WO1996031934A1 - Rotationsmaschine mit elektromagnetischem drehantrieb - Google Patents

Rotationsmaschine mit elektromagnetischem drehantrieb Download PDF

Info

Publication number
WO1996031934A1
WO1996031934A1 PCT/CH1996/000117 CH9600117W WO9631934A1 WO 1996031934 A1 WO1996031934 A1 WO 1996031934A1 CH 9600117 W CH9600117 W CH 9600117W WO 9631934 A1 WO9631934 A1 WO 9631934A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pump
drive
winding
stator
Prior art date
Application number
PCT/CH1996/000117
Other languages
English (en)
French (fr)
Inventor
Reto Schöb
Jörg HUGEL
Niklaus Mendler
Original Assignee
Sulzer Electronics Ag
Lust Antriebstechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sulzer Electronics Ag, Lust Antriebstechnik Gmbh filed Critical Sulzer Electronics Ag
Priority to DE59607047T priority Critical patent/DE59607047D1/de
Priority to US08/930,649 priority patent/US6100618A/en
Priority to EP96907235A priority patent/EP0819330B1/de
Priority to CA002210762A priority patent/CA2210762C/en
Priority to JP52983096A priority patent/JP4076581B2/ja
Publication of WO1996031934A1 publication Critical patent/WO1996031934A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/117Extracorporeal pumps, i.e. the blood being pumped outside the patient's body for assisting the heart, e.g. transcutaneous or external ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/554Regulation using real-time blood pump operational parameter data, e.g. motor current of blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • A61M60/816Sensors arranged on or in the housing, e.g. ultrasound flow sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • A61M60/822Magnetic bearings specially adapted for being actively controlled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/006Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D5/00Pumps with circumferential or transverse flow
    • F04D5/001Shear force pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/12General characteristics of the apparatus with interchangeable cassettes forming partially or totally the fluid circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/51Bearings magnetic
    • F05B2240/511Bearings magnetic with permanent magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/51Bearings magnetic
    • F05B2240/515Bearings magnetic electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2316/00Apparatus in health or amusement
    • F16C2316/10Apparatus in health or amusement in medical appliances, e.g. in diagnosis, dentistry, instruments, prostheses, medical imaging appliances
    • F16C2316/18Pumps for pumping blood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps

Definitions

  • the invention relates to an electromagnetic rotary drive according to the preamble of claim 1. Furthermore, the invention also relates to pumps and agitators driven with such rotary drives.
  • Centrifugal pumps with hermetically sealed pump housings are used when a complete separation between the fluid to be pumped and the environment is required. Although this requirement would be easier to meet with peristaltic pumps than with rotary pumps
  • Peristaltic pumps so-called peristaltic pumps, often cannot be used because their specific design causes shear forces to act on the fluid during operation, which impairs its structure. Especially in pharmaceutical and medical
  • Strict material isolation of the fluid to be pumped may be necessary for two different reasons: on the one hand, it should prevent the outflow into the environment of even the smallest amounts of fluid when contaminating materials are pumped; on the other hand, any penetration of foreign substances of any kind into the fluid is to be prevented if it has to meet the highest requirements with regard to its purity, which is particularly the case when the pump is used in the chemical, pharmaceutical or medical field.
  • the material insulation of the fluid to be pumped does not only consist in preventing the entry of ambient air; it is also intended to prevent abrasion particles from components of the drive device, the bearing device or a sealing arrangement or lubricants which are moved relative to one another from getting into the fluid.
  • pumps of the type mentioned at the beginning are used to maintain the blood circulation, the fluid to be delivered being the patient's blood. It goes without saying that the highest demands are placed on keeping the fluid to be pumped clean.
  • EP-0 551 435 describes an electromagnetic rotary drive for a rotary pump with a hermetically sealed pump housing and a pump rotor, which is mounted by means of a non-contact bearing device and is driven by a canned motor.
  • This electromagnetic rotary drive for the pump is constructed in a complex manner and is relatively voluminous, its axial dimension in particular being large.
  • the magnetic bearings take up a lot of space.
  • the object of the invention is to provide an improved, compact and simple electromagnetic rotary drive for rotary pumps, mixers, agitators and other devices.
  • the bearing device and the drive device according to the principle of the so-called bearingless motor form a combined, contact-free and lubricant-free bearing / drive device, the combined bearing / drive rotor of which is designed such that it is in addition to the Function of the rotor of the electric motor, also takes over the function of the rotor of the device, that is to say, for example, a pump rotor, mixer rotor or agitator rotor.
  • Such rotors are called integral rotors.
  • the principle of the 'bearingless' motor is that, on the one hand, the rotor of a induction machine and a mounted shaft arrangement result in the mentioned combined bearing / drive rotor, and on the other hand the stator of the induction machine and the non-rotating part of a bearing device result in a bearing / drive stator .
  • the induction motor has a drive winding with the number of pole pairs p and a control winding with the number of pole pairs p + 1 or p-1; the rotation of the integral rotor about its axis of rotation is actively controlled or regulated by the drive winding, and the position of the integral rotor in the plane perpendicular to the axis of rotation is actively regulated by the control winding.
  • the position of the integral rotor in the direction of the axis of rotation and its tilting relative to the plane mentioned are passively stabilized by reluctance forces.
  • the integral rotor which consists of the electromagnetically active components of the bearing / drive rotor and the rotor of the driven device, that is to say the pump rotor, is preferably designed in such a way that it has an annular rotor disk in which the aforementioned electromagnetically active components are accommodated and to which rotor blades are attached.
  • the aforementioned electromagnetically active components of the rotor disk of the integral rotor include magnets such as
  • the integral rotor and the rotor housing which in certain cases, as mentioned, are designed as a disposable unit, can be manufactured inexpensively, it is advantageous to design them so that all parts in contact with the fluid are made of plastic. Otherwise, expensive materials would have to be used, since on the one hand, when selecting the material, care must be taken to ensure that no chemical reactions occur between the material and the fluid and, on the other hand, that the electromagnetic fields necessary for driving and controlling are to be avoided.
  • the pump housing can have a further inlet for the fluid opposite the first one.
  • the rotary pump according to the invention can be designed as an axial pump.
  • the rotor blades are formed by vanes of an impeller, which is preferably attached to the inner edge of the rotor disk of the integral rotor. Most often, however, a centrifugal pump is used because it allows a higher pressure to be generated.
  • Principle of combined storage and drive of a device such as a pump rotor, can also be transferred to all other types of centrifugal pumps such as side channel pumps, peripheral pumps, Tesla pumps or liquid ring pumps, mixing devices or to other devices which are to be driven in rotation.
  • rotor blades are only provided on one surface of the ring-like rotor disk of the integral rotor.
  • the bearing / drive rotor can be designed as an axially short, conventional three-phase stator, with a drive winding of the number of poles p and a control winding of the number of poles p + 1 or p-1. Because with such a construction, due to the short length of the stator compared to its diameter, only a small part of the winding is in the slot, such a stator construction has significant disadvantages. A stand constructed in this way not only has a very large winding head spread, but the efficiency is poor. In addition, it will be difficult, for example in the case of a centrifugal pump, to pass the connecting piece between the winding heads.
  • the bearing / drive stator is generally designed such that it has a plurality of elongated coil cores arranged around the integral rotor with a common magnetic yoke.
  • Coil core a partial winding for each winding phase of the drive winding with the number of pole pairs p and a partial winding for each winding phase of the winding phase of the control winding with the number of pole pairs p + 1 or p-1.
  • the drive flow and the control flow are approximated by the ratio of the number of turns of the partial windings of a winding strand. In this way, a construction is achieved that manages with very short winding heads. It is possible for at least one of the partial windings to have zero turns.
  • the above-mentioned coil cores are arranged radially to the axis of rotation of the integral rotor.
  • the coil cores and the back yoke can form a unit. This unit can be layered, for example, from individual sheets with long grooves.
  • the coil cores have the shape of "L", the one leg of the "L” being arranged parallel to the axis of rotation of the integral rotor and the other leg of the "L” being directed radially inward to this axis of rotation, around which To flow radially to the integral rotor.
  • a rotating field motor with such a rotor geometry can be called a temple motor.
  • the temple engine is suitable especially to accommodate an interchangeable, as
  • Disposable unit designed arrangement of pump housing and
  • the drive part of the bearing / drive device can be designed according to the principle of a synchronous motor or induction motor.
  • the synchronous motor generally leads to designs with higher efficiency and, above all, lower rotor losses.
  • a design based on the principle of the reluctance motor or the permanent magnet-excited synchronous motor can be selected for this synchronous motor.
  • a corresponding device can be provided as part of the control or regulating device of the new rotary pump in order to determine the drive flow angle which is necessary for controlling the drive of the bearingless motor.
  • This device can contain, for example, one or more flow probes.
  • the new rotary pump can also have a detector device for determining the position of the integral rotor as part of its control or regulating device.
  • a detector device generally has one
  • the X-Y detector by means of which the position of the integral rotor can be determined in a plane perpendicular to the axis of rotation.
  • the X-Y detector can include one or more flow probes.
  • a preferred X-Y detector has a plurality of symmetrically distributed flow probes in order to determine the partial flows at discrete locations.
  • the partial flows are turned into the X component and the Y component by the angle of rotation of the rotating field motor
  • Position of the integral rotor determined. This is done by weighted summation of the partial flows over half of each Scope in the positive and negative X-direction as well as in the positive and negative Y-direction, by calculating the amounts of the determined sums and then forming the difference between the shares in the positive and negative X-direction and the shares in the positive and negative Y-direction.
  • the flow probes used for regulating the drive and / or regulating the position of the integral rotor in the X-Y plane can be arranged, for example, in the air gap between the pump housing and the bearing / drive stator and the pump housing.
  • the flux probes can be Hall elements or magnetoresistive flux probes, for example.
  • the flux probes can be attached to a tooth of the stator of the rotating field motor, for example by gluing. Another possibility for fastening the flow probes is to embed them in recesses of the stator.
  • the XY detector can also be designed in such a way that it contains an eddy current detector in order to measure the distance to a conductive layer present in the integral rotor in the XY plane running perpendicular to the axis of rotation of the integral rotor.
  • This conductive layer can, for example, be formed from a metal ring or a thin metal layer or from the rotor magnet itself, which is made of conductive material such as NdFe.
  • two opposite eddy current detectors can also be arranged in the X and Y directions, which emit detector signals. In this way, the X and Y components of the position of the integral rotor in the XY plane running transverse to the axis of rotation can be determined.
  • the XY detector can also be designed in such a way that it contains sensor windings, which are arranged in addition to the drive winding and the control winding in the stator of the rotating field motor, around the position of the integral rotor in the XY plane running transverse to its axis of rotation by evaluating the electrical impedance to determine these sensor windings.
  • Another possibility of designing the XY detector is to provide an optical device by means of which the position of the integral rotor in the XY plane running transverse to its axis of rotation can be measured with the aid of light, the wavelength of which lies in the optical window of the fluid .
  • the detector device mentioned can also have a Z detector in order to detect the axial position of the integral rotor and to emit a corresponding Z position signal.
  • the Z position signal determined can form the actual value for determining a control signal for stabilizing the axial position of the integral rotor in terms of control technology. To such a control
  • a magnetizing current can also be applied with a current component in the drive flow direction of the bearing / drive sector.
  • the new rotary pump preferably has a pressure determination device with which the pump pressure can be determined from the Z position signal or from the control signal determined therefrom.
  • the new rotary pump is also equipped with a flow rate determination device, which consists of the
  • Figure 1 shows a rotary pump according to the invention in a schematic sectional view through the axis of rotation.
  • FIG. 2 shows a pump housing with an integral rotor, in a first embodiment, in a diagram
  • FIG. 3 shows a pump housing with an integral rotor, in a second embodiment, in a diagram
  • FIG. 4 shows a rotary pump with an additional axial position sensor, in a greatly simplified illustration, in a section along the axis of rotation;
  • FIG. 5 shows a further rotary pump with an additional axial position sensor and an additional axial winding, in the same representation as FIG. 3, in a simplified representation, in a section along the axis of rotation; 6 shows an integral rotor for an axial pump, in a diagram;
  • FIG. 8 shows an integral rotor for a centrifugal pump, for use with a drive device operating on the principle of the reluctance motor, in a diagram
  • Fig. 11 shows a bearing / drive stator with an integral rotor
  • FIG. 12 shows a rotary pump with a bearing / drive device designed as a temple motor, in a diagram
  • FIG. 13 shows a bearing / drive stator with an integral rotor, in a greatly simplified illustration, in a first operating state, from above and with a flow sensor for measuring the angle;
  • Fig. 14 the bearing / drive stator with the integral rotor of Fig. 11 in the same. Representation as in Fig.
  • Fig. 15 shows another bearing / drive stator with an integral rotor, in a greatly simplified
  • Position signal (U 1 ⁇ U 2 ) by forming the difference between the signals U ⁇ and U2 compared to the position sensors. Representation of the control flow as a function of the position of the integral rotor in the X direction;
  • 17 shows a stator in which the number of turns of the rotating field winding and the control winding are selected such that a sinusoidal geometric distribution of the drive field flow and the
  • FIG. 19 shows a Tesla pump with a driving rotor integrated into the interior of the Tesla pump rotor to form an integral rotor
  • FIG. 20 shows a split tube agitator with a magnetically mounted integral agitator rotor in a split tube
  • 21 a canned stirrer with a magnet-mounted integral stirrer rotor in a canned pipe with an electromagnetic axial bearing for the integral rotor; 22 shows a further advantageous embodiment of a bearing / drive device with permanent magnets in the stator
  • Rotation axis 3 has a bearing / drive stator 4, a bearing / drive device acting on the principle of the 'bearingless motor'.
  • the bearingless motor works on the principle of a three-phase motor.
  • the bearing / drive stator 4 has electromagnetically active components 6, which will be described in detail later.
  • a pump housing 8 with an axial inlet 10 and a radial outlet 12 for a fluid to be conveyed is arranged in the bearing / drive stator 4.
  • the inlet 10 and the outlet 12 serve to connect the rotary pump 2 to a line network (not shown).
  • a first arrow A denotes the inflow direction, a second arrow Z the outflow direction of the fluid.
  • the bearing / drive stator 4 and the pump housing 8 are stationary components or components of the rotary pump 2 that do not rotate during pump operation.
  • the integral rotor 14 serves simultaneously as a bearing / drive rotor and also as a pump rotor and is therefore the only rotatable component of the rotary pump 2.
  • the pump housing 8 shown in FIG. 2 has an axial inlet 10 and a radial outlet 12, a conical upper wall 20 and an essentially flat lower wall 22.
  • the integral rotor 14 is visible with the rotor disk 16, which is annular here, and the Rotor blades 18 attached to the upper surface of the rotor disk 16 are.
  • Such an integral rotor is used in a rotary pump designed as a centrifugal pump.
  • the pump housing 8 shown in FIG. 3 has a further axial inlet 11 and a further radial outlet 13, both the inlets 10, 11 and the outlets 12, 13 being opposite one another.
  • the pump housing 8 therefore also has a lower conical wall 233, and the rotor disk 16 of the integral rotor 14 is equipped with rotor blades 18 and 19 on its upper and lower surfaces.
  • the rotary pump is designed as an axial pump and as a centrifugal pump with only one axial inlet, an axial force acts on the integral rotor as a result of the pressure drop in the axial direction.
  • 4 and 5 show, using the example of a centrifugal pump, how this axial force can be compensated for by arranging an additional axial winding 8, 9.
  • the integral rotor 14 according to FIG. 6 is intended for a rotary pump operating according to the principle of an axial pump. It consists essentially of the ring-shaped
  • the rotor disk 16 shown cut away contains in its interior electromagnetically active components for a bearing / drive device with a rotating field motor acting as a synchronous rotor, namely a rotor-side one
  • FIG. 7 again shows the one shown in FIG. 3 that can be used in a centrifugal pump or side channel pump
  • Integral rotor 14 with the upper rotor blades 18 and the lower rotor blades 19 and with the rotor disk 16 cut open here, in which the rotor-side return iron 26, the magnet 28 and the conductive layer 30 are included, which are to be regarded as rotating parts of a synchronous motor.
  • the integral rotor 14 shown in FIG. 8 with the ring-shaped rotor disk 16 is intended for a rotary pump designed as a centrifugal pump.
  • Bearing / drive device has a three-phase motor, which works on the principle of a reluctance motor. Only the upper surface of the rotor disk 16 is equipped with the rotor blades 18.
  • An iron cross 23 is embedded in the rotor disk, as is customary for a reluctance motor.
  • the cut-open pump housing 8 has the axial inlet 10 and also the axial outlet 12 here, the arrows A and Z indicating the direction of the delivered fluid.
  • the integral rotor 14 which, as described earlier, by the rotor disk 16 and the impeller 24 are formed with its blades acting as rotor blades 18.
  • the bearing / drive stator 4 is visible in FIG. 9. It consists of the stator laminated core with slots, teeth and back iron and a winding inserted into the stator slots, which consists of a partial winding with the number of poles p and a partial winding with the number of poles n + 1 or n-1.
  • FIG. 10 shows an embodiment in which the rotary pump 2 is designed as a centrifugal pump.
  • the pump housing 8 with the axial inlet 10 and the radial outlet 12 here, as well as the integral rotor 14 with the annular rotor disk 16 and the rotor blades 18, can be seen.
  • the radially directed coil cores 34, the windings 36 and the rotor-side yoke 38 are shown in simplified form.
  • FIG. 11 shows the rotor-side and stator-side electromagnetically active components more clearly.
  • the pump housing was omitted as an electromagnetically ineffective component.
  • the cut-open integral rotor 14 with the rotor disk 16, which is provided with the rotor blades 18, 19.
  • the return iron 26, the magnet 28 and the conductive layer 30 are embedded in the rotor disk 16.
  • the integral rotor 14 is surrounded by the cut-open bearing / drive stator, which has the coil cores 34, the windings 36 and the rotor-side yoke 38.
  • the rotary pump 2 is shown with a bearing / drive device, the rotating field motor is a so-called temple motor.
  • the pump housing 8 is not shown in its assembled position but above it. As already described several times, the pump housing 8 has an axial inlet 10 and a radial outlet 12. It contains the integral rotor 14 with the annular rotor disk 16, on the upper surface of which the rotor blades 18 are visible. Instead of the radially extending
  • the temple motor has symmetrically distributed coil cores 35, each of which has the shape of an 'L'.
  • the one long leg 35a of the 'L' runs vertically or parallel to the axis of rotation 3, while the short leg 35b of the 'L' is directed radially inward to the axis of rotation 3.
  • the temple motor therefore does not differ in its electrical mode of operation from the rotary field motor shown in FIG. 11, but it allows particularly well to arrange the pump housing 8 practically in the bearing / drive stator in such a way that it is practically recessed in the assembled state and thus arranged in a space-saving manner is, but is still easy to disassemble. Furthermore, the windings 36 and the back iron 38 are visible.
  • At least one flow probe can be provided.
  • the drive flow angle can then be determined via the partial flow component.
  • the same arrangement is also the The speed of the rotor can be determined. The arrangement and design of the flow probes will be described later.
  • a detector device which has an X-Y detector and also a Z detector.
  • the X-Y detector is used to determine the position of the integral rotor in the X-Y plane running perpendicular to the axis of rotation
  • the Z detector is used to determine the position of the integral rotor along the axis of rotation of the integral rotor.
  • the X-Y detector can have a plurality of flow probes, as can also be used for the control of the drives.
  • the flux probes can be Hall elements or magnetoresistive flux probes; they are attached, for example, to a tooth of the stator, possibly by gluing, or embedded in a groove of the stator.
  • FIG. 13 shows the contour of the pump housing 8 and the integral rotor 14 located therein, which assumes its correct, central position.
  • the axis of rotation 3 visible as a point forms the intersection of an axis cross with the axes X and Y.
  • the pump housing 8 is surrounded by the coil cores 34 or stator teeth.
  • a plurality of flux probes 50x, 50y, 51x, 5ly are arranged, which detector part of a detector system for determining the magnetization direction (angle alpha of the integral rotor 14 in the direction defined by the axes X and Y, perpendicular to the Rotation axis 3 extending XY plane, this position is briefly referred to as the angular position of the integral rotor 34.
  • the arrangement of two opposite flow probes allows the Influence of a displacement of the rotor from the center on the determination of the angular position of the integral rotor can be compensated.
  • FIG. 14 A similar arrangement is shown in FIG. 14, with the pump housing 8 and the integral rotor 14 located therein, which here does not assume its correct, central position, but is shifted from this position by x and y, measured on the axes X and Y, so that its axis of rotation does not coincide with the intersection of the axes X, Y.
  • the flux probes are used not only to determine the angular position of the integral rotor, but also to determine its X-Y position. This is done by weighted summation of the partial flows measured with the aid of the flow probes over half the circumference in the x-direction and y-direction and in each case in the opposite direction, amount formation and subsequent difference formation (the proportion in the x-direction and in the opposite direction as well as the proportion in y) -Direction and in the opposite direction).
  • the X-Y detector can also be designed as an eddy current distance sensor.
  • an eddy current distance sensor measures the distance to the conductive layer in the rotor disk of the integral rotor, which has been mentioned several times, in the X-Y plane.
  • the XY detector contains sensor windings 60x, 60y, 61x, 61y.
  • the other elements shown in FIG. 15 correspond to those in FIG. 12.
  • the sensor windings determine the XY position of the integral rotor 14 by evaluating their electrical impedance.
  • 16 shows the relationship between the voltage U and the deviation x of the integral rotor from its desired position in the direction of the axis X. It can be seen from this that the relationship U / x is linear in the desired range for the control, if desired the sensor signal is obtained from the difference between two opposite sensors with a restricted, linear measuring range
  • a further embodiment for the formation of the X-Y detector consists in using an optical device, light being used, the wavelength of which lies in the region of the optical window of the fluid conveyed.
  • the detector device not only has the X-Y detector but possibly also a Z detector, for which conventional detector devices, for example eddy current distance sensors, are used.
  • the X-Y detector determines the position of the integral rotor in the direction of the axis of rotation and emits a Z position signal, which is used as the i ⁇ t value for the stabilization of the integral rotor in this direction.
  • A for example, is used for this control stabilization
  • the aforementioned Z position signal or the control signal determined therefrom also serves to determine the pump pressure with the aid of a pressure determination device.
  • FIG. 17 shows an example of the number of turns of the rotating field winding and the control winding, with which an at least approximately sinusoidal shape of the drive throughput and control throughflow is achieved.
  • the number of turns depends on the cosine or sine of the electrical angle of the position of the poles.
  • the disk-shaped, driving rotor consists of the rotor disk 16, the magnet 28, the return iron 26, and the conductive layer 30.
  • This driving rotor 16 is assembled with the pump rotor plates 29 to form an integral Tesla pump rotor.
  • the driving rotor is arranged laterally in the integral rotor and is installed in the pump housing 8 with the inlet 10 and the outlet 12.
  • the driving rotor 16 is installed between pump rotor plates 29.
  • the 20 is a stator with the yoke iron 38 and the windings 36 installed in the canned casing 32.
  • the integral rotor 31 comprises the actual stirrer, in which the driving rotor with the magnetic ring 28, the back iron 26 and a conductive layer 30 is integrated.
  • the canned casing 32 is inserted into an opening in the stirring tank 33 and can be sealed with the seal 40 against the outside roughness.
  • the material to be stirred is inside the stirring tank 33.
  • an electromagnetic axial bearing with the stator 41 and with a stator winding 42 is additionally installed in the can 32.
  • Yoke 43 of the axial magnetic bearing with the stator 41 is also integrated in the stirrer 31.
  • the advantage of a bearing / drive device based on the principle of the reluctance motor (FIG. 8) or induction motor in comparison with a permanently magnetically excited synchronous motor is that the integral rotor contains no expensive materials. This is of particular importance if the integral rotor belongs to a disposable part such as, for example, a disposable blood pump.
  • a disadvantage of both the reluctance motor and the synchronous motor is that the entire flow to excite the drive field must be applied via a magnetizing current component in the drive winding. In the case of large air gaps, the air gap magnetization requires enormously high magnetization currents, which in turn cause large losses in the drive winding.
  • the air gap achievable with induction and reluctance motors is limited to a few mm. An exception are very large engines.
  • the unipolar flows represented by the unipolar flow lines (52, 53, 54, 55) and by Further unipolar flux lines, which are not named, are excited here by two annularly designed, laterally magnetized, permanent magnets (50, 51) arranged on both sides of the stator.
  • two annularly designed, laterally magnetized, permanent magnets 50, 51
  • the permanent magnet rings instead of the permanent magnet rings, several small ones can also be used
  • the magnets can be used. Furthermore, the magnets can also be arranged outside the winding. The arrangement of magnets on both sides is advantageous because the stray field lines which penetrate axially into the rotor are thus symmetrical and therefore not axial
  • the stator winding (4) contains windings of a two-pole rotating field winding as well as a higher-pole rotating field winding, preferably with the number of pole pairs 3.
  • the rotary machine with a driven rotor and with an electric motor comprises a stator and a driving rotor.
  • the stator is designed as an electromagnetic bearing for the driving rotor and the driving red of the electric motor forms a rotor unit with the driven rotor of the rotary machine, i.e. an integral rotor.
  • This rotary machine comprises a rotating field winding with the number of pole pairs p for generating a drive rotating field and for controlled rotation of the driving rotor about its axis of rotation, and a control winding with the number of pole pairs p + 1 or p + 1 for generating a control field superimposed on the driving rotating field about the radial position (two Degrees of freedom) of the driven rotor regulated in its plane of rotation, ie to actively stabilize.
  • the driving part of the integral rotor can be disc-shaped, ring-shaped, bell-shaped, and the rotor can be axial, as well as against Tilt relative to the stator plane can be passively stabilized by reluctance forces.
  • the rotary machine can have a rotor geometry which is such that at least one of the non-actively stabilized degrees of freedom of the rotor is passively stabilized by hydrostatic or hydrodynamic forces, by aerostatic, aerodynamic forces or by gravitational forces.
  • stator together with the driving rotor can be a synchronous motor or magnetically excited
  • Form reluctance motor or the stator together with the driving rotor can form an external rotor motor.
  • the permanent magnet driving rotor can be designed as a ring magnet, disk magnet or as a shell magnet and can also be the rotor back iron or the iron cross part of the integral rotor.
  • the integral rotor can be together with a part of the
  • Working device can be formed as a unit, which can be lifted off the drive stator.
  • the drive stator of the rotary machine can be formed from individual tab-shaped coils arranged radially around the rotor with a common magnetic yoke, and each of the coils can have one partial winding for each winding strand of the drive winding and the control winding
  • the number of turns of the partial windings can be selected so that the
  • Drive flow and the control flow are geometrically at least approximately sinusoidal.
  • N ⁇ _ the number of turns of each partial winding of the first phase (both the drive winding and the control winding) of a given number of turns N ⁇ _ times the cosine of the electrical angle of their position alpha ([N-, cos (p alpha)] for the drive winding and [N-_ cos ⁇ (p ⁇ l) alpha ⁇ ] for the control winding) and the number of turns of each partial winding of the second phase (again both the drive winding and the control winding) of a given number of turns N 2 times the sine of the electrical Angle of their position alpha ([N 2 are (p alpha)] for the drive winding and [N 2 sin ⁇ (p ⁇ l) alpha ⁇ ] for the control winding).
  • the drive stator of the rotary machine can, in relation to the rotor in the axial direction, be constructed from coils arranged in the form of a temple column as a temple motor with a common magnetic yoke, the flux at an end of the coil on the side opposite the magnetic yoke through an L pointing towards the rotor -shaped extension of the coil core is guided radially towards the rotor and the coils have partial windings for each winding phase of the drive winding and the control winding, whereby individual partial windings can have the number of turns 0 and the at least approximately sinusoidal geometric distribution of the drive flow and the control flow due to the number of turns ratio between the individual coil sections is formed.
  • Stator and rotor and / or in the coil cores flux probes are attached in order to determine one or more partial flow components which are transmitted to the drive and position controllers of the bearingless motor by means of transmitting the measured partial flow components.
  • weighted summation of the partial flows over half the circumference in the x-direction and y-direction of the plane of rotation of the driving rotor and in the opposite direction, amount formation and subsequent difference formation of the portion in the x direction and in the opposite direction and the portion in y -Direction and in the opposite direction, the rotor position can be determined.
  • the angle and / or the amount of the drive flow angle can be determined from the partial flows.
  • eddy current distance sensors can be arranged in individual slots or between individual coil cores of the drive stators, which measure the distance to a conductive layer in the driving rotor, in the rotor plane (xy plane).
  • Such eddy current distance sensors can consist of a metal ring, or a thin metal layer or the conductive magnetic material of the driving rotor magnet.
  • Two opposite distance sensors can be used in the x and y directions and the components of the position of the driving rotor in the rotor plane (xy plane) can be determined from the difference of the sensor signals from opposite sensors.
  • the drive stator of the rotary machine can have sensor windings in addition to the drive and control winding.
  • the axial position of the driving and the driven rotor of the rotary machine, i.e. of the integral rotor can be stabilized in a controlled manner with a magnetizing current in an additional axial coil.
  • Drive stator and integral rotor of the rotary machine can be arranged a can.
  • the working device can be, for example, a rotary pump, in particular a medical pump for pumping blood, an agitator, a turbomachine, a spindle, a centrifuge or a godet.
  • the rotary pump can be, for example, an axial pump, a centrifugal pump, a side channel pump, a peripheral pump or a Tesla pump.
  • the rotary machine designed as a rotary pump can have a closed pump housing which contains the integral rotor, which comprises the driving rotor of the motor and the driven rotor of the pump.
  • the pump housing can advantageously be freely accessible and exchangeably attached to the drive stator on at least one side.
  • Such a rotary machine designed as an axial pump can have an annular driving rotor which surrounds the impeller of the axial pump in an annular manner (hollow shaft rotor).
  • the pump housing can have an inlet nozzle on one side and an outlet nozzle on another side.
  • the pump can be inserted into the delivery circuit via these nozzles
  • the pump housing with the pump wheel can be removed from the driving stator after dismantling the preferably hose-like connections.
  • the rotary machine can also be designed as a centrifugal pump, the ring-shaped or disk-shaped driving rotor of which is integrated in an impeller, preferably made of plastic, or attached to the impeller.
  • Rotation machine the axial rotor position signal or the control signal of the control system can be the axial one Stabilization of the rotor is also used to determine the pump pressure.
  • Flow of fluid through the pump from the axial rotor position signal, the rotational speed of the rotor and the torque-forming component of the drive current (Q component) can be provided.
  • the pump housing can have an inlet and two outlets on both axial sides.
  • the axial length of the driving rotor can advantageously be less than or equal to half the diameter of this rotor.
  • the invention also relates to a rotary pump for fluids, with a hermetically sealed pump housing with at least one inlet and at least one outlet for the fluid and with a pump rotor which is supported by a magnetic bearing device and can be driven by a non-contact electrical drive device, the magnetic bearing device and the non-contact electrical drive device form a bearingless three-phase motor with a common bearing / drive rotor, which is designed with the pump rotor together as an integral rotor (14), the bearingless three-phase motor having a drive winding with a number of pole pairs p and a control winding with a number of pole pairs, p + 1 or p-1 has such that the rotation of the integral rotor (14) about its axis of rotation (3) by means of the drive winding and the position of the integral rotor (14) in the plane (XY) running perpendicular to the axis of rotation (3) by means of the control device cooling can be actively controlled, and the position of the integral rotor (14) along the axis of rotation
  • the integral rotor 14 of the rotary pump can have an annular rotor disk 16, in which the electromagnetically active components 26, 28, 30 are contained, and to which the rotor blades 18, 19 are fastened.
  • the pump rotor and the electromagnetically active components 26, 28, 30 can also be embedded in parts of the rotor disk 16 which are welded to one another or can be injection molded onto it.
  • the surfaces of the pump housing 8 and the integral rotor 14 which are in contact with the pumped fluid can be made of plastic.
  • the pump housing 8 can have a further axial inlet 11, which lies opposite the first axial inlet 10.
  • the pump housing 8 can also have a further, at least approximately radial, outlet 13, which is arranged centrally symmetrically to the first radial occasion 12.
  • the rotary pump can advantageously be designed as an axial pump (FIG. 9).
  • the rotor blades 18 can be designed as vanes of an impeller 24, which is fastened in the central recess of the ring-like rotor disk 16.
  • the rotary pump can also be a centrifugal pump, FIG. 11.
  • the rotor blades 18 can be arranged on a surface of the rotor disk 16.
  • the rotor blades 18, 19 can be arranged on both surfaces of the rotor disk 16.
  • the bearing / drive stator of the rotary field motor of the rotary pump can have a plurality of elongated coil cores 34 arranged around the integral rotor 14 with a common magnetic return path, each coil core 34 having a partial winding of the winding winding
  • the coil cores 34 of the rotary pump can be radial to
  • the axis of rotation 3 of the integral rotor 14 can be arranged and the coil cores 34 and the back iron can form a unit, this unit being layered from individual sheets with long grooves.
  • the coil cores 35 can have the shape of L, one leg 35a of which is arranged parallel to the axis of rotation 3 of the integral rotor 14 and the other leg 35b of which is directed radially inward to the axis of rotation 3 of the integral rotor 14 in order to guide the flux radially to the integral rotor 14.
  • the rotating field motor can also be a synchronous motor, which is a reluctance motor or a permanent magnet excitable synchronous motor.
  • a device can be provided in a rotary pump in order to determine at least one partial flow component, by means of which the drive flow angle necessary for the drive control of the bearing-free motor can be determined.
  • This device can have at least one flux probe 50x, 50y, 51x,
  • the rotary pump can have a detector device for determining the position of the Integralrotor ⁇ 14 have.
  • This detector device can have an XY detector in order to determine the position of the integral rotor (14) along the X and Y axes.
  • the XY detector can have at least one flow probe 50x, 50y, 51x, 51y, 50a to 50h.
  • symmetrically distributed flow probes 50x, 50y, 51x, 51y, 50a to 50h can be provided, for measuring partial flows at discrete locations, and from the partial flows, in addition to the angle of rotation of the motor via the drive flow angle, by weighted summation of the partial flows over each half the circumference in the positive and negative X and Y directions, amount formation and subsequent difference formation of the portion in the positive and negative X direction and the portion in the positive and negative Y direction, the X and Y components of the position of the integral rotor (14 ) can be determined.
  • At least one flow probe 50x, 50y, 51x, 51y, 50a to 50h can be arranged in the air gap between the pump housing 8 and the bearing / drive stator, the at least one flow probe 50x, 50y, 51x, 51y, 50a to 50h im Coil core 34, 35 can be arranged.
  • the at least one flux probe can contain a Hall element. However, the at least one flux probe could also be a magnetoresistive flux probe.
  • the at least one flux probe can be attached, for example glued, to a tooth of the stator of the rotating field motor.
  • the at least one flux probe can be embedded in an extension of a tooth of the stator of the induction motor.
  • the XY detector can contain at least one eddy current distance sensor in order to measure the distance to a conductive layer in the integral rotor in the XY plane.
  • the conductive layer 30 can consist of a metal ring or a thin metal layer or of the magnet 28 made from the conductive material, for example NdFe.
  • two mutually opposite eddy current distance sensors which determine sensor signals, can be provided in the X and Y directions in order to obtain the components of the position of the integral rotor in the X-Y rotor plane from the difference between the sensor signals of the mutually opposite eddy current distance sensors.
  • Integral rotor 14 in that the electrical impedance of the sensor windings is determined.
  • the X-Y detector can also contain an optical device in order to measure the position of the integral rotor with light whose wavelength lies in the optical range of the fluid.
  • Detector device can also include a Z detector for determining the axial position of the integral rotor and for determining a corresponding Z position signal.
  • the Z-position signal can form the I value for determining a control signal for stabilizing the axial position of the integral rotor in terms of control technology.
  • a magnetization current can be applied in the drive winding with a current component in the direction of flow.
  • a pressure measuring device can also be arranged in order to determine the pump pressure from the Z position signal or from the control signal determined therefrom.
  • a flow rate determination device can also be provided in order to determine the flow rate from the Z position signal and the speed of the integral rotor and the torque-forming component of the drive current.
  • the stator of the rotary drive is also designed as a magnetic bearing for the rotor and comprises a stator part with a drive winding for generating a p-pole-pair drive rotary field for driving the rotor.
  • the rotary drive further comprises a bearing winding for the rotary drive and for generating a (p + l) -pair-pair or (p-1) -pole-pair bearing field as well as a control device for regulating the bearing field in one plane, and thus for determining the
  • the stator and rotor are designed in such a way that the rotor is stabilized in its position by restoring forces / reluctance forces.
  • the stator together with part of the working device to be driven can form a permanently magnetically excited synchronous motor or reluctance motor.
  • the electromagnetic rotary drive can be designed with 2p poles and the rotor can be designed as a magnet, for example as a ring, disc or shell magnet, with or without a traction iron, or the iron cross can be part of a rotating part of the working device.
  • the working device to be driven can be designed with the rotor as a unit that can be lifted off the stator.
  • electromagnetic rotary drives the geometric distribution of the drive flow and the Flooding in the bearing can be approximated using the number of turns ratio of the individual partial coils.
  • the stator can consist of individual coils arranged radially around the rotor with a common magnet
  • Back built up and the coil cores can each carry a winding of the drive winding and the control winding.
  • the stator can be constructed from coils (temple motor) arranged in the manner of a temple column with a common magnetic yoke, the coil cores of which have an L-shaped part which leads radially to the rotor, with coils arranged in the manner of a temple column, partial windings of the drive and the control winding.
  • one or more probes such as Hall elements or magnetorestrictive elements for determining the magnetic flux or magnetic partial fluxes or eddy current sensors can be arranged in the air gap between the stator and rotor, the measured values of which are fed to the drive and position control in order to determine the drive loss angle of the bearingless motor to be determined and regulated.
  • the position of the rotor in such an electromagnetic rotary drive can also be determined with the aid of impedance measurements of sensor windings in the stator, with ultrasonic echography, or optically.
  • the axial position of the rotor of the rotary drive can be regulated and stabilized by applying a magnetizing current in the drive winding or with an additional axial coil on one side of the rotor.
  • the electromagnetic rotary drive is suitable as a drive for a radial pump, an axial pump, a centrifugal pump, a Tesla pump, a mixer or an agitator.
  • the pump rotor, or the mixing or stirring rotor, as well as the rotor of the motor, can be coated with plastic.
  • the pump pressure can be determined from the axial rotor position signal or from the control signal required for the axial stabilization. Or the flow of the pump can be determined from the axial rotor position signal, the speed of the rotor and the torque-forming component of the drive current (Q component).
  • Such described electromagnetic rotary drives are suitable as drives for a rotary pump for pumping blood.
  • Such blood pumps are used for example in medical operations.
  • the axial length of the driving rotor is advantageously less than or equal to half the diameter of this rotor.
  • a rotary machine according to the invention can also be miniaturized, for example as a blood pump that can be implanted in animals or humans.
  • the rotary machine comprises a driven rotor 2 and an electric motor 4, 14, with a stator 4 and a driving rotor.
  • the stator 4 is also designed as an electromagnetic bearing 4, 14 for the driving rotor 14 and the driving rotor 14 of the electric motor 4, 14 forms a rotor unit 2, 14 with the driven rotor 2 of the rotary machine, ie the two rotors 2, 14 form one Integral rotor 2, 14.
  • the Rotary machine can be, for example, a rotary pump, centrifugal pump, centrifuge, or an agitator.
  • the rotor 2, 14 can be designed to be easily removable from the stator 4.

Abstract

Die Rotationsmaschine umfasst einen angetriebenen Rotor (2) und einen elektrischen Motor (4, 14), mit einem Stator (4) und einem antreibenden Rotor. Der Stator (4) ist auch als elektromagnetisches Lager (4, 14) für den antreibenden Rotor (14) ausgebildet, und der antreibende Rotor (14) des Elektromotors (4, 14) bildet mit dem angetriebenen Rotor (2) der Rotationsmaschine eine Rotoreinheit (2, 14), d.h. die beiden Rotoren (2, 14) bilden einen Integralrotor (2, 14). Die Rotationsmaschine kann beispielsweise eine Rotationspumpe, Zentrifugalpumpe, Zentrifuge oder ein Rührwerk sein. Der Rotor (2, 14) kann vom Stator (4) leicht entfernbar konstruiert sein.

Description

Rotationsmaschine mit elektromagnetischem Drehantrieb
Die Erfindung betrifft einen elektromagnetischen Drehantrieb nach dem Oberbegriff des Patentanspruch 1. Weiter bezieht sich die Erfindung auch auf mit derartigen Drehantrieben angetriebene Pumpen und Rührwerke.
Kreiselpumpen mit hermetisch abgeschlossenen Pumpengehäusen kommen dann zur Verwendung, wenn eine vollständige Trennung zwischen dem zu fördernden Fluid und der Umgebung gefordert wird. Obwohl diese Forderung mit Schlauchquetschpumpen leichter zu erfüllen wäre als mit Rotationεpumpen, sind
Schlauchquetschpumpen, sog. peristaltische Pumpen, häufig nicht einsetzbar, weil durch ihre spezifische Konstruktion bei ihrem Betrieb Scherkräfte auf das Fluid wirken, durch welche es in seiner Struktur beeinträchtigt wird. Insbesondere in pharmazeutischen und medizinischen
Anwendungsbereichen, wo mechanisch empfindliche Fluide mit langen Molekülketten oder mit Zellen, die empfindliche Zellwände besitzen, zu fördern sind, besteht die Notwendigkeit, Rotationspumpen einzusetzen. Beispielsweise besteht bei der Förderung von Blut die Gefahr, dass infolge solcher Scherkräfte eine Hämolyse auftritt, was dazu führt, dass das Blut unbrauchbar wird. Anders als in Kolbenpumpen sind die Fluide in Kreiselpumpen kaum Scherkräften ausgesetzt, so dass lange Moleküle und empfindliche Zellen bei ihrer Förderung geschont werden.
Eine strikte stoffliche Isolierung des zu fördernden Fluids kann aus zwei verschiedenen Gründen notwendig sein: einerseits soll dadurch ein Ausströmen in die Umgebung selbst geringster Fluidmengen verunmöglicht werden, wenn kontaminierende Stoffe gefördert werden; anderseits soll ein Eindringen von Fremdstoffen irgendwelcher Art in das Fluid verhindert werden, wenn dieses höchsten Anforderungen bezüglich seiner Reinheit genügen muss, was vor allem bei einem Einsatz der Pumpe im chemischen, pharmazeutischen oder medizinischen Bereich der Fall ist. Besonders für diese Anwendungsbereiche besteht die stoffliche Isolierung des zu fördernden Fluides nicht nur darin, den Zutritt von Umgebungsluft zu verunmöglichen; es soll auch verhindert werden, dass Abriebpartikel von relativ zueinander bewegten Bauteilen der Antriebsvorrichtung, der Lagervorrichtung oder einer Dichtungsanordnung oder Schmierstoffe in das Fluid gelangen.
Während Operationen am offenen Herzen werden zur Aufrechterhaltung des Blutkreislaufes Pumpen der eingangs genannten Art verwendet, wobei das zu fördernde Fluid das Blut des Patienten ist. Es versteht sich von selbst, dass dabei höchste Ansprüche bezüglich der Reinhaltung des zu fördernden Fluids gestellt werden.
Bei der Verwendung von konventionellen Antriebsvorrichtungen, Lagervorrichtungen und Gleitringdichtungen war es nicht möglich, das Pumpengehäuse vollständig gegen die Umgebung abzudichten und gleichzeitig die Entstehung von Abriebpartikeln zwischen relativ zueinander bewegten Bauteilen und den Zutritt von solchen Abriebpartikel und von Schmierstoffen zum Fluid zu verhindern.
Mit den seit längerer Zeit bekannten magnetischen Lagern wurde es möglich, konventionelle Wälz- oder Gleitlager durch eine Lagervorrichtung zu ersetzen, der nicht nur eine berührungsfreie Lagerung, beispielsweise in der Art eines Auftriebs-Gleitlagers, sondern auch eine ungeschmierte Lagerung ermöglicht.
Einen weiteren Fortschritt in derselben Richtung ist die Entwicklung von Drehstrommotoren mit einer Trennung zwischen dem Stator und dem Rotor, sog. Spaltrohrmotoren.
EP-0 551 435 beispielsweise beschreibt einen elektromagnetischen Drehantrieb für eine Rotationspumpe mit einem hermetisch abgeschlossenen Pumpengehäuse und einem Pumpenrotor, der mittels einer berührungsfreien Lagervorrichtung gelagert und über einen Spaltrohrmotor angetrieben wird.
Dieser elektromagnetische Drehantrieb für die Pumpe ist aufwendig konstruiert und relativ voluminös, wobei insbesondere ihre axiale Abmessung gross ist. Die Magnetlager brauchen viel Platz.
Die Aufgabe der Erfindung ist es einen verbesserten, kompakten und einfachen elektromagnetischen Drehantrieb, für Rotationspumpe, Mischer, Rührwerke und andere Einrichtungen zu schaffen.
Diese Aufgabe wird erfindungsgemäss mit einem elektromagnetischen Drehantrieb gelöst, der die Merkmale des kennzeichnenden Teils von Patentanspruch 1 aufweist. Die abhängigen Ansprüche beziehen sich auf bevorzugte Weiterbildungen der Erfindung Beim erfindungsge ässen elektromagnetischen Drehantrieb für Einrichtungen wie Rotationspumpen, u.s.w. bildet die Lagervorrichtung und die Antriebsvorrichtung nach dem Prinzip des sogenannten lagerlosen Motors eine kombinierte, berührungsfreie und Schmierstofffreie Lager / Antriebs- Vorrichtung, deren kombinierter Lager/-Antriebsrotor so ausgebildet ist, dass er neben der Funktion des Rotors des Elektromotors, auch die Funktion des Rotors der Einrichtung, also beispielsweise eines Pumpenrotors, Mischerrotors oder Rührwerksrotorε übernimmt . Man nennt solche Rotoren Integralrotoren.
Das Prinzip des 'lagerlosen' Motor besteht darin, dass einerseits der Rotor einer Drehfeldmaschine und eine gelagerte Wellenanordnung den erwähnten kombinierten Lager/Antriebs- Rotor ergeben und dass anderseits der Stator der Drehfeldmaschine und der nicht drehende Teil einer Lagervorrichtung einen Lager/Antriebs-Stator ergeben. Bei der Anordnung eines 'lagerlosen Motors' als Lager/Antriebs-Vorrichtung einer Rotationspumpe sind das Pumpengehäuse und der
Lager/Antriebε-Stator im Betrieb ortsfest, während der Lager/Antriebs-Rotor sowie der Pumpenrotor zwei drehbaren Bauteile wären, welche beiden Bauteile nun erfindungsgemäss zusammen den Integralrotor bilden.
Erfindungsgemäss besitzt der Drehfeldmotor eine Antriebswicklung mit der Polpaarzahl p und eine Steuerwicklung mit der Polpaarzahl p+1 oder p-1; die Drehung des Integralrotors um seine Rotationsachse wird über die Antriebswicklung aktiv gesteuert oder geregelt, und die Position des Integralrotors in der senkrecht zur Rotationsachse verlaufenden Ebene wird aber die Steuerwicklung aktiv geregelt. Die Position des Integralrotors in Richtung der Rotationsachse und seine Verkippung gegenüber der genannten Ebene werden durch Reluktanzkräfte passiv stabilisiert. Mit der erfindungsgemässen Konstruktion, welche durch die Schaffung des Integralrotors eine Sonderform des 'lagerlosen Motors' für eine Rotationspumpe darstellt, wird es möglich, äusserst kompakte Rota ionspumpe zu bauen.
Bei bei der Verwendung eines solchen elektromagnetischen Drehantriebs, z.B. einer Rotationspumpe zum Fördern von Fluiden, die ausserordentlich verschmutzungsanfällig sind, etwa von Blut während einer Operation am offenen Herzen, besteht die Notwendigkeit, nach Gebrauch alle vom Blut berührten Teile perfekt zu säubern bzw. sämtliche Blutreste zu entfernen, bevor die Rotationspumpe für eine weitere Operation verwendet wird; der Grund besteht darin, dass unter allen Umständen vermieden werden muss, dass Blut eines ersten Patienten in den Blutkreislauf von weiteren Patienten gelangt, weil fremdes Blut im allgemeinen zu unerwünschten, sogar lebensgefährdenden Reaktionen führen kann. Da eine einwandfreie Reinigung der Pumpe nicht möglich ist, gibt es zur Vermeidung jeder Gefahr für den Patienten keine andere Möglichkeit, als die Rotationspumpe oder mindestens die vom Blut berührten Teile der Rotationspumpe nach jedem Gebrauch zu ersetzen. Dies bedeutet, dass bei der hohen Anzahl derartiger Operationer. die finanziellen Aufwendungen allein für die Rotationspumpe beträchtlich sind. Durch den Einsatz der erfindungsgemässen Rotationspumpe mit dem neuen Integralrotor lassen sich bei geeigneter konstruktiver Ausführung beträchtliche Einsparungen erzielen, indem man eine Konstruktionsart wählt, bei welcher das Pumpengehäuse mit dem darin aufgenommenen Integralrotor von aussen frei zugänglich und leicht ausbaubar sein. Nur diese beiden Teile werden durch das zu fördernde Fluid berührt und verunreinigt und müssen nach jeder Operation ersetzt werden. Sie werden daher als Wegwerfeinheit gestaltet, während die übrigen Bauteile nicht ausgetauscht werden müssen sondern für eine grosse Anzahl von Operationen verwendet werden können. Der Integralrotor, der aus den elektromagnetisch wirksamen Bauteilen des Lager/Antriebs-Rotors und aus dem Rotor der angetriebenen Einrichtung, also etwa dem Pumpenrotor besteht, ist bevorzugt so ausgebildet, dass er eine ringförmige Rotorscheibe aufweist, in welcher die genannten elektromagnetisch wirksamen Bauteile aufgenommen sind und an welcher Rotorschaufeln befestigt sind.
Die erwähnten elektromagnetisch wirksamen Bauteile der Rotorscheibe des Integralrotors umfassen Magnete wie
Ringmagnete, Scheibenmagnete oder Schalenmagnete sowie je nach ausgewähltem Typ des Drehfeldmotorε Eisen wie Rückschlusseisen oder Eisenkreuze und Wicklungen; sie können in miteinander verschweisste Teile der Rotorscheibe eingebettet oder an der Rotorscheibe mittels einer Spritzmasse so angespritzt sein, dass sie von der Spritzmasse vollständig ummantelt sind.
Damit der Integralrotor und das Rotorgehäuse, welche in gewissen Fällen wie erwähnt als Wegwerfeinheit ausgebildet sind, preisgünstig hergestellt werden können, ist es vorteilhaft, sie so auszubilden, dass alle vom Fluid berührten Teile aus Kunststoff bestehen. Andernfalls müssten kostspielige Materialien verwendet werden, da bei der Auswahl des Materials einerseits darauf zu achten ist, dass keine chemischen Reaktionen zwischen dem Material und dem Fluid ablaufen und anderseits vermieden werden musε, dass die zum Antrieb und zur Steuerung notwendigen elektromagnetischen Felder gestört werden.
Das Pumpengehäuse kann zusätzlich zu dem erwähnten, axialen Einlass einen weiteren, dem ersten gegenüberliegenden Einlass für das Fluid aufweisen. Der Einfluss, den eine entsprechende Konstruktion in Bezug auf die Druckverhältnisse und die erforderlichen Massnahmen zur
Steuerung der Position des Integralrotors hat, wird später erläutert . Entsprechend ist es möglich, das Pumpengehäuse so zu konstruieren, dass es zusätzlich zum erwähnten, mindestens annähernd radialen Auslass einen weiteren Auεlaεs aufweist, der zentralsymmetrisch zum ersten Auslass angeordnet ist. Auch die dadurch entstehenden Einflüsse auf die
Druckverhältnisse und die erforderlichen Massnahmen zur Steuerung der Position des Integralrotors werden später erläutert .
Die Rotationspumpe nach der Erfindung kann als Axialpumpe ausgebildet sein. Dabei werden die Rotorschaufeln durch Flügel eines Flügelrades gebildet, das bevorzugt am inneren Rand der Rotorscheibe des Integralrotors befestigt ist. Meistens wird jedoch eine Zentrifugalpumpe verwendet, da sie die Erzeugung eines höheren Druckes erlaubt . Das
Prinzip der kombinierten Lagerung und des Antriebs einer Einrichtung wie z.B. eines Pumpenrotors, läsεt sich auch auf alle anderen Arten von Kreiselpumpen wie Seitenkanalpumpen, Peripheralpumpen, Teslapumpen oder Flüssigkeitsringpumpen, Mischeinrichtungen oder auf andere Einrichtungen übertragen, die drehanzutreiben sind.
Bei einem einfachen Typ einer Zentrifugalpumpe sind Rotorschaufeln lediglich an einer Fläche der ringartigen Rotorscheibe des Integralrotors vorgesehen.
Es ist aber auch möglich, an beiden Flächen des Integralrotors Rotorschaufeln anzuordnen, oder die Rotorschaufeln in einem Laufrad zu integrieren.
Der Lager/Antriebsrotor kann als axial kurz ausgebildeter, herkömmlicher Drehstrom-Stator, mit einer Antriebswicklung der Polzahl p und einer Steuerwicklung der Polzahl p+l oder p-1 ausgeführt sein. Weil bei einer solchen Konstruktion aufgrund der kurzen Länge des Stators im Vergleich zu seinem Durchmesser sich nur ein kleiner Teil der Wicklung in der Nut befindet, hat eine solche Ständerkonstruktion erhebliche Nachteile. Ein so konstruierter Ständer, hat nicht nur eine sehr groεse WickelkopfStreuung, sondern der Wirkungsgrad ist schlecht. Zudem wird es beispielsweise bei einer Zentrifugalpumpe schwierig sein, den Anschluss- Stutzen zwischen den Wickelköpfen hindurch zu führen.
Der Lager/Antriebs-Stator ist im allgemeinen so ausgebildet, dasε er mehrere längliche, um den Integralrotor angeordnete Spulenkerne mit einem gemeinsamen magnetischen Rückschluss aufweist. Dabei enthält jeder
Spulenkern eine Teilwicklung für jeden Wicklungsstrang der Antriebswicklung mit der Polpaarzahl p und eine Teilwicklung für jeden Wicklungsstrang des Wicklungsstangs der Steuerwicklung mit der Polpaarzahl p+1 oder p-1. Eine sinus-förmige geometrische Verteilung der
Antriebsdurchflutung und der Steuerdurchflutung wird angenähert durch das Verhältnis der Windungszahlen der Teilwicklungen eines Wicklungεεtrangeε . So wird eine Konstruktion erreicht, die mit sehr kurzen Wickelköpfen auskommt. Es ist möglich, dasε mindestens eine der Teilwicklungen die Windungszahl null aufweist.
Bei einer üblichen Ausführungsform sind die oben erwähnten Spulenkerne radial zur Rotationsachse des Integralrotors angeordnet. Die Spulenkerne und das Rückschlusεeiεen können dabei eine Einheit bilden. Dieεe Einheit kann beispielsweise aus einzelnen Blechen mit langen Nuten geschichtet sein.
Bei einem weiteren, bevorzugten Ausführungsbeispiel weisen die Spulenkerne die Form von "L" auf, wobei die einen Schenkel der "L" parallel zur Rotationsachεe des Integralrotors angeordnet sind und die anderen Schenkel der "L" radial einwärts zu dieser Rotationsachse gerichtet sind, um den Fluss radial zum Integralrotor zu führen. Ein Drehfeldmotor mit einer solchen Rotor-Geometrie kann als Tempelmotor bezeichnet werden. Der Tempelmotor eignet sich besonders zur Aufnahme einer austauschbaren, als
Wegwerfeinheit konzipierten Anordnung aus Pumpengehäuse und
Integralrotor.
Der Antriebsteil der Lager/-Antriebs-Vorrichtung kann nach dem Prinzip eines Synchronmotors oder Induktionsmotors ausgebildet sein. Der Synchronmotor führt im allgemeinen zu Konstruktionen mit höherem Wirkungsgrad und vor allem geringeren Rotorverlusten. Im besonderen kann für diesen Synchronmotor eine Konstruktion nach dem Prinzip des Reluktanzmotors oder des permanentmagnetisch erregten Synchronmotorε gewählt werden.
Als Teil der Steuer- oder Regeleinrichtung der neuen Rotationspumpe kann, um den Antriebsflusswinkel zu bestimmen, der für die Steuerung des Antriebs des lagerlosen Motors notwendig ist, eine entsprechende Einrichtung vorgesehen sein.
Diese Einrichtung kann beispielsweise eine oder mehrere Flusεonden enthalten. Die neue Rotationspumpe kann im weiteren als Teil ihrer Steuer-oder Regeleinrichtung eine Detektoreinrichtung zur Bestimmung der Position des Integralrotors besitzen. Eine solche Detektoreinrichtung weist im allgemeinen einen
X-Y-Detektor auf, mittels welchem die Position des Integralrotors in einer Ebene senkrecht zur Rotationsachse bestimmbar ist. Der X-Y-Detektor kann eine oder mehrere Flussonden enthalten.
Ein bevorzugter X-Y-Detektor weist mehrere symmetrisch verteilte Flussonden auf, um die Teilflüsse an diskreten Stellen zu ermitteln. Aus den Teilflüssen werden zusätzlich zum Antriebsflusswinkel durch den Drehwinkel des Drehfeldmotors die X-Komponente und die Y-Komponente der
Position des Integralrotors bestimmt. Dies geschieht durch gewichtete Summation der Teilflüsse über jeweils den halben Umfang in positiver und negativer X-Richtung sowie in positiver und negativer Y-Richtung, durch Betragsbildung der ermittelten Summen und anschliessende Differenzbildung der Anteile in positiver und negativer X-Richtung εowie der Anteile in poεitiver und negativer Y-Richtung.
Die für die Regelung des Antriebs und/oder die Regelung der Position des Integralrotors in der X-Y-Ebene verwendeten Flussonden können beispielsweise im Luftspalt zwischen dem Pumpengehäuεe und dem Lager/Antriebε-Stator und dem Pumpengehäuse angeordnet sein.
Es ist auch möglich, die Flussonden im Kern der länglichen Spulen vorzusehen. Die Flussonden können beispielsweise Hall-Elemente oder magnetoresistive Flussonden sein. Die Befestigung der Flussonden kann an einem Zahn des Stators des Drehfeldmotors, beispielweise durch Klebung, vorgenommen werden. Eine andere Möglichkeit zur Befestigung der Flussonden besteht darin, sie in Auεnehmungen des Stators einzubetten.
Der X-Y-Detektor kann auch so ausgebildet sein, dasε er einen Wirbelεtromdetektor enthält um in der senkrecht zur Rotationsachse des Integralrotors verlaufenden X-Y-Ebene den Abstand zu einer im Integralrotor vorhandenen leitfähigen Schicht zu messen. Diese leitfähige Schicht kann beispielsweiεe aus einem Metallring oder einer dünnen Metallschicht oder aus dem aus leitfähigem Material wie NdFe gefertigten Rotormagneten selbst gebildet sein. Anεtelle eines einzigen Wirbelstromdetektors können auch in X- und Y-Richtung je zwei einander gegenüberliegende Wirbelstromdetektoren angeordnet sein, welche Detektorsignale abgeben. Auf diese Weise lassen sich die X- und die Y-Komponente der Position des Integralrotors in der quer zur Rotationsachse verlaufenden X-Y-Ebene bestimmen. Der X-Y-Detektor kann auch so ausgebildet sein, dass er Sensorwicklungen enthält, welche zusätzlich zur Antriebswicklung und zur Steuerwicklung im Stator des Drehfeldmotors angeordnet sind, um die Position des Integralrotors in der quer zu seiner Rotationsachεe- verlaufenden X-Y-Ebene mittels Auswertung der elektrischen Impedanz dieser Sensorwicklungen zu bestimmen.
Eine weitere Möglichkeit, den X-Y-Detektor auszubilden, besteht darin, eine optische Einrichtung vorzusehen, durch welche die Poεition des Integralrotors in der quer zu seiner Rotationsachse verlaufenden X-Y-Ebene mit Hilfe von Licht gemesεen werden kann, deεsen Wellenlänge im optischen Fenster deε Fluids liegt.
Die erwähnte Detektoreinrichtung kann neben dem X-Y- Detektor, von welchem verεchiedene Varianten ausführlich dargelegt worden sind, auch einen Z-Detektor besitzen, um die axiale Position des Integralrotors zu erfassen und ein entsprechendes Z-Positionεεignal zu emittieren.
Dabei kann daε ermittelte Z-Poεitionεsignal den Ist-Wert für die Beεtimmung eines Regelsignalε für eine regeltechniεche Stabilisierung der axialen Position des Integralrotors bilden. Zu einer solchen regeltechnischen
Stabilisierung der axialen Position deε Integralrotorε kann auch ein Magnetisierungsstrom mit einer Stromkomponente in der Antriebsflussrichtung deε Lager/Antriebsektors aufgebracht werden.
Die neue Rotationspumpe weist vorzugsweise eine Druckbestimmunqsvorrichtung auf, mit welcher aus dem Z-Positionssignal oder aus dem daraus ermittelten Regelsignal der Pumpendruck bestimmbar ist. Im allgemeinen ist die neue Rotationspumpe auch mit einer Durchflussbeεtim ungεvorrichtung ausgerüstet, welche aus dem
Z-Positionεεignal εowie der Drehzahl deε Integralrotors und der drehmomentbildenden Komponente des Antriebsstroms den zeitlichen Durchfluss des Fluids bestimmt.
Im folgenden wird die Erfindung und werden weitere Eigenεchaften und Vorteile deε erfindungsgemäεεen elektromagnetiεchen Drehantriebs anhand von schematischer Zeichnungen von Ausführungsbeispielen wie Rotationspumpen und Rührwerken sowie Einzelheiten davon beschrieben. Es zeig :
Fig. 1 eine Rotationspumpe nach der Erfindung in einer schematischen Schnitt-Darstellung durch die Rotationsachse;
Fig. 2 ein Pumpengehäuse mit einem Integralrotor, in einer ersten Ausführungsform, in einem Schaubild;
Fig. 3 ein Pumpengehäuse mit einem Integralrotor, in einer zweiten Ausführungsform, in einem Schaubild;
Fig. 4 eine Rotationspumpe mit zusätzlicher mit zusätzlichem Axialpositionssensor, in stark vereinfachter Darstellung, in einem Schnitt längs der Rotationsachse;
Fig.. 5 eine weitere Rotationspumpe mit zusätzlichen Axialpostionssensor und zusätzlicher Axialwicklung, in gleicher Darstellung wie Fig. 3, in vereinfachter Darstellung, in einem Schnitt längs der Rotationsachse; Fig. 6 einen Integralrotor für eine Axialpumpe, in einem Schaubild;
Fig. 7 einen Integralrotor für eine Zentrifugalpumpe, in einem Schaubild;
Fig. 8 einen Integralrotor für eine Zentrifugalpumpe, zur Verwendung mit einer nach dem Prinzip des Reluktanzmotors arbeitenden Antriebsvorrichtung, in einem Schaubild;
Fig. 9 eine als Axialpumpe ausgebildete Rotationεpumpe in vereinfachter Darstellung, in einem Schaubild;
Fig. 10 eine als Zentrifugalpumpe ausgebildete
Rotationspumpe in vereinfachter Darstellung, in einem Schaubild;
Fig. 11 einen Lager/Antriebs-Stator mit einem Integralrotor, wobei zur Vereinfachung das
Pumpengehäuse weggelaεsen ist, in einem Schaubild;
Fig. 12 eine Rotationspumpe mit einer als Tempelmotor ausgebildeten Lager/Antriebs-Vorrichtung, in einem Schaubild;
Fig. 13 einen Lager/Antriebs-Stator mit einem Integralrotor, in stark vereinfachter Darstellung, in einem ersten Betriebszustand, von oben und mit einem Flussensor für das Messen des Winkels;
Fig. 14 den Lager/Antriebs-Stator mit dem Integralrotor der Fig. 11 in gleicher. Darstellung wie in Fig.
11, jedoch mit einer anderen Position des Integralrotors und mit einem Flussensor zum Poεitionieren deε Rotors;
Fig. 15 einen weiteren Lager/Antriebs-Stator mit einem Integralrotor, in stark vereinfachter
Darstellung, von oben, wobei eine mögliche Anordnung der Wirbelstrom-Distanzsensoren gezeigt ist;
Fig. 16 ein Diagramm zum Gewinnen eines linearen
Positionssignalε (U1~ U2) durch Differenzbildung der Signale U^ und U2 gegenüber den Poitionεεenεoren. Darstellung des Steuerflusseε in Abhängigkeit von der Poεition deε Integralrotorε in X-Richtung;
Fig. 17 einen Stator, bei dem die Windungszahlen der Drehfeldwicklung und der Steuerwicklung so gewählt sind, dass eine sinusförmige geometrische Verteilung der Antriebsfeld-Durchflutung und der
Steuerfeld-Durchflutung erreicht wird;
Fig. 18 eine Teεlapumpe mit εeitlich in den Teεla-
Pumpenrotor zu einem Integralrotor integrierten, antreibenden Rotor,-
Fig. 19 eine Teslapumpe mit einem in das Innere deε Tesla-Pumpenrotors, zu einem Integralrotor integrierten antreibenden Rotor;
Fig. 20 ein Spaltröhr-Rührwerk mit einem magnetgelagerten Integral-Rühr-Rotor in einem Spaltrohr;
Fig. 21 ein Spaltrohr-Rührwerk mit einem magnetgelagerten Integral-Rühr-Rotor in einem Spaltrohr mit einem elektromagnetiεchen Axial-Lager für den Integralrotor; Fig. 22 eine weitere vorteilhafte Ausführungsform einer Lager/Antriebsvorrichtung mit Permanentmagneten im Stator
Die in Fig. 1 dargestellte Rotationspumpe 2 mit der
Rotationεachεe 3 weiεt einen Lager/Antriebε-Stator 4 eine nach dem Prinzip deε 'lagerlosen Motors' wirkenden Lager/Antriebsvorrichtung auf . Der lagerlose Motor arbeitet nach dem Prinzip eines Drehfeldmotorε. Der Lager/Antriehs-Stator 4 besitzt elektromagnetiεch wirksame Bauteile 6, die εpäter auεführlich beschrieben werden. Im Lager/Antriebs-Stator 4 ist ein Pumpengehäuse 8 mit einem axialen Einlaεε 10 und einem radialen Auslasε 12 für ein zu förderndeε Fluid angeordnet . Der Einlaεε 10 und der Auεlaεε 12 dienen dazu, die Rotationεpumpe 2 mit einem nicht dargestellten Leitungsnetz zu verbinden. Ein erster Pfeil A bezeichnet die Zuflusεrichtung, ein zweiter Pfeil Z die Abflussrichtung des Fluids. Der Lager/Antriebs- Stator 4 und das Pumpengehäuse 8 sind ortsfeste bzw. beim Pumpenbetrieb nicht drehende Bauteile der Rotationspumpe 2. Im Inneren des Pumpengehäuses 8 befindet sich ein Integralrotor 14, der durch eine Rotorscheibe 16 und daran befeεtigte Rotorεchaufein 18 gebildet wird, wobei in der Rotorεcheibe 16 nicht dargeεtellte elektromagnetisch wirksame Bauteile des Drehfeldmotors aufgenommen sind. Der Integralrotor 14 dient gleichzeitig als Lager/Antriebs- Rotor wie auch als Pumpenrotor und ist somit der einzige drehbare Bauteil der Rotationεpumpe 2.
Daε in Fig. 2 dargeεtellte Pumpengehäuse 8 besitzt einen axialen Einlass 10 und einen radialen Auslaεs 12, eine konische obere Wandung 20 und eine im wesentlichen ebene untere Wandung 22. Im Pumpengehäuse 8 ist der Integralrotor 14 sichtbar mit der hier ringförmig ausgebildeten Rotorscheibe 16 und den Rotorschaufeln 18, die an der oberen Fläche der Rotorscheibe 16 befestigt sind. Ein solcher Integralrotor wird verwendet in einer als Zentrifugalpumpe ausgebildeten Rotationspumpe.
Es wurde eingangs schon erwähnt, dass die Anzahl und damit die konstruktive Anordnung der Einlasse und Ausläεεe die
Druckverhältnisεe und damit die Lage des Integralrotorε im Pumpengehäuse beeinflussen. Um diesen Einfluss in der X-Y- Ebene zu minimalisieren, ist es bei einer Ausbildung der Rotationspumpe als Zentrifugalpumpe vorteilhaft, zwei sich gegenüberliegende Auslässe vorzusehen. In diesem
Zusammenhang wäre eε sogar vorteilhaft, eine Vielzahl von Auslässen vorzusehen, was aber die Konstruktion stark komplizieren würde.
Das in Fig. 3 gezeigte Pumpengehäuεe 8, weist einen weiteren axialen Einlass 11 und einen weiteren radialen Auslass 13 auf, wobei sich sowohl die Einlasse 10, 11 als auch die Ausläεse 12, 13 jeweilε gegenüberliegen. Daε Pumpengehäuεe 8 besitzt daher neben der oberen konischen Wandung 20 auch eine untere konische Wandung 233, und die Rotorscheibe 16 des Integralrotorε 14 ist auf ihrer oberen und ihrer unteren Fläche mit Rotorschaufeln 18 bzw. 19 bestückt .
Bei einer Ausbildung der Rotationspumpe als Axialpumpe sowie als Zentrifugalpumpe mit nur einem axialen Einlaεε wirkt infolge des Druckgefälleε in axialer Richtung eine axiale Kraft auf den Integralrotor. Fig. 4 und Fig. 5 zeigen am Beiεpiel einer Zentrifugalpumpe, wie diese axiale Kraft kompensiert werden kann, indem eine zusätzliche Axialwicklung 8, 9 angeordnet werden.
Der Integralrotor 14 gemäss Fig. 6 ist für eine nach dem Prinzip einer Axialpumpe wirkende Rotationspumpe bestimmt. Er besteht im wesentlichen aus der ringförmigen
Rotorscheibe 16 und einem im zentralen Freiraum dieser Rotorscheibe 16 angeordneten Flügelrad 24, deεsen Flügel die Rotorεchaufeln 18 bilden. Die aufgeεchnitten dargestellte Rotorscheibe 16 enthält in ihrem Inneren elektromagnetisch wirksame Bauteile für eine Lager/Antriebs-Vorrichtung mit einem alε Synchronrotor wirkenden Drehfeldmotor, nämlich ein rotorseitiges
Rückεchlusseisen 26, einen Magneten 28 und eine leitende Schicht 30; diese Schicht 30 kann, aus einem Metallring oder einer dünnen Metallschicht bestehen. Ist der Magnet 28 aus leitfähigem Material gefertigt, so kann er selbεt alε leitfähige Schicht benutzt werden. Sie wird als Messeinheit für die Messung der radialen Rotorposition mittels Wirbelεtro diεtanzεensoren genutzt .
Fig. 7 zeigt nochmals den in Fig. 3 dargestellten, in einer Zentrifugalpumpe oder Seitenkanalpumpe verwendbaren
Integralrotor 14, mit den oberen Rotorschaufeln 18 und den unteren Rotorschaufeln 19 sowie mit der hier aufgeschnittenen Rotorscheibe 16, in welcher das rotorseitige Rückschluεseisen 26, der Magnet 28 und die leitende Schicht 30 eingeschloεsen sind, die als rotierende Teile eineε Synchronmotors zu betrachten sind.
Der in Fig. 8 dargestellte Integralrotor 14 mit der ringförmigen Rotorscheibe 16 ist für eine alε Zentrifugalpumpe konzipierte Rotationspumpe bestimmt, derer. Lager/Antriebs-Vorrichtung einen Drehfeldmotor besitzt, der nach dem Prinzip eines Reluktanzmotors arbeitet. Nur die obere Fläche der Rotorscheibe 16 ist mit den Rotorschaufeln 18 bestückt. In der Rotorscheibe ist ein Eisenkreuz 23 eingebettet, wie es für einen Reluktanzmotor üblich iεt .
Fig. 9 zeigt die alε Axialpumpe ausgebildete Rotationspumpe 2 deutlicher. Das aufgeschnittene Pumpengehäuse 8 weist den axialen Einlass 10 und den hier ebenfallε axialen Auslasε 12 auf, wobei die Pfeile A und Z die Richtung des geförderten Fluids anzeigen. Im Pumpengehäuse 8 befindet sich der Integralrotor 14, der wie früher beschrieben durch die Rotorscheibe 16 und das Flügelrad 24 mit seinen als Rotorschaufeln 18 wirkenden Flügeln gebildet wird. Im weiteren ist in Fig. 9 der Lager/Antriebs-Stator 4 sichtbar. Er besteht aus dem Statorblechpaket mit Nuten, Zähnen und Rückschlusseisen und einer in die Statornuten eingelegten Wicklung, welche aus einer Teilwicklung mit der Polzahl p und einer Teilwicklung mit der Polzahl n+1 oder n-1 beεteht .
Er weiεt mehrere εymmetriεch um das Pumpengehäuse 8 angeordnete, radial gerichtete stabartige Spulenkerne 34, Wicklungen 36 und ein statorseitigeε Rückschlusseisen 38 auf, welche die ortsfesten elektrisch wirksamen Bauteile 6 der Lager/Antriebs-Vorrichtung der Rotationspumpe 2 sind.
In Fig. 10 ist eine Ausführungsform dargestellt, bei welcher die Rotationspumpe 2 alε Zentrifugalpumpe auεgebildet iεt . Man erkennt das Pumpengehäuse 8 mit dem axialen Einlass 10 und dem hier radialen Auslaεs 12 sowie den Integralrotor 14 mit der ringförmigen Rotorscheibe 16 und den Rotorschaufeln 18. Im weiteren sind die radial gerichteten Spulenkerne 34, die Wicklungen 36 und das rotorseitige Rückschlusseisen 38 vereinfacht dargestellt.
Fig. 11 zeigt, die rotorseitigen und statorseitigen elektromagnetisch wirksamen Bauteile deutlicher. Dabei wurde das Pumpengehäuse als elektromagnetisch unwirksameε Bauteil weggelaεεen. In der Mitte befindet sich der aufgeschnittene Integralrotor 14 mit der Rotorscheibe 16, welche mit den Rotorschaufeln 18, 19 versehen ist. In der Rotorscheibe 16 sind, wie weiter oben beschrieben, das Rückschlusseisen 26, der Magnet 28 und die leitende Schicht 30 eingebettet. Der Integralrotor 14 ist vom ebenfalls aufgeschnittenen Lager/Antriebs-Stator umgeben, welcher die Spulenkerne 34, die Wicklungen 36 und daε rotorseitige Rückschluεseisen 38 aufweist. In Fig. 12 ist die Rotationspumpe 2 mit einer Lager/Antriebsvorrichtung dargestellt, deren Drehfeldmotor ein sogenannter Tempelmotor ist . Zur Verdeutlichung dieser Figur iεt das Pumpengehäuse 8 nicht in seiner montierten Lage sondern oberhalb derselben dargestellt. Wie schon mehrfach beschrieben, weist das Pumpengehäuse 8 einen axialen Einlass 10 und einen radialen Auslaεs 12 auf. Es enthält den Integralrotor 14 mit der ringförmigen Rotorscheibe 16, an deren oberer Fläche die Rotorschaufeln 18 sichtbar sind. Anεtelle der radial verlaufenden
Spulenkerne 34, wie sie in den Fig. 7, 8 und 9 dargestellt sind, weist der Tempelmotor symmetrisch verteilte Spulenkerne 35 auf, von denen jeder die Form eines 'L' hat. Dabei verläuft der eine lange Schenkel 35a des 'L' vertikal, bzw. parallel zur Rotationsachse 3, während der kurze Schenkel 35b des 'L' radial einwärts zur Rotationsachse 3 gerichtet ist. Der Tempelmotor unterscheidet sich in seiner elektrischen Wirkungsweise daher nicht von dem in Fig. 11 dargestellten Drehfeldmotor, erlaubt es aber besonders gut, das Pumpengehäuse 8 praktisch im Lager/Antriebs-Stator so anzuordnen, dass es zwar im montierten Zustand praktisch versenkt und somit platzsparend angeordnet ist, aber dennoch in einfacher Weise demontierbar ist. Im weiteren sind die Wicklungen 36 sowie das Rückεchlusseisen 38 sichtbar.
Die obige Beschreibung bezieht sich im weεentlichen auf den konstruktiven Aufbau der Rotationspumpe mit ihrer Lager/Antriebs-Vorrichtung und der Steuerung. Im folgenden werden mögliche Massnahmen zur regeltechnischen Ausbildung der Rotationspumpe dargelegt.
Um den für die Antriebsregelung des lagerlosen Motors notwendigen Antriebsflusswinkel zu bestimmen, kann mindestens eine Flussonde vorgesehen werden. Über die Teilflusskomponente ist dann der Antriebsflusswinkel bestimmbar. Über dieselbe Anordnung ist ebenfalls die Drehzahl des Rotors beεtimmbar. Die Anordnung und Ausbildung der Flusεonden wird εpäter beεchrieben.
Zur regeltechniεchen Stabilisierung der Position des Integralrotors musε deεεen jeweilige Poεition bzw. die Abweichung derεelben von der soll-Position ermittelt werden. Dazu iεt eine Detektorvorrichtung vorgeεehen, welche einen X-Y-Detektor und auch einen Z-Detektor aufweist. Der X-Y-Detektor dient zur Bestimmung der Position des Integralrotors in der senkrecht zur Rotationsachse verlaufenden X-Y-Ebene, und der Z-Detektor dient zur Bestimmung der Position des Integralrotors längs der Rotationsachse deε Integralrotors.
Der X-Y-Detektor kann in einer ersten Ausführungsart mehrere Flusεonden aufweisen, wie sie auch für die Regelung deε Antriebeε benützt werden können. Dabei können die Fluεεonden Hall-Elemente oder magnetoreεiεtive Flussonden sein; sie werden beiεpielsweiεe an einem Zahn des Stators befestigt, evtl. durch Klebung, oder in eine Nute des Stators eingebettet .
Fig. 13 zeigt die Kontur des Pumpengehäuses 8 und den darin befindlichen Integralrotor 14, der seine korrekte, mittige Position einnimmt. Die als Punkt sichtbare Rotationsachse 3 bildet den Schnittpunkt eines Achsenkreuzes mit den Achsen X und Y. Das Pumpengehäuse 8 ist von den Spulenkernen 34 oder Statorzähnen umgeben. Im Luftspalt zwischen dem Rotorgehäuse 8 und den Spulenkernen 34 oder den Statorzähnen sind mehrere Flussonden 50x, 50y, 51x, 5ly angeordnet, welche Detektorenteil einer Detektoranlage zur Bestimmung Magnetiεierungsrichtung (Winkel alpha des Integralrotors 14 in der durch die Achsen X und Y definierten, senkrecht zur Rotationsachse 3 verlaufenden X-Y-Ebene sind; diese Lage wird kurz als Winkellage des Integralrotors 34 bezeichnet . Durch die Anordnung von jeweils zwei gegenüberliegenden Flussonden kann der Einfluss einer Verlagerung des Rotors aus dem Zentrum auf die Bestimmung der Winkellage des Integralrotors kompensiert werden.
In Fig. 14 iεt eine ähnliche Anordnung dargeεtellt, mit dem Pumpengehäuεe 8 und dem darin befindlichen Integralrotor 14, der hier nicht seine korrekte, mittige Lage einnimmt sondern - auf den Achsen X und Y gemessen - um x und y aus dieser Lage verschoben ist, so dass seine Rotationsachεe nicht mit dem Schnittpunkt der Achsen X, Y zusammenfällt. Bei dieser Anordnung befinden sich acht Flussonden 50a bis 50h im Luftspalt zwiεchen dem Rotorgehäuse 8 und jeder der acht ebenfalls eingezeichneten Spulen 34.
Die Flusεonden dienen hier nicht nur der Bestimmung der Winkellage des Integralrotorε, εondern gleichzeitig der Beεtimmung seiner X-Y-Position. Dieε geschieht durch gewichtete Summation der mit Hilfe der Fluεεonden gemessenen Teilflüεse über jeweils den halben Umfang in x-Richtung und y-Richtung und jeweils in der Gegenrichtung, Betragsbildung und anschliessende Differenzbildung (deε Anteilε in x-Richtung und in Gegenrichtung εowie deε Anteilε in y-Richtung und in Gegenrichtung) .
Der X-Y-Detektor kann in einer anderen Ausführungsart auch als Wirbelstrom-Distanzsensor ausgebildet sein. Durch einen solchen Wirbelstrom-Distanzεensor wird der Abstand zu der mehrfach erwähnten leitfähigen Schicht in der Rotorscheibe des Integralrotorε in der X-Y-Ebene gemessen.
In einer anderen Ausführungεart gemäεs Fig. 15 enthält der X-Y-Detektor Sensorwicklungen 60x, 60y, 61x, 61y. Die übrigen in Fig. 15 dargestellten Elemente entsprechen denen der Fig. 12. Die Sensorwicklungen bestimmen die X-Y- Position des Integralrotors 14 durch Auswertung ihrer elektrischen Impedanz. Fig. 16 zeigt den Zusammenhang zwischen Spannung U und Abweichung x des Integralrotors von seiner soll-Lage in Richtung der Achse X. Daraus ist ersichtlich, dass der Zuεammenhang U/x im mittleren, für die Regelung maεsgebenden Bereich in erwünschter Weise linear ist, falls das Senεorsignal aus der Differenz von zwei gegenüberliegenden Sensoren mit eingeschränktem, linearem Mesεbereich gewonnen werden
Eine weitere Auεführungεform für die Ausbildung des X-Y-Detektors besteht darin, eine optische Einrichtung zu verwenden, wobei Licht, dessen Wellenlänge im Bereich des optischen Fensterε deε geförderten Fluidε liegt, verwendet wird.
Die Detektoreinrichtung weist, wie schon erwähnt, nicht nur den X-Y-Detektor sondern eventuell auch einen Z-Detektor auf, für welchen übliche Detektoreinrichtungen, beispielsweise Wirbelstrom-Distanzsenεor benutzt werden. Der X-Y-Detektor beεtimmt die Position des Integralrotors in Richtung der Rotationsachse und emittiert ein Z- Positionsεignal, welcheε alε iεt-Wert für die regeltechnische Stabilisierung des Integralrotors in dieser Richtung benützt wird. Zu dieser regeltechnischen Stabilisierung dient beispielsweise ein
Magnetisierungεstrom, der in der Antriebsrichtung mit einer Stromkomponente in der Flussrichtung aufbringbar ist. Das erwähnte Z-Positionssignal oder das darauε ermittelte Regelsignal dient auch dazu, den Pumpendruck mit Hilfe einer Druckbestimmungsvorrichtung zu bestimmen.
Ebenfalls aus dem Z-Positionssignal lässt εich, bei Kenntnis der Drehzahl des Integralrotors und der drehmomentbildenden Komponente des Antriebsstroms, die zeitlich geförderte Menge des Fluids bestimmen. In Fig. 17 ist ein Beispiel für die Windungszahlen der Drehfeldwicklung und der Steuerwicklung gezeigt, mit welchen eine wenigstenε angenähert sinusförmige des Antriebsdurchflutung und Steuerdurchflutung erreicht wird. Die Zahl der Windungen ist abhängig vom Kosinus, bzw. Sinus des elektriεchen Winkelε der Lage der Pole.
Bei der in Fig. 18 dargestellten Teslapumpe beεteht der scheibenförmige, antreibende Rotor aus der Rotorscheibe 16, dem Magneten 28, dem Rückschlusseisen 26, sowie der leitenden Schicht 30. Dieser antreibende Rotor 16 ist mit den Pumpenrotorplatten 29 zu einem Integral- Teslapu penrotor zusammengebaut. Der antreibende Rotor ist seitlich im Integralrotor angeordnet und ist im Pumpengehäuse 8 mit dem Einlass 10 und dem Auslass 12, eingebaut .
Im Unterschied zur Konstruktion von Fig. 18, beim Integralrotor der Teslapumpe von Fig. 19, der antreibende Rotor 16 zwischen Pumpenrotorplatten 29 eingebaut.
Das Spaltrohr-Rührwerk von Fig. 20 ist ein Stator mit dem Rückschlusseisen 38 und den Wicklungen 36 im Spaltrohrgehäuse 32 eingebaut. Der Integralrotor 31 umfaεεt den eigentlichen Rührer, in den der antreibende Rotor mit Magnetring 28, dem Rückschlusseisen 26 und einer leitenden Schicht 30 integriert ist. Das Spaltrohrgehäuse 32 ist in einer Öffnung im Rührtank 33 eingeführt und kann mit der Dichtung 40 gegen den Aussenrau hin abgedichtet sein. Das umzurührende Rührgut befindet sich im Innern des Rührtanks 33.
Beim Spaltrohr-Rührwerk der Fig. 21 ist im Spaltrohr 32 zusätzlich ein elektromagnetisches Axiallager mit dem Stator 41 und mit einer Statorwicklung 42 eingebaut. Das
Rückschlusseisen 43 des Axialmagnetlagers mit dem Stator 41 ist ebenfalls im Rührer 31 integriert. Der Vorteil einer Lager/Antriebs-Vorrichtung nach dem Prinzip des Reluktanzmotors (Fig. 8) oder Induktionsmotors liegt im Vergleich mit einem permanentmagnetiεch erregten Synchronmotor darin, dass der Integralrotor keine teuren Materialien enthält. Dies ist von besonderer Bedeutung, falls der Integralrotor zu einem Wegwerfteil wie beispielsweiεe bei einer Einweg-Blutpumpe gehört. Nachteilig iεt εowohl beim Reluktanzmotor alε auch beim Synchronmotor, daεε die geεamte Durchflutung zur Erregung deε Antriebεfeldeε über einen Magnetisierungsstromanteil in der Antriebswicklung aufgebracht werden muss. Bei groεsen Luftspalten erfordert die Luftspaltmagnetiεierung enorm hohe Magnetisierungsεtröme, welche ihrerεeitε grosse Verluεte in der Antriebεwicklung verursachen. So iεt der mit Induktions- und Reluktanzmotoren erreichbare Luftεpalt auf wenige mm beschränkt. Eine Ausnahme Bilden sehr grosse Motoren.
Eine Lösung diesen Problems wird darin gefunden, dass im Stator der Lager/Antriebs-Vorrichtung Permanentmagnete angeordnet werden, welche einen Unipolarfluss erzeugen (das heiεst der Flusε wird über den ganzen Umfang betrachtet entweder nur vom Stator zum Rotor oder in umgekehrter Richtung geleitet) . Zuεammen mit einer zweipoligen Drehfeldwicklung lassen sich auf den Integralrotor Kräfte in radialer Richtung erzeugen. Mit einer weiteren Drehfeldwicklung mit einer Polpaarzahl p>2 kann zuεätzlich eine rotierende Drehfeldkomponente erzeugt werden, welche εich zum Antrieben des als Kurzschlusεläufers oder alε Reluktanzmotorläufers ausgestalteten Integralrotors eignet und weder im Zusammenspiel mit dem Unipolarfluss als auch mit der zweipoligen Flusskomponente zu störenden Radialkräften führt. Eine vorteilhafte Ausführungεform einer solchen Rotationsmaschine iεt in Figur Z dargestellt. Sie zeigt den Stator (3) und den Integralrotor (14) der
Lager/Antriebs-Vorrichtung. Der Unipolarfluεs, dargestellt durch die Unipolarflusslinien (52,53,54,55) sowie durch weitere Unipolarflusslinien welche nicht benannt sind, wird hier durch zwei ringförmig ausgeführte lateral magnetisierte und beidseitig deε Statorε angeordnete Permanentmagnete (50, 51) erregt. Natürlich können an Stelle der Permanentmagnetringe auch mehrere kleine
Einzelmagnete eingesetzt werden. Weiter können die Magnete auch ausεerhalb der Wicklung angeordnet werden. Die beidεeitige Anordnung von Magneten ist deshalb vorteilhaft, weil dadurch die Streufeldlinien welche axial in den Rotor eindringen symmetrisch sind und somit keine axialen
Zugkräfte erzeugen. Die Statorwicklung (4) enthält sowohl Windungen einer zweipoligen Drehfeldwicklung als auch einer höherpoligen Drehfeldwicklung, vorzugsweiεe mit der Polpaarzahl 3.
Die Rotationεmaεchine mit einem angetriebenen Rotor und mit einem elektriεchen Motor, umfaεεt einen Stator und einen antreibenden Rotor. Der Stator ist als elektromagnetisches Lager für den antreibenden Rotor ausgebildet und der antreibende Roter deε Elektromotors bildet mit dem angetriebenen Rotor der Rotationsmaschine eine Rotoreinheit, d.h. einen Integralrotor.
Diese Rotationsmaschine umfasst eine Drehfeldwicklung mit der Polpaarzahl p zum Erzeugen eines Antriebsdrehfeldeε und zum gesteuerten Drehen des antreibenden Rotors um seine Rotationsachse, sowie eine Steuerwicklung mit der Polpaarzahl p+1 oder p+1 zum Erzeugen eines dem Antriebsdrehfeld überlagerten Steuerfeldes um die radiale Lage (zwei Freiheitsgrade) des angetriebenen Rotors in seiner Rotationsebene geregelt, d.h. aktiv zu stabilisieren.
Bei der Rotationsmaschine kann der antreibende Teil des Integralrotors, scheibenförmig, ringförmig glockenförmig, gestaltet sein und der Rotors kann axial, sowie gegen Verkippung gegenüber der Statorebene passiv durch Reluktanzkräfte stabilisiert sein.
Die Rotationsmaεchine kann eine Rotorgeometrie haben, die so iεt, dass mindestens einer der nicht aktiv stabilisierten .Freiheitsgrade des Rotors, passiv durch hydroεtatische oder hydrodynamische Kräfte, durch aerostatiεche, aerodynamische Kräfte oder durch Gravitationskräfte stabilisiert ist.
Bei einer derartige Rotationsmaεchine kann der Stator zuεammen mit dem antreibenden Rotor einen permanentmagnetisch erregten Synchronmotor oder
Reluktanzmotor bilden oder der Stator kann zusammen dem antreibenden Rotor einen Auεεenläufermotor bilden.
Der permanentmagnetisch antreibende Rotor kann als Ringmagnet, Scheibenmagnet oder alε Schalenmagneten ausgebildet sein und kann auch das Rotorrückschluεseisen oder das Eisenkreuz Teil des Integralrotors sein.
In einer derartigen Rotationsmaεchine kann der Integralrotor zuεammen mit einem Teil der
Arbeitεvorrichtung als Einheit ausgebildet sein, welche vom Antriebsstator abhebbar ist.
Der Antriebsstator der Rotationεmaεchine kann auε einzelnen, εtabförmigen, radial um den Rotor angeordneten Spulen mit einem gemeinεamen magnetiεchen Rückεchluεε gebildet sein und jede der Spulen kann je eine Teilwicklungen für jeden Wicklungsεtrang der Antriebεwicklung und der Steuerwicklung aufweiεen
Bei der Rotationsmaschine, kann die Windungszahl der Teilwicklungen so gewählt sein, dass die
Antriebsdurchflutung und die Steuerdurchflutung geometrisch wenigstenε angenähert sinusförmig sind. Für eine zweiphasige Lager-Antriebseinheit kann zum Beispiel die Windungszahl jeder Teilwicklung der ersten Phase (sowohl der Antriebswicklung, als auch der Steuerwicklung) einer gegebenen Windungszahl Nη_ mal dem Kosinus des elektrischen Winkels ihrer Lage alpha ( [N-, cos (p alpha) ] für die Antriebswicklung und [N-_ cos{ (p±l)alpha}] für die Steuerwicklung) und die Windungszahl jeder Teilwicklung der zweiten Phase (wiederum sowohl der Antriebswicklung als auch der Steuerwicklung) einer gegebenen Windungszahl N2 mal den Sinus deε elektrischen Winkels ihrer Lage alpha ( [N2 sind(p alpha)] für die Antriebswicklung und [N2 sin{ (p±l) alpha}] für die Steuerwicklung) sein.
Der Antriebsstator der Rotationsmaschine kann bezogen auf den Rotor in axialer Richtung, aus tempelsäulenartig angeordneten Spulen, als Tempelmotor mit einem gemeinsamen magnetischen Rückschluss ausgebildet sein, wobei der Fluss an einem Spulenende, auf der dem magnetischen Rückschluss gegenüberliegenden Seite, durch eine zum Rotor hin zeigende L-förmige Verlängerung des Spulenkerns radial zum Rotor hin geführt wird und die Spulen Teilwicklungen für jeden Wicklungsstrang der Antriebswicklung und der Steuerwicklung aufweisen, wobei einzelne Teilwicklungen die Windungszahl 0 haben können und die wenigstens angenähert sinusförmige geometrische Verteilung der Antriebsdurchflutung und der Steuerdurchflutung durch das WindungszahlVerhältnis zwischen den einzelnen Teilspulen gebildet wird.
Bei der Rotationsmaschine können im Luftspalt zwischen
Stator und Rotor und/oder in den Spulenkernen Flusssonden angebracht werden, um eine oder mehrere Teilflusskomponenten zu bestimmt, die mit Mitteln zum Übermitteln der gemessenen Teilflusskomponenten an die Antriebs- und Positionsregler des lagerlosen Motors übertragen werden. Bei der Rotationsmaschine kann durch gewichtete Summation der Teilflüsse über jeweilε den halben Umfang in x-Richtung und y-Richtung der Rotationsebene des antreibenden Rotors und in der Gegenrichtung, Betragsbildung und anεchlieεεende Differenzbildung des Anteils in x-Richtung und in Gegenrichtung sowie des Anteils in y-Richtung und in Gegenrichtung, die Rotorposition bestimmt werden. Aus den Teilflüssen kann der Winkel und/oder der Betrag deε Antriebεflusεwinkels bestimmt werden.
Bei der Rotationsmaschine können in einzelnen Nuten oder zwischen einzelnen Spulenkernen des Antriebεεtatorε Wirbelstromdistanzεenεoren angeordnet sein, die den Abstand zu einer leitfähigen Schicht im antreibenden Rotor, in der Rotorebene (xy-Ebene) messen.
Solche Wirbelstromdistanzsenεoren können auε einem Metallring, oder einer dünnen Metallεchicht oder auε dem leitfähigen Magnetmaterial deε antreibenden Rotormagneten beεtehen.
In x- und y-Richtung können jeweilε zwei gegenüberliegende Distanzsensoren eingesetzt sein und die Komponenten der Position des antreibenden Rotors, in der Rotorebene (xy- Ebene) kann aus der Differenz der Sensorsignale gegenüberliegender Sensoren bestimmt werden. Der Antriebεstator der Rotationsmaschine kann zusätzlich zur Antriebs- und Steuerwicklung Senεorwicklungen aufweiεen.
Die axiale Poεition des antreibenden und des angetriebenen Rotors der Rotationsmaschine, d.h. des Integralrotors kann mit einem Magnetisierungsstrom in einer zusätzlichen Axialεpule, geregelt stabilisiert sein.
Bei einer Rotationsmaschine kann zwischen dem
Antriebsstator und Integralrotor der Rotationsmaεchine ein Spaltrohr angeordnet sein. Die mit der Rotationsmaεchine angetriebene
Arbeitεvorrichtung kann beiεpielεweise eine Rotationspumpe, insbesondere eine medizinische Pumpe zum Pumpen von Blut, ein Rührwerk, eine Turbomaschine, eine Spindel, eine Zentrifuge oder eine Galette sein. Die Rotationspumpe kann beispielsweise eine Axialpumpe, eine Zentrifugalpumpe, eine Seitenkanalpumpe, eine Peripheralpu pe oder eine Teslapumpe sein. Die als Rotationspumpe ausgebildete Rotationsmaschine, kann ein geschlossenes Pumpengehäuse aufweisen, das den Integralrotor enthält, welcher den antreibenden Rotor des Motors und den angetriebenen Rotor der Pumpe umfaεst . Daε Pumpengehäuεe, kann mit Vorteil auf mindestens einer Seite frei zugänglich und austauεchbar am Antriebsstator angebracht sein.
Eine solche als Axialpumpe ausgebildete Rotationεmaεchine kann einen ringförmigen antreibenden Rotor aufweisen, der das Flügelrad der Axialpumpe ringförmig umgibt (Hohlwellenläufer) .
Bei einer solchen als Axialpumpe ausgebildeten Rotationsmaschine, kann daε Pumpengehäuεe auf einer Seite einen Einlaεεεtutzen und auf einer anderen Seite einen Auslasεstutzen aufweisen. Über diese Stutzen kann die Pumpe in den Förderkreislauf eingefügt werden und zwar mit
Vorteil derart, dasε daε Pumpengehäuεe mit dem Pumpenrad nach der Demontage der vorzugsweise schlauchartigen Verbindungen vom antreibenden Stator entfernbar iεt.
Die Rotationεmaschine kann auch alε Zentrifugalpumpe auεgebildet sein, deren ringförmiger oder scheibenförmigen antreibender Rotor in ein Flügelrad, vorzugsweise aus Kunstεtoff integriert oder an daε Flügelrad angebaut iεt.
Bei einer alε Rotationspumpe ausgebildeten
Rotationsmaschine, kann das axiale Rotorpositionεεignal oder daε Regelsignal der Regelanlage, daε zur axialen Stabilisierung des Rotors genutzt wird auch zum Bestimmen des Pumpendrucks genutzt werden.
Bei einer alε Rotationεpumpe auεgebildeten Rota ionεmaεchine, können Mittel zum Bestimmen deε
Durchfluεεeε von Fluid durch die Pumpe auε dem axialen Rotorpositionsεignal, der Drehzahl des Rotorε sowie der drehmomentbildenden Komponente deε Antriebεstroms (Q- Komponente) vorgesehen sein.
Bei einer als Zentrifugalpumpe ausgebildeten Rotationsmaschine, kann das Pumpengehäuse auf beiden axialen Seiten einen Einlass und zwei Auslässe aufweisen.
Bei einer Rotationsmaεchine nach der Erfindung kann die axiale Länge des antreibenden Rotors mit Vorteil kleiner oder gleich dem halben Durchmeεser dieseε Rotors εein.
Die Erfindung bezieht sich auch auf eine Rotationspumpe für Fluide, mit einem hermetisch abgeεchloεsenen Pumpengehäuεe mit mindestens einem Einlass und mindestens einem Auslaεε für das Fluid und mit einem Pumpenrotor, der durch eine magnetiεche Lagervorrichtung gelagert und durch eine berührungεfreie elektriεche Antriebsvorrichtung antreibbar ist wobei die magnetische Lagervorrichtung und die berührungsfreie elektrische Antriebsvorrichtung einen lagerlosen Drehfeldmotor mit einem gemeinsamen Lager/Antriebε-Rotor bilden, der mit dem Pumpenrotor zusammen als Integralrotor (14) ausgeführt ist, wobei der lagerloεe Drehfeldmotor eine Antriebεwicklung mit einer Polpaarzahl p und eine Steuerwicklung mit einer Polpaarzahl, p+1 oder p-1 besitzt, derart, dass die Rotation des Integralrotors (14) um seine Rotationsachse (3) mittels der Antriebswicklung und die Position deε Integralrotors (14) in der senkrecht zur Rotationsachεe (3) verlaufenden Ebene (X-Y) mittelε der Steuerwicklung aktiv εteuerbar εind, und die Poεition des Integralrotors (14) längs der Rotationsachse (Z) und seine Verkippung aus der genannten Ebene (X-Y) durch Reluktanzkräfte passiv stabilisiert sind. Die Rotationspumpe kann dabei ein Pumpengehäuse 8 aufweisen bei welchem der Integralrotor 14, der darin aufgenommenen iεt von aussen frei zugänglich und ausbaubar angeordnet iεt.
Der Integralrotor 14 der Rotationspumpe, kann eine ringartige Rotorscheibe 16 aufweisen, in welcher die elektromagnetisch wirksamen Bauteile 26, 28, 30 enthalten sind, und an welcher die Rotorschaufeln 18, 19 befestigt sind. Der Pumpenrotor und die elektromagnetisch wirksamen Bauteile 26, 28, 30 können auch in miteinander verεchweisste Teile der Rotorscheibe 16 eingebettet oder an ihr angespritzt εein. Bei der Rotationspumpe können die vom geförderten Fluid berührten Flächen des Pumpengehäuses 8 und des Integralrotors 14 aus Kunststoff bestehen.
Das Pumpengehäuse 8 kann einen weiteren axialen Einlasε 11 aufweisen, der dem ersten axialen Einlaεε 10 gegenüberliegt. Das Pumpengehäuεe 8 kann auch einen weiteren, mindestenε annähernd radialen, Auεlaεε 13 besitzen, der zentralsyτnmetrisch zum ersten radialen Anlass 12 angeordnet ist. Die Rotationspumpe kann mit Vorteil als Axialpumpe ausgebildet sein (Fig. 9) .
Die Rotorschaufeln 18 können als Flügel eines Flügelrades 24 ausgebildet sein, das in der mittigen Ausnehmung der ringartigen Rotorscheibe 16 befestigt ist.
Die Rotationspumpe kann auch eine Zentrifugalpumpe sein Fig. 11. Bei der Rotationspumpe können die Rotorschaufeln 18 an einer Fläche der Rotorscheibe 16 angeordnet sein. Die Rotorschaufeln 18, 19 können an beiden Flächen der Rotorscheibe 16 angeordnet sein. Der Lager/Antriebs-Stator des Drehfeldmotorε der Rotationspumpe kann mehrere längliche, um den Integralrotor 14 angeordnete Spulenkerne 34 mit einem gemeinsamen magnetischen Rückschlusε aufweiεt, wobei jeder Spulenkern 34 eine Teilwicklung deε Wicklungεstranqs der
Antriebswicklung mit der Polpaarzahl p und eine Teilwicklung des Wicklungsεtrangε der Steuerwicklung mit der Polpaarzahl p+1 oder p-1 enthält, wobei eine εinuεförmige geometrische Verteilung der Antriebsdurchflutung und der Steuerdurchflutung durch das Verhältnis der Windungszahlen der Teilwicklungen eines Wicklungsstranges angenähert is . Dabei kann eine der Teilwicklungen die Windungszahl 0 aufweisen.
Die Spulenkerne 34 der Rotationspumpe können radial zur
Rotationssachse 3 deε Integralrotors 14 angeordnet sein und die Spulenkerne 34 und daε Rückschlusseiεen können eine Einheit bilden wobei dieεe Einheit auε einzelnen Blechen mit langen Nuten geschichtet ist. Die Spulenkerne 35 können die Form von L aufweisen, deren eine Schenkel 35a parallel zur Rotationsachεe 3 des Integralrotors 14 angeordnet sind und deren anderer Schenkel 35b radial einwärts zur Rotationεachεe 3 des Integralrotors 14 gerichtet sind, um den Flusε radial zum Integralrotor 14 zu führen.
Der Drehfeldmotor kann auch ein Synchronmotor sein, wobei dieser ein Reluktanzmotor oder ein permanentmagnetisch erregbarer Synchronmotor ist.
In einer Rotationspumpe kann eine Einrichtung vorgesehen sein, um mindeεtens eine Teilflusεkomponente zu ermitteln, durch welche der für die Antriebεregelung deε lagerloεen Motors notwendige Antriebsflusswinkel bestimmbar ist. Diese Einrichtung kann mindestens eine Flusεonde 50x, 50y, 51x,
51yn, 50a bis 50h auf eiεen. Weiter kann die Rotationεpumpe eine Detektoreinrichtung zur Bestimmung der Position des Integralrotorε 14 aufweisen. Dieεe Detektoreinrichtung kann einen X-Y-Detektor aufweisen, um die Poεition deε Integralrotorε (14) längs der Achsen X und Y zu beεtimmen. Der X-Y-Detektor kann mindestens eine Flussonde 50x, 50y, 51x, 51y, 50a biε 50h aufweisen.
Es können mehrere symmetrisch verteilte Flussonden 50x, 50y, 51x, 51y, 50a bis 50h vorgesehen εein, zur Meεεung von Teilflüεsen an diskreten Stellen, und aus den Teilflüεsen kann zusätzlich zum Drehwinkel des Motors über den Antriebsflusswinkel, durch gewichtete Summation der Teilflüsεe über jeweils den halben Umfang in positiver und negativer X- und Y-Richtung, Betragsbildung und anεchliessende Differenzbildung deε Anteilε in positiver und negativer X-Richtung sowie des Anteils in positiver und negativer Y-Richtung die X- und die Y-Komponente der Position des Integralrotors (14) bestimmt werden.
Bei einer derartigen Rotationspumpe kann mindestenε eine Flussonde 50x, 50y, 51x, 51y, 50a bis 50h im Luftspalt zwischen dem Pumpengehäuεe 8 und dem Lager/Antriebεstator angeordnet sein, wobei die mindestenε eine Fluεεonde 50x, 50y, 51x, 51y, 50a biε 50h im Spulenkern 34, 35 angeordnet sein kann. Die mindestenε eine Fluεεonde kann ein Hallelement enthalten. Die mindestenε eine Flussonde könnte aber auch eine magnetoresistive Flussonde sein.
Die mindestens eine Flussonde kann auf einem Zahn des Stators des Drehfeldmotors befestigt, beispielεweiεe aufgeklebt sein. Die mindestens eine Flussonde kann in einer Ausdehnung eines Zahns deε Stators des Drehfeldmotorε eingebettet sein. Der X-Y-Detektor kann mindestenε einen Wirbelstromdistanzsensor enthalten, um damit den Abstand zu einer leitfähigen Schicht im Integralrotor in der X-Y-Ebene zu messen. Die leitfähige Schicht 30 kann aus einem Metallring oder einer dünnen Metallschicht oder auε dem, auε leitfähigem Material, beispielsweise NdFe, gefertigten Magneten 28 bestehen.
Bei der Rotationεpumpe können in X- und in Y-Richtung jeweilε zwei einander gegenüberliegende, Sensorsignale ermittelnde Wirbelstromdistanzsensoren vorgesehen sein, um die Komponenten der Poεition deε Integralrotorε in der X-Y- Rotorebene auε der Differenz der Senεorsignale der einander gegenüberliegenden Wirbelstromdistanzsensoren zu gewinnen.
Der X-Y-Detektor kann Sensorwicklungen enthalten, welche zusätzlich zur Antriebs- und Steuerwicklung im Stator deε Drehfeldmotorε angeordnet sind, um die Position des
Integralrotors 14 indem die elektrischen Impedanz der Sensorwicklungen beεtimmt wird. Der X-Y-Detektor kann auch eine optische Einrichtung enthalten, um die Position des Integralrotors mit Licht, deεsen Wellenlänge im optischen Bereich des Fluids liegt, zu mesεen. Die
Detektoreinrichtung kann auch einen Z-Detektor zur Beεtimmung der axialen Poεition deε Integralrotors und zum ermitteln eines entsprechenden Z-Positionsεignal umfassen.
Das Z-Positionsεignal kann den Iεt-Wert für die Ermittlung eineε Regelsignals für eine regeltechnische Stabilisierung der axialen Position des Integralrotors bilden. Zur regeltechnischen Stabilisierung der axialen Poεition deε Integralrotorε kann ein Magnetiεierungsεtrom in der Antriebεwicklung mit einer Stromkomponente in der Flussrichtung aufgebracht werden.
Es kann auch eine Druckmessvorrichtung angeordnet sein, um aus dem Z-Positionssignal oder aus dem daraus ermittelten Regelsignal den Pumpendruck zu bestimmen. Es kann zudem eine Durchflussbestimτr._r.gsvorrichtung vorgesehen sein, um aus dem Z-Positionεsignal und der Drehzahl des Integralrotors und der drehmomentbildenden Komponente deε Antriebεstroms den Durchflusε zu beεtimmen.
Beim elektromagnetiεchen Drehantrieb mit einem agnetiεch gelagerten Rotor, für eine Arbeitseinrichtung, ist der Stator des Drehantriebs auch als magnetisches Lager für den Rotor ausgebildet und umfasst einen Statorteil mit einer Antriebswicklung zum Erzeugen eines p-polpaarigen Antriebs- Drehfeldeε zum Antreiben deε Rotorε. Weiter umfasst der Drehantrieb eine Lagerwicklung für den Drehantrieb und zum Erzeugen eines (p+l) -polpaarigen oder (p-1) -polpaarigen Lagerfeldes sowie eine Regeleinrichtung zum Regeln des Lagerfeldes in einer Ebene, und damit zum Bestimmen der
Lage deε Rotorε in dieεer Ebene quer zu seiner Drehachse . Der Stator und Rotor sind derart ausgebildet, dass der Rotor durch Rückstellkräfte / Reluktanzkräfte in seiner Lage stabiliεiert wird.
Beim elektromagnetischen Drehantrieb kann der Stator zusammen mit einem Teil der anzutreibenden Arbeitsvorrichtung einen permanentmagnetiεch erregten Synchronmotor oder Reluktanzmotor bilden.
Der elektromagnetische Drehantrieb, kann 2p-polpaarig ausgebildet sein und der Rotor, kann als Magnet, beispielsweise als Ring-, Scheiben- bzw. Schalenmagnet ausgebildet sein, mit oder ohne Rückschlusseisen, oder daε Eisenkreuz Teil eines rotierenden Teils der Arbeitseinrichtung ausgebildet εein.
Bei einem derartigen elektromagnetischer Drehantrieb kann die anzutreibende Arbeitseinrichtung mit dem Rotor alε Einheit ausgebildet sein, die vom Stator abhebbar ist. Beim elektromagnetischer Drehantrieb kann die geometrische Verteilung der Antriebsdurchflutung und der Lagerdurchflutung mit Hilfe der Windungszahlverhältnisεe der einzelnen Teilεpulen angenähert sein.
Der Stator kann auε einzelnen radial um den Rotor angeordneten Spulen mit gemeinsamem magnetiεchem
Rückεchlusε aufgebaut εein und die Spulenkerne können je eine Wicklung der Antriebswicklung und der Steuerwicklung tragen.
Der Stator kann, bezogen auf den Rotor in axialer Richtung, aus tempelsäulenartig angeordnete Spulen (Tempelmotor) mit gemeinεamem magnetiεchem Rückεchluss aufgebaut sein, deren Spulenkerne einen L-förmige Teil aufweisen, der radial zum Rotor hin führt, wobei tempelsäulenartig angeordnete Spulen Teilwicklungen der Antriebs- und der Steuerwicklung aufweisen.
Beim elektromagnetischen Drehantrieb kann im Luftspalt zwischen Stator und Rotor eine oder mehrere Sonden wie Hallelemente oder magnetorestriktive Elemente zum Beεtimmen des magnetischen Flusses oder von magnetischen Teilflüssen oder Wirbelstrom-Diεtanzεensoren, angeordnet sein, deren Messwerte der Antriebs- und Positionεregelung zugeführt werden, um darauε den Antriebstlusεwinkel des lagerlosen Motors zu bestimmen und zu regeln.
Die Position des Rotors kann bei einem derartigen elektromagnetischen Drehantrieb auch mit Hilfe von Impedanzmessungen von Sensorwicklungen im Stator, mit Ultraεchallechographie, oder optiεch beεtimmt werden.
Die axiale Position des Rotors des Drehantriebs kann durch das Aufbringen eines Magnetisierungsstromε in der Antriebεwicklung oder mit einer zuεätzlichen Axialεpule auf der einen Seite deε Rotors, geregelt und stabiliεiert werden. Der elektromagnetische Drehantrieb ist als Antrieb für eine Radialpumpe, eine Axialpumpe, eine Zentrifugalpumpe, eine Teslapumpe, ein Misch- oder ein Rührwerk geeignet. Dabei kann der Pumpenrotor, bzw. der Misch- oder Rührrotor, sowie der Rotor des Motorε, mit Kunststoff ummantelt sein.
Wenn der elektromagnetische Drehantrieb als Antrieb für eine Pumpe, verwendet wird, kann aus dem axialen Rotorpositionssignal oder aus dem für die axiale Stabilisierung erforderlichen Regelsignal der Pumpendruck bestimmt werden. Oder es kann aus dem axialen Rotorpositionssignal, der Drehzahl des Rotors sowie der drehmomentbildenden Komponente deε Antriebsstroms (Q- Komponente) der Durchflusε der Pumpe beεtimmt werden.
Derartige, beschriebene elektromagnetische Drehantriebe, eignen sich als Antrieb für eine Rotationspumpe zum Pumpen von Blut. Solche Blutpumpen werden beispielsweise bei medizinischen Operationen verwendet.
Bei einem elektromagnetischen Drehantrieb nach der Erfindung iεt die axiale Länge des antreibenden Rotors mit Vorteil kleiner oder gleich dem halben Durchmesεer dieεeε Rotors.
Eine Rotationsmaschine nach der Erfindung kann auch miniaturisiert, beispielsweise als in Tier oder Mensch implantierbare Blutpumpe ausgeführt sein.
Die Rotationsmaschine umfasst einen angetriebenen Rotor 2 und einen elektrischen Motor 4, 14, mit einem Stator 4 und einem antreibenden Rotor. Der Stator 4 ist auch als elektromagnetisches Lager 4, 14 für den antreibenden Rotor 14 ausgebildet und der antreibende Rotor 14 des Elektromotors 4, 14 bildet mit dem angetriebenen Rotor 2 der Rotationsmaschine eine Rotoreinheit 2, 14, d.h. die beiden Rotoren 2, 14 bilden einen Integralrotor 2, 14. Die Rotationsmaschine kann beispielsweise eine Rotationεpumpe, Zentrifugalpumpe, Zentrifuge, oder ein Rührwerk εein. Der Rotor 2, 14 kann vom Stator 4 leicht entfernbar konεtruiert sein.

Claims

Patentansprüche
1. Rotationsmaεchine mit einem angetriebenen Rotor (2) und mit einem elektrischen Motor (4, 14) , mit einem Stator (4) und einem antreibenden Rotor (14) dadurch gekennzeichnet, dasε der Stator (4) auch als elektromagnetisches Lager (4, 14) für den antreibenden Rotor (14) ausgebildet iεt und der antreibende Rotor (14) deε Elektromotorε (4, 14) mit dem angetriebenen Rotor (2) der Rotationsmaschine eine Rotoreinheit (2, 14), d.h. einen Integralrotor (2, 14) bildet.
2. Rotationsmaεchine nach Anspruch 1 mit einer Drehfeldwicklung mit der Polpaarzahl p zum Erzeugen eines Antriebsdrehfeldes und zum gesteuerten Drehen deε antreibenden Rotorε um seine Rotationsachse, und mit einer Steuerwicklung mit der Polpaarzahl p+1 oder p-1 zum Erzeugen eines dem Antriebsdrehfeld überlagerten Steuerfeldes, um die radiale Lage (zwei Freiheitsgrade) des angetriebenen Rotors in seiner Rotationsebene geregelt, d.h. aktiv zu stabilisieren.
3. Rotationsmaschine nach Anspruch 1 oder 2, bei welcher der antreibende Teil des Integralrotors, scheibenförmig, ringförmig glockenförmig, gestaltet ist, und dass der Rotors axial, sowie gegen Verkippung gegenüber der Statorebene pasεiv durch Reluktanzkräfte stabilisiert ist.
4. Rotationsmaschine nach einem der Ansprüche 1 bis 3 bei welcher der Stator zusammen mit dem antreibenden Rotor einen Aussenläufermotor bildet .
Rotationsmaschine nach einem der Ansprüche 1 bis 4 bei welcher der Integralrotor zusammen mit einem Teil der Arbeitsvorrichtung als Einheit ausgebildet ist, welche vom Antriebsstator abhebbar iεt.
6. Rotationsmaschine nach einem der Ansprüche 1 bis 5 bei welcher der Antriebsstator auε einzelnen, εtabförmigen, radial um den Rotor angeordneten Spulen mit einem gemeinεamen magnetischen Rückschluss aufgebaut ist und jede Spule Teilwicklungen für jeden Wicklungsεtrang der Antriebswicklung und der Steuerwicklung aufweisen
7. Rotationεmaεchine nach einem der Ansprüche 1 bis 6, bei welcher die Windungszahl der Teilwicklungen εo gewählt ist, dass die Antriebsdurchflutung und die Steuerdurchflutung geometrisch wenigstens angenähert sinusförmig ist.
8. Rotationsmaschine nach Anspruch 7, mit zweiphasiger Wicklung, bei welcher die Windungszahl jeder Teilwicklung der ersten Phaεe einer gegebenen Windungszahl N-, bzw. N2 mal dem Kosinus deε elektrischen Winkels alpha ihrer Lage ( [N-, x coε (p alpha) ] für die Antriebεwicklung und [N x coε{ (p±l) alpha}] für die Steuerwicklung) und die Windungszahl jeder Teilwicklung der zweiten Phase einer gegebenen Windungszahl N-^ bzw. N2 mal dem Sinus des elektrischen Winkels alpha ihrer Lage ( [N2 x sin (p alpha) ] für die Antriebswicklung und [N2 x sin{ (p±l)alpha}] für die Steuerwicklung) ist oder umgekehrt.
9. Rotationsmaschine nach einem der Ansprüche 1 bis 8 bei welchem der Antriebsstator bezogen auf den Rotor in axialer Richtung, aus tempelsäulenartig angeordneten Spulen, als Tempelmotor mit einem gemeinsamen magnetischen Rückschluss ausgebildet ist wobei der Fluss an einem Spulenende, auf der dem magnetischen Rückschluss gegenüberliegenden Seite, durch eine zum Rotor hin zeigende L-förmige Verlängerung des Spulenkerns radial zum Rotor hin geführt wird und die Spulen Teilwicklungen für jeden Wicklungsstrang der Antriebswicklung und der Steuerwicklung aufweisen, wobei einzelne Teilwicklungen die Windungszahl 0 haben können und die wenigstens angenähert sinusförmige geometrische Verteilung der Antriebsdurchflutung und der Steuerdurchflutung durch das WindungszahJVerhältnis zwischen den einzelnen Teilspulen gebildet wird.
10. Rotationsmaschine nach einem der Ansprüche 1 bis 9, bei welcher in einzelnen Nuten oder zwischen einzelnen Spulenkernen des Antriebsstators
Wirbelstromdistanzsensoren angeordnet sind, die den Abstand zu einer leitfähigen Schicht im antreibenden Rotor, in der Rotorebene (xy-Ebene) messen.
11. Rotationsmaschine nach einem der Ansprüche 1 bis 10 bei welcher in x- und y-Richtung jeweils zwei gegenüberliegende Distanzsensoren eingesetzt sind und die Komponenten der Position des antreibenden Rotors, in der Rotorebene (xy-Ebene) aus der Differenz der Sensorsignale gegenüberliegender Sensoren bestimmt wird.
12. Rotationsmaschine nach Anspruch 1 bis 11 bei welcher im Antriebsstator zusätzlich zur Antriebs- und Steuerwicklung Sensorwicklungen angeordnet sind.
13. Rotationsmaschine nach einem der Ansprüche 1 bis 12 bei welcher die axiale Position des Rotors durch daε Aufbringen eines Magnetisierungsstroms in der Antriebswicklung oder mit einer zusätzlichen
Axialεpule auf der einen Seite des Rotors, geregelt und stabilisiert wird.
14. Rotationsmaschine nach einem der Ansprüche 1 bis 13 bei der zwischen Antriebsεtator und Integralrotor ein Spaltrohr angeordnet iεt .
15. Rotationsmaschine nach einem der Ansprüche 1 bis 14, als Rotationspumpe ausgebildet, mit einem geschloεεenen Pumpengehäuεe, das den Integralrotor enthält, welcher den antreibenden Rotor des Motorε und den angetriebenen Rotor der Pumpe umfaεεt .
16. Rotationsmaschine nach einem der Ansprüche 1 biε 15, alε Rotationεpumpe ausgebildet, mit einem Pumpengehäuse, das auf mindestens einer Seite frei zugänglich und austauschbar am Antriebsstator angebracht ist.
17. Rotationεmaεchine nach einem der Anεprüche 1 biε 16, als Axialpumpe ausgebildet, mit einem ringförmigen antreibenden Rotor, der das Flügelrad der Axialpumpe ringförmigen umgibt (Hohlwellenläufer) .
18. Rotationεmaschine als Axialpumpe ausgebildet, nach einem der Anεprüche 1 biε 17, als Axialpumpe ausgebildet, deren Pumpengehäuse auf einer Seite einen Einlassstutzen und auf einer anderen Seite einen Auslassstutzen aufweist, über welche Stutzen die Pumpe in den Förderkreislauf eingefügt wird, derart, dass das Pumpengehäuse mit Pumpenrad nach Demontage der vorzugsweise schlauchartigen Verbindungen vom antreibenden Stator entfernbar ist.
19. Rotationsmaschine nach einem der Ansprüche 1 bis 18, als Zentrifugalpumpe ausgebildet, deren ringförmiger oder scheibenförmigen antreibender Rotor in ein
Flügelrad, vorzugsweise aus Kunstεtoff integriert oder an daε Flügelrad angebaut iεt .
20. Rotationsmaεchine nach einem der Anεprüche 1 biε 19, alε Rotationεpumpe ausgebildet, bei welcher das axiale Rotorpositionεεignal oder daε Regelεignal der Regelanlage, das zur axialen Stabilisierung des Rotors notwendig ist zum Bestimmen des Pumpendrucks genutzt wird.
21. Rotationεmaεchine, alε Rotationspumpe ausgebildet, nach einem der Ansprüche 1 bis 20, mit Mitteln zum
Bestimmen des Durchflusεeε von Fluid durch die Pumpe auε dem axialen Rotorpositionssignal, der Drehzahl des Rotors sowie dem Antriebsεtromε.
22. Rotationεmaεchine nach einem der Anεprüche 1 biε 21, bei welchem die axiale Länge des antreibenden Rotorε kleiner oder gleich dem halben Durchmesser dieses Rotors ist.
23. Rotationsmaschine nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daεε im Stator Mittel vorhanden εind, welche im Elektromotor einen Unipolarfluεε erzeugen und daεε der Stator eine zweipolige Drehfeldwicklung enthält, über welche εich auf den Rotor wirkende, radiale magnetiεche Kräfte steuern lassen und dass der Stator eine weitere Drehfeldwicklung mit einer Polpaarzahl p>=2 enthält, über welche εich ein Drehfeld zum Antreiben des Rotors erzeugen lässt.
24. Rotationsmaschine Anspruch 23, dadurch gekennzeichnet, dass der Unipolarfluεε im Elektromotor durch Permanentmagnete erzeugt wird.
PCT/CH1996/000117 1995-04-03 1996-04-02 Rotationsmaschine mit elektromagnetischem drehantrieb WO1996031934A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59607047T DE59607047D1 (de) 1995-04-03 1996-04-02 Rotationsmaschine mit elektromagnetischem drehantrieb
US08/930,649 US6100618A (en) 1995-04-03 1996-04-02 Rotary machine with an electromagnetic rotary drive
EP96907235A EP0819330B1 (de) 1995-04-03 1996-04-02 Rotationsmaschine mit elektromagnetischem drehantrieb
CA002210762A CA2210762C (en) 1995-04-03 1996-04-02 Rotary machine with an electromagnetic rotary drive
JP52983096A JP4076581B2 (ja) 1995-04-03 1996-04-02 電磁式回転駆動装置を有する回転機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH943/95-8 1995-04-03
CH94395 1995-04-03

Publications (1)

Publication Number Publication Date
WO1996031934A1 true WO1996031934A1 (de) 1996-10-10

Family

ID=4198789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1996/000117 WO1996031934A1 (de) 1995-04-03 1996-04-02 Rotationsmaschine mit elektromagnetischem drehantrieb

Country Status (6)

Country Link
US (1) US6100618A (de)
EP (1) EP0819330B1 (de)
JP (1) JP4076581B2 (de)
CA (1) CA2210762C (de)
DE (1) DE59607047D1 (de)
WO (1) WO1996031934A1 (de)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1003676C2 (nl) * 1996-07-25 1998-01-28 Magnetics Enterprise B V Ringvormige elektrische energieomzetter voor vloeistoffen en gassen.
EP0899855A1 (de) 1997-08-25 1999-03-03 Sulzer Electronics AG Magnetgelagerte Rotationsanordnung
EP0899857A1 (de) 1997-08-25 1999-03-03 Sulzer Electronics AG Magnetgelagerte Rotationsanordnung
EP0900572A1 (de) * 1997-09-04 1999-03-10 Sulzer Electronics AG Zentrifugalpumpe
EP0905379A1 (de) 1997-09-25 1999-03-31 Sulzer Electronics AG Zentrifugalpumpe und Zentrifugalpumpenanordnung
WO1999037912A1 (en) * 1998-01-27 1999-07-29 Hydroring B.V. Machine, in particular electrical machine, in particular energy converter for flowing fluids and gases
EP0982836A2 (de) * 1998-08-24 2000-03-01 Sulzer Electronics AG Verfahren und Sensoranordnung zum Bestimmen der radialen Position eienes permanentmagnetischen Rotors
EP1019116A1 (de) * 1997-09-05 2000-07-19 Ventrassist PTY Ltd. Rotationspumpe mit einem hydrodynamisch gelagerten Laufrad
EP1063753A1 (de) * 1999-06-22 2000-12-27 Sulzer Electronics AG Elektrischer Drehantrieb mit einem magnetisch gelagerten Rotor
FR2797308A1 (fr) * 1999-08-05 2001-02-09 Bosch Gmbh Robert Unite d'alimentation en carburant pour moteur a combustion interne
EP1087010A2 (de) 1999-09-08 2001-03-28 Sulzer Markets and Technology AG Bioreaktor mit Einmalpumpe
EP1105172A1 (de) * 1998-08-07 2001-06-13 Cardiac Assist Technologies, Inc. Nicht-invasive flussanzeige für eine rotationsblutpumpe
US6249067B1 (en) 1998-08-24 2001-06-19 Sulzer Electronics Ag Method and sensor arrangement for the determination of the radial position of a permanent magnetic rotor
EP1113177A2 (de) * 1999-12-27 2001-07-04 Ntn Corporation Flüssigkeitspumpe mit magnetisch aufgehängtem Laufrad
EP1235983A1 (de) * 1999-12-10 2002-09-04 MedQuest Products, Inc. Elektromagnetisch gelagerte und angetriebene pumpe
US6554584B2 (en) 2000-01-31 2003-04-29 Toshiba Tec Kabushiki Kaisha Inline type pump
US6559567B2 (en) 2000-05-12 2003-05-06 Levitronix Llc Electromagnetic rotary drive
EP1347178A1 (de) * 2002-03-21 2003-09-24 Philipp Hilge GmbH Leicht zu reinigende Kreiselpumpe
US6634224B1 (en) * 1998-07-10 2003-10-21 Levitronix Llc Method for the determination of the pressure in and/or of the through-flow through a pump
EP1415672A2 (de) * 1999-04-20 2004-05-06 Berlin Heart AG Drucksensor
EP1863168A2 (de) * 2006-05-31 2007-12-05 Levitronix LLC Elektrische Mehrphasenmaschine sowie Verfahren zum Betreiben einer solchen
EP0986162B1 (de) * 1998-08-24 2007-12-05 Levitronix LLC Sensoranordnung in einem elektromagnetischen Drehantrieb
EP2037236A2 (de) 2007-09-11 2009-03-18 Levitronix LLC Verfahren zur Kalibrierung einer Durchflussmessung in einem Strömungssystem, sowie ein Strömungssystem zur Durchführung des Verfahrens
WO2011113602A1 (de) * 2010-03-19 2011-09-22 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur regelung wenigstens eines filtrationswertes, hämodialysemaschine sowie verfahren und verwendung hierzu
EP2372749A1 (de) 2010-03-31 2011-10-05 Levitronix GmbH Behandlungsvorrichtung zur Behandlung einer Oberfläche eines Körpers
WO2012028181A1 (de) 2010-09-01 2012-03-08 Levitronix Gmbh Rotationspumpe
DE102011075097A1 (de) * 2011-05-02 2012-11-08 Krones Aktiengesellschaft Vorrichtung zum Bewegen eines Fluids
WO2012149946A1 (en) * 2011-05-05 2012-11-08 Berlin Heart Gmbh Blood pump
WO2012159966A1 (de) 2011-05-20 2012-11-29 Thoratec Switzerland Gmbh Rotationsmaschine, sowie vorrichtung mit einer rotationsmaschine
US20130062839A1 (en) * 2011-09-09 2013-03-14 Lam Research Ag Apparatus for treating surfaces of wafer-shaped articles
DE102011087341A1 (de) * 2011-11-29 2013-05-29 Continental Automotive Gmbh Verfahren zur Überwachung des Zustands eines einen Elektromotor auf einer Welle führenden Lagers
DE102012201252A1 (de) * 2012-01-30 2013-08-01 Siemens Aktiengesellschaft Längslagerscheibe für einen Strömungsmaschinenrotor
US8512012B2 (en) 2004-03-18 2013-08-20 Circulite, Inc. Pump
US8729758B2 (en) 2008-04-30 2014-05-20 Levitronix Gmbh Rotational machine, method for the determination of a tilting of a rotor of a rotational machine, as well as a processing plant
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
EP3043228A2 (de) 2015-01-09 2016-07-13 Levitronix GmbH Strömungsregler sowie Verfahren zum Einstellen eines vorgebbaren Volumenstroms
US9393355B2 (en) 2009-11-06 2016-07-19 Berlin Heart Gmbh Blood pump
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
EP3232549A1 (de) * 2016-04-14 2017-10-18 Levitronix GmbH Elektromagnetischer drehantrieb und rotationsvorrichtung
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
WO2019141305A1 (de) * 2018-01-19 2019-07-25 Frank Wilkening Magnetischen elektrischen motorenantrieb
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor
US11421694B2 (en) 2019-02-01 2022-08-23 White Knight Fluid Handling Inc. Pump having magnets for journaling and magnetically axially positioning rotor thereof, and related methods
US11619236B2 (en) 2020-02-13 2023-04-04 Levitronix Gmbh Pumping device, a single-use device and a method for operating a pumping device

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840070A (en) * 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
US5695471A (en) * 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
DE59914570D1 (de) 1998-08-24 2008-01-17 Levitronix Llc Sensoranordnung in einem elektromagnetischen Drehantrieb
DE29821565U1 (de) * 1998-12-02 2000-06-15 Impella Cardiotech Ag Lagerlose Blutpumpe
US6416215B1 (en) 1999-12-14 2002-07-09 University Of Kentucky Research Foundation Pumping or mixing system using a levitating magnetic element
AUPP995999A0 (en) * 1999-04-23 1999-05-20 University Of Technology, Sydney Non-contact estimation and control system
US6758593B1 (en) 2000-10-09 2004-07-06 Levtech, Inc. Pumping or mixing system using a levitating magnetic element, related system components, and related methods
TW456094B (en) * 1999-12-29 2001-09-21 Delta Electronics Inc Balancing structure of rotator
US6293760B1 (en) * 2000-03-14 2001-09-25 Motorola, Inc. Pump and motor unit and method for pumping fluids
EP1170025B1 (de) 2000-06-26 2005-08-24 Drägerwerk Aktiengesellschaft Gasfördervorrichtung für Beatmungs- und Narkosegeräte
DE10034662A1 (de) * 2000-07-16 2002-01-24 Wolfgang Amrhein Aufwandsamer elektrischer Antrieb zur Erzeugung von Tragkräften und Drehmomenten
US6864084B2 (en) * 2000-08-18 2005-03-08 Levitronix Llc Bioreactor and method for fluidly suspending a product
US6632658B1 (en) * 2000-08-18 2003-10-14 Levitronix Llc Bioreactor and method for fluidly suspending a product
DE10062451A1 (de) * 2000-12-14 2002-06-20 Siemens Ag Förderpumpe
DE10108810A1 (de) * 2001-02-16 2002-08-29 Berlin Heart Ag Vorrichtung zur axialen Förderung von Flüssigkeiten
DE10123138B4 (de) * 2001-04-30 2007-09-27 Berlin Heart Ag Verfahren zur Lageregelung eines permanentmagnetisch gelagerten rotierenden Bauteils
AUPR514201A0 (en) * 2001-05-21 2001-06-14 Ventrassist Pty Ltd Staged implantation of ventricular assist devices
EP1284369A1 (de) 2001-08-16 2003-02-19 Levitronix LLC Verfahren und Pumpvorrichtung zum Erzeugen eines einstellbaren, im wesentlichen konstanten Volumenstroms
US6640617B2 (en) 2001-08-16 2003-11-04 Levitronix Llc Apparatus and a method for determining the viscosity of a fluid
US6808371B2 (en) 2001-09-25 2004-10-26 Matsushita Electric Industrial Co., Ltd. Ultra-thin pump and cooling system including the pump
US20030084888A1 (en) * 2001-11-08 2003-05-08 Lebold Robert S Supercharger type compressor/generator with magnetically loaded composite rotor
ATE296958T1 (de) * 2001-12-04 2005-06-15 Levitronix Llc Abgabevorrichtung für ein fluid
DE10247783B4 (de) * 2002-10-14 2013-08-29 Thermo Electron (Karlsruhe) Gmbh Rheometer
US7357858B2 (en) * 2003-05-14 2008-04-15 Levitronix Llc Filter apparatus
ES2251645T3 (es) * 2003-05-19 2006-05-01 Andritz-Guinard S.A.S. Sistema de arrastre de una centrifugadora.
US7168848B2 (en) * 2003-07-02 2007-01-30 Spx Corporation Axial-pumping impeller apparatus and method for magnetically-coupled mixer
DE10330434A1 (de) * 2003-07-04 2005-02-03 Jostra Ag Zentrifugal-Pumpe
AU2003904032A0 (en) * 2003-08-04 2003-08-14 Ventracor Limited Improved Transcutaneous Power and Data Transceiver System
US7798952B2 (en) * 2003-10-09 2010-09-21 Thoratec Corporation Axial flow blood pump
AU2004277286B2 (en) * 2003-10-09 2009-10-15 Thoratec Corporation Impeller
GB0419152D0 (en) * 2004-08-27 2004-09-29 Kernow Instr Technology Ltd A contactless magnetic rotary bearing and a rheometer incorporating such bearing
US20060083642A1 (en) 2004-10-18 2006-04-20 Cook Martin C Rotor stability of a rotary pump
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
US7972122B2 (en) * 2005-04-29 2011-07-05 Heartware, Inc. Multiple rotor, wide blade, axial flow pump
US7699586B2 (en) 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US20060275155A1 (en) * 2005-01-28 2006-12-07 Robert Thibodeau Rotational apparatus
TWI298573B (en) * 2005-02-04 2008-07-01 Foxconn Tech Co Ltd Sensorless and brushless direct current motor
US8152035B2 (en) * 2005-07-12 2012-04-10 Thoratec Corporation Restraining device for a percutaneous lead assembly
JP4769937B2 (ja) * 2005-08-10 2011-09-07 国立大学法人 東京医科歯科大学 遠心ポンプの流量及び揚程測定装置、及び、拍動する循環系の循環状態評価装置
US20070142696A1 (en) * 2005-12-08 2007-06-21 Ventrassist Pty Ltd Implantable medical devices
US7508101B2 (en) * 2006-02-24 2009-03-24 General Electric Company Methods and apparatus for using an electrical machine to transport fluids through a pipeline
EP2059276A2 (de) * 2006-08-31 2009-05-20 Smartin Technologies, LLC Implantierbare flüssigkeitspumpe
US20080133006A1 (en) * 2006-10-27 2008-06-05 Ventrassist Pty Ltd Blood Pump With An Ultrasonic Transducer
US20080200750A1 (en) * 2006-11-17 2008-08-21 Natalie James Polymer encapsulation for medical device
EP1930034B1 (de) 2006-12-07 2012-11-14 Thoratec LLC Integrierter Zentrifugalpumpoxygenator für Blut, extrakorporales Lebenserhaltungssystem und Verfahren zum Blasenentfernen und Entlüften eines extrakorporalen Lebenserhaltungssystems
DE102006058658A1 (de) * 2006-12-13 2008-06-19 Robert Bosch Gmbh Pumpvorrichtung
WO2008098117A2 (en) * 2007-02-08 2008-08-14 Linsheng Walter Tien Magnetic stirring devices and methods
ATE478722T1 (de) * 2007-02-14 2010-09-15 Levitronix Llc Filter-pump-einheit, filter-pump-vorrichtung mit einer solchen einheit sowie verfahren zum ausfiltern
US8267636B2 (en) * 2007-05-08 2012-09-18 Brooks Automation, Inc. Substrate transport apparatus
DE502007006457D1 (de) * 2007-05-24 2011-03-24 Lindenmaier Gmbh Turbolader
US8823294B2 (en) * 2007-06-27 2014-09-02 Brooks Automation, Inc. Commutation of an electromagnetic propulsion and guidance system
WO2009003186A1 (en) 2007-06-27 2008-12-31 Brooks Automation, Inc. Multiple dimension position sensor
US8283813B2 (en) * 2007-06-27 2012-10-09 Brooks Automation, Inc. Robot drive with magnetic spindle bearings
KR101496654B1 (ko) * 2007-06-27 2015-02-27 브룩스 오토메이션 인코퍼레이티드 리프트 능력 및 감소된 코깅 특성들을 가지는 전동기 고정자
WO2009003187A1 (en) * 2007-06-27 2008-12-31 Brooks Automation, Inc. Sensor for position and gap measurement
US9752615B2 (en) 2007-06-27 2017-09-05 Brooks Automation, Inc. Reduced-complexity self-bearing brushless DC motor
KR20100056468A (ko) 2007-07-17 2010-05-27 브룩스 오토메이션 인코퍼레이티드 챔버 벽들에 일체화된 모터들을 갖는 기판 처리 장치
US7832922B2 (en) 2007-11-30 2010-11-16 Levitronix Gmbh Mixing apparatus and container for such
US20090177028A1 (en) * 2008-01-04 2009-07-09 Anthony John White Non-blood contact cardiac compression device, for augmentation of cardiac function by timed cyclic tensioning of elastic cords in an epicardial location
EP3434227A1 (de) * 2008-02-08 2019-01-30 HeartWare, Inc. Ventrikuläres unterstützungssystem zur intraventrikulären platzierung
JP4681625B2 (ja) 2008-02-22 2011-05-11 三菱重工業株式会社 血液ポンプおよびポンプユニット
US8523539B2 (en) * 2008-06-19 2013-09-03 The Board Of Regents Of The University Of Texas Systems Centrifugal pump
EP2273124B1 (de) 2009-07-06 2015-02-25 Levitronix GmbH Zentrifugalpumpe und Verfahren zum Ausgleichen des axialen Schubs in einer Zentrifugalpumpe
EP2280471B1 (de) 2009-07-30 2019-08-07 Levitronix GmbH Elektrischer Drehantrieb
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
EP2357374B1 (de) 2010-01-29 2016-02-17 Levitronix GmbH Magnetische Lagervorrichtung
WO2011163421A1 (en) 2010-06-22 2011-12-29 Thoratec Corporation Fluid delivery system and method for monitoring fluid delivery system
JP5540153B2 (ja) 2010-06-22 2014-07-02 ソラテック コーポレーション ポンプの圧力−流量特性を改変するための装置
EP3248628B1 (de) 2010-08-20 2019-01-02 Tc1 Llc Implantierbare blutpumpe
TW201225997A (en) 2010-08-20 2012-07-01 Thoratec Corp Assembly and method for stabilizing a percutaneous cable
USD669585S1 (en) 2010-08-20 2012-10-23 Thoratec Corporation Implantable blood pump
EP2461079B1 (de) 2010-12-03 2019-04-10 Levitronix GmbH Durchflussmesser
US8610323B2 (en) 2011-02-04 2013-12-17 Hamilton Sundstrand Corporation Bearingless machine
WO2013082621A1 (en) * 2011-12-03 2013-06-06 Indiana University Research And Technology Corporation Cavopulmonary viscous impeller assist device and method
DE102012202842A1 (de) * 2012-02-24 2013-08-29 Siemens Aktiengesellschaft Magnetische Lagerung mit Kraftkompensation
EP2890419B1 (de) 2012-08-31 2019-07-31 Tc1 Llc Startalgorithmus für eine implantierbare blutpumpe
US9579436B2 (en) 2012-08-31 2017-02-28 Thoratec Corporation Sensor mounting in an implantable blood pump
MX367784B (es) * 2013-03-15 2019-09-06 Implantica Patent Ltd Implante operable que comprende un motor eléctrico y un sistema de engranajes.
US20140334249A1 (en) * 2013-05-08 2014-11-13 Roxi Group, Inc. Beverage mixing, storing and dispensing apparatus
DE102014000971A1 (de) 2014-01-25 2015-07-30 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur Trennung von Blut in seine Bestandteile sowie Verfahren hierzu und Verwendung einer solchen Vorrichtung
US9849224B2 (en) 2014-04-15 2017-12-26 Tc1 Llc Ventricular assist devices
US9526818B2 (en) 2014-04-15 2016-12-27 Thoratec Corporation Protective cap for driveline cable connector
EP3131598B1 (de) 2014-04-15 2020-10-21 Tc1 Llc Systeme zur aufrüstung von ventrikulären unterstützungsvorrichtungen
WO2015160992A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for lvad operation during communication losses
WO2015160991A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for controlling a blood pump
US9786150B2 (en) 2014-04-15 2017-10-10 Tci Llc Methods and systems for providing battery feedback to patient
CN107073414A (zh) * 2014-07-31 2017-08-18 卡里马里股份公司 用于使奶发泡的设备
BR102014021617B1 (pt) * 2014-09-01 2023-04-11 Mundial S/A Produtos De Consumo Motobomba de mancal flutuante arrefecida por um fluido circulante
CN107148521B (zh) * 2014-10-28 2019-05-03 开利公司 磁轴承容错驱动系统
EP3313471A4 (de) 2015-06-29 2019-02-20 Tc1 Llc Herzkammerunterstützungsvorrichtungen mit einem hohlen rotor und verfahren zur verwendung
EP3115616B1 (de) 2015-07-06 2022-09-07 Levitronix GmbH Elektromagnetischer drehantrieb
WO2017015268A1 (en) 2015-07-20 2017-01-26 Thoratec Corporation Flow estimation using hall-effect sensors
US10722630B2 (en) 2015-07-20 2020-07-28 Tc1 Llc Strain gauge for flow estimation
WO2017040317A1 (en) 2015-08-28 2017-03-09 Thoratec Corporation Blood pump controllers and methods of use for improved energy efficiency
FR3043165B1 (fr) * 2015-10-29 2018-04-13 CRYODIRECT Limited Dispositif de transport d'un gaz liquefie et procede de transfert de ce gaz a partir de ce dispositif
CN105689160B (zh) * 2016-01-20 2019-01-08 珠海格力节能环保制冷技术研究中心有限公司 一种用于磁悬浮离心机的停机方法及装置
EP3241608B1 (de) * 2016-05-02 2020-04-08 Levitronix GmbH Mischvorrichtung sowie einmalvorrichtung für eine solche mischvorrichtung
US10471439B2 (en) * 2016-05-17 2019-11-12 Heathrow Scientific Llc Combination centrifuge and magnetic stirrer
US10570924B2 (en) * 2016-06-02 2020-02-25 The University Of Akron Integrated motor compressor for vapor compression refrigeration system
US10377097B2 (en) * 2016-06-20 2019-08-13 Terumo Cardiovascular Systems Corporation Centrifugal pumps for medical uses
AU2017304767A1 (en) * 2016-07-28 2019-01-17 Medisieve Ltd. Magnetic mixer and method
DE102016214696A1 (de) * 2016-08-08 2018-02-08 Efficient Energy Gmbh Elektrischer Scheibenmotor mit Medientrennung im Motorspalt
WO2018057732A1 (en) * 2016-09-23 2018-03-29 Heartware, Inc. Blood pump with sensors on housing surface
EP3515527A4 (de) 2016-09-26 2020-05-13 Tc1 Llc Leistungsmodulation für herzpumpensteuerleitung
US10749308B2 (en) 2016-10-17 2020-08-18 Waymo Llc Thermal rotary link
US11197990B2 (en) 2017-01-18 2021-12-14 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
EP3615104A1 (de) 2017-04-28 2020-03-04 Tc1 Llc Patientenadapter für antriebsstrangkabel und verfahren
WO2019050976A1 (en) * 2017-09-06 2019-03-14 Access Medical Systems, Ltd. FERROMAGNETIC ROTORS FOR STIRRING A LIQUID IN A MICROCAVITY
US11162497B2 (en) * 2017-11-13 2021-11-02 Onesubsea Ip Uk Limited System for moving fluid with opposed axial forces
CN108194374B (zh) * 2017-12-29 2020-02-07 李少龙 一种磁悬浮内流式转子管道泵
EP4275737A3 (de) 2018-01-10 2023-12-20 Tc1 Llc Lagerlose implantierbare blutpumpe
WO2019183126A1 (en) 2018-03-20 2019-09-26 Tc1 Llc Mechanical gauge for estimating inductance changes in resonant power transfer systems with flexible coils for use with implanted medical devices
US11177719B2 (en) 2018-05-18 2021-11-16 Levitronix Gmbh Electromagnetic rotary drive and rotational device
EP3595137A1 (de) 2018-07-12 2020-01-15 Levitronix GmbH Elektromagnetischer drehantrieb und rotationsvorrichtung
US11241570B2 (en) 2018-07-17 2022-02-08 Tc1 Llc Systems and methods for inertial sensing for VAD diagnostics and closed loop control
EP3856274B1 (de) 2018-09-25 2024-04-17 Tc1 Llc Adaptive geschwindigkeitssteuerungsalgorithmen und steuergeräte zur optimierung der strömung in ventrikelunterstützungsvorrichtungen
EP3711786A1 (de) * 2019-03-19 2020-09-23 Abiomed Europe GmbH Blutpumpe
CN110285072A (zh) * 2019-07-31 2019-09-27 秦建锋 一种双向流水泵及应用该双向流水泵的暖通系统
EP3795836A1 (de) 2019-09-18 2021-03-24 Levitronix GmbH Zentrifugalpumpe und pumpengehäuse
WO2021096706A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
CA3160952A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
WO2021094140A1 (en) 2019-11-12 2021-05-20 Fresenius Medical Care Deutschland Gmbh Blood treatment systems
EP4058094A1 (de) 2019-11-12 2022-09-21 Fresenius Medical Care Deutschland GmbH Blutbehandlungssysteme
EP3827852A1 (de) * 2019-11-27 2021-06-02 Berlin Heart GmbH Blutpumpe mit magnetschweberotor
US11699967B2 (en) * 2021-03-09 2023-07-11 GM Global Technology Operations LLC Electric machine with integrated point field detectors and system for multi-parameter sensing
CN113082507B (zh) * 2021-05-12 2023-01-13 苏州大学 一种运用于人工心脏的磁悬浮装置
WO2023158493A1 (en) 2022-02-16 2023-08-24 Tc1 Llc Real time heart rate monitoring for close loop control and/or artificial pulse synchronization of implantable ventricular assist devices
WO2023229899A1 (en) 2022-05-26 2023-11-30 Tc1 Llc Tri-axis accelerometers for patient physiologic monitoring and closed loop control of implantable ventricular assist devices
WO2023235230A1 (en) 2022-06-02 2023-12-07 Tc1 Llc Implanted connector booster sealing for implantable medical devices
WO2024050319A1 (en) 2022-08-29 2024-03-07 Tc1 Llc Implantable electrical connector assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2406790A1 (de) * 1974-02-09 1975-08-14 Licentia Gmbh Radiales aktives magnetisches lager mit drehantrieb
DE2457084A1 (de) * 1974-02-09 1976-06-10 Licentia Gmbh Radiales aktives magnetisches lager
WO1988007842A1 (en) * 1987-04-09 1988-10-20 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
EP0378251A2 (de) * 1981-03-18 1990-07-18 Günther Walter Otto Bramm Magnetisch gelagerter und angetriebener Kreiselpumpenapparat
US4944748A (en) * 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
DE9108432U1 (de) * 1990-07-16 1991-08-29 Roerig Farmaceutici Italiana S.R.L., Latina, It
US5237229A (en) * 1992-04-16 1993-08-17 Shinko Electric Co., Ltd. Magnetic bearing device with a rotating magnetic field

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688998A (en) * 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
JPH03107615A (ja) * 1989-09-20 1991-05-08 Shimadzu Corp 磁気軸受装置
US5055005A (en) * 1990-10-05 1991-10-08 Kletschka Harold D Fluid pump with levitated impeller
JPH0571492A (ja) * 1991-09-12 1993-03-23 Power Reactor & Nuclear Fuel Dev Corp ハイブリツドポンプ
US5527159A (en) * 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump
US5685700A (en) * 1995-06-01 1997-11-11 Advanced Bionics, Inc. Bearing and seal-free blood pump
US5769069A (en) * 1995-06-07 1998-06-23 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Natural Resources Low flow-rate pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2406790A1 (de) * 1974-02-09 1975-08-14 Licentia Gmbh Radiales aktives magnetisches lager mit drehantrieb
DE2457084A1 (de) * 1974-02-09 1976-06-10 Licentia Gmbh Radiales aktives magnetisches lager
EP0378251A2 (de) * 1981-03-18 1990-07-18 Günther Walter Otto Bramm Magnetisch gelagerter und angetriebener Kreiselpumpenapparat
US4944748A (en) * 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
WO1988007842A1 (en) * 1987-04-09 1988-10-20 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
DE9108432U1 (de) * 1990-07-16 1991-08-29 Roerig Farmaceutici Italiana S.R.L., Latina, It
US5237229A (en) * 1992-04-16 1993-08-17 Shinko Electric Co., Ltd. Magnetic bearing device with a rotating magnetic field

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1003676C2 (nl) * 1996-07-25 1998-01-28 Magnetics Enterprise B V Ringvormige elektrische energieomzetter voor vloeistoffen en gassen.
EP0899855A1 (de) 1997-08-25 1999-03-03 Sulzer Electronics AG Magnetgelagerte Rotationsanordnung
EP0899857A1 (de) 1997-08-25 1999-03-03 Sulzer Electronics AG Magnetgelagerte Rotationsanordnung
US7112903B1 (en) 1997-08-25 2006-09-26 Levitronix Llc Magnetically journalled rotational arrangement including a rotor for generating a unipolar bias magnetic flux
US6181040B1 (en) 1997-08-25 2001-01-30 Sulzer Electronics Ag Magnetically journalled rotational arrangement
EP0900572A1 (de) * 1997-09-04 1999-03-10 Sulzer Electronics AG Zentrifugalpumpe
EP1019116A1 (de) * 1997-09-05 2000-07-19 Ventrassist PTY Ltd. Rotationspumpe mit einem hydrodynamisch gelagerten Laufrad
EP1019116B1 (de) * 1997-09-05 2005-04-13 Ventrassist PTY Ltd. Rotationspumpe mit einem hydrodynamisch gelagerten Laufrad
US6220832B1 (en) 1997-09-25 2001-04-24 Sulzer Electronics Ag Centrifugal pump and centrifugal pump system
EP0905379A1 (de) 1997-09-25 1999-03-31 Sulzer Electronics AG Zentrifugalpumpe und Zentrifugalpumpenanordnung
CN1109817C (zh) * 1998-01-27 2003-05-28 流体动力环有限公司 设备、尤其是电力设备、尤其是用于液流和气流的换能器
WO1999037912A1 (en) * 1998-01-27 1999-07-29 Hydroring B.V. Machine, in particular electrical machine, in particular energy converter for flowing fluids and gases
US6634224B1 (en) * 1998-07-10 2003-10-21 Levitronix Llc Method for the determination of the pressure in and/or of the through-flow through a pump
EP1105172A1 (de) * 1998-08-07 2001-06-13 Cardiac Assist Technologies, Inc. Nicht-invasive flussanzeige für eine rotationsblutpumpe
EP1105172A4 (de) * 1998-08-07 2008-04-02 Cardiac Assist Technologies Nicht-invasive flussanzeige für eine rotationsblutpumpe
EP0986162B1 (de) * 1998-08-24 2007-12-05 Levitronix LLC Sensoranordnung in einem elektromagnetischen Drehantrieb
US6249067B1 (en) 1998-08-24 2001-06-19 Sulzer Electronics Ag Method and sensor arrangement for the determination of the radial position of a permanent magnetic rotor
EP0982836A3 (de) * 1998-08-24 2000-06-07 Sulzer Electronics AG Verfahren und Sensoranordnung zum Bestimmen der radialen Position eienes permanentmagnetischen Rotors
EP0982836A2 (de) * 1998-08-24 2000-03-01 Sulzer Electronics AG Verfahren und Sensoranordnung zum Bestimmen der radialen Position eienes permanentmagnetischen Rotors
EP1415672A3 (de) * 1999-04-20 2005-03-16 Berlin Heart AG Drucksensor
EP1415672A2 (de) * 1999-04-20 2004-05-06 Berlin Heart AG Drucksensor
EP1063753A1 (de) * 1999-06-22 2000-12-27 Sulzer Electronics AG Elektrischer Drehantrieb mit einem magnetisch gelagerten Rotor
US6351048B1 (en) 1999-06-22 2002-02-26 Levitronix Llc Electrical rotary drive
JP4484320B2 (ja) * 1999-06-22 2010-06-16 レビトロニクス エルエルシー 電気式回転駆動装置
JP2001016887A (ja) * 1999-06-22 2001-01-19 Sulzer Markets & Technology Ag 電気式回転駆動装置
FR2797308A1 (fr) * 1999-08-05 2001-02-09 Bosch Gmbh Robert Unite d'alimentation en carburant pour moteur a combustion interne
EP2284253B2 (de) 1999-09-08 2020-05-27 Levitronix Technologies, LLC Bioreaktor
EP1087010A3 (de) * 1999-09-08 2004-02-18 Levitronix LLC Bioreaktor mit Einmalpumpe
EP1087010A2 (de) 1999-09-08 2001-03-28 Sulzer Markets and Technology AG Bioreaktor mit Einmalpumpe
EP2290049A1 (de) 1999-09-08 2011-03-02 Levitronix LLC Bioreaktor
EP2284253A1 (de) 1999-09-08 2011-02-16 Levitronix LLC Bioreaktor
EP2290050A1 (de) 1999-09-08 2011-03-02 Levitronix LLC Bioreaktor
EP1235983A4 (de) * 1999-12-10 2003-08-13 Medquest Products Inc Elektromagnetisch gelagerte und angetriebene pumpe
EP1235983A1 (de) * 1999-12-10 2002-09-04 MedQuest Products, Inc. Elektromagnetisch gelagerte und angetriebene pumpe
EP1113177A3 (de) * 1999-12-27 2002-05-08 Ntn Corporation Flüssigkeitspumpe mit magnetisch aufgehängtem Laufrad
EP1113177A2 (de) * 1999-12-27 2001-07-04 Ntn Corporation Flüssigkeitspumpe mit magnetisch aufgehängtem Laufrad
US6575717B2 (en) 1999-12-27 2003-06-10 Ntn Corporation Magnetically levitated pump
US6554584B2 (en) 2000-01-31 2003-04-29 Toshiba Tec Kabushiki Kaisha Inline type pump
US6559567B2 (en) 2000-05-12 2003-05-06 Levitronix Llc Electromagnetic rotary drive
EP1347178A1 (de) * 2002-03-21 2003-09-24 Philipp Hilge GmbH Leicht zu reinigende Kreiselpumpe
US8512012B2 (en) 2004-03-18 2013-08-20 Circulite, Inc. Pump
EP1863168A2 (de) * 2006-05-31 2007-12-05 Levitronix LLC Elektrische Mehrphasenmaschine sowie Verfahren zum Betreiben einer solchen
EP1863168A3 (de) * 2006-05-31 2014-12-31 Levitronix LLC Elektrische Mehrphasenmaschine sowie Verfahren zum Betreiben einer solchen
US11002566B2 (en) 2007-06-27 2021-05-11 Brooks Automation, Inc. Position feedback for self bearing motor
EP2037236A2 (de) 2007-09-11 2009-03-18 Levitronix LLC Verfahren zur Kalibrierung einer Durchflussmessung in einem Strömungssystem, sowie ein Strömungssystem zur Durchführung des Verfahrens
US8729758B2 (en) 2008-04-30 2014-05-20 Levitronix Gmbh Rotational machine, method for the determination of a tilting of a rotor of a rotational machine, as well as a processing plant
US9109601B2 (en) 2008-06-23 2015-08-18 Thoratec Corporation Blood pump apparatus
US9067005B2 (en) 2008-12-08 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
US9381285B2 (en) 2009-03-05 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9410549B2 (en) 2009-03-06 2016-08-09 Thoratec Corporation Centrifugal pump apparatus
US10232099B2 (en) 2009-11-06 2019-03-19 Berlin Heart Gmbh Blood pump
US9731056B2 (en) 2009-11-06 2017-08-15 Berlin Heart Gmbh Blood pump
US9393355B2 (en) 2009-11-06 2016-07-19 Berlin Heart Gmbh Blood pump
US9132215B2 (en) 2010-02-16 2015-09-15 Thoratee Corporation Centrifugal pump apparatus
WO2011113602A1 (de) * 2010-03-19 2011-09-22 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur regelung wenigstens eines filtrationswertes, hämodialysemaschine sowie verfahren und verwendung hierzu
US10201646B2 (en) 2010-03-19 2019-02-12 Fresenius Medical Care Deutschland Gmbh Device for regulating at least one filtration value, haemodialysis machine and corresponding method and use
US9133854B2 (en) 2010-03-26 2015-09-15 Thoratec Corporation Centrifugal blood pump device
US10468277B2 (en) 2010-03-31 2019-11-05 Levitronix Gmbh Treatment apparatus for treating a surface of a body
EP2372749A1 (de) 2010-03-31 2011-10-05 Levitronix GmbH Behandlungsvorrichtung zur Behandlung einer Oberfläche eines Körpers
US9068572B2 (en) 2010-07-12 2015-06-30 Thoratec Corporation Centrifugal pump apparatus
WO2012028181A1 (de) 2010-09-01 2012-03-08 Levitronix Gmbh Rotationspumpe
US9638202B2 (en) 2010-09-14 2017-05-02 Tc1 Llc Centrifugal pump apparatus
US9382908B2 (en) 2010-09-14 2016-07-05 Thoratec Corporation Centrifugal pump apparatus
US9850906B2 (en) 2011-03-28 2017-12-26 Tc1 Llc Rotation drive device and centrifugal pump apparatus employing same
DE102011075097A1 (de) * 2011-05-02 2012-11-08 Krones Aktiengesellschaft Vorrichtung zum Bewegen eines Fluids
US9308304B2 (en) 2011-05-05 2016-04-12 Berlin Heart Gmbh Blood pump
WO2012149946A1 (en) * 2011-05-05 2012-11-08 Berlin Heart Gmbh Blood pump
US10159773B2 (en) 2011-05-05 2018-12-25 Berlin Heart Gmbh Blood pump
CN103635210A (zh) * 2011-05-05 2014-03-12 柏林心脏有限公司 血泵
WO2012159966A1 (de) 2011-05-20 2012-11-29 Thoratec Switzerland Gmbh Rotationsmaschine, sowie vorrichtung mit einer rotationsmaschine
US10269615B2 (en) * 2011-09-09 2019-04-23 Lam Research Ag Apparatus for treating surfaces of wafer-shaped articles
US20130062839A1 (en) * 2011-09-09 2013-03-14 Lam Research Ag Apparatus for treating surfaces of wafer-shaped articles
US10056287B2 (en) 2011-09-09 2018-08-21 Lam Research Ag Apparatus for treating surfaces of wafer-shaped articles
DE102011087341A1 (de) * 2011-11-29 2013-05-29 Continental Automotive Gmbh Verfahren zur Überwachung des Zustands eines einen Elektromotor auf einer Welle führenden Lagers
US9366261B2 (en) 2012-01-18 2016-06-14 Thoratec Corporation Centrifugal pump device
DE102012201252A1 (de) * 2012-01-30 2013-08-01 Siemens Aktiengesellschaft Längslagerscheibe für einen Strömungsmaschinenrotor
WO2013113678A1 (de) 2012-01-30 2013-08-08 Siemens Aktiengesellschaft Längslagerscheibe für einen strömungsmaschinenrotor
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9709061B2 (en) 2013-01-24 2017-07-18 Tc1 Llc Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US10456513B2 (en) 2013-04-30 2019-10-29 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US11724094B2 (en) 2013-04-30 2023-08-15 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10980928B2 (en) 2013-04-30 2021-04-20 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
EP3043228A2 (de) 2015-01-09 2016-07-13 Levitronix GmbH Strömungsregler sowie Verfahren zum Einstellen eines vorgebbaren Volumenstroms
US10856748B2 (en) 2015-02-11 2020-12-08 Tc1 Llc Heart beat identification and pump speed synchronization
US11712167B2 (en) 2015-02-11 2023-08-01 Tc1 Llc Heart beat identification and pump speed synchronization
US10506935B2 (en) 2015-02-11 2019-12-17 Tc1 Llc Heart beat identification and pump speed synchronization
US10874782B2 (en) 2015-02-12 2020-12-29 Tc1 Llc System and method for controlling the position of a levitated rotor
US11015605B2 (en) 2015-02-12 2021-05-25 Tc1 Llc Alternating pump gaps
US11781551B2 (en) 2015-02-12 2023-10-10 Tc1 Llc Alternating pump gaps
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US11724097B2 (en) 2015-02-12 2023-08-15 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US10888645B2 (en) 2015-11-16 2021-01-12 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US11639722B2 (en) 2015-11-16 2023-05-02 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
US10707734B2 (en) 2016-04-14 2020-07-07 Levitronix Gmbh Electromagnetic rotary drive and rotational device
EP3232549A1 (de) * 2016-04-14 2017-10-18 Levitronix GmbH Elektromagnetischer drehantrieb und rotationsvorrichtung
WO2019141305A1 (de) * 2018-01-19 2019-07-25 Frank Wilkening Magnetischen elektrischen motorenantrieb
US11421694B2 (en) 2019-02-01 2022-08-23 White Knight Fluid Handling Inc. Pump having magnets for journaling and magnetically axially positioning rotor thereof, and related methods
US11619236B2 (en) 2020-02-13 2023-04-04 Levitronix Gmbh Pumping device, a single-use device and a method for operating a pumping device

Also Published As

Publication number Publication date
EP0819330A1 (de) 1998-01-21
CA2210762A1 (en) 1996-10-10
DE59607047D1 (de) 2001-07-12
JPH11503210A (ja) 1999-03-23
CA2210762C (en) 2008-06-17
EP0819330B1 (de) 2001-06-06
JP4076581B2 (ja) 2008-04-16
US6100618A (en) 2000-08-08

Similar Documents

Publication Publication Date Title
WO1996031934A1 (de) Rotationsmaschine mit elektromagnetischem drehantrieb
DE69734165T2 (de) Flüssigkeitspumpe
DE69731427T2 (de) Kreiselpumpenaggregat
EP0899855B1 (de) Magnetgelagerte Rotationsanordnung
EP0699447B1 (de) Zentrifugal-Blutpumpe
EP3232549B1 (de) Elektromagnetischer drehantrieb und rotationsvorrichtung
EP3570415B1 (de) Elektromagnetischer drehantrieb und rotationsvorrichtung
EP0846365B1 (de) Spaltrohrmotor
DE112005000636B4 (de) Pumpe
EP1360416B1 (de) Vorrichtung zur axialen förderung von flüssigkeiten
DE60006926T2 (de) Flüssigkeitspumpe mit magnetisch aufgehängtem Laufrad
EP0900572B1 (de) Zentrifugalpumpe
DE69629255T2 (de) Herzunterstützungsvorrichtung
WO1998011650A1 (de) Rotationspumpe und verfahren zum betrieb derselben
DE4102707A1 (de) Turbopumpe mit magnetisch gelagertem fluegelrad
EP3115616A1 (de) Elektromagnetischer drehantrieb
EP1208630A1 (de) Vorrichtung zur schonenden förderung von ein- oder mehrphasigen fluiden
WO1993017484A1 (de) Elektrische pumpe
EP0905379A1 (de) Zentrifugalpumpe und Zentrifugalpumpenanordnung
DE112004001809T5 (de) Axialströmungsblutpumpe mit magnetisch aufgehängtem, radial und axial stabilisiertem Laufrad
WO2019228958A1 (de) Blutpumpe
EP1265655A1 (de) Rotationspumpe mit hydraulisch gelagertem rotor
DE4104250A1 (de) Antrieb und lagerung fuer einen oe-spinnrotor
EP0986162B1 (de) Sensoranordnung in einem elektromagnetischen Drehantrieb
DE4123433A1 (de) Pumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996907235

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2210762

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2210762

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 08930649

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1996 529830

Country of ref document: JP

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1996907235

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996907235

Country of ref document: EP