereof
WO2023130081A1 (en) 2021-12-30 2023-07-06 Neoimmunetech, Inc. Method of treating a tumor with a combination of il-7 protein and vegf antagonist
WO2023129577A1 (en) 2022-01-03 2023-07-06 Lilac Therapeutics, Inc. Cyclic thiol prodrugs
US20230348909A1 (en) 2022-03-30 2023-11-02 Biomarin Pharmaceutical Inc. Dystrophin exon skipping oligonucleotides
GB2619907A (en) 2022-04-01 2023-12-27 Kanna Health Ltd Novel crystalline salt forms of mesembrine
WO2023201282A1 (en) 2022-04-14 2023-10-19 Bristol-Myers Squibb Company Novel gspt1 compounds and methods of use of the novel compounds
US20230416741A1 (en) 2022-05-05 2023-12-28 Biomarin Pharmaceutical Inc. Method of treating duchenne muscular dystrophy
WO2023220640A1 (en) 2022-05-10 2023-11-16 Biotheryx, Inc. Cdk protein degraders, pharmaceutical compositions, and therapeutic applications
WO2023225665A1 (en) 2022-05-19 2023-11-23 Lyell Immunopharma, Inc. Polynucleotides targeting nr4a3 and uses thereof
WO2024054832A1 (en) 2022-09-09 2024-03-14 Innovo Therapeutics, Inc. CK1α AND DUAL CK1α / GSPT1 DEGRADING COMPOUNDS
WO2024073473A1 (en) 2022-09-30 2024-04-04 Boulder Bioscience Llc Compositions comprising 3,3'-diindolylmethane for treating non-hemorrhagic closed head injury

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350287A2 (en) * 1988-07-07 1990-01-10 NeXstar Pharmaceuticals, Inc. Lipid derivatives of antiviral nucleosides, liposomal incorporation and method of use
WO1994001138A1 (en) * 1992-07-09 1994-01-20 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University Covalent polar lipid-peptide conjugates for biological targeting
WO1994025616A1 (en) * 1993-04-28 1994-11-10 Worcester Foundation For Experimental Biology Cell-targeted lytic pore-forming agents

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847240A (en) * 1978-01-16 1989-07-11 The Trustees Of Boston University Method of effecting cellular uptake of molecules
DE3264782D1 (en) * 1981-10-16 1985-08-22 Sanol Arznei Schwarz Gmbh Medicinal formulation
US5087618A (en) 1982-05-18 1992-02-11 University Of Florida Redox carriers for brain-specific drug delivery
US4587046A (en) * 1982-05-18 1986-05-06 The Regents Of The University Of California Drug-carrier conjugates
US5525727A (en) 1982-05-18 1996-06-11 University Of Florida Brain-specific drug delivery
DE3228557A1 (en) * 1982-07-30 1984-02-09 Ulrich 8000 München Trampnau WARNING DEVICE FOR HELICOPTER
DE3343530A1 (en) 1983-12-01 1985-06-13 Max Planck Gesellschaft MEDICINE WITH IMPROVED PENETRATION OF THE TISSUE MEMBRANE
US4780455A (en) * 1985-04-12 1988-10-25 The Trustees Of Columbia University In The City Of New York Lipophilic complexes of pharmacologically active organic compounds
DE3683688D1 (en) * 1985-04-19 1992-03-12 Wistar Inst VACCINE FOR THE GENERATION OF AN IMMUNOGENIC T-CELL REPLY PROTECTING A VIRUS.
US5023252A (en) 1985-12-04 1991-06-11 Conrex Pharmaceutical Corporation Transdermal and trans-membrane delivery of drugs
US4866040A (en) * 1986-01-06 1989-09-12 Alfred Stracher Aminocarnitine directed pharmaceutical agents
US5039794A (en) 1986-09-19 1991-08-13 Otsuka Pharmaceutical Co., Ltd. Tumor egress factor and processes for producing the same
US4793986A (en) * 1987-02-25 1988-12-27 Johnson Matthey, Inc. Macromolecular platinum antitumor compounds
JPH03503403A (en) * 1987-07-06 1991-08-01 ペプチド テクノロジー リミテッド biologically active molecules
US4902641A (en) * 1987-07-31 1990-02-20 Motorola, Inc. Process for making an inverted silicon-on-insulator semiconductor device having a pedestal structure
SE459584B (en) * 1987-10-02 1989-07-17 Studsvik Ab PROCEDURES FOR PROCESSING OF RAAGAS MANUFACTURED FROM COAL CONTENTS
US5053394A (en) * 1988-09-21 1991-10-01 American Cyanamid Company Targeted forms of methyltrithio antitumor agents
JPH03503632A (en) 1987-11-18 1991-08-15 ステート オブ オレゴン アクティング バイ アンド スルー ザ ステート ボード オブ ハイアー エデュケイション オン ビハーフ オブ オレゴン ヘルス サイエンシズ ユニバーシティー Differential delivery of therapeutic agents across the blood-brain barrier
US5002935A (en) 1987-12-30 1991-03-26 University Of Florida Improvements in redox systems for brain-targeted drug delivery
US5017566A (en) 1987-12-30 1991-05-21 University Of Florida Redox systems for brain-targeted drug delivery
US5284876A (en) 1988-02-26 1994-02-08 Neuromedica, Inc. Method of treating tardive dyskinesia using dopaminergic agents of prodrugs of therapeutic agents
GB2217319A (en) * 1988-04-19 1989-10-25 Synpharm Ltd Racemic and optically active fatty amino acids, their homo- abd hetero-oligomers and conjugates, the process of their production, their pharmaceutical composi
WO1989011299A1 (en) * 1988-05-18 1989-11-30 State Of Oregon Acting By And Through The State Bo Method for delivery of therapeutic agents to target brain tissue using monoclonal antibody conjugates
AU587363B1 (en) * 1988-07-27 1989-08-10 Richard Henry Tollervey Improvements to helicopter rotor blades
DE8812762U1 (en) * 1988-10-11 1989-06-29 Emitec Emissionstechnologie
JPH04503957A (en) * 1989-03-07 1992-07-16 ジェネンテク,インコーポレイテッド Covalent conjugates of lipids and oligonucleotides
JPH04507244A (en) * 1989-07-27 1992-12-17 ユニバックス・バイオロジクス・インコーポレイテッド Lipid A analog/immunogenic carrier conjugate and its use as a vaccine
DE3927209A1 (en) * 1989-08-17 1991-02-21 Iro Ab DEVICE FOR SECURING THE WRAPPING OF A ROLL WRAPPING IN A TEXTILE COIL WINDING DEVICE
DK437289D0 (en) 1989-09-04 1989-09-04 Hans Bundgaard PRODUCT DERIVATIVES OF THYROTROPIN-RELEASING HORMONE (TRH)
CA2025907A1 (en) 1989-09-21 1991-03-22 Franklin D. Collins Method of transporting compositions across the blood brain barrier
EP0494175A4 (en) 1989-09-27 1993-05-05 Athena Neurosciences, Inc. Compositions for cell adhesion inhibition and methods of use
GB2237121B (en) 1989-10-10 1993-07-21 Bowthorpe Hellermann Ltd Optical fibre splice storage enclosure
JPH03236315A (en) 1989-12-05 1991-10-22 Nippon Oil & Fats Co Ltd Antipsychotic agent
EP0506857B1 (en) 1989-12-26 1998-04-01 The Dow Chemical Company Tamper evident, tamper resistant packaging material and use
CA2078689C (en) 1990-03-20 2003-02-11 Sherie L. Morrison Chimeric antibodies with receptor binding ligands in place of their constant region
US5264618A (en) * 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US6517859B1 (en) 1990-05-16 2003-02-11 Southern Research Institute Microcapsules for administration of neuroactive agents
CA2085354C (en) * 1990-06-15 2002-08-27 Claude Piantadosi Ether lipid-nucleoside covalent conjugates
US5177064A (en) 1990-07-13 1993-01-05 University Of Florida Targeted drug delivery via phosphonate derivatives
US5543390A (en) * 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
US5543389A (en) * 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University, A Non Profit Organization Covalent polar lipid-peptide conjugates for use in salves
US5149794A (en) * 1990-11-01 1992-09-22 State Of Oregon Covalent lipid-drug conjugates for drug targeting
US5270312A (en) 1990-11-05 1993-12-14 Warner-Lambert Company Substituted piperazines as central nervous system agents
US5254342A (en) 1991-09-30 1993-10-19 University Of Southern California Compositions and methods for enhanced transepithelial and transendothelial transport or active agents
US5258453A (en) * 1992-01-21 1993-11-02 University Of Utah Drug delivery system for the simultaneous delivery of drugs activatable by enzymes and light
NZ255043A (en) * 1992-07-13 1997-03-24 Eukarion Inc Lipidized proteins and compositions thereof and their use in targeting proteins to intracellular compartments and enhancing organ uptake of them
AU677216B2 (en) * 1992-07-27 1997-04-17 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Targeting of liposomes to the blood-brain barrier
US5273991A (en) 1992-07-29 1993-12-28 Research Corporation Technologies, Inc. Imidazole-containing compositions and methods of use thereof analogs of distamycin
DK0614886T3 (en) * 1992-07-30 1997-01-13 Drug Delivery System Inst Ltd Connections that can be withheld in the brain
IL106998A0 (en) * 1992-09-17 1993-12-28 Univ Florida Brain-enhanced delivery of neuroactive peptides by sequential metabolism
EP0599303A3 (en) 1992-11-27 1998-07-29 Takeda Chemical Industries, Ltd. Peptide conjugate
US5434137A (en) 1993-05-10 1995-07-18 Black; Keith L. Method for selective opening of abnormal brain tissue capillaries
AU7564194A (en) * 1993-09-10 1995-03-27 University Of Medicine And Dentistry Of New Jersey Blood-brain barrier transporters of neurological agents
US5540674A (en) * 1993-09-28 1996-07-30 Abbott Laboratories Solution container with dual use access port
CA2184242C (en) * 1994-02-28 2000-05-02 Jorg Kreuter Drug targeting system, method for preparing same and its use
EP0952841A4 (en) * 1994-08-05 2000-11-02 Molecular Structural Biotechno Site-specific biomolecular complexes
US5466683A (en) 1994-08-25 1995-11-14 Teva Pharmaceutical Industries Ltd. Water-soluble analogs of carbamazepine
RU2166512C2 (en) * 1995-01-16 2001-05-10 Коммонвелт Сайентифик Энд Индастриал Рисерч Организейшн Conjugates of therapeutic compound with fatty acid
US6455073B1 (en) * 2000-07-10 2002-09-24 Enzrel, Inc. Covalent microparticle-drug conjugates for biological targeting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350287A2 (en) * 1988-07-07 1990-01-10 NeXstar Pharmaceuticals, Inc. Lipid derivatives of antiviral nucleosides, liposomal incorporation and method of use
WO1994001138A1 (en) * 1992-07-09 1994-01-20 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education On Behalf Of The Oregon Health Sciences University Covalent polar lipid-peptide conjugates for biological targeting
WO1994025616A1 (en) * 1993-04-28 1994-11-10 Worcester Foundation For Experimental Biology Cell-targeted lytic pore-forming agents

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE BIOSIS BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; *
ROSSITSA BORISSOVA ET AL.: "BIODEGRADABLE MICROSPHERES. 17. LYSOSOMAL DEGRADATION OF PRIMAQUINE-PEPTIDE SPACER ARMS.", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 84, no. 2, WASHINGTON US, pages 256 - 262, XP000541779, DOI: doi:10.1002/jps.2600840227 *
S. Y. LIN ET AL.: "preparation of enteric-coated microspheres of myplasma hyopneumoniae vaccine with cellulose acetate ;(ii) effect of temperature and ph on the stability and release behaviour of microspheres.", JOURNAL OF MICROENCAPSULATION, vol. 8, no. 4, LONDON GB, pages 537 - 545, XP000232588 *
YATVIN M.B. ET AL.: "TARGETING LIPOPHILIC PRODRUGS TO BRAIN, LUNG AND SPLEEN.", JOURNAL OF CELLULAR BIOCHEMISTRY, vol. 0, no. 19A, pages 173 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436437B1 (en) 1990-11-01 2002-08-20 Oregon Health And Science University Covalent polar lipid conjugates with neurologically active compounds for targeting
US5827819A (en) * 1990-11-01 1998-10-27 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
US5965519A (en) * 1990-11-01 1999-10-12 Oregon Health Sciences University Covalent polar lipid conjugates with biologically-active compounds for use in salves
US6024977A (en) * 1990-11-01 2000-02-15 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
US6063759A (en) * 1990-11-01 2000-05-16 Oregon Health Sciences University Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting
US6858582B2 (en) 1990-11-01 2005-02-22 Oregon Health And Sciences University Composition containing porous microparticle impregnated with biologically-active compound for treatment of infection
US6339060B1 (en) 1990-11-01 2002-01-15 Oregon Health & Science University Conjugate of biologically active compound and polar lipid conjugated to a microparticle for biological targeting
US7423010B2 (en) 1994-05-19 2008-09-09 Oregon Health & Science University Nonporous microparticle-prodrug conjugates for treatment of infection
AU724421B2 (en) * 1996-07-23 2000-09-21 Oregon Health Sciences University Covalent polar lipid conjugates with biologically-active compounds for use in salves
WO1998003204A1 (en) * 1996-07-23 1998-01-29 Oregon Health Sciences University Covalent polar lipid conjugates with biologically-active compounds for use in salves
WO2000033883A1 (en) * 1998-12-04 2000-06-15 Oregon Health Sciences University Covalent polar lipid conjugates with antimicrobial and antineoplastic drugs for targeting to biological protected sites
US6770299B1 (en) * 1999-05-07 2004-08-03 Pharmasol Gmbh Lipid matrix-drug conjugates particle for controlled release of active ingredient
WO2000067800A3 (en) * 1999-05-07 2001-05-10 Pharmasol Gmbh Medicament vehicle for the controlled administration of an active agent, produced from lipid matrix-medicament conjugates
WO2000067800A2 (en) * 1999-05-07 2000-11-16 Pharmasol Gmbh Medicament vehicle for the controlled administration of an active agent, produced from lipid matrix-medicament conjugates
FR2839310A1 (en) * 2002-05-03 2003-11-07 Pasteur Institut NOVEL PROCESS FOR THE PREPARATION OF ALPHA-GLYCOSYLCERAMIDES, NOVEL ALPHA-GLYCOSYLCERAMIDE DERIVATIVES AND THEIR APPLICATIONS
WO2003093287A1 (en) * 2002-05-03 2003-11-13 Institut Pasteur Novel method for preparing alpha-glycosylceramides, novel alpha-glycosylceramide derivatives and their uses
US6821744B2 (en) 2002-10-29 2004-11-23 Roche Diagnostics Operations, Inc. Method, assay, and kit for quantifying HIV protease inhibitors
EP1585509A1 (en) * 2003-01-20 2005-10-19 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Sphingolipids for improvement of the composition of the intestinal flora
US8703172B2 (en) 2003-01-20 2014-04-22 Nederlandse Organizatie voor Toegepastnatuurwetenschappelijk Onderzoek TNO Sphingolipids for improvement of the composition of the intestinal flora
US7968529B2 (en) 2003-01-20 2011-06-28 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Use of sphingolipids for reducing high plasma cholesterol and high triacylglycerol levels
EP1585509B1 (en) * 2003-01-20 2008-09-24 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Sphingolipids for improvement of the composition of the intestinal flora
WO2004096140A2 (en) 2003-04-25 2004-11-11 The Penn State Research Foundation Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
EP1617808A4 (en) * 2003-04-25 2011-11-02 Penn State Res Found Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
EP1617808A2 (en) * 2003-04-25 2006-01-25 The Penn State Research Foundation Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
US9028863B2 (en) 2003-04-25 2015-05-12 The Penn State Research Foundation Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
US9326953B2 (en) 2003-04-25 2016-05-03 The Penn State Research Foundation Method and system for systemic delivery of growth arresting, lipid-derived bioactive compounds
US7906488B2 (en) 2004-11-30 2011-03-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Sphingolipids in treatment and prevention of steatosis and of steatosis or of hepatotoxicity and its sequelae
WO2009104963A1 (en) * 2008-02-19 2009-08-27 Innopact B.V. Methods and compositions of sphingolipid for preventing and treating microbial infections
CN114933569A (en) * 2022-04-07 2022-08-23 澳门科技大学 Sphingolipid compound, liposome containing sphingolipid compound and application
WO2023193341A1 (en) * 2022-04-07 2023-10-12 澳门科技大学 Sphingolipid compound, liposome containing sphingolipid compound, and application

Also Published As

Publication number Publication date
US6063759A (en) 2000-05-16
US20040087482A1 (en) 2004-05-06
EP0759784A1 (en) 1997-03-05
US5543390A (en) 1996-08-06
US20060008461A1 (en) 2006-01-12
US6858582B2 (en) 2005-02-22
AU2639395A (en) 1995-12-18
US6339060B1 (en) 2002-01-15
US5543391A (en) 1996-08-06
US7423010B2 (en) 2008-09-09
US5840674A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
US5543391A (en) Covalent microparticle-drug conjugates for biological targeting
US6387876B1 (en) Covalent polar lipid-conjugates with biologically active compounds for use in salves
EP1034795A2 (en) Conjugates of lipids and biologically active compounds
US5149794A (en) Covalent lipid-drug conjugates for drug targeting
CA2157410C (en) Enhanced circulation effector composition and method
US6180134B1 (en) Enhanced ciruclation effector composition and method
US5049388A (en) Small particle aerosol liposome and liposome-drug combinations for medical use
WO1994001138A9 (en) Covalent polar lipid-peptide conjugates for biological targeting
US6676972B2 (en) Covalent microparticle-drug conjugates for biological targeting
JP2001503396A (en) Therapeutic liposome compositions and methods
HU894392D0 (en) Process for producing lipid derivatives of nucleosides of antiviral effect and pharmaceutical preparatives containing such active substances
JP3671054B2 (en) Pharmaceutical composition
JP2003522732A (en) Methods and compositions for treating cell proliferative disorders
CA2150617C (en) Nanoerythrosome as bioactive agent carrier
EP0366770A1 (en) Liposomes coupled to hormones.
AU724421B2 (en) Covalent polar lipid conjugates with biologically-active compounds for use in salves
Neto et al. Lipid conjugates of antiretroviral agents. II. Disodium palmityl phosphonoformate: anti-HIV activity, physical properties, and interaction with plasma proteins
JPH1045601A (en) Antiviral material
WO2000033883A1 (en) Covalent polar lipid conjugates with antimicrobial and antineoplastic drugs for targeting to biological protected sites
WO2000033884A1 (en) Conjugates of lipids and antimicrobial or antineoplastic drugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AT AU BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IS JP KE KG KP KR KZ LK LR LT LU LV MD MG MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TT UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995921275

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995921275

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1995921275

Country of ref document: EP