WO1996018683A1 - Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants - Google Patents

Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants Download PDF

Info

Publication number
WO1996018683A1
WO1996018683A1 PCT/FR1995/001640 FR9501640W WO9618683A1 WO 1996018683 A1 WO1996018683 A1 WO 1996018683A1 FR 9501640 W FR9501640 W FR 9501640W WO 9618683 A1 WO9618683 A1 WO 9618683A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
composition
filaments
glass
basic system
Prior art date
Application number
PCT/FR1995/001640
Other languages
English (en)
Inventor
Patrick Moireau
Original Assignee
Vetrotex France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1019960704352A priority Critical patent/KR970701236A/ko
Priority to DE69534649T priority patent/DE69534649T2/de
Priority to EP95942239A priority patent/EP0743966B1/fr
Priority to JP8518362A priority patent/JPH09509458A/ja
Priority to AT95942239T priority patent/ATE311417T1/de
Priority to PL95315844A priority patent/PL315844A1/xx
Application filed by Vetrotex France filed Critical Vetrotex France
Priority to CA002182806A priority patent/CA2182806A1/fr
Priority to BR9506749A priority patent/BR9506749A/pt
Priority to US08/687,437 priority patent/US5882792A/en
Priority to SK1038-96A priority patent/SK103896A3/sk
Publication of WO1996018683A1 publication Critical patent/WO1996018683A1/fr
Priority to FI963144A priority patent/FI963144A/fi

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/36Epoxy resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/28Macromolecular compounds or prepolymers obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/285Acrylic resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D173/00Coating compositions based on macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C09D159/00 - C09D171/00; Coating compositions based on derivatives of such polymers
    • C09D173/02Polyanhydrides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • Y10T428/296Rubber, cellulosic or silicic material in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31645Next to addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a sizing composition for glass strands, this composition reacting to ultraviolet radiation or to an electron beam.
  • the present invention also relates to a process for producing reinforcing glass strands using this composition as well as the glass strands obtained and the composites produced from the strands.
  • Polymerization means respectively “polymerizable and / or crosslinkable”, “polymerize and / or crosslink” and “polymerization and / or crosslinking” ...
  • UV or EB means respectively "polymerizable and / or crosslinkable”
  • UV irradiation or EB exposure means respectively "under UV or EB” and by "UV irradiation or EB exposure "Means respectively” under the action of ultraviolet radiation or an electron beam "and” irradiation with ultraviolet radiation or exposure to an electron beam ".
  • the manufacture of reinforcing glass strands is carried out in a known manner from molten glass streaks flowing from the die orifices. These threads are drawn in the form of continuous filaments, then these filaments are gathered into basic threads, which are then collected.
  • the filaments are coated with a size by passing over a sizing member. This deposit is necessary to obtain the threads and allows their association with other materials organic and / or inorganic to make composites.
  • the size serves primarily as a lubricant and protects the threads from abrasion resulting from the high speed friction of the threads on various members during the above-mentioned process.
  • the size can also ensure, in particular after polymerization, the integrity of the above-mentioned threads, that is to say the connection of the filaments with one another within the threads. This integrity is particularly sought after in textile applications where the threads are subjected to high mechanical stresses. In fact, if the filaments are not very integral with each other, they break more easily and disturb the operation of the textile machines. Unintegrated wires are also considered difficult to handle.
  • the sizing also facilitates wetting and / or impregnation of the wires with the materials to be reinforced and helps in the creation of connections between the said wires and the said materials.
  • the quality of the adhesion of the material to the wires and the wetting and / or impregnation of the wires with the material depend in particular on the mechanical properties of the composites obtained from said material and said wires.
  • the sizing compositions used must be sufficiently stable, in particular in the die, and compatible with the drawing speeds of the filaments which must pass through them (up to several tens of meters per second). They must in particular resist the shearing induced by the passage of the filaments and thoroughly wet their surface at said speeds. It is also desirable that these compositions have, after polymerization, a maximum conversion rate (this rate corresponding to the ratio between the rate of functions which have reacted in the size after polymerization and the rate, in the size, of reactive functions capable of react, before polymerization) in order to guarantee in particular the obtaining of glass strands of constant quality (a size having a conversion rate much lower than the expected theoretical rate being liable to change over time).
  • Patent EP-B1 243 275 describes a sizing composition comprising at least one mono or polyunsaturated oligomer and a photoinitiator (of the radical type), this sizing material reacting to ultraviolet radiation and being used in a particular process. According to this process, the size is deposited on the filaments before they are gathered into wires, then the wires are subjected to ultraviolet radiation before being wound so as to polymerize the size and avoid sticking together the turns of each winding.
  • the subject of the present invention is an improved sizing composition for glass strands, this composition making the strands easy to handle and giving them flexibility compatible with their subsequent treatments, this composition conferring good integrity on the strands after polymerization and loss on ignition low and having a satisfactory conversion rate, this composition also effectively protects the yarns from abrasion, giving them the possibility of being associated with different materials to be reinforced in order to produce composite parts having good mechanical properties, being particularly stable, especially in the die, and being compatible with the drawing speeds of the filaments.
  • the present invention also relates to an improved process for manufacturing reinforcing glass strands, as well as improved glass strands which are easy to handle and capable of effectively reinforcing organic and / or inorganic materials for the production of composites.
  • the sizing composition according to the invention consists of a solution of viscosity less than or equal to 400 cP (0.4 Pa.s) comprising less than 5% by weight of solvent and comprising at least one basic system which can be polymerized under UV or EB, said basic system comprising at least one component of molecular mass less than 750 having at least one reactive epoxy function and comprising at least 60% by weight of one or several components of molecular mass less than 750 having at least one reactive function chosen from the following functions: epoxy, hydroxy, vinylether, acrylic and methacrylic.
  • the invention also relates to a method for producing sized glass strands according to which a multiplicity of molten glass strands is drawn, flowing from a multiplicity of orifices arranged at the base of one or more dies, in the form of one or more layers of continuous filaments, then the filaments are collected into one or more threads which are collected on a moving support, said method consisting in depositing on the surface of the filaments during drawing and before gathering filaments into threads the size composition previously defined.
  • the invention also relates to wires coated with a size having the composition defined above and / or obtained according to the process mentioned above and the composites obtained from said wires. Thereafter, by "epoxy” component (s) (respectively "hydroxy",
  • the possible solvents are essentially organic solvents necessary for the dissolution of certain polymerizable compounds.
  • the presence of these solvents in a limited quantity does not require special treatments to eliminate them; in most cases, the sizes according to the invention are, moreover, completely devoid of solvent, that is to say of compounds playing only a role of solvent in the solution.
  • the composition according to the invention is compatible with the conditions for obtaining glass strands imposed by the direct process, the viscosity of the composition being chosen as a function of the drawing speed (generally from one to several tens of meters per second) and the diameter of the filaments (between 3 and 24 micrometers approximately) brought to pass through it.
  • the composition according to the invention also has a wetting speed on the wire compatible with the drawing speed of the wires.
  • basic system polymerizable under UV or EB by “basic system polymerizable under UV or EB” according to the invention, it is necessary to understand the compound or compounds essential for ensimag and having the essential function of participating in the structure of the polymerized ensimag, these compounds being able to polymerize under UV or EB
  • the basic system generally represents between 60 and 100% by weight of the sizing composition according to the invention and, preferably, it represents between
  • the component or components of molecular mass less than 750 mentioned in the definition of the invention are of molecular mass less than 500.
  • this or these components are monomers (mono or polyfunctional as explained later), but the basic system can also comprise components of molecular weight less than 750 in the form of oligomers or polymers with partially polymerized functions.
  • the basic system of the composition according to the invention may comprise from 60 to 100% by weight of one or more components of molecular mass less than 750 having one or more reactive functions among those previously mentioned.
  • the basic system of the composition according to the invention may comprise one or more other compounds which can be polymerized under UV or
  • the basic system of the composition defined according to the invention only consists of one or more epoxy and / or hydroxy and / or vinylether components and / or acrylic and / or methacrylic, and / or consists solely of one or more components with a molecular mass of less than 750.
  • the basic system comprises between 40 and 100% by weight and advantageously between 60 and
  • the epoxy and / or hydroxy and / or vinylether and / or acrylic and / or methacrylic component (s) which can be used in the basic system can have one (monofunctional components) or several identical reactive functions (polyfunctional components) or different among the functions epoxy, hydroxy, vinylether, acrylic and methacrylic.
  • the proportion of monofunctional component (s) is between 0 and 40% by weight of the basic system
  • the proportion of polyfunctional component (s) is between 60 and 100% by weight of the basic system
  • the proportion of component (s) comprising more than two identical reactive functions chosen from those previously mentioned is between 0 and 60% by weight of the basic system (in the case in particular where the base contains only cycloaliphatic epoxy components, the proportion of components comprising more than two cycloaliphatic epoxy functions is preferably zero).
  • the epoxy components of the basic system can in particular be one or more of the following components: alkyl glycidyl ether or alkyl epoxide with aliphatic chain C 4 -C 16 ; cresyl- or phenyl- or nonylphenyl- or p-tert-butyl phenyl- or 2-ethylhexyl- etc .. glycidyl ether or epoxide; epoxide limonene; cyclohexene monoxide (the latter being a cycloaliphatic epoxy); etc ...
  • diglycidyl ether or epoxide diepoxidized derivative of bisphenols A or F; 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate; bis- (3,4-epoxycyclohexyl) adipate (the latter two epoxy being cycloaliphatic epoxy); diepoxidized polyglycol; diglycidyl ester of hexahydrophthalic anhydride; trimethylolethane- or trimethylolpropane- etc.
  • triglycidyl ether palm oil triglycidyl ether; tetra (para-glycidoxyphenyl) ethane; polyglycidyl ether of an aliphatic polyol; epoxy polybutadiene; novolak epoxyphenol resin or novolak cresol epoxy; etc.
  • the possible hydroxy components of the basic system are essentially chosen from alcohols or polyols and can be used as flexibilizers and / or crosslinkers (they then increase the crosslinking rate of the size) as a function of their spatial conformation and of the number of their reactive groups.
  • These hydroxy components can be one or more of the following components: caprolactone polyol or its derivatives; polyol derived from ethylene glycol or propylene glycol; ethoxylated or propoxylated trimethylolpropane; ethoxylated or propoxylated pentaerythrytol; polyoxypropylene tetrol; etc.
  • the proportion, in the basic system, of component (s) having at least one hydroxy reactive function but not having an epoxy reactive function does not exceed 40% and advantageously 30% by weight of said basic system, said components which can notably slow down the kinetics of polymerization of the size.
  • the level, in the basic system, of epoxy component (s) is at least equal to the rate of hydroxy component (s) having no epoxy reactive function.
  • Any vinylether components of the basic system can influence the flexibility of the polymerized size.
  • These vinyl ether components can be one or more of the following hydroxyalkylvinylether components; aliphatic or aromatic ester monomer containing vinyl ether, in particular derived from acids such as adipic acid; 1.4 cyclohexane dimethanol monovinyl ether; butanediol monovinylether; isobutylvinylether; triethylene glycol monovinyl ether; octa- decylvinyl ether; alkylvinyl ether urethane; phenylvinyl ether urethane etc ... (the above components being monofunctional); cyclohexane dimethanol- or triethylene glycol- or diethylene glycol- etc. divinyl ether; aliphatic or aromatic urethane oligomer with vinylether termination; etc.
  • the proportion, in the basic system, of vinylether component (s) not having an epoxy reactive function does not exceed 40% by weight of said basic system.
  • the optional acrylic and / or methacrylic components of the basic system can be one or more of the following components: n-hexyl- or cyclohexyl- or octyl- or isodecyl- or lauryl- or stearyl- or isobornyl- etc .. acrylate or methacrylate; 2 phenoxy ethyl- or benzyl- etc .. acrylate or methacrylate; tetrahydrofurfuryl- or 2 ethoxyethyl- or 2 methoxyethyl- or 2
  • the above-mentioned components can be classified into two categories: components whose polymerization takes place cationically, that is to say the epoxy and / or hydroxy and / or vinylether components; and components the polymerization of which takes place by a radical route, that is to say in particular the acrylic and / or methacrylic components.
  • compositions according to the invention comprising both cationically polymerizable components and radical polymerizable components are more flexible after polymerization (but also confer slightly lower integrity on the yarns) than compositions comprising only cationically polymerizable components.
  • These first compositions are more suitable for coating threads intended for textile applications while the latter compositions are mainly suitable for coating threads intended for cutting.
  • the proportion of component (s) of the basic system which can undergo radical polymerization is less than 60% by weight of the basic system and, preferably, less than 40% by weight of the based.
  • the sizing composition comprises, in addition to the basic system, at least one Cationic photoinitiator allowing the polymerization of the size by UV irradiation or EB exposure
  • the cationic photoinitiator (s) which can be used in the sizing composition according to the invention can be one or more of the following components: diazonium salt such as aryldiazonium tetrafluoroborate; diaryliodonium salt such as diaryliodonium hexafluoro arseniate; triarylsulfonium salt such as triarylsulfonium hexafluoroantimoniate; triarylsulfonium hexafluorophosphate triarylsulfonium hexafluoroarseniate; triarylselenium salt; dialkylphenacylsulfonium salt; ferrocenium salt; alpha-sulfonyloxy ketone silylbenz
  • the level of cationic photoinitiator (s) present in the sizing composition or added to said composition to allow good polymerization is between 1 and 5% by weight of said composition.
  • the cationic photoinitiator (s) release from cationic species inducing the polymerization of the epox component (s) and, where appropriate, of the hydroxy and / or vinylether component (s), and optionally, liberate inducing free radicals, where appropriate , the polymerization of the acrylic and / or metacrylic component (s).
  • the size composition according to the invention may comprise, in the particular case where said composition comprises at least one component which can be polymerized by the radical route, at least one radical photoinitiator, in particular when the cationic photoinitiator used does not does not release free radicals and / or when the level of radical-reacting compound exceeds approximately 40% by weight of the total of compounds polymerizable under UV or EB, the presence of this radical photoinitiator however not being essential.
  • the radical photoinitiator can consist in particular of one or more aromatic ketones such as 2-hydroxy 2-methyl 1 -phenyl propane 1 -one, 1-hydroxy cyclohexyl phenyl ketone, etc. Its rate is proportional to the rate of compounds which can be polymerized by radical route present in the size and does not exceed 8% by weight of all of said compounds.
  • the sizing composition according to the invention can comprise additives in small quantities, these additives giving particular properties to the sizing composition but not participating in essential to the structure of the size, unlike the basic system. Even if these additives are to be distinguished from the basic system, they can nevertheless be polymerizable under U.V. or E.B. like the compounds of the basic system.
  • composition according to the invention can in particular comprise, as additive (s), at least one coupling agent making it possible to hang the size on the glass, the proportion of coupling agent (s) in the size being between 0 and 15% by weight of the size.
  • This or these coupling agents preferably have a molecular mass of less than 500 and do not carry primary or secondary amino functions, said functions being able in particular to neutralize the cationic species (for example Lewis acids) released by the cationic photoinitiators.
  • the coupling agents can be one or more of the following components: gamma-glycidoxypropyltrimethoxysilane; gamma-methacryloxypropyltrimethoxy-silane; polyethoxylated-propoxylated trimethoxysilane; gamma-acryloxypropyltrimethoxysilane; trimethoxysilane vinyl; etc ... (the above components being silanes); titanate; zirconate; siloxanne; etc.
  • composition according to the invention can also comprise, as additive (s), at least one film-forming agent acting only as a slip agent and facilitating fiberizing, in proportions of between 0 and 15% by weight and preferably between 0 and 10% by weight.
  • film-forming agent (s) prevents significant friction of the filaments on the sizing device when the filaments are very fine and / or drawn at high speed (more than 40 m / s), these agents being however expensive and which could lead to a reduction in the mechanical characteristics of the composites.
  • These fiberizing agents can be one or more of the following components: silicone; siloxane functionalized with or without epoxy; derivative of silicones such as silicone oil, polysiloxane such as glycidyl (n) polydimethyl siloxane or alpha-omega acryloxypolydimethyl siloxane, etc.
  • the composition according to the invention can also comprise, as additive (s), at least one agent for textile implementation which plays essentially a role of lubricant, in proportions of between 0 and
  • the textile agents can be one or more of the following components: fatty ester (optionally ethoxylated or propoxylated) or derivative of glycols (in particular ethylene or propylene glycol) such as ethylene glycol adipate, isopropyl palmitate or cetyl, isobutyl or isopropyl stearate, decyl laurate, a polyethylene glycol or polypropylene glycol of molecular weight less than 2000, etc.
  • fatty ester optionally ethoxylated or propoxylated
  • glycols in particular ethylene or propylene glycol
  • ethylene glycol adipate isopropyl palmitate or cetyl
  • isobutyl or isopropyl stearate decyl laurate
  • the size may also include, as additive (s), at least one agent for adapting to the materials to be reinforced, in the case of cementitious materials in particular.
  • the sizing composition according to the invention effectively protects the threads from abrasion, is stable in particular in the die, compatible with the drawing speeds of the filaments and does not require the use of a drying operation.
  • the stability of the sizing composition can be increased when the composition does not include a cationic photoinitiator. It may therefore be advantageous to use the composition according to the invention not comprising a cationic photoinitiator and to provide said composition (s) with said photoinitiator (s) only when the sized wires are ready to be subjected to ultraviolet radiation or to a electron beam aimed at polymerizing the size.
  • the composition according to the invention When the composition according to the invention is deposited on the filaments during drawing, it spreads very quickly over their entire surface and forms a real protective film for each of them.
  • the yarn obtained by gathering the filaments and coated with the composition which is not yet polymerized thus consists of a bundle of sheathed filaments which can slide over one another, this yarn then having considerable flexibility, particularly advantageous in the case where this yarn is intended to be cut, the sheathing of the filaments also providing additional protection against abrasion.
  • Such a wire does not have integrity in the ordinary sense of the term, that is that is to say that it does not consist of filaments fixed to each other thanks, in particular, to a bonding bonding caused by one or more constituents of the size such as can cause sticky film-forming agents present in significant quantity in a sizing.
  • this wire coated with the composition not yet polymerized is easy to handle and, when it is wound in the form of windings, can easily be extracted from the windings without having previously undergone a polymerization treatment of the size.
  • the yarns coated with the sizing composition which has not yet polymerized have moreover a very good ability for wetting and impregnation with materials to be reinforced, the faster impregnation allowing a gain in productivity and the composites obtained having a more homogeneous and some improved mechanical properties.
  • the integrity proper of the threads by bonding the filaments constituting it is obtained after polymerization of the sizing composition by UV irradiation or E.B. exposure. This integrity is sought at the level of the threads having to undergo strong mechanical stresses during their implementation.
  • the integrity obtained after polymerization of the size is important while the rate of size polymerized on the threads is relatively low (the loss on ignition of the threads coated with the sizing composition and / or obtained according to the process of invention not exceeding 3% by weight).
  • the quantity of sizing composition which must be deposited on the yarns in order to be effective is advantageously unimportant and nevertheless makes it possible to obtain yarns having very good characteristics, including integrity.
  • This integrity, at low loss on ignition, obtained using a composition according to the invention comprising at least one cationic photoinitiator is better than the integrity obtained under the same conditions using most of the traditional sizing compositions reacting under UV or EB , and in particular by using a composition such as that described in patent EP 570,283.
  • the integrity obtained for a loss on ignition of 1% with the sizing compositions according to the invention comprising (or to which has been added) at least one cationic photoinitiator corresponds to an integrity obtained for a loss on ignition of 2.5% with a similar composition may include only radical-reacting components and radical photoinitiators.
  • the sizing composition according to the invention also exhibits, after polymerization, a conversion rate closer to the theoretical rate awaits that that obtained under the same conditions for traditional sizes reacting under UV or EB. Indeed, in traditional sizes, especially sizes comprising radical polymerizable compounds and radical photoinitiators, the stopping of the polymerization takes place as soon as the UV irradiation or the EB exposure ends by consumption of the free radicals formed. In the sizing composition according to the invention, the Lewis acids resulting from the decomposition of the photoinitiator remain and allow the polymerization to continue.
  • the sized yarns according to the invention are subjected to a maturing phase after polymerization in order to obtain a satisfactory conversion rate.
  • the wires can advantageously be combined with different materials to be reinforced with a view to producing composite parts having good mechanical properties.
  • the composition according to the invention in fact gives the wires good compatibility with the materials to be reinforced, in particular with organic materials and in particular with epoxy materials, but also with mineral materials such as cementitious materials. It also allows the impregnation of the sized threads by the material to be reinforced.
  • This composition is particularly suitable for the production of continuous yarns collected in the form of rovings, cakes, cops, mats, etc., or for the production of cut yarns, these different yarns being composed of filaments of diameter ranging from 3 at around 24 microns.
  • the sizing composition according to the invention is in particular suitable for the production of fine yarns (of title ranging in particular from 68 to 1 36 tex) collected in the form of rovings, unlike traditional aqueous sizing.
  • the sizing composition according to the invention is advantageously deposited during the process according to the invention on filaments intended to be gathered into son then is polymerized under UV or EB, the UV irradiation or the EB exposure being able to be carried out at different stages of the process.
  • the irradiation or exposure can in particular be done during the direct process for producing the threads after depositing the size on the filaments and before collecting the sized threads. Irradiation or exposure can also be done during the collection of sized threads, just as it can be done after the collection operation, before or simultaneously with the production of a composite by association of sized threads with a organic material.
  • the irradiation or exposure is carried out in the presence of at least one cationic photoinitiator, this photoinitiator already being in the sizing composition as deposited on the filaments and / or being added to said composition later before irradiation UV or EB exposure, in particular via a material (for example a binder or a material to be reinforced) associated with sized glass strands.
  • a material for example a binder or a material to be reinforced
  • UV irradiation or EB exposure can be done at the level of the sized filaments or at the level of the sized wires on part of their journey before collection, on the model of the processes respectively described in the patents
  • UV irradiation can also be carried out on the windings during the winding operation on the model of the process described in the patent
  • EP 570 283. UV irradiation or E.B. exposure before collecting yarns and / or on sized windings of yarns is particularly preferred in the case where the yarns are intended for textile applications.
  • the yarns obtained after gathering the filaments can not only be collected in the form of windings on a rotating support but can also be collected on receiving supports in translation.
  • the wires can be projected by a member which also serves to stretch them, towards the moving collecting surface. transverse to the direction of the son projected in order to obtain a web of intermingled continuous son called "mat", in which case UV irradiation o the EB exposure can be done not only before collection as described above (the size deposited on the filaments then comprising at least one cationic photoinitiator), but also during the collection, on the threads distributed over the collection surface.
  • a binder this lian can possibly include and bring to the size u cationic photoinitiator may have been sprayed onto the mat before irradiation.
  • UV or E.B. exposure and the irradiation or exposure can make it possible to polymerize both the binder and the size.
  • the wires can also be cut before collection by an organ also serving to stretch them, the cut wires being collected on receiving supports in translation, in which case UV irradiation or EB exposure is preferably done at the level of the cut wires (l size deposited on the filaments advantageously comprising in this case at least one cationic photoinitiator), for example between the cutting member and the receiving support and / or on the receiving support and / or between a first receiving support and a second receiving support ...
  • Wires can also be collected without having been subjected to ultraviolet radiation or to an electron beam, UV irradiation or E.B. exposure taking place later.
  • the wires can be collected in the form of windings, and then be extracted from said windings to undergo additional treatments (for example to be cut by a member also serving to mechanically drive them), irradiation or exposure being able to take place.
  • additional treatments for example to be cut by a member also serving to mechanically drive them
  • irradiation or exposure being able to take place.
  • on the threads before, during or after the additional treatment (s) in particular for cutting, irradiation or exposure can be done between the cutting member and the collecting member for the cut threads or on the cutting member collection .
  • the wires can also be collected without having been subjected to ultraviolet radiation or an electron beam, then be irradiated or exposed after association with an organic material during the production of a composite, said material possibly comprising at least a cationic photoinitiator.
  • the irradiation UV or EB exposure can be accompanied by heat treatment or other treatment with actinic radiation, etc.
  • UV irradiation or EB exposure can also be carried out after combining the sized glass strands and an organic material as follows: after drawing, the glass filaments are coated with the sizing composition according to the invention and combined in wires while simultaneously extruding and entraining a thermoplastic organic material, the paths followed by the glass wires and the organic material converging towards each other before said material and said wires are combined into at least one wire or composite ribbon, said composite wire or ribbon being subjected to ultraviolet radiation or to an electron beam on part of its path before collection.
  • This process for manufacturing a composite wire or ribbon is done for example on the model of the process described in patent EP 0 367 661.
  • the glass strands coated with the size according to the invention and / or obtained according to the process of the invention are coated with an unpolymerized size, or with a polymerized size after UV irradiation or E.B.
  • the sized glass strands according to the invention have a loss on ignition advantageously less than 3% and preferably less than 2%.
  • the small amount of size deposited on the wire makes it possible to considerably reduce the problems of bonding between wires, in particular when they are collected in the form of windings, also allows better opening of the wire during impregnation with a material to be reinforced. and is economically advantageous.
  • the glass strands obtained according to the invention can be in different forms, requiring or not additional treatments of the strands.
  • the glass strands according to the invention can thus be in the form of continuous strands, of cut strands, may have been assembled in the form of braids, ribbons, mats or networks, woven or not ...
  • the composites advantageously obtained by combining glass strands according to the invention and at least one organic and / or inorganic material (the content of glass within these composites generally being between 30 and 70% by weight) have good mechanical properties as illustrated below in the examples.
  • Filaments 9 ⁇ m in diameter obtained by drawing glass filaments according to the method of the invention are coated with the following size composition expressed in percentages by weight: Components of the basic system with molecular mass less than 750:
  • the sizing composition has a viscosity of 52.1 0 3 Pa.s (52 cP) at 25 ° C.
  • the filaments are gathered into wires, which are wound on coils and subjected during winding to UV radiation emitted by a mercury vapor tube with a power of 1 20 watts per linear centimeter of tube, each layer of wire being exposed directly to radiation for about 1 second.
  • the wires are then extracted from the cops to measure their tensile breaking force under the conditions defined by standard ISO 3341. The results are reported in comparative table I in the appendix also giving the titer and the loss on ignition of the wires obtained.
  • the reinforced resin is the polyester resin M 402 sold under this reference by the company CIBA-GEIGY to which is added, for 100 parts in weight of polyester resin, 20 parts of a softener marketed under the reference “F 801 0 C” by the company CRAY-VALLEY, 1 6.5 parts of styrene and 1.5 parts of an accelerator marketed under the reference “THM 60 ”by the company CIBA-GEIGY.
  • the mechanical properties presented by these plates, in bending and in shear, are measured respectively according to standards ISO 1 78 and ISO 4585. These properties are measured before aging and after immersion of these plates in water at 98 ° C for 24 h .
  • Example 1 From the wires obtained in Example 1, composite plates are produced as in Example 1, the reinforced resin this time being the epoxy resin CY 205 sold under this reference by the company CIBA-GEIGY, to which is added, per 100 parts by weight of epoxy resin, 32 parts by weight of a hardener marketed under the reference "HT 972" by the company CIBA-GEIGY.
  • the reinforced resin this time being the epoxy resin CY 205 sold under this reference by the company CIBA-GEIGY, to which is added, per 100 parts by weight of epoxy resin, 32 parts by weight of a hardener marketed under the reference "HT 972" by the company CIBA-GEIGY.
  • the sizing composition in question has a viscosity of 64.1 0 3 Pa.s (64 cP) at 20 ° C.
  • the filaments are gathered into threads, which threads are then cut by a member serving to stretch them, the threads being collected on a moving conveyor and subjected on said conveyor to ultraviolet radiation emitted by a mercury vapor tube of a power 80 watts per linear centimeter of tube, the exposure time of each of the cut wires being of the order of 5 seconds.
  • the filamentary diameter of the wires obtained is 14 ⁇ m and their loss on ignition is 2% by weight.
  • EXAMPLE 4 Sized and irradiated yarns are obtained in the same way as in Example 1, the sizing composition used, however, being as follows (in percentages by weight): Components of the basic system of molecular mass less than 750:
  • the sizing composition has a viscosity of 40.1 0 3 Pa.s (40 cP) at 25 ° C.
  • EXAMPLE 5 Sized and irradiated wires are obtained as in Example 1, the wires however being wound for 1,800 seconds on supports so as to give coils called “cakes” and the sizing composition used however being as follows ( percentages by weight): Components of the basic system with molecular mass lower than 750:
  • EXAMPLE 6 Sized and irradiated wires are obtained as in Example 1, the wires being, however, wound for 1,200 seconds on cakes and the sizing composition, however, is as follows (in percentage by weight):
  • the sizing composition has a viscosity of 52.1 0 3 Pa. (52 cP) at 20 ° C.
  • the characteristics of the wires obtained are determined as in Example 1 and reported in Comparative Table I.
  • EXAMPLE 7 From the wires obtained in Example 6, composite plates are produced as in Example 2 and the mechanical properties of these plates measured under the same conditions as in Example 2 are reported in Comparative Table II.
  • EXAMPLE 8 Sized and irradiated wires are obtained as in Example 1, the sizing composition being however the following (percentages by weight): Components of the basic system with molecular mass less than 750:
  • the sizing composition has a viscosity of 44.10 3 Pa.s (44 cP) at 25 ° C.
  • the characteristics of the wires obtained are determined as in Example 1 and reported in Comparative Table I.
  • Example 1 Sized and irradiated wires are obtained as in Example 1, the sizing composition however being as follows (percentages by weight):
  • radical photoinitiator 1-hydroxy cyclohexylphenyl ketone ' 231 1 0.0% • gamma-aminopropyltriethoxysilane coupling agent' 241 6.0%
  • the sizing composition has a viscosity of 60.1 0 3 Pa.s (60 cP) at 20 ° C.
  • the characteristics of the threads obtained are determined as in Example 1 and reported in Comparative Table I.
  • Sized wires subjected to ultraviolet radiation are obtained in the same way as in Example 6, the sizing composition used, however, is as follows (in percentages by weight):
  • the sizing composition has a viscosity of 40.1 0 3 Pa.s (40 cP) at 20 ° C.
  • the characteristics of the wires obtained are determined as in Example 1 and reported in Comparative Table I.
  • the coated yarns according to the invention are easy to handle, have a low loss on ignition, and have good tensile strength properties.
  • the tensile strength properties of the coated yarns according to the invention are improved after a start of aging in water.
  • the sized yarns according to the invention make it possible to obtain composites having mechanical properties at least as good, or even better, than those of the composites obtained from yarns coated with sizes comprising only radical-reacting components and radical photoinitiators .
  • the glass strands according to the invention can be used for various applications, for example in textile applications such as the warping of warp chains, or directly in reinforcement applications such as the reinforcement of organic materials (for example plastics) or inorganic materials (for example cement materials) to obtain composite products .
  • textile applications such as the warping of warp chains
  • reinforcement applications such as the reinforcement of organic materials (for example plastics) or inorganic materials (for example cement materials) to obtain composite products .

Abstract

La présente invention concerne une composition d'ensimage pour fils de verre constituée d'une solution de viscosité inférieure ou égale à 400 cP comprenant moins de 5 % en poids de solvant et comprenant au moins un système de base polymérisable sous l'action d'un rayonnement ultraviolet ou d'un faisceau d'électrons, ledit système de base comprenant au moins un composant de masse moléculaire inférieure à 750 présentant au moins une fonction réactive époxy et comprenant au moins 60 % en poids d'un ou plusieurs composants de masse moléculaire inférieure à 750 présentant au moins une fonction réactive choisie parmi les fonctions suivantes: époxy, hydroxy, vinyléther, acrylique et méthacrylique. L'invention concerne également un procédé utilisant cette composition et les fils revêtus de ladite composition.

Description

COMPOSITION D'ENSIMAGE POUR FILS DE VERRE,
PROCEDE UTILISANT CETTE COMPOSITION
ET PRODUITS RESULTANTS
La présente invention concerne une composition d'ensimage pour fils de verre, cette composition réagissant au rayonnement ultraviolet ou à un faisceau d'électrons. La présente invention concerne également un procédé de production de fils de verre de renforcement utilisant cette composition ainsi que les fils de verre obtenus et les composites réalisés à partir des fils. Dans la suite du texte, par « polymérisable », « polymériser » et
« polymérisation » on entend respectivement « polymérisable et/ou réticulable », « polymériser et/ou réticuler » et « polymérisation et/ou réticulation »... De même, par « sous U.V. ou E.B. » et par « irradiation U.V. ou exposition E.B. », on entend respectivement « sous l'action d'un rayonnement ultraviolet ou d'un faisceau d'électrons » et « irradiation par un rayonnement ultraviolet ou exposition à un faisceau d'électrons ».
La fabrication de fils de verre de renforcement se fait de façon connue à partir de filets de verre fondu s'écoulant des orifices de filières. Ces filets sont étirés sous forme de filaments continus, puis ces filaments sont rassemblés en fils de base, lesquels sont ensuite collectés.
Avant leur rassemblement sous forme de fils, les filaments sont revêtus d'un ensimage par passage sur un organe ensimeur. Ce dépôt est nécessaire à l'obtention des fils et permet leur association avec d'autres matières organiques et/ou inorganiques pour réaliser des composites.
L'ensimage sert en premier lieu de lubrifiant et protège les fils de l'abrasion résultant du frottement à grande vitesse des fils sur divers organes lors du procédé précédemment cité. L'ensimage peut également assurer, notamment après polymérisation, l'intégrité des fils susmentionnés, c'est-à-dire la liaison des filaments entre eux au sein des fils. Cette intégrité est notamment recherchée dans les applications textiles où les fils sont soumis à de fortes contraintes mécaniques. En effet, si les filaments sont peu solidaires les uns des autres, ils se rompent plus facilement et viennent perturber le fonctionnement des machines textiles. Les fils non intègres sont, de plus, considérés comme difficiles à manipuler.
L'ensimage facilite également le mouillage et/ou l'imprégnation des fils par les matières à renforcer et aide à la création de liaisons entre lesdits fils et lesdites matières. De la qualité de l'adhérence de la matière aux fils et de l'aptitude au mouillage et/ou à l'imprégnation des fils par la matière dépendent notamment les propriétés mécaniques des composites obtenus à partir de ladite matière et desdits fils.
Les compositions d'ensimage utilisées doivent être suffisamment stables, notamment sous filière, et compatibles avec les vitesses d'étirage des filaments devant les traverser (jusqu'à plusieurs dizaines de mètres par seconde). Elles doivent notamment résister au cisaillement induit par le passage des filaments et bien mouiller leur surface auxdites vitesses. Il est également souhaitable que ces compositions présentent, après polymérisation, un taux de conversion maximal (ce taux correspondant au rapport entre le taux de fonctions ayant réagi dans l'ensimage après polymérisation et le taux, dans l'ensimage, de fonctions réactives susceptibles de réagir, avant polymérisation) pour garantir notamment l'obtention de fils de verre de qualité constante (un ensimage présentant un taux de conversion très inférieur au taux théorique attendu étant susceptible d'évoluer dans le temps).
La plupart des ensimages actuellement utilisés sont des ensimages aqueux simples à manipuler, mais devant être déposés en grandes quantités sur les filaments pour être efficaces. L'eau représente généralement 90 % en poids de ces ensimages (pour des raisons de viscosité notamment), ce qui oblige à sécher les fils avant leur utilisation comme renforts, l'eau pouvant nuire à la bonne adhérence entre les fils et les matières à renforcer. Ces séchages sont longs et coûteux, doivent être adaptés aux conditions de fabrication des fils et leur efficacité n'est pas toujours optimale. De plus, lorsqu'ils sont faits sur des enroulements de fils, ils entraînent des risques de migration irrégulière et/ou sélective des composants de l'ensimage au sein des enroulements (les ensimages aqueux ayant déjà tendance à se répartir sur les fils de façon irrégulière du fait de leur nature), et éventuellement des phénomènes de coloration des fils ou de déformation des enroulements. La déformation des enroulements s'observe également, en l'absence de séchage, sur les enroulements à bords droits (stratifils) de fils « fins » (c'est-à-dire présentant un « titre » ou « masse linéique » de 300-600 tex (g/km) ou moins) revêtus d'ensimages aqueux. Quelques rares brevets décrivent des ensimages non aqueux mais ces ensimages font généralement appel à des solvants organiques délicats à manipuler et pouvant nuire à la santé des personnes se trouvant alentour parce que toxiques, et/ou posent des problèmes de viscosité qu'il convient de résoudre en chauffant ces ensimages ou en rajoutant des agents adéquats. Le brevet EP-B1 243 275 décrit un ensimage comprenant au moins un oligomère mono ou polyinsaturé et un photoamorceur (du type radicalaire), cet ensimage réagissant aux rayonnements ultraviolets et étant utilisé dans un procédé particulier. Selon ce procédé, l'ensimage est déposé sur les filaments avant leur rassemblement en fils, puis les fils sont soumis à un rayonnement ultraviolet avant d'être bobinés de manière à polymériser l'ensimage et éviter le collage entre elles des spires de chaque enroulement, ce collage rendant le dévidage des fils difficile. Un tel procédé permet d'obtenir des fils intègres et directement manipulables. Cependant, l'ensimage polymérisé empêche le glissement des filaments les uns par rapport aux autres, cette absence de mobilité entraînant l'éclatement, par dégradation mécanique de l'ensimage, des fils lorsqu'ils sont coupés et pouvant poser des problèmes dans les applications textiles où les fils utilisés doivent être à la fois intègres et souples (la souplesse des fils étant liée à la souplesse de l'ensimage et à la quantité d'ensimage déposée). De plus, la perte au feu des fils obtenus est plutô élevée et le taux de conversion après polymérisation excède difficilemen
75 %.
Un autre ensimage (à base d'acrylates, de N vinylpyrrolidone et d'u photoamorceur radicalaire) réagissant aux rayonnements ultraviolets es mentionné dans le brevet EP 570 283 décrivant un procédé dans lequel l'irradiation des fils se fait sur les enroulements de fils pendant l'opération de bobinage. Les fils de verre obtenus présentent de bonnes caractéristiques mécaniques, un taux de conversion satisfaisant du fait du temps d'irradiation plus long et une perte au feu faible, mais leur intégrité n'est pas totalement satisfaisante. Augmenter la quantité d'ensimage déposée sur les fils (donc la perte au feu) pour améliorer l'intégrité apparaît cependant peu économique et pourrait conduire à des fils ensimés présentant une rigidité trop importante.
La présente invention a pour objet une composition d'ensimage améliorée pour fils de verre, cette composition rendant les fils aisément manipulables et leur conférant une souplesse compatible avec leurs traitements ultérieurs, cette composition conférant une bonne intégrité aux fils après polymérisation et à perte au feu faible et présentant un taux de conversion satisfaisant, cette composition protégeant en outre efficacement les fils de l'abrasion, leur conférant la possibilité d'être associés à différentes matières à renforcer en vue de réaliser des pièces composites présentant de bonnes propriétés mécaniques, étant particulièrement stable, notamment sous filière, et étant compatible avec les vitesses d'étirage des filaments.
La présente invention a également pour objet un procédé amélioré de fabrication de fils de verre de renforcement, ainsi que des fils de verre améliorés de manipulation facile et aptes à renforcer efficacement des matières organiques et/ou inorganiques pour la réalisation de composites.
La composition d'ensimage selon l'invention est constituée d'une solution de viscosité inférieure ou égale à 400 cP (0,4 Pa.s) comprenant moins de 5 % en poids de solvant et comprenant au moins un système de base polymérisable sous U.V. ou E.B., ledit système de base comprenant au moins un composant de masse moléculaire inférieure à 750 présentant au moins une fonction réactive époxy et comprenant au moins 60 % en poids d'un ou plusieurs composants de masse moléculaire inférieure à 750 présentant au moins une fonction réactive choisie parmi les fonctions suivantes : époxy, hydroxy, vinylether, acrylique et méthacrylique.
L'invention concerne aussi un procédé de production de fils de verre ensimés selon lequel on étire une multiplicité de filets de verre fondu, s'écoulant d'une multiplicité d'orifices disposés à la base d'une ou plusieurs filières, sous la forme d'une ou plusieurs nappes de filaments continus, puis on rassemble les filaments en un ou plusieurs fils que l'on collecte sur un support en mouvement, ledit procédé consistant à déposer à la surface des filaments en cours d'étirage et avant rassemblement des filaments en fils la composition d'ensimage précédemment définie.
L'invention concerne encore des fils revêtus d'un ensimage présentant la composition précédemment définie et/ou obtenus selon le procédé ci-dessus mentionné et les composites obtenus à partir desdits fils. Par la suite, par « composant(s) "époxy" (respectivement "hydroxy",
"vinylether", "acrylique", "méthacrylique") », on entend « composant(s) présentant au moins une fonction réactive "époxy" (respectivement
"hydroxy", "vinylether", "acrylique", "méthacrylique") ».
Dans la composition selon l'invention, les solvants éventuels sont essentiellement des solvants organiques nécessaires à la mise en solution de certains composés polymérisables. La présence de ces solvants en quantité limitée ne requiert pas de traitements particuliers pour les éliminer ; dans la majeure partie des cas, les ensimages selon l'invention sont, de surcroît, totalement dénués de solvant, c'est-à-dire de composés jouant uniquement un rôle de solvant dans la solution.
Du fait de sa faible viscosité (inférieure ou égale à 400 cP et, de préférence, inférieure ou égale à 200 cP), la composition selon l'invention est compatible avec les conditions d'obtention des fils de verre imposées par le procédé direct, la viscosité de la composition étant choisie en fonction de la vitesse d'étirage (généralement de une à plusieurs dizaines de mètres par seconde) et du diamètre des filaments (entre 3 et 24 micromètres environ) amenés à la traverser. La composition selon l'invention présente également une vitesse de mouillage sur le fil compatible avec la vitesse d'étirage des fils. Par « système de base polymérisable sous U.V. ou E.B. » selo l'invention, il faut comprendre le ou les composés indispensables à l'ensimag et ayant pour fonction essentielle de participer à la structure de l'ensimag polymérisé, ces composés étant aptes à polymériser sous U.V. ou E.B. L système de base représente généralement entre 60 et 1 00 % en poids de l composition d'ensimage selon l'invention et, de préférence, il représente entr
70 et 99 % en poids de ladite composition.
De préférence et en général selon l'invention, le ou les composants d masse moléculaire inférieure à 750 mentionnés dans la définition de l'invention sont de masse moléculaire inférieure à 500. De même, dans la plupart des cas selon l'invention et de façon préférée, ce ou ces composants sont des monomères (mono ou polyfonctionnels comme explicité ultérieurement), mais le système de base peut également comprendre des composants de masse moléculaire inférieure à 750 sous forme d'oligomères ou de polymères à fonctions partiellement polymérisées. Le système de base de la composition selon l'invention peut comprendre de 60 à 100 % en poids d'un ou plusieurs composants de masse moléculaire inférieure à 750 présentant une ou plusieurs fonctions réactives parmi celles précédemment citées.
En plus du ou des composants de masse moléculaire inférieure à 750 précités, le système de base de la composition selon l'invention peut comprendre un ou plusieurs autres composés polymérisables sous U.V. ou
E.B., notamment un ou plusieurs composants époxy et/ou hydroxy et/ou vinylether et/ou acrylique et/ou méthacrylique de masse moléculaire plus élevée. Selon le mode de réalisation préféré de l'invention permettant d'obtenir des résultats particulièrement satisfaisants, le système de base de la composition définie selon l'invention est uniquement constitué d'un ou plusieurs composants époxy et/ou hydroxy et/ou vinylether et/ou acrylique et/ou méthacrylique, et/ou est uniquement constitué d'un ou plusieurs composants de masse moléculaire inférieure à 750.
De préférence également et en général selon l'invention, le système de base comprend entre 40 et 1 00 % en poids et avantageusement entre 60 et
1 00 % en poids d'un ou plusieurs composants époxy de masse moléculaire inférieure à 750.
Le ou les composants époxy et/ou hydroxy et/ou vinylether et/ou acrylique et/ou méthacrylique pouvant être utilisés dans le système de base peuvent présenter une (composants monofonctionnels) ou plusieurs fonctions réactives identiques (composants polyfonctionnels) ou différentes parmi les fonctions époxy, hydroxy, vinylether, acrylique et méthacrylique.
De préférence, dans le système de base, la proportion de composant(s) monofonctionnel(s) est comprise entre 0 et 40 % en poids du système de base, la proportion de composant(s) polyfonctionnel(s) est comprise entre 60 et 100 % en poids du système de base et la proportion de composant(s) comprenant plus de deux fonctions réactives identiques choisies parmi celles précédemment citées est comprise entre 0 et 60 % en poids du système de base (dans le cas notamment où le système de base comprend uniquement des composants époxy cycloaliphatique, la proportion de composants comprenant plus de deux fonctions époxy cycloaliphatiques est préférentiellement nulle).
Les composants époxy du système de base peuvent être notamment un ou plusieurs des composants suivants : alkyl glycidyl éther ou alkyl époxyde à chaîne aliphatique C4-C16 ; crésyl- ou phényl- ou nonylphényl- ou p-tert-butyl phényl- ou 2-éthylhexyl- etc.. glycidyl éther ou époxyde ; limonène époxyde ; cyclohéxène monoxyde (ce dernier étant un époxy cycloaliphatique) ; etc.. (les composants précédents étant monofonctionnels) ; 1 ,4 butanediol- ou néopentylglycol- ou résorcinol- ou cyclohexane diméthanol- ou 1 ,6 hexanediol- ou dibromonéopentylglycol- etc .. diglycidyl éther ou époxyde ; dérivé diépoxydé des bisphénols A ou F ; 3,4-époxycyclohexylméthyl-3,4- époxycyclohexane carboxylate ; bis-(3,4-époxycyclohexyl) adipate (ces deux derniers époxy étant des époxy cycloaliphatiques) ; polyglycol diépoxydé ; diglycidyl ester de l'anhydride hexahydrophtalique ; triméthyloléthane- ou triméthylolpropane- etc.. triglycidyléther ; triglycidyl éther d'huile de palme ; tétra (para-glycidoxyphényl) éthane ; polyglycidyl éther d'un polyol aliphatique ; polybutadiène époxyde ; résine époxyphénol novolaque ou époxy crésol novolaque ; etc..
Les éventuels composants hydroxy du système de base sont essentiellement choisis parmi les alcools ou les polyols et peuvent servir e tant que flexibilisants et/ou réticulants (ils augmentent alors le taux d réticulation de l'ensimage) en fonction de leur conformation spatiale et d nombre de leurs groupements réactifs. Ces composants hydroxy peuvent être un ou plusieurs des composant suivants : caprolactone polyol ou ses dérivés ; polyol dérivé de l'éthylèn glycol ou du propylène glycol ; triméthylolpropane éthoxylé ou propoxylé ; pentaérythrytol éthoxylé ou propoxylé ; polyoxypropylène tétrol ; etc..
De préférence, la proportion, dans le système de base, de composant(s) présentant au moins une fonction réactive hydroxy mais ne présentant pas de fonction réactive époxy n'excède pas 40 % et avantageusement 30 % en poids dudit système de base, lesdits composants pouvant notamment ralentir la cinétique de polymérisation de l'ensimage. De préférence également, le taux, dans le système de base, de composant(s) époxy est au moins égal au taux de composant(s) hydroxy ne présentant pas de fonction réactive époxy.
Les éventuels composants vinylether du système de base peuvent influer sur la souplesse de l'ensimage polymérisé. Ces composants vinyléthers peuvent être un ou plusieurs des composants suivants hydroxyalkylvinyléther ; monomère ester aliphatique ou aromatique à terminaison éther vinylique, en particulier issu d'acides tels que l'acide adipique ; 1 ,4 cyclohexane diméthanol monovinyléther ; butanediol monovinyléther ; isobutylvinyléther ; triéthylène glycol monovinyléther ; octa- decylvinyléther ; uréthane alkylvinyléther ; uréthane phénylvinyléther etc.. (les composants précédents étant monofonctionnels) ; cyclohexane diméthanol- ou triéthylèneglycol- ou diéthylèneglycol- etc.. divinyléther ; oligomère uréthane aliphatique ou aromatique à terminaison vinylether ; etc..
De préférence, la proportion, dans le système de base, de composant(s) vinylether ne présentant pas de fonction réactive époxy n'excède pas 40 % en poids dudit système de base. Les éventuels composants acrylique et/ou méthacrylique du système de base peuvent être un ou plusieurs des composants suivants : n-hexyl- ou cyclohexyl- ou octyl- ou isodecyl- ou lauryl- ou stéaryl- ou isobornyl- etc.. acrylate ou méthacrylate ; 2 phénoxy éthyl- ou benzyl- etc.. acrylate ou méthacrylate ; tétrahydrofurfuryl- ou 2 éthoxyéthyl- ou 2 méthoxyéthyl- ou 2
(2 éthoxy éthoxy) éthyl- ou glycidyl- ou 2 hydroxyéthyl carbamate d'isopropyl- ou 2 hydroxyéthyl carbamate de n-butyl- ou 2 hydroxyéthyl oxazolidone- etc.. acrylate ou méthacrylate ; fluoroalkyl acrylate ; etc.. (les composants précédents étant monofonctionnels) ; triéthylène glycol- ou éthylène glycol- ou tétraéthylène glycol- ou polyéthylène glycol 200 à 600- ou 1 -3 butylène glycol- ou 1 -4 butanediol- ou diéthylène glycol- ou 1 -6 hexanediol- ou néopentyl glycol- ou bisphénol A éthoxylé- ou diéthylcarbonate- etc.. diacrylate ou diméthacrylate ; diol diacrylate ou diméthacrylate à chaîne aliphatique C14-C15, alkoxylé ou non ; tris (2-hydroxy éthyl isocyanurate)- ou pentaérythrytol- ou triméthylolpropane- etc.. triacrylate ou triméthacrylate ; pentaérythrytol- ou ditriméthylolpropane- etc.. tétraacrylate ou tétra- méthacrylate ; dipentaérythrytol- etc.. pentaacrylate ou pentaméthacrylate, tétrabromobisphénol A diacrylate ; etc.. Les composants précédemment cités peuvent être classés en deux catégories : les composants dont la polymérisation se fait par voie cationique, c'est-à-dire les composants époxy et/ou hydroxy et/ou vinylether ; et les composants dont la polymérisation se fait par voie radicalaire, c'est-à-dire notamment les composants acrylique et/ou méthacrylique. De manière générale, les compositions selon l'invention comprenant à la fois des composants polymérisables par voie cationique et des composants polymérisables par voie radicalaire sont plus souples après polymérisation (mais confèrent également une intégrité légèrement plus faible aux fils) que les compositions comprenant uniquement des composants polymérisables par voie cationique. Ces premières compositions sont plus adaptées au revêtement de fils destinés à des applications textiles tandis que ces dernières compositions conviennent principalement au revêtement de fils destinés à être coupés. Avantageusement, selon l'invention, la proportion de composant(s) du système de base pouvant subir une polymérisation par voie radicalaire est inférieure à 60 % en poids du système de base et, de préférence, inférieure à 40 % en poids du système de base.
Selon le mode de réalisation préféré de l'invention, la composition d'ensimage comprend, en plus du système de base, au moins un photoamorceur cationique permettant la polymérisation de l'ensimage p irradiation U.V. ou exposition E.B. Le ou les photoamorceurs cationique pouvant être utilisés dans la composition d'ensimage selon l'invention peuve être un ou plusieurs des composants suivants : sel de diazonium tel qu l'aryldiazonium tétrafluoroborate ; sel de diaryliodonium tel que l diaryliodonium hexafluoro arseniate ; sel de triarylsulfonium tel que l triarylsulfonium hexafluoroantimoniate ; triarylsulfonium hexafluorophosphate triarylsulfonium hexafluoroarseniate ; sel de triarylsélénium ; sel d dialkylphénacylsulfonium ; sel de ferrocénium ; alpha-sulfonyloxy cétone silylbenzyl éther etc.. et sont, de préférence, des sels de triarylsulfonium. Ce photoamorceurs sont, en général, associés à des composés jouan éventuellement le rôle de solvants, tels que le carbonate de propylène ou l gamma-butyrolactone. De préférence, le taux de photoamorceur(s cationique(s) présent(s) dans la composition d'ensimage ou apporté(s) à ladit composition pour permettre une bonne polymérisation est compris entre 1 e 5 % en poids de ladite composition.
Sous U.V. ou E.B., le ou les photoamorceurs cationiques libèrent de espèces cationiques induisant la polymérisation du ou des composants épox et, le cas échéant, du ou des composants hydroxy et/ou vinylether, et éventuellement, libèrent des radicaux libres induisant, le cas échéant, l polymérisation du ou des composants acrylique(s) et/ou métacrylique(s).
En plus d'un photoamorceur cationique, la composition d'ensimage selo l'invention peut comprendre, dans le cas particulier où ladite compositio comprend au moins un composant polymérisable par voie radicalaire, au moin un photoamorceur radicalaire, notamment quand le photoamorceur cationiqu utilisé ne libère pas de radicaux libres et/ou quand le taux de composé réagissant par voie radicalaire dépasse environ 40 % en poids du total de composés polymérisables sous U.V. ou E.B., la présence de ce photoamorceu radicalaire n'étant cependant pas indispensable. Le photoamorceur radicalaire peut consister notamment en une ou des cétones aromatiques telles que la 2- hydroxy 2-méthyl 1 -phényl propane 1 -one, la 1 -hydroxy cyclohéxyl phényl cétone, etc.. Son taux est proportionnel au taux de composés polymérisables par voie radicalaire présents dans l'ensimage et n'excède pas 8 % en poids de l'ensemble desdits composés.
Outre le système de base et, le cas échéant, le ou les photoamorceurs, la composition d'ensimage selon l'invention peut comprendre des additifs en faible quantité, ces additifs donnant des propriétés particulières à la composition d'ensimage mais ne participant pas de manière essentielle à la structure de l'ensimage, contrairement au système de base. Même si ces additifs sont à distinguer du système de base, ils peuvent être néanmoins polymérisables sous U.V. ou E.B. comme les composés du système de base.
La composition selon l'invention peut notamment comprendre, à titre d'additif (s), au moins un agent de couplage permettant d'accrocher l'ensimage sur le verre, la proportion d'agent(s) de couplage dans l'ensimage étant comprise entre 0 et 1 5 % en poids de l'ensimage. Ce ou ces agents de couplage présentent de préférence une masse moléculaire inférieure à 500 et ne portent pas de fonctions aminées primaires ou secondaires, lesdites fonctions pouvant notamment neutraliser les espèces cationiques (par exemple les acides de Lewis) libérées par les photoamorceurs cationiques. Les agents de couplage peuvent être un ou plusieurs des composants suivants : gamma- glycidoxypropyltriméthoxysilane ; gamma-méthacryloxypropyltriméthoxy- silane ; triméthoxysilane polyéthoxylé-propoxylé ; gamma-acryloxypropyltrimé- thoxysilane ; vinyle triméthoxysilane ; etc.. (les composants précédents étant des silanes) ; titanate ; zirconate ; siloxanne ; etc..
La composition selon l'invention peut également comprendre, à titre d'additif(s), au moins un agent filmogène jouant uniquement un rôle d'agent de glissement et facilitant le fibrage, dans des proportions comprises entre 0 et 15 % en poids et de préférence entre 0 et 10 % en poids. La présence d'agent(s) filmogène(s) empêche un frottement important des filaments sur le dispositif ensimeur lorsque les filaments sont très fins et/ou étirés à grande vitesse (plus de 40 m/s), ces agents étant cependant coûteux et pouvant entraîner une diminution des caractéristiques mécaniques des composites. Ces agents de fibrage peuvent être un ou plusieurs des composants suivants : silicone ; siloxanne fonctionnalisé époxy ou non ; dérivé de silicones tel que l'huile de silicone, polysiloxanne tel que le glycidyl(n)polydiméthyl siloxanne ou l'alpha-oméga acryloxypolydiméthyl siloxanne, etc.. La composition selon l'invention peut également comprendre, à titr d'additif(s), au moins un agent de mise en oeuvre textile jouan essentiellement un rôle de lubrifiant, dans des proportions comprises entre 0 e
1 0 % en poids et, de préférence, comprises entre 0 et 5 % en poids. Le agents textiles peuvent être un ou plusieurs des composants suivants : este gras (éventuellement éthoxylé ou propoxylé) ou dérivé des glycols (notamment de l'éthylène ou du propylène glycol) tels que l'adipate d'éthylène glycol, le palmitate d'isopropyle ou de cétyle, le stéarate d'isobutyle ou d'isopropyle, le laurate de décyle, un polyéthylène glycol ou polypropylène glycol de poids moléculaire inférieur à 2000, etc..
L'ensimage peut également comprendre, à titre d'additif(s), au moins un agent d'adaptation aux matières à renforcer, dans le cas des matières cimentaires notamment.
La composition d'ensimage selon l'invention protège efficacement les fils de l'abrasion, est stable notamment sous filière, compatible avec les vitesses d'étirage des filaments et ne nécessite pas le recours à une opération de séchage. La stabilité de la composition d'ensimage peut être accrue lorsque la composition ne comprend pas de photoamorceur cationique. Aussi peut-il être intéressant d'utiliser la composition selon l'invention ne comprenant pas de photoamorceur cationique et de n'apporter à ladite composition le ou lesdits photoamorceurs que lorsque les fils ensimés sont prêts à être soumis à un rayonnement ultraviolet ou à un faisceau d'électrons visant à polymériser l'ensimage.
Lorsque la composition selon l'invention est déposée sur les filaments en cours d'étirage, elle se répartit très rapidement sur toute leur surface et forme un véritable film de protection pour chacun d'entre eux. Le fil obtenu par rassemblement des filaments et revêtu de la composition non encore polymérisée est ainsi constitué d'un faisceau de filaments gainés qui peuvent glisser les uns sur les autres, ce fil présentant alors une souplesse importante, particulièrement avantageuse dans le cas où ce fil est destiné à être coupé, le gainage des filaments offrant en outre une protection supplémentaire contre l'abrasion.
Un tel fil ne présente pas une intégrité au sens ordinaire du terme, c'est- à-dire qu'il n'est pas constitué de filaments fixés entre eux grâce, notamment, à une liaison par collage provoquée par un ou plusieurs constituants de l'ensimage telle que peuvent la provoquer des agents filmogènes collants présents en quantité importante dans un ensimage. Malgré cela, ce fil revêtu de la composition non encore polymérisée est aisément manipulable et, lorsqu'il est bobiné sous forme d'enroulements, peut facilement être extrait des enroulements sans avoir subi au préalable de traitement de polymérisation de l'ensimage. Les fils revêtus de la composition d'ensimage non encore polymérisée ont par ailleurs une très bonne aptitude au mouillage et à l'imprégnation par des matières à renforcer, l'imprégnation plus rapide permettant un gain de productivité et les composites obtenus présentant un aspect plus homogène et certaines propriétés mécaniques améliorées.
L'intégrité proprement dite des fils par collage des filaments le constituant est obtenue après polymérisation de la composition d'ensimage par irradiation U.V. ou exposition E.B. Cette intégrité est recherchée au niveau des fils devant subir de fortes contraintes mécaniques lors de leur mise en oeuvre
(applications textiles) ou au niveau des fils coupés destinés à renforcer des matières organiques et/ou inorganiques ; il est préférable, dans de tels cas, d'effectuer la polymérisation de l'ensimage avant respectivement la mise en oeuvre des fils dans des applications textiles ou l'association des fils coupés avec une matière à renforcer.
L'intégrité obtenue après polymérisation de l'ensimage est importante alors que le taux d'ensimage polymérisé sur les fils est relativement faible (la perte au feu des fils revêtus de la composition d'ensimage et/ou obtenus selon le procédé de l'invention n'excédant pas 3 % en poids). La quantité de composition d'ensimage devant être déposée sur les fils pour être efficace est avantageusement peu importante et permet cependant d'obtenir des fils présentant de très bonnes caractéristiques, dont l'intégrité. Cette intégrité, à perte au feu faible, obtenue en utilisant une composition selon l'invention comprenant au moins un photoamorceur cationique est meilleure que l'intégrité obtenue dans les mêmes conditions en utilisant la plupart des compositions d'ensimage traditionnelles réagissant sous U.V. ou E.B., et notamment en utilisant une composition telle que celle décrite dans le brevet EP 570 283. A titre indicatif, l'intégrité obtenue pour une perte au feu de 1 % avec le compositions d'ensimage selon l'invention comprenant (ou auxquelles a ét apporté) au moins un photoamorceur cationique, correspond a une intégrit obtenue pour une perte au feu de 2,5 % avec une composition similaire mai comprenant uniquement des composants réagissant par voie radicalaire et de photoamorceurs radicalaires.
La composition d'ensimage selon l'invention présente également aprè polymérisation un taux de conversion plus proche du taux théorique attend que celui obtenu dans les mêmes conditions pour les ensimages traditionnel réagissant sous U.V. ou E.B. En effet, dans les ensimages traditionnels, notamment les ensimages comprenant des composés polymérisables par voie radicalaire et des photoamorceurs radicalaires, l'arrêt de la polymérisation intervient dès la fin de l'irradiation U.V. ou de l'exposition E.B. par consommation des radicaux libres formés. Dans la composition d'ensimage selon l'invention, les acides de Lewis issus de la décomposition du photoamorceur subsistent et permettent la poursuite de la polymérisation. De préférence, les fils ensimés selon l'invention sont soumis à une phase de mûrissement après polymérisation afin d'obtenir un taux de conversion satisfaisant. Les fils peuvent être associés avantageusement à différentes matières à renforcer en vue de la réalisation de pièces composites présentant de bonnes propriétés mécaniques. La composition selon l'invention confère en effet aux fils une bonne compatibilité avec les matières à renforcer, notamment avec les matières organiques et en particulier avec les matières époxy, mais également avec les matières minérales telles que les matières cimentaires. Elle permet également l'imprégnation des fils ensimés par la matière à renforcer. Cette composition est particulièrement adaptée pour la production de fils continus collectés sous forme de stratifils, de gâteaux, de cops, de mats..., ou pour la production de fils coupés, ces différents fils étant composés de filaments de diamètre pouvant aller de 3 à environ 24 microns. La composition d'ensimage selon l'invention est notamment adaptée à la production de fils fins (de titre allant notamment de 68 à 1 36 tex) collectés sous forme de stratifils, contrairement aux ensimages aqueux traditionnels. La composition d'ensimage selon l'invention est déposée avantageusement au cours du procédé selon l'invention sur des filaments destinés à être rassemblés en fils puis est polymérisée sous U.V. ou E.B., l'irradiation U.V. ou l'exposition E.B. pouvant être effectuée à différents stades du procédé. L'irradiation ou l'exposition peut notamment se faire pendant le procédé direct de production des fils après dépôt de l'ensimage sur les filaments et avant collecte des fils ensimés. L'irradiation ou l'exposition peut également se faire pendant la collecte des fils ensimés, de même qu'elle peut se faire après l'opération de collecte, préalablement ou simultanément à la réalisation d'un composite par association des fils ensimés à une matière organique.
De préférence, l'irradiation ou l'exposition se fait en présence d'au moins un photoamorceur cationique, ce photoamorceur se trouvant déjà dans la composition d'ensimage telle que déposée sur les filaments et/ou étant apporté à ladite composition ultérieurement avant irradiation U.V. ou exposition E.B., notamment par l'intermédiaire d'une matière (par exemple un liant ou une matière à renforcer) associée aux fils de verre ensimés.
Dans le cas où la composition d'ensimage déposée sur les filaments selon le procédé de l'invention comprend au moins un photoamorceur cationique, l'irradiation U.V. ou l'exposition E.B. peut se faire au niveau des filaments ensimés ou au niveau des fils ensimés sur une partie de leur trajet avant collecte, sur le modèle des procédés respectivement décrits dans les brevets
US 4 042 360 et EP 243 275. Si les fils sont collectés sous forme d'enroulements, l'irradiation U.V. peut également se faire sur les enroulements pendant l'opération de bobinage sur le modèle du procédé décrit dans le brevet
EP 570 283. L'irradiation U.V. ou l'exposition E.B. avant collecte des fils et/ou sur des enroulements de fils ensimés est particulièrement préférée dans le cas où les fils sont destinés à des applications textiles.
Les fils obtenus après rassemblement des filaments peuvent non seulement être collectés sous forme d'enroulements sur un support en rotation mais peuvent également être collectés sur des supports récepteurs en translation. Notamment, les fils peuvent être projetés par un organe servant également à les étirer, vers la surface de collecte se déplaçant transversalement à la direction des fils projetés en vue d'obtenir une nappe d fils continus entremêlés appelée « mat », auquel cas l'irradiation U.V. o l'exposition E.B. peut se faire non seulement avant collecte comme décri précédemment (l'ensimage déposé sur les filaments comprenant alors a moins un photoamorceur cationique), mais également pendant la collecte, su les fils répartis sur la surface de collecte. Le cas échéant, un liant (ce lian pouvant, éventuellement, comprendre et apporter à l'ensimage u photoamorceur cationique) peut avoir été projeté sur le mat avant irradiatio
U.V. ou exposition E.B. et l'irradiation ou l'exposition peut permettre d polymériser à la fois le liant et l'ensimage.
Les fils peuvent également être coupés avant collecte par un organ servant également à les étirer, les fils coupés étant collectés sur des support récepteurs en translation, auquel cas l'irradiation U.V. ou l'exposition E.B. s fait préférentiellement au niveau des fils coupés (l'ensimage déposé sur le filaments comprenant dans ce cas avantageusement au moins un photoamorceur cationique), par exemple entre l'organe de coupe et le support récepteur et/ou sur le support récepteur et/ou entre un premier support récepteur et un second support récepteur...
Les fils peuvent également être collectés sans avoir été soumis à un rayonnement ultraviolet ou à un faisceau d'électrons, l'irradiation U.V. ou l'exposition E.B. se faisant ultérieurement. Notamment, les fils peuvent être collectés sous forme d'enroulements, puis être extraits desdits enroulements pour subir des traitements supplémentaires (par exemple pour être coupés par un organe servant également à les entraîner mécaniquement), l'irradiation ou l'exposition pouvant se faire sur les fils avant, pendant ou après le ou les traitements supplémentaires (notamment pour la coupe, l'irradiation ou l'exposition peut se faire entre l'organe de coupe et l'organe de collecte des fils coupés ou sur l'organe de collecte...) .
Les fils peuvent également être collectés sans avoir été soumis à un rayonnement ultraviolet ou à un faisceau d'électrons, puis être irradiés ou exposés après association avec une matière organique lors de la réalisation d'un composite, ladite matière comprenant, éventuellement, au moins un photoamorceur cationique. Selon la matière organique utilisée, l'irradiation U.V. ou l'exposition E.B. peut s'accompagner d'un traitement thermique ou d'un autre traitement par rayonnement actinique etc..
L'irradiation U.V. ou exposition E.B. peut également se faire après association des fils de verre ensimés et d'une matière organique de la façon suivante : après étirage, les filaments de verre sont enduits de la composition d'ensimage selon l'invention et rassemblés en fils alors que simultanément on extrude et on entraîne une matière organique thermoplastique, les trajets suivis par les fils de verre et la matière organique convergeant l'un vers l'autre avant que ladite matière et lesdits fils ne soient rassemblés en au moins un fil ou ruban composite, ledit fil ou ruban composite étant soumis à un rayonnement ultraviolet ou à un faisceau d'électrons sur une partie de son trajet avant collecte. Ce procédé de fabrication d'un fil ou ruban composite se fait par exemple sur le modèle du procédé décrit dans le brevet EP 0 367 661 .
Les fils de verre revêtus de l'ensimage selon l'invention et/ou obtenus selon le procédé de l'invention sont revêtus d'un ensimage non polymérisé, ou d'un ensimage polymérisé après irradiation U.V. ou exposition E.B.
Ces fils sont aisément manipulables et présentent, après polymérisation, des caractéristiques d'intégrité et un taux de conversion de l'ensimage améliorés. De façon surprenante, des propriétés comme la résistance à la traction des fils selon l'invention peuvent être améliorées par une phase de mûrissement (début de vieillissement) des fils.
Les fils de verre ensimés selon l'invention présentent une perte au feu avantageusement inférieure à 3 % et de préférence inférieure à 2 %. La faible quantité d'ensimage déposée sur le fil permet de réduire considérablement les problèmes de collage entre fils, notamment lorsqu'ils sont collectés sous forme d'enroulements, permet également une meilleure ouverture du fil lors de l'imprégnation par une matière à renforcer et est économiquement avantageuse.
Les fils de verre obtenus selon l'invention peuvent se trouver sous différentes formes nécessitant ou non des traitements supplémentaires des fils. Les fils de verre selon l'invention peuvent ainsi se présenter sous forme de fils continus, de fils coupés, peuvent avoir été assemblés sous forme de tresses, de rubans, de mats ou de réseaux, tissés ou non... Les composites avantageusement obtenus par association de fils de verre selon l'invention et d'au moins une matière organique et/ou inorganique (le taux de verre au sein de ces composites étant généralement compris entre 30 et 70 % en poids) présentent de bonnes propriétés mécaniques comme illustré ci-après dans les exemples.
D'autres avantages et caractéristiques de l'invention apparaîtront à la lumière des exemples suivants donnant, à titre illustratif mais non exhaustif, des compositions d'ensimage selon l'invention et des caractéristiques des fils revêtus de ces compositions ou des caractéristiques des composites comprenant lesdits fils.
EXEMPLE 1
Des filaments de 9 μm de diamètre obtenus par étirage de filets de verre selon le procédé de l'invention sont revêtus de l'ensimage de composition suivante exprimée en pourcentages pondéraux : Composants du système de base de masse moléculaire inférieure à 750 :
• mélange à base de 3,4-époxycyclohexylméthyl-3,4-époxycyclohexane carboxylate (1 ) 34,0 %
• mélange à base d'époxyde monofonctionnel121 31 ,5 %
• mélange à base d'époxyde difonctionnel cycloaliphatique'3' 1 6,0 % Photoamorceur cationique :
• mélange de triarylsulfonium hexafluoroantimoniate (50 %) et de carbonate de propylène (50 %)( ) 4,0 %
Additifs :
• agent de couplage gamma-méthacryloxypropyl triméthoxysilane'51 1 0,0 % • agent textile adipate d'éthylèneglycol'6' 4,5 %
La composition d'ensimage présente une viscosité de 52.1 0 3 Pa.s (52 cP) à 25 °C. Les filaments sont rassemblés en fils, lesquels sont bobinés sur des cops et soumis pendant le bobinage à un rayonnement U.V. émis par un tube à vapeur de mercure d'une puissance de 1 20 watts par centimètre linéaire de tube, chaque couche de fil étant exposée directement au rayonnement pendant environ 1 seconde.
Les fils sont ensuite extraits des cops pour mesurer leur force de rupture en traction dans les conditions définies par la norme ISO 3341 . Les résultats sont rapportés dans le tableau comparatif I en annexe donnant également le titre et la perte au feu des fils obtenus.
A partir des fils obtenus, des plaques composites à fils parallèles sont réalisées conformément à la norme NF 571 52. La résine renforcée est la résine polyester M 402 commercialisée sous cette référence par la Société CIBA- GEIGY à laquelle on ajoute, pour 100 parts en poids de résine polyester, 20 parts d'un assouplisseur commercialisé sous la référence « F 801 0 C » par la société CRAY-VALLEY, 1 6,5 parts de styrène et 1 ,5 parts d'un accélérateur commercialisé sous la référence « THM 60 » par la société CIBA-GEIGY. Les propriétés mécaniques présentées par ces plaques, en flexion et en cisaillement, sont mesurées respectivement selon les normes ISO 1 78 et ISO 4585. Ces propriétés sont mesurées avant vieillissement et après immersion de ces plaques dans l'eau à 98°C pendant 24 h.
Les résultats obtenus sur 8 à 10 éprouvettes sont rapportés dans le tableau comparatif II en annexe donnant le taux de verre en poids des plaques réalisées, le type de résine utilisée pour les plaques, la contrainte de rupture en flexion, pour le taux de verre précité et pour un taux de verre ramené à 1 00%, avant et après vieillissement, et la contrainte de rupture en cisaillement avant et après vieillissement. Les écarts types sont indiqués entre parenthèses. EXEMPLE 2
A partir des fils obtenus dans l'exemple 1 , des plaques composites sont réalisées comme dans l'exemple 1 , la résine renforcée étant cette fois la résine époxy CY 205 commercialisée sous cette référence par la société CIBA- GEIGY, à laquelle on ajoute, pour 100 parts en poids de résine époxy, 32 parts en poids d'un durcisseur commercialisé sous la référence « HT 972 » par la société CIBA-GEIGY.
Les propriétés mécaniques des plaques obtenues sont mesurées comme décrit dans l'exemple 1 , avant vieillissement et après immersion des plaques dans l'eau à 98 °C pendant cette fois 72 heures et sont rapportées dans le tableau comparatif II en annexe.
EXEMPLE 3 Des filaments obtenus selon l'invention sont revêtus de l'ensimage de composition suivante (pourcentages pondéraux) : Composants du système de base de masse moléculaire inférieure à 750 :
• triméthylol propane triglycidyl éther'71 35,0 %
• crésylglycidyl éther'81 26,0 %
• 3,4-époxycyclohexylméthyl-3,4-époxycyclohexane carboxylate'9' 1 5,0 % Photoamorceur cationique :
• mélange de triarylsulfonium hexafluoroantimoniate (50 %) et de carbonate de propylène (50 %)'41 4,0 %
Additifs :
• agent de couplage gamma(dialkoxyphényl) propyltriméthoxy- silane'101 1 0,0 %
• agent filmogène α, ω-glycidoxy-alkylpolydiméthylsiloxane'111 1 0,0 %
La composition d'ensimage en question présente une viscosité de 64.1 0 3 Pa.s (64 cP) à 20°C. Les filaments sont rassemblés en fils, lesquels fils sont ensuite coupés par un organe servant à les étirer, les fils étant collectés sur un convoyeur en mouvement et soumis sur ledit convoyeur à un rayonnement ultraviolet émis par un tube à vapeur de mercure d'une puissance de 80 watts par centimètre linéaire de tube, le temps d'exposition de chacun des fils coupés étant de l'ordre de 5 secondes.
Le diamètre filamentaire des fils obtenus est de 14 //m et leur perte au feu est de 2 % en poids.
EXEMPLE 4 Des fils ensimés et irradiés sont obtenus de la même façon que dans l'exemple 1 , la composition d'ensimage utilisée étant cependant la suivante (en pourcentages pondéraux) : Composants du système de base de masse moléculaire inférieure à 750 :
• 1 ,2 époxyhexadécane'121 20,0 %
• triméthylolpropane triglycidyléther'71 25,0 %
• 3,4-époxycyclohexylméthyl-3,4-époxycyclohexanecarboxylate 1 8,0 %
• 1 ,4-cyclohexane diméthanol divinyléther<13) 20,0 % Photoamorr-aur cationique
• mélange de triarylsulfonium hexafluoroantimoniate (50 %) et de carbonate de propylène (50 %)(4) 4,0 % Additif
• agent de couplage gamma-méthacryloxypropyltriméthoxysilane'51 8,0 %
• agent textile stéarate d'isobutyle 5,0 %
La composition d'ensimage présente une viscosité de 40.1 0 3 Pa.s (40 cP) à 25 °C.
Les caractéristiques des fils obtenus sont déterminées comme dans l'exemple 1 et rapportées dans le tableau comparatif I.
EXEMPLE 5 Des fils ensimés et irradiés sont obtenus comme dans l'exemple 1 , les fils étant cependant bobinés pendant 1 800 secondes sur des supports de façon à donner des enroulements appelés « gâteaux » et la composition d'ensimage utilisée étant cependant la suivante (pourcentages pondéraux) : Composants du système de base de masse moléculaire inférieure à 750 :
• 1 ,2-époxyhexadécane'12) 1 3,0 % • mélange à base d'époxyde difonctionnel cycloaliphatique'31 20,0 %
• triéthylène glycol divinyl éther'151 30,0 % Composant du système de base de masse moléculaire supérieure à 750 :
• polyglycidyl éther d'huile de palme'141 20,0 % Photoamorceur cationique : • mélange de triarylsulfonium hexafluoroantimoniate (50 %) 4,0 % et de carbonate de propylène (50 %)'41 Additifs :
• agent de couplage gamma-méthacryloxypropyltriméthoxysilane'51 8,0 %
• agent textile adipate d'éthylène glycol'61 5,0 % La composition d'ensimage en question présente une viscosité de
48.10"3 Pa.s (48 cP) à 22°C. Les caractéristiques des fils obtenus sont déterminées comme dans l'exemple 1 et rapportées dans le tableau comparatif I.
Des plaques composites sont réalisées de la même façon que dans l'exemple 2 et les propriétés mécaniques de ces plaques mesurées comme dans l'exemple 2 sont rapportées dans le tableau comparatif II en annexe.
EXEMPLE 6 Des fils ensimés et irradiés sont obtenus comme dans l'exemple 1 , les fils étant cependant bobinés pendant 1 200 secondes sur des gâteaux et l composition d'ensimage étant cependant la suivante (en pourcentage pondéraux) :
Composants du système de base de masse moléculaire inférieure à 750 : • triméthylol propane triglycidyl éther'7' 20,0 %
• 3,4-époxycyclohéxylméthyl-3,4-époxycyclohexanecarboxylate'9) 25,0 %
• 1 ,2-époxyhexadécane112' 1 6,0 %
• 1 ,6 hexanediol diacrylate'161 25,0 % Photoamorceur cationique : • mélange de triarylsulfonium hexafluoroantimoniate (50 %) 4,0 % et de carbonate de propylène (50 %)'4) Additif :
• agent de couplage triméthoxysilane polyéthoxylé'171 10 %
La composition d'ensimage présente une viscosité de 52.1 0 3 Pa. (52 cP) à 20°C. Les caractéristiques des fils obtenus sont déterminées comme dans l'exemple 1 et rapportées dans le tableau comparatif I.
A partir des fils obtenus, des plaques composites sont réalisées de la même façon que dans l'exemple 1 et les propriétés mécaniques de ces plaques mesurées comme dans l'exemple 1 sont rapportées dans le tableau comparatif II.
EXEMPLE 7 A partir des fils obtenus dans l'exemple 6, des plaques composites sont réalisées comme dans l'exemple 2 et les propriétés mécaniques de ces plaques mesurées dans les mêmes conditions que dans l'exemple 2 sont rapportées dans le tableau comparatif II.
EXEMPLE 8 Des fils ensimés et irradiés sont obtenus comme dans l'exemple 1 , la composition d'ensimage étant cependant la suivante (pourcentages pondéraux) : Composants du système de base de masse moléculaire inférieure à 750 :
• triméthylol propane triglycidyl éther'7' 20,0 %
• 3,4-époxycyclohexylméthyl-3,4-époxycyclohéxanecarboxylate'91 20,0 %
• triéthylène glycol divinyl éther'15' 1 5,0 % • lauryl acrylate'181 1 3,0 %
• N vinyl pyrrolidone 1 5,0 % Photoamorceur cationique :
• mélange de triarylsulfonium hexafluoroantimoniate (50 %) et de carbonate de propylène (50 %)'41 4,0 %
Additifs. :
• agent de couplage triméthoxysilane polyéthoxylé'171 8,0 %
• agent textile adipate d'éthylène glycol'61 5,0 %
La composition d'ensimage présente une viscosité de 44.10 3 Pa.s (44 cP) à 25 °C. Les caractéristiques des fils obtenus sont déterminées comme dans l'exemple 1 et rapportées dans le tableau comparatif I.
A partir des fils obtenus, des plaques composites sont réalisées comme dans l'exemple 1 et les propriétés mécaniques de ces plaques mesurées comme dans l'exemple 1 sont rapportées dans le tableau comparatif II. EXEMPLE 9
A partir des fils obtenus dans l'exemple 8, des plaques composites sont réalisées comme dans l'exemple 2 et les propriétés mécaniques de ces plaques mesurées dans les mêmes conditions que dans l'exemple 2 sont rapportées dans le tableau comparatif II. EXEMPLE COMPARATIF I
Des fils ensimés et irradiés sont obtenus comme dans l'exemple 1 , la composition d'ensimage étant cependant la suivante (pourcentages pondéraux) :
• phénoxy acrylate'191 20,0 % • ester acrylate'201 20,0 %
• triméthylolpropane triacrylate triéthoxylé'211 14,0 % -791
• silicone hexaacrylate 7,5 %
• N vinyl pyrrolidone 20,0 %
• photoamorceur radicalaire 1 -hydroxy cyclohexylphenylcétone'231 1 0,0 % • agent de couplage gamma-aminopropyltriéthoxysilane'241 6,0 %
• agent textile adipate d'éthylène glycol'61 2,5 %
La composition d'ensimage présente une viscosité de 60.1 0 3 Pa.s (60 cP) à 20°C. Les caractéristiques des fils obtenus sont déterminées comme dans l'exemple 1 et rapportées dans le tableau comparatif I.
A partir des fils obtenus, des plaques composites sont réalisées comm dans l'exemple 2 et les propriétés mécaniques de ces plaques mesurée comme dans l'exemple 2 sont rapportées dans le tableau comparatif II. EXEMPLE COMPARATIF II
Des fils ensimés et soumis à un rayonnement ultraviolet sont obtenus d la même façon que dans l'exemple 6, la composition d'ensimage utilisée étan cependant la suivante (en pourcentages pondéraux) :
• carbonate diacrylate'251 1 4,5 % • triméthylol propane triacrylate triéthoxylé1211 1 9,0 %
(221
• silicone hexaacrylate 1 4,5 %
• N vinyl pyrrolidone 33,0 %
• photoamorceur radiculaire 1 -hydroxy cyclohexylphénylcétone'231 9,5 %
• agent de couplage triméthoxysilane polyéthoxylé'171 5,0 % • agent textile adipate d'éthylène glycol'61 4,5 %
La composition d'ensimage présente une viscosité de 40.1 0 3 Pa.s (40 cP) à 20°C. Les caractéristiques des fils obtenus sont déterminées comme dans l'exemple 1 et rapportées dans le tableau comparatif I.
A partir des fils obtenus, des plaques composites sont réalisées comme dans l'exemple 2 et les propriétés mécaniques de ces plaques mesurées comme dans l'exemple 2 sont rapportées dans le tableau comparatif II.
On observe dans les différents exemples précédents que les fils revêtus d'ensimage selon l'invention sont aisément manipulables, présentent une faible perte au feu, et présentent de bonnes propriétés de résistance à la traction. De façon remarquable et avantageuse, les propriétés de résistance à la traction des fils revêtus d'ensimage selon l'invention sont améliorées après un début de vieillissement dans l'eau.
Les fils ensimés selon l'invention permettent d'obtenir des composites présentant des propriétés mécaniques au moins aussi bonnes, voire meilleures, que celles des composites obtenus à partir de fils revêtus d'ensimages comprenant uniquement des composants réagissant par voie radicalaire et des photoamorceurs radicalaires.
Les fils de verre selon l'invention peuvent servir à diverses applications, par exemple à des applications textiles telles que la fabrication de chaînes par ourdissage, ou directement à des applications de renforcement telles que le renforcement de matières organiques (par exemple des matières plastiques) ou inorganiques (par exemple des matières cimentaires) pour obtenir des produits composites.
Références :
(1 ) Commercialisé sous la référence « UVR 6100 » par la société UNION CARBIDE
(2) Commercialisé sous la référence « UVR 6200 » par la société UNION CARBIDE (3) Commercialisée sous la référence « UVR 6379 » par la société UNION CARBIDE
(4) Commercialisé sous la référence « UVI 6974 » par la société UNION CARBIDE
(5) Commercialisé sous la référence « Silquest A 174 » par la société OSi
(6) Commercialisé sous la référence « Uraplast S 5 672 » par la société D.S.M.
(7) Commercialisé sous la référence « Heloxy 5048 » par la société SHELL (8) Commercialisé sous la référence « Heloxy 62 » par la société SHELL
(9) Commercialisée sous la référence « UVR 61 10 » par la société UNION CARBIDE
(10) Commercialisé sous la référence « Silquest A 1 1648 » par la société OSi
(1 1 ) Commercialisé sous la référence « Tégo SI 2130 » par la société GOLDSCHMIDT
(12) Commercialisé sous la référence « UVR 6216 » par la société UNION CARBIDE (13) Commercialisé sous la référence « CH.V.E. » par la société INTERNATIONAL SPECIALITY PRODUCTS
(14) Commercialisé sous la référence « Heloxy 505» par la société SHELL
(15) Commercialisé sous la référence « D.V.E 3 » par la société INTERNATIONAL SPECIALITY PRODUCTS
(16) Commercialisé sous la référence « H.D.D.A. » par la société UNION CHIMIQUE BELGE
(17) Commercialisé sous la référence « Silquest A 1230 » par la société OSi (18) Commercialisé sous la référence « SR 335 » par la société CRAY-VALLEY
(19) Commercialisé sous la référence « SR 339 » par la société CRAY-VALLEY
(20) Commercialisé sous la référence « SR 491 » par la société CRAY-VALLEY
(21 ) Commercialisé sous la référence « SR 454 » par la société CRAY-VALLEY
(22) Commercialisé sous la référence « Ebecryl 1 360 » par la société UNION CHIMIQUE BELGE (23) Commercialisé sous la référence « Irgacure 184 » par la société CIBA-GEIGY
(24) Commercialisé sous la référence « Silquest A 1 100 » par la société OSi
(25) Commercialisé sous la référence « CL 993 » par la société AKCROS
TABLEAU COMPARATIF I
Ex. 1 Ex.4 Ex.5 Ex.6 Ex.8 Ex. comp. I Ex. comp. Il
Titre (tex) 70,7 70,6 67,5 70,6 67,2 68,8 70,4
Perte au feu (%) 0,9 1,2 1,1 1,3 1,1 1,3 1,1
Force de rupture en traction (N) 42,90 33,74 33,93 42,90 39,52 31,38 36,77
TABLEAU COMPARATIF II
Figure imgf000029_0001
Ex.1 Ex.2 Ex.5 Ex.6 Ex.7 Ex.8 Ex.9 Ex. comp I Ex. comp. Il
Taux de verre (%) 70,00 67,11 71,73 71,20 70,89 70,23 69,26 68,20 70,20
Résine utilisée polyester époxy époxy polyester époxy polyester époxy époxy époxy
Contrainte de rupture en flexion (MPa)
• Avant vieillissement 1184 1068 1129 1175 1131 1145 1087 941 999 σ (39) - (30) (49) (17) (41) - (22) (24)
• Après vieillissement 787 804 787 746 814 689 668 792 374 σ (13) - (13) (23) (23) (17) - (12) (6)
Contrainte de rupture en flexion pour 100 % de verre (MPa)
• Avant vieillissement 2247 2063 2029 2175 2069 2163 2036 1822 1854 σ (74) - (54) (91) (31) (77) - (43) (45)
• Après vieillissement 1494 1554 1414 1381 1489 1302 1250 1533 694 σ (25) - (23) (43) (42) (32) - (24) (11)
Contrainte de rupture en cisaillement (MPa)
• Avant vieillissement 69,0 65,5 70,3 64,0 67,8 64,5 68,0 52,2 55,6 σ (0,7) - (1,1) (0,5) (1,0) (0,7) - (1,0) (0,9)
• Après vieillissement 33,6 48,4 40,8 29,0 43,1 28,7 47,0 42,0 - σ (0,4) - (1,3) (0,7) (0,7) (0,4) - (0,4) -

Claims

REVENDICATIONS
1 . Fil de verre revêtu d'une composition d'ensimage constituée d'une solution de viscosité inférieure ou égale à 400 cP comprenant moins de 5 % en poids de solvant et comprenant au moins un système de base polymérisable et/ou réticulable sous l'action d'un rayonnement ultraviolet ou d'un faisceau d'électrons, ledit système de base comprenant au moins un composant de masse moléculaire inférieure à 750 présentant au moins une fonction réactive époxy et comprenant au moins 60 % en poids d'un ou plusieurs composants de masse moléculaire inférieure à 750 présentant au moins une fonction réactive choisie parmi les fonctions suivantes : époxy, hydroxy, vinylether, acrylique et méthacrylique.
2. Fil de verre selon la revendication 1 , caractérisé en ce qu'il présente une perte au feu inférieure à 3 % en poids.
3. Fil de verre selon l'une des revendications 1 ou 2, caractérisé en ce que le système de base est uniquement constitué d'un ou plusieurs composants présentant au moins une fonction réactive époxy et/ou hydroxy et/ou vinylether et/ou acrylique et/ou méthacrylique.
4. Fil de verre selon l'une des revendications 1 à 3, caractérisé en ce que le système de base comprend entre 0 et 40 % en poids de composant(s) monofonctionnel(s), entre 60 et 100 % en poids de composant(s) pol - fonctionnel(s) et entre 0 et 60 % en poids de composant(s) présentant plus de deux fonctions réactives identiques.
5. Fil de verre selon l'une des revendications 1 à 4, caractérisé en ce que le système de base est uniquement constitué d'un ou plusieurs composants de masse moléculaire inférieure à 750.
6. Fil de verre selon l'une des revendications 1 à 5, caractérisé en ce que la composition comprend en outre au moins un agent de couplage dans des proportions comprises entre 0 et 1 5 % en poids.
7. Fil de verre selon l'une des revendications 1 à 6, caractérisé en ce que la composition comprend en outre au moins un agent filmogène dans des proportions comprises entre 0 et 1 5 % en poids.
8. Fil de verre selon l'une des revendications 1 à 7, caractérisé en ce que la composition comprend en outre au moins un agent textile dans des proportions comprises entre 0 et 10 % en poids.
9. Fil de verre selon l'une des revendications 1 à 8, caractérisé en ce que la composition comprend, en outre, au moins un photoamorceur cationique.
10. Fil de verre selon la revendication 9, caractérisé en ce que la composition comprend en outre au moins un photoamorceur radicalaire.
1 1 . Composition d'ensimage pour fils de verre constituée d'une solution de viscosité inférieure ou égale à 400 cP comprenant moins de 5 % en poids de solvant et comprenant au moins un système de base polymérisable et/ou réticulable sous l'action d'un rayonnement ultraviolet ou d'un faisceau d'électrons, ledit système de base comprenant au moins un composant de masse moléculaire inférieure à 750 présentant au moins une fonction réactive époxy et comprenant au moins 60 % en poids d'un ou plusieurs composants de masse moléculaire inférieure à 750 présentant au moins une fonction réactive choisie parmi les fonctions suivantes : époxy, hydroxy, vinylether, acrylique et méthacrylique.
1 2. Procédé de production de fils de verre ensimés selon lequel on étire une multiplicité de filets de verre fondu, s'écoulant d'une multiplicité d'orifices disposés à la base d'une ou plusieurs filières, sous la forme d'une ou plusieurs nappes de filaments continus, puis on rassemble les filaments en un ou plusieurs fils que l'on collecte sur un support en mouvement, ledit procédé consistant à déposer à la surface des filaments en cours d'étirage et avant rassemblement des filaments en fils une composition d'ensimage selon la revendication 1 1 .
1 3. Procédé selon la revendication 1 2, caractérisé en ce que les fils sont collectés sous forme d'enroulements sur un support en rotation.
14. Procédé selon la revendication 12, caractérisé en ce que les fils ensimés obtenus après rassemblement des filaments sont projetés par un organe servant également à les étirer vers une surface de collecte se déplaçant transversalement à la direction des fils projetés en vue d'obtenir une nappe de fils continus entremêlés.
1 5. Procédé selon la revendication 12, caractérisé en ce que les fils ensimés obtenus après rassemblement des filaments sont coupés avant collecte par un organe servant également à les étirer.
1 6. Procédé selon l'une des revendications 1 2 à 1 5, caractérisé en ce que la composition d'ensimage est soumise à l'action d'un rayonnement ultraviolet ou d'un faisceau d'électrons en présence d'au moins un photoamorceur cationique après dépôt de ladite composition sur les filaments.
1 7. Procédé selon la revendication 1 6, caractérisé en ce que les fils ensimés collectés sont mis en contact avec une matière organique à renforcer avant soumission de l'ensemble à un rayonnement ultraviolet ou à un faisceau d'électrons de façon à obtenir un composite.
1 8. Composite comprenant au moins une matière organique et/ou inorganique et des fils de verre ensimés, caractérisé en ce qu'il comprend au moins en partie des fils de verre ensimés selon l'une des revendications 1 à
1 0.
PCT/FR1995/001640 1994-12-13 1995-12-11 Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants WO1996018683A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE69534649T DE69534649T2 (de) 1994-12-13 1995-12-11 Schlichtemittel für glasorgane, verwendungsverfahren und produkte daraus
EP95942239A EP0743966B1 (fr) 1994-12-13 1995-12-11 Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants
JP8518362A JPH09509458A (ja) 1994-12-13 1995-12-11 ガラス繊維用サイジング剤組成物、該組成物を使用する方法及び得られる製品
AT95942239T ATE311417T1 (de) 1994-12-13 1995-12-11 Schlichtemittel für glasorgane, verwendungsverfahren und produkte daraus
PL95315844A PL315844A1 (en) 1994-12-13 1995-12-11 Adhesive composition for bonding glass fibres, method of using such composition and products obtained thereby
KR1019960704352A KR970701236A (ko) 1994-12-13 1995-12-11 유리사용 호제 조성물, 이의 사용방법 및 생성품(Glass yarn sizing composition. method using same. and resulting products)
CA002182806A CA2182806A1 (fr) 1994-12-13 1995-12-11 Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants
BR9506749A BR9506749A (pt) 1994-12-13 1995-12-11 Fio de vidro composição de encolamento para fios de vidro processo de produção de fios de vrido encolados e compósito que compreende pelo menos uma matéria orgânica e/ou inorgânica e fios de vidro encolados
US08/687,437 US5882792A (en) 1994-12-13 1995-12-11 Sizing composition for glass threads, process using this composition and resulting products
SK1038-96A SK103896A3 (en) 1994-12-13 1995-12-11 Glass yarn sizing composition, method using same, and resulting products
FI963144A FI963144A (fi) 1994-12-13 1996-08-12 Lasilankojen viimeistyskoostumus, menetelmä tämän koostumuksen käyttämiseksi ja sen avulla valmistettuja tuotteita

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR94/14353 1994-12-13
FR9414353A FR2727972B1 (fr) 1994-12-13 1994-12-13 Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants

Publications (1)

Publication Number Publication Date
WO1996018683A1 true WO1996018683A1 (fr) 1996-06-20

Family

ID=9469308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1995/001640 WO1996018683A1 (fr) 1994-12-13 1995-12-11 Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants

Country Status (17)

Country Link
US (2) US5882792A (fr)
EP (1) EP0743966B1 (fr)
JP (1) JPH09509458A (fr)
KR (1) KR970701236A (fr)
CN (1) CN1145083A (fr)
AR (1) AR000323A1 (fr)
AT (1) ATE311417T1 (fr)
BR (1) BR9506749A (fr)
CA (1) CA2182806A1 (fr)
CZ (1) CZ239296A3 (fr)
DE (1) DE69534649T2 (fr)
FI (1) FI963144A (fr)
FR (1) FR2727972B1 (fr)
PL (1) PL315844A1 (fr)
SK (1) SK103896A3 (fr)
TW (1) TW316936B (fr)
WO (1) WO1996018683A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041484A1 (fr) * 1997-03-18 1998-09-24 Dsm N.V. Procede de durcissement de revetements et d'encres pour fibres optiques au moyen d'un rayonnement par faisceau electronique faible puissance
WO1998051633A1 (fr) * 1997-05-14 1998-11-19 Vetrotex France Procede de production de fils de verre ensimes et produits resultants
WO1999052834A1 (fr) * 1998-04-14 1999-10-21 Ppg Industries Ohio, Inc. Fibres de verre enrobees, composites et procedes associes

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2772369B1 (fr) 1997-12-17 2000-02-04 Vetrotex France Sa Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants
FR2809102B1 (fr) * 2000-05-17 2003-03-21 Vetrotex France Sa Composition d'ensimage pour fils de verre, procede utilisant cette composition et produits resultants
US6783918B2 (en) 2000-08-30 2004-08-31 Lexmark International, Inc. Radiation curable resin layer
FR2833002B1 (fr) * 2001-12-05 2004-07-23 Saint Gobain Vetrotex Composition d'ensimage pour fils de verre, fils de verre ainsi obtenus et composites comprenant lesdit fils
FR2839968B1 (fr) 2002-05-22 2005-02-11 Saint Gobain Vetrotex Composition d'ensimage anhydre a base de polyurethane pour fils de verre, fils de verre obtenus et composites comprenant lesdits fils
FR2842516B1 (fr) * 2002-07-18 2004-10-15 Saint Gobain Vetrotex Composition d'ensimage pour verranne, procede utilisant cette composition et produits resultants
FR2886299B1 (fr) * 2005-05-26 2010-08-20 Saint Gobain Vetrotex Dispersion de polymere dans un milieu organique reactif, procede de preparation et utilisations
FR2888255B1 (fr) * 2005-07-06 2007-11-16 Saint Gobain Vetrotex Fils de renforcement et composites ayant une tenue au feu amelioree
DE102005039709A1 (de) * 2005-08-23 2007-03-01 Johns Manville International, Inc., Denver Glasfaservliese, Harzmatten sowie Verfahren zu deren Herstellung
US7571979B2 (en) 2005-09-30 2009-08-11 Lexmark International, Inc. Thick film layers and methods relating thereto
CN102558501B (zh) * 2011-12-21 2014-04-30 重庆国际复合材料有限公司 一种玻纤粗纱用成膜剂及其制备方法
KR101485692B1 (ko) * 2013-08-13 2015-01-22 전북대학교산학협력단 열가소성 수지 사이징제의 제조 및 처리 방법
MX2020004390A (es) 2017-10-27 2020-08-20 Ocv Intellectual Capital Llc Composiciones de encolado que incluyen sales de anion de debilmente coordinante y usos de las mismas.
CN109403042A (zh) * 2018-09-07 2019-03-01 张家港康得新光电材料有限公司 水性碳纤维上浆剂及其制备方法
US20230350297A1 (en) * 2022-03-22 2023-11-02 Illumina Cambridge Limited Methods for making flow cell surfaces

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042360A (en) * 1975-03-12 1977-08-16 Owens-Corning Fiberglas Corporation Production of inorganic fibers with inorganic cores
US4099837A (en) * 1976-05-26 1978-07-11 Bell Telephone Laboratories, Incorporated Coating of fiber lightguides with UV cured polymerization products
JPS53102953A (en) * 1977-02-21 1978-09-07 Sumitomo Chem Co Ltd Production of transparent glass-fiber reinforced resin
US4156035A (en) * 1978-05-09 1979-05-22 W. R. Grace & Co. Photocurable epoxy-acrylate compositions
EP0033043A2 (fr) * 1979-12-27 1981-08-05 Lignes Telegraphiques Et Telephoniques L.T.T. Composition photopolymérisable comportant un cycle thiirane, et procédé de revêtement d'une fibre optique utilisant une telle composition
JPS58204847A (ja) * 1982-05-25 1983-11-29 Hitachi Chem Co Ltd 樹脂で被覆された光フアイバ−の製造法
JPS5921542A (ja) * 1982-07-23 1984-02-03 Nitto Electric Ind Co Ltd 光学ガラスフアイバ用被覆材料
JPS60155553A (ja) * 1984-01-20 1985-08-15 Furukawa Electric Co Ltd:The 光フアイバの被覆方法
WO1987005540A1 (fr) * 1986-03-19 1987-09-24 Desoto, Inc. Revetements resistant au retrecissement et polymerisant a la lumiere ultraviolette
EP0243275A1 (fr) * 1986-04-24 1987-10-28 Vetrotex Saint-Gobain Procédé et dispositif de fabrication de fils de verre par étirage mécanique et produits en résultant
JPS62292656A (ja) * 1986-06-12 1987-12-19 Nippon Kayaku Co Ltd 光学ガラスフアイバ用コ−テイング剤
EP0367661A1 (fr) * 1988-10-28 1990-05-09 Vetrotex Saint-Gobain Procédé et dispositif de fabrication d'un fil ou d'un ruban formé de fibres de renforcement et d'une matière organique thermoplastique
JPH02212338A (ja) * 1989-02-10 1990-08-23 Sumitomo Electric Ind Ltd 光ファイバの製造方法
EP0393407A1 (fr) * 1989-04-19 1990-10-24 National Starch and Chemical Investment Holding Corporation Composition d'un adhésif/d'un matériau d'étanchéité et méthode de son application
EP0570283A1 (fr) * 1992-05-15 1993-11-18 Vetrotex France Procédé de fabrication d'un fil continu par étirage mécanique et produits en résultant
GB2274120A (en) * 1993-01-07 1994-07-13 Vetrotex France Sa Process for preparing glass-resin prepregs
US5363468A (en) * 1992-10-28 1994-11-08 Kabushiki Kaisha Kobe Seiko Sho Fiber optic rod and production thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2377982A1 (fr) * 1977-01-19 1978-08-18 Saint Gobain Compositions pour le revetement de fibres de verre et fibres ainsi obtenues
SE442440B (sv) * 1983-10-03 1985-12-23 Flaekt Ab Anordning for forvermning av skrot som skall chargeras en elektrostalugn
US4668757A (en) * 1984-03-26 1987-05-26 Gus Nichols Use of aromatic amines for setting epoxide resins
US5171634A (en) * 1986-02-12 1992-12-15 Vetrotex Saint-Gobain Process and apparatus for producing coated glass yarns and sizing coating therefor
US4987158A (en) * 1990-03-23 1991-01-22 General Electric Company UV-curable pre-crosslinked epoxy functional silicones
US5057358A (en) * 1990-03-23 1991-10-15 General Electric Company Uv-curable epoxy silicones
CA2090389A1 (fr) * 1992-01-30 1994-08-26 Frederick J. Mcgarry Structures fibreuses recouvertes de copolymere bloc de polyester et de polymere souple et leur utilisation dans une matrice de polymere
US5539012A (en) * 1993-08-18 1996-07-23 Loctite Corporation Fiber/resin composites and method of preparation
FR2713625B1 (fr) * 1993-12-09 1996-02-23 Vetrotex France Sa Procédé de production de fils de verre ensimés et produits résultants.
US5364945A (en) * 1994-01-03 1994-11-15 The Sherwin-Williams Company Anhydride-functional monomers and polymers and reactive compositions prepared from same
DE4439485C2 (de) * 1994-10-26 1998-04-09 Ivoclar Ag Bicycloaliphatische 2-Methylen-1,3-dioxepane und deren Verwendung
US5804313A (en) * 1996-07-15 1998-09-08 Ppg Industries, Inc. Polyamide and acrylic polymer coated glass fiber reinforcements, reinforced polymeric composites and a method of reinforcing a polymeric material

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042360A (en) * 1975-03-12 1977-08-16 Owens-Corning Fiberglas Corporation Production of inorganic fibers with inorganic cores
US4099837A (en) * 1976-05-26 1978-07-11 Bell Telephone Laboratories, Incorporated Coating of fiber lightguides with UV cured polymerization products
JPS53102953A (en) * 1977-02-21 1978-09-07 Sumitomo Chem Co Ltd Production of transparent glass-fiber reinforced resin
US4156035A (en) * 1978-05-09 1979-05-22 W. R. Grace & Co. Photocurable epoxy-acrylate compositions
EP0033043A2 (fr) * 1979-12-27 1981-08-05 Lignes Telegraphiques Et Telephoniques L.T.T. Composition photopolymérisable comportant un cycle thiirane, et procédé de revêtement d'une fibre optique utilisant une telle composition
JPS58204847A (ja) * 1982-05-25 1983-11-29 Hitachi Chem Co Ltd 樹脂で被覆された光フアイバ−の製造法
JPS5921542A (ja) * 1982-07-23 1984-02-03 Nitto Electric Ind Co Ltd 光学ガラスフアイバ用被覆材料
JPS60155553A (ja) * 1984-01-20 1985-08-15 Furukawa Electric Co Ltd:The 光フアイバの被覆方法
WO1987005540A1 (fr) * 1986-03-19 1987-09-24 Desoto, Inc. Revetements resistant au retrecissement et polymerisant a la lumiere ultraviolette
EP0243275A1 (fr) * 1986-04-24 1987-10-28 Vetrotex Saint-Gobain Procédé et dispositif de fabrication de fils de verre par étirage mécanique et produits en résultant
JPS62292656A (ja) * 1986-06-12 1987-12-19 Nippon Kayaku Co Ltd 光学ガラスフアイバ用コ−テイング剤
EP0367661A1 (fr) * 1988-10-28 1990-05-09 Vetrotex Saint-Gobain Procédé et dispositif de fabrication d'un fil ou d'un ruban formé de fibres de renforcement et d'une matière organique thermoplastique
JPH02212338A (ja) * 1989-02-10 1990-08-23 Sumitomo Electric Ind Ltd 光ファイバの製造方法
EP0393407A1 (fr) * 1989-04-19 1990-10-24 National Starch and Chemical Investment Holding Corporation Composition d'un adhésif/d'un matériau d'étanchéité et méthode de son application
EP0570283A1 (fr) * 1992-05-15 1993-11-18 Vetrotex France Procédé de fabrication d'un fil continu par étirage mécanique et produits en résultant
US5363468A (en) * 1992-10-28 1994-11-08 Kabushiki Kaisha Kobe Seiko Sho Fiber optic rod and production thereof
GB2274120A (en) * 1993-01-07 1994-07-13 Vetrotex France Sa Process for preparing glass-resin prepregs

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 7842, Derwent World Patents Index; AN 78-74930A, XP002000453 *
DATABASE WPI Section Ch Week 8402, Derwent World Patents Index; AN 84-009257, XP002000456 *
DATABASE WPI Section Ch Week 8411, Derwent World Patents Index; AN 84-065811, XP002000455 *
DATABASE WPI Section Ch Week 8539, Derwent World Patents Index; AN 85-239500, XP002000454 *
PATENT ABSTRACTS OF JAPAN vol. 12, no. 186 (C - 500) 31 May 1988 (1988-05-31) *
PATENT ABSTRACTS OF JAPAN vol. 14, no. 509 (C - 776) 7 November 1990 (1990-11-07) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998041484A1 (fr) * 1997-03-18 1998-09-24 Dsm N.V. Procede de durcissement de revetements et d'encres pour fibres optiques au moyen d'un rayonnement par faisceau electronique faible puissance
US6246824B1 (en) 1997-03-18 2001-06-12 Dsm N.V. Method for curing optical glass fiber coatings and inks by low power electron beam radiation
WO1998051633A1 (fr) * 1997-05-14 1998-11-19 Vetrotex France Procede de production de fils de verre ensimes et produits resultants
FR2763328A1 (fr) * 1997-05-14 1998-11-20 Vetrotex France Sa Procede de production de fils de verre ensimes et produits resultants
US6322888B1 (en) 1997-05-14 2001-11-27 Vetrotex France Method for producing sized glass fibers and resulting products
US6238791B1 (en) 1997-12-18 2001-05-29 Ppg Industries Ohio, Inc. Coated glass fibers, composites and methods related thereto
WO1999052834A1 (fr) * 1998-04-14 1999-10-21 Ppg Industries Ohio, Inc. Fibres de verre enrobees, composites et procedes associes

Also Published As

Publication number Publication date
CZ239296A3 (en) 1997-02-12
FR2727972B1 (fr) 1997-01-31
CN1145083A (zh) 1997-03-12
DE69534649T2 (de) 2006-08-10
FI963144A0 (fi) 1996-08-12
FR2727972A1 (fr) 1996-06-14
EP0743966B1 (fr) 2005-11-30
TW316936B (fr) 1997-10-01
KR970701236A (ko) 1997-03-17
PL315844A1 (en) 1996-12-09
US5882792A (en) 1999-03-16
SK103896A3 (en) 1997-04-09
DE69534649D1 (de) 2006-01-05
US6090487A (en) 2000-07-18
ATE311417T1 (de) 2005-12-15
EP0743966A1 (fr) 1996-11-27
AR000323A1 (es) 1997-06-18
FI963144A (fi) 1996-08-12
JPH09509458A (ja) 1997-09-22
BR9506749A (pt) 1997-09-16
CA2182806A1 (fr) 1996-06-20

Similar Documents

Publication Publication Date Title
EP0743966A1 (fr) Composition d&#39;ensimage pour fils de verre, procede utilisant cette composition et produits resultants
EP0657395B1 (fr) Procédé de production de fils de verre ensimés et produits résultants
EP0722428B1 (fr) Composition d&#39;ensimage pour fils de verre, procede utilisant cette composition et produits resultants
EP0801634B1 (fr) Composition d&#39;ensimage pour fils de verre, procede utilisant cette composition et produits resultants
EP1042248B1 (fr) Composition d&#39;ensimage pour fils de verre, procede utilisant cette composition et produits resultants
EP0914304B1 (fr) Procede de production de fils de verre ensimes
EP0813505B1 (fr) Composition d&#39;ensimage pour fils de verre, procede utilisant cette composition et produits resultants
EP0657396A1 (fr) Procédé de fabrication de fils de verre ensimés et fils de verre en résultant
EP1353883B1 (fr) Fis de verre ensimes, composition d&#39;ensimage et composites comprenant lesdits fils
CA2469091C (fr) Composition d&#39;ensimage pour fils de verre, fils de verre ainsi obtenus et composites comprenant lesdits fils
EP0657490A1 (fr) Procédé de fabrication d&#39;un matériau composite et matériau en résultant
EP1322568B1 (fr) Composition d&#39;ensimage pour fils de verre, procede utilisant cette composition et produits resultants
FR2743361A1 (fr) Composition d&#39;ensimage pour fils de verre, procede utilisant cette composition et produits resultants
WO2005058770A2 (fr) Fils de verre ensimes destines au renforcement de matieres polymeres, notamment par moulage.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95192411.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN CZ FI JP KR PL SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995942239

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2182806

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 103896

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: 963144

Country of ref document: FI

WWE Wipo information: entry into national phase

Ref document number: PV1996-2392

Country of ref document: CZ

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08687437

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995942239

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1996-2392

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: PV1996-2392

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1995942239

Country of ref document: EP