WO1996015367A1 - Vorrichtung zum führen und zentrieren eines maschinenelementes - Google Patents

Vorrichtung zum führen und zentrieren eines maschinenelementes Download PDF

Info

Publication number
WO1996015367A1
WO1996015367A1 PCT/CH1995/000258 CH9500258W WO9615367A1 WO 1996015367 A1 WO1996015367 A1 WO 1996015367A1 CH 9500258 W CH9500258 W CH 9500258W WO 9615367 A1 WO9615367 A1 WO 9615367A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
central axis
elements
parts
main spring
Prior art date
Application number
PCT/CH1995/000258
Other languages
English (en)
French (fr)
Inventor
Anton Steiger
Original Assignee
Anton Steiger
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anton Steiger filed Critical Anton Steiger
Priority to DK95935790T priority Critical patent/DK0739449T3/da
Priority to EP95935790A priority patent/EP0739449B1/de
Priority to JP51561396A priority patent/JP3844359B2/ja
Priority to US08/669,504 priority patent/US5779455A/en
Priority to AU37691/95A priority patent/AU693275B2/en
Priority to DE59502252T priority patent/DE59502252D1/de
Publication of WO1996015367A1 publication Critical patent/WO1996015367A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • F04B39/041Measures to avoid lubricant contaminating the pumped fluid sealing for a reciprocating rod
    • F04B39/045Labyrinth-sealing between piston and cylinder
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the invention relates to a device for guiding and Zen ⁇ trate of a machine element, which oscillating Li ⁇ near movements in the direction of its central axis running, the 'machine element at two in the direction of the central axis, with spaced-apart guides, is mounted in a housing.
  • Such devices for guiding and centering a machine element are used, inter alia, in vibration compressors.
  • a vibration compressor is known which is intended for refrigerators.
  • a piston is set into translatory, oscillating movements via a drive winding which is supplied with alternating current and a magnet with a magnetic pole.
  • This piston is mounted in a cylinder liner, which forms a sliding guide.
  • the drive winding, piston and cylinder liner must be aligned precisely with one another on the central axis, which requires considerable design effort.
  • Pistons which perform oscillating linear movements along a central axis also occur in free-piston engines, for example Stirling engines. Similar known solutions are also used here, as have been explained for the known oscillating compressor. The same difficulties arise here, wherein contact-free sealing surfaces between the piston and cylinder walls, if at all, can be achieved only with very great effort and correspondingly high costs. Because of the difficult operating conditions, abrasion occurs again and again between moving machine elements, as a result of which the operation of such free-piston engines is severely disrupted and the maintenance-free service life is considerably reduced. For very small free piston arrangements in heart replacement pumps, devices are known from the publication "Stirling Engines" G.
  • the device should be simple and maintenance-free and should be manufactured and used with constant precision and with constant characteristic data. can be built.
  • the device should enable linearly oscillating machine elements to be guided in other machine elements without contact and lubricant, for example as a piston / cylinder or armature / stator arrangement in linear motors.
  • each of the two guides arranged at a distance from one another consists of several plate-shaped spring elements.
  • the proposed arrangement of the guides with the spring elements has the advantage that the machine element, which carries out oscillating linear movements, is centered and guided exactly on its central axis.
  • the guides have no parts that move against each other and are subject to sliding wear.
  • the machine element is guided and centered by the two guides in such a way that it can perform a relative movement without contact with other machine elements. This is the case, for example, in a piston / cylinder arrangement in a pump or a linear motor, or in electrical linear generators with an oscillating movement.
  • the spring elements of the individual guides are arranged in a plane which is approximately at right angles to the central axis of the oscillating machine element.
  • the main spring parts which are plate-shaped, are located in this plane. This arrangement of the main spring parts allows the movement and spring data to be calculated in a known manner, so that the movements of the machine element can also be determined precisely.
  • Shorter auxiliary spring parts are arranged in the outer region of the long main spring parts, at right angles to the main spring parts, so that these auxiliary spring parts are approximately parallel to the central axis run.
  • the connection of the auxiliary spring parts to the main spring parts takes place via an additional connecting element which is equipped with appropriate fastening means for the firm connection of the ends of the main and auxiliary spring parts.
  • this additional connecting element between each auxiliary spring part and the associated main spring part results in the advantage that the spring element is rigid in the angled area and the deformations of the spring elements only take place in the plate-shaped areas.
  • the individual auxiliary spring parts and main spring parts, as well as the connecting elements can be manufactured very precisely in accordance with the technical specifications so that they have the desired values during installation, both in terms of dimensional accuracy and strength values. This exact correspondence with specified masses and strength values can be achieved with conventional manufacturing methods, since the spring parts and the connecting elements have simple shapes.
  • the individual components can also be easily checked and parts that deviate from the normal data can be easily eliminated.
  • each spring element from several individual spring parts enables adaptation to different requirements and brings with it the considerable advantage that no parts of the spring elements have to be deformed, for example bent, during manufacture.
  • the plate-shaped design of the individual spring element parts allows precise machining to the desired dimensions at any time, for example by grinding.
  • the main and auxiliary spring parts are normally flat plates.
  • each guide is expediently arranged centrally symmetrically, so that four, six or more spring element parts extend radially outward from the central axis in the plane of the guide. Odd numbers of spring element parts in the plane of the guide are possible, but expediently, however, each spring element comprises a main spring part which is self-contained extends symmetrically on both sides of the central axis. The fact that angles of the same size are included between the spring elements lying in one plane results in the advantage that the machine element is centered exactly symmetrically on the central axis.
  • the dimensions of the long main spring parts and the short auxiliary spring parts are selected in a known manner so that the stiffness of the two guides, which form the guide device, is at least 100 times greater in the direction of the central axis than transverse to the central axis.
  • guides with a stiffness ratio of 500 and more are used.
  • the device according to the invention now has further advantages in that the force absorption, the rigidity or the movement paths can be changed by adapting the individual spring element parts.
  • the stiffness ratio can be changed, for example, not only by changing the dimensions of the plate-shaped spring parts, but also by arranging at least two auxiliary spring parts or main spring parts at a distance parallel to one another, or by designing the auxiliary and main spring parts in this way. If no change in the spring constant is desired, two groups of plate-shaped spring elements can be arranged in a guide in two planes spaced apart from one another. This leads to an increase in the load-bearing capacity of the corresponding guide with an approximately constant rigidity ratio. In all of these different arrangements and embodiments, the same basic elements of main spring parts, auxiliary spring parts and connecting elements can always be used, so that the calculation bases are simplified and the manufacture of the individual parts is also made considerably easier.
  • the main spring part of the individual spring elements can be formed in one or two parts. If the guide is arranged at the end of an axis, it can be advantageous to form the main spring parts in one piece, since they can then be connected to the axis with the aid of a central connecting element. However, if the guide is arranged somewhere in the axis area of the machine element, it is often expedient to design the main spring parts in two parts and then to connect the inner ends of the main spring parts directed against the central axis to the axis by means of appropriate fastening devices. In addition to the flange connections proposed according to the invention with a specially designed clamping element, other known non-positive connections can also be used.
  • the linearly oscillating machine element is a piston and / or a piston rod of a free-piston engine, for example a Stirling engine.
  • the guide according to the invention it is possible to guide both working and displacement pistons in their cylinders precisely and without contact, so that gap seals with a very small gap width are possible.
  • the desired movement paths of the oscillating linear movement can be adapted to the requirements in a wide range by adapting the dimensions of the spring parts.
  • the moving machine element is a piston rod and / or a piston of a compressor, which has an electric drive which generates linearly oscillating movements.
  • Single-acting or double-acting designs are possible.
  • the invention is explained in more detail below with the aid of drawings which illustrate exemplary embodiments. Show it:
  • FIG. 1 shows a longitudinal section in a schematic representation through a piston compressor with linearly oscillating electric drive
  • FIG. 2 shows a section from a spring element with the connecting element between the main and auxiliary spring parts
  • FIG. 3 shows a section from a guide with a
  • FIG. 4 shows the arrangement according to FIG. 3 in a partial front view
  • FIG. 5 shows a schematic representation of the central fastening of a one-part main spring part with pairs of auxiliary spring parts
  • FIG. 6 shows a section of a guide with a second egg ⁇ main spring parts and paired main and auxiliary spring parts.
  • the compressor 1 shown in FIG. 1 has, as a boxer arrangement, two pistons 3, 4 which cooperate with cylinders 5, 6. These cylinders 5, 6 are part of a housing 10 of the compressor 1.
  • the two pistons 3, 4 are each arranged at the ends of a piston rod 7, the piston rod 7 and the pistons 3, 4 being a central axis 2, which at the same time is the longitudinal axis of the housing 10 forms.
  • a magnet armature 9, which is surrounded by a coil 8, is fastened on the piston rod 7 between the two pistons 3, 4.
  • This coil 8 is supplied with alternating current via the line 22, as a result of which the magnet armature 9 is set into oscillating linear movements along the central axis 2 in the direction of the arrows 23.
  • the pistons 3 and 4 are also set into oscillating working movements via the piston rod 7.
  • Pressure lines 19 and suction lines 20 with valves 21 are arranged at the ends of the cylinders 5, 6. net, via which the suction and ejection of a pressure medium is controlled.
  • the piston rod 7 and thus the pistons 3 and 4 and the magnet armature 9 are guided and centered via guides 11, 12.
  • These guides 11, 12 are aligned on two levels 13, 14, which are approximately at right angles to the central axis 2.
  • the two planes 13, 14 and thus the two guides 11, 12 are arranged at a distance from one another in the direction of the central axis 2, this distance being determined by the storage conditions and the structural conditions of the compressor.
  • Each of the two guides 11, 12 consists of a plurality of spring elements 15.
  • These spring elements 15 consist of a two-part long main spring part 16 and two short auxiliary spring parts 17 which are rigidly attached to the outer ends 24, 25 of the main spring part 16 and connected to the housing 10 are.
  • the auxiliary spring parts 17 are arranged approximately at right angles to the main spring part 16 and thus run approximately parallel to the central axis 2.
  • the rigid connection between the outer ends 24, 25 of the main spring part 16 and the auxiliary spring parts 17 is produced by means of connecting elements 18.
  • the spring elements 15 are fixed on the one hand via the auxiliary spring parts 17 and the fastening elements 26 to the housing 10 and on the other hand via the main spring parts 16 and a flange 27 and clamping elements 28 with the oscillating machine element, i.e. the piston rod 7 and the pistons 3, 4 are firmly connected.
  • the two guides 11, 12 are of exactly the same design, but, as can be seen from the figure, are arranged mirror-inverted.
  • the pistons 3, 4 can be guided in the bores of the cylinders 5, 6 without contact.
  • the guidance and centering is so precise that only a very thin gap 29 is necessary between the pistons 3, 4 and the cylinders 5, 6.
  • the piston chamber can be sealed by contactless gap seals, and they are not seals necessary and available, which would be rubbed off or worn down by relative movements. That through the spring elements
  • each guide 11, 12 formed spring system is designed such that the stiffness in the direction of the planes 13, 14 is at least 100 times greater than its stiffness in the direction of the central axis 2.
  • the rigidity transversely to the central axis 2 approximately 200 times higher than in the direction of the central axis 2.
  • spring parts made of hardened spring steel with a thickness of 1.18 mm are used.
  • the piston diameter is 45 mm and the oscillation frequency is 50 vibrations per minute.
  • Fig. 2 shows the connection area between the outer end 24 of a long main spring part 16 and a short main spring part 17 in an enlarged view.
  • the connecting element 18 is designed as an angular element and has two positioning surfaces 30, 31 which are at a right angle to one another. These positioning surfaces 30, 31 serve as supports for the end regions of the main spring part 16 and the auxiliary spring part 17. In the example shown, the positioning surface 31 also serves as a stop surface for the outer edge 35 of the long main spring part 16. The outer edge of the auxiliary spring part 17 becomes in turn pushed against the surface of the main spring part, so that the positions of the two spring parts 16, 17 within the connecting element 18 are precisely determined.
  • the main spring part 16 and the auxiliary spring part 17 are non-positively connected to one another via the connecting element 18 and corresponding clamping devices 32, 33.
  • the adhesion is generated in the example shown by rivets 34, these Connection can also be replaced by a screw connection.
  • the transition areas from the clamping area into the free area of the spring parts 16, 17 are designed in a known manner so that no damage to the spring elements occurs, for example by rounding off the edges or suitable coatings on the clamping plates 32, 33 or the connecting element 18.
  • FIGS. 3 and 4 show a guide 11 and 12, which corresponds in principle to the arrangements according to FIGS. 1 and 2.
  • the two planes 14, 40 run parallel to one another and approximately at right angles to the central axis 2 of the piston rod 7. From FIG. 4 it can be seen that in each of the planes 14, 40 two spring elements 15 are arranged which are perpendicular to one another, and in which the same angle is included between the main spring parts 16.
  • Each of the spring elements 15 consists of two main spring parts 16 ', 16'', two auxiliary spring parts 17 and two connecting elements 18.
  • the ends of the short auxiliary spring parts 17 facing away from the connecting elements 18 are fastening elements 41, 42 and screws 43 rigidly attached to the housing 10 of the machine.
  • the piston rod 7, which is part of the linearly and oscillatingly moving machine element, also has a flange 27 here, as well as a clamping element 28, which connects the inner ends 44 of the main spring parts 16 ', 16''to the flange 27 serves.
  • the short auxiliary spring parts 17 are formed from flat, rectangular plates.
  • the main spring parts 16 are trapezoidal and wider towards the outer end 24 than at the inner end 44.
  • the shape of the spring parts 16, 17 is determined in a known manner by the desired spring characteristics.
  • Ribs 45 are arranged on the centering plates 48, which form stop surfaces 46 for the inner ends 44 of the main spring parts 16 ', 16''. Through these ribs 45 and the corresponding stop surfaces 46, as well as the corresponding shape of the inner ends 44 of the main spring parts 16, their position relative to the centering plates 48 or the piston rod 7 is precisely determined. In this position, the inner ends 44 of the main spring parts 16 are clamped and held in place with the aid of the two centering plates 48, the clamping element 28, as well as a spacer washer 49 and screws 47.
  • This arrangement of a guide 11 or 12 shown in FIGS. 3 and 4 can absorb greater longitudinal and transverse forces, but also allows the same movement sequences as described for FIG. 1.
  • the freedom of the linearly oscillating movement of the piston rod 7 and the associated machine element in the direction of the arrows 50 is guaranteed.
  • This embodiment of the two-part main spring parts 16 is particularly expedient where further machine elements are arranged on the central axis 2 in front of and behind the guides 11 and 12, which do not allow continuous spring elements 15 to be plugged onto the piston rod 7.
  • the production of the main spring parts 16 is also facilitated, since they have smaller dimensions and, if necessary, individual parts of a spring element 15 can also be replaced.
  • the guide consists of two spring elements 15, which are arranged at right angles to one another and in turn in one plane at right angles to the central axis 2.
  • Each of the spring elements 15 consists of a continuous main spring part 16 which radially intersects the central axis 2.
  • At the outer ends 24 of the main spring parts 16 there are in turn connecting elements 18, but in the example shown in FIG. 5 these have support and positioning surfaces for two parallel, short auxiliary spring parts 17. Accordingly, there are also two contact surfaces on the housing 10 for the spaced apart mutually arranged two auxiliary spring parts 17 are present, and the ends are in turn firmly connected to the housing 10 with the aid of clamping elements.
  • each of the main spring parts 16 has a bore 51 which fits positively on the end pin 52 of the piston rod 7.
  • Clamping elements 53, 54 are provided on both sides of the two main spring parts 16 and are disc-shaped.
  • a stop flange 55 is formed on the piston rod 7, and the end pin 52 has a screw connection 56 with which the clamping elements 53, 54 and the main spring parts 16 can be clamped and clamped.
  • Clamping elements 53, 54 are held with the greatest contact pressure.
  • the sides 57, 58 of the clamping elements 53, 54 facing away from the main spring parts 16 are provided with central recesses 62, 62 'and additional tensioning washers 59, 60 are then arranged on these sides 57, 58.
  • the tensioning force generated by the screw connection 56 is directed to the outer areas of the clamping elements 53, 54 by elastic deformation of the tensioning disks 59, 60, and the main spring parts 16 are thus also properly tensioned in these outer areas.
  • the arrangement of parallel auxiliary spring parts 17 shown in FIG. 5 enables a significant increase in the transverse stiffness, which can be positively influenced in particular by increasing the distance 63 between the spring parts 17.
  • the arrangement of an auxiliary spring part 17 according to FIGS. 1 and 2 represents the simplest embodiment.
  • FIG. 6 shows a further embodiment of a guide according to the invention, wherein in each spring element 15 both the main spring parts 16 and the auxiliary spring parts 17 are arranged in pairs in parallel and at a distance from one another.
  • the connection of the inner ends 44 of the main spring parts 16 to the flange 27 of the piston rod 7 takes place in the same way as described for FIGS. 3 and 4.
  • the connecting element 18 between the outer ends of the main spring parts 16 and the abutting ends of the auxiliary spring parts 17 is designed accordingly and has contact surfaces for the paired arrangement of the parallel springs.
  • Corresponding fastening and tensioning elements 61 are provided for connecting the auxiliary spring parts 17 to the housing 10.
  • the design of the guide with parallel springs 16 leads to a spring characteristic symmetrical in both longitudinal directions of movement with a correspondingly more favorable voltage profile. Because of the bending and force conditions in the clamping areas during the forward or backward movement of the machine element, the simple spring does not have the same spring characteristic. The positive and negative characteristics of the single springs are not symmetrical in relation to the zero point.

Abstract

Die Vorrichtung ermöglicht das genaue Führen und Zentrieren von Maschinenelementen z.B. einer Kolbenstange (7) oder eines Kolbens (3, 4) in einem Zylinder (5, 6). Dabei sind zwei Führungen (11, 12) etwa rechtwinklig zur Längsachse (2) der Kolbenstange (7) und mit Abstand zueinander angeordnet. Jede Führung (11, 12) weist mehrere Federelemente (15) auf, welche radial von der Achse (2) ausgehen. Die Federelemente (15) bestehen aus langen Hauptfederteilen (16) und kurzen Hilfsfederteilen (17). Die Federteile (16, 17) sind über Verbindungsteile (18) starr miteinander verbunden. Die Führungen (11, 12) weisen in Bezug zur Achse (2) eine hohe Quersteifigkeit auf und ermöglichen genau geführte oszillierende Bewegungen der Maschinenelemente (3, 4, 5, 6, 7) entlang der Längsachse (2). Diese Führungen (11, 12) ermöglichen beispielsweise berührungsfreie Relativbewegungen zwischen Kolben (3, 4) und Zylinder (5, 6) und weisen eine hohe Lebensdauer und Betriebssicherheit auf.

Description

Vorrichtung zum Führen und Zentrieren eines Maschinenelemen¬ tes
Die Erfindung betrifft eine Vorrichtung zum Führen und Zen¬ trieren eines Maschinenelementes, welches oszillierende Li¬ nearbewegungen in Richtung seiner Zentralachse ausführt, wobei das'Maschinenelement an zwei in Richtung der Zentral- achse, mit Abstand zueinander angeordneten Führungen, in einem Gehäuse gelagert ist.
Derartige Vorrichtungen zum Führen und Zentrieren eines Ma¬ schinenelementes finden unter anderem bei Vibrationskompres- soren Verwendung. Aus DE-Al-30 30 711 ist ein Vibrationskom¬ pressor bekannt, welcher für Kühlschränke bestimmt ist. Bei diesem bekannten Vibrationskompressor wird über eine An¬ triebswicklung, welche mit Wechselstrom gespiesen wird, und einen Magneten mit einem magnetischen Pol ein Kolben in translatorische, oszillierende Bewegungen versetzt. Dieser Kolben ist in einer Zylinderbüchse, welche eine Gleitführung bildet, gelagert. Um die bestimmungsgemässe Funktion des Kompressors zu gewährleisten, müssen Antriebswicklung, Kol¬ ben und Zylinderbüchse gegenseitig genau auf die Zentral- achse ausgerichtet sein, was einen erheblichen konstruktiven Aufwand erfordert. Zudem besteht das Problem der Abdichtung zwischen Kolbenwand und Zylinderbüchsenwand, welches in be¬ kannter Weise durch Kolbenringe, oder mittels einer Spalt¬ dichtung oder anderer bekannter Mittel, gelöst wird. Bei hohen mechanischen Beanspruchungen des Kolbens durch Quer¬ kräfte müssen oft noch zusätzliche mechanische Führungen des Kolbens vorgesehen werden, was die Probleme der zentralen Ausrichtung noch verstärkt und hohe Anforderungen an die Herstellgenauigkeit und damit hohe Kosten bedingt, wobei während des Betriebes trotzdem an den Führungs- und Zen- triereinrichtungen Abnutzungen auftreten. Ferner bedingt das Auftreten von Gleitreibung die Anwesenheit eines Schmiermit¬ tels wie Oel oder Fett. Diese Abnutzungen können den Betrieb des Kompressors erheblich stören, da Materialabrieb, ge¬ mischt mit Schmiermittel, in den Kühlmittelkreislauf gelan- gen kann, oder die Funktionsfähigkeit und die Leistungsfä¬ higkeit des Kompressors erheblich absinkt. Insbesondere bei der Anordnung von Spaltdichtungen sind lange Führungs- und Zentrierungsbereiche notwendig, was zu einem grösseren Mate¬ rialaufwand und entsprechender konstruktiver Ausgestaltung führt. Je länger die Führungen sind, desto schwieriger wird es jedoch, diese so zu zentrieren, dass zwischen Kolbenwand und Zylinderhülsenwand keine Berührung und Abnutzung statt¬ findet.
Kolben, welche entlang einer Zentralachse oszillierende Li¬ nearbewegungen ausführen, treten auch bei Freikolbenmotoren, z.B. Stirling-Motoren auf. Auch hier werden ähnliche bekann¬ te Lösungen angewendet, wie sie zum bekannten oszillierenden Kompressor erläutert wurden. Dabei treten die gleichen Schwierigkeiten auf, wobei berührungsfreie Dichtflächen zwi¬ schen Kolben- und Zylinderwand, wenn überhaupt, nur mit sehr grossem Aufwand und entsprechend hohen Kosten erreicht wer¬ den können. Wegen der schwierigen Betriebsbedingungen tritt trotzdem immer wieder Abrieb zwischen sich bewegenden Ma- schinenelementen auf, wodurch der Betrieb derartiger Frei¬ kolbenmotoren stark gestört und die wartungsfreie Lebens¬ dauer erheblich reduziert wird. Für sehr kleine Freikolben¬ anordnungen in Herzersatzpumpen sind aus der Publikation "Stirling-Engines" G. Walker, Clarendon Press 1980, Seiten 404 und 405, Einrichtungen bekannt, welche den Freikolben mit Hilfe von Federn berührungsfrei in der Zylinderhülse halten sollen. Eine der Lösungen besteht darin, dass bügei¬ förmige Federn an den Aussenenden mit dem Kolben verbunden und im Zentralbereich am Zylinderkopf befestigt sind. Der¬ artige abgewinkelt gebogene Federbügel lassen sich jedoch in der Praxis nicht mit der gewünschten Qualität und Gleichmäs- sigkeit herstellen, welche die gewünschte genaue Führung des Kolbens im Zylinder sicherstellen würde. Insbesondere die Abwinklung der Bügelenden, welche mit dem Kolben verbunden sind, führt zu erheblichen Schwierigkeiten, und in diesem Bereich treten sehr oft Beschädigungen auf. Diese Ausfüh¬ rungsform würde grundsätzlich ein Oszillieren des Kolbens zulassen, vermag jedoch die Anforderungen an die Genauigkeit und Sicherheit der Führung und Zentrierung nicht zu gewähr¬ leisten. Als weitere Lösung wird in der gleichen Publikation die Anwendung von Spiralplattenfedern vorgeschlagen. Derar¬ tige Spiralplattenfedern sind in Kombination mit zusätzli¬ chen mechanischen Zentrierungen, vereinzelt auch bei grösse- ren Stirling-Freikolbenmotoren, eingesetzt worden. Derartige Federn weisen jedoch eine zu geringe Quersteifigkeit auf, weshalb in der Praxis die genaue Zentrierung sehr oft nicht gewährleistet ist, sodass immer wieder Schäden und Störungen auftreten. Auch dieser Vorschlag vermag deshalb das Problem der Führung und Zentrierung eines Maschinenelementes in der Form eines Kolbens, welcher oszillierende Linearbewegungen in Richtung der Zentralachse ausführt, nicht in befriedigen¬ der Weise zu lösen.
Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung zum Führen und Zentrieren eines Maschinenelementes zu schaf- fen, welche eine oszillierende Linearbewegung in Richtung der Zentralachse zulässt, rechtwinklig zur Zentralachse je¬ doch eine sehr hohe Steifigkeit aufweist und verhindert, dass das bewegte Maschinenelement von seiner Position auf der Zentralachse abweicht. Die Vorrichtung soll einfach und wartungsfrei aufgebaut sein und in gleichbleibender Präzi¬ sion und mit gleichbleibenden Kenndaten hergestellt und ein- gebaut werden können. Die Vorrichtung soll es ermöglichen, linear oszillierend bewegte Maschinenelemente berührungs- und Schmiermittelfrei in anderen Maschinenelementen zu füh¬ ren, z.B. als Kolben-/Zylinder- oder Anker-/Stator-Anordnung bei Linearmotoren.
Diese Aufgabe wird durch die im kennzeichnenden Teil des Patentanspruches 1 definierten Merkmale gelöst. Vorteilhafte Weiterbildungen der Erfindung ergeben sich nach den Merk-ma- len der abhängigen Patentansprüche.
Bei der erfindungsgemässen Vorrichtung besteht jede der bei¬ den mit Abstand zueinander angeordneten Führungen aus mehre¬ ren plattenförmigen Federelementen. Die vorgeschlagene An- ordnung der Führungen mit den Federelementen erbringt den Vorteil, dass das Maschinenelement, welches oszillierende Linearbewegungen ausführt, genau auf seiner Zentralachse zentriert und geführt wird. Die Führungen weisen keine Teile auf, welche sich gegeneinander bewegen und Gleitverschleiss unterworfen sind. Das Maschinenelement wird durch die beiden Führungen so geführt und zentriert, dass es gegenüber ande¬ ren Maschinenelementen berührungslos eine Relativbewegung ausführen kann. Dies z.B. in einer Kolben-/Zylinder-Anord¬ nung bei einer Pumpe oder einem Linearmotor, oder bei elek- trischen Lineargeneratoren mit oszillierender Bewegung. Die Federelemente der einzelnen Führungen sind in einer Ebene angeordnet, welche etwa rechtwinklig zur Zentralachse des oszillierend bewegten Maschinenelementes steht. In dieser Ebene befinden sich die Hauptfederteile, welche plattenför- mig ausgebildet sind. Diese Anordnung der Hauptfederteile l sst eine Berechnung der Bewegungs- und Federdaten in be¬ kannter Weise zu, sodass sich auch die Bewegungen des Ma¬ schinenelementes genau bestimmen lassen. Im Aussenbereich der langen Hauptfederteile sind kürzere Hilfsfederteile an- geordnet, und zwar rechtwinklig zu den Hauptfederteilen, sodass diese Hilfsfederteile etwa parallel zur Zentralachse verlaufen. Die Verbindung der Hilfsfederteile mit den Haupt¬ federteilen erfolgt über ein zusätzliches Verbindungsele¬ ment, welches mit entsprechenden Befestigungsmittel zur fe¬ sten Verbindung der Enden der Haupt- und Hilfsfederteile ausgestattet ist. Durch die Anordnung dieses zusätzlichen Verbindungselementes zwischen jedem Hilfsfederteil und dem zugehörigen Hauptfederteil ergibt sich der Vorteil, dass das Federelement im abgewinkelten Bereich starr ist und die De¬ formationen der Federelemente nur in den plattenförmigen Bereichen stattfinden. Die einzelnen Hilfsfederteile und Hauptfederteile, sowie die Verbindungselemente, lassen sich entsprechend den technischen Vorgaben sehr genau herstellen, sodass sie beim Einbau sowohl betreffend Masshaltigkeit wie auch Festigkeitswerten die gewünschten Werte aufweisen. Die- se genaue Uebereinstimmung mit vorgegebenen Massen und Fe¬ stigkeitswerten lässt sich mit herkömmlichen Herstellungs¬ methoden erreichen, da die Federteile und die Verbindungs¬ elemente einfache Formen aufweisen. Die einzelnen Bauteile können zudem einfach geprüft und Teile, welche von den Nor - daten abweichen, leicht ausgeschieden werden. Das Zusammen¬ setzen jedes Federelementes aus mehreren einzelnen Federtei¬ len ermöglicht eine Anpassung an unterschiedliche Anforde¬ rungen und bringt den erheblichen Vorteil mit sich, dass keine Teile der Federelemente bei der Herstellung defor- miert, beispielsweise abgebogen werden müssen. Die platten- förmige Gestaltung der einzelnen Federelementteile lässt jederzeit eine genaue Bearbeitung auf die gewünschten Abmes¬ sungen, z.B. durch Schleifen zu. Die Haupt- und die Hilfs- federteile sind im Normalfalle ebene Platten.
Die plattenförmigen Federelemente jeder Führung werden zweck ässigerweise zentralsymmetrisch angeordnet, sodass sich von der Zentralachse aus in der Ebene der Führung vier, sechs oder mehr Federelementteile radial nach aussen er- strecken. Ungerade Zahlen von Federelementteilen in der Ebe¬ ne der Führung sind möglich, zweckmässigerweise umfasst je¬ des Federelement jedoch ein Hauptfederteil, welches sich symmetrisch beidseits der Zentralachse erstreckt. Dadurch, dass zwischen den Federelementen, welche in einer Ebene lie¬ gen, je gleich grosse Winkel eingeschlossen werden, ergibt sich der Vorteil, dass das Maschinenelement auf der Zentral- achse genau symmetrisch zentriert wird.
Die Abmessungen der langen Hauptfederteile und der kurzen Hilfsfederteile werden in bekannter Weise so gewählt, dass die Steifigkeit der beiden Führungen, welche die Führungs- einrichtung bilden, in Richtung der Zentralachse mindestens um den Faktor 100 grösser ist als quer zur Zentralachse. Abhängig von der gewünschten Führungspräzision und den auf¬ tretenden Querkräften werden Führungen mit einem Steifig- keitsverhältnis von 500 und mehr eingesetzt. Bei der erfin- dungsgemässen Vorrichtung ergeben sich nun weitere Vorteile, indem die Kraftaufnahme, die Steifigkeit oder die Bewegungs¬ wege durch Anpassen der einzelnen Federelementteile verän¬ dert werden können. Das Steifigkeitsverhältnis lässt sich beispielsweise nicht nur durch Verändern der Abmessungen der plattenförmigen Federteile verändern, sondern auch dadurch, dass mindestens zwei Hilfsfederteile oder Hauptfederteile mit Abstand parallel zueinander angeordnet werden, oder das Hilfs- sowie auch Hauptfederteil so ausgebildet sind. Wird keine Veränderung der Federkonstanten gewünscht, so können in einer Führung in zwei mit Abstand zueinander angeordneten Ebenen zwei Gruppen von plattenförmigen Federelementen an¬ geordnet sein. Dies führt zu einer Erhöhung der Tragfähig¬ keit der entsprechenden Führung bei etwa gleichbleibendem Steifigkeitsverhältnis. Bei all diesen unterschiedlichen Anordnungen und Ausführungsformen können immer die gleichen Grundelemente von Hauptfederteilen, Hilfsfederteilen und Verbindungselementen verwendet werden, sodass die Berech¬ nungsgrundlagen vereinfacht werden, und auch die Fertigung der Einzelteile erheblich erleichtert wird. Ein weiterer Vorteil besteht darin, dass das Hauptfederteil der einzelnen Federelemente ein- oder zweiteilig ausgebildet sein kann. Ist die Führung am Ende einer Achse angeordnet, so kann es vorteilhaft sein, die Hauptfederteile einteilig auszubilden, da sie dann mit Hilfe eines zentralen Verbindungselementes mit der Achse verbunden werden können. Wird die Führung je- doch irgendwo im Achsbereich des Maschinenelementes angeord¬ net, so ist es oft zweckmässig, die Hauptfederteile zweitei¬ lig auszuführen, und dann die gegen die Zentralachse gerich¬ teten inneren Enden der Hauptfederteile durch entsprechende Befestigungseinrichtungen mit der Achse zu verbinden. Neben den erfindungsgemäss vorgeschlagenen Flanschverbindungen mit speziell ausgebildetem Klemmelement sind auch andere bekann¬ te kraftschlüssige Verbindungen einsetzbar.
Besondere Vorteile ergeben sich, wenn das linear oszillie- rend bewegte Maschinenelement, ein Kolben und/oder eine Kol¬ benstange eines Freikolbenmotors, z.B. eines Stirling-Moto- res ist. Mit der erfindungsgemässen Führung ist es möglich, sowohl Arbeits- wie Verdränger-Kolben in deren Zylinder ge¬ nau zentrisch und berührungsfrei zu führen, sodass Spalt- dichtungen mit einer sehr geringen Spaltweite möglich wer¬ den. Der Einsatz von zwei identischen Führungen, welche mit Abstand zueinander angeordnet sind, führt die entsprechenden Kolben bzw. die Kolbenstangen bei deren oszillierenden Line¬ arbewegungen genau entlang der Zentralachse, und störende Bewegungsabweichungen werden weitgehend vermieden. Die ge¬ wünschten Bewegungswege der oszillierenden Linearbewegung lassen sich durch Anpassen der Abmessungen der Federteile in einem weiten Bereich an die Erfordernisse anpassen. Die gleichen Vorteile stellen sich auch ein, wenn das bewegte Maschinenelement, eine Kolbenstange und/oder ein Kolben eines Kompressors ist, wobei dieser einen Elektroantrieb aufweist, welcher linear oszillierende Bewegungen erzeugt. Dabei sind einfach oder doppelt wirkende Ausführungen mög¬ lich. Nachfolgend wird die Erfindung mit Hilfe von Zeichnungen, welche Ausführungsbeispiele darstellen, näher erläutert. Es zeigen:
Fig. 1 einen Längsschnitt in schematischer Darstellung durch einen Kolbenkompressor mit linear oszil¬ lierendem Elektroantrieb, Fig. 2 einen Ausschnitt aus einem Federelement mit dem Verbindungselement zwischen Haupt- und Hilfsfe- derteil, Fig. 3 einen Ausschnitt aus einer Führung mit einer
Verdoppelung der Federelemente mit zweiteiligen Hauptfederteilen, Fig. 4 die Anordnung gemäss Fig. 3 in einer frontalen Teilansicht, Fig. 5 eine schematische Darstellung der Zentralbefe¬ stigung eines einteiligen Hauptfederteiles mit Paaren von Hilfsfederteilen, und Fig. 6 einen Ausschnitt aus einer Führung mit zweitei¬ ligen Hauptfederteilen und paarweise angeordne- ten Haupt- und Hilfsfederteilen.
Der in Fig. 1 dargestellte Kompressor 1 verfügt als Boxer¬ anordnung über zwei Kolben 3, 4, welche mit Zylindern 5, 6 zusammenwirken. Diese Zylinder 5, 6 sind Bestandteil eines Gehäuses 10 des Kompressors 1. Die beiden Kolben 3, 4 sind je an den Enden einer Kolbenstange 7 angeordnet, wobei die Kolbenstange 7 und die Kolben 3, 4 eine Zentralachse 2, wel¬ che gleichzeitig die Längsachse des Gehäuses 10 bildet, auf¬ weisen. Zwischen den beiden Kolben 3, 4 ist auf der Kolben- stange 7 ein Magnetanker 9 befestigt, welcher von einer Spu¬ le 8 umgeben ist. Diese Spule 8 wird über die Leitung 22 mit Wechselstrom gespiesen, wodurch der Magnetanker 9 entlang der Zentralachse 2 in Richtung der Pfeile 23 in oszillieren¬ de Linearbewegungen versetzt wird. Ueber die Kolbenstange 7 werden auch die Kolben 3 und 4 in oszillierende Arbeitsbewe¬ gungen versetzt. An den Enden der Zylinder 5, 6 sind Druck¬ leitungen 19 und Ansaugleitungen 20 mit Ventilen 21 angeord- net, über welche das Ansaugen und Ausstossen eines Druckme¬ diums gesteuert wird. Die Kolbenstange 7 und damit die Kol¬ ben 3 und 4, sowie der Magnetanker 9 sind über Führungen 11, 12 geführt und zentriert. Diese Führungen 11, 12 sind auf zwei Ebenen 13, 14 ausgerichtet, welche etwa rechtwinklig zur Zentralachse 2 stehen. Die beiden Ebenen 13, 14 und da¬ mit die beiden Führungen 11, 12 sind in Richtung der Zen¬ tralachse 2 mit Abstand zueinander angeordnet, wobei dieser Abstand durch die Lagerbedingungen, sowie die konstruktiven Gegebenheiten des Kompressors bestimmt ist.
Jede der beiden Führungen 11, 12 besteht aus mehreren Feder¬ elementen 15. Diese Federelemente 15 bestehen aus einem zweiteiligen langen Hauptfederteil 16 sowie zwei kurzen Hilfsfederteilen 17, welche an den ausseren Enden 24, 25 des Hauptfederteiles 16 starr befestigt und mit dem Gehäuse 10 verbunden sind. Die Hilfsfederteile 17 sind dabei etwa rechtwinklig zum Hauptfederteil 16 angeordnet und verlaufen somit etwa parallel zur Zentralachse 2. Die starre Verbin- düng zwischen den ausseren Enden 24, 25 des Hauptfederteiles 16 und den Hilfsfederteilen 17 wird mittels Verbindungsele¬ menten 18 hergestellt. Die Federelemente 15 sind einerseits über die Hilfsfederteile 17 und die Befestigungselemente 26 fest mit dem Gehäuse 10 und andererseits über die Hauptfe- derteile 16 sowie einen Flansch 27 und Klemmelemente 28 mit dem oszillierend bewegten Maschinenelement, d.h. der Kolben¬ stange 7 und den Kolben 3, 4 fest verbunden. Die beiden Füh¬ rungen 11, 12 sind dabei genau gleich ausgebildet, jedoch wie aus der Figur erkennbar ist, spiegelverkehrt angeordnet.
Mit Hilfe dieser erfindungsgemässen Führungen 11, 12 können die Kolben 3, 4 in den Bohrungen der Zylinder 5, 6 berüh¬ rungsfrei geführt werden. Die Führung und Zentrierung ist dabei so genau, dass zwischen den Kolben 3, 4 und den Zylin- dern 5, 6 nur ein sehr dünner Spalt 29 notwendig ist. Da¬ durch kann die Abdichtung des Kolbenraumes durch berührungs¬ lose Spaltdichtungen erfolgen, und es sind keine Dichtungen notwendig und vorhanden, welche durch Relativbewegungen ab¬ gerieben, bzw. abgenutzt würden. Das durch die Federelemente
15 jeder Führung 11, 12 gebildete Federsystem wird so ausge¬ staltet, dass die Steifigkeit in Richtung der Ebenen 13, 14 mindestens um den Faktor 100 grösser ist als dessen Steifig- keit in Richtung der Zentralachse 2. Bei dem in Fig. 1 dar¬ gestellten Beispiel ist die Steifigkeit quer zur Zentral¬ achse 2 ca. 200f ch höher als in Richtung der Zentralachse 2. Dazu werden Federteile aus gehärtetem Federstahl einge- setzt mit einer Dicke von 1,18 mm. Pro Führung 11, 12 sind zwei Federelemente 15 vorhanden, welche rechtwinklig zuein¬ ander angeordnet sind und je aus zwei Hauptfederteilen 16 und zwei Hilfsfederteilen 17 bestehen. Die Hauptfederteile
16 haben eine Länge von ca. 13 cm und die Hilfsfederteile eine Länge von ca. 2,2 cm. Damit wird ein Kolbenhub von
20 mm möglich. Der Kolbendurchmesser beträgt 45 mm und die Oszillationsfrequenz 50 Schwingungen pro Minute.
Fig. 2 zeigt den Verbindungsbereich zwischen dem ausseren Ende 24 eines langen Hauptfederteiles 16 und einem kurzen Hauptfederteil 17 in vergrösserter Darstellung. Das Verbin¬ dungselement 18 ist dabei als Winkelelement ausgebildet und weist zwei Positionierflächen 30, 31 auf, welche in einem rechten Winkel zueinander stehen. Diese Positionierflächen 30, 31 dienen als Auflagen für die Endbereiche des Hauptfe¬ derteiles 16, sowie des Hilfsfederteiles 17. Im gezeigten Beispiel dient die Positionierfläche 31 gleichzeitig als Anschlagfläche für die äussere Kante 35 des langen Hauptfe¬ derteiles 16. Die Aussenkante des Hilfsfederteiles 17 wird ihrerseits gegen die Fläche des Hauptfederteiles gestossen, sodass die Positionen der beiden Federteile 16, 17 innerhalb des Verbindungselementes 18 genau bestimmt sind. Das Haupt¬ federteil 16 und das Hilfsfederteil 17 sind über das Verbin¬ dungselement 18 und entsprechende Klemmeinrichtungen 32, 33 kraftschlüssig miteinander verbunden. Der Kraftschluss wird im gezeigten Beispiel durch Nieten 34 erzeugt, wobei diese Verbindung auch durch eine Schraubenverbindung ersetzt wer¬ den kann. Die Uebergangsbereiche vom Einspannbereich in den freien Bereich der Federteile 16, 17 sind in bekannter Weise so ausgebildet, dass keine Beschädigungen der Federelemente auftreten, z.B. durch Abrunden der Kanten oder geeignete Beschichtungen der Klemmplatten 32, 33, bzw. des Verbin¬ dungselementes 18.
Die Figuren 3 und 4 zeigen eine Führung 11 bzw. 12, welche prinzipiell den Anordnungen gemäss Fig. 1 und 2 entspricht. Es sind jedoch an jeder Führung zwei mit Abstand zueinander angeordnete Ebenen 14, 40 vorhanden, in welchen die langen Hauptfederelemente 16', 16'' der Federelemente 15 angeordnet sind. Die beiden Ebenen 14, 40 verlaufen dabei parallel zu- einander und etwa rechtwinklig zur Zentralachse 2 der Kol¬ benstange 7. Aus Fig. 4 ist ersichtlich, dass in jeder der Ebenen 14, 40 zwei Federelemente 15 angeordnet sind, welche rechtwinklig zueinander stehen, und bei welchen zwischen den Hauptfederteilen 16 je gleiche Winkel eingeschlossen sind. Jedes der Federelemente 15 besteht dabei aus zwei Hauptfe¬ derteilen 16', 16'', zwei Hilfsfederteilen 17 und zwei Ver¬ bindungselementen 18. Die von den Verbindungselementen 18 abgewendeten Enden der kurzen Hilfsfederteile 17 sind mit¬ tels Befestigungselementen 41, 42 und Schrauben 43 am Gehäu- se 10 der Maschine starr befestigt. Die Kolbenstange 7, wel¬ che Teil des linear und oszillierend bewegten Maschinenele¬ mentes ist, weist auch hier einen Flansch 27 auf, sowie ein Klemmelement 28, welches zur Verbindung der inneren Enden 44 der Hauptfederteile 16', 16'' mit dem Flansch 27 dient. Die kurzen Hilfsfederteile 17 sind aus flachen, rechteckigen Platten gebildet. Die Hauptfederteile 16 sind trapezförmig und gegen das äussere Ende 24 breiter ausgebildet als am inneren Ende 44. Die Form der Federteile 16, 17 wird in be¬ kannter Weise durch die gewünschten Federcharakteristiken bestimmt. An den Zentrierplatten 48 sind Rippen 45 angeord¬ net, welche Anschlagflächen 46 für die inneren Enden 44 der Hauptfederteile 16', 16'' bilden. Durch diese Rippen 45 und die entsprechenden Anschlagflächen 46, sowie die entspre¬ chende Formgestaltung der inneren Enden 44 der Hauptfeder¬ teile 16, ist deren Position gegenüber den Zentrierplatten 48 bzw. der Kolbenstange 7 genau bestimmt. In dieser Posi- tion werden die inneren Enden 44 der Hauptfederteile 16 mit Hilfe der zwei Zentrierplatten 48, dem Klemmelement 28, so¬ wie einer DistanzScheibe 49 und von Schrauben 47 eingespannt und festgehalten. Diese in Fig. 3 und 4 dargestellte Anord¬ nung einer Führung 11 bzw. 12 kann grössere Längs- und Quer- kräfte aufnehmen, lässt im übrigen aber die gleichen Bewe¬ gungsabläufe zu, wie sie zu Fig. 1 beschrieben werden. Ins¬ besondere ist die Freiheit der linear oszillierenden Bewe¬ gung der Kolbenstange 7 und des zugehörigen Maschinenelemen¬ tes in Richtung der Pfeile 50 gewährleistet. Diese Ausfüh- rungsform der zweiteiligen Hauptfederteile 16 ist insbeson¬ dere dort zweckmässig, wo auf der Zentralachse 2 vor und hinter den Führungen 11 bzw. 12 weitere Maschinenelemente angeordnet sind, welche ein Aufstecken von durchgehenden Federelementen 15 auf die Kolbenstange 7 nicht zulassen. Im weitern wird aber auch die Herstellung der Hauptfederteile 16 erleichtert, da sie geringere Abmessungen aufweisen, und bei Bedarf auch einzelne Teile eines Federelementes 15 aus¬ wechselbar sind.
Fig. 5 zeigt eine Führung, bei welcher das oszillierend be¬ wegte Maschinenelement bzw. die Kolbenstange 7 am Ende gela¬ gert und geführt ist. Die Führung besteht dabei aus zwei Federelementen 15, welche rechtwinklig zueinander und wie¬ derum in einer Ebene rechtwinklig zur Zentralachse 2 ange- ordnet sind. Jedes der Federelemente 15 besteht aus einem durchgehenden Hauptfederteil 16, welches die Zentralachse 2 radial schneidet. An den ausseren Enden 24 der Hauptfeder¬ teile 16 sind wiederum Verbindungselemente 18 angeordnet, wobei diese jedoch in dem in Fig. 5 dargestellten Beispiel Auflage- und Positionierflächen für zwei parallel verlaufen¬ de, kurze Hilfsfederteile 17 aufweisen. Dementsprechend sind auch am Gehäuse 10 zwei Auflageflächen für die mit Abstand zueinander angeordneten beiden Hilfsfederteile 17 vorhanden, und die Enden sind wiederum mit Hilfe von Spannelementen fest mit dem Gehäuse 10 verbunden. Die Verbindung zwischen den Hilfsfederteilen 17 und dem Hauptfederteil 16 erfolgt sinngemass, jedoch angepasst, in der zu Fig. 2 beschriebenen Art und Weise, sodass im Uebergangsbereich zwischen den Hilfsfederteilen 17 und dem Hauptfederteil 16 eine starre Verbindung entsteht. Im zentralen Bereich weist jedes der Hauptfederteile 16 eine Bohrung 51 auf, welche auf den End- zapfen 52 der Kolbenstange 7 formschlüssig passt. Beidseits der beiden Hauptfederteile 16 sind Klemmelemente 53, 54 vor¬ handen, welche scheibenförmig ausgebildet sind. Zur Positio¬ nierung ist an der Kolbenstange 7 ein Anschlagflansch 55 ausgebildet, und der Endzapfen 52 weist eine Verschraubung 56 auf, mit welcher die Klemmelemente 53, 54 und die Haupt¬ federteile 16 eingespannt und festgeklemmt werden können. Bei dieser Art der Verbindung der Hauptfederteile 16 mit dem oszillierend bewegten Maschinenteil, in diesem Falle der Kolbenstange 7, muss sichergestellt werden, dass die Haupt- federteile im Austrittsbereich aus den Halterungen der
Klemmelemente 53, 54 mit dem grössten Anpressdruck gehalten werden. Dazu werden die von den Hauptfederteilen 16 abgewen¬ deten Seiten 57, 58 der Klemmelemente 53, 54 mit zentralen Vertiefungen 62, 62' versehen und an diesen Seiten 57, 58 anschliessend zusätzliche Spannscheiben 59, 60 angeordnet. Dadurch wird die von der Verschraubung 56 erzeugte Spann¬ kraft durch elastische Verformung der Spannscheiben 59, 60 auf die Aussenbereiche der Klemmelemente 53, 54 gelenkt, und damit werden auch die Hauptfederteile 16 in diesen Aussenbe- reichen einwandfrei verspannt.
Die in Fig. 5 dargestellte Anordnung von parallelen Hilfs¬ federteilen 17 ermöglicht eine massgebliche Erhöhung der Quersteifigkeit, die insbesondere durch eine Vergrösserung des Abstandes 63 zwischen den Federteilen 17 positiv beein- flusst werden kann. Die Anordnung von einem Hilfsfederteil 17 gemäss Fig. 1 bzw. 2 stellt die einfachste Ausführungs¬ form dar.
In Fig. 6 ist eine weitere Ausführungsform einer erfindungs- gemässen Führung dargestellt, wobei in jedem Federelement 15 sowohl die Hauptfederteile 16, wie auch die Hilfsfederteile 17 paarweise parallel und mit Abstand zueinander angeordnet sind. Die Verbindung der inneren Enden 44 der Hauptfedertei¬ le 16 mit dem Flansch 27 der Kolbenstange 7 erfolgt in glei- eher Weise, wie zu Fig. 3 und 4 beschrieben. Das Verbin¬ dungselement 18 zwischen den ausseren Enden der Hauptfeder¬ teile 16 und den daran anstossenden Enden der Hilfsfedertei¬ le 17 ist entsprechend ausgebildet und weist Auflageflächen für die paarweise Anordnung der Parallelfedern auf. Zur Ver- bindung der Hilfsfederteile 17 mit dem Gehäuse 10 sind ent¬ sprechende Befestigungs- und Spannelemente 61 vorhanden. Die Ausgestaltung der Führung mit Parallelfedern 16 führt zu einer in beiden Längs-Bewegungsrichtungen symmetrischen Fe¬ dercharakteristik mit entsprechend günstigerem Spannungsver- lauf. Die einfache Feder weist wegen der Biege- und Kraft¬ verhältnisse in den Einspannbereichen bei der Vorwärts- oder Rückwärtsbewegung des Maschinenelementes nicht die gleiche Federcharakteristik auf. Im Verhältnis zum Nullpunkt sind die positive und die negative Charakteristik der Einfachfe- der nicht symmetrisch.
Sowohl bei der Ausführungsform gemäss Fig. 1, wie auch bei Ausführungsformen gemäss Fig. 3 und 4 erweist es sich als zweckmässig, in jeder der Ebenen 13, 14 bzw. 40 mindstens zwei Federelemente 15 anzuordnen, welche zur Zentralachse 2 zentralsymmetrisch ausgebildet sind und sich in einem Winkel von 90* kreuzen. Sofern die Konstruktionsbedingungen und die auftretenden Kräfte dies erfordern, können die Federelemente jedoch auch in einem Winkel von 60 oder 45° zueinander an- geordnet sein. Dementsprechend werden dann im Bereiche des oszillierend bewegten Maschinenelementes 7 und am Gehäuse 10 mehr Befestigungs- und Positionierpunkte vorgesehen. Unab¬ hängig von den verschiedenen möglichen Ausgestaltungen der Führungen gewährleisten diese eine genaue Zentrierung des linear oszillierend bewegten Maschinenelementes 3, 4, 7 ent¬ lang der Zentralachse 2 und eine Reduktion der Abweichungen von dieser Zentralachse 2 als Folge von Querkräften, welche minimale Spalte zwischen den bewegten Maschinenteilen und damit berührungslose Spaltdichtungen zulässt.

Claims

PATENTANSPRÜCHE
1. Vorrichtung zum Führen und Zentrieren eines Maschi¬ nenelementes (4, 7), welches oszillierende Linear- bewegungen in Richtung seiner Zentralachse (2) aus¬ führt, wobei das Maschinenelement (4, 7) an zwei in Richtung der Zentralachse (2) mit Abstand zueinan¬ der angeordneten Führungen (11, 12) in einem Gehäu¬ se (10) gelagert ist, dadurch gekennzeichnet, dass jede der beiden Führungen (11, 12) aus mehreren plattenförmigen Federelementen (15) besteht, welche in einer zur Zentralachse (2) des Maschinenelemen¬ tes (4, 7) etwa rechtwinklig verlaufenden Ebene (13, 14) angeordnet sind, jedes der Federelemente (15) einerseits im Bereiche der Zentralachse (2) mit dem Maschinenelement (4, 7) und andererseits im Bereiche der ausseren Enden der Federelemente (15) mit dem Gehäuse (10) fest verbunden ist, jedes der Federelemente (15) mindestens einen langen Hauptfe- derteil (16), welcher in der Ebene (13, 14) recht¬ winklig zur Zentralachse (2) liegt und an jedem gegen das Gehäuse (10) gerichteten Ende mindestens einen kurzen Hilfsfederteil (17) , welcher etwa pa¬ rallel zur Zentralachse (2) angeordnet ist auf- weist, zwischen jedem Hilfsfederteil (17) und dem zugehörigen Hauptfederteil (16) ein Verbindungsele¬ ment (18) angeordnet ist, und die Hilfsfederteile (17) über diese Verbindungselemente (18) starr mit den ausseren Enden (24, 25) der Hauptfederteile (16) verbunden sind.
2. Vorrichtung nach Patentanspruch 1, dadurch gekenn¬ zeichnet, dass jede der beiden Führungen (11, 12) mindestens zwei zentralsymmetrische Federelemente (15) umfasst, welche in einer Ebene (13, 14) recht¬ winklig zur Zentralachse (2) des Maschinenelementes (3, 4, 7) angeordnet sind, und diese Zentralachse (2) radial schneiden, wobei zwischen den Federele¬ menten (15) je gleich grosse Winkel eingeschlossen sind.
3. Vorrichtung nach Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass die Steifigkeit der durch die beiden Führungen (11, 12) gebildeten Führungsein¬ richtung quer zur Zentralachse (2) mindestens um den Faktor 100 grösser ist als in Richtung der Zen- tralachse (2).
4. Vorrichtung nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens eine der Füh¬ rungen (11, 12) zwei Ebenen (14, 40) mit Federelementen (15) aufweist, wobei diese Ebenen (14, 40) parallel und in Richtung der Zentralachse (2) mit Abstand zueinander sowie rechtwinklig zur Zentralachse (2) verlaufen.
5. Vorrichtung nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass jedes Federelement
(17) aus einem einstückigen Hauptfederteil (16) mit zentralen Verbindungselementen (51) zum Maschinen¬ element (7, 52) und je mindestens einem an den bei¬ den Enden des Hauptfederteiles (16) angeordneten Hilfsfederteil (17) besteht.
6. Vorrichtung nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass jedes Federelement (15) aus einem zweistückigen Hauptfederteil (16) besteht, wobei die gegen die Zentralachse gerichte¬ ten inneren Enden (44) der beiden Hauptfederteile (16', 16'') fest mit dem Maschinenelement (7, 27) verbunden und an jedem der ausseren Enden (24) der beiden Hauptfederteile (16) mindestens ein Hilfs- federteil (17) angeordnet ist.
7. Vorrichtung nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass jedes der Federelemen¬ te (15) aus einem ein oder mehrstückigen Hauptfe¬ derteil (16) und je zwei Paaren von parallel ver- laufenden Hilfsfederteilen (17) besteht.
8. Vorrichtung nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass jedes der Federelemen¬ te (15) aus einem Paar von parallel angeordneten, ein oder mehrstückigen Hauptfederteilen (16) und je zwei Paaren von parallel verlaufenden Hilfsfeder¬ teilen (17) besteht.
9. Vorrichtung nach einem der Patentansprüche 1 bis 8, dadurch gekennzeichnet, dass das zwischen dem
Hauptfederteil (16) und jedem Hilfsfederteil (17) der Federelemente (15) angeordnete Verbindungsele¬ ment (18) ein Winkelelement ist und dieses Winkel¬ element Positionierflächen (30, 31) und Klemmein- richtungen (32, 33) für die kraftschlüssige Halte- rung je eines der Endbereiche der Haupt- und Hilfs- federteile (16, 17) aufweist.
10. Vorrichtung nach Patentanspruch 9, dadurch gekenn- zeichnet, dass das Winkelelement ein Positionier¬ teil (36) mit rechtwinklig zueinander angeordneten Auflage- und Anschlagflächen (30, 31) sowie An¬ pressplatten (32, 33) umfasst, die Endbereiche der Haupt- und Hilfsfederteile (16, 17) zwischen je einer Anpressplatte (32, 33) und einer Auflageflä¬ che (30, 31) am Positionierteil (36) eingelegt sind und zur kraftschlüssigen Halterung der Endbereiche der Federteile (16, 17) zwischen dem Positionier¬ teil (36) und den Anpressplatten (32, 33) Schrauben oder Nieten (34) vorhanden sind.
11. Vorrichtung nach einem der Patentansprüche 1 bis 10, dadurch gekennzeichnet, dass die Bereiche (44) der Hauptfederteile (16) der Federelemente (15), welche im Bereiche des Maschinenelementes (7) an- geordnet sind, an einem mit dem Maschinenelement
(7) verbundenen Flansch (27) festgehalten sind, wo¬ bei der Flansch (27) Auflageflächen und Anschlag¬ flächen (45) für diese Bereiche (44) der Hauptfe¬ derteile (16) aufweist und diese Bereiche (44) zwi- sehen Klemmelementen (48) und dem Flansch (27) mit Hilfe von Schrauben (47) gehalten sind.
12. Vorrichtung nach Patentanspruch 5, dadurch gekenn¬ zeichnet, dass die Hauptfederteile (16) im Bereiche der Zentralachse (2) zwischen Klemmelementen (53, 54) angeordnet sind, diese Klemmelemente (53, 54) auf der von den Hauptfederteilen (16) abgewendeten Seite (57, 58) eine zentrale Vertiefung aufweisen, an diesen Seiten ebene Spannscheiben (59, 60) auf- liegen, und diese Spannscheiben (59, 60) durch eine zentrale Verschraubung (56) des Maschinenelementes elastisch durchgebogen werden.
13. Vorrichtung nach einem der Patentansprüche 1 bis 12, dadurch gekennzeichnet, dass an einem Stirling- Freikolbenmotor mindestens einer der Kolben und/oder eine der Kolbenstangen ein derartiges li¬ near oszillierend bewegtes Maschinenelement bildet, und die beiden zugehörigen Führungen im Gehäuse dieses Stirling-Freikolbenmotores abgestützt sind.
14. Vorrichtung nach einem der Patentansprüche 1 bis 12, dadurch gekennzeichnet, dass das linear oszil¬ lierend bewegte Maschinenelement eine Kolbenstange (7) und/oder ein Kolben (3, 4) eines Kompressors (1) mit linear oszillierendem Antrieb (8, 9) ist, und die beiden Führungen (11, 12) im Gehäuse (10) dieses Kompressors (1) abgestützt sind.
PCT/CH1995/000258 1994-11-14 1995-11-09 Vorrichtung zum führen und zentrieren eines maschinenelementes WO1996015367A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK95935790T DK0739449T3 (da) 1994-11-14 1995-11-09 Indretning til styring og centrering af et maskinelement
EP95935790A EP0739449B1 (de) 1994-11-14 1995-11-09 Vorrichtung zum führen und zentrieren eines maschinenelementes
JP51561396A JP3844359B2 (ja) 1994-11-14 1995-11-09 機械要素を案内およびセンタリングする装置
US08/669,504 US5779455A (en) 1994-11-14 1995-11-09 Device for guiding and centering a machine component
AU37691/95A AU693275B2 (en) 1994-11-14 1995-11-09 Device for guiding and centring a machine component
DE59502252T DE59502252D1 (de) 1994-11-14 1995-11-09 Vorrichtung zum führen und zentrieren eines maschinenelementes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3398/94-6 1994-11-14
CH339894 1994-11-14

Publications (1)

Publication Number Publication Date
WO1996015367A1 true WO1996015367A1 (de) 1996-05-23

Family

ID=4255124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1995/000258 WO1996015367A1 (de) 1994-11-14 1995-11-09 Vorrichtung zum führen und zentrieren eines maschinenelementes

Country Status (11)

Country Link
US (1) US5779455A (de)
EP (1) EP0739449B1 (de)
JP (1) JP3844359B2 (de)
CN (1) CN1071411C (de)
AT (1) ATE166432T1 (de)
AU (1) AU693275B2 (de)
CA (1) CA2181183A1 (de)
DE (1) DE59502252D1 (de)
DK (1) DK0739449T3 (de)
ES (1) ES2117880T3 (de)
WO (1) WO1996015367A1 (de)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1101615C (zh) 1997-10-04 2003-02-12 泽地公司 线性电机压缩机
DE19839464C2 (de) * 1998-08-29 2001-07-05 Contitech Formteile Gmbh Elektrodynamischer Aktuator mit schwingendem Feder-Masse-System
BR9803560A (pt) * 1998-09-09 2000-04-18 Brasil Compressores Sa Compressor alternativo de acionamento por motor linear.
US6273688B1 (en) * 1998-10-13 2001-08-14 Matsushita Electric Industrial Co., Ltd. Linear compressor
US6129527A (en) * 1999-04-16 2000-10-10 Litton Systems, Inc. Electrically operated linear motor with integrated flexure spring and circuit for use in reciprocating compressor
JP3370653B2 (ja) * 2000-01-06 2003-01-27 株式会社テクノ高槻 電磁振動型ポンプおよびその製法
US6663361B2 (en) * 2000-04-04 2003-12-16 Baker Hughes Incorporated Subsea chemical injection pump
TW504546B (en) * 2000-10-17 2002-10-01 Fisher & Amp Paykel Ltd A linear compressor
US6746212B2 (en) * 2002-03-22 2004-06-08 Intel Corporation High efficiency pump for liquid-cooling of electronics
US6885116B2 (en) * 2002-05-06 2005-04-26 Jeffrey G. Knirck Moving coil linear motor positioning stage with a concentric aperture
DE10259071B4 (de) * 2002-07-16 2006-05-04 J. Eberspächer GmbH & Co. KG Temperiersystem für ein Fahrzeug
JP4296902B2 (ja) * 2003-02-28 2009-07-15 株式会社デンソー 流体駆動装置、及び、熱輸送システム
US20060127252A1 (en) * 2004-12-13 2006-06-15 Hamilton Sundstrand Corporation Reciprocating pump system
DE102004061940A1 (de) * 2004-12-22 2006-07-06 Aerolas Gmbh, Aerostatische Lager- Lasertechnik Kolben-Zylinder-Einheit
DE102004062307A1 (de) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linearverdichter
DE102004062300A1 (de) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linearverdichter
US20080000348A1 (en) * 2004-12-23 2008-01-03 Bsh Bosch Und Siemens Hausgerate Gmbh Linear Compressor
DE102004062302A1 (de) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linearverdichter und Antriebsaggregat dafür
DE102004062298A1 (de) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linearverdichter
DE102004062305A1 (de) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Verdichtergehäuse
DE102004062301A1 (de) * 2004-12-23 2006-07-13 BSH Bosch und Siemens Hausgeräte GmbH Linearverdichter und Antriebsaggregat dafür
US7213405B2 (en) * 2005-05-10 2007-05-08 Hussmann Corporation Two-stage linear compressor
US7478539B2 (en) * 2005-06-24 2009-01-20 Hussmann Corporation Two-stage linear compressor
US7628027B2 (en) * 2005-07-19 2009-12-08 Hussmann Corporation Refrigeration system with mechanical subcooling
DE102005053837A1 (de) 2005-11-09 2007-05-24 BSH Bosch und Siemens Hausgeräte GmbH Führungselement
SE529284C2 (sv) * 2005-11-14 2007-06-19 Johan Stenberg Membranpump
US7677039B1 (en) * 2005-12-20 2010-03-16 Fleck Technologies, Inc. Stirling engine and associated methods
CN101275543B (zh) * 2007-03-27 2012-02-29 德昌电机股份有限公司 电磁泵
BRPI0902557B1 (pt) * 2009-07-08 2020-03-10 Embraco Indústria De Compressores E Soluções E Refrigeração Ltda. Compressor linear
US8615993B2 (en) * 2009-09-10 2013-12-31 Global Cooling, Inc. Bearing support system for free-piston stirling machines
DE102009047743A1 (de) * 2009-12-09 2011-06-16 BSH Bosch und Siemens Hausgeräte GmbH Verdichter mit einem Tragegestell
DE102009047744A1 (de) * 2009-12-09 2011-06-16 BSH Bosch und Siemens Hausgeräte GmbH Verdichter mit einer Pumpkammer
KR101681588B1 (ko) * 2010-07-09 2016-12-01 엘지전자 주식회사 왕복동식 압축기
BRPI1103647A2 (pt) * 2011-07-07 2013-07-02 Whirlpool Sa disposiÇço entre componentes de compressor linear
JP5754642B2 (ja) * 2011-09-16 2015-07-29 いすゞ自動車株式会社 フリーピストン型スターリングエンジン
BRPI1105436A2 (pt) * 2011-12-26 2014-04-08 Whirlpool Sa Compressor linear baseado em mecanismo oscilatório ressonante
JP5929241B2 (ja) * 2012-01-30 2016-06-01 ミツミ電機株式会社 アクチュエーター及び電動理美容器具
CN102606449A (zh) * 2012-03-16 2012-07-25 中国电子科技集团公司第十六研究所 一种制冷用直线压缩机的中心法兰结构
JP6029854B2 (ja) * 2012-05-22 2016-11-24 ミネベア株式会社 振動子及び振動発生器
CN105332890A (zh) * 2015-11-19 2016-02-17 沈阳工业大学 圆筒型磁悬浮永磁直线压缩机
CN107762769B (zh) * 2016-08-19 2020-06-02 青岛海尔智能技术研发有限公司 线性压缩机及其控制方法
US20180094627A1 (en) * 2016-10-04 2018-04-05 James Kidd Variable displacment fluid pump
CN108626092A (zh) * 2017-03-15 2018-10-09 姚乐洁 一种电磁泵
US20190093642A1 (en) * 2017-09-27 2019-03-28 Schaeffler Technologies AG & Co. KG Reciprocating axial pump
CN110332090B (zh) * 2019-07-05 2024-03-19 连伟 高效节能永磁直线双缸压缩机
KR102269942B1 (ko) * 2020-01-15 2021-06-28 엘지전자 주식회사 압축기
CN112727995A (zh) * 2020-12-21 2021-04-30 兰州空间技术物理研究所 一种复合弹簧支撑振动系统
SE545493C2 (en) * 2021-12-10 2023-09-26 Azelio Ab An alpha type Stirling engine
CN115163298B (zh) * 2022-07-07 2023-05-09 广西玉柴机器股份有限公司 直线发动机导向结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028144A1 (de) * 1979-10-29 1981-05-06 Gordon Davey Stützsystem für einen hin- und hergehenden Kompressorkolben
GB2265674A (en) * 1992-04-03 1993-10-06 Gen Electric Oil free linear motor compressor having a flexible suspension

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3303990A (en) * 1964-02-11 1967-02-14 Mechanical Tech Inc Resonant piston compressor
JPS5520958A (en) * 1978-08-02 1980-02-14 Mitsubishi Heavy Ind Ltd Spiral spring and method of producing the same
JP2531877Y2 (ja) * 1988-12-15 1997-04-09 日東工器株式会社 電磁式ダイアフラムポンプ
JPH04366040A (ja) * 1991-06-11 1992-12-17 Mitsubishi Electric Corp 大変形ばね

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028144A1 (de) * 1979-10-29 1981-05-06 Gordon Davey Stützsystem für einen hin- und hergehenden Kompressorkolben
GB2265674A (en) * 1992-04-03 1993-10-06 Gen Electric Oil free linear motor compressor having a flexible suspension

Also Published As

Publication number Publication date
EP0739449B1 (de) 1998-05-20
JP3844359B2 (ja) 2006-11-08
CN1071411C (zh) 2001-09-19
ATE166432T1 (de) 1998-06-15
DE59502252D1 (de) 1998-06-25
CN1138889A (zh) 1996-12-25
DK0739449T3 (da) 1998-10-07
EP0739449A1 (de) 1996-10-30
AU3769195A (en) 1996-06-06
JPH09507893A (ja) 1997-08-12
CA2181183A1 (en) 1996-05-23
US5779455A (en) 1998-07-14
AU693275B2 (en) 1998-06-25
ES2117880T3 (es) 1998-08-16

Similar Documents

Publication Publication Date Title
WO1996015367A1 (de) Vorrichtung zum führen und zentrieren eines maschinenelementes
DE112010003623B4 (de) Lagerungssystem für freikolben-stirling maschinen
DE3626389C2 (de)
EP1991777B1 (de) Linearverdichter und antriebsaggregat dafür
EP1656705B1 (de) Linearer ultraschallmotor
DE102005049282B4 (de) Außenkernbaugruppe für einen Linearmotor
WO2017032536A1 (de) Rotor für eine permanenterregte elektrische maschine
DE10221623A1 (de) Schwingungsmotor
DE10241403A1 (de) Kolbenmotor
DE102019112830A1 (de) Spaltrohrmotor mit erhöhtem Wirkungsgrad
EP3051668B1 (de) Rotorsegment und Rotor einer elektrischen Maschine
EP1047875A1 (de) Radialkolbenpumpe zur kraftstoffhochdruckversorgung
EP2464867B1 (de) Antriebsvorrichtung für oszillierende verdrängermaschinen
DE2617369B2 (de) Gekapselter Motorverdichter für Kältemaschinen
DE3107231C2 (de)
DE602005005136T2 (de) Verbindung zwischen Kolbenstange und Querspritzkopf einer hin- und hergehenden Maschine
DE19707654A1 (de) Motor-Pumpenaggregat mit Linearantrieb
DE69906971T2 (de) Maschine mit doppeltem hub
EP0148348A1 (de) Kolbenverdichter
EP0739450B1 (de) Dichtungsanordnung an einer kolben-zylinder-einheit
DE19542947A1 (de) Lageranordnung für einen Taumelscheibenkompressor mit doppelt-wirkenden Kolben
DE60225000T2 (de) Linearer kompressor
DE19983919B3 (de) Kolbenstützstruktur für einen Linearkompressor
WO2000001948A2 (de) Radialkolbenpumpe
EP0151504B1 (de) Antriebsvorrichtung für ein Vibrationsgerät

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95191204.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN CZ FI JP KR NO PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995935790

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08669504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2181183

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995935790

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995935790

Country of ref document: EP