WO1996012203A1 - Verfahren und vorrichtung zur elektrooptischen entfernungsmessung - Google Patents

Verfahren und vorrichtung zur elektrooptischen entfernungsmessung Download PDF

Info

Publication number
WO1996012203A1
WO1996012203A1 PCT/EP1995/003712 EP9503712W WO9612203A1 WO 1996012203 A1 WO1996012203 A1 WO 1996012203A1 EP 9503712 W EP9503712 W EP 9503712W WO 9612203 A1 WO9612203 A1 WO 9612203A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
signals
radiation pulse
pulse signals
signal
Prior art date
Application number
PCT/EP1995/003712
Other languages
English (en)
French (fr)
Inventor
Bernhard GÄCHTER
Original Assignee
Leica Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Ag filed Critical Leica Ag
Priority to US08/817,097 priority Critical patent/US5892576A/en
Priority to EP95933410A priority patent/EP0786097B1/de
Priority to CA002202532A priority patent/CA2202532C/en
Priority to JP51287796A priority patent/JP3536984B2/ja
Priority to DE59502277T priority patent/DE59502277D1/de
Publication of WO1996012203A1 publication Critical patent/WO1996012203A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the invention relates to a method for electro-optical distance measurement according to the preamble of patent claim 1. Furthermore, the invention relates to a device for carrying out the method according to patent claim 8.
  • EP 0 312 524 B1 describes a method for electro-optical
  • the detected radiation pulse signals (echo signals) are sampled, digitized, added periodically in an adder and then stored in a memory.
  • a memory location of the memory is assigned to the samples of a period.
  • the samples of the detected radiation pulse signals are added to the already stored samples of the radiation pulse signals detected in the previous period.
  • a sum pulse signal is formed as a result of the addition of the sampled values, and the time position of the radiation pulse signal can be determined from its position in time in relation to the time of the pulse emission.
  • a disadvantage of this method is that a high sampling rate is necessary in order to determine the exact position of the echo signal. Since the sampling rate is limited for technical reasons and, in addition, a higher sampling rate required a larger memory, only a certain number of sampling values per pulse signal are available for evaluation. As a result, errors can occur when determining the temporal position of the detected pulse signal, in particular when the shape of the pulse signal is changed by external influences. Furthermore, DE 40 31 668 A1 discloses a method for electro-optical distance measurement, in which a sequence of individual light pulses is periodically emitted. The signal emitted as a pulse train is a bandwidth-spread signal, so that the duration of the emitted signal is considerably greater than the reciprocal spectral bandwidth of the same.
  • the next pulse train is transmitted, the detected light signals being added up and stored with the period of the pulse train.
  • the transmitted pulse trains must be reflected on two measurement objects.
  • the two transit times of the pulse sequences are approximated so that the distance can be determined after determining the transit time difference.
  • transmitters in particular pulse laser diodes, with a peak power that is approximately 1000 times higher and a comparable average power to CW laser diodes cannot be used. Since a comparatively large period of time has to be waited for pulse laser diodes until the next pulse can be emitted, the transmission of a bandwidth-spread signal is not possible.
  • the invention is based on the technical problem of specifying a method and a device for carrying out the method, so that the accuracy of determining the temporal position of the detected pulse signal is increased.
  • the individual radiation pulse signals are each emitted offset by a shift interval at the beginning of a constant pulse transmission interval.
  • the pulse transmission interval is determined by the pulse repetition time of the transmitter.
  • the length of the shift interval is selected such that, after a certain number of individual pulse signals have been transmitted, an equal number of echo signals, each shifted by the corresponding shift interval, are stored next to one another on an imaginary time axis.
  • These time-delayed stored echo signals represent a pulse pattern that can be impressed by previously selecting the length of the shift intervals.
  • the measurement is repeated so that the echo signals are added to the already stored echo signals in the subsequent measurement. These measurements are repeated until the echo signals stand out sufficiently from the noise signals.
  • the running time can then be determined using suitable calculation methods by comparison with a predetermined reference pattern.
  • the accuracy of the measurement is increased. Because the duration between the emission of adjacent radiation pulse signals corresponds to at least one pulse transmission interval, the individual radiation pulse signals can have a high peak power. After the detection of the echo signals, there is a pulse pattern, from the temporal position of which is related to a reference pattern, the transit time can be determined exactly.
  • the invention is based on the knowledge that the accuracy of the measurement increases on the one hand with the peak power of the transmitter and on the other hand only with M the number of the detected pulse patterns. A measurement result with a higher result is thus obtained
  • the detected echo pulse pattern is caused by the delayed transmission of the individual radiation pulse signals generated.
  • the starting point of a pulse transmission interval forms the reference point for the time delay by one shift interval.
  • the shift intervals preferably have different lengths, the length being formed according to a random pattern, so that the detected echo pattern is equally randomly distributed.
  • the measurement accuracy is particularly high, because the autocorrelation is a delta function for m-sequences.
  • the echo signal can be correlated with a reference pulse signal.
  • suitable estimation methods e.g. the minimum variance or according to the maximum likelihood principle, the temporal position of the echo signal can be determined in order to calculate the desired transit time.
  • a pulse laser with a relatively high peak power can advantageously be used, for example with a peak power of 5 to 10 W.
  • This increases the signal / noise ratio and also covers a large measuring range because of the relatively long recovery time of the laser become.
  • the time period of the measuring range that depends on
  • Use case is not relevant for the measurement, can be used to have other arithmetic operations performed in the computer.
  • the receiver consists of a CCD module.
  • the echo signals are temporarily stored in a plurality of CCD memories and added up.
  • the sum signal can then be fed to the signal processing unit for evaluation at the end of the measurement.
  • the CCD module can advantageously be used in a single-chip design.
  • the storage capacity can be expanded as desired, and additional image information about the measurement object can be obtained and processed by the provision of further CCD modules.
  • FIG. 1 shows a block diagram of a preferred exemplary embodiment
  • FIG. 2 shows a time diagram with radiation pulse signals respectively emitted in a measuring interval and with a sum signal consisting of time-delayed echo pulse signals
  • Fig. 3 is a block diagram of a further exemplary embodiment.
  • the signal processing unit 10 has a signal processor 14 which, at the start of a distance measurement, emits a start signal to the transmitter 11 via a digital / analog converter 15.
  • the transmitter 11 consists of a laser which emits individual high-power radiation pulse signals. The peak power of the laser is preferably 5 to 10 watts.
  • the radiation pulse signals emitted by the transmitter 11 leave the device via a lens system 16 and hit a measurement object 17, on which they are reflected and subsequently detected by the receiver 12.
  • the radiation pulse signals detected in the receiver 12 are sent as echo signals to an analog / digital converter 18 of the signal processing unit 10 fed and subsequently processed in the signal processor 14.
  • a memory 19 is used to store the measurement results of a measurement interval.
  • the echo signals are sampled at a sampling rate of approx. 40 MHz.
  • the sample values of the echo signals obtained therefrom within a measurement interval are each assigned to a memory location in the memory 19.
  • the calculated measurement result is then shown on a display 13.
  • the transmission of the individual radiation pulse signals by means of the transmitter 11 is controlled by the signal processor 14.
  • a multiplicity of radiation pulse signals are emitted one after the other, the detected radiation pulse signals being added up and stored in the memory 19.
  • the pulse signals are emitted as individual pulse signals each within a pulse transmission interval T 1.
  • the duration of the pulse transmission interval T ⁇ corresponds to the repetition time of the transmitter 11.
  • the measuring interval is determined by the predetermined measuring range. In order to obtain a measuring range of 3000 meters, for example, the measuring interval corresponds to a quarter of the duration of the pulse transmission interval T, with a repetition time of the laser of approx. 100 ⁇ s.
  • the transmission of the individual pulse signals is controlled by the signal processor 14 in such a way that the radiation pulse signals are not transmitted periodically, but rather at a time offset from the period of the pulse transmission interval T ( .
  • the transmission of a first transmission pulse signal takes place Beginning of a pulse transmission interval T ( , the subsequent second transmission pulse signal is transmitted by a shift interval T v at a time offset from the beginning of the second pulse transmission interval T, namely at time t.
  • the time shift of the transmission pulse signals continues with each further pulse transmission -Interval T ⁇ continues, the detected signals of a pulse transmission interval T ( to the detected signals of the previous pulse transmission interval T stored in the memory 19).
  • the duration of the shift interval T v is greater than the radiation pulse duration prevents the echo signals of adjacent measuring intervals from being superimposed.
  • an echo pulse pattern is stored in the memory 19, the spacing of the echo signals depending on the size of the shift intervals T. Alternatively, it can
  • Displacement interval T v can also be chosen to be constant. The result is a sum pulse sequence with equidistant pulse intervals.
  • the signal processor 14 supplies the transmitter 11 with start signals, the chronological sequence of which can be programmed, while the received echo signals are continuously available to the signal processor 14 through the A / D converter 18.
  • the time interval that arises between the beginning of two emitted radiation pulse signals is composed of the duration of the pulse transmission interval T and the shift interval T v .
  • a pulse sequence results which represents a bandwidth-spread signal, the length of which corresponds to the duration of seven radiation pulses.
  • the length of the resulting pulse sequence can be extended as desired.
  • the controller for forming the desired pulse sequence can be designed in such a way that the radiation pulse signals are emitted periodically by the transmitter 11 at the beginning of the pulse transmission interval T 1, while the sampling of the echo signals in the A / D converter 18 already begins by a shift interval. This can be achieved by program-controlled reading in a register of the signal processor 14.
  • the resulting pulse train is compared with a reference pulse train.
  • the reference pulse sequence is preferably determined by a calibration measurement, the distance of the reference test object from the measuring device being approximately zero.
  • the runtime can subsequently be determined using known mathematical estimation methods, for example using the maximum likelihood estimation algorithm known from DE 40 31 668 A1 or the method of minimum variance.
  • the transit time can be determined by correlating the resulting pulse train with the reference pulse train.
  • the device for distance measurement consists of an analog receiver which is constructed using CCD technology.
  • the receiver consists of a CCD module 22, which consists of a photo detector 23, an amplifier 24 connected downstream of this and a sequence of analog CCD memories 25.
  • the data volume of a measurement interval can be stored in each analog CCD memory 25.
  • the CCD memories 25 are arranged in a row, the adjacent CCD memories 25 being connected to a number of transfer gates corresponding to the number of data per measurement interval for transferring the same. After the data of the first measured measurement interval have been read into the memory 25b, these data are transferred to the adjacent CCD memory 25b during a read cycle via the transfer gates and stored there.
  • a signal processor 28 arranged in the signal processing unit 27 serves in the same way as in the exemplary embodiment described above on the one hand to control the emitted radiation pulse signals or the received echo signals and on the other hand to determine the transit time by means of a mathematical estimation method.
  • the measurement result obtained can subsequently be shown in a display 29.
  • the start signal of the signal processor 28 is fed to the transmitter 21 via a D / A converter 30.
  • the transmission of the radiation pulse signals is controlled in the same way as in the first embodiment.

Abstract

Das Verfahren zur elektrooptischen Entfernungsmessung arbeitet nach der Impulslaufzeitmethode. Es werden mehrere einzelne Strahlungsimpulssignale mit vorausbestimmtem unterschiedlichem Zeitabstand ausgesendet, sodaß nach Ablauf einer Anzahl von den Meßbereich bestimmenden Meßintervallen eine Impulsfolge detektiert wird. Unter Zuhilfenahme mathematischer Schätzverfahren läßt sich die zeitliche Lage der detektierten Impulsfolge im Vergleich zu einer Referenz-Impulsfolge bestimmen, aus der sich die Laufzeit ermitteln läßt. Durch die Aussendung einzelner Impulse in großem Abstand mit hoher Spitzenleistung und nachfolgender Zusammenführung zu einer Impulsfolge läßt sich die Genauigkeit der Entfernungsmessung erheblich vergrößern.

Description

Verfahren und Vorrichtung zur elektrooptischen Entfernungsmessung
Die Erfindungs betrifft ein Verfahren zur elektrooptischen Entfernungsmessung nach dem Oberbegriff des Patentanspruchs 1. Weiterhin betrifft die Erfindung eine Vorrichtung zur Durchführung des Verfahrens gemäß Patentanspruch 8.
Aus der EP 0 312 524 B1 ist ein Verfahren zur elektrooptischen
Entfernungsmessung nach der Impulslaufzeitmethode bekannt, bei dem einzelne Strahlungsimpulse periodisch von einem Sender ausgesendet und von einem Empfänger detektiert werden. Die detektierten Strahlungsimpulssignale (Echosignale) werden abgetastet, digitalisiert, periodenweise in einem Addierer aufaddiert und dann in einem Speicher abgespeichert. Den Abtastwerten einer Periode wird jeweils ein Speicherplatz des Speichers zugeordnet. Mit Beginn jeder Aussendung eines Strahlungsimpulssignals werden die Abtastwerte der detektierten Strahlungimpulssignale zu den bereits abgespeicherten Abtastwerten der in der vorherigen Periode detektierten Strahlungsimpulssignale hinzuaddiert. Mit zunehmender Anzahl der Messungen bildet sich infolge der Aufaddierung der Abtastwerte ein Summenimpuissignal heraus, aus dessen zeitlicher Lage im Verhältnis zu dem Zeitpunkt der Impuisaussendung sich die Laufzeit des Strahlungsimpulssignals bestimmen läßt. Nachteilig an diesem Verfahren ist, daß eine hohe Abtastrate notwendig ist, um die genaue Lage des Echosignals zu ermitteln. Da die Abtastrate aus technischen Gründen begrenzt ist und darüber hinaus ein höhere Abtastrate einen größeren Speicher erforderte, steht nur eine bestimmte Anzahl von Abtastwerten je Impulssignal zur Auswertung zur Verfügung. Hierdurch können bei der Bestimmung der zeitlichen Lage des detektierten Impulssignals Fehler auftreten, insbesondere dann, wenn die Form des Impulssignals durch äußere Einflüsse verändert wird. Weiterhin ist aus der DE 40 31 668 A1 ein Verfahren zur elektrooptischen Entfernungsmessung bekannt, bei dem periodisch eine Folge von einzelnen Lichtimpulsen ausgesendet wird. Das als Impulsfolge ausgesendete Signal ist ein bandbreitegespreiztes Signal, so daß die Dauer des ausgesendeten Signals wesentlich größer ist als die reziproke spektrale Bandbreite desselben. Nachdem eine Impulsfolge ausgesendet worden ist, wird die nächste Impulsfolge ausgesendet, wobei die detektierten Lichtsignale mit der Periode der Impulsfolge aufaddiert und gespeichert werden. Zur Bestimmung der Laufzeit müssen die ausgesendeten Impulsfolgen an zwei Meßobjekten reflektiert werden. Durch Anwendung eines Maximum-Likelihood-Algorithmus werden die beiden Laufzeiten der Impulsfolgen approximiert, so daß nach Ermittlung der Laufzeitdifferenz die Entfernung bestimmt werden kann. Nachteilig an diesem bekannten Verfahren ist, daß Sender, insbesondere Puls- Laserdioden, mit ca. 1000-fach höherer Spitzenleistung und vergleichbar durchschnittlicher Leistung zu CW-Laserdioden nicht verwendet werden können. Da bei Puls-Laserdioden eine vergleichsweise große Zeitspanne gewartet werden muß, bis der nächste Impuls ausgesendet werden kann, ist die Aussendung eines bandbreitegespreizten Signals nicht möglich.
Der Erfindung liegt das technische Problem zugrunde, ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens anzugeben, so daß die Genauigkeit der Bestimmung der zeitlichen Lage des detektierten Impulssignals erhöht wird.
Dieses Problem wird durch die in dem Patentanspruch 1 und Patentanspruch 8 aufgeführten Merkmale gelöst.
Die einzelnen Strahlungsimpuissignale werden jeweils um ein Verschiebungsintervall versetzt zu dem Beginn eines konstanten Impulsaussende-Intervalls ausgesendet. Das Impulsaussende-Intervall wird bestimmt durch die Impulsrepitionszeit des Senders. Die Länge des Verschiebungsintervalls wird so gewählt, daß nach Aussendung einer bestimmten Anzahl von Einzelimpulssignalen eine gleiche Anzahl von jeweils um das entsprechende Verschiebungsintervall verschobenen Echosignalen, auf einer gedachten Zeitachse nebeneinanderliegend, gespeichert wird. Diese zeitlich versetzt abgespeicherten Echosignale stellen ein Impulsmuster dar, welches durch vorherige Wahl der Länge der Verschiebungsintervalle aufgeprägt werden kann. Nachdem ein aus einer gewünschten Anzahl von Echosignalen bestehendes Impulsmuster gebildet worden ist, wird die Messung wiederholt, so daß die Echosignale in der darauffolgenden Messung zu den bereits gespeicherten Echosignalen aufaddiert werden. Diese Messungen werden so lange wiederholt, bis sich die Echosignale von den Rauschsignalen in ausreichendem Maße abheben. Durch Vergleich mit einem vorgegebenen Referenzmuster kann die Laufzeit dann unter Anwendung geeigneter Rechenmethoden bestimmt werden.
Mit der Erfindung wird die Genauigkeit der Messung erhöht. Dadurch, daß die Dauer zwischen der Aussendung benachbarter Strahlungsimpulssignale mindestens einem Impulsaussende-Intervall entspricht, können die einzelnen Strahlungsimpulssignale eine hohe Spitzenleistung aufweisen. Nach Detektion der Echosignale liegt ein Impulsmuster vor, aus dessen zeitlicher Lage zu einem Referenzmuster die Laufzeit genau bestimmt werden kann. Der Erfindung liegt die Erkenntnis zugrunde, daß die Genauigkeit der Messung einerseits mit der Spitzenleistung des Senders und andererseits nur mit M der Anzahl der detektierten Impulsmuster steigt. Somit steht ein Meßergebnis mit höherer
Genauigkeit innerhalb des gleichen Meßzeitraums oder gleicher Genauigkeit in einem kürzeren Meßzeitraum zur Verfügung.
Nach einer Weiterbildung der Erfindung wird das detektierte Echo-Impulsmuster durch zeitlich verzögerte Aussendung der einzelnen Strahlungsimpulssignale erzeugt. Bezugspunkt für die zeitliche Verzögerung um jeweils ein Verschiebungsintervall bildet der Beginn eines Impulsaussende-Intervalls. Vorzugsweise weisen die Verschiebungsintervalle unterschiedliche Länge auf, wobei die Länge nach einem Zufallsmuster gebildet wird, so daß das detektierte Echomuster gleichermaßen zufallsverteilt ist.
Bildet das Impulsmuster eine m-Sequenz, so ist die Meßgenauigkeit besonders hoch, denn für m-Sequenzen ist die Autokorrelation eine Delta-Funktion.
Für die rechnerische Auswertung des Echomusters können mehrere bekannte Rechenmethoden angewendet werden. Zum einen kann das Echosignal mit einem Referenzimpulssignal korreliert werden. Zum anderen kann mit Hilfe geeigneter Schätzmethoden, wie z.B. der minimalen Varianz oder nach dem Maximum-Liklihood-Prinzip, die zeitliche Lage des Echosignals ermittelt werden, um daraus die gesuchte Laufzeit zu berechnen.
Für die Anwendung des erfindungsgemäßen Verfahrens läßt sich vorteilhafterweise ein Impulslaser mit verhältnismäßig hoher Spitzenleistung einsetzen, beispielsweise mit einer Spitzenleistung von 5 bis 10 W. Hierdurch wird das Signal/Rausch-Verhältnis erhöht und zudem kann wegen der relativ großen Erholungszeit des Lasers ein großer Meßbereich abgedeckt werden. Dabei kann derjenige Zeitabschnitt des Meßbereichs, der je nach
Anwendungsfall nicht relevant ist für die Messung, dazu genutzt werden, andere anfallende Rechenoperationen in dem Rechner durchführen zu lassen.
Nach einer Weiterbildung der Erfindung besteht der Empfänger aus einem CCD-Baustein. In diesem werden die Echosignale in einer Mehrzahl von CCD- Speichern zwischengespeichert und aufaddiert. Das Summensignal kann dann am Ende der Messung der Signalverarbeitungseinheit zur Auswertung zugeführt werden. Vorteilhafterweise läßt sich der CCD-Baustein in Ein-Chip-Bauweise einsetzen. Die Speicherfähigkeit läßt sich beliebig erweitern, wobei durch das Vorsehen weiterer CCD-Bausteine zusätzlich Bildinformationen über das Meßobjekt gewonnen und weiterverarbeitet werden können.
Zwei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben.
Es zeigen:
Fig. 1 ein Blockschaltbild eines bevorzugten Ausführungsbeispiels, Fig. 2 ein Zeitdiagramm mit jeweils in einem Meßintervall ausgesendeten Strahlungsimpulssignalen und mit einem aus zeitlich versetzten Echoimpulssignalen bestehenden Summensignai,
Fig. 3 ein Blockschaltbild eines weiteren Ausführungsbeispieis.
Nach einem bevorzugten Ausführungsbeipiel gemäß Fig. 1 besteht die
Vorrichtung zur Entfernungsmessung aus einer Signalverarbeitungseinheit 10, die mit einem Sender 11, einem Empfänger 12 und einer Anzeige 13 elektrisch gekoppelt ist. Die Signalverarbeitungseinheit 10 weist einen Signalprozessor 14 auf, der zu Beginn einer Entfernungsmessung ein Startsignal über einen Digital/Analog -Wandler 15 an den Sender 11 abgibt. Der Sender 11 besteht aus einem Laser, der einzelne Strahlungsimpulssignale hoher Leistung aussendet. Vorzugsweise liegt die Spitzenleistung des Lasers bei 5 bis 10 Watt.
Die vom Sender 11 ausgesendeten Strahlungsimpulssignale verlassen über ein Linsensystem 16 die Vorrichtung und treffen auf ein Meßobjekt 17, an dem sie reflektiert werden und nachfolgend von dem Empfänger 12 erfaßt werden. Die in dem Empfänger 12 detektierten Strahlungsimpulssignale werden als Echosignale einem Analog/Digital-Wandler 18 der Signalverarbeitungseinheit 10 zugeführt und nachfolgend in dem Signalprozessor 14 weiterverarbeitet. Ein Speicher 19 dient zur Abspeicherung der Meßergebnisse eines Meßintervalls. Dabei werden die Echosignale mit einer Abtastrate von ca. 40 MHz abgetastet. Die hieraus innerhalb eines Meßintervalls gewonnenen Abtastwerte der Echosignale werden jeweils einem Speicherplatz in dem Speicher 19 zugeordnet. Das berechnete Meßergebnis wird dann in einer Anzeige 13 angezeigt.
Das Verfahren der Entferungsmessung wird nachfolgend anhand der Fig. 2 beschrieben. Die Aussendung der einzelnen Strahlungsimpulssignale mittels des Senders 11 wird durch den Signalprozessor 14 gesteuert. Um das Signal/Rausch-Verhältnis zu vergrößern, werden nacheinander eine Vielzahl von Strahlungsimpulssignalen ausgesendet, wobei die detektierten Strahlungsimpulssignale aufaddiert werden und in dem Speicher 19 abgespeichert werden. Die Impulssignale werden als Einzelimpulssignale jeweils innerhalb eines Impulsaussende-Intervalls T, ausgesendet. Die Dauer des Impulsaussende-Intervalls Tι entspricht der Repititionszeit des Senders 11. Das Meßintervall wird durch den vorbestimmten Meßbereich festgelegt. Um beispielsweise einen Meßbereich von 3000 Metern zu erhalten, entspricht das Meßintervall einem Viertel der Dauer des Impulsaussende-Intervalls T, bei einer Repititionszeit des Lasers von ca. 100 μs. Die Aussendung der einzelnen Impulssignale wird durch den Signalprozessor 14 in der Art gesteuert, daß die Strahlungsimpulssignale nicht periodisch ausgesendet werden, sondern zeitlich versetzt zur Periode des Impulsaussende-Intervalls T(. Erfolgt, wie in Fig. 2a dargestellt, die Aussendung eines ersten Sendeimpulssignals zu Beginn eines Impulsaussende-Intervalls T(, so wird das darauffolgende zweite Sendeimpulssignal um ein Verschiebungsintervall Tv zeitlich versetzt zum Beginn des zweiten Impulsaussende-Intervalls T, , nämlich zum Zeitpunkt t,, ausgesendet. Die zeitliche Verschiebung der Sendeimpulssignale setzt sich mit jedem weiteren Impulsaussende-Intervall Tι fort, wobei die detektierten Signale eines Impulsaussende-Intervalls T( zu den in dem Speicher 19 abgespeicherten detektierten Signalen des vorhergehenden Impulsaussende-Intervall T, aufaddiert werden.
Dadurch, daß die Dauer des Verschiebungsintervalls Tv größer als die Strahlungsimpulsdauer ist, wird verhindert, daß sich die Echosignale benachbarter Meßintervalle überlagern. Wie aus Fig. 2e) zu ersehen, wird nach Ablauf von vier Meßintervallen in dem Speicher 19 ein Echoimpulsmuster abgespeichert, wobei der Abstand der Echosignale von der Größe der Verschiebungsintervalle T abhängen. Alternativ kann das
Verschiebungsintervall Tv auch konstant gewählt werden. Es ergibt sich dann eine Summenimpulsfolge mit äquidistanten Impulsintervallen.
Zur Erlangung eines resultierenden impulsmusters führt der Signalprozessor 14 dem Sender 11 Startsignale zu, dessen zeitliche Abfolge programmierbar ist, während die empfangenen Echosignale fortlaufend durch den A/D- Wandler 18 dem Signalprozessor 14 zur Verfügung stehen. Das zwischen dem Beginn zweier ausgesendeter Strahlungsimpulssignale entstehende Zeitintervall setzt sich aus der Dauer des Impulsaussende-Intervalls T, und des Verschiebungintervalls Tv zusammen. Wie in Fig. 2e) gezeigt, ergibt sich nach Aussendung von vier Strahlungsimpulssignalen eine Impulsfolge, die ein bandbreitegespreiztes Signal darstellt, dessen Länge der Dauer von sieben Strahlungsimpulsen entspricht. Die Länge der resultierenden Impulssequenz kann beliebig verlängert werden. Nachdem eine zur Bildung einer gewünschten Impulsfolge entsprechende Anzahl von Strahlungsimpulssignalen ausgesendet worden ist - gem. Fig. 2 sind vier Strahlungsimpulssignale ausgesendet worden - , beginnt die von dem Signalprozessor 14 gesteuerte zeitliche Abfolge der Aussendung von vome. Diese zeitliche Abfolge der Aussendung wird sooft wiederholt, bis ein ausreichendes Signal/Rausch-Verhältnis gewährleistet ist. Alternativ kann die Steuerung zur Bildung der gewünschten Impulsfolge derart ausgebildet sein, daß die Strahlungsimpulssignale vom Sender 11 periodisch mit dem Beginn des Impulsaussende-Intervalls Tι ausgesendet werden, während die Abtastung der Echosignale im A/D-Wandler 18 bereits um ein Verschiebungsintervall vorher beginnt. Dies kann durch programmgesteuertes Einlesen in einem Register des Signalprozessors 14 erreicht werden.
Zur Laufzeitbestimmung, aus der sich die Entfernung errechnen läßt, wird die resultierende Impulsfolge mit einer Referenzimpulsfolge verglichen. Vorzugsweise wird die Referenzimpulsfolge durch eine Eichmessung bestimmt, wobei der Abstand des Referenz-Meßobjekts zum Meßgerät annähernd Null ist. Nach bekannten mathematischen Schätzverfahren, beispielsweise unter Anwendung des aus der DE 40 31 668 A1 bekannten Maximum-Likelihood- Schätzalgorithmus oder der Methode der minimalen Varianz, kann nachfolgend die Laufzeit bestimmt werden. Alternativ kann die Laufzeit durch Korrelation der resultierenden Impulsfolge mit der Referenz-Impulsfolge bestimmt werden.
Nach einem weiteren Ausführungsbeispiel besteht die Vorrichtung zur Entfernungsmessung aus einem analogen Empfänger, der in CCD-Technik aufgebaut ist. Der Empfänger besteht aus einem CCD-Baustein 22, der aus einem Foto-Detektor 23, einem diesem nachgeschalteten Verstärker 24 und einer Folge von analogen CCD-Speichern 25 besteht. In jedem analogen CCD- Speicher 25 kann die Datenmenge eines Meßintervalls gespeichert werden. Die CCD-Speicher 25 sind in einer Reihe angeordnet, wobei die benachbarten CCD-Speicher 25 mit einer der Anzahl der Daten je Meßintervall entsprechenden Zahl von Transfer-Gates zur Übertragung derselben verbunden sind. Nachdem die Daten des ersten gemessenen Meßintervalls in den Speicher 25b eingelesen worden sind, werden diese Daten während eines Auslesetaktes über die Transfer-Gates zu dem benachbarten CCD-Speicher 25b übertragen und dort gespeichert. Nach Ablauf eines weiteren Meßintervalls werden diese Daten von dem CCD-Speicher 25b dem weiteren benachbarten CCD-Speicher übertragen. Nach einer bestimmten Anzahl von Meßintervallen werden die Daten in den Speicher 25n übertragen und in einem nachfolgenden Auslesetakt zu den neu detektierten Daten im CCD-Speicher 25a hinzuaddiert. Nach einer ausreichenden Anzahl von ausgesendeten Strahlungsimpulssignalen werden die detektierten Echosignale von dem CCD-Speicher 25n in einen A/D-Wandler 26 einer Signalverarbeitungseinheit 27 ausgelesen und in digitale Signale umgesetzt. Ein in der Signalverarbeitungseinheit 27 angeordneter Signalprozessor 28 dient in gleicher Weise wie im oben beschriebenen Ausführungsbeipiel einerseits zur Steuerung der ausgesendeten Strahlungsimpulssignale bzw. der empfangenen Echosignale und andererseits zur Ermittlung der Laufzeit mittels eines mathematischen Schätzverfahrens. Das gewonnene Meßergebnis kann nachfolgend in einer Anzeige 29 angezeigt werden. Über einen D/A- Wandler 30 wird das Startsignal des Signalprozessors 28 dem Sender 21 zugeführt. Die Steuerung der Aussendung der Strahlenimpulssignale erfolgt in gleicher Weise wie nach dem ersten Ausführungsbeispiel.

Claims

Ansprüche
1. Verfahren zur elektrooptischen Entfernungsmessung nach der Impulslaufzeitmethode, wobei
a) Strahlungsimpulssignale jeweils innerhalb eines Impulsaussende- Intervalls (T, ) von einem Sender (11 ,21) ausgesendet werden,
b) die an mindestens einem Meßobjekt (17) reflektierten Strahlungsimpulssignale (Echosignale) in einem Empfänger (12,22) detektiert und einer Signalverarbeitungseinheit (10,27) zugeführt werden, in der die detektierten Strahlungsimpulssignale abgetastet und in einem Speicher (19,25) abgespeichert werden,
c) die detektierten Strahlungsimpulssignale (Echosignale) zu den in den vorherigen Impulsaussende-Intervallen (T, ) detektierten Strahlungsimpulssignalen (Echosignale) aufaddiert und nachfolgend als Summenimpulssignale abgespeichert werden,
d a d u r c h g e k e n n z e i c h n e t ,
d) daß die Strahlungsimpulssignale jeweils um ein Verschiebungsintervall (Tv) zeitlich versetzt zu dem Beginn eines periodischen Impulsaussende- Intervalls (Tι ) ausgesendet und/oder abgetastet werden,
e) daß die Dauer des Verschiebungsintervalls (Tv) mindestens der Strahlungsimpulsdauer entspricht,
f) daß aus der zeitlichen Lage der Summenimpulssignale nach einer bekannten Rechenmethode die Laufzeit des Strahlungsimpulssignals berechnet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Strahlungsimpulssignale mit Verschiebungsintervallen (Tv) unterschiedlicher Dauer ausgesendet und/oder abgetastet werden, so daß nach Ablauf von N Impulsaussende-Intervallen T, ein aus N
Strahlungsimpulssignalen bestehendes Impulsmuster abgespeichert ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Impulsmuster eine pseudostochastische Folge darstellt, aus der durch Anwendung eines Schätzalgorithmus nach der maximum-likelihood-Methode oder nach der Methode der minimalen Varianz die Entfernung berechnet wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Dauer der Verschiebungsintervalle (Tv) jeweils einem ganzzahligen Vielfachen der Strahiungsimpulsdauer entspricht.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Impulsmuster eine m-Sequenz bildet.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Folge der gespeicherten Summenimpulssignale mit einer vorgegebenen Referenzfolge von Impu.ssignalen korreliert wird, so daß der hieraus gewonnene Schätzwert ein Maß für die Entfernung darstellt.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Dauer der Verschiebungsintervalle (Tv) konstant ist und jeweils einem ganzzahligen Vielfachen der Strahiungsimpulsdauer entspricht.
8. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 mit einem Sender (11 ,21), einem Empfänger (12,22), einer
Signalverarbeitungseinheit (10,27) und einem Speicher (19,25), dadurch gekennzeichnet, daß der Empfänger (12,22) eine analoge Speichereinheit (25) aufweist, in der die Echosignale sequentiell eingelesen, zwischengespeichert und nachfolgend zu einem Summensignal aufaddiert werden.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Empfänger aus mindestens einem CCD-Baustein (22) besteht mit einem Fotodetektor zur Umsetzung des Echosignals in Signalladungen und mit mindestens zwei analogen Speichern (CCD-Speicher 25a,25b)) jeweils zur Speicherung eines jeweils einem Meßintervall (MI) zugeordneten Datensatzes.
10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die analogen Speicher jeweils als CCD- Bereiche ausgebildet sind und durch Transfer-Gates sequentiell miteinander verbunden sind zur Übertragung der espeicherten Signalladungen auf einen benachbarten CCD-Bereich.
PCT/EP1995/003712 1994-10-13 1995-09-21 Verfahren und vorrichtung zur elektrooptischen entfernungsmessung WO1996012203A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US08/817,097 US5892576A (en) 1994-10-13 1995-09-21 Process and device for the electro-optical measurement of distance
EP95933410A EP0786097B1 (de) 1994-10-13 1995-09-21 Verfahren und vorrichtung zur elektrooptischen entfernungsmessung
CA002202532A CA2202532C (en) 1994-10-13 1995-09-21 Process and device for the electro-optical measurement of distance
JP51287796A JP3536984B2 (ja) 1994-10-13 1995-09-21 電気光学的な距離測定のための方法及び装置
DE59502277T DE59502277D1 (de) 1994-10-13 1995-09-21 Verfahren und vorrichtung zur elektrooptischen entfernungsmessung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4436447A DE4436447C2 (de) 1994-10-13 1994-10-13 Verfahren und Vorrichtung zur elektrooptischen Entfernungsmessung
DEP4436447.4 1994-10-13

Publications (1)

Publication Number Publication Date
WO1996012203A1 true WO1996012203A1 (de) 1996-04-25

Family

ID=6530581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/003712 WO1996012203A1 (de) 1994-10-13 1995-09-21 Verfahren und vorrichtung zur elektrooptischen entfernungsmessung

Country Status (6)

Country Link
US (1) US5892576A (de)
EP (1) EP0786097B1 (de)
JP (1) JP3536984B2 (de)
CA (1) CA2202532C (de)
DE (2) DE4436447C2 (de)
WO (1) WO1996012203A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060419A1 (de) * 1998-05-19 1999-11-25 Andreas Perger Verfahren zur optischen entfernungsmessung

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741887B4 (de) * 1997-09-23 2006-08-03 Peter Brockhaus Vorrichtung zur Laufzeitmessung von Licht
JP4105801B2 (ja) * 1998-07-02 2008-06-25 ペンタックス株式会社 3次元画像入力装置
WO2001011540A1 (en) * 1999-08-04 2001-02-15 Koninklijke Philips Electronics N.V. Communication device and transponder
DE19936954C2 (de) * 1999-08-05 2001-08-09 Leuze Electronic Gmbh & Co Verfahren und Vorrichtung zur Entfernungsmessung
DE10232878B4 (de) * 2002-07-19 2012-02-23 Robert Bosch Gmbh Vorrichtung und Verfahren zur Distanzmessung
DE10300402B4 (de) * 2003-01-09 2006-09-21 Wente, Holger, Dr.-Ing. Lasermesseinrichtung
CA2516796A1 (en) * 2003-02-21 2004-09-10 Inesa, Inc. An apparatus and method for distance measurement with controlled modulation of emitted pulses
EP1709149A4 (de) * 2003-12-23 2008-03-26 Inesa Inc Nichtinvasives verfahren für nachweis und messung von füllstoffen in gefässen
US7502064B2 (en) * 2004-08-10 2009-03-10 Hewlett-Packard Development Company, L.P. Using light pulses to implement auto-focus in a digital camera
US7359039B2 (en) 2005-07-13 2008-04-15 Mariusz Kloza Device for precise distance measurement
US20080065348A1 (en) * 2006-09-11 2008-03-13 Dowd Joseph F Duct geometry measurement tool
CN105209901B (zh) 2013-02-06 2018-08-24 乌尔蒂莫测量有限责任公司 用于测量容器中自由流动物质的物理性质的非侵入性方法
US9816848B2 (en) 2014-01-23 2017-11-14 Ultimo Measurement Llc Method and apparatus for non-invasively measuring physical properties of materials in a conduit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005922A1 (en) * 1987-02-09 1988-08-11 Wild Heerbrugg Ag Procedure and installation for measuring a distance by processing of a pulsating optical signal
EP0437417A2 (de) * 1990-01-12 1991-07-17 Optab Optronikinnovation Ab Verfahren und Gerät zur optischen Abstandsmessung
DE4031668A1 (de) * 1990-10-05 1992-04-09 Zeiss Carl Fa Verfahren zur elektrooptischen entfernungsmessung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT79055B (de) * 1917-09-10 1919-11-10 Norbert Fischer Rechen.
US3647298A (en) * 1969-09-16 1972-03-07 Us Navy Pulse chirp laser ranging device
US3967111A (en) * 1974-12-20 1976-06-29 Scientific Technology Incorporated Pulsed light source discriminator system
EP0371197B1 (de) * 1988-11-23 1994-12-21 TEMIC TELEFUNKEN microelectronic GmbH Bildsensor
DE3844654A1 (de) * 1988-11-23 1990-06-07 Messerschmitt Boelkow Blohm Bildsensor
US5026153A (en) * 1989-03-01 1991-06-25 Mitsubishi Denki K.K. Vehicle tracking control for continuously detecting the distance and direction to a preceding vehicle irrespective of background dark/light distribution
US5337052A (en) * 1989-07-20 1994-08-09 The United States Of America As Represented By The Secretary Of The Army Random binary modulated sensor
CA2038825A1 (en) * 1990-03-30 1991-10-01 Akio Nagamune In-furnace slag level measuring apparatus
US5179286A (en) * 1990-10-05 1993-01-12 Mitsubishi Denki K.K. Distance measuring apparatus receiving echo light pulses
US5262837A (en) * 1992-10-21 1993-11-16 Norm Pacific Automation Corp. Laser range finder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005922A1 (en) * 1987-02-09 1988-08-11 Wild Heerbrugg Ag Procedure and installation for measuring a distance by processing of a pulsating optical signal
EP0437417A2 (de) * 1990-01-12 1991-07-17 Optab Optronikinnovation Ab Verfahren und Gerät zur optischen Abstandsmessung
DE4031668A1 (de) * 1990-10-05 1992-04-09 Zeiss Carl Fa Verfahren zur elektrooptischen entfernungsmessung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999060419A1 (de) * 1998-05-19 1999-11-25 Andreas Perger Verfahren zur optischen entfernungsmessung

Also Published As

Publication number Publication date
DE4436447A1 (de) 1996-04-25
EP0786097A1 (de) 1997-07-30
US5892576A (en) 1999-04-06
JPH10512666A (ja) 1998-12-02
CA2202532C (en) 2007-01-16
DE4436447C2 (de) 1996-10-02
DE59502277D1 (de) 1998-06-25
CA2202532A1 (en) 1996-04-25
EP0786097B1 (de) 1998-05-20
JP3536984B2 (ja) 2004-06-14

Similar Documents

Publication Publication Date Title
EP2889642B1 (de) Verfahren zur Entfernungsmessung
EP0786097B1 (de) Verfahren und vorrichtung zur elektrooptischen entfernungsmessung
EP1423731B1 (de) Verfahren und vorrichtung zur aufnahme eines dreidimensionalen abstandsbildes
DE3633769C2 (de)
EP0854368B1 (de) Lichttaster mit Lichtlaufzeit-Auswertung
DE69934142T2 (de) Determination der zeitverzögerung und determination der signalverschiebung
EP1043602B1 (de) Verfahren zur Messung der Entfernung mindestens eines Ziels
DE2414562C2 (de) Schaltung zur Verzögerungsmessung zwischen einem Originalsignal und einem Echosignal und ihre Anwendung
WO2008040341A1 (de) Radarsystem zur umfelderfassung mit kompensation von störsignalen
DE19948398A1 (de) Abtast-Abstandsmessgerät
DE2449037C3 (de) Geschwindigkeitsmeßeinrichtung, insbesondere Schall-Dopplermeßeinrichtung
DE4141469C2 (de) Verfahren zum Betrieb einer optischen Sensoranordnung zur Feststellung von in einem Überwachungsbereich vorhandenen Gegenständen sowie eine solche optische Sensoranordnung
EP0935144B1 (de) Auswertekonzept für Abstandsmessverfahren
WO2007009833A1 (de) Verfahren und schaltungsanordnung zur genauen entfernungsbestimmung
EP2140286B1 (de) Vorrichtung und verfahren zum messen des empfangszeitpunkts eines impulses
EP2315053A2 (de) Vorrichtungen und Verfahren zum Messen der Empfangszeitpunkte von Impulsen
DE69922428T2 (de) Dauerstrichradar-Empfänger mit Frequenzsprung
DE3937787C1 (de)
EP0919834B1 (de) Verfahren zur Detektion eines Zieles mittels einer HPRF-Radaranlage
DE2133497C3 (de) Verfahren und Anordnung zur Korre lations Entfernungsmessung mittels einer pseudostochastischen Impulsfolge
DE2723355A1 (de) Verfahren zum auswerten von radarimpulsen
EP1043603A1 (de) Verfahren zur Messung der Entfernung mindestens eines Ziels
DE4229079A1 (de) Verfahren und Vorrichtung zur berührungslosen Abstandsmessung
DE2723584A1 (de) Geschwindigkeitsmessgeraet
DE19644791C2 (de) Verfahren und Vorrichtung zur Bestimmung der Lichtlaufzeit über eine zwischen einer Meßvorrichtung und einem reflektierenden Objekt angeordnete Meßstrecke

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 817097

Date of ref document: 19970102

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1995933410

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 512877

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2202532

Country of ref document: CA

Ref country code: CA

Ref document number: 2202532

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 08817097

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995933410

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995933410

Country of ref document: EP