WO1996009839A1 - Immunoglobulin preparation - Google Patents

Immunoglobulin preparation Download PDF

Info

Publication number
WO1996009839A1
WO1996009839A1 PCT/JP1995/001979 JP9501979W WO9609839A1 WO 1996009839 A1 WO1996009839 A1 WO 1996009839A1 JP 9501979 W JP9501979 W JP 9501979W WO 9609839 A1 WO9609839 A1 WO 9609839A1
Authority
WO
WIPO (PCT)
Prior art keywords
immunoglobulin
human
immunoglobulin preparation
preparation
preparation according
Prior art date
Application number
PCT/JP1995/001979
Other languages
French (fr)
Japanese (ja)
Inventor
Tuyoshi Takahashi
Kenmi Miyano
Hideo Nishimaki
Koichi Irie
Toshiyuki Saki
Shinji Tomioka
Original Assignee
The Green Cross Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Green Cross Corporation filed Critical The Green Cross Corporation
Publication of WO1996009839A1 publication Critical patent/WO1996009839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies

Definitions

  • the present invention relates to an immunoglobulin preparation excellent in safety, and particularly to an immunoglobulin preparation for intramuscular injection. Background technology
  • Immunoglobulin is a generic name for antibodies and proteins that have structural and functional relationships with them, and is also called imnoglobulin (abbreviated as Ig). It is present in the body fluids of all vertebrates, from fish to mammals, and is produced by lymphoid cells (plasma cells). Classified into five classes (G, M, A, D, E) based on their physicochemical or immunological properties. The basic structure of the molecule is common to each class, and consists of a heavy chain with a molecular weight of 50,000 to 70,000 and a light chain with 23,000. Since each class is a collection of a wide variety of antibodies, there are antibodies that have the same specificity even if the classes are different. In addition, immunoglobulins belonging to the same class have partially different structures depending on the reaction specificity with antigens. Thus, immunoglobulins are a mixture of very diverse proteins.
  • Immunoglobulin preparations are a combination of normal immunoglobulin preparations prepared from pooled plasma, immunoglobulin preparations consisting of immunoglobulins with particularly high antibody titers to specific antigens, and immunoglobulin and other substances Immunoglobulin preparations, and immunoglobulin preparations collected from plasma obtained by immunizing animals, and so-called special immunoglobulin preparations.
  • immunoglobulin preparations Depending on the route of administration, there are preparations for intramuscular administration (intramuscular injection) and preparations for intravenous administration (intravenous injection).
  • Intravenous preparations include non-chemically modified preparations, chemically modified preparations, and enzyme-treated preparations depending on the manufacturing method.
  • Non-chemically modified preparations include polyethylene glycol (PEG) treated preparations, pH 4 treated preparations, and ion exchanger treated preparations.
  • Chemically modified products include alkylated products and sulfonated products.
  • Enzyme-treated preparations include plasmin-treated preparations, pepsin-treated preparations, and tribsine-treated preparations. These immunoglobulin preparations are strictly regulated according to the “Biological Preparation Standards” supervised by the Pharmaceutical Affairs Bureau, Ministry of Health and Welfare.
  • immunoglobulin contains a large amount of antibodies such as viruses and bacteria, it is widely used as an immunoglobulin preparation for the prevention and treatment of infectious diseases.
  • Immunoglobulin preparations which are plasma protein preparations, are generally produced from human or other mammalian plasma. However, it is possible that various contaminating viruses may be present in the plasma of humans or other mammals that are the raw materials for immunoglobulin preparations.
  • HCV hepatitis C virus
  • An object of the present invention is to provide a safer immunoglobulin preparation, particularly an immunoglobulin preparation for intramuscular injection, which can be obtained efficiently and with good operability against virus infection. It is in. Disclosure of the invention
  • the present inventors conducted various studies in consideration of the above circumstances, and found that immunoglobulin preparations, particularly immunoglobulin preparations for intramuscular injection, were more safe against virus infection, especially HCV infection.
  • the present inventors have found that it is possible to develop a formulation having a high level of performance and completed the present invention.
  • the present invention is an immunoglobulin preparation having a negative HCV genome, particularly an immunoglobulin preparation for intramuscular injection.
  • HCV genome negative indicates a level of HCV genome amount of 1 PCR unit (or CID 50 ) / ml or less.
  • One of the preferred examples of "negative HCV genome” is that the amount of HCV genome is less than 1 PCR unit Zm1 in 0.1 to 15 wZv% immunoglobulin solution.
  • HCV genome negative J other, in a one favored correct example, in which the removal rate of the HCV genome indicates 1 0 3 or more.
  • the method of measuring and calculating the “removal rate of the HCV genome” in the present invention is not particularly limited.
  • the PCR unit value of the immunoglobulin-containing solution before the preparation of the immunoglobulin preparation of the present invention and the immune unit of the present invention The method by comparing the PCR unit values of the glopurin preparation is most preferable.
  • immunoglobulin preparations for intramuscular injection there is a very low possibility of virus contamination due to screening of the source plasma and alcohol fractionation, indicating that the preparations are highly safe even from an epidemiological point of view. It is said.
  • immunoglobulin preparations for intramuscular injection do not incorporate PEG fractionation, heat treatment or SD treatment, and the possibility of virus contamination cannot be completely ruled out.
  • porous hollow fibers As a new virus removal method (or inactivation method) is attracting attention [Japanese Journal of Transfusion Medicine Medicine, No. 34, Vol. 6, pp. 615-617. 198 8 (Japananese Journalof Transfusion Medicine, 34 (6) 6 15-6 17 (1 988))].
  • the porous hollow fiber has a very fine pore size and therefore has poor protein permeability, and it is difficult to perform membrane filtration using a porous hollow fiber without using a high-molecular-weight protein or a high-concentration protein solution. It was difficult, and it was necessary to consider various conditions in order to improve the permeation performance.
  • Preferred examples of the method for producing the immunoglobulin preparation of the present invention include: Guropuri down-containing solution Hitahama porous hollow fibers the average pore diameter. 1 to 1 0 0 nm respect, a method of performing 4-5 Te 0, the membrane filtration treatment with ⁇ pressure 0. 1 ⁇ 1 kgf / cm 2 Are mentioned.
  • the immunoglobulin-containing solution which is the starting material for this production method, is not particularly limited as long as it basically contains immunoglobulin as a main component.
  • the immunoglobulin contained as an active ingredient in the immunoglobulin preparation obtained by this production method is highly purified to the extent that it is used as a pharmaceutical.
  • Specific starting materials include those derived from human or plasma plasma and derived from the immunoglobulin fraction.
  • a fraction II obtained from the ethanol fraction of corn from plasma or an equivalent paste containing immunoglobulin and the like can be mentioned.
  • the II fraction or the II + III fraction of the colon which is a raw material of the immunoglobulin preparation
  • this production method can be applied to an immunoglobulin preparation comprising an immunoglobulin having an especially high antibody titer to a specific antigen, an immunoglobulin preparation in which the immunoglobulin is complexed with another substance, a so-called special immunoglobulin preparation. Is effective.
  • anti-HBs human immunoglobulin containing a high unit of high HBs antibody (trade name “Hespulin”, manufactured by Green Cross), anti-tetanus human immunoglobulin containing a high unit of tetanus antitoxin
  • Anti-D (Rh0) immunoglobulin (trade name "anti-D human immunity") containing high units of anti-D (Rh0) antibody
  • high-titer anti-CMV (cytomegalovirus) antibody anti-CMV human immunoglobulin
  • high-titer anti-human lymphocyte antibody Anti-immunoglobulin (trade name “Albulin”, manufactured by Green Cross) or histamine-added human immunoglobulin (trade name “Histobrin”, manufactured by Green Cross)
  • an intramuscular formulation is exemplified as a particularly preferred embodiment, but the present invention is not limited to this.
  • an intravenous formulation is also an embodiment of the present invention. Is exempl
  • Porous hollow fiber Various other requirements can be selected for the porous hollow fiber used in the membrane filtration treatment of this production method as long as the above conditions are satisfied.
  • the material of the porous hollow fiber is not particularly limited, but is preferably a regenerated cellulose.
  • the porous hollow fiber of the regenerated cellulose is preferably subjected to a microphase separation method [American Chemical Society (Am. Chem. Soc.), 9, 1997—22] from a cellulose ammonia solution. 8 (19985)].
  • the average pore size of the porous hollow fiber is from 1 to 100 nm, preferably from 10 to 75 nm, more preferably from 10 to 50 nm, particularly preferably 35 ⁇ 2 nm or 15 ⁇ 2 nm, the inner diameter of the hollow fiber is preferably 330 ⁇ 30 m, the film thickness is preferably 35 ⁇ 3.5 / m or 27 ⁇ 3; um, and the film is preferably hired. Structure.
  • the porous hollow fiber is preferably used in the form of a module.
  • the module is configured by an adhesive to integrate the porous hollow fiber and container for Takashi ⁇ this and these having the film structure of the membrane area 0. 0 l ⁇ lm 2.
  • the solution containing the immunoglobulin in (1) is immersed in the membrane consisting of the porous hollow fiber in (2) and filtered.
  • the immunoglobulin-containing solution is adjusted to a protein concentration of about 0.1 to 15 wZv%.
  • the pH of the solution is particularly adjusted to about 6.4 to 7.2.
  • Filtration pressure is 0. 1 ⁇ 1 1 ⁇ 2 ⁇ ⁇ ⁇ 2, is favored properly 0. 1 ⁇ 0. 5 kgf Z cm 2 or so, more preferred properly is 0. 1 ⁇ 0. 3 kgfcm 2.
  • the processing temperature is 4 to 50 ° C, preferably 30 to 40 ° C (:, more preferably 35 to 37 ° C.
  • a cross-floor pass-through method in which a fluid is strained while giving a strain rate
  • a dead-end method in which a fluid passes without a strain rate.
  • a method using pressurized air is used.
  • the film transfer process under the conditions of the above manufacturing method can be performed a plurality of times.
  • the immunoglobulin-containing solution to be treated by this production method the immunoglobulin-containing solution is preliminarily prepared before the membrane filtration step under the above conditions.
  • those which have been subjected to filtration treatment with a hollow fiber membrane filtration or a flat membrane filtration membrane or the like can be used.
  • the immunoglobulin preparation of the present invention is further formulated or its dosage is adjusted according to the intended efficacy.
  • Examples of the dispensing method include a method in which various antigens and antibodies are made negative, and a method in which amino acids. Sugars, sugar alcohols, inorganic salts, and other additives are added. By preparing a dry preparation, storage for a longer period can be performed.
  • the immunoglobulin preparation of the present invention is effective in preventing the onset of various infectious and allergic diseases and in reducing the symptoms.
  • the dose and frequency of administration of the immunoglobulin preparation of the present invention are appropriately adjusted and studied depending on the composition of the preparation, the patient's symptoms, age, body weight, and the like.
  • B MM Porous hollow fiber [Bemberg Microcroporous Membrane] made from cuprammonium regenerated cellulose as raw material 0.001 to 1. O m 2 Having.
  • a BMM module with an average pore size of 35 nm was used.
  • the BMM module with an average pore diameter of 35 nm (trade name: Planova 35) has an average pore diameter of 35 ⁇ 2 nm, and the membrane layer has a multilayer structure with a multilayer structure of more than 150 expansions. 0 ⁇ 30 im, hollow fiber membrane with a thickness of 35 ⁇ 3.5 m and a polycarbonate capable of high-pressure steam sterilization
  • the autoclave sterilized product is composed of a plastic container made of Bonnet and a polyurethane adhesive that integrates them, and the module is filled with distilled water for injection.
  • the safety of the various materials that make up Branova has been confirmed by the method specified by the Japanese Pharmacopoeia (BMM product description damage).
  • a sample obtained by adding HCV-positive plasma to a 5 wZv% immunoglobulin solution was adjusted to have a pH of 6.4 to 7.2. After removing bacteria (filtration through a membrane filter with a pore size of 0.2 m and membrane filter), the membrane is filtered for 35 to 37 times at a filtration pressure of 0.2 kgf Z cm 2 for 1 to 5 hours. (A dead-end method using air pressure). After cooling, sterilization filtration was performed again, and the mixture was dispensed to prepare a human immunoglobulin preparation for intramuscular injection.
  • the HCV genome in the solution before and after the treatment of this sample was measured by the PCR method.
  • the PCR method in this test was performed by a nested (double) [Nested (Double)] reverse transcription polymerase chain reaction. This method involves the steps of extracting RNA from a test sample, preparing (HCV) cDNA, analyzing NestedPCR and analyzing the PCR product by dot hybridization or PAGE.
  • RNA from Sample As reagents, guanidine, guanidine thiosinate, sarkosyl, phenol, black-mouthed form, and isoamyl alcohol were used. The reaction conditions were room temperature.
  • HCV primer 5 ′ non-coding region
  • Taq polymerase 5 ′ non-coding region
  • the reaction conditions were at least 42 times and at least 20 cycles, and the annealing Lingno PCR was repeated twice.
  • intramuscular for immune Guropuri emissions formulation adjusted before immunization Guropuri emissions containing solvent solution of the present invention is what was 1 0 3 PCR unit 1, the formulation of the present invention is below the detection limit Nima Dropped.
  • Example 1 was performed using the immunoglobulin G fraction obtained by fractionating healthy human plasma containing high units of tetanus antitoxin immunized with tetanus toxoid by the low temperature ethanol method of corn as a starting material. In the same manner as described above, an anti-tetanus human immunoglobulin preparation for intramuscular injection was prepared.
  • Example 1 was performed using the immunoglobulin G fraction obtained by fractionating healthy human plasma containing a high unit of anti-D (Rh0) antibody by the cryogenic ethanol method of corn as a starting material. In the same manner as described above, an anti-D (R h0) human immunoglobulin preparation for intramuscular injection was prepared.
  • Healthy human plasma was subjected to membrane filtration in the same manner as in Example 1 using the immunoglobulin G fraction obtained by fractionating corn by the low-temperature ethanol method as a starting material.
  • a sample obtained by adding HCV-positive plasma to a 5 w / v% immunoglobulin solution was subjected to membrane filtration under the conditions of the present invention (Example 1), and the HCV genome in the solution before and after treatment of this sample was measured by PCR. did.
  • treatment before those were 1 0 3 PCR units / m 1, after treatment beat low to below the detection limit.
  • the recovery rate of the immunoglobulin preparation for intramuscular injection according to the present invention is determined by using the It was 98% or more with respect to the solution, and it was confirmed that there was no change in properties such as molecular weight distribution, IgG subclass distribution, and antibody titer before and after the treatment.
  • the immunoglobulin preparation for intramuscular injection prepared according to this example was stored at 25 ° C for 6 power months, and a stability test was performed.
  • thermostability was good and there was no change in properties such as molecular weight distribution, IgG subclass distribution, and antibody titer.
  • the measurement was carried out by Procedure I (high sensitivity method) using Toxicolor and Endosc Kit (Seikagaku Corporation).
  • the sample used had been subjected to perchloric acid treatment and deproteinized as a pretreatment, and the absorption was measured at 545 nm using diazo force coupling after the main reaction was completed.
  • the endotoxin level is measured by the endotoxin, and the endotoxin-like substance (; 3-1.3-glucan) value is obtained by subtracting the endotoxin measurement from the toxin capacity measurement.
  • the immunoglobulin preparation for intramuscular injection of the present invention remained low before and after the treatment in any case, and the value did not increase after the treatment.
  • the total amount of DNA in the immunoglobulin preparation for intramuscular injection of the present invention was measured using a threshold (Threeshord) system [Morekiula Devices (Molecula Devices)]. DNA was extracted using a DNA extraction kit (Wako Pure Chemical Industries, Ltd.) according to the sample attached to the kit.
  • the total DNA amount in the immunoglobulin preparation for intramuscular injection was below the detection limit (40 pg / m 1) in each case.
  • the concentration of immunoglobulin for intramuscular injection was 15 wZv%.
  • the immunoglobulin fraction obtained by fractionating and recovering the plasma of a mouse containing anti-human lymphocyte antibodies obtained by immunizing the mouse with the human lymphocytes was used as a starting material.
  • the membrane was subjected to membrane filtration in the same manner as in Example 1 to prepare an anti-human lymphocyte / antibody immunoglobulin preparation for intravenous injection.
  • Example 7 The immunoglobulin fraction obtained by fractionating and recovering the plasma of a mouse containing anti-human lymphocyte antibodies obtained by immunizing the mouse with the human lymphocytes was used as a starting material.
  • the membrane filtration treatment was carried out in the same manner as in Example 1 to prepare an anti-human lymphocyte / antibody immunoglobulin preparation for intravenous injection.
  • HCV spike test A sample obtained by adding HCV-positive plasma to a 5 w / v% solution of the anti-human immunoglobulin immunoglobulin disclosed in Example 6 was subjected to membrane filtration according to Example 6, and before and after the sample was processed. The amount of HCV genome in the solution was measured by the PCR method. As a result, those before the treatment was 1 0 3 PCR units Z m 1 is after treatment was reduced to below the detection limit.
  • the immunoglobulin preparation of the present invention particularly the immunoglobulin preparation for intramuscular injection, has an extremely small HCV genomic amount, it is expected that the risk of HCV infection is low and the safety is further improved.

Abstract

A more safe immunoglobulin preparation, especially one used for intramuscular injection, that can be obtained by an efficient and well-operable production process without causing viral contamination. The preparation is HCV genome negative, contains HCV genome in a concentration of at most 1 PCR unit/ml in a 0.1-15 w/v % immunoglobulin solution, and has a HCV genome removal rate of 103 or above.

Description

明 細 書 免疫 グ ロ プ リ ン 製剤 技 術 分 野  Description Immunoglobulin preparation technology
本発明は安全性に優れた免疫グロプリ ン製剤、 特に筋注用免疫グロプリ ン製剤 に関する。 背 景 技 術  The present invention relates to an immunoglobulin preparation excellent in safety, and particularly to an immunoglobulin preparation for intramuscular injection. Background technology
免疫グロプリ ンとは抗体およびこれと構造上 · 機能上の関連をもつタンパク の総称でありィムノグロブリ ン ( I gと略す) ともよばれる。 魚類から哺乳類に いたるすべての脊椎動物の体液中に存在し、 リ ンパ系細胞 (形質細胞) によって 産生される。 物理化学的あるいは免疫学的な性伏から 5つのクラス (G , M , A , D , E ) に分類される。 分子の基本構造は各クラス共通で、 分子量 5万〜 7万の H鎖と、 2 . 3万の L鎖から構成される。 それぞれのクラスは多種多様の抗体の 集合であるので、 クラスが異なっても特異性が共通の抗体が存在する。 また、 同 —のクラスに属する免疫グロブリ ンでも、 抗原との反応特異性によって、 部分的 に構造が異なっている。 したがって免疫グロブリ ンは、 非常に多種類の蛋白質の 混合物である。  Immunoglobulin is a generic name for antibodies and proteins that have structural and functional relationships with them, and is also called imnoglobulin (abbreviated as Ig). It is present in the body fluids of all vertebrates, from fish to mammals, and is produced by lymphoid cells (plasma cells). Classified into five classes (G, M, A, D, E) based on their physicochemical or immunological properties. The basic structure of the molecule is common to each class, and consists of a heavy chain with a molecular weight of 50,000 to 70,000 and a light chain with 23,000. Since each class is a collection of a wide variety of antibodies, there are antibodies that have the same specificity even if the classes are different. In addition, immunoglobulins belonging to the same class have partially different structures depending on the reaction specificity with antigens. Thus, immunoglobulins are a mixture of very diverse proteins.
免疫グロプリ ン製剤はプール血漿から調製される通常の免疫グロプリ ン製剤と、 特定の抗原に対する抗体価が特に高い免疫グロプリ ンからなる免疫グロプリ ン製 剤、 免疫グロプリ ンと他の物質とを複合化した免疫グロプリ ン製剤、 動物に免疫 して得た血漿から回収した免疫グロプリ ン製剤等の、 いわゆる特殊免疫グロプリ ン製剤に大別される。 また、 投与経路に応じて筋肉内投与 (筋注) 用製剤と静脈 内投与 (静注) 用製剤がある。 なお、 静注用製剤は製法により、 非化学修飾型製 剤、 化学修飾型製剤、 酵素処理型製剤がある。 非化学修飾型製剤にはポリエチレ ングリ コール (P E G ) 処理製剤、 p H 4処理製剤、 イオン交換体処理製剤等が ある。 化学修飾型製剤にはアルキル化製剤、 スルホ化製剤等がある。 酵素処理型 製剤にはプラスミ ン処理製剤、 ペプシン処理製剤、 卜 リブシン処理製剤等がある。 これらの免疫グロブリ ン製剤は厚生省薬務局監修の 「生物学的製剤基準」 により. 製法、 性状、 品質、 貯法等に関する基準が厳密に規格されている。 Immunoglobulin preparations are a combination of normal immunoglobulin preparations prepared from pooled plasma, immunoglobulin preparations consisting of immunoglobulins with particularly high antibody titers to specific antigens, and immunoglobulin and other substances Immunoglobulin preparations, and immunoglobulin preparations collected from plasma obtained by immunizing animals, and so-called special immunoglobulin preparations. Depending on the route of administration, there are preparations for intramuscular administration (intramuscular injection) and preparations for intravenous administration (intravenous injection). Intravenous preparations include non-chemically modified preparations, chemically modified preparations, and enzyme-treated preparations depending on the manufacturing method. Non-chemically modified preparations include polyethylene glycol (PEG) treated preparations, pH 4 treated preparations, and ion exchanger treated preparations. Chemically modified products include alkylated products and sulfonated products. Enzyme-treated preparations include plasmin-treated preparations, pepsin-treated preparations, and tribsine-treated preparations. These immunoglobulin preparations are strictly regulated according to the “Biological Preparation Standards” supervised by the Pharmaceutical Affairs Bureau, Ministry of Health and Welfare.
免疫グロプリ ンはウィルス、 細菌等の抗体を多く含有しているため、 免疫グロ ブリ ン製剤と して、 感染症の予防 · 治療に広く使用されている。  Since immunoglobulin contains a large amount of antibodies such as viruses and bacteria, it is widely used as an immunoglobulin preparation for the prevention and treatment of infectious diseases.
血漿蛋白製剤である免疫グロブリ ン製剤は、 一般に、 ヒ 卜またはその他の哺乳 動物の血漿より製造される。 しかし、 免疫グロプリ ン製剤の原料となるヒ 卜また はその他の哺乳動物の血漿には、 多種の夾雑ウイルスが存在する可能性が考えら れる。  Immunoglobulin preparations, which are plasma protein preparations, are generally produced from human or other mammalian plasma. However, it is possible that various contaminating viruses may be present in the plasma of humans or other mammals that are the raw materials for immunoglobulin preparations.
血漿中の夾雑ウィルスの中でも、 C型肝炎ウィルス (以後、 HCVともいう) は、 近年その存在が確認されたばかりで、 この H C Vの感染に対する予防 .治療 方法が十分に明らかにされていない現状である。  Among the contaminating viruses in plasma, hepatitis C virus (hereinafter also referred to as HCV) has only recently been confirmed to be present, and the method of preventing and treating HCV infection has not yet been fully elucidated. .
本発明は、 ウィルス感染に対して、 効率よく、 かつ操作性の良好な製造方法に より得ることができる、 より安全性の高い免疫グロブリ ン製剤、 特に筋注用免疫 グロプリ ン製剤を提供することにある。 発 明 の 開 示  An object of the present invention is to provide a safer immunoglobulin preparation, particularly an immunoglobulin preparation for intramuscular injection, which can be obtained efficiently and with good operability against virus infection. It is in. Disclosure of the invention
今回、 本発明者らは上記事情を考慮して各種検討を行った桔果、 免疫グロプリ ン製剤、 特に筋注用免疫グロブリ ン製剤について、 ウィルス感染、 特に HCV感 染に対して、 より安全性の高い製剤を開発できることを見出して、 本発明を完成 した。  In this study, the present inventors conducted various studies in consideration of the above circumstances, and found that immunoglobulin preparations, particularly immunoglobulin preparations for intramuscular injection, were more safe against virus infection, especially HCV infection. The present inventors have found that it is possible to develop a formulation having a high level of performance and completed the present invention.
即ち、 本発明は、 HCVゲノムが陰性である免疫グロブリ ン製剤、 特に筋注用 免疫グロプリ ン製剤である。  That is, the present invention is an immunoglobulin preparation having a negative HCV genome, particularly an immunoglobulin preparation for intramuscular injection.
本発明における 「HCVゲノムが陰性」 とは、 HCVゲノム量が 1 P C R単 位 (または C I D50) /m l以下のレベルを示すものである。 The term "HCV genome negative" in the present invention indicates a level of HCV genome amount of 1 PCR unit (or CID 50 ) / ml or less.
「H C Vゲノムが陰性」 の好ま しい例の一つと しては、 0. l〜 1 5 wZv% 免疫グロプリ ン溶液において H C Vゲノム量が 1 P CR単位 Zm 1以下を示す ものである。  One of the preferred examples of "negative HCV genome" is that the amount of HCV genome is less than 1 PCR unit Zm1 in 0.1 to 15 wZv% immunoglobulin solution.
また、 「HCVゲノムが陰性 J の、 他の、 好ま しい例の一つと しては、 HCV ゲノムの除去率が 1 03以上を示すものである。 なお、 本発明における 「H C Vゲノムの除去率」 の測定 · 算出方法は、 特に限 定されないが、 本発明の免疫グロプリ ン製剤調製前の免疫グロプリ ン含有溶液の P C R単位値と、 本発明の免疫グロプリ ン製剤の P C R単位値を比較することに よる方法が、 最も好ま しい。 Further, "HCV genome negative J, other, in a one favored correct example, in which the removal rate of the HCV genome indicates 1 0 3 or more. The method of measuring and calculating the “removal rate of the HCV genome” in the present invention is not particularly limited. However, the PCR unit value of the immunoglobulin-containing solution before the preparation of the immunoglobulin preparation of the present invention and the immune unit of the present invention The method by comparing the PCR unit values of the glopurin preparation is most preferable.
血漿分画製剤に混入する恐れのあるウィルスを除去あるいは不活化するために, 原料血漿のスク リ ーニング、 高度精製法、 液状加熱、 乾燥加熱、 TN B P/Tw e e n処理、 いわゆる S D処理等が開発され、 現在、 単独あるいは複数のウィル ス除去法や不活化法を組み入れた各種製剤が供給されている。 例えば、 特開昭 6 To remove or inactivate viruses that may be contaminated with plasma fractionated products, we have developed raw plasma screening, advanced purification, liquid heating, dry heating, TN BP / Tween treatment, so-called SD treatment, etc. Currently, a variety of formulations are available that incorporate one or more virus removal or inactivation methods. For example, JP
1 - 7 8 7 3 0号公報、 同 6 1 — 1 9 1 6 2 2号公報、 特開平 2 - 8 3 3 3 2号 公報、 同 2 — 1 8 0 8 3 3号公報、 同 2 — 2 0 9 8 1 4号公報、 同 3 - 2 1 8 3No. 1-7 8 7 3 0, No. 6 1 — 1 9 1 6 2 2 No., Japanese Unexamined Patent Application Publication No. Hei 2-8 3 3 3 2 No. 2 0 9 8 14 No. 3, 3-2 1 8 3
2 2号公報、 同 3 — 2 5 8 7 2 8号公報、 U S P N o. 4 7 2 1 7 7 7、 E P A N o. 1 7 7 8 3 6、 E P A N o. 1 9 6 7 2 WP I N o. 9 0 - 1 3 5 6 7 2 / 1 8. WP I N o. 9 0— 2 5 7 5 8 0 / 3 4、 W P I o. 9 0 - 2 9 5 5 9 7 / 3 9、 U S P N o. 5 1 5 1 4 9 9、 E P A N o. 3 7 8 2 0 8、 WP I N o. 9 2 — 0 0 4 4 5 1 / 0 1等を参照のこと。 No. 2 Publication, No. 3 — 2 5 8 7 2 8 Publication, USPN o. 4 7 2 1 7 7 7, EPAN o. 1 7 7 8 3 6, EPAN o. 1 9 6 7 2 WP IN o. 9 0-1 3 5 6 7 2/1 8. WP IN o. 9 0— 2 5 7 5 8 0/3 4, WPI o. 9 0-2 9 5 5 9 7/39, USPN o. 5 See 1 5 1 4 9 9, EPAN o. 3 7 8 2 0 8, WP IN o. 9 2 — 0 0 4 4 5 1/0 1, etc.
ところで、 筋注用免疫グロブリ ン製剤についてみると、 原料血漿のスク リー二 ングゃアルコール分画によりウィルスの混入の可能性は非常に低く、 疫学的にみ ても安全性の高い製剤であると言われている。 しかしながら、 筋注用免疫グロブ リ ン製剤には P E G分画、 加熱処理あるいは S D処理は組み込まれておらず、 ゥ ィルスの混入の可能性を完全に否定することはできない。  By the way, regarding immunoglobulin preparations for intramuscular injection, there is a very low possibility of virus contamination due to screening of the source plasma and alcohol fractionation, indicating that the preparations are highly safe even from an epidemiological point of view. It is said. However, immunoglobulin preparations for intramuscular injection do not incorporate PEG fractionation, heat treatment or SD treatment, and the possibility of virus contamination cannot be completely ruled out.
そこで、 新たなウィルス除去法 (あるいは不活化法) と して多孔性中空糸を用 いた、 膜據過処理が注目されつつある 〔ジャパニーズ ジャーナル ォブ トラ ンスフユジョ ン メディ スイ ン, 第 3 4号, 第 6卷, 第 6 1 5〜 6 1 7頁. 1 9 8 8年 ( J a p a n e s e J o u r n a l o f T r a n s f u s i o n M e d i c i n e , 3 4 ( 6 ) 6 1 5 - 6 1 7 ( 1 9 8 8 ) ) 〕 。 しかし、 多孔 性中空糸はその孔径が非常に微細なために蛋白質の透過性能が悪く、 高分子の蛋 白質や高濃度の蛋白質溶液はそのままでは多孔性中空糸を用いた膜濂過処理が困 難であり、 透過性能を高めるためには各種条件を検討する必要に迫られていた。 本発明の免疫グロブリ ン製剤の製造方法の好ま しい例と しては、 例えば、 免疫 グロプリ ン含有溶液に対して平均孔径 1〜 1 0 0 n mの多孔性中空糸を浸濱し、 4〜5 0て、 逋過圧力 0 . 1〜1 k g f / c m 2 で膜濾過処理を行う方法が挙げ られる。 Therefore, membrane-based treatment using porous hollow fibers as a new virus removal method (or inactivation method) is attracting attention [Japanese Journal of Transfusion Medicine Medicine, No. 34, Vol. 6, pp. 615-617. 198 8 (Japananese Journalof Transfusion Medicine, 34 (6) 6 15-6 17 (1 988))]. However, the porous hollow fiber has a very fine pore size and therefore has poor protein permeability, and it is difficult to perform membrane filtration using a porous hollow fiber without using a high-molecular-weight protein or a high-concentration protein solution. It was difficult, and it was necessary to consider various conditions in order to improve the permeation performance. Preferred examples of the method for producing the immunoglobulin preparation of the present invention include: Guropuri down-containing solution Hitahama porous hollow fibers the average pore diameter. 1 to 1 0 0 nm respect, a method of performing 4-5 Te 0, the membrane filtration treatment with逋過pressure 0. 1~1 kgf / cm 2 Are mentioned.
①出発原料  ① Starting material
この製造方法の出発原料である免疫グロブリ ン含有溶液は、 基本的に免疫グロ プリ ンを主体と して含むものであれば、 特に制限されない。  The immunoglobulin-containing solution, which is the starting material for this production method, is not particularly limited as long as it basically contains immunoglobulin as a main component.
従って、 この製造方法により得られる免疫グロプリ ン製剤に有効成分と して含 まれる免疫グロブリ ンは、 医薬品と して用いられる程度に高度に精製されるもの である。 具体的な出発原料には、 ヒ トまたはゥマ血漿由来であって、 免疫グロブ リ ン画分に由来するもの等が例示される。  Therefore, the immunoglobulin contained as an active ingredient in the immunoglobulin preparation obtained by this production method is highly purified to the extent that it is used as a pharmaceutical. Specific starting materials include those derived from human or plasma plasma and derived from the immunoglobulin fraction.
例えば、 出発原料と して、 血漿からのコーンのエタノール画分により得られる 画分 I I または免疫グロプリ ンを含むこれらと同等のペース 卜等が挙げられる。  For example, as a starting material, a fraction II obtained from the ethanol fraction of corn from plasma or an equivalent paste containing immunoglobulin and the like can be mentioned.
この製造方法においては、 特に好ま しく は免疫グロプリ ン製剤の原料となるコ 一ンの第 I I画分または第 I I + I I I 画分が用いられる。 また、 この製造方法は特定 の抗原に対する抗体価が特に高い免疫グロプリ ンからなる免疫グロプリ ン製剤や 該免疫グロプリ ンと他の物質と複合体化した免疫グロプリ ン製剤、 いわゆる特殊 免疫グロブリ ン製剤への適用が効果的である。 例えば、 高単位の高 H B s抗体を 含有する抗 H B s ヒ 卜免疫グロプリ ン (商品名 「へブスプリ ン」 、 ミ ドリ十字社 製) 、 高単位の破傷風抗毒素を含有する抗破傷風ヒ ト免疫グロプリ ン (商品名 「テクノブリ ン」 、 ミ ドリ十字社製) 、 高単位の抗 D ( R h 0 ) 抗体を含有する 抗 D ( R h 0 ) ヒ 卜免疫グロプリ ン (商品名 「抗 D人免疫グロプリ ンー ミ ドリ」 、 ミ ドリ十字社製) 、 高力価の抗 C M V (サイ トメガロウィルス) 抗体を含有する 抗 C M Vヒ ト免疫グロプリ ン、 高力価の抗ヒ 卜 リ ンパ球抗体を含有する抗ヒ ト リ ンパ球ゥマ免疫グロブリ ン (商品名 「アールブリ ン」 、 ミ ドリ十字社製) または ヒスタ ミ ン加ヒ ト免疫グロブリ ン (商品名 「ヒス トブリ ン」 、 ミ ドリ十字社製) 等が挙げられる。 本発明においては筋注用製剤が特に好ま しい態様と して例示さ れるが、 本発明はこれに限定されるものではなく、 例えば、 静注用製剤もまた、 本発明の一態様と して例示される。  In this production method, particularly preferably, the II fraction or the II + III fraction of the colon, which is a raw material of the immunoglobulin preparation, is used. In addition, this production method can be applied to an immunoglobulin preparation comprising an immunoglobulin having an especially high antibody titer to a specific antigen, an immunoglobulin preparation in which the immunoglobulin is complexed with another substance, a so-called special immunoglobulin preparation. Is effective. For example, anti-HBs human immunoglobulin containing a high unit of high HBs antibody (trade name “Hespulin”, manufactured by Green Cross), anti-tetanus human immunoglobulin containing a high unit of tetanus antitoxin Anti-D (Rh0) immunoglobulin (trade name "anti-D human immunity") containing high units of anti-D (Rh0) antibody Includes high-titer anti-CMV (cytomegalovirus) antibody, anti-CMV human immunoglobulin, and high-titer anti-human lymphocyte antibody Anti-immunoglobulin (trade name “Albulin”, manufactured by Green Cross) or histamine-added human immunoglobulin (trade name “Histobrin”, manufactured by Green Cross) ) And the like. In the present invention, an intramuscular formulation is exemplified as a particularly preferred embodiment, but the present invention is not limited to this.For example, an intravenous formulation is also an embodiment of the present invention. Is exemplified.
②多孔性中空糸 この製造方法の膜濾過処理に使用される多孔性中空糸と しては、 前記条件を満 足するのであればその他の要件は種々選定され得る。 ② Porous hollow fiber Various other requirements can be selected for the porous hollow fiber used in the membrane filtration treatment of this production method as long as the above conditions are satisfied.
多孔性中空糸の素材と しては、 特に制限はないが、 好ま しく は、 再生セルロー スが挙げられる。  The material of the porous hollow fiber is not particularly limited, but is preferably a regenerated cellulose.
該再生セルロースの多孔性中空糸は、 好ま しく はセルロース錮アンモニア溶液 からミ クロ相分離法 〔アメ リカン ケミ カル ソサイァティ (Am. C h e m. S o c. ) , 9 , 1 9 7 — 2 2 8 ( 1 9 8 5 ) 〕 により調製される。 多孔性中空 糸の平均孔径は 1〜 1 0 0 nm、 好ま しく は 1 0〜 7 5 nm、 より好ま しく は 1 0〜 5 0 nm、 特に好ま しく は 3 5 ± 2 nmまたは 1 5 ± 2 nmであり、 中空糸 内径は好ま しく は 3 3 0 ± 3 0 m、 膜厚は好ま しく は 3 5 ± 3. 5 / mまたは 2 7 ± 3 ;u mで、 その膜は好ま しく は多重雇構造である。  The porous hollow fiber of the regenerated cellulose is preferably subjected to a microphase separation method [American Chemical Society (Am. Chem. Soc.), 9, 1997—22] from a cellulose ammonia solution. 8 (19985)]. The average pore size of the porous hollow fiber is from 1 to 100 nm, preferably from 10 to 75 nm, more preferably from 10 to 50 nm, particularly preferably 35 ± 2 nm or 15 ± 2 nm, the inner diameter of the hollow fiber is preferably 330 ± 30 m, the film thickness is preferably 35 ± 3.5 / m or 27 ± 3; um, and the film is preferably hired. Structure.
多孔性中空糸は、 好ま しく はモジュールの態様で使用する。 該モジュールは膜 面積 0. 0 l ~ l m2 の膜構造を有する多孔性中空糸とこれを充塡するための容 器およびこれらを一体化するための接着剤により構成される。 The porous hollow fiber is preferably used in the form of a module. The module is configured by an adhesive to integrate the porous hollow fiber and container for Takashi塡this and these having the film structure of the membrane area 0. 0 l ~ lm 2.
③濾過処理方法  ③ Filtration method
①の免疫グロプリ ン含有溶液を②の多孔性中空糸からなる膜に浸演して濾過処 理する。  The solution containing the immunoglobulin in (1) is immersed in the membrane consisting of the porous hollow fiber in (2) and filtered.
免疫グロプリ ン含有溶液は蛋白質澳度と して 0. 1〜 1 5 wZv %程度に調整 する。 その溶液の p Hは特に 6. 4〜 7. 2程度に調整される。  The immunoglobulin-containing solution is adjusted to a protein concentration of about 0.1 to 15 wZv%. The pH of the solution is particularly adjusted to about 6.4 to 7.2.
濾過圧力は 0. 1〜 1 1ζ 2 ί ^ πι2 、 好ま しく は 0. 1〜 0. 5 k g f Z c m2 程度、 より好ま しく は 0. 1 ~ 0. 3 k g f c m2 である。 Filtration pressure is 0. 1~ 1 1ζ 2 ί ^ πι 2, is favored properly 0. 1~ 0. 5 kgf Z cm 2 or so, more preferred properly is 0. 1 ~ 0. 3 kgfcm 2.
処理温度は 4〜 5 0 °C、 好ま しく は 3 0 ~ 4 0 ° (:、 より好ま しく は 3 5 ~ 3 7 °Cである。  The processing temperature is 4 to 50 ° C, preferably 30 to 40 ° C (:, more preferably 35 to 37 ° C.
據過処理の態様としては、 流体にひずみ速度を与えながら濾過するクロスフ口 一 ¾過法 (循環式) とひずみ速度を与えずに濂過するデッ ドエン ド «過法 (非循 環式) がある。 好ましく は加圧空気による方法を用いる。  As a form of the dependent treatment, there are a cross-floor pass-through method (circulation type) in which a fluid is strained while giving a strain rate, and a dead-end method (a non-circulation type) in which a fluid passes without a strain rate. is there. Preferably, a method using pressurized air is used.
また、 上記製造方法の条件による膜據過処理工程は、 複数回行う ことができる。 更に、 この製造方法により処理される免疫グロプリ ン含有溶液と して、 上記条 件の膜濾過処理工程前に免疫グロプリ ン含有溶液を予備的にこの製造方法の条件 以外の中空糸膜濾過、 または平膜状の濾過膜等により濾過処理を経たものを用い ることができる。 In addition, the film transfer process under the conditions of the above manufacturing method can be performed a plurality of times. Further, as the immunoglobulin-containing solution to be treated by this production method, the immunoglobulin-containing solution is preliminarily prepared before the membrane filtration step under the above conditions. Other than the above, those which have been subjected to filtration treatment with a hollow fiber membrane filtration or a flat membrane filtration membrane or the like can be used.
本発明の免疫グロブリ ン製剤は、 目的とする効能 · 効果に応じて、 更に、 調剤 されたり、 またはその投与量が調整される。  The immunoglobulin preparation of the present invention is further formulated or its dosage is adjusted according to the intended efficacy.
調剤方法と しては、 各種の抗原 ' 抗体が陰性になるようにしたり、 アミ ノ酸類. 糖類、 糖アルコール類、 無機塩類そのほかの添加物等を加える方法が挙げられる < また、 公知の手段で、 乾燥製剤とすることにより、 更に長期の保存を行うこと も できる。  Examples of the dispensing method include a method in which various antigens and antibodies are made negative, and a method in which amino acids. Sugars, sugar alcohols, inorganic salts, and other additives are added. By preparing a dry preparation, storage for a longer period can be performed.
本発明の免疫グロブリ ン製剤は、 各種の感染症ゃァレルギ一性疾患の発病予防 または症状の軽減に、 効能を示すものである。  The immunoglobulin preparation of the present invention is effective in preventing the onset of various infectious and allergic diseases and in reducing the symptoms.
本発明の免疫グロブリ ン製剤の投与量, 投与回数は、 製剤の組成、 患者の症状、 年齢、 体重等により適宜、 調整、 検討されるものである。 発明を実施するための最良の形態  The dose and frequency of administration of the immunoglobulin preparation of the present invention are appropriately adjusted and studied depending on the composition of the preparation, the patient's symptoms, age, body weight, and the like. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説明するために実施例および実験例を挙げるが、 本発明は これらにより何ら限定されるものではない。  Examples and experimental examples are described in order to explain the present invention in more detail, but the present invention is not limited thereto.
実施例 1  Example 1
H C Vスパイ クテス 卜により検討した。  The study was conducted using an HCV spike test.
①出発原料と して 5 w/v%免疫グロプリ ン溶液に H C V陽性血漿を添加した 検体を用いた。  (1) As a starting material, a sample prepared by adding HCV positive plasma to a 5 w / v% immunoglobulin solution was used.
②多孔性中空糸と して旭化成 (株) より購入した B MMを使用した (以下の実 施例および実験例についても同様) 。  (2) BMM purchased from Asahi Kasei Corporation was used as the porous hollow fiber (the same applies to the following examples and experimental examples).
B MM; 銅アンモニア法再生セルロースを原料と した多孔性中空糸 〔ベンベル グ マイ クロポーラス メ ンブラン (B e mb e r g M i c r o p o r o u s M e m b r a n e ) 〕 で膜面穣 0. 0 0 1〜 1. O m2 を有する。 B MM: Porous hollow fiber [Bemberg Microcroporous Membrane] made from cuprammonium regenerated cellulose as raw material 0.001 to 1. O m 2 Having.
平均孔径 3 5 nmの B MMモジュールを使用した。  A BMM module with an average pore size of 35 nm was used.
平均孔径 3 5 n mの B MMモジュール (商品名 : プラノバ 3 5 ) は 3 5 ± 2 n mの平均孔径を有し、 膜層は 1 5 0展以上の多重層構造となった中空糸内径 3 3 0 ± 3 0 i m、 膜厚 3 5 ± 3. 5 mの中空糸膜と高圧蒸気滅菌可能なポリカー ボネィ 卜製のプラスチック容器、 及びこれらを一体化するポリ ウレタン系接着剤 により構成され、 オー トク レイブ滅菌製品はモジュール内に注射用蒸留水が充堪 されている。 ブラノバを構成する各種材料の安全性は、 日本薬局方の定める方法 により確認されている (B MM商品説明害より) 。 The BMM module with an average pore diameter of 35 nm (trade name: Planova 35) has an average pore diameter of 35 ± 2 nm, and the membrane layer has a multilayer structure with a multilayer structure of more than 150 expansions. 0 ± 30 im, hollow fiber membrane with a thickness of 35 ± 3.5 m and a polycarbonate capable of high-pressure steam sterilization The autoclave sterilized product is composed of a plastic container made of Bonnet and a polyurethane adhesive that integrates them, and the module is filled with distilled water for injection. The safety of the various materials that make up Branova has been confirmed by the method specified by the Japanese Pharmacopoeia (BMM product description damage).
③濾過処理方法  ③ Filtration method
5 wZv%免疫グロプリ ン溶液に H C V陽性血漿を添加した検体を、 p Hを 6. 4〜 7. 2となるように調整した。 除菌濂過 (孔径 0. 2 m、 メ ンブラン · フ ィ ルターによる濾過) を行った後に 3 5〜 3 7て、 濾過圧力 0. 2 k g f Z c m 2 で 1 ~ 5時間の膜濂過処理 (空気圧を用いたデッ ドエン ド嫌過法) を行った。 冷却後に再度除菌濾過を行い、 分注して、 筋注用のヒ 卜免疫グロプリ ン製剤を調 製した。 A sample obtained by adding HCV-positive plasma to a 5 wZv% immunoglobulin solution was adjusted to have a pH of 6.4 to 7.2. After removing bacteria (filtration through a membrane filter with a pore size of 0.2 m and membrane filter), the membrane is filtered for 35 to 37 times at a filtration pressure of 0.2 kgf Z cm 2 for 1 to 5 hours. (A dead-end method using air pressure). After cooling, sterilization filtration was performed again, and the mixture was dispensed to prepare a human immunoglobulin preparation for intramuscular injection.
この検体の処理前後の溶液中の H C Vゲノムを P C R法により測定した。  The HCV genome in the solution before and after the treatment of this sample was measured by the PCR method.
本試験の P C R法は、 ネステツ 卜 (ダブル) [N e s t e d (D o u b l e ) 〕 逆転写ポリメラーゼ連鎖反応法により行った。 この方法は供試サンプルか らの RNA抽出、 (HCV) c D N Aの作製、 N e s t e d P C Rおよびドッ ト ハイブリダィゼーショ ンまたは PAGEによる P CR産物の分析の各操作か らなる。  The PCR method in this test was performed by a nested (double) [Nested (Double)] reverse transcription polymerase chain reaction. This method involves the steps of extracting RNA from a test sample, preparing (HCV) cDNA, analyzing NestedPCR and analyzing the PCR product by dot hybridization or PAGE.
[試料からの RN Aの抽出] 試薬と してグァニジン、 グァニジン · チオシァネー 卜、 サルコシル、 フエ ノール、 クロ口ホルム、 イ ソア ミ ルアルコールを用いた。 反応条件は室温と した。  [Extraction of RNA from Sample] As reagents, guanidine, guanidine thiosinate, sarkosyl, phenol, black-mouthed form, and isoamyl alcohol were used. The reaction conditions were room temperature.
[逆転写酵素による (HCV) c DNAの作製] 試薬と して逆転写酵素、 ランダ ム ·へクサマーを用いた。 反応条件は 4 2 eC 1時間と した。 [Preparation of (HCV) cDNA by Reverse Transcriptase] Reverse transcriptase and random hexamer were used as reagents. The reaction condition was 42 eC for 1 hour.
[N e s t e d P CR法による (HCV) c DNAの增幅] 試薬として HC V プライマー ( 5' 側の非コー ド化領域) 、 T a qポリ メラーゼを用いた。 反応条 件は 4 2て以上で 2 0サイクル以上、 ァニーリ ングノ P CRを 2回繰り返した。  [Width of (HCV) cDNA by Nested PCR method] HCV primer (5 ′ non-coding region) and Taq polymerase were used as reagents. The reaction conditions were at least 42 times and at least 20 cycles, and the annealing Lingno PCR was repeated twice.
[P CR反応産物の分析] ドッ ト ハイブリダィゼ一シヨ ンまたは 6 %PAGE (ェチジゥム ' ブロ ミ ドを使用) によった。  [Analysis of PCR reaction product] By dot hybridization or 6% PAGE (using ethidium bromide).
その桔果、 本発明の筋注用免疫グロプリ ン製剤調整前の免疫グロプリ ン含有溶 液は 1 03 P C R単位 1であったものが、 本発明の製剤は検出限界以下にま で低下した。 As桔果, intramuscular for immune Guropuri emissions formulation adjusted before immunization Guropuri emissions containing solvent solution of the present invention is what was 1 0 3 PCR unit 1, the formulation of the present invention is below the detection limit Nima Dropped.
実施例 2  Example 2
破傷風トキソィ ドで免疫された高単位の破傷風抗毒素を含有する健康人血漿を, コーンの低温エタノール法で分画して得られる免疫グロブリ ン G画分を出発原料 と して用いて、 実施例 1 と同様に処理して、 筋注用の抗破傷風ヒ 卜免疫グロプリ ン製剤を調製した。  Example 1 was performed using the immunoglobulin G fraction obtained by fractionating healthy human plasma containing high units of tetanus antitoxin immunized with tetanus toxoid by the low temperature ethanol method of corn as a starting material. In the same manner as described above, an anti-tetanus human immunoglobulin preparation for intramuscular injection was prepared.
実施例 3  Example 3
高単位の抗 D ( R h 0 ) 抗体を含有する健康人血漿を、 コーンの低温エタノー ル法で分画して得られる免疫グロブリ ン G画分を出発原料と して用いて、 実施例 1 と同様に処理して、 筋注用の抗 D ( R h 0 ) ヒ ト免疫グロプリ ン製剤を調製し た。  Example 1 was performed using the immunoglobulin G fraction obtained by fractionating healthy human plasma containing a high unit of anti-D (Rh0) antibody by the cryogenic ethanol method of corn as a starting material. In the same manner as described above, an anti-D (R h0) human immunoglobulin preparation for intramuscular injection was prepared.
実施例 4  Example 4
高単位の抗 H B s抗体を含有する健康人血漿を、 コーンの低温エタノール法で 分画して得られる免疫グロプリ ン G画分を出発原料と して用いて、 実施例 1 と同 様に処理して、 筋注用の抗 H B s ヒ ト免疫グロプリ ン製剤を調製した。  Using the immunoglobulin G fraction obtained by fractionating healthy human plasma containing a high unit of anti-HBs antibody by the corn low-temperature ethanol method as the starting material, treating in the same manner as in Example 1. Then, an anti-HBs human immunoglobulin preparation for intramuscular injection was prepared.
実施例 5  Example 5
健康人血漿を、 コーンの低温エタノール法で分画して得られる免疫グロプリ ン G画分を出発原料と して用いて、 実施例 1 と同様に膜濾過処理した後に、 ヒス夕 ミ ン塩酸塩を添加して、 筋注用のヒスタ ミ ン加ヒ 卜免疫グロプリ ン製剤を調製し た。  Healthy human plasma was subjected to membrane filtration in the same manner as in Example 1 using the immunoglobulin G fraction obtained by fractionating corn by the low-temperature ethanol method as a starting material. Was added to prepare a histamine-added human immunoglobulin preparation for intramuscular injection.
実験例 1 (ウィルス除去効果)  Experimental example 1 (virus removal effect)
H C Vスパイ クテス トにより検討した。 5 w / v %免疫グロプリ ン溶液に H C V陽性血漿を添加した検体を本発明の条件 (実施例 1 ) で膜濾過処理し、 この検 体の処理前後の溶液中の H C Vゲノムを P C R法により測定した。 その結果、 処 理前は 1 0 3 P C R単位/ m 1であったものが、 処理後は検出限界以下にまで低 下した。 The study was conducted by HCV spike test. A sample obtained by adding HCV-positive plasma to a 5 w / v% immunoglobulin solution was subjected to membrane filtration under the conditions of the present invention (Example 1), and the HCV genome in the solution before and after treatment of this sample was measured by PCR. did. As a result, treatment before those were 1 0 3 PCR units / m 1, after treatment beat low to below the detection limit.
実験例 2 (調製した製剤の性状および安定性試験)  Experimental example 2 (Properties and stability test of the prepared preparation)
①性状  ① Properties
本発明の筋注用免疫グロプリ ン製剤の回収率は原料と した免疫グロプリ ン含有 溶液に対して 9 8%以上であり、 処理前後での分子量分布、 I gGサブクラス分 布、 抗体価等の性状変化はないことが確認された。 The recovery rate of the immunoglobulin preparation for intramuscular injection according to the present invention is determined by using the It was 98% or more with respect to the solution, and it was confirmed that there was no change in properties such as molecular weight distribution, IgG subclass distribution, and antibody titer before and after the treatment.
②安定性試験  ② Stability test
本実施例により調整された筋注用免疫グロプリ ン製剤について 2 5 °Cで 6力月 間保存して、 安定性試験を行った。  The immunoglobulin preparation for intramuscular injection prepared according to this example was stored at 25 ° C for 6 power months, and a stability test was performed.
その結果、 熱安定性は良好であり、 分子量分布、 I gGサブクラス分布、 抗体 価等の性状変化はないことが確認された。  As a result, it was confirmed that the thermostability was good and there was no change in properties such as molecular weight distribution, IgG subclass distribution, and antibody titer.
実験例 3 (ェン ドトキシンおよびェン ドトキシン様物質の測定)  Experimental example 3 (measurement of endotoxin and endotoxin-like substance)
トキシカラー、 ェン ドスぺシーキッ ト (生化学工業 (株) ) を用いて、 操作法 I (高感度法) で測定した。 試料は前処理と して過塩素酸処理を行って除蛋白し たものを使用し、 測定は主反応終了後にジァゾ力ップリ ングして 5 4 5 nmの吸 光度を測定した。 エン ド トキシン値はエン ドスぺシ一により測定し、 トキシン力 ラーシステム測定値からェン ドスぺーシ測定値を引いた値をェン ドトキシン様物 質 (;3— 1. 3 -グルカン) 値と した。  The measurement was carried out by Procedure I (high sensitivity method) using Toxicolor and Endosc Kit (Seikagaku Corporation). The sample used had been subjected to perchloric acid treatment and deproteinized as a pretreatment, and the absorption was measured at 545 nm using diazo force coupling after the main reaction was completed. The endotoxin level is measured by the endotoxin, and the endotoxin-like substance (; 3-1.3-glucan) value is obtained by subtracting the endotoxin measurement from the toxin capacity measurement. And
その桔果、 本発明の筋注用免疫グロブリ ン製剤はいずれの場合も、 処理前後に おいて低値のまま推移し、 処理後において値が增加することはなかった。  As a result, the immunoglobulin preparation for intramuscular injection of the present invention remained low before and after the treatment in any case, and the value did not increase after the treatment.
実験例 4 (ゲノム否定試験)  Experimental example 4 (genome denial test)
本発明の筋注用免疫グロプリ ン製剤中の総 DNA量をスレスホールド (T h r e s h o l d) システム 〔モラキユラ デバイセス (Mo l e c u l a r D e v i c e s ) 社〕 を用いて測定した。 DNAの抽出には DNA抽出キッ ト (和光 純薬工業 (株) ) を用い、 その添付試料に従って処理した。  The total amount of DNA in the immunoglobulin preparation for intramuscular injection of the present invention was measured using a threshold (Threeshord) system [Morekiula Devices (Molecula Devices)]. DNA was extracted using a DNA extraction kit (Wako Pure Chemical Industries, Ltd.) according to the sample attached to the kit.
その結果、 筋注用免疫グロプリ ン製剤中の総 DNA量はいずれの場合も検出限 界 ( 4 0 p g/m 1 ) 以下であった。  As a result, the total DNA amount in the immunoglobulin preparation for intramuscular injection was below the detection limit (40 pg / m 1) in each case.
筋注用免疫グロプリ ンの濃度は 1 5 wZv %であった。  The concentration of immunoglobulin for intramuscular injection was 15 wZv%.
実施例 6  Example 6
ヒ ト リ ンパ球をゥマに免疫して得た抗ヒ 卜 リ ンパ球抗体を含有するゥマ血漿を 分画して回収した免疫グロプリ ン画分を出発原料と して用い、 実施例 1と同様に 膜饞過処理して、 静注用の抗ヒ 卜 リ ンパ球ゥマ免疫グロプリ ン製剤を調整した。 実施例 7 ヒ ト リ ンパ球をゥマに免疫して得た抗ヒ 卜 リ ンパ球抗体を含有するゥマ血漿を 分画して回収した免疫グロプリ ン画分を出発原料と して用い、 実施例 1 と同様に 膜濾過処理して、 静注用の抗ヒ 卜 リ ンパ球ゥマ免疫グロプリ ン製剤を調製した。 ただし、 膜 ϋ過処理用の多孔性中空糸と して、 平均孔径 1 5 n mの Β Μ Μモジ ユール (商品名は 「ブラノバ 1 5」 、 旭化成 (株) 製、 孔径は 1 5 ± 2 n m、 膜 厚 2 7 ± 3 m、 その他の仕様は実施例 1 に同じ) を用いた。 The immunoglobulin fraction obtained by fractionating and recovering the plasma of a mouse containing anti-human lymphocyte antibodies obtained by immunizing the mouse with the human lymphocytes was used as a starting material. The membrane was subjected to membrane filtration in the same manner as in Example 1 to prepare an anti-human lymphocyte / antibody immunoglobulin preparation for intravenous injection. Example 7 The immunoglobulin fraction obtained by fractionating and recovering the plasma of a mouse containing anti-human lymphocyte antibodies obtained by immunizing the mouse with the human lymphocytes was used as a starting material. The membrane filtration treatment was carried out in the same manner as in Example 1 to prepare an anti-human lymphocyte / antibody immunoglobulin preparation for intravenous injection. However, as a porous hollow fiber for membrane filtration treatment, a module with an average pore diameter of 15 nm (brand name "Blanova 15", manufactured by Asahi Kasei Corporation, pore diameter of 15 ± 2 nm) The film thickness was 27 ± 3 m, and the other specifications were the same as in Example 1.)
実験例 5  Experimental example 5
H C Vスパイク試験により検討した。 実施例 6に開示した抗ヒ ト リ ンパ球ゥマ 免疫グロプリ ンの 5 w / v %溶液に H C V陽性血漿を添加した検体を実施例 6 に 準じて膜濾過処理し、 この検体の処理前後の溶液中の H C Vゲノム量を P C R法 により測定した。 その結果、 処理前は 1 0 3 P C R単位 Z m 1であったものが、 処理後は検出限界以下にまで低下した。 産業上の利用可能性 It was examined by HCV spike test. A sample obtained by adding HCV-positive plasma to a 5 w / v% solution of the anti-human immunoglobulin immunoglobulin disclosed in Example 6 was subjected to membrane filtration according to Example 6, and before and after the sample was processed. The amount of HCV genome in the solution was measured by the PCR method. As a result, those before the treatment was 1 0 3 PCR units Z m 1 is after treatment was reduced to below the detection limit. Industrial applicability
本発明の免疫グロプリ ン製剤、 特に筋注用免疫グロプリ ン製剤は、 H C Vゲノ ム量が極めて少ないため、 H C V感染の危険性が低く、 より安全性が高くなるこ とが期待できる。  Since the immunoglobulin preparation of the present invention, particularly the immunoglobulin preparation for intramuscular injection, has an extremely small HCV genomic amount, it is expected that the risk of HCV infection is low and the safety is further improved.

Claims

請 求 の 範 囲 1. H C Vゲノムが陰性である免疫グロブリ ン製剤。 Scope of Claim 1. An immunoglobulin preparation with a negative HCV genome.
2. H C Vゲノム量が P C R法で測定したものである請求の範囲第 1項に記載の 免疫グロプリ ン製剤。  2. The immunoglobulin preparation according to claim 1, wherein the amount of HCV genome is measured by a PCR method.
3. H C Vゲノムが量が 1 P C R単位 Zm 1以下である請求の範囲第 1項に記 載の免疫グロプリ ン製剤。  3. The immunoglobulin preparation according to claim 1, wherein the amount of the HCV genome is 1 PCR unit Zm 1 or less.
4. 筋肉内または静脈内投与用である請求の範囲第 1項に記載の免疫グロプリ ン 製剤。  4. The immunoglobulin preparation according to claim 1, which is for intramuscular or intravenous administration.
5. ヒ トまたはゥマ血漿由来である請求の範囲第 1項に記載の免疫グロブリ ン製 剤。  5. The immunoglobulin preparation according to claim 1, which is derived from human or plasma.
6. ヒ 卜免疫グロプリ ン、 抗 H B s ヒ 卜免疫グロプリ ン、 抗破傷風ヒ 卜免疫グロ ブリ ン、 抗 D (R h 0 ) ヒ 卜免疫グロブリ ン、 抗 CMVヒ ト免疫グロブリ ン、 抗 ヒ ト リ ンパ球ゥマ免疫グロブリ ンまたはヒスタ ミ ン加ヒ ト免疫グロブリ ンである 請求の範囲第 1項に記載の免疫グロプリ ン製剤。  6. Human immunoglobulin, anti-HBs human immunoglobulin, anti-tetanus human immunoglobulin, anti-D (Rh0) human immunoglobulin, anti-CMV human immunoglobulin, anti-human 2. The immunoglobulin preparation according to claim 1, wherein the immunoglobulin preparation is a lymphocyte spheroid immunoglobulin or a histamine-added human immunoglobulin.
7. 溶液伏態では 0. 1〜 1 5 w/v%の免疫グロブリ ンからなる請求の範囲第 1項に記載の免疫グロプリ ン製剤。  7. The immunoglobulin preparation according to claim 1, comprising 0.1 to 15 w / v% of immunoglobulin in a solution state.
8. 添加剤と して、 アミ ノ酸類、 糖類、 糖アルコール類または無機塩類を含んで なる請求の範囲第 1項に記載の免疫グロプリ ン製剤。  8. The immunoglobulin preparation according to claim 1, comprising an amino acid, a sugar, a sugar alcohol or an inorganic salt as an additive.
9. 溶液状態での p Hが 6. 4〜 7. 2である諝求の範囲第 1項に記載の免疫グ ロブリ ン製剤。  9. The immunoglobulin preparation according to item 1, wherein the pH in a solution state is 6.4 to 7.2.
PCT/JP1995/001979 1994-09-28 1995-09-28 Immunoglobulin preparation WO1996009839A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25733594 1994-09-28
JP6/257335 1994-09-28

Publications (1)

Publication Number Publication Date
WO1996009839A1 true WO1996009839A1 (en) 1996-04-04

Family

ID=17304939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001979 WO1996009839A1 (en) 1994-09-28 1995-09-28 Immunoglobulin preparation

Country Status (1)

Country Link
WO (1) WO1996009839A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124437A (en) * 1997-03-19 2000-09-26 Welfide Corporation Immunoglobulin preparation and preparation process thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GASTROENTEROLOGY, Vol. 104, No. 6, (1993), YAMAMOTO A.M. et al., pp. 1762-1767. *
J. MED. VIROL., Vol. 43, No. 4, (1994), EL-BATANONY M.H. et al., pp. 380-385. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124437A (en) * 1997-03-19 2000-09-26 Welfide Corporation Immunoglobulin preparation and preparation process thereof

Similar Documents

Publication Publication Date Title
Kimman et al. Local and systemic antibody response to bovine respiratory syncytial virus infection and reinfection in calves with and without maternal antibodies
JP3297433B2 (en) Method for inactivating viruses in pharmaceutical compositions contaminated with viruses
US11013794B2 (en) Method for preparing foot-and-mouth disease vaccines
US4542016A (en) Non-a non-b hepatitis surface antigen useful for the preparation of vaccines and methods of use
WO1996016985A1 (en) Passive transfer immune serum and method of making
JP2008500959A (en) Immunoglobulin production method safe for viruses
US5371196A (en) Process for producing secretory immunoglobulin A preparations
CN111471103A (en) Heterologous antibody of new coronavirus (2019-nCOV) and preparation method thereof
KR19990037317A (en) Intravenous Immunoglobulin Formulations Store at Room Temperature
JPS6098988A (en) Purification of lpf-ha
EP0102731A2 (en) Methods for preparation of hepatitis B surface antigen free gamma globulins and products
US6962700B1 (en) Method of manufacturing immune globulin
CN116731162B (en) Human immunoglobulin production process
WO1996009839A1 (en) Immunoglobulin preparation
US20240024459A1 (en) Method for producing an antigen corresponding to the inactivated sars-cov-2 virus, antigen corresponding to the inactivated sars-cov-2 virus, antigenic composition, kits, and uses thereof
Scheiblauer et al. Prevalance of hepatitis C virus in plasma pools and the effectiveness of cold ethanol fractionation
TWI526214B (en) Method for preparing a plasma product depleted of one or more thrombogenic factors
JPH0825903B2 (en) γ-globulin-containing aqueous solution
JPH07215891A (en) Production method of globulin preparation for intramuscular injection
JP4003235B2 (en) Method for producing intravenous immunoglobulin preparation
JPS5840930B2 (en) Manufacturing method for hepatitis B vaccine
JP4359352B2 (en) Room temperature storage formulation
WO2022224271A1 (en) Polyclonal antibodies against sars-cov-2 and implementations thereof
AU2021284903A1 (en) Hyperimmune IgG and/or IgM compositions and method for preparing thereof and method for obtaining hyperimmune human plasma from a donor
JP2003159094A (en) Method for aseptically producing yolk antibody

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB IT NL SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase