WO1996019646A1 - Verfahren zur steuerung einer mehrzylinder-brennkraftmaschine in der kaltstart- und warmlaufphase - Google Patents

Verfahren zur steuerung einer mehrzylinder-brennkraftmaschine in der kaltstart- und warmlaufphase Download PDF

Info

Publication number
WO1996019646A1
WO1996019646A1 PCT/EP1995/004969 EP9504969W WO9619646A1 WO 1996019646 A1 WO1996019646 A1 WO 1996019646A1 EP 9504969 W EP9504969 W EP 9504969W WO 9619646 A1 WO9619646 A1 WO 9619646A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinders
devices
engine
fuel
inlet
Prior art date
Application number
PCT/EP1995/004969
Other languages
English (en)
French (fr)
Inventor
Thomas Esch
Martin Pischinger
Wolfgang Salber
Original Assignee
Fev Motorentechnik Gmbh & Co. Kommanditgesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fev Motorentechnik Gmbh & Co. Kommanditgesellschaft filed Critical Fev Motorentechnik Gmbh & Co. Kommanditgesellschaft
Priority to EP95942672A priority Critical patent/EP0746675B1/de
Priority to DE59508064T priority patent/DE59508064D1/de
Priority to US08/696,877 priority patent/US5930992A/en
Publication of WO1996019646A1 publication Critical patent/WO1996019646A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/068Introducing corrections for particular operating conditions for engine starting or warming up for warming-up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/306Preheating additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/02Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by cutting out a part of engine cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • F02D2041/0012Controlling intake air for engines with variable valve actuation with selective deactivation of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/004Aiding engine start by using decompression means or variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the primary pollutant formation can also be influenced by operational measures. This includes factors such as mixture formation, ignition and injection timing, control times, internal residual gas recirculation through changes in control times, and external ones
  • Reductions in hydrocarbon emissions can also be achieved by measures external to the engine in the exhaust gas area, such as exhaust gas aftertreatment by means of catalyst systems, insulation of the exhaust manifold and exhaust gas system, and the use of thermal reactors.
  • the external injection of secondary air in the cold start and warm-up phase promotes the after-reaction of unburned hydrocarbons and carbon monoxides in the exhaust system and, due to the heat released during the oxidation, also leads to faster catalyst heating. In conventional engines, this is done by an additional secondary air pump, which must be driven by an electric motor or by the internal combustion engine itself.
  • the invention is based on the object of creating a method for controlling such a multi-cylinder internal combustion engine for the cold start and warm-up phase, which leads to a reduction in pollutant emissions precisely in this operating phase of an engine.
  • this object is achieved by a
  • Method for controlling a multi-cylinder internal combustion engine with internal combustion and aftertreatment the exhaust gases whereby the gas charge change in the individual cylinders takes place via inlet devices at least for the air and outlet devices for the exhaust gas, which can be controlled independently of one another, but with coordinated opening and closing times, starting in the cold start phase up to the warm-up phase the supply of fresh fuel mixture takes place only to part of the cylinders, which then operate as an engine, and the supply of fresh fuel mixture to the other part of the cylinders, which then operate as a compressor, and the amount of air heated in these cylinders by the compression process is introduced through the outlet device into the exhaust system for subsequent reaction of the exhaust gases.
  • one or more cylinders of the engine work as a "hot secondary air pump" without additional units and to use the hot air thus provided for the after-reaction of the unburned hydrocarbons and carbon monoxides in the exhaust system.
  • This is made possible by the fact that by means of inlet and outlet devices which can be controlled independently of one another and are coordinated with one another and in which the injection to the individual cylinders can be switched off depending on the control times of the inlet device and the outlet device, a metered amount of air can be introduced into the exhaust system as required . This can take place both with each crankshaft revolution and after several revolutions.
  • the high temperature level of the compressed air can also be used for faster heating of the catalytic converter and the after-reaction in the exhaust system be promoted.
  • Another advantage is that the cylinders working as an engine, which must drive the cylinder or cylinders working as a compressor, are subjected to higher loads, so that here a faster heating of both the areas near the combustion chamber and a faster heating of the exhaust gas System takes place due to higher exhaust gas temperatures.
  • the fuel supply to the individual cylinders is switched over alternately.
  • the inlet devices and / or the outlet devices are kept open when starting via an auxiliary drive during the first revolutions.
  • the starting power to be applied by the auxiliary unit, usually a starter, is thus significantly smaller. This leads to smaller, less expensive and less expensive
  • Auxiliary units for the starting process for which the energy to be provided and thus the size of the battery is then reduced.
  • the inlet devices are each opened in a "late" direction. This prevents the problem of the deteriorated mixture formation conditions in internal combustion engines with external mixture formation during the cold start and warm-up phase. Due to the low temperature level the cylinder charge and the intake duct walls, the atomization quality of the mixture generator is significantly deteriorated. Due to the configuration proposed according to the invention, the mixture formation process can now be significantly improved by opening the inlet devices late. An unconventional "late inlet opens” only opens the inlet device when the piston approaches the bottom dead center in the downward movement.
  • the vacuum in the combustion chamber When the intake device is opened, the vacuum in the combustion chamber then causes the air column to accelerate strongly with the fuel that has already been injected.
  • the large relative movement between fuel and air as well as the increased mixture movement in the combustion chamber promotes mixture preparation and leads to a significantly improved combustion.
  • a customary operating point-dependent optimization of the residual gas portion can then improve the warm-up process by combining the valve control parameters "inlet opens” and “outlet closes”.
  • the temperature in the exhaust system is additionally increased by the hot exhaust gases flowing out.
  • the post-reactions in the exhaust system and the heating-up phase for the catalytic converter can also be shortened by adapting the control time "outlet opens”.
  • Fig. 1 is a switching and control scheme for one
  • FIG. 3 shows a mass flow diagram m for a late opening inlet device, 4 the inflow speed of the air into a cylinder with two independently controllable inlet devices.
  • Fig. 1 shows schematically a partial section through the combustion chamber area of a cylinder of a multi-cylinder internal combustion engine.
  • a piston 2 moves in the cylinder tube 1.
  • An intake device 3.1 and an exhaust device 3.2 are arranged in the cylinder head, both of which are each provided with an adjusting device 4.1 and an adjusting device 4.2, by means of which the intake and exhaust device can be opened and closed, respectively .
  • the actuating devices which can be designed, for example, as electromagnetically actuatable actuating devices, are connected to a control logic 5, in which engine maps for different operating states are stored in the form of control times for the inlet and outlet devices as well as for fuel injection and ignition.
  • control logic 5 now has a "cold start phase” engine map, which is designed such that the fuel supply to individual cylinders is switched off during the cold start phase and the control times of the intake device 3.1 and the exhaust device 3.2 can be specified differently from the normal operating control times.
  • the control in this cold start and in the subsequent warm-up phase is explained in more detail in FIG. 2 using a four-cylinder engine.
  • the individual cylinders I, II, III and IV are each provided on the intake side with intake manifolds 17.1, 17.2, 17.3 and 17.4, into each of which a corresponding injection nozzle 13 opens.
  • the hot exhaust gases emerging from the individual cylinders are discharged via an exhaust pipe 21, in which a catalytic converter 22 is arranged.
  • both the intake devices 3.1 and the exhaust devices 3.2 for all cylinders are now kept open via the control logic 5 so that the engine can initially be rotated with little effort using the electric starter.
  • the intake and exhaust devices of the individual cylinders are put into operation in a cycle-compliant manner, but fuel is only injected into the intake pipes 17.2 and 17.3 of the cylinders II and III and the ignition is switched on in accordance with the work cycle, so that only cylinders II and III work as motors.
  • Cylinders I and IV only suck in air that is compressed and heated up according to the working cycle.
  • hot exhaust gas enters the exhaust pipe 21 in accordance with the work cycles from the cylinders II and III working as an engine and hot air from the cylinders I and IV working as a compressor into the exhaust pipe 21. Since the cylinders II and III have to apply the compression work of the cylinders I and IV at the same time, they are subjected to higher loads due to the work to be done, so that hot exhaust gas is produced, but due to the unfavorable temperature conditions during the first working cycles a high proportion of unburned coal contains hydrogen and carbon onoxide. Since at the same time, however, hot air from cylinders I and IV the exhaust pipe enters, the catalyst 22 is heated faster due to the heat of reaction of the after-reaction and the hydrocarbon and carbon monoxide emissions are reduced. Due to the higher exhaust gas temperatures, the post-reactions required to break down the unburned hydrocarbons and carbon monoxide start much earlier.
  • the circuit can now be made in this first start-up phase via the control logic 5 so that not only the cylinders II and III as the engine and the cylinders I and IV as Compressors work, but that the cylinders work alternately as motors or compressors. In this way it is achieved that all cylinders reach their operating temperature much more quickly and ultimately the pollutant emission is reduced during the starting phase by way of the much faster heating of the entire system.
  • FIG. 3 the mass flow through an intake device is shown as a function of the crank angle.
  • the dashed line shows the mass flow in a conventional throttle control.
  • FIG. 4 also shows the entry speed of the fuel-air mixture into a combustion chamber of an engine, each with two intake devices per cylinder, for various operating states, starting from the cold start phase to the normal operating phase.
  • the inlet devices can in turn be controlled independently of one another, wherein at least one inlet device can work with two different strokes.
  • the second, previously closed inlet device can also be actuated with its full stroke depending on the operating point, so that the entry velocity of the fuel-air mixture, indicated schematically by curve c, into the Combustion chamber results, the control logic 5 will then also be used to adapt the time "inlet opens” to the operating point in accordance with the changing operating data of the engine during the warm-up phase.
  • the control logic 5 will then also be used to adapt the time "inlet opens” to the operating point in accordance with the changing operating data of the engine during the warm-up phase.
  • a shift in the time "inlet opens” in the manner described with reference to FIG. 3.
  • the amount of air delivered in pumping operation can still be regulated by the number of cylinders working as a pump and / or by controlling the inlet times of the inlet devices.
  • the aggregate state of the pressure temperature of the air discharged into the exhaust system can be influenced by a corresponding control of the exhaust device.
  • electromagnetic actuating devices as are known, for example, from DE-A-30 24 109, is particularly advantageous as actuating devices for independently controlling the inlet and outlet devices.
  • the inlet devices are kept open via the associated armature in a central position between the opener and closer coils via the two spring elements acting against each other.
  • the armature swings back and forth between the NC and NO coils.

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung einer Mehrzylinder-Brennkraftmaschine mit innerer Verbrennung und Nachbehandlung der Abgase, wobei der Gasladungswechsel in den einzelnen Zylindern über Einlaßvorrichtungen zumindest für die Luft und Auslaßvorrichtungen für das Abgas erfolgt, die unabhängig voneinander aber mit aufeinander abstimmbaren Öffnungszeiten und Schließzeiten ansteuerbar sind, wobei beginnend in der Kaltstartphase bis in die Warmlaufphase die Zufuhr von Kraftstoff nur zu einem Teil der Zylinder erfolgt, die dann als Motor arbeiten, und die Zufuhr von Kraftstoff zum anderen Teil der Zylinder abgeschaltet wird, die dann als Verdichter arbeiten, und die in diesen Zylindern durch den Kompressionsvorgang aufgeheizte Luftmenge über die Auslaßvorrichtung in das Abgassystem zur Nachreaktion der Abgase eingeleitet wird.

Description

Bezeichnung: Verfahren zur Steuerung einer Mehrzylinder- Brennkraftmaschine in der Kaltstart- und Warmlaufphase
Beschreibung:
Aufgrund der starken Umwelteinflüsse der Abgasemissionen von Brennkraftmaschinen werden die Anforderungen an das Emissionsverhalten moderner Brennkraftmaschinen immer größer. Neben der Senkung der Abgasemission durch Sekundärmaßnahmen, wie zum Beispiel die Verwendung von Katalysatoren, ist auch eine deutliche Reduzierung der primären, motorseitig erzeugten Schadstoffrohemission erforderlich.
Wesentlichen Einfluß auf das Schadstoffverhalten haben dabei der Normalbetrieb mit schnellen Motordrehzahlwech¬ seln und Motorlastwechseln einerseits und der Betrieb bei kaltem Motor. Nach den gesetzlich vorgeschriebenen Testzyklen zur Untersuchung von Motoren sind die ersten 60 bis 80 Sekunden der Startphase eines kalten Motors entscheidend für eine Unterschreitung der Abgasgrenz¬ werte. Bis zu 80% der im gesamten Testzyklus emittierten unverbrannten Kohlenwasserstoffe werden in diesem Zeit- räum bei einer Motorstarttemperatur von 25° freigesetzt. Kalte Saugrohrwände und Brennraumwände, die höhere zu überwindende Reibleistung und der nicht betriebswarme Katalysator, bei dem die Kovertierungsraten im betriebs¬ kalten Zustand noch sehr gering sind, stellen nur einige Faktoren dar, welche die Kohlenwasserstoffemission und die Kohlenmonoxidemission drastisch ansteigen lassen. Bei Umgebungstemperaturen unter 0°C tritt in der Kalt¬ start- und Warmlaufphase eine weitere deutliche Zunahme der Schadstoffemission auf.
Man hat eine Reihe von Möglichkeiten zur Reduzierung d_r Schadstoffemissionen bereits verwirklicht, die jedoch vorwiegend nur beim betriebswarmen Motor wirksam werden. Neben der konstruktiven Maßnahme, wie beispielsweise die Gestaltung von Zylinderkopf und Brennraum, Lage der Zündkerzen und Einspritzdüsen, Anzahl der Ventile, Hubvolumen, Hub-Bohrungsverhältnis, Verdichtungsverhältnis, Ein- und Auslaßkanalgestaltung, läßt sich auch durch operative Maßnahmen die primäre Schadstoffentstehung beeinflussen. Hierzu sind Faktoren wie Gemischbildung, Zündzeit- und Einspritzzeitpunkt, Steuerzeiten, interne Restgasrückführung durch SteuerZeitänderungen, externe
Abgasrückführung, Abschaltung der Kraftstoffzufuhr während der Schubbetriebsphasen und der Einsatz eines Latentwärme- speichers zur Nutzung der "Abfallwärme" des Motors gegeben. Auch durch motorexterne Maßnahmen im Abgasbereich, wie beispielsweise eine Abgasnachbehandlung durch Katalysator¬ systeme, Isolierung von Auslaßkrümmer und Abgassystem sowie der Einsatz von thermischen Reaktoren, lassen sich Reduzierungen der Kohlenwasserstoffemissionen errei¬ chen. Die motorexterne Einblasung von Sekundärluft in der Kaltstart- und Warmlaufphase fördert die Nachreaktion von unverbrannten Kohlenwasserstoffen und Kohlenmonoxiden im Abgassystem und führt aufgrund der bei der Oxidation freigesetzten Wärme zusätzlich zu einer schnelleren Aufheizung des Katalysators. Bei konventionellen Motoren geschieht dieses durch eine zusätzliche Sekundärluftpumpe, die von einem Elektromotor oder von der Brennkraftmaschine selbst angetrieben werden muß.
Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfah- ren zur Steuerung einer derartigen Mehrzylinder-Brenn¬ kraftmaschine für die Kaltstart- und Warmlaufphase zu schaffen, die zu einer Reduzierung der Schadstoffemissionen gerade in dieser Betriebsphase eines Motors führt.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein
Verfahren zur Steuerung einer Mehrzylinder-Brennkraft¬ maschine mit innerer Verbrennung und Nachbehandlung der Abgase, wobei der Gasladungswechsel in den einzelnen Zylindern über Einlaßvorrichtungen zumindest für die Luft und Auslaßvorrichtungen für das Abgas erfolgt, die unabhängig voneinander, aber mit aufeinander abstimm- baren Öffnungszeiten und Schließzeiten ansteuerbar sind, wobei beginnend in der Kaltstartphase bis in die Warmlauf- phase die Zufuhr von Kraftstoff-Frischgemisch nur zu einem Teil der Zylinder erfolgt, die dann als Motor arbeiten und die Zufuhr von Kraftstoff-Frischgemisch zum anderen Teil der Zylinder abgeschaltet wird, die dann als Verdichter arbeiten, und die in diesen Zylindern durch den Kompressionsvorgang aufgeheizte Luftmenge durch die Auslaßvorrichtung in das Abgassystem zur Nach¬ reaktion der Abgase eingeleitet wird. Damit ist es mög- lieh, ohne Zusatzaggregate einen oder mehrere Zylinder des Motors als "heiße Sekundärluftpumpe" arbeiten zu lassen und die hierdurch bereitgestellte heiße Luft zur Nachreaktion der unverbrannten Kohlenwasserstoffe und Kohlenmonoxide im Abgassystem zu verwenden. Dies wird dadurch möglich, daß durch unabhängig voneinander aber abgestimmt aufeinander ansteuerbare Ein- und Ausla߬ vorrichtungen und bei abschaltbarer Einspritzung zu den einzelnen Zylindern abhängig von den Steuerzeiten der Einlaßvorrichtung und der Auslaßvorrichtung bedarfs- gerecht eine dosierte Luftmenge in das Abgassystem einge¬ leitet werden kann. Dies kann sowohl bei jeder Kurbel¬ wellenumdrehung als auch nach mehreren Umdrehungen erfol¬ gen. Bei einem frühen öffnen des Auslaßventils im Bereich der Kompressionsendphase kann zusätzlich das hohe Tempera- turniveau der verdichteten Luft zur schnelleren Aufheizung des Katalysators genutzt werden und die Nachreaktion im Abgassystem zusätzlich gefördert werden. Ein weiterer Vorteil besteht darin, daß die als Motor arbeitenden Zylinder, die den oder die als Verdichter arbeitenden Zylinder antreiben müssen, höher belastet sind, so daß hier eine schnellere Aufheizung sowohl der brennraumnahen Bereiche als auch eine schnellere Aufheizung des Abgas- Systems durch höhere Abgastemperaturen erfolgt. In beson¬ ders zweckmäßiger Ausgestaltung der Erfindung ist hierbei vorgesehen, daß die Kraftstoffzufuhr zu den einzelnen Zylindern wechselnd umgeschaltet wird. Durch die wechseln- de Nutzung der Zylinder als "Motor" und als "Luftpumpe" werden in dieser Phase nacheinander alle Zylinder in den Motorbetrieb mit einbezogen und entsprechend der höheren thermischen Belastung aufgeheizt, und somit ein Auskühlen der brennraumumgebenden Zylinderwände verhindert. Damit kann der Gefahr eines frühzeitigen Verlöschens der Flamme an den kalten Brennraumwänden entgegengewirkt und so die Kohlenwasserstoffemissionen vermindert werden. Die Kosten und der Bauraum einer zusätzlichen Sekundärluftpumpe werden bei einer derartigen Betriebsweise eingespart. Die Kraftstoffeinspritzung kann in den Luftansaugkanal oder direkt in den Zylinder erfolgen.
In einer Ausgestaltung der Erfindung ist vorgesehen, daß beim Starten über einen Hilfsantrieb während der ersten Umdrehungen die Einlaßvorrichtungen und/oder die Auslaßvorrichtungen offengehalten werden. Die aufzu¬ bringende Startleistung durch das Hilfsaggregat, üblicher¬ weise ein Anlasser, wird damit deutlich kleiner. Dieses führt zu kleineren, kosten- und gewichtsgünstigeren
Hilfsaggregaten für den Startvorgang, für die dann auch die bereitzustellende Energie und damit die Größe der Batterie reduziert wird.
In weiterer vorteilhafter Ausgestaltung des erfindungs¬ gemäßen Verfahrens ist vorgesehen, daß zur Unterstützung der Kraftstoff-Luft-Gemischaufbereitung die Einlaßvorrich¬ tungen jeweils angepaßt in Richtung "spät" geöffnet werden. Hierdurch wird das Problem der verschlechterten Gemischbildungsbedingungen bei Brennkraftmaschinen mit externer Gemischbildung während der Kaltstart- und Warm¬ laufphase verhindert. Durch das niedrige Temperaturniveau der Zylinderladung und der Ansaugkanalwände wird nämlich die Zerstäubungsqualität des Gemischbildners deutlich verschlechtert. Durch die erfindungsgemäß vorgeschlagene Ausgestaltung kann nun der Gemischbildungsvorgang durch ein spätes öffnen der Einlaßvorrichtungen wesentlich verbessert werden. Durch ein unkonventionelles "spätes Einlaß öffnet" wird die Einlaßvorrichtung erst geöffnet, wenn der Kolben sich in der Abwärtsbewegung dem unteren Totpunkt nähert. Beim öffnen der Einlaßvorrichtung setzt durch den dann vorhandenen Unterdruck im Brennraum eine starke Beschleunigung der Luftsäule mit dem bereits eingespritzten Kraftstoff ein. Die große Relativbewegung zwischen Kraftstoff und Luft sowie die erhöhte Gemisch¬ bewegung im Brennraum fördert die Gemischaufbereitung und führt zu einer deutlich verbesserten Verbrennung. In der weiteren Phase des Motorwarmlaufs kann dann eine übliche betriebspunktabhängige Optimierung des Restgas- anteils durch eine Kombinatorik der Ventilsteuerparameter "Einlaß öffnet" und "Auslaß schließt" den Warmlaufvorgang verbessern. Durch ein "frühes Auslaß öffnet" wird durch die ausströmenden heißen Abgase die Temperatur im Abgas¬ system zusätzlich erhöht. Durch eine Anpassung der Steuerzeit "Auslaß Öffnet" kann somit ebenfalls die Nachreaktionen im Abgassystem sowie die Aufheizphase für den Katalysator verkürzt werden.
Die Erfindung wird anhand schematischer Zeichnungen eines Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1 ein Schalt- und Steuerschema für einen
Zylinder einer Mehrzylinder-Brennkraft¬ maschine,
Fig. 2 ein Fließschema,
Fig. 3 ein Massenstromdiagra m für eine spät öffnende Einlaßvorrichtung, Fig. 4 die Einströmgeschwindigkeit der Luft in einen Zylinder mit zwei unabhängig voneinander ansteuerbaren Einlaßvor¬ richtungen.
Fig. 1 zeigt schematisch einen Teilschnitt durch den Brennraumbereich eines Zylinders eine Mehrzylinder- Brennkraftmaschine. In dem Zylinderrohr 1 bewegt sich ein Kolben 2. Im Zylinderkopf ist eine Einlaßvorrichtung 3.1 und eine Auslaßvorrichtung 3.2 angesordnet, die beide jeweils mit einer Stellvorrichtung 4.1 und einer Stellvorrichtung 4.2 versehen sind, durch die die Einla߬ bzw. Auslaßvorrichtung jeweils geöffnet und geschlossen werden kann. Die Stellvorrichtungen, die beispielsweise als elektromagnetisch betätigbare Stellvorrichtungen ausgebildet sein können, sind an eine Steuerlogik 5 angeschlossen, in der Motorkennfelder für verschiedene Betriebszustände in Form von Steuerzeiten für die Einlaß- und Auslaßvorrichtungen sowie für die Kraftstoffeinsprit- zung und die Zündung gespeichert sind. Diese Daten werden aufgrund des Steuereingangs 6, der Drehzahlinformation 7, der Motortemperatur 8, der Kühlwassertemperatur 9 des Druckes 10 und der Temperatur 11 der Verbrennungsluft abgerufen und einer Verstärkerstufe 12 zur Ansteuerung der Einlaß- und Auslaßvorrichtungen, der Einspritzdüse 13 und der Zündung 14 entsprechend dem Motorzyklus zugeleitet. Dadurch stellt sich ein Luftmassenstrom 15 durch den Filter 16 im drosselfreien Saugrohr 17 und der Kraftstoff¬ strom 18 aus dem Kraftstoffbehälter über die Pumpe 19 und das Drucksteuerventil 20 ein. Die Steuerlogik 5 weist nun ein Motorkennfeld "Kaltstartphase" auf, das so ausgelegt ist, daß während der Kaltstartphase zu einzelnen Zylindern die Kraftstoffzufuhr abgeschaltet und die Steuerzeiten der Einlaßvorrichtung 3.1 und der Auslaßvorrichtung 3.2 abweichend von der normalen Be¬ triebssteuerzeiten vorgegeben werden können. Die Steuerung in dieser Kaltstart- und in der anschließen¬ den Warmlaufphase wird in Fig. 2 anhand eines Vierzylinder¬ motors näher erläutert. Die einzelnen Zylinder I, II, III und IV sind ansaugseitig jeweils mit Saugrohren 17.1, 17.2, 17.3 und 17.4 versehen, in die jeweils eine entspre¬ chende Einspritzdüse 13 einmündet. Die aus den einzelnen Zylindern austretenden heißen Abgase werden über ein Abgasrohr 21 abgeleitet, in dem ein Katalysator 22 ange¬ ordnet ist.
Beim Kaltstart dieses Verbrennungsmotors werden nun über die Steuerlogik 5 zunächst sowohl die Einlaßvorrich¬ tungen 3.1 als auch die Auslaßvorrichtungen 3.2 zu allen Zylindern offengehalten, so daß über den elektrischen Anlasser der Motor zunächst mit geringem Kraftaufwand in Drehung versetzt werden kann. Nach Erfassung einer vorgegebenen Mindestdrehzahl werden nun die Einlaß- und die Auslaßvorrichtungen der einzelnen Zylinder zyklus¬ konform in Betrieb gesetzt, wobei jedoch lediglich in die Ansaugrohre 17.2 und 17.3 zu den Zylindern II und III Kraftstoff eingespritzt und entsprechend dem Arbeitstakt die Zündung zugeschaltet wird, so daß nur die Zylinder II und III als Motor arbeiten. Die Zylinder I und IV saugen nur Luft an, die entsprechend dem Arbeitszyklus verdichtet und hierbei aufgeheizt wird. Dementsprechend tritt in das Abgasrohr 21 entsprechend den Arbeitstakten aus den als Motor arbeitenden Zylindern II und III heißes Abgas und aus den als Verdichter arbeitenden Zylindern I und IV heiße Luft in das Abgasrohr 21 ein. Da die Zylinder II und III gleichzeitig die Verdichterarbeit der Zylinder I und IV aufbringen müssen, werden diese aufgrund der zu leistenden Arbeit höher belastet, so daß heißeres Abgas anfällt, das jedoch aufgrund der ungünstigen Temperaturbedingungen während der ersten Arbeitszyklen einen hohen Anteil an unverbrannten Kohlen¬ wasserstoffen und an Kohlen onoxid enthält. Da gleich¬ zeitig jedoch aus den Zylinder I und IV heiße Luft in das Abgasrohr eintritt, wird der Katalysator 22 aufgrund der Reaktionswärme der Nachreaktion schneller aufgeheizt und die Kohlenwasserstoff- und Kohlenmonoxidemission reduziert. Durch die höheren Abgastemperaturen setzen die erforderlichen Nachreaktionen zum Abbau der unver¬ brannten Kohlenwasserstoffe sowie des Kohlenmonoxids sehr viel früher ein.
Aufgrund der Tatsache, daß die Einlaßvorrichtungen und Auslaßvorrichtungen der einzelnen Zylinder unabhängig voneinander ansteuerbar sind, kann nun in dieser ersten Anlaufphase über die Steuerlogik 5 die Schaltung so vorgenommen werden, daß nicht ausschließlich die Zylinder II und III als Motor und die Zylinder I und IV als Verdich- ter arbeiten, sondern daß die Zylinder jeweils abwechselnd als Motor oder Verdichter arbeiten. Hierdurch wird dann erreicht, daß alle Zylinder sehr viel schneller ihre Betriebstempeatur erreichen und letztlich über die sehr viel schnellere Erwärmung des gesamten Systems die Schad- stoffemission während der Startphase reduziert wird.
Aufgrund der variablen Ansteuerungsmöglichkeit der einzel¬ nen Einlaß- und Auslaßvorrichtungen besteht auch für die jeweils als Motor arbeitenden Zylinder die Möglichkeit, auch in kaltem Zustand die Gemischbildung zu verbessern, in Fig. 3 ist der Massenstrom durch eine Einlaßvorrichtung in Abhängigkeit vom Kurbelwinkel dargestellt. Die gestri¬ chelte Linie zeigt den Massenstrom bei einer konventionel¬ len Drosselregelung. Wird nun entsprechend der Ausgestal- tung des erfindungsgemäßen Verfahrens jeweils die Einla߬ vorrichtung 3.1 geöffnet, wenn der Kolben sich in der Abwärtsbewegung der unteren Totpunktstellung nähert, entsteht im Zylinder ein sehr starker Unterdruck, so daß die einzusaugende Luftmenge innerhalb kurzer Zeit, d. h. mit hoher Geschwindigkeit in den Brennraum einströmen muß, so daß hier eine erhebliche Verwirbelung stattfindet. Der zugehörige Massenstrom für diese spezielle Ansteuerung der Einlaßvorrichtung ist schematisch in Fig. 3 im Ver¬ gleich zur normalen Drosselregelung durch eine ausgezo¬ gene Linie dargestellt.
In Fig. 4 ist ferner für verschiedene Betriebszustände, ausgehend von der Kaltstartphase bis zur normalen Betriebs¬ phase, die Eintrittsgeschwindigkeit des Kraftstoff-Luft- Gemisches in einen Brennraum eines Motors mit jeweils zwei Einlaßvorrichtungen je Zylinder dargestellt. Die Einlaßvorrichtungen sind wiederum unabhängig voneinander ansteuerbar, wobei zumindest eine Einlaßvorrichtung mit zwei unterschiedlichen Hüben arbeiten kann.
Beim Starten des Motors werden für die im Motorbetrieb arbeitenden Zylinder jeweils eine Einlaßvorrichtung geschlossen und die andere Einlaßvorrichtung mit redu¬ ziertem Hub betrieben. Hierbei ergibt sich dann in Abhän¬ gigkeit von der Motorlast eine Eintrittsgeschwindigkeit für das Kraftstoff-Luft-Gemisch, wie es schematisch durch die Kurve a angedeutet ist. Mit zunehmender Erwär¬ mung des Motors und entsprechend vorgegeben durch die Steuerlogik 5 wird nun die Stellvorrichtung 4 der arbei¬ tenden Einlaßvorrichtung 3 auf vollen Hub umgeschaltet, so daß aufgrund des größeren Querschnittes sich die Einströmgeschwndigkeit vermindert, wie dies schematisch in der Kurve b gezeigt ist. Sobald der Motor dann seine Betriebstemperatur erreicht hat, kann dann betriebspunkt¬ abhängig die zweite, bisher geschlossen gehaltene Einla߬ vorrichtung mit ihrem vollen Hub ebenfalls betätigt werden, so daß sich die schematisch durch die Kurve c angedeutete Eintrittsgeschwindigkeit des Kraftstoff- Luft-Gemisches in den Brennraum ergibt, über die Steuer¬ logik 5 wird dann entsprechend den sich ändernden Be¬ triebsdaten des Motors während der Warmlaufphase auch der Zeitpunkt "Einlaß öffnet" an den Betriebspunkt ange¬ paßt werden. Bei einer Brennkraftmaschine mit zwei Ein¬ laßvorrichtungen, wie vorstehend beschrieben, kann, muß aber nicht, eine Verschiebung des Zeitpunktes "Einlaß öffnet" in der anhand von Fig. 3 beschriebenen Weise vorgenommen werden.
Während bei einem Vierzylindermotor durch die mögliche Ansteuerung von nur jeweils einem Zylinder im Pumpbetrieb die Laufruhe verschlechtert wird, können Motore mit höheren Zylinderzahlen so angesteuert werden, daß wahlweise und angepaßt an den Betriebspunkt neben einem Wechsel von Motorbetrieb auf Pumpbetrieb der jeweiligen Zylinder auch eine laufende Zuschaltung von Zylindern im reinen Motorbetrieb möglich ist. Die im Pumpbetrieb geförderte Luftmenge kann über die Zahl der als Pumpe arbeitenden Zylinder und/oder über die Steuerung der Einlaßzeiten der Einlaßvorrichtungen noch reguliert werden. Der Aggre¬ gatzustand der Drucktemperatur der in das Abgassystem abgegebenen Luft kann über eine entsprechende Ansteuerung der Auslaßvorrichtung beeinflußt werden.
Als Stellvorrichtungen zur unabhängigen Ansteuerung der Einlaß- und Auslaßvorrichtungen ist die Verwendung von elektromagnetischen Stellvorrichtungen, wie sie beispielsweise aus DE-A-30 24 109 bekannt sind, besonders vorteilhaft. Solange die beiden Elektromagnete stromlos gesetzt sind, werden über die beiden gegeneinander wirken¬ den Federelemente die Einlaßvorrichtungen über den zugehö¬ rigen Anker in einer Mittelstellung zwischen öffner¬ und Schließerspule offengehalten. Im Betrieb schwingt dann der Anker zwischen der Öffner- und Schließerspule hin und her. Über die entsprechende Ansteuerung der Erregerströme zu den einzelnen Spulen kann somit die Steuerzeit kurbelwinkelunabhängig ausschließlich über die Steuerlogik 5 vorgegeben werden. Damit ist es auch möglich, noch während des Drehens des Motors über ein Hilfsaggregat die Einlaßvorrichtung und die Auslaßvor¬ richtung für alle Zylinder offen zu halten, ebenso wie in jeder gewünschten Kombinatorik die öffnungs- und Schließzeiten der Einlaßvorrichtungen und der Auslaßvor¬ richtungen betriebsabhängig aufeinander abzustimmen. Damit ist es auch möglich, über die Steuerlogik 5 und die dort abgespeicherten Motorkennfelder mit zunehmender Erwärmung aus dem vorbeschriebenen Ansteuerungsverfahren für die Kaltstartphase in die Betriebsphase überzugehen, in der die Einlaßvorrichtungen und Auslaßvorrichtungen in ihren Steuerzeiten lastabhängig und aufeinander abge¬ stimmt, angesteuert werden können.

Claims

Patentansprüche:
1. Verfahren zur Steuerung einer Mehrzylinder-Brennkraft¬ maschine mit innerer Verbrennung und Nachbehandlung der Abgase, wobei der Gasladungswechsel in den einzelnen Zylindern über Einlaßvorrichtungen zumindest für die Luft und Auslaßvorrichtungen für das Abgas erfolgt, die unabhängig voneinander aber mit aufeinander abstimm¬ baren Öffnungszeiten und Schließzeiten ansteuerbar sind, wobei beginnend in der Kaltstartphase bis in die Warmlauf¬ phase die Zufuhr von Kraftstoff nur zu einem Teil der Zylinder erfolgt, die dann als Motor arbeiten, und die Zufuhr von Kraftstoff zum anderen Teil der Zylinder abgeschaltet wird, die dann als Verdichter arbeiten, und die in diesen Zylindern durch den Kompressionsvorgang aufgeheizte Luftmenge über die Auslaßvorrichtung in der Abgassystem zur Nachreaktion der Abgase eingeleitet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Kraftstoffzufuhr und Zündung zu den einzelnen Zylindern wechselnd umgeschaltet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß beim Starten über einen Hilfsantrieb während der ersten Umdrehungen die Einlaßvorrichtungen und/oder die Auslaßvorrichtungen offengehalten werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Unterstützung der Kraftstoff-
Luft-Gemischaufbereitung die Einlaßvorrichtungen jeweils angepaßt in Richtung "spät" geöffnet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4 , dadurch gekennzeichnet, daß in der Kaltstart- und Warmlaufphase die Durchtrittsquerschnitte der Einlaßvorrichtungen und/oder der Auslaßvorrichtungen vermindert werden.
PCT/EP1995/004969 1994-12-21 1995-12-15 Verfahren zur steuerung einer mehrzylinder-brennkraftmaschine in der kaltstart- und warmlaufphase WO1996019646A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP95942672A EP0746675B1 (de) 1994-12-21 1995-12-15 Verfahren zur steuerung einer mehrzylinder-brennkraftmaschine in der kaltstart- und warmlaufphase
DE59508064T DE59508064D1 (de) 1994-12-21 1995-12-15 Verfahren zur steuerung einer mehrzylinder-brennkraftmaschine in der kaltstart- und warmlaufphase
US08/696,877 US5930992A (en) 1994-12-21 1995-12-15 Process for controlling a multiple cylinder internal combustion engine in the cold start and warming up phases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4445779A DE4445779A1 (de) 1994-12-21 1994-12-21 Verfahren zur Steuerung einer Mehrzylinder-Brennkraftmaschine in der Kaltstart- und Warmlaufphase
DEP4445779.0 1994-12-21

Publications (1)

Publication Number Publication Date
WO1996019646A1 true WO1996019646A1 (de) 1996-06-27

Family

ID=6536572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1995/004969 WO1996019646A1 (de) 1994-12-21 1995-12-15 Verfahren zur steuerung einer mehrzylinder-brennkraftmaschine in der kaltstart- und warmlaufphase

Country Status (4)

Country Link
US (1) US5930992A (de)
EP (1) EP0746675B1 (de)
DE (2) DE4445779A1 (de)
WO (1) WO1996019646A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2316338A (en) * 1996-08-21 1998-02-25 Rover Group An emission control system for an engine
FR2793280A1 (fr) * 1999-05-07 2000-11-10 Renault Procede de commande d'un moteur a combustion interne

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19801629B4 (de) * 1998-01-17 2012-08-23 Robert Bosch Gmbh Katalysatordiagnoseverfahren und Vorrichtung
DE19810933C2 (de) * 1998-03-13 2001-08-16 Daimler Chrysler Ag Verbrennungsmotor
FR2780100B1 (fr) * 1998-06-17 2001-01-26 Peugeot Procede pour accroitre rapidement la temperature dans un pot catalytique au demarrage d'un moteur a combustion interne pour vehicule automobile
JP2000008892A (ja) * 1998-06-19 2000-01-11 Hitachi Ltd 電磁駆動式吸気バルブを備えたエンジンの制御装置
DE19830974B4 (de) * 1998-07-10 2005-11-03 Fev Motorentechnik Gmbh Kaltstartverfahren für eine drosselfreie Mehrzylinder-Kolbenbrennkraftmaschine
JP4326044B2 (ja) * 1998-08-21 2009-09-02 日産自動車株式会社 4サイクル内燃機関
US6273208B1 (en) * 1998-10-15 2001-08-14 Darrel R. Sand Variable displacement vehicle engine and solid torque tube drive train
DE19951315A1 (de) * 1999-10-25 2001-04-26 Fev Motorentech Gmbh Verfahren zum Betrieb einer Kolbenbrennkraftmaschine bei zeitweiligem Funktionsausfall eines elektromagnetischen Ventiltriebs
US6560959B2 (en) * 1999-12-06 2003-05-13 Denso Corporation Exhaust gas purification apparatus of internal combustion engine
JP3562415B2 (ja) * 1999-12-24 2004-09-08 トヨタ自動車株式会社 可変動弁機構を有する内燃機関
DE10002483A1 (de) * 2000-01-21 2001-07-26 Audi Ag Verfahren zum schnellen Aufheizen von Abgaskomponenten
US6405706B1 (en) * 2000-08-02 2002-06-18 Ford Global Tech., Inc. System and method for mixture preparation control of an internal combustion engine
US6389806B1 (en) * 2000-12-07 2002-05-21 Ford Global Technologies, Inc. Variable displacement engine control for fast catalyst light-off
US6415601B1 (en) * 2000-12-07 2002-07-09 Ford Global Technologies, Inc. Temperature management of catalyst system for a variable displacement engine
US6354266B1 (en) * 2000-12-20 2002-03-12 Caterpillar Inc. Vehicle with engine having enhanced warm-up operation mode
JP2003065461A (ja) * 2001-08-24 2003-03-05 Toyota Motor Corp 電磁駆動弁の制御装置
US6718755B2 (en) * 2001-11-02 2004-04-13 Ford Global Technologies, Llc Method to increase temperature in an exhaust aftertreatment device coupled to a camless engine
WO2003048533A1 (en) * 2001-11-30 2003-06-12 Delphi Technologies, Inc. Engine cylinder deactivation to improve the performance of exhaust emission control systems
DE10222769B4 (de) * 2002-05-16 2014-04-10 Volkswagen Ag Verfahren und Vorrichtung zur Steuerung eines Motorstartvorgangs
US6997146B2 (en) * 2002-05-22 2006-02-14 Toyota Jidosha Kabushiki Kaisha Start control method and apparatus for solenoid-operated valves of internal combustion engine
US6758185B2 (en) * 2002-06-04 2004-07-06 Ford Global Technologies, Llc Method to improve fuel economy in lean burn engines with variable-displacement-like characteristics
US7111450B2 (en) * 2002-06-04 2006-09-26 Ford Global Technologies, Llc Method for controlling the temperature of an emission control device
US6568177B1 (en) * 2002-06-04 2003-05-27 Ford Global Technologies, Llc Method for rapid catalyst heating
US7032572B2 (en) * 2002-06-04 2006-04-25 Ford Global Technologies, Llc Method for controlling an engine to obtain rapid catalyst heating
US6925982B2 (en) * 2002-06-04 2005-08-09 Ford Global Technologies, Llc Overall scheduling of a lean burn engine system
US6735938B2 (en) * 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method to control transitions between modes of operation of an engine
US6725830B2 (en) * 2002-06-04 2004-04-27 Ford Global Technologies, Llc Method for split ignition timing for idle speed control of an engine
US6736120B2 (en) * 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method and system of adaptive learning for engine exhaust gas sensors
US20050193988A1 (en) * 2004-03-05 2005-09-08 David Bidner System for controlling valve timing of an engine with cylinder deactivation
US6736121B2 (en) 2002-06-04 2004-05-18 Ford Global Technologies, Llc Method for air-fuel ratio sensor diagnosis
US7168239B2 (en) * 2002-06-04 2007-01-30 Ford Global Technologies, Llc Method and system for rapid heating of an emission control device
US6868827B2 (en) * 2002-06-04 2005-03-22 Ford Global Technologies, Llc Method for controlling transitions between operating modes of an engine for rapid heating of an emission control device
DE10242767A1 (de) * 2002-09-14 2004-03-18 Bayerische Motoren Werke Ag Verfahren zur Sekundärluft-Zuführung in die Abgasanlage einer Brennkraftmaschine
JP4060161B2 (ja) * 2002-10-16 2008-03-12 川崎重工業株式会社 エンジンの始動時制御方法及び装置、並びに小型滑走艇
GB2394750A (en) * 2002-10-29 2004-05-05 Ford Global Tech Inc I.c. engine using disabled cylinders to pump secondary air to exhaust emission after-treatment device
US6931839B2 (en) * 2002-11-25 2005-08-23 Delphi Technologies, Inc. Apparatus and method for reduced cold start emissions
DE10259052B3 (de) * 2002-12-17 2004-04-01 Siemens Ag Verfahren zum Aufheizen eines Abgaskatalysators einer mit Kraftstoff-Direkteinspritzung arbeitenden Brennkraftmaschine
US6857264B2 (en) * 2002-12-19 2005-02-22 General Motors Corporation Exhaust emission aftertreatment
US6701895B1 (en) * 2003-02-26 2004-03-09 Ford Global Technologies, Llc Cylinder event based spark
US7805927B2 (en) 2003-06-17 2010-10-05 Gm Global Technology Operations, Inc. Diesel engine displacement on demand
DE10348107B4 (de) * 2003-10-16 2007-02-15 Bayerische Motoren Werke Ag Verfahren zum Aufheizen eines Katalysators eines Verbrennungsmotors
JP4205594B2 (ja) * 2004-01-09 2009-01-07 本田技研工業株式会社 気筒休止内燃機関用燃料ポンプの制御装置
US7028670B2 (en) * 2004-03-05 2006-04-18 Ford Global Technologies, Llc Torque control for engine during cylinder activation or deactivation
US7000602B2 (en) * 2004-03-05 2006-02-21 Ford Global Technologies, Llc Engine system and fuel vapor purging system with cylinder deactivation
US7086386B2 (en) * 2004-03-05 2006-08-08 Ford Global Technologies, Llc Engine system and method accounting for engine misfire
US7044885B2 (en) * 2004-03-05 2006-05-16 Ford Global Technologies, Llc Engine system and method for enabling cylinder deactivation
US7073494B2 (en) * 2004-03-05 2006-07-11 Ford Global Technologies, Llc System and method for estimating fuel vapor with cylinder deactivation
US7025039B2 (en) * 2004-03-05 2006-04-11 Ford Global Technologies, Llc System and method for controlling valve timing of an engine with cylinder deactivation
US7159387B2 (en) * 2004-03-05 2007-01-09 Ford Global Technologies, Llc Emission control device
US7367180B2 (en) * 2004-03-05 2008-05-06 Ford Global Technologies Llc System and method for controlling valve timing of an engine with cylinder deactivation
US7073322B2 (en) * 2004-03-05 2006-07-11 Ford Global Technologies, Llc System for emission device control with cylinder deactivation
US7021046B2 (en) * 2004-03-05 2006-04-04 Ford Global Technologies, Llc Engine system and method for efficient emission control device purging
US7107947B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7032581B2 (en) * 2004-03-19 2006-04-25 Ford Global Technologies, Llc Engine air-fuel control for an engine with valves that may be deactivated
US7072758B2 (en) 2004-03-19 2006-07-04 Ford Global Technologies, Llc Method of torque control for an engine with valves that may be deactivated
US7031821B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7063062B2 (en) 2004-03-19 2006-06-20 Ford Global Technologies, Llc Valve selection for an engine operating in a multi-stroke cylinder mode
US7383820B2 (en) * 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7128687B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7021289B2 (en) * 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7559309B2 (en) 2004-03-19 2009-07-14 Ford Global Technologies, Llc Method to start electromechanical valves on an internal combustion engine
US7066121B2 (en) 2004-03-19 2006-06-27 Ford Global Technologies, Llc Cylinder and valve mode control for an engine with valves that may be deactivated
US7194993B2 (en) 2004-03-19 2007-03-27 Ford Global Technologies, Llc Starting an engine with valves that may be deactivated
US7017539B2 (en) * 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
US7079935B2 (en) 2004-03-19 2006-07-18 Ford Global Technologies, Llc Valve control for an engine with electromechanically actuated valves
US7240663B2 (en) 2004-03-19 2007-07-10 Ford Global Technologies, Llc Internal combustion engine shut-down for engine having adjustable valves
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7032545B2 (en) 2004-03-19 2006-04-25 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7140355B2 (en) * 2004-03-19 2006-11-28 Ford Global Technologies, Llc Valve control to reduce modal frequencies that may cause vibration
US7028650B2 (en) 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7555896B2 (en) 2004-03-19 2009-07-07 Ford Global Technologies, Llc Cylinder deactivation for an internal combustion engine
US7055483B2 (en) * 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
DE102004016386B4 (de) * 2004-04-02 2007-02-22 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs sowie Vorrichtung zur Durchführung eines derartigen Verfahrens
DE102004047984B4 (de) * 2004-10-01 2016-02-04 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine mit variabler Ventilüberschneidung
US7461504B2 (en) * 2004-12-21 2008-12-09 Detroit Diesel Corporation Method and system for controlling temperatures of exhaust gases emitted from internal combustion engine to facilitate regeneration of a particulate filter
DE102005006702B4 (de) * 2005-02-15 2009-04-16 Audi Ag Verfahren und Vorrichtung zur Steuerung einer Verbrennungskraftmaschine
DE102005007125B4 (de) * 2005-02-17 2011-02-17 Audi Ag Verfahren und Vorrichtung zur Steuerung einer Verbrennungskraftmaschine
WO2007016713A2 (de) * 2005-08-11 2007-02-15 Avl List Gmbh Verfahren zur anhebung der abgastemperatur bei einer brennkraftmaschine
US7854114B2 (en) * 2006-03-16 2010-12-21 Cummins Inc. Increasing exhaust temperature for aftertreatment operation
JP4616818B2 (ja) * 2006-11-16 2011-01-19 ヤンマー株式会社 内燃機関の制御方法
EP2085592B1 (de) * 2006-11-16 2011-04-27 Yanmar Co., Ltd. Verfahren zur steuerung eines verbrennungsmotors
US7478625B1 (en) 2007-09-11 2009-01-20 Gm Global Technology Operations, Inc. Engine cranking system with cylinder deactivation for a direct injection engine
FR2924767B1 (fr) * 2007-12-10 2013-10-25 Inst Francais Du Petrole Procede pour demarrer a froid un moteur a combustion interne, notamment a autoallumage, et moteur utilisant un tel procede
JP4897715B2 (ja) * 2008-01-28 2012-03-14 ヤンマー株式会社 ディーゼルエンジンの制御装置
WO2010140020A1 (en) * 2009-06-02 2010-12-09 Renault Trucks Method for operating an engine arrangement
US8931255B2 (en) 2012-10-03 2015-01-13 Cummins Inc. Techniques for raising exhaust temperatures
CN103114919B (zh) * 2013-03-14 2015-10-07 潍柴动力股份有限公司 一种发动机冷启动方法及装置
DE202013010403U1 (de) * 2013-11-18 2015-02-19 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Steuerung einer Kraftfahrzeug-Brennkraftmaschine
WO2015192859A1 (en) * 2014-06-16 2015-12-23 Volvo Truck Corporation A two-stroke opposed piston internal combustion engine
US10605209B2 (en) * 2015-10-28 2020-03-31 Cummins Inc. Thermal management via exhaust gas recirculation
CN108431390B (zh) 2016-01-19 2022-03-18 伊顿智能动力有限公司 针对热管理的汽缸停用和发动机制动
US11187162B2 (en) 2016-08-17 2021-11-30 Eaton Intelligent Power Limited Extended coast and controlled deceleration using cylinder deactivation
WO2018035302A1 (en) 2016-08-17 2018-02-22 Eaton Corporation Friction mitigation in cylinder deactivation
JP2018105201A (ja) * 2016-12-26 2018-07-05 ヤマハ発動機株式会社 車両、エンジンの制御方法
DE102017206162B4 (de) 2017-04-11 2021-10-21 Ford Global Technologies, Llc Vorrichtung zur Steuerung eines Dieselmotors sowie eines dem Dieselmotor nachgeschalteten Speicherkatalysators
DE102017219172A1 (de) 2017-10-25 2019-04-25 Bayerische Motoren Werke Aktiengesellschaft Steuereinrichtung zum Ansteuern eines Verbrennungsmotors und Verfahren zum Erwärmen einer Abgasreinigungseinrichtung
DE102017126613A1 (de) * 2017-11-13 2019-05-16 Volkswagen Aktiengesellschaft Verfahren zur Reduzierung der Partikelemissionen bei einem Kaltstart eines Verbrennungsmotors
DE102018215486A1 (de) * 2018-09-12 2019-05-09 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
US10781762B2 (en) 2018-12-12 2020-09-22 Denso International America, Inc. Control system for variable displacement engine
US10690071B1 (en) * 2018-12-12 2020-06-23 Denso International America, Inc. Control system for variable displacement engine
US10961930B2 (en) 2018-12-12 2021-03-30 Denso International America, Inc. Control system for variable displacement engine
US10690036B1 (en) 2018-12-20 2020-06-23 Denso International America, Inc. Diagnostic test for engine exhaust system
RO134399A2 (ro) 2019-01-30 2020-08-28 Mihai Suta Procedeu de aditivare a procesului de combustie la motoarele cu aprindere prin scânteie, compoziţie, dispozitiv şi metodă pentru aplicarea procedeului
DE102019113749A1 (de) * 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine mit variabler Auslassventilbetätigung und mit Kraftstoffnacheinspritzung
US10801383B1 (en) 2019-06-19 2020-10-13 Tenneco Automotive Operating Company, Inc. System and method for controlling an engine
JP7052785B2 (ja) * 2019-10-09 2022-04-12 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
DE102019216361A1 (de) * 2019-10-24 2021-04-29 Robert Bosch Gmbh Verfahren zur Ventilsteuerung zum schnellen Aufheizen der Abgasanlage
DE102020111684A1 (de) 2020-04-29 2021-11-04 Bayerische Motoren Werke Aktiengesellschaft Kaltstartbetrieb einer mehrzylindrigen Vorkammerbrennkraftmaschine
US11365695B1 (en) * 2021-04-16 2022-06-21 Ford Global Technologies, Llc Methods and system for operating skipped cylinders to provide secondary air
US11391227B1 (en) * 2021-04-16 2022-07-19 Ford Global Technologies, Llc Methods and system for operating skipped cylinders to provide secondary air
US11365693B1 (en) * 2021-04-16 2022-06-21 Ford Global Technologies, Llc Methods and system for operating skipped cylinders to provide secondary air

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493308A (en) * 1974-06-01 1977-11-30 Nissan Motor Fuel injection system for a multicylinder type internal combustion engine
DE2749742A1 (de) * 1977-05-30 1978-12-07 Toyota Motor Co Ltd Elektronisch gesteuertes brennstoffeinspritzsystem fuer eine mit einem katalytischen umwandler ausgestattete brennkraftmaschine
EP0376714A2 (de) * 1988-12-28 1990-07-04 Isuzu Motors Limited Steuerungssystem für Innenverbrennungsmotoren
JPH0350380A (ja) * 1989-07-18 1991-03-04 Yamaha Motor Co Ltd 自動二輪車用エンジンの始動装置
DE4029672A1 (de) * 1990-09-19 1992-04-02 Daimler Benz Ag Mehrzylindrige brennkraftmaschine
JPH04159428A (ja) * 1990-10-23 1992-06-02 Nissan Motor Co Ltd 内燃機関の排気浄化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3916622A (en) * 1971-09-04 1975-11-04 Volkswagenwerk Ag Combustion engine with at least one exhaust gas cleaning arrangement
DE2163537A1 (de) * 1971-12-21 1973-07-12 Volkswagenwerk Ag Verfahren zum aufheizen von abgasreinigungsanlagen
US4165610A (en) * 1976-12-10 1979-08-28 Nissan Motor Company, Limited Internal combustion engine with variable cylinder disablement control
JPS54163225A (en) * 1978-06-16 1979-12-25 Nissan Motor Device for controlling number of cylinders to be supplied with fuel
DE3401362C3 (de) * 1983-02-04 1998-03-26 Fev Motorentech Gmbh Verfahren zur Steuerung von Viertakt-Kolbenbrennkraftmaschinen
US5123397A (en) * 1988-07-29 1992-06-23 North American Philips Corporation Vehicle management computer
JPH03164537A (ja) * 1989-11-21 1991-07-16 Mitsubishi Electric Corp 内燃機関のバルブタイミング制御装置
US5271229A (en) * 1992-06-01 1993-12-21 Caterpillar Inc. Method and apparatus to improve a turbocharged engine transient response

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1493308A (en) * 1974-06-01 1977-11-30 Nissan Motor Fuel injection system for a multicylinder type internal combustion engine
DE2749742A1 (de) * 1977-05-30 1978-12-07 Toyota Motor Co Ltd Elektronisch gesteuertes brennstoffeinspritzsystem fuer eine mit einem katalytischen umwandler ausgestattete brennkraftmaschine
EP0376714A2 (de) * 1988-12-28 1990-07-04 Isuzu Motors Limited Steuerungssystem für Innenverbrennungsmotoren
JPH0350380A (ja) * 1989-07-18 1991-03-04 Yamaha Motor Co Ltd 自動二輪車用エンジンの始動装置
DE4029672A1 (de) * 1990-09-19 1992-04-02 Daimler Benz Ag Mehrzylindrige brennkraftmaschine
JPH04159428A (ja) * 1990-10-23 1992-06-02 Nissan Motor Co Ltd 内燃機関の排気浄化装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 15, no. 194 (M - 1114) 20 May 1991 (1991-05-20) *
PATENT ABSTRACTS OF JAPAN vol. 16, no. 452 (M - 1313) 21 September 1992 (1992-09-21) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2316338A (en) * 1996-08-21 1998-02-25 Rover Group An emission control system for an engine
FR2793280A1 (fr) * 1999-05-07 2000-11-10 Renault Procede de commande d'un moteur a combustion interne

Also Published As

Publication number Publication date
DE59508064D1 (de) 2000-04-27
EP0746675A1 (de) 1996-12-11
US5930992A (en) 1999-08-03
DE4445779A1 (de) 1996-06-27
EP0746675B1 (de) 2000-03-22

Similar Documents

Publication Publication Date Title
EP0746675A1 (de) Verfahren zur steuerung einer mehrzylinder-brennkraftmaschine in der kaltstart- und warmlaufphase
DE69915093T2 (de) Brennkraftmaschine
DE3633405C2 (de)
DE102004016386B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeugs sowie Vorrichtung zur Durchführung eines derartigen Verfahrens
DE2503806A1 (de) Verfahren zum betrieb eines aufgeladenen viertakt-dieselmotors sowie mit dem verfahren betriebener motor
DE102013202196A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP2183469B1 (de) Kolbenmotor
DE102017208857A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Brennkraftmaschine und Kraftfahrzeug
DE4141482A1 (de) Verfahren zur luftzufuhr in die brennkammer eines verbrennungsmotors der kolbenbauart in zwei phasen
DE102019113738A1 (de) Brennkraftmaschine mit variabler Einlass- und Auslassventilbetätigung
EP2264299A2 (de) Verfahren zum Betreiben einer Hubkolben-Brennkraftmaschine
EP1840352B1 (de) Frischgasanlage und Betriebsverfahren für einen Kolbenmotor
EP1682754B1 (de) Mehrzylindrige brennkraftmaschine und verfahren zum betreiben einer mehrzylindrigen brennkraftmaschine
EP1257735B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
WO2016078740A1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug und antriebseinrichtung
DE102019113741A1 (de) Brennkraftmaschine mit variabler Auslassventilbetätigung und mit elektromotorischer oder mechanischer Aufladung
DE102004001724A1 (de) Verfahren zum Absenken einer Abgastemperatur im Hochlastbereich einer Brennkraftmaschine
DE102015204505A1 (de) Verfahren zum Betreiben einer fremdgezündeten, direkteinspritzenden Brennkraftmaschine sowie fremdgezündete, direkteinspritzende Brennkraftmaschine
DE102005010290B4 (de) Verfahren und Vorrichtung zur Ventilsteuerung beim Startvorgang eines Verbrennungsmotors
DE19963930A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
EP3536938B1 (de) Verfahren zum betreiben einer brennkraftmaschine zur erhöhung einer abgastemperatur
DE102021119337A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors sowie Verbrennungsmotor
DE10203340A1 (de) Zweitaktbrennkraftmaschine
DE102019113734A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit variabler Auslassventilbetätigung bei erhöhter Lastanforderung
DE102022101345A1 (de) Verfahren zum Beheizen einer Abgasnachbehandlungskomponente sowie Verbrennungsmotor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995942672

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08696877

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1995942672

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995942672

Country of ref document: EP