WO1996026907A1 - Mikroporöse amorphe mischmetalloxide für formselektive katalyse - Google Patents

Mikroporöse amorphe mischmetalloxide für formselektive katalyse Download PDF

Info

Publication number
WO1996026907A1
WO1996026907A1 PCT/EP1996/000766 EP9600766W WO9626907A1 WO 1996026907 A1 WO1996026907 A1 WO 1996026907A1 EP 9600766 W EP9600766 W EP 9600766W WO 9626907 A1 WO9626907 A1 WO 9626907A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous
amorphous
mixed metal
reactions
metal oxides
Prior art date
Application number
PCT/EP1996/000766
Other languages
English (en)
French (fr)
Inventor
Wilhelm F. Maier
Original Assignee
Studiengesellschaft Kohle Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle Mbh filed Critical Studiengesellschaft Kohle Mbh
Priority to US08/913,516 priority Critical patent/US6319876B1/en
Priority to DK96904858T priority patent/DK0812305T3/da
Priority to DE59600515T priority patent/DE59600515D1/de
Priority to JP8526002A priority patent/JPH11500995A/ja
Priority to AU48802/96A priority patent/AU4880296A/en
Priority to EP96904858A priority patent/EP0812305B1/de
Publication of WO1996026907A1 publication Critical patent/WO1996026907A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/18Arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/28Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/50Silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/48Silver or gold
    • C07C2523/52Gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/72Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel

Definitions

  • a first step towards substrate selectivity, shape selectivity, is the key to the success of zeolites as the most important new generation of heterogeneous catalysts.
  • Shape selectivity is understood to mean a chemical product selectivity which is due to the differently restricted mobility of the different product molecules in the pores of the catalyst. The prerequisite is that the pores of the catalyst are only slightly larger in diameter than the product molecules.
  • the formation of para-xylene is achieved by isomerization of xylene mixtures, since the para-xylene can diffuse much faster than the bulky ortho due to its elongated shape in the narrow pore channels of the zeolite - and meta-xylene (DH Olsen, WO Haag, ACS Symp. Ser. 248 (1984) 275).
  • the shape selectivity of zeolites in a large number of different reactions (PB Venuto, Microporous Materials 2 (1994) 297) is attributed to their microporous channel system with pore dimensions the size of molecules.
  • pore size variation is not continuous, but depends on the available crystal type, and is therefore only possible in stages.
  • amorphous microporous mixed metal oxides with an extremely narrow micropore distribution and pore diameters in the range from 0.5-1 nm act in a similar manner to the crystalline zeolites as shape-selective catalysts.
  • Such catalysts can be used to produce t-butyl ether directly from n-alcohols and t-butyl alcohol or isobutene. No formation of t-butyl ether is observed under homogeneous conditions.
  • These materials also catalyze the formation of epoxides by direct oxidation of olefins with 6 or fewer carbon atoms much faster than the formation of the epoxides of larger alkenes.
  • the product composition in the hydrogenating cracking test of decane is comparable to the product distribution which is produced by catalysis with large-pore zeolites, such as Y zeolites, the zeolite beta or SAPO's.
  • catalytically active amorphous microporous mixed metal oxides can be produced by a modified sol-gel process.
  • at least one of the metal components preferably an Si, Ti, Al or Zr derivative, must be in liquid or in solution and that the polycondensation in the sol-gel process should not be under basic conditions ⁇ conditions is carried out. So no membranes are made, rather the resulting gel is gently dried immediately.
  • the invention relates to a process for the production of form-selectively catalytically active, amorphous, microporous mixed metal oxides by the sol-gel process, which is characterized in that at least two hydrolyzable, liquid or dissolved compounds of the elements titanium, silicon, aluminum, zirconium or cerium are dissolved one after the other, the clear solution is stirred at pH 0 to 7 with the addition of aqueous acidic catalysts or with the addition of fluoride ions with linear polymerization or polycondensation, the gel obtained O,
  • Heating to 60 to 70 C is gently dried and calcined at low heating speeds at temperatures from 120 to 800 ° C, whereby a midroporous, amorphous glass is obtained.
  • non-ceramic glasses consist of a mixed metal oxide matrix in which at least about 90% of the pores of the material have an effective diameter between 0.3 and 1.2 nm, with essentially the same pore size and with a surface size of over 50 m 2 / g.
  • the hydrolyzable liquid or dissolved compounds are preferably selected from the group Si0 2 , Ti0 2 , Al 2 0 3 , zirconium oxide, cerium oxide, spinel, mullite, silicon carbide, silicon nitrite and titanium nitrite.
  • the mixed metal oxide matrix contains at least 50% by weight of at least one compound of the elements titanium, silicon, aluminum, zirconium and cerium and up to 50% by weight of one or more metal oxides in an atomic distribution from the group of Metals Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Pb, Sb, Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, Tl, Ag , Cu, Li, K, Na, Be, Mg, Ca, Sr and Ba.
  • the mixed metal oxide matrix can additionally contain up to 5% by weight of at least one of the noble metals Pt, Rh, Ir, Os, Ag, Au, Cu, Ni, Pd, Co in highly disperse form in metallic or oxidized state.
  • Acids in particular hydrochloric acid, are preferred as the acid catalysts.
  • the calcination temperature is preferably 250 to 500 ° C.
  • the hydrolyzable soluble compounds are pure alkoxy, mixed alkoxy, alkoxyoxo or acetylacetonate derivatives of the selected metals or metal oxides.
  • the invention further relates to microporous, amorphous, non-ceramic glasses consisting of a mixed metal oxide matrix in which at least about 90% of the pores of the material have an effective diameter of between 0.3 and 1.2 n, with essentially the same Pore size and with a surface size of over 50 m 2 / g.
  • the mixed metal oxide matrix preferably consists of at least two of the oxides of titanium, silicon, aluminum, zirconium or cerium.
  • the mixed metal oxide matrix consists of at least two of the compounds from the group Si0 2 , Ti0 2 , Al 2 0 3 , zirconium oxide, cerium oxide, spinel, mullite, silicon carbide, silicon nitride and titanium nitrite.
  • the mixed metal oxide matrix consists of at least 50% by weight of one of the compounds of the elements titanium, silicon, aluminum, zirconium or cerium and up to 50% by weight of one or more metal oxides in an atomic distribution from the group of metals Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Pb, Sb, Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, TI, Ag, Cu, Li, K, Na, Be, Mg, Ca, Sr, and Ba.
  • the mixed metal oxide matrix can additionally contain up to 5% by weight of at least one of the noble metals Pt, Rh, Ir, Os, Ag, Au, Cu, Ni, Pd, Co in highly dispersed form in metallic or oxidized state.
  • the microporous amorphous non-ceramic glasses are obtainable by acidic or fluoride-catalyzed linear polymerization or polycondensation of hydrolyzable, soluble compounds mentioned above, preferably pure alkoxy, mixed alkoxyalkyl, alkoxyoxo or acetylacetonate derivatives of the selected metals or metal oxides pH 0 to 7 in a sol-gel process, followed by mild drying and slow calcining with a final calcining temperature in the range from 120 to 800 ° C., the microporous, amorphous, non-ceramic glasses either being made exclusively from the mixed metal oxides or consist of the mixed metal oxides and remaining surface alkyl or alkoxy groups, depending on the selected precursor compound.
  • the invention also relates to shape-selective catalysts consisting of the microporous, amorphous, non-ceramic mixed metal oxide glasses defined above.
  • the invention relates to the use of the microporous, amorphous, non-ceramic mixed metal oxide glasses or the shape-selective catalysts for the catalysis of isomerization reactions, hydrogenation reactions, selective and unselective oxidation reactions with atmospheric oxygen, hydrogen peroxide or organic peroxides, alkylation reactions, disproportionation reactions, hydrogenation and Dihydrogenation reactions, alcohol formation from olefins, coupling reactions, substitution reactions, cycloaddition or cycloreversion reactions, ether formation, crude oil cracking and hydrocracking, Fischer-Tropsch synthesis of alcohols or hydrocarbons, methanol synthesis from synthesis gas or from methane, for coating electrodes in fuel cells or Li + or other ion stores in batteries, for the formation of ultrafiltration and gas separation membranes and for the formation of Analyzers with selective cavities for molecular recognition.
  • the mixed metal oxides obtained in this way differ significantly in their manufacture from the manufacture of microporous membranes (DE-A-41 17 284), in which a thin, continuous membrane is drawn before the gel point is reached by pulling the support membrane out of the sol solution Film is formed on the support membrane, which is converted directly into the microporous membrane by the drying and calcining process described.
  • the use of the membrane also differs fundamentally from the use of the shape-selective catalysts.
  • the membranes are used for the molecular separation of gas and liquid mixtures, in which one of the components to be separated remains as completely as possible on one side of the membrane and cannot or hardly penetrate the membranes, it is essential for shape-selective catalysis that all reactants penetrate the pore system of the catalyst and react in the pores.
  • the membrane catalysts differ from the shape-selective catalysts primarily in that the catalysis with membrane catalysts is based on the selective separation of gas and liquid phases in three-phase reactions and improvements over conventional heterogeneous catalysis in the molecular size-selective exclusion based on unwanted reactants or catalyst poisons.
  • catalyst and membrane properties are used simultaneously, while in the case of shape-selective catalysis, all reaction partners must be present in the pore system.
  • the catalysts described here can be used directly as powder or molded body catalysts using conventional reactor technology for selective heterogeneous catalysis. While when using membranes the selectivity of the catalysis is based on the exclusion of at least one of the reactants from the pore system of the membrane, the presence of all reactants in the pores is absolutely necessary in the catalysts described here.
  • Microporous metal oxides are most similar to the materials described here (W.F. Maier, I.-C. Tilgner, M. Wiedorn, H.-C. Ko, Advanced Materials 5 (1993) 726). These monometal oxides differ from the materials presented here primarily in that the mixed metal components responsible for the catalytic activity are missing as an integral part of the glass matrix. It is new and so far not known that it is possible to produce mixed metal oxides with the narrow microporous distribution comparable to zeolites described here and simultaneous homogeneous mixing of the metal oxide components as thermally and chemically stable materials.
  • the materials presented here also differ from the catalysts for selective cavity catalysis (DE - A - 43 09 660). While the presented materials according to the invention described here cause the selective catalysis due to the restricted mobility of the molecules inside the channel structure, the selective catalysis on molecular impressions is based on the molecular recognition of certain structures. Selective cavity catalysts have to be tailored for a very specific structure and are far more complex to manufacture than the materials now found. The catalyst production differs before all in the fact that, in the case of selective cavity catalysts, copolycondensation has to be carried out with the impression molecule anchored to a monomer unit via a chemical bond, which must be removed from the glass before use as a catalyst. These steps are completely eliminated in the catalysts now found.
  • EP-A-0 492 697 describes the preparation of mixed metal oxides from tetraalkyl silicates and a water-soluble form of a second metal by a basic polycondensation process in the presence of tetraalkylammonium hydroxide.
  • the polymerization begins by the formation of minute particles and the glass thus obtained, although microporous, shows significant formation of mesopores, which can be attributed to the voids between the glass particles. Both the mesopores and the intermediate grain volume are undesirable if shape-selective catalysis is to be achieved.
  • FIG. 1 shows the typical N 2 -Ad desorption isotherm, in which no signs of a second adsorption due to mesopores can be seen.
  • the isotherm of such a material is identical to the isotherm of crystalline zeolites.
  • microporous amorphous mixed metal oxides according to the invention have large surfaces and porosities comparable to those of zeolites. They can be used for the form-selective catalysis of isomerization reactions, hydrogenation reactions, selective and unselective oxidation reactions with atmospheric oxygen, hydrogen peroxide or organic peroxides, alkylation reactions, disproportionation reactions, hydrogenation and dehydrogenation reactions, alcohol formation from olefins, coupling reactions, substitution reactions, cycloaddition reactions - Or cycloreversion reactions, ether formation, crude oil cracking and hydrocracking, Fischer-Tropsch synthesis of alcohols or hydrocarbons, methanol synthesis from synthesis gas or from methane can be used.
  • They can be used to coat electrodes in fuel cells or Li + or other ion storage devices in batteries. They can also be used as ion exchangers or as adsorbents. They are also suitable for the formation of ultrafiltration and gas separation membranes (DE-A-41 17 284), for the formation of catalysts with selective cavities for molecular recognition (DE-A-43 09 660).
  • the pore size of these microporous glasses can be varied between 0.4-1 nm by changing the alcohol size in polycondensation processes or by changing the drying and calcining process.
  • the hydrophobicity of the inner surface of these materials can be tailored by co-condensation of alkyl metal compounds, preferably alkyl trialkoxysilanes, during the sol-gel process.
  • the material After gel formation has taken place, the material is mixed with a Heating rate of 0.5 ° C / min heated to 65 ° C, kept at 65 ° C for 3 h, heated to 250 ° C with a heating rate of 0.2 ° C / min and a further 3 h at this temperature
  • the adsorption isotherms show that the material has a true monomodal microporous distribution, BET: 542 m 2 / g, pore diameter 0.66 nm.
  • Titania-zirconia-silica glass 10 ml of tetraethoxysilane (TEOS), 1 ml (BuO) "Zr and 8 ml of ethanol are successively dissolved in each other and 2 ml of 8 N HCl with stirring.
  • the material is heated to 65 ° C with a heating rate of 0.5 ° C / min, held at 65 ° C for 3 h, heated to 250 ° C with a heating rate of 0.2 ° C / min and calcined at this temperature for a further 3 h.
  • the adsorption isotherms show that the material has a true monomodal microporous distribution, BET: 520 m / g, pore diameter 0.75 nm.
  • Shape selectivity of the epoxidation of alkenes 15.8 mmol of alkene, 1 ml of 3N solution of t-butyl hydroperoxide and 50 mg of titanium oxide-silicon oxide glass are stirred at 80 ° C. for 15 minutes and the composition of the product is analyzed using gas chromatography.
  • Shape selectivity to form t-butyl ether 300 mmol of i-butene, 100 mmol of 1-hexanol and 2.5 g of Ti-Si catalyst powder are placed in a 100 ml autoclave at a pressure of 40 bar N 2 and a temperature of 150 ° C 18 h stirred. A conversion of 62% of the n-hexanol with the formation of hexyl-t-butyl ether with a selectivity of 92% was achieved.
  • Shape selectivity to form t-butyl ether 300 mmol of t-butanol, 100 mmol of 1-hexanol and 2.5 g of Ti-Si catalyst powder are placed in a 100 ml autoclave at a pressure of 40 bar N 2 and a temperature of 150 ° C 17 h stirred. A conversion of 17% of the n-hexanol with the formation of hexyl-t-butyl ether with a selectivity of 90% was achieved.
  • Shape selectivity in the hydrocracking of n-decane A microporous amorphous TiSi mixed oxide glass was impregnated with 1% Pt and subjected to the standardized hydrocrack test as described in the literature (JA Martens, M. Tielen, PA Jacobs, J. Weitkamp, Zeolites 4 (1984) 98-107) .
  • the microporous Ti-Si glass showed a constraint index (CI *) of 1.5, an EC8 (% ethyl octane) of 10.3, a PC7 (% 4-propylheptane) of 0.9, a DB iCIO (% double-branched) CIO isomers) of 30, an iC5 (isopentane in the cracked product) of 30.5, and a pore dimension index DI of 14.9.
  • the CI * can be used to estimate the pore size and shows that the pores are larger than in the ZSM12 and smaller than in the Y zeolite.
  • the EC8 confirms that the Bronsted acid centers are located in the pores and that the material behaves similarly to a SAPO-5 zeolite.
  • PC7 shows that the pores are similar to the pores of an FAU zeolite.
  • the DBiClO is similar to that of SAPO-5, which indicates a similar pore system.
  • the iC5 confirms that the glass belongs to the large-pore zeolites.
  • the DI indicates the absence of connected pores.
  • Dean's hydrocrack test shows that the Broensted acidic centers of the glass are in a shape-selective environment.
  • the micropores of the glass have a tubular shape with a pore diameter of 0.7-0.8 nm.

Abstract

Die Erfindung befaßt sich mit der katalytischen Aktivität und Selektivität von mikroporösen amorphen Mischmetalloxidgläsern und deren Anwendung als formselektive heterogene Katalysatoren. Mikroporöse amorphe Mischmetalloxide (Gläser) können durch Polykondensation von löslichen Metallverbindungen hergestellt werden. Diese neuen Materialien zeigen eine Temperaturstabilität bis 800 °C. In heterogenkatalytischen Reaktionen zeigen diese amorphen Gläser selektive Oxidationen, Hydrierungen, Hydrocracking und Kondensationskatalyse.

Description

Mikroporöse amorphe Mischmetalloxide für formselektive Katalyse
Trotz des großen Fortschritts in der heterogenen Katalyse hat sich die katalytische Selektivität zu einem immer wichtigeren Prüfstein für technische Anwendungen von neuen heterogenen Katalysatoren entwickelt. In allen wichtigen chemischen Produktionsverfahren sind die technischen Selektivitätsgrenzen der derzeitigen Katalysatorengene¬ ration höchstwahrscheinlich erreicht. Hoch entwickelte chemische Reaktionstechniken und Katalysatorverbesserungen durch semi-empirische Katalysatormodifizierung durch Additive, Oberflächenmodifizierung und Porenstrukturopti- mierung sind Stand der Technik in der chemischen Proze߬ entwicklung. Ein erster Schritt zur Substratselektivität, die Formselektivität, ist der Schlüssel zum Erfolg der Zeolithe als bedeutendste neue Generation heterogener Katalysatoren. Unter Formselektivität versteht man eine chemische Produktselektivität, die aufgrund der unter¬ schiedlich eingeschränkten Beweglichkeit von den ver¬ schiedenen Produktmolekülen in den Poren des Katalysators zustande kommt. Voraussetzung ist, daß die Poren des Katalysators in ihrem Durchmesser nur geringfügig größer sind als die Produktmoleküle. So wird zum Beispiel mit dem sauren H-ZSM-5 Zeolith die Bildung von para-Xylol durch Isomerisierung von Xylolgemischen erzielt, da das para- Xylol aufgrund seiner gestreckten Form in den engen Poren¬ kanälen des Zeolithen wesentlich schneller diffundieren kann als das sperrigere ortho- und meta-Xylol (D.H. Olsen, W.O. Haag, ACS Symp. Ser. 248 (1984) 275). Die Formselek¬ tivität von Zeolithen in einer großen Zahl unterschied¬ licher Reaktionen (P.B. Venuto, Microporous Materials 2 (1994) 297) wird auf deren mikroporöses Kanalsystem mit Porenabmessungen in der Größe von Molekülen zurückgeführt. Obwohl die Anzahl der Zeolithstrukturen und die dazu ge- hörigen Porengrößen kontinuierlich zunehmen, wird das ge¬ naue Maßschneidern von Zeolithen durch folgende Fakten eingeschränkt:
i) Die Porengrößenvariation ist nicht kontinuierlich, sondern abhängig vom verfügbaren Kristalltyp, und daher nur stufenweise möglich.
ii) Monomodale Porengrößenverteilungen mit Porendurch¬ messern im Bereich von 0,8 - 1,2 nm sind nicht bekannt.
iii) Die Konzentration und der Einbau zweier Elemente in der Zeolithgerüststruktur ist stark eingeschränkt.
Während nur sehr wenige Elemente wie Ti, AI, P, V, sich in der Silikatstruktur isomorph substituieren lassen, ist die mögliche Konzentration im günstigsten Fall bis 50 % er¬ reicht und überschreitet häufig nicht einmal 2 - 3 %. Zeolithe werden bereits für eine große Zahl organischer Reaktionen als selektive heterogene Katalysatoren ein¬ gesetzt (P.B. Venuto, Microporous Materials 2 (1994) 297).
Wir haben nun gefunden, daß amorphe mikroporöse Misch¬ metalloxide mit einer extrem engen Mikroporenverteilung und Porendurchmessern im Bereich von 0,5-1 nm in ähnlicher Weise wie die kristallinen Zeolithe als formselektive Katalysatoren fungieren. Wir haben gefunden, daß mit solchen Katalysatoren t-Butylether direkt aus n-Alkoholen und t-Butylalkohol oder Isobuten hergestellt werden kön¬ nen. Unter homogenen Bedingungen wird keine t-Butylether- bildung beobachtet. Diese Materialien katalysieren auch die Bildung von Epoxiden durch direkte Oxidation von Ole- finen mit 6 oder weniger Kohlenstoffatomen viel schneller als die Bildung der Epoxide größerer Alkene. Die Produkt¬ zusammensetzung beim hydrierenden Cracktest von Decan ist vergleichbar mit der Produktverteilung , die durch Kata¬ lyse mit großporigen Zeolithen, wie Y-Zeolithen, dem Zeolith Beta oder SAPO's entsteht. Wir haben gefunden, daß solche katalytisch aktiven amorphen mikroporösen Misch¬ metalloxide nach einem modifizierten Sol-Gel-Verfahren hergestellt werden können. Von besonderer Bedeutung für diese Herstellung ist, daß mindestens eine der Metall¬ komponenten, vorzugsweise ein Si, Ti, AI oder Zr-derivat, flüssig oder in Lösung vorliegen muß und daß die Polykon¬ densation im Sol-Gel-Prozeß nicht unter basischen Bedin¬ gungen durchgeführt wird. Es werden also keine Membranen hergestellt, vielmehr wird das entstandene Gel schonend sofort getrocknet. Wir haben durch rheologische Unter¬ suchungen gefunden, daß der Sol-Gel-Prozeß, katalysiert unter sauren bis neutralen Reaktionsbedingungen, mit einer linearen Polymerisation beginnt, so daß im entstehenden Gel die Viskosität zusammen mit der Elastizität zunimmt. Wird ein so erhaltenes Gel nun langsam getrocknet und mit kleinen Aufheizgeschwindigkeiten gebrannt, so entsteht ein mikroporöses Glas, in dem die verschiedenen Metalloxide atomar oder nahezu atomar miteinander vermischt sind, d. h. ohne Domänenbildung der einzelnen Metalloxide. Dieses mikroporöse Glas wird nun zur gewünschten Korngröße ver¬ mählen und repräsentiert den zur formselektiven Katalyse einsetzbaren Katalysator.
Die Erfindung betrifft ein Verfahren zur Herstellung form¬ selektiv katalytisch aktiver, amorpher, mikroporöser Mischmetalloxide nach dem Sol-Gel-Verfahren, das dadurch gekennzeichnet ist, daß mindestens zwei hydrolysierbare, flüssige oder gelöste Verbindungen der Elemente Titan, Silicium, Aluminium, Zirkon oder Cer hintereinander in¬ einander gelöst werden, die klare Lösung bei pH 0 bis 7 unter Zusatz wassriger saurer Katalysatoren oder unter Zusatz von Fluoridionen unter linearer Polymerisation oder Polykondensation gerührt werden, das erhaltene Gel durch o,
Erwärmen auf 60 bis 70 C schonend getrocknet wird und mit kleinen Aufheizgeschwindigkeiten bei Temperaturen von 120 bis 800 °C kalziniert wird, wobei ein midroporöses, amorphes Glas erhalten wird.
Die erhaltenen mikroporösen, amorphen (mit homogener Ver¬ teilung der Elemente, d.h. homogenes Glas (keine Parti¬ kel)), nicht-keramischen Gläser bestehen aus einer Misch- etalloxidmatrix, in der wenigstens etwa 90 % der Poren des Materials einen effektiven Durchmesser zwischen 0,3 und 1,2 nm haben, mit im wesentlichen gleicher Porengröße und mit einer Oberflächengröße von über 50 m2/g.
Die hydrolisierbaren flüssigen oder gelösten Verbindungen sind bevorzugt aus der Gruppe Si02, Ti02, Al203, Zirkonoxid, Ceriumoxid, Spinell, Mullit, Siliciumcarbid, Siliciumni- trit und Titannitrit ausgewählt.
In einer weiteren Ausführungsform enthält die Mischme- talloxidmatrix wenigstens 50 Gew.-% wenigstens einer Verbindung der Elemente Titan, Silicium, Aluminium, Zirkon und Cer und bis zu 50 Gew.-% einer oder mehrerer Metall¬ oxide in atomarer Verteilung aus der Gruppe der Metalle Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Pb, Sb, Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, Tl, Ag, Cu, Li, K, Na, Be, Mg, Ca, Sr und Ba.
Weiterhin kann die Mischmetalloxidmatrix zusätzlich bis zu 5 Gew.-% wenigstens eines der Edelmetalle Pt, Rh, Ir, Os, Ag, Au, Cu, Ni, Pd, Co in hochdisperser Form in metal¬ lischem oder oxidiertem Zustand enthalten.
Bevorzugt sind als die sauren Katalysatoren Säuren, insbe¬ sondere Salzsäure.
Bevorzugt beträgt die Kalzinierungstemperatur 250 bis 500 o_ In einer bevorzugten Ausführungsform sind die hydrolysier- baren löslichen Verbindungen reine Alkoxy-, gemischte Alk- oxy-, Alkoxyoxo- oder Acetylacetonat-Derivate der gewähl¬ ten Metalle oder Metalloxide.
Die Erfindung betrifft ferner mikroporöse, amorphe, nicht¬ keramische Gläser, bestehend aus einer Mischmetalloxid¬ matrix, in der wenigstens etwa 90 % der Poren des Mate¬ rials einen effektiven Durchmesser zwischen 0,3 und 1,2 n haben, mit im wesentlichen gleicher Porengröße und mit einer Oberflächengröße von über 50 m2/g.
Bevorzugt besteht die Mischmetalloxidmatrix aus wenigstens zwei der Oxide von Titan, Silicium, Aluminium, Zirkon oder Cer.
Insbesondere besteht die Mischmetalloxidmatrix aus wenig¬ stens zwei der Verbindungen aus der Gruppe Si02, Ti02, Al203, Zirconiumoxid, Ceriumoxid, Spinell, Mullit, Sili- ciumcarbid, Siliciumnitrid und Titannitrit.
In einer weiteren Ausführungsform besteht die Mischmetall¬ oxidmatrix aus wenigstens 50 Gew.-% einer der Verbindungen der Elemente Titan, Silicium, Aluminium, Zirkon oder Cer und bis zu 50 Gew.-% einer oder mehrerer Metalloxide in atomarer Verteilung aus der Gruppe der Metalle Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Pb, Sb, Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, TI, Ag, Cu, Li, K, Na, Be, Mg, Ca, Sr, und Ba.
Weiterhin kann die Mischmetalloxidmatrix zusätzlich bis zu 5 Gew.-% wenigstens eines der Edelmetalle Pt, Rh, Ir, Os, Ag, Au, Cu, Ni, Pd, Co in hoch-disperser Form in metal¬ lischem oder oxidiertem Zustand enthalten. Die mikroporösen amorphen nicht-keramischen Gläser sind erhältlich durch saure oder Fluorid-katalysierte lineare Polymerisation oder Polykondensation hydrolisierbarer, löslicher, oben genannter Verbindungen, vorzugsweise reinen Alkoxy-, gemischen Alkoxyalkyl-, Alkoxyoxo- oder Acetylacetonat-Derivate der gewählten Metalle oder Me¬ talloxide bei pH 0 bis 7 in einem Sol-Gel-Verfahren, gefolgt von mildem Trocknen und langsamem Kalzinieren mit einer Endkalzinierungstemperatur im Bereich von 120 bis 800 °C, wobei die mikroporösen, amorphen, nicht-kera¬ mischen Gläser entweder ausschließlich aus den gemischten Metalloxiden oder aus den gemischten Metalloxiden und restlichen Oberflächenalkyl- oder -alkoxygruppen in Ab¬ hängigkeit von der gewählten Vorläufer-Verbindung beste¬ hen.
Die Erfindung betrifft auch formselektive Katalysatoren, bestehend aus den vorstehend definierten mikroporösen, amorphen, nicht-keramischen Mischmetalloxidgläsern.
Schließlich betrifft die Erfindung die Verwendung der mikroporösen, amorphen, nicht-keramischen Mischmetall¬ oxidgläsern bzw. der formselektiven Katalysatoren zur Katalyse von Isomerisierungsreaktionen, Hydrierreaktionen, selektiven und unselektiven Oxidationsreaktionen mit Luft¬ sauerstoff, Wasserstoffperoxid oder organischen Peroxiden, Alkylierungsreaktionen, Disproportionierungsreaktionen, Hydrier- und Dihydrierreaktionen, Alkoholbildung aus Olefinen, Kupplungsreaktionen, Substitutionsreaktionen, Cycloadditions- oder Cycloreversionsreaktionen, Ether- bildung, Rohölcracking und Hydrocracking, Fischer-Tropsch- Synthese von Alkoholen oder Kohlenwasserstoffen, Methanol¬ synthese aus Synthesegas oder aus Methan, zur Beschichtung von Elektroden in Brennstoffzellen oder Li+ oder anderen Ionenspeichern in Batterien, zur Bildung von Ultrafil¬ tration- und Gastrennmembranen und zur Bildung von Kata- lysatoren mit selektiven Hohlräumen zur molekularen Er¬ kennung.
Die so erhaltenen Mischmetalloxide unterscheiden sich schon in der Herstellung deutlich von der Herstellung mikroporöser Membranen (DE -A - 41 17 284), bei denen noch vor Erreichen des Gel-Punktes durch Herausziehen der Trä¬ germembran aus der Sol-Lösung ein dünner, kontinuierlicher Film auf der Trägermembran gebildet wird, der sich durch den beschriebenen Trocknungs- und Kalzinierprozeß direkt in die mikroporöse Membran umwandelt. Auch die Anwendung der Membran unterscheidet sich grundsätzlich von der An¬ wendung der formselektiven Katalysatoren. Während die Membranen zur molekularen Trennung von Gas- und Flüs¬ sigkeitsgemischen genutzt werden, bei der eine der abzu¬ trennenden Komponenten möglichst vollständig auf einer Seite der Membran verbleibt und die Membranen nicht oder kaum penetrieren kann, ist es für die formselektive Kata¬ lyse essentiell, daß alle Reaktanden das Porensystem des Katalysators penetrieren und iri den Poren zur Reaktion kommen.
Die hier beschriebenen neuen Materialien unterscheiden sich ebenso wie die soeben beschrieben in der Herstellung von den mikroporösen Membrankatalysatoren (DE - A - 43 03 610). In der Anwendung unterscheiden sich die Membran¬ katalysatoren von den formselektiven Katalysatoren vor allem darin, daß die Katalyse mit Membrankatalysatoren auf der selektiven Trennung von Gas- und Flüssigphase in Drei¬ phasenreaktionen beruht und Verbesserungen gegenüber her¬ kömmlicher heterogener Katalyse in dem molekülgrößenselek- tiven Ausschluß von unerwünschten Reaktionspartnern oder Katalysatσrgiften beruht. In der Membrankatalyse werden Katalysator- und Membraneigenschaften gleichzeitig ge¬ nutzt, während bei formselektiver Katalyse alle Reaktions¬ partner im Porensystem anwesend sein müssen. Im Unter- schied zur Membrankatalyse können die hier beschriebenen Katalysatoren direkt als Pulver- oder Formkörper-Katalysa¬ toren unter Verwendung herkömmlicher Reaktortechnologie zur selektiven heterogenen Katalyse eingesetzt werden. Während beim Einsatz von Membranen die Selektivität der Katalyse auf dem Ausschluß mindestens eines der Reaktanden aus dem Porensystem der Membran beruht, ist in den hier beschriebenen Katalysatoren die Anwesenheit aller Reak¬ tanden in den Poren zwingend notwendig.
Die größte Ähnlichkeit mit den hier beschriebenen Mate- rialen besitzen die mikroporösen Metalloxide (W.F. Maier, I.-C. Tilgner, M. Wiedorn, H.-C. Ko, Advanced Materials 5 (1993) 726). Diese Monometalloxide unterscheiden sich von den hier vorgestellten Materialien vor allem dadurch, daß die für die katalytische Aktivität verantwortlichen Misch¬ metallkomponenten als integraler Bestandteil der Glas¬ matrix fehlen. Es ist neu und bisher nicht bekannt, daß es möglich ist, Mischmetalloxide mit der hier beschriebenen, mit Zeolithen vergleichbaren engen Mikroporenverteilung und gleichzeitiger homogener Vermischung der Metalloxid¬ komponenten als thermisch und chemisch stabile Materialien herzustellen.
Die hier vorgestellten Materialien unterscheiden sich auch von den Katalysatoren zur selektiven Hohlraumkatalyse (DE - A - 43 09 660). Während die erfindungsgemäßen hier be¬ schriebenen vorgestellten Materialien die selektive Kata¬ lyse durch die eingeschränkte Beweglichkeit der Moleküle im Inneren der Kanalstruktur verursachen, beruht die selektive Katalyse an molekularen Abdrücken auf der mole¬ kularen Erkennung bestimmter Strukturen. Selektive Hohl¬ raumkatalysatoren müssen für eine ganz bestimmte Struktur maßgeschneidert werden und sind in ihrer Herstellung wesentlich aufwendiger als die jetzt gefundenen Materia¬ lien. Die Katalysatorherstellung unterscheidet sich vor allem darin, daß bei selektiven Hohlraumkatalysatoren eine Copolykondensation mit dem, an einer Monomereinheit über eine chemische Bindung verankerten Abdrucksmolekül zu er¬ folgen hat, welches vor dem Einsatz als Katalysator aus dem Glas enfernt werden muß. Diese Schritte entfallen bei den jetzt gefundenen Katalysatoren vollständig.
Die katalytische Aktivität von amorphen Mischmetalloxiden ist allgemein bekannt. In der EP - A - 0 492 697 wird zum Beispiel die Herstellung von Mischmetalloxiden aus Tetra- alkylsilikaten und einer wasserlöslichen Form eines zwei¬ ten Metalles durch ein basisches Polykondensationsver- fahren in der Gegenwart von Tetraalkylammoniumhydroxid be¬ schrieben. In diesem Verfahren beginnt die Polymerisation durch die Bildung kleinster Teilchen und das so erhaltene Glas, obwohl mikroporös, zeigt signifikante Bildung von Mesoporen, die auf die Hohlräume zwischen den Glasteilchen zurückgeführt werden können. Beides, die Mesoporen und das Zwischenkornvolumen sind unerwünscht, wenn formselektive Katalyse erzielt werden soll. Wir haben nun gefunden, daß säurekatalysierte Polycokondensation von Tetraalkylsili- katen von bis zu 50 % eines löslichen zweiten Metallsalzes zur Herstellung mikroporöser Gläser ohne Mesoporenkonta- mination herangezogen werden kann. Abbildung 1 zeigt die typische N2-Ad-Desorptions-Isotherme, in welcher keine An¬ zeichen einer zweiten Adsorption aufgrund von Mesoporen erkennbar ist. Die Isotherme eines solchen Materials ist identisch mit der Isotherme kristalliner Zeolithe.
Der Unterschied zwischen unseren Materialien und den Mate¬ rialien, hergestellt nach EP - A - 0 492 697 ist, daß unsere Materialien im pH-Bereich 0 - 7 und ohne Template hergestellt werden. Unsere Materialien zeigen eine saubere monomodale Porengrößenverteilung in der Adsorptions- und Desorptionsisotherme, während ein Material, hergestellt nach EP - A - 0 492 697 einen deutlichen Anteil esopo- röser Flaschenhalsporen, erkennbar in der N2-Desorptions- isotherme, aufweist. Bei atomarer Auflösung in der Durch¬ dringungselektronenmikroskopie zeigt sich unser Material immer noch als homogenes Glas (Abb. 2 - 1272), während das Material nach EP - A - 0 492 697 sich aus verschmolzenen Teilchen (Abb. 3 - 1658) zusammensetzt, was darauf hin¬ weist, daß zu Beginn die Polykondensation nach dem be¬ kannten Verfahren von Teilchenwachstum dominiert wird, während unter erfindungsgemäßen Bedingungen die Ma¬ terialbildung durch lineare Polymerisation dominiert.. Bei der Bildung von t-Butylether aus Isobuten in n-Hexanol zeigt das als bekannt beschriebene Material unter unseren Standardbedingungen nur die halbe Aktivität unserer mikro¬ porösen Gläser.
Die erfindungsgemäßen mikroporösen amorphen Mischmetall¬ oxide besitzen große Oberflächen und Porositäten ver¬ gleichbar mit denen von Zeolithen. Sie können zur form¬ selektiven Katalyse von Isomerisierungsreaktionen, Hy¬ drierreaktionen, selektive und unselelektive Oxida- tionsreaktionen mit Luftsauerstoff, Wasserstoffperoxid oder organischen Peroxiden, Alkylierungsreaktionen, Disproportinierungsreaktionen, Hydrier- und Dehydrier- reaktionen, Alkoholbildung aus Olefinen, Kupplungsreak¬ tionen, Substitutionsreaktionen, Cycloadditions- oder Cycloreversionsreaktionen, Etherbildung, Rohölcracking und Hydrocracking, Fischer-Tropsch-Synthese von Alkoholen oder Kohlenwasserstoffen, Methanolsynthese aus Synthesegas oder aus Methan eingesetzt werden. Sie können zur Beschichtung von Elektroden in Brennstoffzellen oder Li+ oder anderen Ionenspeichern in Batterien Einsatz finden. Sie können auch als Ionenaustauscher oder als Adsorptionsmittel Ver¬ wendung finden. Sie eignen sich auch für die Bildung von Ultrafiltration und Gastrennmembranen (DE - A - 41 17 284), für die Bildung von Katalysatoren mit selektiven Hohlräumen zur molekularen Erkennung (DE - A -43 09 660). Die Porengröße dieser mikroporösen Gläser kann zwischen 0,4 - 1 nm durch Änderung der Alkoholgröße in Polykon- densationsprozessen oder durch verändertes Trocknungs- und Kalzinierverfahren variiert werden. Die Hydrophobizitat der inneren Oberfläche dieser Materialien kann durch Co- kondensation von Alkylmetallverbindungen, vorzugsweise Alkyltrialkoxysilanen während des Sol-Gel-Prozesses ma߬ geschneidert werden.
Herstellung der Titandioxid-Siliziumdioxid-Gläser mit unterschiedlicher Titan-Verbindung:
Beispiel 1
10 ml Tetraethoxysilan (TEOS), 0,14 ml (EtO) Ti und 8 ml Ethanol werden hintereinander ineinander gelöst und 1,6 ml 8 n HCl unter Rühren zugegeben. Nach erfolgter Gel-Bildung wird das Material auf 65 °C mit einer Heizrate von 0,5 °C/min aufgeheizt, 3 h bei 65 °C gehalten, mit einer Heiz¬ rate von 0,2 °C/min auf 250 °C aufgeheizt und weitere 3 h bei dieser Temperatur kalziniert. Die Ad- Desorptions- isothermen zeigen, daß das Material eine echte monomodale Mikroporenverteilung besitzt, BET: 471 m2/g, Porendurch¬ messer 0,67 n .
Beispiel 2
Andere Titantetraalkoholate sind brauchbar. 46,3-x mmol TEOS, x m ol (iPrO)ATi, wobei x = 0 bis 43,3 mmol betragen kann, und 140 mmol Ethanol werden hinter¬ einander ineinander gelöst und 2 ml 8 n HCl unter Rühren zugegeben. Die Mischung wird 3 Tage bei Raumtemperatur gehalten. Nach erfolgter Gel-Bildung wird das Material auf 65 °C mit einer Heizrate von 0,5 °C/min aufgeheizt, 3 h bei 65 °C gehalten, mit einer Heizrate von 0,2 °C/min auf 250 °C aufgeheizt und weitere 3 h bei dieser Temperatur kalziniert. Die Ad- Desorptionsisother en zeigen, daß das Material eine echte monomodale Mikroporenverteilung be¬ sitzt, BET: 180 (60 % Ti) bis 600 (3 % Ti) m2/g, Poren¬ durchmesser 0,73-0,8 nm.
Beispiel 3
Vanadinoxid-Siliziumdioxid-Glas
10 ml Tetraethoxysilan (TEOS), 1,2 g Vanadylacetylacetonat (0=V(AcAc)2 und 8 ml Ethanol werden hintereinander inein¬ ander gelöst und 2 ml 8 n HCl unter Rühren zugegeben. Nach erfolgter Gel-Bildung wird das Material mit einer Heizrate von 0,5 °C/min auf 65 °C aufgeheizt, 3 h bei 65 °C gehal¬ ten, mit einer Heizrate von 0,2 °C/min auf 250 °C aufge¬ heizt und weitere 3 h bei dieser Temperatur kalziniert. Die Ad- Desorptionsisothermen zeigen, daß das Material eine echte monomodale Mikroporenverteilung besitzt, BET: 542 m2/g, Porendurchmesser 0,66 nm.
Beispiel 4
Zirkondioxid-Siliziumdioxid-Glas
10 ml Tetraethoxysilan (TEOS), 1 ml (BuO)4Zr und 8,4 ml Ethanol werden hintereinander ineinander gelöst und 2 ml 2 n HCl unter Rühren zugegeben. Nach erfolgter Gel-Bildung wird das Material auf 65 °C mit einer Heizrate von 0,5 °C/min aufgeheizt, 3 h bei 65 °C gehalten, mit einer Heizrate von 0,2 °C/min auf 250 °C aufgeheizt und weitere 3 h bei dieser Temperatur kalziniert. Die Ad- Desorptions¬ isothermen zeigen, daß das Material eine echte monomodale Mikroporenverteilung besitzt, BET: 240 m2/g, Porendurch¬ messer 0,65 nm.
Beispiel 5
Aluminiumoxid-Siliziumdioxid-Glas
27,5 ml (EtO)4Si , 0,45 ml Triisobutylaluminium, 2,01 ml tetra-n-Propoxyzirkonium und 25 ml Ethanol werden hinter¬ einander ineinander gelöst und 4,5 ml 0,4 n HCl unter Rühren während 10 min zugegeben. Dabei steigt die Tem- peratur bis auf 60 °C Nach erfolgter Gel-Bildung und langsamer Vortrocknung bei Raumtemperatur wird das Ma¬ terial auf 65 °C mit einer Heizrate von 0,5 °C/min auf¬ geheizt, 3 h bei 65 °C gehalten, mit einer Heizrate von 0,2 °C/min auf 300 °C aufgeheizt und weitere 3 h bei dieser Temperatur kalziniert. Die Ad- Desorptionsiso- thermen zeigen, daß das Material eine echte monomodale Mikroporenverteilung besitzt, BET: 280 m2/g, Porendurch¬ messer 0,7 nm.
Beispiel 6
Titandioxid-Zirkondioxid-Siliziumdioxid-Glas 10 ml Tetraethoxysilan (TEOS), 1 ml (BuO)«Zr und 8 ml Ethanol werden hintereinander ineinander gelöst und 2 ml 8 n HCl unter Rühren zugegeben. Nach erfolgter Gel-Bildung wird das Material auf 65 °C mit einer Heizrate von 0,5 °C/min aufgeheizt, 3 h bei 65 °C gehalten, mit einer Heizrate von 0,2 °C/min auf 250 °C aufgeheizt und weitere 3 h bei dieser Temperatur kalziniert. Die Ad- Desorptions- isothermen zeigen, daß das Material eine echte monomodale Mikroporenverteilung besitzt, BET: 520 m/g, Porendurch¬ messer 0,75 nm.
Beispiel 7
Formselektivität der Epoxidation von Alkenen 15,8 mmol Alken, 1 ml 3 n Lösung t-Butylhydroperoxid und 50 mg Titanoxid-Siliziumoxid-Glas werden bei 80 °C 15 min gerührt und die Zusammensetzung des Produktes mit Hilfe der Gaschromatographie analysiert. Die relative Umwandlung der einzelnen Alkene in Epoxide bezogen auf die langsamste Reaktion gleich 1 wird in Klammern angegeben: 1-Hexen (9), 1-Hepten (3), 1-Octen (4), 1-Nonen (3), 1-Decen (3), 1-Do- decen (2), 1-Pentadecen (1), Cyclohexen (9), Cyclohepten (2), Cycloocten (1) und Cyclodecen (1). Da die verschie¬ denen endständigen und die verschiedenen Cyclo-Alkene in etwa die gleiche Reaktivität unter homogenen Bedingungen der Epoxibildung haben, weisen die Resultate auf eine starke Bevorzugung der Epoxibildung der kleinen Alkene hin, was auf eine molekulare Formselektivität weist, ver¬ ursacht durch monomodale Mikroporen des Glases .
Beispiel 8
Formselektivität zur Bildung von t-Butylether In einem 100 ml Autoklav werden 300 mmol i-Buten, 100 mmol 1-Hexanol und 2,5 g Ti-Si-Katalysatorpulver bei einem Druck von 40 bar N2 und einer Temperatur von 150 °C 18 h gerührt. Es wurde eine Umformung von 62 % des n-Hexanol unter Bildung von Hexyl-t-buthylether mit einer Selek¬ tivität von 92 % erzielt.
Beispiel 9
Formselektivität zur Bildung von t-Butylether In einem 100 ml Autoklav werden 300 mmol t-Butanol, 100 mmol 1-Hexanol und 2,5 g Ti-Si-Katalysatorpulver bei einem Druck von 40 bar N2 und einer Temperatur von 150 °C 17 h gerührt. Es wurde eine Umformung von 17 % des n-Hexanol unter Bildung von Hexyl-t-buthylether mit einer Selekti¬ vität von 90 % erzielt.
Beispiel 10
Formselektivität beim Hydrocracking von n-Decan. Ein mikroporöses amorphes TiSi-Mischoxid-Glas wurde mit 1 % Pt impregniert und dem standardisierten Hydrocracktest wie in der Literatur beschrieben (J.A. Martens, M. Tielen, P.A. Jacobs, J. Weitkamp, Zeolites 4 (1984) 98-107) ausge¬ setzt. Das mikroporöse Ti-Si-Glas zeigte einen Constraint Index (CI*) von 1,5, einen EC8 (% Ethyloctan) von 10,3, einen PC7 (% 4-Propylheptan) von 0,9, einen DB iCIO (% doppeltverzweigte CIO-Isomere) von 30, einen iC5 (Isopen- tane im Crackprodukt) von 30,5, und einen Porendimensions¬ index DI von 14,9. Der CI* kann zur Porengrößenabschätzung herangezogen werden und zeigt, daß die Poren größer sind als im ZSM12 und kleiner als im Y-Zeolithen. Der EC8 be¬ stätigt, daß die Bronsted-sauren Zentren in den Poren lokalisiert sind und daß sich das Material ähnlich wie ein SAPO-5-Zeolith verhält. PC7 zeigt, daß die Poren ähnlich den Poren eines FAU-Zeolithen sind. Der DBiClO ist ähnlich dem von SAPO-5, was auf ein ähnliches Porensystem weist. Der iC5 bestätigt, daß das Glas zu den großporigen Zeo¬ lithen gehört. Der DI weist auf die Abwesenheit von ver¬ bundenen Poren. Insgesamt zeigt der Hydrocrack-Test von Dekan, daß die Broensted-sauren Zentren des Glases sich in einer formselektiven Umgebung befinden. Die Mikroporen des Glases haben eine röhrenartige Form mit einem Porendurch¬ messer von 0,7-0,8 nm.
Beispiel 11
Herstellung eines 2 mol% In in Si Mischoxidkatalysators: 0,471 g Indiumnitrat wurden in einem 50 ml PP-Becher in 14 ml Ethanol unter Rühren gelöst. Nach der langsamen Zugabe von 20 ml TEOS wurden 3,49 ml 8 N HCl zugetropft. Die klare Lösung wurde dann weiter für mehrere Tage gerührt, bis Gelierung eintrat. Das transparente Glas wurde dann in kleinere Stücke gebrochen und an der Luft bei 250 °C für 10 h kalziniert (Aufheizgeschwindigkeit 2,5 °C/min). Nach der Kalzinierung wurden die Katalysatorteilchen auf eine Partikelgröße < 200 μ gemahlen.
Beispiel 12
Selektive Oxidation von Propen mit Luft zu 1,5-Hexadien: 50 mg des 2 % In in Si Mischoxidkatalysators (Beispiel 11) wurden in der Mitte des Quartzrohrs eines Gasphasen- strömungsreaktors (Länge 30 cm, innerer Durchmesser 4 mm) dicht gepackt und auf die Reaktionstemperatur von 590 °C erhitzt, während die Gasmischung aus 90 vol% Propen und 10 % Luft (Strömungsgeschw. (Propen) = 37,8 ml/min; (Luft) = 4,2 ml/min) kontinuierlich durch das Katalysatorbett strömte. Nachdem sich ein stationärer Zustand eingestellt hatte, wurde die Produktgasmischung in einer Kühlfalle bei -78 °C ausgefroren und gaschromatographisch analysiert. Es ergab sich bei einem Propenumsatz von 5-10 % eine 1,5- Hexadienselektivität von 96 %.
Beispiel 13
Herstellung eines 6 mol% Cu in Si Mischoxidkatalysators: 1,313 g Kupfer(II)-diacetylacetonat (Cu(acac)2) wurden in einem 50 ml PP-Becher in 14,6 ml Ethanol unter Rühren ge¬ löst. Nach der langsamen Zugabe von 20 ml TEOS wurden 3,63 ml 8 N HCl zugetropft. Die klare Lösung wurde dann weiter für mehrere Tage gerührt, bis Gelierung eintrat. Das transparente Glas wurde dann in kleinere Stücke gebrochen und an der Luft bei 250 °C für 10 h kalziniert (Aufheizge¬ schwindigkeit 2,5 °C/min). Nach der Kalzinierung wurden die Katalysatorteilchen auf eine Partikelgröße < 200 μ gemahlen.
Beispiel 14
Selektive Oxidation von Propen zu Acrolein mit Luft: 50 mg des 6 % Cu in Si Mischoxidkatalysators (Beispiel 13) wurden in der Mitte des Quartzrohrs des Reaktors dicht gepackt (identischer Reaktor wie in Beispiel 12) und auf die Reaktionstemperatur von 370 °C erhitzt, während die Gasmischung aus 28,6 vol% Propen und 71,4 % Luft (Strö- mungsgeschw. (Propen) = 25 ml/min; (Luft) = 62,5 ml/min) kontinuierlich durch das Katalysatorbett strömte. Nachdem sich ein stationärer Zustand eingestellt hatte, wurde die Produktgasmischung in einer Kühlfalle bei -78 °C ausge¬ froren und gaschromatographisch analysiert. Es ergab sich bei einem Propenumsatz von 4-8 % eine Acroleinselektivität von 85 %.

Claims

Patentansprüche
1. Verfahren zur Herstellung formselektiv katalytisch aktiver, amorpher, mikroporöser Mischmetalloxide nach dem Sol-Gel-Verfahren, dadurch gekennzeichnet, daß mindestens zwei hydrolysierbare, flüssige oder gelöste Verbindungen der Elemente Titan, Silicium, Aluminium, Zirkon oder Cer hintereinander ineinander gelöst werden, die klare Lösung bei pH 0 bis 7 unter Zusatz wassriger saurer Katalysatoren oder unter Zusatz von Fluoridionen unter linearer Poly¬ merisation oder Polykondensation gerührt werden, das er¬ haltene Gel durch Erwärmen auf 60 bis 70 °C schonend ge¬ trocknet wird und mit kleinen Aufheizgeschwindigkeiten bei Temperaturen von 120 bis 800 °C kalziniert wird, wobei ein mikroporöses, amorphes Glas erhalten wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erhaltenen mikroporösen, amorphen, nicht-kera¬ mischen Gläser aus einer Mischmetalloxidmatrix bestehen, in der wenigstens etwa 90 % der Poren des Materials einen effektiven Durchmesser zwischen 0,3 und 1,2 n haben, mit im wesentlichen gleicher Porengröße und mit einer Ober¬ flächengröße von über 50 m2/g.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die hydrolisierbaren flüssigen oder gelösten Verbin¬ dungen aus der Gruppe Si02, Ti02, Al203, Zirconiu oxid, Ceriumoxid, Spinell, Mullit, Siliciumcar-bid, Silicium- nitrit und Titannitrit ausgewählt sind.
4. Verfahren nach Ansprüchen 1 bis 3, dadurch gekenn¬ zeichnet, daß die Mischmetalloxidmatrix wenigstens 50 Gew.-% wenigstens einer Verbindung nach Anspruch 1 oder 3 und bis zu 50 Gew.-% eines oder mehrerer Metalloxide in atomarer Verteilung aus der Gruppe der Metalle Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Pb, Sb; Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, Tl, Ag, Cu, Li, K, Na, Be, Mg, Ca, Sr und Ba enthält.
5. Verfahren nach Ansprüchen 1 bis 4, dadurch gekenn¬ zeichnet, daß die Mischmetalloxidmatrix zusätzlich bis zu 5 Gew.-% wenigstens eines der Edelmetalle Pt, Rh, Ir, Os, Ag, Au, Cu, Ni, Pd, Co in hochdisperser Form in metal¬ lischem oder oxidiertem Zustand enthält.
6. Verfahren nach Ansprüchen 1 bis 5, dadurch gekenn¬ zeichnet, daß die sauren Katalysatoren Säuren sind.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Säure Salzsäure ist.
8. Verfahren nach Ansprüchen 1 bis 7, dadurch gekenn¬ zeichnet, daß die Kalzinierungstemperatur 250 bis 500 °C beträgt.
9. Verfahren nach Ansprüchen 1 - 4 und 6 - 8, dadurch gekennzeichnet, daß die hydrolysierbaren, löslichen Ver¬ bindungen reine Alkoxy-, gemischte Alkoxy-, Alkoxyoxo- oder Acetylacetonat-Derivate der gewählten Metalle oder Metalloxide sind.
10. Mikroporöse amorphe, nicht-keramische Gläser, be¬ stehend aus einer Mischmetalloxidmatrix, in der wenigstens etwa 90 % der Poren des Materials einen effektiven Durchmesser zwischen 0,3 und 1,2 nm haben, mit im wesent¬ lichen gleicher Porengröße und mit einer Oberflächengröße von über 50 m2/g.
11. Mikroporöse, amorphe nicht-keramische Gläser nach Anspruch 10, dadurch gekennzeichnet, daß die Misch- metalloxidmatrix aus wenigstens zwei der Oxide von Titan, Silicium, Aluminium, Zirkon oder Cer besteht.
12. Mikroporöse, amorphe, nicht-keramische Gläser nach Anspruch 10 und 11, dadurch gekennzeichnet, daß die Mischmetalloxidmatrix aus wenigstens zwei der Verbindungen aus der Gruppe Si02, Ti02, Al203, Zirconiumoxid, Ceriumoxid, Spinell, Mullit, Siliciumcarbid, Siliciumnitrit und Titannitrit besteht.
13. Mikroporöse, amorphe, nicht-keramische Gläser, da¬ durch gekennzeichnet, daß die Mischmetalloxidmatrix aus wenigstens 50 Gew.-% einer der Verbindungen nach An¬ sprüchen 11 und 12 und bis zu 50 Gew.-% einer oder mehrerer Metalloxide in atomarer Verteilung aus der Gruppe der Metalle Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Pb, Sb, Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, Tl, Ag, Cu, Li, K, Na, Be, Mg, Ca, Sr und Ba besteht.
14. Mikroporöse, amorphe, nicht-keramische Gläser nach Ansprüchen 10 bis 13, zusätzlich enthaltend bis zu 5 Gew.-% wenigstens eines der Edelmetalle Pt, Rh, Ir, Os, Ag, Au, Cu, Ni, Pd, Co in hoch-disperser Form in me¬ tallischem oder oxidiertem Zustand.
15. Mikroporöse, amorphe, nicht-keramische Gläser nach Ansprüchen 10 bis 14, erhalten durch saure oder Fluorid- katalysierte lineare Polymerisation oder Polykondensation hydrolisierbarer löslicher Verbindungen gemäss Ansprüchen 11 bis 13, vorzugsweise reine Alkoxy-, gemischte Alkoxy-, Alkoxyoxo- oder Acetylacetonat-Derivate der gewählten Metalle oder Metalloxide bei pH 0 bis 7 in einem Sol-Gel- Verfahren, gefolgt von mildem Trocknen und langsamem Kalzinieren mit einer Endkalzininierungstemperatur im Be¬ reich von 120 bis 800 °C, wobei die mikroporösen, amor¬ phen, nicht-keramischen Gläser entweder ausschließlich aus den gemischten Metalloxiden oder aus den gemischten Metalloxiden und restlichen Oberflächenalkyl- oder alkoxygruppen in Abhängigkeit von der gewählten Vorläufer- Verbindung bestehen.
16. Formselektive Katalysatoren, bestehend aus mikropo¬ rösen, amorphen, nicht-keramischen, Mischmetalloxidgläsern nach Ansprüchen 10 bis 15.
17. Verwendung von mikroporösen, amorphen, nicht-kerami¬ schen Mischmetalloxidgläsern bzw. formselektiven Kataly¬ satoren zur Katalyse von Isomerisierungsreaktionen, Hy¬ drierreaktionen, selektiven und unselektiven Oxida- tionsreaktionen mit Luftsauerstoff, Wasserstoffperoxid oder organischen Peroxiden, Alkylierungsreaktionen, Dis- proportionierungsreaktionen, Hydrier- und Dehydrier- reaktionen, Alkoholbildung aus Olefinen, Kupplungsreak¬ tionen, Substitutionsreaktionen, Cycloadditions- oder Cycloreversionsreaktionen, Etherbildung, Rohölcracking und Hydrocracking, Fischer-Tropsch-Synthese von Alkoholen oder Kohlenwasserstoffen, Methanolsynthese aus Synthesegas oder aus Methan, zur Beschichtung von Elektroden in Brenn¬ stoffzellen oder Li oder anderen Ionenspeichern in Batterien, und zur Bildung von Ultrafiltration- und Gas¬ trennmembranen, und zur Bildung von Katalysatoren mit selektiven Hohlräumen zur molekularen Erkennung.
PCT/EP1996/000766 1995-02-28 1996-02-24 Mikroporöse amorphe mischmetalloxide für formselektive katalyse WO1996026907A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US08/913,516 US6319876B1 (en) 1995-02-28 1996-02-24 Microporous amorphous mixed metal oxides for form-selective catalysis
DK96904858T DK0812305T3 (da) 1995-02-28 1996-02-24 Mikroporøse, amorfe blandingsmetaloxider til formselektiv katalyse
DE59600515T DE59600515D1 (de) 1995-02-28 1996-02-24 Mikroporöse amorphe mischmetalloxide für formselektive katalyse
JP8526002A JPH11500995A (ja) 1995-02-28 1996-02-24 形態選択的触媒反応用の微孔質無定形混合金属酸化物
AU48802/96A AU4880296A (en) 1995-02-28 1996-02-24 Microporous amorphous mixed metal oxides for form-selective catalysis
EP96904858A EP0812305B1 (de) 1995-02-28 1996-02-24 Mikroporöse amorphe mischmetalloxide für formselektive katalyse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19506843A DE19506843A1 (de) 1995-02-28 1995-02-28 Mikroporöse amorphe Mischmetalloxide für formselektive Katalyse
DE19506843.2 1995-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/594,404 Division US6297180B1 (en) 1995-02-28 2000-06-15 Microporous amorphous mixed metal oxides for shape selective catalysis

Publications (1)

Publication Number Publication Date
WO1996026907A1 true WO1996026907A1 (de) 1996-09-06

Family

ID=7755176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/000766 WO1996026907A1 (de) 1995-02-28 1996-02-24 Mikroporöse amorphe mischmetalloxide für formselektive katalyse

Country Status (10)

Country Link
US (2) US6319876B1 (de)
EP (1) EP0812305B1 (de)
JP (1) JPH11500995A (de)
AT (1) ATE170504T1 (de)
AU (1) AU4880296A (de)
CA (1) CA2213736A1 (de)
DE (2) DE19506843A1 (de)
DK (1) DK0812305T3 (de)
ES (1) ES2123343T3 (de)
WO (1) WO1996026907A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853491A1 (de) * 1998-11-19 2000-05-25 Bayer Ag Verfahren zur Hydroxylierung von Benzol mit Wasserstoffperoxid
WO2001070631A1 (de) * 2000-03-21 2001-09-27 Studiengesellschaft Kohle Mbh Poröse dotierte titanoxide als selektive oxidations- und dehydrierkatalysatoren
EP1303350B2 (de) 2000-07-24 2010-01-27 Sasol Technology (Proprietary) Limited Verfahren zur herstellung von kohlenwasserstoffen aus einem synthesegas
US8790697B2 (en) 2004-09-09 2014-07-29 K.U. Leuven Research & Development Controlled release delivery system for bio-active agents
DE102014017063A1 (de) 2014-11-14 2016-05-19 Technische Universität Ilmenau Verfahren zur Erzeugung von flüssigprozessierten Misch-Metalloxidschichten und ihre Verwendung in elektrischen, elektronischen und opto-elektronischen Bauelementen

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19735771C1 (de) * 1997-08-18 1999-04-29 Bayer Ag Verfahren zur Herstellung von Diarylcarbonaten
DE19741498B4 (de) 1997-09-20 2008-07-03 Evonik Degussa Gmbh Herstellung eines Keramik-Edelstahlgewebe-Verbundes
DE19743165A1 (de) * 1997-09-30 1999-04-01 Studiengesellschaft Kohle Mbh Selektive Alkylierung von Aromaten mit oberflächenmodifizierten mikroporösen Mischoxiden
NO306541B1 (no) * 1998-03-13 1999-11-22 Norsk Hydro As Katalysator
EP0953558B1 (de) * 1998-04-30 2001-11-21 CREAVIS Gesellschaft für Technologie und Innovation mbH Verfahren zur Herstellung von Hydroxylgruppen enthaltenden aromatischen Verbindungen
DE19954827A1 (de) * 1999-11-13 2001-06-07 Alfred Heidekum Mikrowellensensitive mikrokomposite Materialien
IT1319198B1 (it) * 2000-10-11 2003-09-26 Sued Chemie Mt Srl Catalizzatori per ossidazione.
DE10132442A1 (de) * 2001-07-04 2003-01-23 Studiengesellschaft Kohle Mbh Katalysatoren auf Ceroxid-Basis und deren Verwendung zur katalytischen Verbrennung
US20040234839A1 (en) * 2001-09-10 2004-11-25 Masanobu Wakizoe Electrode catalyst layer for fuel cell
AUPR806201A0 (en) * 2001-10-03 2001-10-25 Commonwealth Scientific And Industrial Research Organisation Catalytic systems and process for the treatment of industrialprocess and waste streams
US6914033B2 (en) * 2002-08-13 2005-07-05 Conocophillips Company Desulfurization and novel compositions for same
US20080026275A1 (en) * 2004-05-27 2008-01-31 Kostantinos Kourtakis Sol-Gel Derived Composites Comprising Oxide or Oxyhydroxide Matrices With Noble Metal Components and Carbon for Fuel Cell Catalysts
US20060166816A1 (en) * 2004-06-23 2006-07-27 Catalytic Solutions, Inc. Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams
CA2577471C (en) * 2004-08-19 2013-01-08 Japan Science And Technology Agency Metal oxide electrode catalyst
JP5049793B2 (ja) * 2005-02-17 2012-10-17 ビーピー エクスプロレーション オペレーティング カンパニー リミテッド 改質触媒および合成ガスから炭化水素への変換のための前記触媒の使用
US7045481B1 (en) * 2005-04-12 2006-05-16 Headwaters Nanokinetix, Inc. Nanocatalyst anchored onto acid functionalized solid support and methods of making and using same
US7468465B2 (en) * 2005-05-31 2008-12-23 Exxonmobil Chemical Patents Inc. Method of making mixed metal oxide containing sulfur
US7173158B2 (en) * 2005-05-31 2007-02-06 Exxonmobil Chemical Patents Inc. Mixed metal oxide containing sulfur
US7501379B2 (en) * 2005-09-23 2009-03-10 Eastman Chemicalcompany Catalyst for the production of methyl isopropyl ketone
US7632774B2 (en) 2006-03-30 2009-12-15 Headwaters Technology Innovation, Llc Method for manufacturing supported nanocatalysts having an acid-functionalized support
US7879749B2 (en) * 2006-08-15 2011-02-01 Battelle Energy Alliance, Llc Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons
US7592291B2 (en) 2006-08-15 2009-09-22 Batelle Energy Alliance, Llc Method of fabricating a catalytic structure
US8309780B2 (en) * 2007-12-21 2012-11-13 Exxonmobil Research And Engineering Company Process for making olefin oligomers and alkyl benzenes in the presence of mixed metal oxide catalysts
US8349765B2 (en) * 2008-07-18 2013-01-08 Scientific Design Company, Inc. Mullite-containing carrier for ethylene oxide catalysts
FR2951092B1 (fr) * 2009-10-14 2013-03-08 Inst Francais Du Petrole Catalyseur heterogene de type spinelle aluminate de zinc sur-stoechiometrique en zinc et son utilisation dans un procede de preparation d'esters alcooliques a partir de triglycerides et d'alcools
US20140079741A1 (en) 2011-03-18 2014-03-20 Katholieke Universiteit Leuven Ku Leuven Research & Development Inhibition and treatment of biofilms
CN103974769B (zh) 2011-09-01 2018-11-09 西蒙·特鲁德尔 电催化材料及其制造方法
US9955185B2 (en) * 2015-02-12 2018-04-24 Mediatek Inc. Method and apparatus of constrained intra block copy for coding video
EP4025337A1 (de) * 2019-09-04 2022-07-13 Nova Chemicals (International) S.A. Molybdän-vanadium-beryllium-basierte oxidative dehydrierungskatalysatormaterialien

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117443A (ja) * 1984-07-02 1986-01-25 Agency Of Ind Science & Technol 多孔質ガラスとその製造方法
US4765818A (en) * 1987-02-24 1988-08-23 Hoechst Celanese Corporation Porous glass monoliths
JPH02311329A (ja) * 1989-05-25 1990-12-26 Mitsubishi Kasei Corp 多孔質ガラス及びその製造方法
EP0590714A1 (de) * 1992-09-29 1994-04-06 ENIRICERCHE S.p.A. Verfahren zur Herstellung eines wirksamen Katalysatores für die Hydroisomerisierung von langkettigen N-Paraffinen

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2472490A (en) * 1947-09-13 1949-06-07 Socony Vacuum Oil Co Inc Process of preparing porous glass catalysts
DE1096336B (de) * 1956-09-25 1961-01-05 Socony Mobil Oil Co Inc Verfahren zur Herstellung eines anorganischen Oxydgels von hohem Abriebwiderstand
US3574583A (en) * 1968-01-29 1971-04-13 Lockheed Aircraft Corp Process for preparing foam glass insulation
GB1266494A (de) * 1968-03-12 1972-03-08
DE1965983C2 (de) * 1968-12-30 1983-11-10 Institut Français du Pétrole, 92502 Rueil-Malmaison, Hauts-de-Seine Katalysator für die Oxidation von Methanol zu Formaldehyd
FR2031818A6 (de) * 1969-02-07 1970-11-20 Inst Francais Du Petrole
US3923533A (en) * 1972-03-02 1975-12-02 Ppg Industries Inc Thermally stable and crush resistant microporous glass catalyst supports
JPS5137918B2 (de) * 1974-07-10 1976-10-19
US4002482A (en) * 1975-02-14 1977-01-11 Jenaer Glaswerk Schott & Gen. Glass compositions suitable for incorporation into concrete
GB1541928A (en) * 1975-12-23 1979-03-14 Sakai Chemical Industry Co Production of shaped catalysts or carriers comprising titanium oxide
US4176089A (en) * 1978-08-03 1979-11-27 Exxon Research & Engineering Co. Process for the preparation of silica-titania and catalysts comprising the same
US4233169A (en) * 1979-04-13 1980-11-11 Corning Glass Works Porous magnetic glass structure
CA1243010A (en) * 1983-10-07 1988-10-11 William Kirch Zirconia-titania-silica tergels and their use as catalyst supports
JPS61106437A (ja) * 1984-10-26 1986-05-24 Asahi Glass Co Ltd 多孔質ガラス用組成物及び多孔質ガラスの製造法
EP0216730B1 (de) * 1985-08-12 1991-01-23 Battelle Memorial Institute Poröse Filtrierungsglaskugeln und Methode zu deren Herstellung
JPS62202839A (ja) * 1985-10-14 1987-09-07 Agency Of Ind Science & Technol 耐薬品性多孔質ガラス及びその製造方法
BE1001832A4 (fr) * 1987-03-26 1990-03-20 Solvay Procede pour la fabrication d'une poudre d'oxydes metalliques mixtes, et poudres d'oxydes metalliques mixtes.
GB8804033D0 (en) * 1988-02-22 1988-03-23 Shell Int Research Process for preparing normally liquid hydrocarbonaceous products from hydrocarbon feed
JPH0644999B2 (ja) * 1988-04-30 1994-06-15 株式会社豊田中央研究所 排気ガス浄化用触媒
CA1326122C (en) * 1988-10-05 1994-01-18 Fawzy Gamaleldin Sherif Process for forming metal oxide powders from the metal alkoxide
DE4022140C2 (de) * 1990-07-11 1998-05-20 Ecolith Zeolithe Gmbh Verwendung eines synthetischen, kristallinen Alumosilikates
IT1244478B (it) * 1990-12-21 1994-07-15 Eniricerche Spa Gel cataliticamente attivo e procedimento per la sua preparazione
DE4310613A1 (de) * 1993-03-31 1994-10-06 Wacker Chemie Gmbh Mikroporöser Wärmedämmformkörper
US5693134A (en) * 1994-12-29 1997-12-02 Merck Patent Gesellschaft Mit Beschrankter Haftung Gray interference pigment and process for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117443A (ja) * 1984-07-02 1986-01-25 Agency Of Ind Science & Technol 多孔質ガラスとその製造方法
US4765818A (en) * 1987-02-24 1988-08-23 Hoechst Celanese Corporation Porous glass monoliths
JPH02311329A (ja) * 1989-05-25 1990-12-26 Mitsubishi Kasei Corp 多孔質ガラス及びその製造方法
EP0590714A1 (de) * 1992-09-29 1994-04-06 ENIRICERCHE S.p.A. Verfahren zur Herstellung eines wirksamen Katalysatores für die Hydroisomerisierung von langkettigen N-Paraffinen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 104, no. 24, 16 June 1986, Columbus, Ohio, US; abstract no. 211888, page 283; XP002007176 *
CHEMICAL ABSTRACTS, vol. 115, no. 4, 29 July 1991, Columbus, Ohio, US; abstract no. 34181t, page 300; XP000214050 *
M.A. CAUQUI ET AL.: "APPLICATION OF THE SOL GEL METHODS TO CATALYST PREPARATION", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 147/148, no. 1, October 1992 (1992-10-01), AMSTERDAM NL, pages 724 - 738, XP000398467 *
M.W. SCHAFER ET AL.: "THE CHEMISTRY OF AND PHYSICS WITH POROUS SOL GEL GLASSES", JOURNAL OF APPLIED PHYSICS, vol. 61, no. 12, 15 June 1987 (1987-06-15), NEW YORK US, pages 5438 - 5446, XP002007175 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853491A1 (de) * 1998-11-19 2000-05-25 Bayer Ag Verfahren zur Hydroxylierung von Benzol mit Wasserstoffperoxid
WO2001070631A1 (de) * 2000-03-21 2001-09-27 Studiengesellschaft Kohle Mbh Poröse dotierte titanoxide als selektive oxidations- und dehydrierkatalysatoren
EP1303350B2 (de) 2000-07-24 2010-01-27 Sasol Technology (Proprietary) Limited Verfahren zur herstellung von kohlenwasserstoffen aus einem synthesegas
US8790697B2 (en) 2004-09-09 2014-07-29 K.U. Leuven Research & Development Controlled release delivery system for bio-active agents
DE102014017063A1 (de) 2014-11-14 2016-05-19 Technische Universität Ilmenau Verfahren zur Erzeugung von flüssigprozessierten Misch-Metalloxidschichten und ihre Verwendung in elektrischen, elektronischen und opto-elektronischen Bauelementen

Also Published As

Publication number Publication date
US6319876B1 (en) 2001-11-20
AU4880296A (en) 1996-09-18
ES2123343T3 (es) 1999-01-01
EP0812305A1 (de) 1997-12-17
DK0812305T3 (da) 1999-06-07
ATE170504T1 (de) 1998-09-15
JPH11500995A (ja) 1999-01-26
EP0812305B1 (de) 1998-09-02
DE59600515D1 (de) 1998-10-08
CA2213736A1 (en) 1996-09-06
US6297180B1 (en) 2001-10-02
DE19506843A1 (de) 1996-08-29

Similar Documents

Publication Publication Date Title
EP0812305B1 (de) Mikroporöse amorphe mischmetalloxide für formselektive katalyse
EP0876215B1 (de) Amorphe mikroporöse mischoxidkatalysatoren mit kontrollierter oberflächenpolarität für die selektive heterogene katalyse, adsorption und stofftrennung
CA1089496A (en) Hydrocarbon synthesis from co and h.sub.2 using ru supported on group vb metal oxides
EP0417722B1 (de) Katalysator für die katalytische Gasphasenoxidation von Olefinen zu ungesättigten Aldehyden
DE69320195T3 (de) Synthese von zeolithfilmen, die an substraten gebunden sind, strukturen sowie ihre verwendungen
EP0417723B1 (de) Verfahren zur Herstellung von Acrolein durch katalytische Gasphasenoxidation von Propen
DE2924915A1 (de) Modifizierte kristalline kieselsaeuren und verfahren zu deren herstellung
JPH02160050A (ja) 結晶アルミノシリケートに基づく触媒
DD144397A5 (de) Verfahren zur herstellung aluminiummodifizierter kieselsaeure
EP3495321A1 (de) Herstellung von pulverförmigen, porösen kristallinen metallsilikaten mittels flammensprühpyrolyse
EP1424128B1 (de) Verwendung eines Katalysators auf der Basis von kristallinem Alumosilicat
DE69817282T2 (de) Neue Katalysatoren für die Umwandlungsreaktionen von organischen Verbindungen
DE19624862A1 (de) Mesoporöse Oxidformkörper
US7608747B2 (en) Aromatics hydrogenolysis using novel mesoporous catalyst system
EP0949971B1 (de) Verwendung von mikroporösen anorganischen membrankatalysatoren
EP0416279A1 (de) Verfahren zur Herstellung von Kresolisomergemischen mit einem Molverhältnis von para- zu meta-Kresol von mindestens 0,6:1 bis 10:1
DE19839792A1 (de) Verfahren zur Herstellung eines Titansilikates mit RUT-Struktur
KR20140068598A (ko) 아연 및 란탄이 함침된 나노크기 결정인 제올라이트 촉매 및 이의 제조방법
WO2013135662A1 (de) Verfahren zur reduktion von kohlendioxid bei hohen temperaturen an mischmetalloxidkatalysatoren
WO2008098737A1 (de) Katalysator enthaltend einen zeolithen und einen binder, der eine niob oder tantal enthaltende saure verbindung umfasst
DE3513569A1 (de) Verfahren zur herstellung von alkylbenzolen
WO2001070631A1 (de) Poröse dotierte titanoxide als selektive oxidations- und dehydrierkatalysatoren
EP2006019B1 (de) Metallhaltiger Katalysator
DE3139355A1 (de) Kristalliner aluminosilikatzeolit-katalysator und verfahren zur herstellung desselben
WO2002034672A1 (de) Verfahren zur herstellung von formselektiven katalysatoren und deren verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IS JP KG KP KR LK LR LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2213736

Country of ref document: CA

Ref country code: CA

Ref document number: 2213736

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996904858

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 526002

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 08913516

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996904858

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996904858

Country of ref document: EP