WO1996036808A1 - Moteur a combustion interne de type a injection dans le cylindre - Google Patents

Moteur a combustion interne de type a injection dans le cylindre Download PDF

Info

Publication number
WO1996036808A1
WO1996036808A1 PCT/JP1996/001292 JP9601292W WO9636808A1 WO 1996036808 A1 WO1996036808 A1 WO 1996036808A1 JP 9601292 W JP9601292 W JP 9601292W WO 9636808 A1 WO9636808 A1 WO 9636808A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
spray
injection
injection valve
fuel injection
Prior art date
Application number
PCT/JP1996/001292
Other languages
English (en)
French (fr)
Inventor
Shigeo Yamamoto
Hiromitsu Ando
Osamu Hirako
Hiroshi Tanada
Kyoya Igarashi
Hiroaki Miyamoto
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority to JP08527488A priority Critical patent/JP3087309B2/ja
Priority to US08/765,927 priority patent/US5740777A/en
Publication of WO1996036808A1 publication Critical patent/WO1996036808A1/ja
Priority to SE9700102A priority patent/SE511466C2/sv

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B17/00Engines characterised by means for effecting stratification of charge in cylinders
    • F02B17/005Engines characterised by means for effecting stratification of charge in cylinders having direct injection in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • F02M51/0675Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages
    • F02M51/0678Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto the valve body having cylindrical guiding or metering portions, e.g. with fuel passages all portions having fuel passages, e.g. flats, grooves, diameter reductions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/045Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/106Tumble flow, i.e. the axis of rotation of the main charge flow motion is horizontal
    • F02B2023/107Reverse tumble flow, e.g. having substantially vertical intake ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/108Swirl flow, i.e. the axis of rotation of the main charge flow motion is vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a direct injection internal combustion engine that injects fuel directly into a combustion chamber, and in particular, performs premixed combustion at high output and stratified combustion at low output to switch between the respective combustion states according to the operating state of the engine.
  • the present invention relates to a four-cycle in-cylinder injection internal combustion engine suitable for an internal combustion engine.
  • the air and fuel sucked in the intake port are mixed and guided into the combustion chamber, and can be ignited and burned in the combustion chamber.
  • a fuel injection valve is provided to inject fuel directly into the combustion chamber, and a direct injection system is adopted, in which fuel injection is performed directly into the combustion chamber to improve engine responsiveness.
  • a direct injection system is adopted, in which fuel injection is performed directly into the combustion chamber to improve engine responsiveness.
  • a direct injection internal combustion engine in which fuel is directly injected into the combustion chamber is advantageous. That is, the above-described stratified combustion internal combustion engine is subjected to in-cylinder injection.
  • fuel combustion in the combustion chamber can be performed efficiently while improving the responsiveness of the engine. For this reason, research on in-cylinder fuel injection is also being vigorously conducted.
  • the fuel is injected in the compression stroke, and the flammable fuel is partially rich near the spark plug at the top of the combustion chamber while utilizing the tumble flow.
  • the shape of the fuel spray by the fuel injection valve has a strong influence.
  • a single injection valve provides a single injection valve to cover the entire combustion chamber from the main injection hole regardless of the intake swirl.
  • the fuel injection with high self-diffusion toward the ignition plug and the fuel injection with high penetration force from the sub injection hole toward the ignition plug improve the fuel diffusion into the combustion chamber and ensure the fuel injection near the spark plug.
  • In-cylinder injection spark ignition with fuel injection valve and fuel injection valve with both improved fuel supply and improved ignitability Agencies have been proposed.
  • the load of the engine is high or low, that is, regardless of whether the fuel is injected during the intake stroke or during the compression stroke. Since fuel injection is performed in the same manner, if the fuel injection ratio from the main injection port is set high, it is difficult to obtain the air-fuel ratio concentration for ignition by fuel injection from the sub injection port at low load. In other words, there is a limit to reducing the amount of fuel at low load, and conversely, if the fuel injection ratio from the sub injection is set high, the air-fuel ratio near the ignition There is a problem that becomes too rich.
  • the present invention has been made in view of the above-described problems.
  • An object of the present invention is to provide an in-cylinder injection type internal combustion engine capable of sufficiently bringing out the performance of the engine. Disclosure of the invention
  • a direct injection internal combustion engine of the present invention includes a combustion chamber formed between an upper surface of a reciprocating piston inserted into a cylinder and a lower surface of a cylinder head.
  • a four-cycle in-cylinder injection type internal combustion engine having a single fuel injection valve for directly injecting fuel into the combustion chamber and a spark plug facing the combustion chamber, wherein the fuel injection valve The fuel is injected into the combustion chamber with spray that spreads uniformly in the shape of a cone in the axial direction of the fuel injection valve, and during an engine operation state where the required fuel amount is large, during the intake stroke of the engine.
  • the fuel injection is performed, and when the engine is in the operating state where the required fuel amount is small, the fuel is injected so that the fuel is supplied in the latter half of the compression stroke of the engine having a higher in-cylinder pressure than the intake stroke. It is characterized by that.
  • the fuel injection valve is configured to perform fuel injection when the required fuel amount is small, when the atmospheric pressure in the combustion chamber becomes 2 atmospheres or more.
  • the spray shape of the fuel injected from the fuel injection valve becomes a conical shape having a certain injection angle toward the spray tip, and the required fuel amount is increased.
  • the degree of diameter expansion toward the spray tip becomes smaller and the diameter gradually becomes smaller.
  • a recess is formed in a part of the upper surface of the piston, a spark plug is provided at a position facing the recess, and when the required amount of fuel is large, the spark plug reaches the upper surface of the piston.
  • the spray tip spreads more than the recess.
  • the spray tip reaching the upper surface of the piston is reduced in diameter so as to fit in the recess, and is directed toward the spark plug by the recess. It is preferable that the guide is guided so as to be unevenly distributed near the ignition point of the ignition plug.
  • the fuel injection valve includes an injection valve main body having an injection port, an opening / closing means provided in the injection valve main body and capable of opening and closing the injection port, and a fuel gas flowing through the injection valve main body provided in the opening / closing means. It is preferable that the swirl-type fuel injection valve has a swirl flow generating means capable of giving a cone-type swirl flow to the fuel.
  • the concentration of the spray under the condition of high in-cylinder pressure and the dispersion of spray under the condition of low in-cylinder pressure are effectively achieved, and the fuel supply is more efficiently performed. It is possible to further promote the improvement of engine output and fuel efficiency.
  • the effect is particularly great when applied to an organization that performs premixed combustion at high power and stratified combustion at low power.
  • an intake port formed on one side of a reference surface including the axis of the cylinder on the lower surface of the cylinder head, and the intake port so as to open and close an opening of the intake port to the combustion chamber.
  • a longitudinal vortex of intake air having entered the combustion chamber from the intake port at a portion of the upper surface of the cylinder opposite to the intake port opening on one side of the reference surface.
  • a curved concave portion which is depressed with respect to the upper surface of the cylinder is formed,
  • a raised portion that protrudes from the recess and that can approach the lower surface of the cylinder head at the top dead center of the piston has its top positioned near the reference surface.
  • a spark plug is disposed near the cylinder axis on the lower surface of the cylinder head, and the fuel injection valve is disposed so that the injection port of the fuel injection valve faces the recess.
  • This is preferably c by a good ignitability in a spark plug is secured, easily performed stably re Ichin combustion operation by extremely lean mixture of fuel, it is possible to further promote fuel economy improvement.
  • a center spray having a small spray angle such that the shape of the spray converges in the vicinity of the axis of the fuel injection valve, and a spray angle larger than the center spray and surrounding the center spray so as to surround the center spray. It is preferable that it is composed of a conical peripheral spray separated from the central spray.
  • the fuel injection valve includes: an injection valve body having an injection port; opening / closing means provided in the injection valve body to open and close the injection port; It is preferable that the swirl-type fuel injection valve has a swirl flow generating means capable of giving a cone-type swirl flow to the flowing fuel.
  • the fuel spray has a shape in which the diameter increases toward a predetermined angle or more toward the spray tip, and the fuel is injected in the second half of the compression stroke.
  • it is set so as to have a shape reduced in diameter toward the spray tip to less than the predetermined angle, and a recess is formed in a part of the upper surface of the piston, and an outer edge of the recess forms an intake stroke.
  • the spray tip reaching the upper surface of the piston in the first half of the intake stroke of the fuel injection valve.
  • the diameter is smaller than the outer diameter of the spray and larger than the outer diameter of the spray at the tip of the spray reaching the upper surface of the piston in the latter half of the compression stroke of the fuel injection valve.
  • the fuel diffuses not only in the recess but also in the entire combustion chamber, and a sufficient amount of fuel is supplied to the entire combustion chamber while being mixed with air. Can be done. For this reason, it becomes easy to obtain a large output efficiently.
  • the fuel is contained in the recess, so that a sufficient fuel concentration can be achieved in the recess and in the space above the recess, ensuring stable ignition performance of the fuel and maintaining the entire combustion chamber.
  • the effect is great when applied to an engine that performs premixed combustion at high power and stratified combustion at low power.
  • the fuel injection valve is provided inside the injection valve main body having an injection port, and an abutment which is provided in the injection valve body and which can abut and closely contact an inner peripheral surface of a cone-shaped injection port forming the injection port at a tip end.
  • Opening and closing means for opening and closing the injection port through the contact portion, and guiding the fuel, which is provided immediately above the contact portion and flows through the injection valve body, toward the injection port and turns into the fuel flow.
  • a swirl type fuel injection valve having a swirl flow generating means for giving a component to generate a swirl flow, It is preferable to make each setting so that the angle of the horizontal flow distribution diagram of the fuel injected from the fuel injection valve obtained by the flow distribution measurement falls within the range of 40 to 7 Odeg.
  • FIG. 1 is a schematic sectional view showing a fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIGS. 2 (a) and 2 (b) show the opening / closing mechanism (opening / closing means) of the fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 2 (a) is a schematic cross-sectional view showing the opening and closing mechanism of the fuel injection valve
  • FIG. 2 (b) is a cross-sectional view taken along line A_A in FIG. 2 (a).
  • FIG. 3 is a schematic diagram for explaining a manner of generating a cone-shaped swirling flow by the fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 4 is a schematic sectional view showing a configuration of a fuel retaining portion of the fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 5 shows a fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 3 is a schematic side view for explaining a fuel spray shape according to the first embodiment.
  • FIG. 6 is a view for explaining the shape of fuel spray by the fuel injection valve for an internal combustion engine according to the first embodiment of the present invention, and is a cross-sectional view of fuel spray in FIG.
  • FI G. 7 (a) and FI G. 7 (b) are schematic diagrams of the main parts of the fuel injection valve for explaining the fuel injection operation by the fuel injection valve for the internal combustion engine according to the first embodiment of the present invention. specific a cross-sectional view, FI G. 7 (a) is immediately after start injection state, FI G. 7 (b) is c indicating the normal state of the injection medium term, respectively
  • FIGS. 8 (a) and 8 (b) are fuel injection distribution diagrams for explaining the fuel injection operation of the internal combustion engine fuel injection valve according to the first embodiment of the present invention.
  • Fig. 8 (a) shows the normal state during the middle stage of injection
  • Fig. 8 (b) shows the state immediately after the start of injection and immediately before the end of injection.
  • FIG. 9 is a schematic perspective view for explaining the method for measuring the fuel distribution of the fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 10 is a fuel injection distribution diagram for explaining the fuel injection operation of the internal combustion engine fuel injection valve according to the first embodiment of the present invention.
  • FI G. 11 (a) and FI G. 11 (b) both show the cylinder injection type internal combustion engine according to the first embodiment of the present invention, and show the compression stroke fuel by the fuel injection valve for the internal combustion engine.
  • Fig. 11 (a) is a schematic side view of a combustion chamber for explaining injection
  • Fig. 11 (a) shows a state of fuel at the time of fuel injection
  • Fig. 11 (b) is a state after fuel injection. Shows the state of the fuel.
  • FIG. 12 is a graph for explaining the operation and effect of the fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 13 is a graph for explaining the operation and effect of the fuel injection valve for an internal combustion engine according to the first embodiment of the present invention.
  • FIG. 14 is a diagram showing a fuel spray state during an intake stroke of a fuel injection valve for an internal combustion engine according to the embodiment, and FIG. 14 (a) is a schematic side view thereof, FIG.
  • 14 (b) is a cross-sectional view of the spray [a cross-sectional view taken along the line BB in FIG. 14 (a)].
  • FI G.15 (a) and FI G.15 (b) are diagrams showing the fuel spray state during the compression stroke of the fuel injection valve for an internal combustion engine according to the second embodiment of the present invention.
  • G. 15 (a) is a schematic side view, FI G.
  • 15 (b) is a cross-sectional view of the spray [a cross-sectional view taken along the line BB in FIG. 15 (a)].
  • FIG. 16 is a schematic cross-sectional view showing a fuel injection state during an intake stroke of the direct injection internal combustion engine according to the second embodiment of the present invention.
  • FIG. 17 is a diagram showing a fuel injection distribution by an intake stroke fuel injection of the direct injection internal combustion engine according to the second embodiment of the present invention.
  • FIG. 18 is a schematic sectional view showing a state of fuel injection in a compression stroke of the direct injection internal combustion engine according to the second embodiment of the present invention.
  • FIG. 19 is a view showing a fuel injection distribution by a compression stroke fuel injection of the direct injection internal combustion engine according to the second embodiment of the present invention.
  • FIG. 20 is a graph showing the fuel spray characteristics of the direct injection internal combustion engine according to the second embodiment of the present invention.
  • FIG. 21 is a schematic side view showing a modified fuel injection valve for an internal combustion engine according to the first and second embodiments of the present invention.
  • FIG. 22 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention, and is a diagram showing a horizontal flow rate distribution of the fuel by the fuel injection valve.
  • FIG. 23 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention. It is a figure explaining the correlation between the cloth figure center and the injection angle (spray angle).
  • FIG. 24 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention, and is a diagram showing a fuel consumption characteristic with respect to a fuel spray characteristic (horizontal flow distribution diagram). is there.
  • FIGS. 25 (a) and 25 (b) are diagrams for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention.
  • FI G. 2 (b) FI G. 25 (a) is a schematic longitudinal section near the nozzle
  • FIG. 25 (b) is a schematic cross-sectional view near the nozzle. It is.
  • FIG. 26 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention, and is a diagram showing the variation of the spray with respect to the swirling Reynolds number.
  • FIG. 27 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention, and is a diagram showing the variation of the spray with respect to the ratio (LZD) between the injection port length and the injection port diameter. It is.
  • FIG. 28 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention, and is a perspective view schematically showing a swirling flow through the inside of the injection port.
  • FIG. 29 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention, and shows the characteristics of the horizontal flow rate distribution centroid for each LZD of the injection port with respect to the swirling Reynolds number.
  • FIG. 30 is a diagram for explaining the setting of the injection port of the fuel injection valve for an internal combustion engine according to the present invention, and is a value (R eZ p) based on the turning Reynolds number (Re) and the fuel pressure (P).
  • FIG. 9 is a diagram showing characteristics of a horizontal flow distribution diagram center for each LZD of an injection port with respect to FIG.
  • FIG. 1 is a longitudinal sectional view showing an enlarged main part of an injection port.
  • FIGS. 1 to 13 show a four-cycle in-cylinder injection type internal combustion engine with natural air supply and a fuel injection valve thereof according to a first embodiment of the present invention. The form will be described.
  • the fuel injection valve 30 is to be installed in an internal combustion engine such as a cylinder injection type internal combustion engine for a vehicle, for example.
  • an electromagnetic coil 1 As shown in FIG. 1, an electromagnetic coil 1, a return spring 2, needle valve 3, opening / closing mechanism (opening / closing means) 4, filter 5, fuel passage 6, injection port 7, and fuel injection valve body 8.
  • the filter 5 removes impurities and the like from the fuel from a fuel tank (fuel supply source) (not shown) and permeates the fuel.
  • the permeated fuel flows into the fuel passage 6. .
  • the electromagnetic coil 1 acts to contract the return spring 2
  • the return spring 2 acts on the needle valve 3. It is connected.
  • the needle valve 3 moves up and down in the direction in which the return spring 2 expands and contracts.
  • the ECU as the fuel injection control unit outputs an electric signal for opening the electromagnetic coil 1 during the intake stroke of the engine when the engine is in an operation state where the required fuel amount is large, such as at a high load.
  • the electromagnetic coil 1 It outputs an electric signal to open the valve in the compression stroke of Seki.
  • the ECU when setting the valve opening period in the compression stroke, the operating state is adjusted so that the valve closing timing is in the latter half of the compression stroke.
  • the closed valve timing data is stored.
  • the ECU calculates the basic valve opening timing based on the pulse width data corresponding to the required fuel and the above-described valve closing timing data, and operates the electromagnetic coil 1.
  • the ECU may store at least the valve opening timing according to the load instead of the valve closing timing data.
  • the action of the electromagnetic coil 1 causes the resilient spring 2 to contract and pull up the needle valve 3.
  • the contact portion 15 of the needle valve 3 becomes a stopper member. 16 While the maximum lift is regulated by contacting 6, the return spring 2 returns to its original shape when the electric signal to the electromagnetic coil 1 is cut off, and the position of the 21 dollar valve 3 is also determined. And come back to.
  • the opening / closing mechanism 4 can open and close the injection port 7 by moving the above-mentioned 21 dollar valve 3 up and down. More specifically, FIG. 2 (a) and FIG. 2 (b) ), FI G.3, and FI G.4.
  • reference numeral 9 denotes an opening / closing portion (opening / closing means) for opening / closing the nozzle 7, and the opening / closing portion 9 is a cone-shaped nozzle orifice forming the nozzle 7.
  • Surface 7a and needle valve 3 are provided.
  • the tip of the needle valve 3 on the side of the injection port 7 has a cone-shaped abutment surface 3a which can be in contact with the cone-shaped injection port inner peripheral surface 7a by, for example, line contact.
  • the position of the cone-shaped abutment surface 3a only moves. Airtightness between the fuel passage 6 and the combustion chamber (not shown) can be ensured, and fuel leakage from the injection port 7 can be prevented.
  • reference numeral 10 denotes a fuel passage in the fuel passage.
  • the outer peripheral side introduction portion 10 a guides the fuel from the fuel passage 6 to a location separated from the injection port 7 to the outer peripheral side. It is formed in a tangential direction from 10 a to the outer periphery of the tip of the needle valve 3 near the injection port 7, and can add a swirl component to the fuel flow toward the injection port 7.
  • the fuel injected through the opening / closing section 9 includes, for example, a cone shown in FIG. A swirling flow B is provided. That is, the above-described fuel guide flow path 10 constitutes a swirl flow generating means provided in the opening / closing section 9 and capable of giving a cone-type swirl flow (peripheral injection) B to the fuel passing through the injection valve body 8. .
  • a certain pressure is applied to the fuel existing in the fuel passage 6 or the fuel guide passage 10 while the opening / closing section 9 is closed, but when the opening / closing means 9 is opened. Is released from the applied pressure.
  • a fuel flow of the cone-shaped swirl flow B is generated and injected into a combustion chamber (not shown).
  • the initial velocity is small, while the surrounding air hinders the movement of this sprayed fuel, so that the spray acts to generate a swirling flow in the surrounding air, but the movement of the spray itself Attenuation becomes more distant from the injection valve, and the spray tends to stall.
  • the movement of the fuel spray due to the peripheral spray is easily affected by the in-cylinder pressure.
  • the in-cylinder pressure is low, a sufficient penetration force in the radial direction of the conical peripheral surface is maintained, and the Although fuel dispersal is promoted, when the cylinder pressure is high, the surrounding air density increases and the force that tries to hinder the spray movement increases, resulting in the conical circumferential direction of the sprayed fuel.
  • the distance from the injection valve becomes greater, the movement of the water is attenuated, the spread of the spray becomes smaller, and it becomes easier to gather in the direction of the injection center axis.
  • a dead volume (fuel retention portion) 11 is formed near the injection port 7 and can retain fuel when the injection port 7 is closed. It is formed on the upstream side of the contact portion between the inner peripheral surface 7a of the cone-shaped nozzle and the cone-shaped contact surface 3a in the nozzle 7.
  • the fuel retained in the dead volume 11 is also boosted by the pressure of the fuel from the fuel guide passage 10 when the two-dollar valve 3 is lifted, for example, by the center spray.
  • C is injected into a combustion chamber (not shown).
  • the shape of the fuel when the fuel existing in the fuel guide passage 10 and the fuel retained in the dead volume 11 are injected is, for example, schematic. It can have a shape as shown in Fig. 5 (sectional direction parallel to the injection direction) or Fig. 6 (sectional direction perpendicular to the injection direction)
  • the central spray generated in dead volume 11 does not have a swirling flow, and the injection pressure is converted as a velocity component in the vertical direction.Thus, even when the in-cylinder pressure is high, the central spray is in the direction of the injection center axis. It has sufficient directivity, and as a result, loses the velocity component and generates a flow that draws the floating peripheral spray together with the surrounding air near the central axis of the spray. Therefore, the central spray contributes to the promotion of stratification during the compression stroke.
  • the return spring 2 does not expand and contract because it is not affected by the electromagnetic coil 1. For this reason, the position of the needle valve 3 does not change from the contact position, so that the fuel from the fuel guide passage 10 or the fuel retained in the dead volume 11 is not injected.
  • the amount of the center spray C1 is larger than the amount of the peripheral spray B1, and at the lower part of the injection port 7, for example, FIG.
  • Fig. 8 (b) As shown in Fig. 8 (b), more fuel is detected around the center than outside.
  • the center is a position directly below the nozzle 7, and the outside is a position remote from the center.
  • the position of the needle valve 3 is greatly lifted while contracting greatly due to the action of the return spring 2 and the electromagnetic coil 1, and the contact portion between the needle valve 3 and the injection port 7 is also largely opened.
  • a large amount of fuel from the fuel guide passage 10 is also injected in the form of a spray such as B2 in FIG. 7 (b).
  • the amount of fuel remaining in the dead volume 11 decreases gradually in accordance with the lift amount of the needle valve 3, so that the injection amount also decreases, and the spray shape is FIG.
  • the amount of the peripheral spray B 2 is larger than the amount of the central spray C 2, and more fuel is detected at the lower part of the nozzle 7 than outside the center as shown in FIG. 8 (a), for example. It is supposed to be.
  • the total injection amount during the entire period from opening to closing of the fuel injection valve is larger for peripheral spray than for central spray.
  • the fuel amount distribution below the injection port 7 is, for example, as shown in FIG. 9. It can be measured by a horizontal flow distribution measurement system of spray by the 1-ring method.
  • reference numeral 12 denotes a multipoint sampling container for measuring horizontal flow distribution (ring collection jig).
  • the multipoint sampling container 12 for measuring horizontal flow distribution has a container partition height of 25 mm and each has a diameter of 25 mm. It has a configuration in which 11 A of different annular sampling vessels are provided concentrically, and the distance from the tip of the injection valve to the top of the vessel (here 50 mm) corresponds to the angle defined as the cosine. Sprays sprayed multiple times (for example, 1 000 times) periodically with an injection pulse width of lms ec are collected in each sampling vessel 12 A, and the averaged fuel amount in each sampling vessel 12 A is used as the horizontal level. It is a flow distribution.
  • the fuel (test oil) used in this measurement model is similar to gasoline in terms of specific gravity, etc., and is a pseudo fuel with low low-boiling components (ie, low volatility).
  • the specific fuel has a specific gravity of 0.777 at 15/4 ° C and a viscosity (cst) force at 20 ° C of 1.17 to: L.23
  • the fractionation property [50% distillation temperature (° C)] is 165, and the fractionation property [end point (° C)] is 196.
  • the measurement results of the horizontal flow distribution measured for the peripheral spray as shown in FIG.7 (b) above are shown in FIG.10
  • the ratio Y of the fuel amount to the injection angle X can be obtained.
  • the area P where the injection angle is narrow can be the fuel amount by the center spray C2
  • the area Q where the injection angle is wide is the fuel amount by the peripheral spray B2. To do Can be.
  • 20 is a cylinder
  • 21 is a combustion chamber
  • 22 is a piston
  • 23 is an intake port
  • 24 is an intake valve
  • 25 is a spark plug
  • 26 is an exhaust valve
  • 27 is a cylinder head.
  • the intake port 23 is formed on one side of a reference plane including the axis line 28 of the cylinder 20 on the lower surface of the cylinder head 27, and the intake valve 24 is provided in the combustion chamber of the intake port 23. 2
  • the intake port is not equipped to open and close the opening to 1 o
  • a portion facing the opening of the intake port 23 on one side of a reference plane (a virtual plane including the cylinder axis 28) on the upper surface of the cylinder 20 is provided.
  • a curved recess 22 A formed in the cylinder 20 upper surface is formed to promote the vertical vortex (tumble flow) F of the intake air that has entered the combustion chamber 21 from 3.
  • a raised section 22B that rises gently from the recess 22A and can approach the lower surface of the cylinder head at the top dead center of the piston 22 places the top near the reference plane. It is formed so that.
  • the protruding portion 2 2 B has a linear protuberance from the recess 22 a. not limited c
  • the spark plug 2 5 in the vicinity of the cylinder axis line 2 8 in head 2 7 lower surface to the cylinder is disposed, the fuel injection valve 3 0, the piston 2 2 is close to the top dead center
  • the nozzle 7 is arranged so as to face the recess 22A.
  • the fuel injection valve 30 is capable of in-cylinder injection and Under these conditions, fuel injection can be performed at a significantly higher pressure (for example, 50 atm) than normal intake port injection.
  • the injection timing of the fuel injection valve is varied according to the level of the load of the internal combustion engine based on control by an ECU (not shown).
  • the fuel injection amount is controlled by adjusting the lift time of the dollar valve 3.
  • the lift time of the needle valve 3 is shortened during the compression stroke when the in-cylinder pressure is high (2 atm or more) so that fuel is supplied into the combustion chamber.
  • the fuel sprayed mainly from the center spray C1 from the fuel injection valve 30 is reflected on the inner surface of the recess 22A of the piston 22 and then directed toward the ignition plug 25. Therefore, fuel consumption can be reduced while ensuring the ignitability and combustion stability while maintaining a lean air-fuel ratio as a whole, while making the vicinity of the spark plug 25 partially fuel-rich (compression). Stroke injection mode).
  • the load on the internal combustion engine increases, so that the intake stroke in which the intake air is guided from the intake port 23 into the combustion chamber 21 (in the intake stroke, In the case where the cylinder pressure is equal to or lower than the atmospheric pressure), by controlling the fuel injection while increasing the lift time, as shown in FIG.
  • the fuel is sprayed in the main shape, and the fuel is uniformly mixed in the entire combustion chamber so that a sufficient output can be obtained by the stoichiometric operation or the rich operation (intake stroke injection mode).
  • the fuel injection valve according to the first embodiment of the present invention is configured as described above. Therefore, when the above-described fuel injection valve 30 is applied to an in-cylinder injection type internal combustion engine in a vehicle, the fuel injection valve 30 is controlled according to the level of the load on the internal combustion engine based on control by an ECU (not shown) or the like. The injection timing is varied and the lift time of the dollar valve 3 is varied.
  • the lift time of the needle valve 3 is shortened during the compression stroke to control the fuel injection so that the center spray C 1 (FIG. 7 (a) or FIG. 7 (c)) to increase the amount of fuel injected, and to reduce the ignitability while controlling the fuel injection amount for each lift of the 21 dollar valve 3 to a relatively small amount.
  • the peripheral spray B1 since the peripheral spray B1 has a high in-cylinder pressure, the course is bent so as to converge toward the center spray due to the effect of the in-cylinder pressure, and the spray angle at the spray tip becomes narrow (that is, the spray angle at the top of the piston is reduced). The outer diameter of the tip of the fuel spray that arrives is smaller). For this reason, the peripheral spray B 1 also converges to the central spray C 1, and is reflected by the inner surface of the recess 22 A of the piston 22 and then heads toward the ignition plug 25. That is, in the compression stroke, the peripheral spray B 1 can also converge on the spark plug 25. As a result, as shown in FIG. 11 (b), a relatively rich combustible mixture is formed in the vicinity of the spark plug 25, and the ignition of the spark plug 25 is performed in the combustion stroke after the compression stroke. Thereby, super-lean stratified combustion can be performed.
  • FI G.12 shows the maximum output of the engine and the lean limit air-fuel ratio according to the spray shape.
  • the hollow spray with a substantially conical surface (abbreviated as hollow in the figure) and the hollow spray and the center spray are shown.
  • Characteristics of three types of spray shapes a combined two-stage spray (abbreviated as two stages in the figure) and a solid spray that diffuses in a slightly conical solid state (abbreviated as solid in the diagram) Is shown.
  • the air-fuel ratio is higher than in the case of other fuel spray shapes (see G1).
  • the indicated average effective Since the pressure F2 can be maintained combustion can be performed without reducing power under ultra-lean conditions.
  • FIG. 12 if the load of the internal combustion engine is high, as shown in FIG. 12 at points D 2 and D 3, the above-mentioned FIG. 7 (b) It can be seen that a sufficient engine output can be obtained by performing fuel injection using the stage spray or hollow spray excluding the center spray from the two-stage spray.
  • the compression stroke fuel By performing fuel injection mainly using center spray in the injection mode, ignitability, that is, combustion stability is sufficiently secured while suppressing the fuel injection amount to a relatively small amount, and output under ultra-lean conditions.
  • fuel can be improved by burning without dropping.
  • the stoichiometric air-fuel ratio can be reduced while performing a relatively small amount of fuel injection by performing fuel injection mainly using peripheral spray in the intake stroke fuel injection mode.
  • the fuel injection valve 30 when the fuel injection valve 30 is mounted on a direct injection internal combustion engine as shown in FIG. 11 (a) and FIG. 11 (b), particularly the fuel injection valve 30 is a condition under which the in-cylinder pressure is clearly higher than the intake stroke (in-cylinder pressure: below atmospheric pressure) when the load of the internal combustion engine is low (in-cylinder pressure is more than 2 atm, preferably 5 atm). That is, the fuel injection is performed in the compression stroke (particularly in the second half), and when the load of the internal combustion engine is high, the fuel injection is performed in the intake stroke (particularly in the first half). In this case, it is needless to say that the same advantages as those of the above-described embodiment can be obtained.
  • the fuel injection mode is different depending on the level of the load of the internal combustion engine.
  • the fuel injection valve has two shapes of the central spray and the peripheral spray. Therefore, when fuel is injected during the compression stroke, there is an advantage that at least sufficient combustion stability can be ensured and fuel efficiency can be improved.
  • the in-cylinder injection type internal combustion engine in which the injection timing is switched using a single injection valve as in the present embodiment injects fuel during the compression stroke, and in particular, the fuel injection end timing is determined in the latter half of the compression stroke.
  • the spray angle at the tip of the peripheral spray is narrowed by the in-cylinder pressure irrespective of the center spray (that is, the outer diameter of the spray tip reaching the upper surface of the piston is reduced), It can be directed to a ton of recess, and it is possible to realize ultra-lean stratified combustion, and it is possible to obtain the effects of stable combustion and improved fuel efficiency.
  • the spray angle at the peripheral spray tip can be diffused into the combustion chamber without any particular change, and a relatively small amount of fuel is injected to generate a uniform air-fuel mixture close to the stoichiometric air-fuel ratio to increase the output. Can be done.
  • a single injection valve that performs cone-shaped injection is provided, and stratified combustion and premixed combustion are performed simply by switching the injection timing between the compression stroke and the intake stroke. Since it is possible to set the spray angle suitable for each of the above, a highly cost-effective system capable of responding to the requirements of each operation state is provided. This feature holds even if there is no particular central spray.
  • FIGS. 14 to 20 are schematic cross-sectional views showing an in-cylinder injection type internal combustion engine and a fuel injection valve for the internal combustion engine, which are the same as in the first embodiment as the second embodiment of the present invention.
  • the second embodiment will be described with reference to these drawings.
  • the cylinder injection type internal combustion engine according to the present embodiment has a fuel injection valve compared to those in FIGS. 11 (a) and 11 (b) shown in the first embodiment.
  • the fuel spray shape is different, and other configurations and operations are basically the same, and the description is omitted.
  • this fuel injection valve 30 has little or no center spray C and only a substantially conical peripheral spray B '.
  • a spray state of only the peripheral spray B ' is also referred to as a hollow spray or a hollow cone spray BB.
  • the dead volume 11 is minimized.
  • the center spray C slightly remains, but it is possible to form a nearly hollow spray (holo cone spray) BB while forming a swirl flow.
  • fuel is injected from the fuel injection valve 30 by high-pressure injection, and this fuel flow, as shown in FIG. 14 (a) and FIG. 14 (b), has a swirling flow velocity component R As shown by 1 and the velocity vector V, it has a velocity component that goes in the direction of spreading along the conical surface.
  • These velocity components R 1 and V are divided into a component V ⁇ in the rotational direction, a component VR in the centrifugal direction, and a component V t in the direction along the injection center axis M. Under the lower atmosphere, the velocity components V 0, VR, and V t are all large, and it can be seen that the fuel diffuses in a cone shape.
  • the distribution of the injected fuel amount at this time is extremely small in the vicinity of the injection center axis, and becomes large in a portion separated from the injection center axis.
  • the substantially conical mid-air spray ie, the spread hollow cone spray
  • the fuel particles come into contact with air on the outside and inside of the main cone-shaped spray, and the fuel is sprayed.
  • the atomization of the particles is promoted, and the penetration force of the injected fuel is suppressed accordingly.
  • entrainment R 2 of the surrounding air is generated, and the promotion of atomization of fuel particles and the suppression of penetration force are further enhanced.
  • the reason why the compact spray BB 'is formed under such high pressure is considered to be that the penetration force of the spray fuel greatly varies depending on the fuel injection atmosphere pressure.o In other words, when fuel is injected from the fuel injection valve 30 by high-pressure injection, this fuel flow is generated under atmospheric pressure as shown in FIG. 15 (a) and FIG. 15 (b). Similarly, the velocity components R 1 'and V' of the fuel flow should be considered separately in a rotational direction, a component in the centrifugal direction VR ', and a component in the direction along the injection center axis Vt'. However, in an atmosphere below atmospheric pressure, the velocity components V0 ', VR', and Vf are smaller than those under atmospheric pressure. It is thought to form spray BB '.
  • the timing of fuel injection in the latter half of the compression stroke is set as follows. That is, similarly to the first embodiment, also in this engine, a curved concave portion 22 A is formed on the upper surface of the piston 22, and as shown by an arrow, the combustion chamber is late in the compression stroke when the piston 22 rises.
  • fuel supplied to the combustion chamber 21 is directed toward the ignition point of the spark plug 25 above the combustion chamber 21 after being reflected toward the recess 22 A and further reflected at the recess 22 A.
  • the timing of fuel injection by the fuel injection valve 30 and the injection direction of the fuel injection valve 30 (that is, the direction of the injection center axis) are set.
  • the shape of the recess 22A is also a shape that can reflect the fuel injected from the fuel injection valve 30 so as to converge toward the ignition point of the ignition plug 25, and the fuel injection valve 30 Even if the injected fuel has a spread, the fuel is converged, and when the ignition plug 25 is ignited, a sufficient concentration of fuel is partially supplied to the vicinity of the ignition point.
  • the second embodiment of the present invention is configured as described above, in the case of an engine operating state with a large required fuel amount, for example, when the load on the engine is large, as shown in FIG.
  • operation can be performed such that a sufficient output is obtained from the engine.
  • fuel is injected in the intake stroke when the piston 22 descends as shown by the arrow, as shown in FIG. 14 (a), FIG. 14 (b), and FIG.
  • a certain hollow cone spray BB is formed.
  • the fuel amount is in a diffused distribution state as shown in FIG. 17, and in particular, the fuel particles come into contact with air outside and inside the main spray, respectively.
  • Atomization is promoted, and the penetration force of the injected fuel is suppressed accordingly.
  • the mixing of fuel and air was sufficiently performed, now ignited by the spark plug 2 5 is performed, of course c becomes larger engine output to achieve a very efficient combustion is obtained
  • efficient combustion can also contribute to the reduction of HC and smoke in exhaust gas.
  • the fuel injection valve 30 performs compression stroke injection (especially injection in the latter half of the compression stroke is desirable) to save fuel and reduce fuel consumption. Can be performed.
  • the compact spray BB ' is formed in this way, as shown in FIG. 19, it becomes almost concentrated near the injection center axis.
  • the fuel injected in the latter half of the compression stroke is reflected by the recess 22A on the upper surface of the piston 22 and, along with the push-up of the piston, the spark plug 25 above the combustion chamber 21. Head to the ignition point of.
  • the recess 22 A reflects the fuel so that it converges toward the ignition point of the spark plug 25.
  • the ignition plug 25 is ignited, a sufficient concentration of fuel is partially supplied in the vicinity of the ignition point, and the fuel is ignited reliably to obtain a stable combustion state.
  • the stable operation of lean operation can contribute to the reduction of HC and smoke in exhaust gas.
  • the present embodiment while performing only the hollow spray (holo-cone spray) BB without the center spray C, the characteristics of the spray shape that changes according to the fuel injection atmosphere pressure and the piston 22 upper surface
  • the compression stroke Stable lean operation can be realized by fuel injection, and as a result, it is possible to improve engine output, improve fuel efficiency, and reduce HC and smoke in exhaust gas without relying on central spray.
  • the hollow spray (holo-cone spray) BB on the spark plug and perform the lean combustion operation by utilizing the fuel reflection from the recess 22 A. In some cases, it can be operated with a leaner fuel than the combustion operation.
  • the atomized cone-shaped fuel spray is formed by forming a high swirl flow.
  • the atomized cone may be formed without using the swirl flow. As long as the fuel spray can be realized, such a spray form may be used.
  • the fuel is sprayed in the form of a solid cone, as indicated by reference numeral BC in FIG. 21.
  • a solid spray can increase the critical air-fuel ratio as shown in FIG. 12 when performing the lean combustion operation, which is rather advantageous.
  • the fuel spray valve is configured so that the peripheral spray near the injection conical surface has a smaller particle size than the center spray near the injection center axis. Similarly, the peripheral spray becomes more susceptible to the in-cylinder pressure, which promotes the concentration of the spray during the compression stroke injection.
  • the relationship of the recess with respect to the fuel injection angle can be defined as follows.
  • the tip of the fuel spray reaching the upper surface of the piston 22 expands more than the recess 22 A and becomes inside the combustion chamber 21.
  • Low fuel demand with sufficient diffusion In the case of the compression stroke injection (particularly, the latter stage of the compression stroke), the tip of the fuel spray reaching the upper surface of the piston 22 is reduced in diameter so that it falls within the recess 22A. It is set so that it is guided toward spark plug 25 by 2A.
  • the outer edge of the recess 22 A with respect to the fuel injection angle is located at the substantially same piston position in the first half of the intake stroke and the second half of the compression stroke [for example, BTDC 300 ° (300 ° before top dead center of intake, That is, at 60 ° after exhaust top dead center) and at 60 ° BTDC (60 ° before compression top dead center)], it can be expressed as follows.
  • the spray outer diameter at the spray tip reaching the upper surface of the piston 22 is larger than the recess 22A, and the fuel injection valve in the second half of the compression stroke According to this fuel injection, the size of the outer edge of the recess is preferably set so that the spray outer diameter of the spray tip reaching the upper surface of the piston 22 is within the recess 22A.
  • the fuel is diffused not only in the recess 22A but also in the entire combustion chamber 21 and a sufficient amount of fuel is mixed with air.
  • it can be supplied to the entire combustion chamber while it is easy to obtain a large output efficiently.
  • the fuel is stored in the recess 22 A, so that a sufficient fuel concentration can be obtained in the recess 22 A and the space above the recess 22 A, and the combustion chamber 2 (1) As a whole, it is possible to realize operation with low fuel consumption in a lean fuel concentration state, and it is highly effective when applied to an engine that performs premixed combustion at high output and stratified combustion at low output. .
  • the tip of the fuel spray reaching the upper surface of the piston 22 is not only larger than the recess 22 A, but also diffuses wider than the entire upper surface of the piston 22. if set to, are further sufficiently mixed fuel in the combustion chamber 2 within 1, the output improving effect is remarkable c This simply spray angle as well as the piston 2 2 top position location during spray penetration, i.e. Because it depends on the injection timing, it is necessary to set these together.
  • the in-cylinder injection internal combustion engine seeks to achieve both high output by premixed combustion and improved fuel efficiency by stratified combustion.
  • a sufficient amount of fuel is more completely burned by spraying the fuel throughout the cylinder in the intake stroke injection to achieve high output, while the fuel is injected into the piston stroke by the compression stroke injection.
  • the present fuel injection valve for an internal combustion engine has the fuel guide flow path 10 as a swirl flow generating means, and by adding a swirl component to the fuel flow and injecting it as a swirl flow, the spray fuel is conical.
  • a peripheral spray B ' is formed as a cone-shaped swirling flow B.
  • the shape of such a conical swirling flow B that is, the spread state (co The injection angle, which is referred to as the spray angle in order to distinguish it from the above-mentioned injection angle, etc.) has a significant effect on the exhaust gas characteristics while achieving both high output and improved fuel efficiency.
  • the shape of the fuel injection valve that can obtain an appropriate fuel spray shape can be defined.
  • the spray shape can be considered as the angle of the conical surface of the conical swirling flow B formed in a conical shape.
  • Such an angle can be detected by visualizing the spray, and the actual spray shape of the j-shaped swirl flow B is shown in FI G. 8 (a), As shown in FI G.8 (b) and FI G.10, it has a conical shape with a thickness in the spray angle direction, and such a spray angle can be detected based on the appearance. Not always easy. Therefore, here, the value of the horizontal flow rate distribution centroid is used as the spray shape index.
  • This horizontal flow distribution centroid is the measurement system shown in Fig. 9 described above.
  • the measurement result of the amount of fuel sampled in each sampling container 12 A of the multi-point sampling container 12 for horizontal flow distribution measurement it can be obtained by the following equation.
  • Horizontal flow center ⁇ (spray collection amount of each sampling container X injection angle)
  • the horizontal flow rate distribution of the fuel is calculated as the ratio Y of the fuel amount to the injection angle X as shown in FIG. 10 from the results based on this measurement system. Obtainable. If the sampling container 12A is finely divided according to the injection angle X direction and the finer distribution of the horizontal flow rate of the fuel spray is detected, the result shown in FIG. 22 is obtained.
  • the horizontal axis indicates the injection angle (deg), and the vertical axis indicates the amount of fuel collected in each sampling vessel 12 A by the static flow rate of fuel [unit time or unit pulse ( (Injection pulse: fuel injection amount per 1 ms ec)] (horizontal distribution amount). From the measurement results, the distribution characteristics shown in the curve (horizontal distribution curve) in FIG. 22 are obtained. The horizontal flow distribution centroid is weighted by the horizontal distribution obtained in this way. This is a value equivalent to the weighted average of the injection angles, and is indicated by a star in Fig. 22.
  • the fuel efficiency characteristics with respect to the horizontal flow rate distribution center are as shown in Fig. 24, and the horizontal flow rate distribution chart with good fuel efficiency rate can be obtained.
  • the heart is considered to be in the range of 40-70 deg (50-80 deg for cone spray angles), as shown shaded in FIG. That is, focusing on fuel efficiency, the horizontal flow rate distribution center is considered to be appropriate in the range of 40 to 70 deg.
  • V s K (D oZD s) (2 P / p) 0 5
  • the swirl Reynolds number Re increases, the horizontal flow rate distribution center due to machining errors in It can be seen that the dispersion increases and it becomes difficult to obtain a desired spray shape. Therefore, from the viewpoint of suppressing variations in the horizontal flow rate distribution centroid, it is more advantageous to make the rotating Reynolds number Re smaller.
  • Re the revolving Reynolds number
  • the swirling flow of the fuel to which the swirling force is applied spirally circulates in the nozzle as shown in the figure, while suppressing the spread of the spray and at the same time, leveling the dimensional variation between the swirl grooves. And the spray becomes stable.
  • the orifice LZD is about 1-3.
  • Fig. 29 shows the horizontal flow rate distribution centroid for each injection port L ZD with respect to the swirling Reynolds number Re when the injection pressure of the injection valve is set to 4 MPa. It can be seen that the swirling Reynolds number R e corresponding to the horizontal flow rate distribution center (40 to 70 deg) is about 20000 to 40000. Therefore, if the injection pressure is 4 MPa, then FI G. It is preferable to set the specifications of the fuel injection valve so that the swirling Reynolds number Re, the horizontal flow rate distribution center, and the injection port LZD are set in the shaded area in 29.
  • the horizontal flow rate distribution center also depends on the fuel pressure P, when the injection pressure is considered at a value other than the above 4 MPa, the optimum fuel injection state is determined by using the horizontal flow rate distribution center and the fuel pressure P. L, which is more accurate than te. Then, based on the experimental data, an index of the fuel injection state that takes into account the horizontal flow rate distribution center and the fuel injection pressure (also called injection pressure or fuel pressure) is given, and the horizontal flow rate distribution center X fuel pressure ⁇ ° ⁇ 25
  • the turning Reynolds number Re is a function of the square root of the fuel pressure P
  • the turning Reynolds number Re should be set to a value (ReZ ⁇ P) obtained by dividing by the square root of the fuel pressure P. Can be. Then, from the correspondence between this value (Re / ⁇ P) and the horizontal flow rate distribution centroid, an appropriate value (ReZP) can be obtained.
  • the unit of the value (R e P) is - a [LZP a ° 5].
  • FI G.30 shows the horizontal flow rate distribution center for this value (ReZ ⁇ P) for each nozzle LZD.
  • the value (ReZP) is set to 100 000 0 to 20000 [ 1 / MPa ° ⁇ 5 ], an appropriate index of the fuel injection state (ie, horizontal flow rate distribution center) can be obtained.
  • FI G.31 is a schematic diagram showing the vicinity of the valve seat of the injection port. Opening area (Opening area of the shortest part between the valve seat and the 21st dollar valve at the time of maximum lift) S2 and the orifice section area S3 are desirably set within the following ranges.
  • the value of S 3 / (S 1 X number of turning grooves) is considered to be optimal near 1.0, although it depends on each condition. However, considering various conditions, It can be in the range of 0.5 to 1.5. If the value of S 3Z (S 1 X number of turning grooves) is smaller than 0.5, the turning force may be too small, and the value of S 3 (S 1 X number of turning grooves) may be larger than 1.5. If it becomes too hard, the turning force may become too large.
  • S 2Z the number of Six turning grooves
  • S 1 X number of swivel grooves the swirl flow rate may be limited and the flow rate may be too small. If it is larger than 5, the turning force may not be sufficiently obtained.
  • any one of the swirl groove passage area S1, the valve seat opening area S2, and the injection port cross-sectional area S3, or any of them has a certain degree. Because of the restrictions, the setting is made so as to be within the range described above under such various restrictions.
  • valve seat opening area S2 smaller than the swirl passage area S1 and the injection port cross-sectional area S3 in view of downsizing and response of the injection valve.

Description

明 細 書 筒内噴射式内燃機関 . 技術分野
本発明は、 燃料を直接燃焼室に噴射する筒内噴射式内燃機関に関し、 特に、 高出力時には予混合燃焼を行ない低出力時には層状燃焼を行ない それぞれの燃焼状態を機関の運転状態によつて切り換える内燃機関に用 いて好適の、 4サイクルの筒内噴射式内燃機関に関する。
背景技術
従来より、 ガソリンエンジン等の内燃機関では、 燃料噴射方式として、 吸気ポー卜内に配置された燃料噴射弁によりこの吸気ポ一ト内に燃料を 噴射するような吸気ポー卜内燃料噴射方式を採用したものがある。
この吸気ポー卜内燃料噴射方式では、 吸気ポ一卜内において吸気され た空気と燃料とが混合されて燃焼室内に案内され、 燃焼室内で着火, 燃 焼することができるようになっている。
また、 燃焼室内へ直接燃料を噴射するように燃料噴射弁をそなえ、 燃 焼室内に直接燃料噴射を行なって、 機関の応答性を改善することができ るようにした、 直接噴射方式を採用したものもある。
ところで、 近年の内燃機関の開発分野においては、 燃焼室内に縦向き の吸気流、 いわゆるタンブル流を作り出すことにより、 燃焼室における 燃料の燃焼を効率的に行なうことができるような、 層状燃焼内燃機関の 研究 ·開発が進められている。
このような層状燃焼内燃機関では、 燃料を直接燃焼室に噴射する筒内 噴射式内燃機関が有利である。 即ち、 上述の層状燃焼内燃機関を筒内噴 射式内燃機関にて実現することにより、 機関の応答性を改善しながら、 燃焼室における燃料の燃焼を効率的に行なうことができる。 このため、 筒内燃料噴射に関する研究についても精力的に行なわれている。
ところで、 上述の層状燃焼内燃機関においては、 機関の出力要求が小 さければ、 理論空燃比よりも燃料の希薄な空燃比状態とした運転 (リー ン燃焼運転) を行ない、 機関の出力要求が大きければ理論空燃比状態で の運転 (スィ トキォ燃焼運転) を行なうようにする技術が開発されてい る o
ところが、 例えば機関の負荷が高い場合のように機関の出力が大きく 要求されると、 燃料噴射弁により吸気行程で燃料を噴射して、 タンブル 流の崩壊後の乱れによつて、 燃焼室と干渉することなく燃焼室内全域に わたり均一的に混合を促進するようにするのが望ましい。
一方、 機関の負荷が低い場合のように機関の出力要求が小さければ、 圧縮行程で燃料を噴射させ、 タンブル流を利用しながら、 燃焼室頂部の 点火プラグ近傍に部分的に比較的リツチな可燃混合気を形成することに より、 比較的少量の燃料噴射で着火性及び安定燃焼性を十分に確保しつ つ燃費改善を行なうことが必要である。
ところで、 燃焼を燃焼室内全域にわたって均一に拡散させるようとす る場合も、 また、 燃料を例えば点火プラグ近傍に集めようとする場合も、 いずれも燃料噴射弁による燃料の噴霧形状が強く影響する。
特開平 1 一 2 7 3 8 7 3号公報によれば、 筒内火花点火機関において、 吸気スワールには依存せずに全運転領域について、 単一の噴射弁により 主噴孔からは燃焼室内全域に向かつて自己拡散性の高い燃料噴射を、 副 噴孔からは点火ブラグに向かつて貫徹力の大きな燃料噴射を行ない、 燃 焼室への燃料の拡散性の向上と点火栓近傍への確実な燃料供給に着火性 の向上とを両立させた燃料噴射弁及び燃料噴射弁装着筒内噴射火花点火 機関が提案されている。
しかしながら、 上述の特開平 1 一 2 7 3 8 7 3号公報による提案にお いては、 機関の負荷の高低, 即ち吸気行程の燃料噴射時又は圧縮行程の 燃料噴射時のいずれかにかかわらず、 同一の態様で燃料噴射を行なって いるので、 主噴口からの燃料噴射割合を多く設定した場合には、 低負荷 時に副噴口からの燃料噴射による着火用の空燃比濃度を得ることが難し く、 つまり、 低負荷時の燃料量の少量化に限界があり、 逆に、 副噴射か らの燃料噴射割合を多く設定した場合には、 燃料噴射量の多い高負荷時 に点火ブラグ近傍の空燃比が過濃となってしまうという課題がある。 本発明は、 上述の課題に鑑み創案されたもので、 燃料噴射弁の燃料噴 霧形状が、 燃料噴射量や噴射タイミ ングを変化することにより、 機関の 運転状態に適した燃料噴霧を実現できるようにして、 機関の性能を十分 に引き出すことができるようにした、 筒内噴射式内燃機関を提供するこ とを目的とする。 発明の開示
上述の目的を達成するために、 本発明の筒内噴射式内燃機関は、 シリ ンダ内に挿嵌された往復動ピストンの上面とシリンダへッ ドの下面との 間に形成された燃焼室と、 該燃焼室内へ直接燃料を噴射する単一の燃料 噴射弁と、 該燃焼室内へ臨んだ点火プラグとをそなえた 4サイクルの筒 内噴射式内燃機関において、 該燃料噴射弁が、 噴口を頂点とし該燃料噴 射弁の軸線方向に向かって均一に円錐形状に拡がる噴霧で該燃焼室内へ 向けての燃料噴射を行なうとともに、 要求燃料量の多い機関運転状態の ときには該機関の吸気行程中に燃料噴射を行ない、 該要求燃料量の少な い機関運転状態のときには該吸気行程よりも筒内圧の高い該機関の圧縮 行程後半に燃料が供給されるよう燃料噴射を行なうように構成されてい ることを特徴としている。
かかる構成により、 単一の燃料噴射弁により簡素な構成としながらも- 要求燃料量に応じて効率的に燃料供給を行なうことができ、 機関の出力 向上と、 安定したリーン燃焼運転による燃費改善とを同時に実現するこ とができ、 排気ガスの浄化の点でも有利になる。 また、 筒内圧が高い状 態での圧縮行程後半における燃料噴射は、 噴霧の集中化による燃料と空 気との層状化が促進される利点がある。
なお、 該燃料噴射弁は、 該要求燃料量が少ない場合には、 該燃焼室内 の雰囲気圧力が 2気圧以上となる時に燃料噴射を行なうように構成され ていることが好ましい。
これにより、 該燃料噴射弁からの燃料噴霧先端の集中化が確実に行な われ燃料と空気との層状化がより一層促進される効果がある。
また、 該燃料噴射弁から噴射される燃料の噴霧形状が、 要求燃料量が 多い場合には該噴霧先端に向かってある所定の噴射角度をもった円錐状 に拡径した形状となり、 該要求燃料量が少ない場合には該噴霧先端に向 かって拡径度合が小さくなり次第に縮径する形状となることが好ましい これにより、 要求燃料量が多い場合には、 燃焼室全体への燃料の拡散 が促進されて燃料の燃焼が効率よく行なわれて、 大きな出力を得やすく なり、 要求燃料量が少ない場合には、 燃料の拡散が抑制され燃焼室内に 部分的に燃料過濃な状態をつくり出すことができ、 例えば点火プラグの 近傍のみを燃料過濃な状態として着火性能を確保しながら、 燃焼室全体 としては希薄な燃料濃度状態で、 消費燃料の少ない運転を実現すること が可能になる。
さらに、 該ピストン上面の一部に凹所が形成されて、 該凹所と対向す る位置に点火プラグが設けられるとともに、 該要求燃料量が多い場合に は該ピス卜ン上面に到達する該噴霧先端が該凹所よりも大きく拡がって 該燃焼室内で拡散し、 該要求燃料量が少ない場合には該ピス卜ン上面に 到達する該噴霧先端が該凹所内に収まるように縮径しながら該凹所によ つて該点火プラグに向けて案内され該点火プラグの着火点近傍に偏在す るように構成されていることが好ましい。
これにより、 要求燃料量が多い場合には、 燃焼室全体への燃料の拡散 が促進されて燃料の燃焼が効率よく行なわれて、 大きな出力を得やすく なり、 要求燃料量が少ない場合には、 燃料を燃焼室内の凹所内に部分的 に供給してさらにこの凹所による案内で点火プラグの着火点近傍のみに 偏在するように集合するため、 燃料の安定した着火性能を確保しながら、 燃焼室全体としては希薄な燃料濃度状態で、 消費燃料の少ない運転を実 現することができる。
また、 該燃料噴射弁が、 噴口を有する噴射弁本体と、 該噴射弁本体内 に設けられ該噴ロを開閉しうる開閉手段と、 該開閉手段に設けられ該噴 射弁本体内を流通する燃料に対してコーン型旋回流を与え得る旋回流発 生手段とをそなえた、 スワール型燃料噴射弁であることが好ましい。
これにより、 筒内圧力の高い条件下での噴霧の集中化と筒内圧力の低 い条件下での噴霧の分散化とが効果的に図られ、 燃料供給をより効率的 に行なうことで、 機関の出力向上及び燃費改善を一層促進することがで きる。 特に、 高出力時の予混合燃焼と低出力時の層状燃焼とを行なう機 関に適用することにより、 効果が大きい。
さらには、 該シリンダへッ ド下面の該シリンダの軸心線を含む基準面 の一側に形成された吸気ポートと、 該吸気ポートの該燃焼室への開口を 開閉するように該吸気ポー卜に装備された吸気弁とをそなえ、 該シリン ダ上面における該基準面の一側の該吸気ポート開口と対向する部位に、 該吸気ポ一卜から該燃焼室内に進入した吸気の縦渦流を促進するように 該シリンダ上面に対して窪んだ曲面状凹所が形成され、 該シリンダ上面 における該基準面の他側に、 該凹所から隆起するとともに該ピス ト ンの 上死点において該シリンダへッ ド下面に接近しうる隆起部がその頂部を 該基準面の近くに配置するように形成されて、 該シリンダへッ ド下面に おける該シリンダ軸心線の近傍に点火プラグが配設されるとともに、 該 燃料噴射弁の噴口が該凹所へ向くように配設されていることが好ましい c これにより、 点火プラグでの良好な着火性が確保され、 燃料の極めて 希薄な混合気によるリ一ン燃焼運転を安定して行ないやすくなり、 燃費 改善を一層促進することができる。
また、 該噴霧の形状が、 該燃料噴射弁の軸線の近傍に収束するような 小さな噴霧角度からなる中心噴霧と、 該中心噴霧の外周を取り巻くよう に該中心噴霧よりも大きな噴霧角度で且つ該中心噴霧から離隔した円錐 状の周辺噴霧とから構成されていることが好ましい。
これにより、 中心噴霧と周辺噴霧とを適宜利用しながら、 燃料供給を より効率的に行なうことができ、 機関の出力向上を実現できる一方で、 燃焼安定性を十分に確保しながらのリーン燃焼運転により、 燃費改善を 図ることができる。
この場合にも、 該燃料噴射弁が、 噴口を有する噴射弁本体と、 該噴射 弁本体内に設けられ該噴ロを開閉しうる開閉手段と、 該開閉手段に設け られ該噴射弁本体内を流通する燃料に対してコーン型旋回流を与え得る 旋回流発生手段とをそなえた、 スワール型燃料噴射弁であることが好ま しい。
これにより、 中心噴霧と周辺噴霧とを適宜利用しながら、 筒内圧力の 高い条件下での噴霧の集中化と筒内圧力の低い条件下での噴霧の分散化 とが効果的に図られ、 燃料供給をより効率的に行なうことで、 機関の出 力向上及び燃費改善をより一層促進することができる。 また、 高出力時 の予混合燃焼と低出力時の層状燃焼とを行なう機関に適用することによ り、 効果が大きい。
また、 該燃料噴射弁から噴射される燃料の噴霧形状が、 吸気行程前半 において燃料噴射した場合には該噴霧先端に向かって所定角度以上に拡 径した形状となり、 .圧縮行程後半において燃料噴射した場合には該噴霧 先端に向かつて該所定角度未満に縮径した形状となるように設定される とともに、 該ピストン上面の一部に凹所が形成されて、 該凹所の外縁が 、 吸気行程前半及び圧縮行程後半のほぼ同一ピストン位置 (例えば、 ピ ストン上死点後又は前 6 0 ° T D C ) において、 該燃料噴射弁の吸気行 程前半で該ピス卜ン上面に到達する該噴霧先端の噴霧外径よりも小さく、 該燃料噴射弁の圧縮行程後半で該ピス卜ン上面に到達する該噴霧先端の 噴霧外径よりも大きく設定されていることが好ましい。
これにより、 燃料噴射弁の吸気行程前半での燃料噴射では、 燃料が該 凹所内だけでなく燃焼室全体に拡散するようになり、 十分な量の燃料を 空気と混合させながら燃焼室全体に供給させることができる。 このため、 大きな出力を効率よく得やすくなる。 燃料噴射弁の圧縮行程後半での燃 料噴射では、 燃料が凹所内に納まるため、 凹所内やこの上方空間で十分 な燃料濃度とでき、 燃料の安定した着火性能を確保しながら、 燃焼室全 体としては希薄な燃料濃度状態で、 消費燃料の少ない運転を実現するこ とができる。 このため、 高出力時の予混合燃焼と低出力時の層状燃焼と を行なう機関に適用することにより、 効果が大きい。
あるいは、 該燃料噴射弁が、 噴口を有する噴射弁本体と、 該噴射弁本 体内に設けられるとともに、 先端に該噴ロを形成するコ一ン型噴口内周 面と当接し密着しうる当接部を有し該当接部を通じて該噴ロを開閉しう る開閉手段と、 該当接部の直上に設けられ該噴射弁本体内を流通する燃 料を該噴口へ向けて案内し燃料流に旋回成分を与えて旋回流を発生させ る旋回流発生手段とをそなえた、 スワール型燃料噴射弁であって、 水平 流量分布計測で得られる該燃料噴射弁から噴射される燃料の水平流量分 布図心の角度が、 4 0〜7 Odeg の範囲内になるように各設定を行なう ことが好ましく、 例えば該当接部分から該噴口先端までの長さ (L) と 該噴口の最小内径 (D) との比率 (L/D) を 1〜3の範囲内に設定す るとともに、 該旋回流の旋回径 (D s) , 該旋回流の旋回流速 (V s ) , 燃料の動粘度 O) に基づいて式 〔R e =D s · V sZ ( 2 · ι 〕 で 定義される該噴口における旋回レイノルズ数 (R e) と、 該燃料噴射弁 の噴射圧 (P) とから得られて単位が 〔 1 ZMP a °· 5 〕 である値 (R e/^TP) を 1 0 0 0 0〜 2 0 0 0 0の範囲内に設定することが好まし い。
これにより、 噴射弁の加工バラツキや噴口へのカーボン付着を防止し ながら、 燃焼特性から得られる圧縮行程噴射での最適な燃費率となる燃 料噴霧角度を得ることができるようになる。 図面の簡単な説明
F I G. 1は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁を 示す模式的な断面図である。
F I G. 2 (a) , F I G. 2 ( b ) はいずれも本発明の第 1実施形 態にかかる内燃機関用燃料噴射弁の開閉機構 (開閉手段) を示す図であ つて、 F I G. 2 (a) は燃料噴射弁の開閉機構を示す模式的な断面図、 F I G. 2 (b) は F I G. 2 ( a ) における A _ A断面図である。
F I G. 3本発明の第 1実施形態にかかる内燃機関用燃料噴射弁によ るコーン型旋回流の生成態様を説明するための模式的な図である。
F I G. 4は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁の 燃料滞留部の構成を示す模式的な断面図である。
F I G. 5は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁に よる燃料噴霧形状を説明するための模式的な側面図である。
F I G. 6は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁に よる燃料噴霧形状を説明するための図であり、 F I G. 5における燃料 噴霧の横断面図である。
F I G. 7 (a) , F I G. 7 (b) はいずれも本発明の第 1実施形 態にかかる内燃機関用燃料噴射弁による燃料噴射動作を説明するための 燃料噴射弁要部の模式的な断面図であって、 F I G. 7 (a) は噴射開 始直後の状態、 F I G. 7 (b) は噴射中期の通常状態をそれぞれ示す c
F I G. 8 (a) , F I G. 8 (b) はいずれも本発明の第 1実施形 態にかかる内燃機関用燃料噴射弁による燃料噴射動作を説明するための 燃料噴射分布図であって、 F I G. 8 (a) は噴射中期の通常状態を示 し、 F I G. 8 (b) は噴射開始直後及び噴射終了直前の状態を示す。
F I G. 9は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁の 燃料分布測定方法を説明するための模式的な斜視図である。
F I G. 10は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁 による燃料噴射動作を説明するための燃料噴射分布図である。
F I G. 1 1 (a) , F I G. 1 1 (b) はいずれも本発明の第 1実 施形態にかかる筒内噴射式内燃機関を示すとともにその内燃機関用燃料 噴射弁による圧縮行程燃料噴射を説明するための燃焼室の模式的な側面 視図であって、 F I G. 1 1 (a) は燃料噴射時の燃料の状態を示し、 F I G. 1 1 (b) は燃料噴射後の燃料の状態を示す。
F I G. 12は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁 の作用及び効果を説明するためのグラフである。
F I G. 1 3は本発明の第 1実施形態にかかる内燃機関用燃料噴射弁 の作用及び効果を説明するためのグラフである。
F I G. 1 (a) , F I G. 1 4 (b) はいずれも本発明の第 2実 施形態にかかる内燃機関用燃料噴射弁の吸気行程における燃料噴霧状態 を示す図であり、 F I G. 1 4 (a) はその模式的な側面図、 F I G.
1 4 (b) はその噴霧の横断面図 〔F I G. 1 4 (a) の B— B矢視断 面図〕 である。
F I G. 1 5 (a) , F I G. 1 5 (b) はいずれも本発明の第 2実 施形態にかかる内燃機関用燃料噴射弁の圧縮行程における燃料噴霧状態 を示す図であり、 F I G. 1 5 (a) はその模式的な側面図、 F I G.
1 5 (b) はその噴霧の横断面図 〔F I G. 1 5 (a) の B— B矢視断 面図〕 である。
F I G. 1 6は本発明の第 2実施形態にかかる筒内噴射式内燃機関の 吸気行程における燃料噴射状態を示す模式的な断面図である。
F I G. 1 7は本発明の第 2実施形態にかかる筒内噴射式内燃機関の 吸気行程燃料噴射による燃料噴射分布を示す図である。
F I G. 1 8は本発明の第 2実施形態にかかる筒内噴射式内燃機関の 圧縮行程における燃料噴射の状態を示す模式的な断面図である。
F I G. 1 9は本発明の第 2実施形態にかかる筒内噴射式内燃機関の 圧縮行程燃料噴射による燃料噴射分布を示す図である。
F I G. 2 0は本発明の第 2実施形態にかかる筒内噴射式内燃機関に よる燃料噴霧特性を示すグラフである。
F I G. 2 1は本発明の第 1, 2実施形態にかかる変形例の内燃機関 用燃料噴射弁を示す模式的な側面図である。
F I G. 2 2は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 燃料噴射弁による燃料の水平流量分 布を示す図である。
F I G. 2 3は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 燃料噴射弁による燃料の水平流量分 布図心と噴射角度 (噴霧角度) との相関を説明する図である。
F I G. 2 4は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 燃料の噴霧の特性 (水平流量分布図 心) に対する燃費特性を示す図である。
F I G. 2 5 (a) , F I G. 2 5 (b) はいずれも本発明にかかる 内燃機関用燃料噴射弁の噴口の設定について説明するための図であって、 F I G. 2 (a) , F I G. 2 (b) と対応し、 F I G. 2 5 (a) は 噴口近傍の模式的な縦断面図、 F I G. 2 5 (b) は噴口近傍の模式的 な横断面図である。
F I G. 2 6は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 旋回レイノルズ数に対する噴霧のバ ラツキを示す図である。
F I G. 2 7は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 噴口長と噴口径との比 (LZD) に 対する噴霧のバラツキを示す図である。
F I G. 2 8は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 噴口内部を透視させて旋回流を模式 的に示す斜視図である。
F I G. 2 9は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 旋回レイノルズ数に対する噴口の L ZD毎の水平流量分布図心の特性を示す図である。
F I G. 30は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 旋回レイノルズ数 (Re) と燃圧 ( P) とに基づく値 (R eZ p) に対する噴口の LZD毎の水平流量分 布図心の特性を示す図である。
F I G. 3 1は本発明にかかる内燃機関用燃料噴射弁の噴口の設定に ついて説明するための図であって、 噴口要部を拡大して示す縦断面図で め 発明を実施するための最良の形態
以下、 図面により、 本発明の実施の形態について説明する。
( a ) 第 1実施形態の説明
F I G . 1〜F I G . 1 3は本発明の第 1実施形態としての自然給気 による 4サイクル筒内噴射式内燃機関及びその燃料噴射弁を示すもので あり、 これらの図に基づいて第 1実施形態を説明する。
本実施形態にかかる燃料噴射弁 3 0は、 例えば車両用の筒内噴射式内 燃機関等の内燃機関に設置するためのものであり、 F I G . 1に示すよ うに、 電磁コイル 1 , リターンスプリング 2, ニードルバルブ 3 , 開閉 機構 (開閉手段) 4, フィルタ 5, 燃料通過経路 6, 噴口 7, 燃料噴射 弁本体 8から構成される。
ここで、 フィルタ 5は図示しない燃料タンク (燃料供給源) からの燃 料について不純物等を除去して透過するものであり、 透過した燃料は燃 料通過経路 6に流入されるようになっている。
また、 電磁コイル 1は、 燃料噴射制御部としての図示しない E C U等 から電気信号を入力されると、 リタ一ンスプリング 2を収縮するように 作用するものであり、 リターンスプリング 2はニードルバルブ 3に接続 されている。 これにより、 リターンスプリング 2の伸縮方向にニードル バルブ 3が上下するようになっている。
なお、 燃料噴射制御部としての E C Uは、 高負荷時のように機関の要 求燃料量の多い運転状態のときには、 電磁コイル 1に対して機関の吸気 行程において開弁させるための電気信号を出力し、 低負荷時のように機 関の要求燃料量の少ない運転状態のときには、 電磁コイル 1に対して機 関の圧縮行程において開弁させるための電気信号を出力するようになつ ている。
特に、 燃料噴射制御部としての E CUの記憶装置 (ROM) 内には、 圧縮行程に開弁期間を設定する上で、 閉弁時期が圧縮行程後半となるよ うにすべく、 運転状態に対応した閉弁時期データが記憶されている。 そ して、 ECUは、 要求燃料に応じたパルス巾データと上述した閉弁時期 データとに基づいて基本開弁時期を算出して、 電磁コイル 1を作動させ る。 なお、 圧縮行程噴射時の噴射終了時期を圧縮行程後半に設定する上 で、 ECUは、 閉弁時期データの代わりに少なくとも負荷に応じた開弁 時期デ一夕を記憶するようにしてもよい。
即ち、 電磁コイル 1に電気信号が入力されると、 この電磁コイル 1の 作用によりリ夕一ンスプリング 2が収縮されてニードルバルブ 3を引き 上げ:ニードルバルブ 3の当接部 1 5がストッパ部材 1 6に当接するこ とで最大リフ ト量が規定される一方、 電磁コイル 1への電気信号が切れ ると、 リターンスプリング 2はもとの形状に戻り、 二一ドルバルブ 3の 位置についてももとに戻るようになっている。
また、 開閉機構 4は、 上述の二一ドルバルブ 3が上下することによつ て噴口 7を開閉できるようになっているが、 詳細には F I G. 2 (a) , F I G. 2 (b) , F I G. 3, F I G. 4に示すような構成を有して いる。
ここで、 この F I G. 2 (a) において、 符号 9は噴口 7を開閉しう る開閉部 (開閉手段) であり、 この開閉部 9は、 噴口 7を形成するコ一 ン型噴口内周面 7 aと、 ニードルバルブ 3とをそなえている。
ここで、 ニードルバルブ 3の噴口 7側の先端部においては、 コーン型 噴口内周面 7 aに対して例えば線接触により当接し密着しうるコーン型 当接面 3 aを有している。 これにより、 燃料噴射弁 3 0を長期間使用することで、 コーン型当接 面 3 aの磨耗が進んだ場合においても、 コーン型当接面 3 aの位置が移 動するだけであるので、 燃料通過経路 6と図示しない燃焼室との間の気 密性を確保することができ、 噴口 7からの燃料漏れを防止することがで さる。
また、 F I G . 2 ( a ) , F I G . 2 ( b ) において、 1 0は燃料案 内流路であり、 この燃料案内流路 1 0は、 燃料通過経路 6からの燃料に ついて、 噴口 7の上流側において噴口 Ίよりも外周側から噴口 7側へ向 けて燃料を案内しつつ燃料流に旋回成分を加える旋回流発生手段であり、 外周側導入部 1 0 a及び旋回付与用流路 1 O bをそなえている。
ここで、 外周側導入部 1 0 aは、 燃料通過経路 6からの燃料を、 噴口 7から外周側に離隔した箇所に導くものであり、 旋回付与用流路 1 O b は、 外周側導入部 1 0 aから噴口 7近傍のニードルバルブ 3の先端部外 周へ向かう接線方向に形成され噴口 7へ向かう燃料流に旋回成分を加え うるものである。
従って、 噴射弁本体 8内を通過する燃料に対して、 燃料案内流路 1 0 にて旋回成分が加えられると、 開閉部 9を介して噴射される燃料には、 例えば F I G . 3に示すコーン型旋回流 Bが与えられるようになつてい る。 即ち、 上述の燃料案内流路 1 0により、 開閉部 9に設けられ噴射弁 本体 8内を通過する燃料に対してコーン型旋回流 (周辺噴射) Bを与え うる旋回流発生手段が構成される。
換言すれば、 燃料通過経路 6又は燃料案内流路 1 0に内在する燃料に は、 開閉部 9が閉じている間は一定の圧力が加えられているが、 開閉手 段 9が開放された場合には、 加えられていた圧力から開放される。 これ により、 旋回付与用流路 1 O bでは、 コーン型旋回流 Bの燃料流が発生 して図示しない燃焼室へ噴射されるようになっている。 ところで、 即ち、 上述の旋回流付与流路 1 0 bで旋回流の付与された 燃料流においては、 噴射弁内の噴射圧が旋回流として変換されるために、 噴霧の円錐周面における放射方向への初速は小さく、 一方、 周囲の空気 は、 この噴霧された燃料の運動を妨げるため、 結果的に、 噴霧が周囲空 気に旋回流を生成せしめるように作用するが、 、 噴霧自身の運動は噴射 弁から離れた位置になるほど減衰して、 噴霧は失速する傾向にある。
このように、 周辺噴霧 (周辺噴射) による噴霧燃料の運動は、 筒内圧 の影響を受けやすく、 筒内圧が低い時には、 円錐周面放射方向への十分 な貫徹力が維持され、 シリンダ内での燃料の分散化が促進されるが、 筒 内圧が高い時には、 周囲の空気密度が上昇して噴霧運動を妨げようとす る力が増大して、 結果的に噴霧された燃料の円錐円周方向の運動が噴射 弁から離れた位置になるほど減衰し、 噴霧の広がりは小さくなつて、 噴 射中心軸線方向へ集まり易くなる。
このことは、 吸気行程噴射によれば筒内燃料の均質化に寄与し、 圧縮 行程噴射によれば燃料と空気との層状化に寄与しうることを意味する。 さらに、 F I G . 4において、 デッ ドボリューム (燃料滞留部) 1 1 は、 噴口 7の近傍に形成されて噴口 7の閉鎖時に燃料の滞留しうるもの であり、 このデッ ドボリュ一ム 1 1は、 噴口 7におけるコーン型噴口内 周面 7 aとコーン型当接面 3 aとの当接部分よりも上流側部分に形成さ れている。
ここで、 デッ ドボリユーム 1 1に滞留されている燃料についても、 二 —ドルバルブ 3がリフ トされた際に、 上述の燃料案内流路 1 0からの燃 料の圧力により後押しされて、 例えば中心噴霧 Cとして図示しない燃焼 室へ噴射されるようになっている。
これにより、 燃料案内流路 1 0に内在する燃料及びデッ ドボリューム 1 1に滞留されている燃料が噴射される際の噴霧形状は、 例えば模式的 に F I G. 5 (噴射方向に対して平行な断面方向) 又は F I G. 6 (噴 射方向に対して垂直な断面方向) に示すような形状を有することができ る
即ち、 この F I G. 5又は F I G. 6に示すように、 燃料案内流路 1 0に内在する燃料が噴射される際には、 コーン型旋回流 Bにより燃料粒 径の小さい周辺噴霧 Β' が形成され、 デッ ドボリューム 1 1に滞留され ている燃料が噴射される際には、 噴射角度 Dが狭角で周辺噴霧よりも燃 料粒径の大きい中心噴霧 Cが形成されるのである。
ところで、 デッ ドボリユーム 1 1で生成される中心噴霧は旋回流をも たず、 噴射圧は鉛直方向への速度成分として変換されるため、 筒内圧が 高いときでも、 中心噴霧は噴射中心軸線方向へ十分な指向性をもち、 結 果的に速度成分を失い、 浮遊している周辺噴霧を周囲の空気とともに噴 射中心軸線の近傍に引き込むような流れが生成される。 したがって、 中 心噴霧は、 圧縮行程時の層状化の促進に寄与することになる。
また、 上述の F I G. 5, F I G. 6に示す燃料噴霧形状は、 ニード ルバルブ 3の開作動に伴って、 F I G. 7 (a) , F I G. 7 (b) に 示すように変化するようになっている。
まず、 初期状態として電磁コイル 1の電気信号が入力されない状態に おいては、 リターンスプリング 2は電磁コイル 1からの作用は受けない ために伸縮しない。 このため、 ニードルバルブ 3の位置も当接された位 置から変化しないため、 燃料案内流路 1 0からの燃料あるいはデッ ドボ リュ一ム 1 1に滞留されている燃料は噴射されない。
また、 電磁コイル 1に電気信号が入力されると、 リターンスプリング 2は電磁コイル 1の作用を受けて伸縮を開始し、 ニードルバルブ 3は次 第にリフトして、 ニードルバルブ 3と噴口 7との当接部分が次第に開放 されるようになっている。 このような二一ドルバルブ 3の開動初期においては、 燃料案内流路 1 0から燃料が F I G. 7 (a) の B 1に示す噴霧形状 (周辺噴霧) で少 量噴射され、 デッ ドボリユーム 1 1に滞留されている燃料は、 F I G.
7 (a) の C 1に示すような噴霧形状 (中心噴霧) で中実に噴射される c これにより、 中心噴霧 C 1を主体とした燃料噴霧形状を形成することが できる。
即ち、 噴射される燃料の全体的な割合としては、 中心噴霧 C 1の量が 周辺噴霧 B 1の量よりも多く、 噴口 7の下部においては、 例えば F I G.
8 (b) に示すように、 外側よりも中心周辺に多く燃料が検出されるよ うになつている。 なお、 この場合における中心とは噴口 7の直下の位置 であり、 外側とは、 中心から遠隔した位置をいう。
続いて、 リタ一ンスプリング 2力、 電磁コイル 1の作用を受けて大き く収縮しながら、 ニードルバルブ 3の位置が大きく リフトされ、 二一ド ルバルブ 3と噴口 7との当接部分も大きく開放されるようになっている c この場合においては、 燃料案内流路 1 0からの燃料も、 F I G. 7 ( b) の B 2のような噴霧形状で大量に噴射される。 また、 デッ ドボリュ ーム 1 1に滞留されている燃料はニードルバルブ 3のリフ 卜量に応じて 徐々に少なくなるので、 噴射量も少なくなり、 その噴霧形状は F I G.
7 (b) の C 2のようなものとなる。 これにより、 周辺噴霧 B 2を主体 とした燃料噴霧形状を形成することができる。
即ち、 周辺噴霧 B 2の量が中心噴霧 C 2の量よりも多く、 噴口 7の下 部においては、 例えば F I G. 8 (a) に示すように、 中心周辺よりも 外側に多く燃料が検出されるようになっている。
その後、 電磁コイル 1に供給されている電気信号が切れると、 この電 磁バルブ 1の作用がなくなりリターンスプリング 2がもとの形状に戻り、 ニードルバルブ 3の位置ももとに戻るようになっている。 なお、 燃料噴射弁の開放から閉塞までの全期間におけるトータル噴射 量は周辺噴霧が中心噴霧よりも多い。
ところで、 燃料案内流路 1 0に内在する燃料及びデッ ドボリューム 1 1に滞留されている燃料が噴射される際の、 噴口 7下部の燃料量分布は、 例えば、 F I G. 9に示すような 1 1リング法による噴霧の水平流量分 布測定システムにより測定することができる。
ここで、 1 2は水平流量分布計測用多点採取容器 (リング補集治具) であり、 この水平流量分布計測用多点採取容器 1 2は容器隔壁高さ 2 5 mmでありそれぞれ径の異なる環状の採取容器 12 Aを 1 1個の同心円 状に設けられた構成になっており、 噴射弁先端から容器上面までの距離 (ここでは 50 mm) を余弦として定義される角度に対応して噴射パル ス幅 lms e cで周期的に複数回 (例えば 1 000回) 噴射された噴霧 を、 各採取容器 1 2 Aにおいて採取し、 各採取容器 1 2 Aの燃料量を平 均した結果を水平流量分布とするものである。
なお、 この測定モデルで使用される燃料 (試験油) は、 比重等がガソ リ ンによく似ており、 低沸点成分の少ない (即ち、 揮発性の低い) 擬似 燃料である。 この擬似燃料の燃料特性は、 J I S規定の試験方向による と、 1 5/4° Cにおける比重が 0. 7 7、 2 0° Cにおける粘度 (c s t) 力 1. 1 7〜: L. 2 3、 分留性状 〔50%留出温度 (° C) 〕 が 1 6 5、 分留性状 〔終点 (° C) 〕 力 1 96である。
例えば、 この F I G. 9に示す測定モデルを用いて、 上述の F I G. 7 (b) に示すような周辺噴霧について測定された水平流量分布の測定 結果としては、 F I G. 1 0に示すような噴射角度 Xに対する燃料量の 割合 Yとして得ることができる。 なお、 この F I G. 1 0において、 噴 射角度が狭角の領域 Pは中心噴霧 C 2による燃料量とすることができる 一方、 噴射角度が広角の領域 Qは周辺噴霧 B 2による燃料量とすること ができる。
ところで、 上述の本実施形態にかかる燃料噴射弁 3 0を、 車両におけ る過給装置を用いない自然給気による 4サイクル筒内噴射式内燃機関に 適用する際には、 例えば F I G. 1 1 (a) 又は F I G. 1 1 (b) に 示すような位置に配置することができる。
この F I G. 1 1 (a) , F I G. 1 1 (b) において、 2 0はシリ ンダ、 2 1は燃焼室、 2 2はピストン、 2 3は吸気ポー卜、 2 4は吸気 弁、 2 5は点火プラグ、 2 6は排気弁、 2 7はシリンダヘッ ドである。 また、 吸気ポート 2 3は、 シリンダへッ ド 2 7下面のシリンダ 2 0の 軸心線 2 8を含む基準面の一側に形成され、 吸気弁 2 4は、 吸気ポー卜 2 3の燃焼室 2 1への開口を開閉するように吸気ポー卜に装備されてい な o
さらに、 ピストン 2 2の上面には、 シリンダ 2 0上面における基準面 (シリンダ軸心線 2 8を含む仮想平面) の一側の吸気ポ一ト 2 3の開口 と対向する部位に、 吸気ポート 2 3から燃焼室 2 1内に進入した吸気の 縦渦流 (タンブル流) Fを促進するようにシリンダ 2 0上面に対して窪 んだ曲面状凹所 2 2 Aが形成され、 シリンダ 2 0上面における基準面の 他側に、 凹所 2 2 Aからなだらかに隆起するとともにピストン 2 2の上 死点においてシリンダへッ ド下面に接近しうる隆起部 2 2 Bがその頂部 を基準面の近くに配置するように形成されている。 なお、 隆起部 2 2 B は、 凹所 2 2 Aから直線的に隆起するなど、 F I G. 1 1 (a) , F I G. 1 1 (b) に示すようになだらかに隆起するものには限定されない c また、 シリンダへッ ド 2 7下面におけるシリンダ軸心線 2 8の近傍に 点火プラグ 2 5が配設されるとともに、 燃料噴射弁 3 0は、 ピストン 2 2が上死点位置に近い所要範囲にあるときに、 その噴口 7が凹所 2 2 A へ向くように配設されている。 さらに、 燃料噴射弁 3 0は、 筒内噴射と いう条件下なので、 通常の吸気ポート噴射に比べて大幅に高い圧力 (例 えば 5 0気圧) で燃料噴射を行なえるようになつている。
さらに、 上述の燃料噴射弁 3 0が配置された内燃機関においては、 図 示しない E C U等による制御に基づき、 内燃機関の負荷の高低に応じて 燃料噴射弁の噴射タイミ ングを可変させるとともに、 二一ドルバルブ 3 のリフト時間を調整して、 燃料噴射量を制御するようになっている。 即ち、 車両の安定走行時等、 内燃機関の負荷が低い場合は、 筒内圧の 高い (2気圧以上) 圧縮行程時においてニードルバルブ 3のリフト時間 を短く して燃焼室内に燃料が供給されるように燃料噴射弁を制御するこ とにより、 F I G . 7 ( a ) に示すような、 中心噴霧 C 1を主体とした 燃料噴射を行なうようになっている。
この場合においては、 燃料噴射弁 3 0からの中心噴霧 C 1を主体とし て噴霧された燃料が、 ピストン 2 2の凹所 2 2 A内面で反射した後、 点 火プラグ 2 5に向かうようにして、 点火プラグ 2 5の近傍を部分的に燃 料リッチとして、 全体としてはリーンな空燃比としながら着火性, 燃焼 安定性を確保しつつ、 燃費の節約を実現できるようになつている (圧縮 行程噴射モード) 。
また、 車両の急加速時等、 高出力が要求される場合は内燃機関の負荷 が高くなるので、 吸気ポー卜 2 3から吸気流が燃焼室 2 1内に案内され る吸気行程 (吸気行程では、 筒内圧が大気圧又はそれ以下である) にお いて、 リフト時間を長く しながら燃料噴射するように制御することによ り、 F I G . 7 ( b ) に示すように、 周辺噴霧 B 2を主体とした形状の 燃料噴霧を行ない、 燃焼室全体に燃料を均一に混合させて、 ストィキォ 運転又はリ ッチ運転により、 十分な出力が得られるようになつている ( 吸気行程噴射モード) 。
本発明の第 1実施形態としての燃料噴射弁は、 上述のように構成され ているので、 上述の燃料噴射弁 3 0を、 車両における筒内噴射式内燃機 関に適用する際には、 図示しない E C U等による制御に基づき、 内燃機 関の負荷の高低に応じて燃料噴射弁の噴射タイミ ングを可変させるとと もに、 二一ドルバルブ 3のリフ ト時間を可変させている。
即ち、 車両の安定走行時等、 内燃機関の負荷が低い場合は、 圧縮行程 時においてニードルバルブ 3のリフ ト時間を短く して燃料噴射するよう に制御することにより、 中心噴霧 C 1 〔F I G . 7 ( a ) 又は F I G . 7 ( c ) 参照〕 により噴射される燃料量を多くするとともに、 一回の二 一ドルバルブ 3のリフト毎の燃料噴射量を比較的少量に抑制しながら着 火性を十分に確保している (圧縮行程燃料噴射モード) 。
換言すれば、 F I G . 1 1 ( a ) に示すように、 吸気ポート 2 3から 吸気流が燃焼室 2 1内に案内される吸気行程においては燃料を噴射せず に、 ピストン 2 2が矢印で示されるように上昇し燃焼室 2 1内の吸気流 を圧縮する圧縮行程において、 中心噴霧 C 1を主体とした燃料噴射を行 なうことにより、 中心噴霧 C 1は燃焼室 2 1内においてビストン 2 2の 凹所 2 2 A内面において反射し、 反射後は点火プラグ 2 5に向かう。 特に、 圧縮行程の後期に燃料を噴射すれば、 ピストン 2 2上面の凹所 2 2 Aも適当に上昇していて、 この凹所 2 2 A内面で反射した燃料を点 火プラグ 2 5に向かわせることが容易になる。
この際、 周辺噴霧 B 1は、 筒内圧が高いので、 この筒内圧の影響によ り中心噴霧に向かって収束するように進路が屈曲し噴霧先端の噴霧角度 が狭くなる (即ち、 ピストン上面に到達する燃料噴霧の先端の外径が小 さくなる) 特性が得られる。 このため、 周辺噴霧 B 1も中心噴霧 C 1に 収束しながら、 ビストン 2 2の凹所 2 2 Aの内面で反射した後に点火プ ラグ 2 5へ向かうようになる。 即ち、 圧縮行程においては周辺噴霧 B 1 も点火プラグ 2 5へ収束させることができる。 これにより、 F I G. 1 1 (b) に示すように、 点火プラグ 2 5近傍 において比較的リツチな可燃混合気が形成され、 圧縮行程の後の燃焼行 程においては、 点火プラグ 2 5の点火により、 超希薄層状燃焼を行なう ことができる。
F I G. 1 2は、 噴霧形状による機関の最高出力とリーン限界空燃比 を示すが、 略円錐面状の中空噴霧 (図中では、 中空と略す) と、 この中 空噴霧と中心噴霧とを合わせた 2段噴霧 (図中では、 2段と略す) と、 やや円錐状に中実状態で拡散する中実噴霧 (図中では、 中実と略す) と の 3種の噴霧形状に関しての特性を示している。
図示するように、 機関の最高出力に関しては、 D 3で示す 「中空」 が 最も大きく、 次に D 2で示す 「 2段」 が高いが、 これらに比べて D 1で 示す 「中実」 は小さい。 また、 リーン限界空燃比は、 逆に、 E 1で示す
「中実」 及び E 2で示す 「2段」 が高いが、 これらに比べて E 3で示す
「中空」 は小さい。
このため、 内燃機関の負荷が低い場合には、 前述 〔F I G. 7 (a) 参照〕 のように中心噴霧 C 1が主体となった燃料の 2段噴霧を筒内圧の 高い圧縮行程時に行なうことで、 リーン限界空燃比は、 F I G. 12中 に E 1又は E 2で示すように高くでき、 リーン限界空燃比を増大させる ことができて、 燃料噴射量を比較的少量に抑制することができるのであ る。
さらに、 上述の圧縮行程燃料噴射モードの場合に、 燃料噴射量を一定 とすると、 F I G. 1 3に示すように、 他の燃料噴霧形状 (G 1参照) の場合に比して、 空燃比にかかわらず燃焼変動率 F 1を安定化させるこ とができるほか、 他の燃料噴霧形状 (G 2参照) の場合に比して、 空燃 比がリッチからリーンとなっても、 図示平均有効圧 F 2を維持すること ができるので、 超希薄条件下において出力を落とすことなく燃焼を行な うことができるので、 燃料噴射量を比較的少量に抑制することができる < 即ち、 圧縮行程において燃料噴射を行なう場合に、 超希薄条件下におい ても燃焼安定性と燃費改善とを両立させることができるのである。
また、 車両の急加速時等、 高出力が要求される場合は内燃機関の負荷 が高くなるので、 吸気ポート 2 3から吸気流が燃焼室 2 1内に案内され る吸気行程において、 リフト時間を長く しながら燃料噴射するように制 御 (吸気行程燃料噴射モード) することにより、 周辺噴霧 B 2 C F I G . 7 ( b ) 参照〕 により噴射される燃料を多く して、 燃焼室 2 1と干渉す ることなく広い空間へ噴霧を分散させることにより均一混合を促進して 高出力化することができる。
即ち、 吸気行程において、 周辺噴霧 B 2を主体とした形状の燃料噴霧 を行なうことにより、 吸気行程の後の圧縮行程においては、 燃焼室 2 1 内の吸気流と噴霧とが混合されることにより、 燃焼室 2 1内全体にわた つて、 理論空燃比に近い混合気を生成して、 その後の燃焼行程において 燃焼させることにより、 高出力化することができるのである。
F I G . 1 2を参照して説明すれば、 内燃機関の負荷が高い場合は、 F I G . 1 2の点 D 2, D 3に示すように、 前述の F I G . 7 ( b ) に 示すような 2段噴霧やこの 2段噴霧から中心噴霧を除いた中空噴霧によ る燃料噴射を行なえば、 十分な機関出力が得られることがわかる。
このように、 本発明の第 1実施形態にかかる燃料噴射弁によれば、 車 両における筒内噴射式内燃機関に適用した場合、 内燃機関の負荷が低負 荷である場合に、 圧縮行程燃料噴射モードにより中心噴霧を主体とした 燃料噴射を行なうことにより、 燃料噴射量を比較的少量に抑制しながら 着火性、 即ち燃焼安定性を十分に確保するとともに、 超希薄条件下にお いて出力を落とすことなく燃焼を行なって、 燃費改善を図ることができ る利点がある。 また、 内燃機関の負荷が高負荷である場合には、 吸気行程燃料噴射モ 一ドにより周辺噴霧を主体とした燃料噴射を行なうことにより、 比較的 少量の燃料噴射を行ないながら、 理論空燃比に近い混合気を生成して高 出力化することができ、 燃費改善を図りながら所望のパワーを発生させ ることができる利点がある。
なお、 上述の本実施形態において、 燃料噴射弁 3 0を F I G . 1 1 ( a ) , F I G . 1 1 ( b ) に示すような筒内噴射式内燃機関に搭載した 場合、 特に、 燃料噴射弁 3 0が、 内燃機関の負荷が低負荷である場合に は、 筒内圧が吸気行程 (筒内圧:大気圧以下) に比べて明らかに高い条 件下 (筒内圧が 2気圧以上、 好ましくは 5気圧程度) 、 即ち、 圧縮行程 (特に、 その後半) において燃料噴射を行ない、 内燃機関の負荷が高負 荷である場合には、 吸気行程 (特に、 その前半) で燃料噴射を行なうよ うに構成することが好ましく、 この場合においても、 上述の本実施形態 と同様の利点が得られることはいうまでもない。
また、 上述の本実施形態においては、 内燃機関の負荷の高低に応じて 燃料噴射態様が異なっているが、 本発明によれば、 燃料噴射弁が中心噴 霧と周辺噴霧の 2つの形状を有しているので、 圧縮行程において燃料噴 射を行なった場合には、 少なく とも燃焼安定性を十分に確保するととも に、 燃費改善を図ることができる利点がある。
さらに、 本実施形態のような単一の噴射弁を用いてその噴射タイミン グを切り換える筒内噴射式内燃機関は、 圧縮行程時に燃料を噴射し、 特 に、 燃料噴射終了時期を圧縮行程の後半に設定することで、 筒内圧によ り中心噴霧に関係なく、 周辺噴霧先端の噴霧角を狭く し (即ち、 ピス ト ン上面に到達する噴霧の先端の外径が小さくなるようにし) 、 ピス トン の凹所に向かわせることができ、 超希薄層状燃焼の実現が可能となり、 燃焼安定と燃費改善の効果を得ることができる。 また、 吸気行程時の噴 射では、 周辺噴霧先端の噴霧角が特に変化せず燃焼室内に拡散させるこ とができ、 比較的少量の燃料噴射で理論空燃比に近い均一な混合気を生 成して高出力化することができるものである。
即ち、 ある設定された筒内噴射式内燃機関においては、 コーン型の噴 射を行なう単一の噴射弁を設け、 その噴射時期を圧縮行程と吸気行程と で切り換えるだけで層状燃焼と予混合燃焼の夫々に適した噴霧角の設定 が可能となるため、 各運転状態の要求に対応し得るコストメリツ 卜の高 いシステムが提供される。 この特徴については、 中心噴霧が特に存在し ない場合にも成立するものである。
(b) 第 2実施形態の説明
F I G. 1 4〜F I G. 2 0は本発明の第 2実施形態としての第 1実 施形態と同様の筒内噴射式内燃機関及びその内燃機関用燃料噴射弁を示 す模式断面図であり、 これらの図に基づいて第 2実施形態を説明する。 本実施形態にかかる筒内噴射式内燃機関は、 前述の第 1実施形態にて 示した F I G. 1 1 (a) , F I G. 1 1 (b) におけるものに比して、 燃料噴射弁による燃料噴霧形状が異なり、 その他の構成や作用について は基本的に同様であり、 説明は省略する。
つまり、 F I G. 14 (a) , F I G. 1 4 (b) に示すように、 こ の燃料噴射弁 30は、 中心噴霧 Cがほとんど又は全くなく、 ほぼ円錐形 状の周辺噴霧 B' のみで燃料噴射を行なうようになっている。 このよう な周辺噴霧 B' のみの噴霧状態を中空噴霧又はホロコーン噴霧 B Bとも 称することにするが、 例えば F I G. 1に示すような構造の燃料噴射弁 3 0において、 デッ ドボリューム 1 1を極力縮小することにより、 僅か に中心噴霧 Cが残るものの、 スワール流を形成させながら、 ほぼ中空噴 霧 (ホロコーン噴霧) BBを形成することが可能となる。
ところで、 このような中空噴霧 B Bを F I G. 1 6に示すように吸気 行程において行なうと、 この時の燃料の噴射雰囲気圧は大気圧以下にな り、 F I G. 1 4 (a) , F I G. 1 4 (b) に示すように、 広がりの あるホロコーン噴霧が形成される。
つまり、 燃料噴射弁 3 0から高圧噴射によって燃料が噴射されるが、 この燃料流は、 F I G. 1 4 (a) , F I G. 1 4 (b) に示すように、 旋回流速度成分 R 1及び速度べク トル Vで示すように円錐面に沿って拡 散する方向へ向かう速度成分を有する。 これらの速度成分 R 1及び Vは、 回転方向の成分 V Θと遠心方向に向かう成分 VRと噴射中心軸線 Mに沿 つた方向に向かう成分 V tとに分けて考えることができるカ^ 大気圧以 下の雰囲気下では、 各速度成分 V 0, VR, V tはいずれも大きく、 燃 料がコーン状に拡散していくことがわかる。
そして、 このときの噴射される燃料量分布は、 F I G. 1 7に示すよ うに、 噴射中心軸線近傍では極めて少なく、 噴射中心軸線から離隔した 部分で多くの燃料量状態となる。 このように、 燃料がほぼ円錐形状の中 空噴霧 (即ち、 広がりのあるホロコーン噴霧) B Bで噴射されると、 ホ 口コーン状の主噴霧の外側及び内側で燃料粒が空気に接触して燃料粒の 微粒化が促進され、 これに伴って噴射燃料の貫徹力が抑制される。 特に、 コーン状噴霧 B Bの外側では周囲の空気の巻込み R 2が生じて、 燃料粒 の微粒化の促進や貫徹力の抑制が一層強化されるようになる。
—方、 F I G. 1 8に示すように、 中空噴霧を圧縮行程の特に圧縮行 程後期に行なうと、 この時の燃料の噴射雰囲気圧は、 例えば 0. 2〜 1. 0 MP aと非常に高圧になり、 F I G. 1 5 (a) , F I G. 1 5 (b ) に示すように、 広がりの小さいコンパク ト噴霧 B B' が形成される。
このように高圧下でコンパク ト噴霧 B B' が形成されるのは、 噴霧燃 料の貫徹力が、 燃料の噴射雰囲気圧によって大きく異なるためと考えら れ o つまり、 燃料噴射弁 3 0から高圧噴射によって燃料が噴射されると、 この燃料流は、 F I G. 1 5 (a) , F I G. 1 5 (b) に示すように、 大気圧下の場合と同様に、 燃料流の速度成分 R 1' 及び V' は、 回転方 向の成分 と遠心方向に向かう成分 VR' と噴射中心軸線に沿った 方向に向かう成分 V t' とに分けて考えることができるが、 大気圧以下 の雰囲気下では、 各速度成分 V0' , VR' , V f は大気圧下の場合 に比べて小さく、 このような燃料速度の大幅な低下が、 広がりの小さい コンパク ト噴霧 BB' を形成するものと考えられる。
これは、 燃料の噴射雰囲気圧が高いと、 噴射燃料の初速度が低下する ため、 燃料噴射弁 30の噴口を出た燃料は初期には噴霧運動を行なうも のの早期に失速して噴霧燃料の貫徹力が大幅に抑制されることや、 また、 噴霧速度が低下するため例えば主噴霧に対する周囲の空気の巻込みが相 対的に大きくなって、 噴霧燃料の貫徹力が大幅に抑制されるためと考え られる。
なお、 貫徹力を示す噴霧到達距離特性について、 燃料の噴射雰囲気圧 が圧縮圧の場合と大気圧の場合とを比較すると、 F I G. 2 0に示すよ うになり、 図示するように、 燃料の噴射雰囲気圧が圧縮圧の場合 (曲線 P 1参照) は、 燃料の噴射雰囲気圧が大気圧の場合 (曲線 P 2参照) に 比べて、 噴霧速度の初速も低く速度低下も著しいことがわかる。
そして、 このように、 圧縮行程後期で燃料噴射が行なわれた場合の燃 料量分布は、 F I G. 1 9に示すように、 噴射中心軸線近傍にほぼ集中 するようになる。
さらに、 本筒内噴射式内燃機関では、 圧縮行程後期での燃料噴射のタ ィミ ングが次のように設定されている。 つまり、 第 1実施形態と同様に、 この機関においても、 ピストン 2 2の上面に曲面状凹所 2 2 Aが形成さ れており、 矢印のごとく ピストン 2 2上昇時の圧縮行程後期に燃焼室内 に供給された燃料が、 まず、 この凹所 2 2 Aに向かって、 さらに、 この 凹所 2 2 Aで反射した後に、 燃焼室 2 1の上方の点火プラグ 2 5の着火 点に向かうように、 燃料噴射弁 3 0による燃料噴射のタイミング、 及び, 燃料噴射弁 3 0の噴射方向 (即ち、 噴射中心軸線の方向) が設定されて いる。
もちろん、 凹所 2 2 Aの形状も、 燃料噴射弁 3 0から噴射された燃料 を点火ブラグ 2 5の着火点へ向けて収束するように反射させうる形状と なっており、 燃料噴射弁 3 0から噴射された燃料が広がりをもっていて も、 これを収束させて、 点火プラグ 2 5の着火時にこの着火点の近傍に 部分的に十分な濃度の燃料を供給するようになっている。
本発明の第 2実施形態は、 上述のように構成されるので、 例えば機関 の負荷が大きい場合など要求燃料量の多い機関運転状態の場合には、 F I G . 1 6に示すように、 燃料噴射弁 3 0により吸気行程噴射を行なつ て、 機関から十分な出力が得られるように運転を行なうことができる。 つまり、 矢印のようなピストン 2 2下降時の吸気行程で燃料噴射が行 なわれると、 F I G . 1 4 ( a ) , F I G . 1 4 ( b ) , F I G . 1 6 に示すように、 広がりのあるホロコーン噴霧 B Bが形成される。 このよ うな広がりのあるホロコーン噴霧 B Bによると、 F I G . 1 7に示すよ うに拡散した燃料量分布状態となり、 特に、 主噴霧の外側及び内側で燃 料粒がそれぞれ空気に接触して燃料粒の微粒化が促進され、 これに伴つ て噴射燃料の貫徹力が抑制される。 このため燃料と空気との混合が十分 に行なわれた上で、 点火プラグ 2 5による着火が行なわれるようになり、 極めて効率のよい燃焼が実現して大きな機関出力が得られるようになる c もちろん、 効率のよい燃焼は、 排気ガス中の H Cやスモークの低減にも 寄与しうる。
一方、 例えば機関の負荷が小さい場合など要求燃料量の少ない機関運 転状態の場合には、 F I G. 1 8に示すように、 燃料噴射弁 3 0により 圧縮行程噴射 (特に、 圧縮行程後期の噴射が望ましい) を行なって、 燃 料消費を抑えた節約運伝を行なうことができる。
つまり、 圧縮行程後期噴射を行なうと、 F I G. 1 5 (a) , F I G. 1 5 (b) , F I G. 1 8に示すように、 広がりの小さいコンパク ト噴 霧 B B' が形成される。
このようにコンパク ト噴霧 B B' が形成されると、 F I G. 1 9に示 すように、 噴射中心軸線近傍にほぼ集中するようになる。 さらに、 本機 関では、 この圧縮行程後期で噴射された燃料は、 ピストン 22上面の凹 所 22 Aで反射し、 且つ、 ビストンの押し上げに伴って、 燃焼室 2 1の 上方の点火プラグ 2 5の着火点に向かう。 この反射時に、 凹所 2 2 Aが 燃料を点火プラグ 2 5の着火点へ向けて収束するように反射させる。 そ して、 点火プラグ 2 5の着火時には、 この着火点の近傍に部分的に十分 な濃度の燃料が供給されるようになり、 燃料を確実に着火させて安定し た燃焼状態を得ながら、 全体としては理論空燃比よりも燃料の希薄な空 燃比状態とした運転 (リーン燃焼運転) を行なうことができる。
もちろん、 リーン運転を安定して行なえることは、 排気ガス中の HC やスモークの低減にも寄与しうる。
このように、 本実施形態のものでは、 中心噴霧 Cを省いた中空噴霧 ( ホロコーン噴霧) B Bのみを行ないながらも、 燃料の噴射雰囲気圧に応 じて変化する噴霧形状の特性と、 ピストン 22上面の凹所 22 Aによる 燃料反射とを利用しながら、 要求燃料量の多い機関運転状態では、 吸気 行程燃料噴射によって十分な機関出力を得られ、 要求燃料量の少ない機 関運転状態では、 圧縮行程燃料噴射によつて安定したリーン運転を実現 できるようになり、 この結果、 中心噴霧に頼らないでも、 機関の出力向 上や、 燃費改善や、 排気ガス中の HCやスモークの低減を促進しうるよ うになる利点がある。
また、 機関の特性にもよるが、 中空噴霧 (ホロコーン噴霧) B Bを凹 所 2 2 Aによる燃料反射を利用しながら、 点火プラグに集めてリーン燃 焼運転を行なうほうが、 中心噴霧 Cによるリ一ン燃焼運転よりもより希 薄な燃料で運転しうる場合もある。
なお、 上述の各実施形態では、 高いスワール流を形成することで、 微 粒化されたコ一ン状の燃料噴霧を形成させているが、 スワール流を用い なくても、 微粒化されたコーン状燃料噴霧を実現できれば、 そのような 噴霧形態であつてもかまわない。
さらに、 上述の第 1実施形態及び第 2実施形態における燃料噴射弁か らの燃料噴霧形状の変形例として、 F I G . 2 1に示すような形状も考 れる o
つまり、 F I G . 2 1に符号 B Cで示すように、 中実のコーン状に燃 料噴霧を行なうのである。 このような中実噴霧は、 リーン燃焼運転を行 なう場合には、 F I G . 1 2に示すように、 限界空燃比を上昇させるこ とができ、 むしろ有利になる。
なお、 この中実噴霧においては、 噴射中心軸線近傍の中心側噴霧より も噴射円錐面近傍の周辺側噴霧のほうが粒径が小さくなるように燃料噴 射弁を構成することにより、 2段噴霧と同様に、 周辺側噴霧が、 筒内圧 による影響を受け易くなり、 圧縮行程噴射時の噴霧の集中化が促進され る。
ところで、 燃料噴射角度に対する凹所の関係は、 次のように規定する こともできる。
つまり、 要求燃料量が多い場合、 即ち、 吸気行程噴射の場合には、 ピ ストン 2 2上面に到達する燃料噴霧の先端が凹所 2 2 Aよりも大きく拡 がって燃焼室 2 1内で十分に拡散するようにして、 要求燃料量が少ない 場合には即ち、 圧縮行程噴射 (特に、 圧縮行程後期噴射) の場合には、 ピストン 2 2上面に到達する燃料噴霧の先端が凹所 2 2 A内に収まるよ うに縮径しながら凹所 2 2 Aによって点火プラグ 2 5に向けて案内され るように設定するのである。
これにより、 要求燃料量が多い吸気行程噴射の場合には、 燃焼室 2 1 全体への燃料の拡散が促進されて燃料の燃焼が効率よく行なわれて、 大 きな出力を得やすくなる。 一方、 要求燃料量が少ない圧縮行程噴射の場 合には、 燃料を燃焼室 2 1内の凹所 2 2 A内に部分的に供給してさらに この凹所 2 2 Aによる案内で点火プラグ 2 5の着火点近傍のみに燃料が 偏在するように集合するため、 燃料の安定した着火性能を確保しながら、 燃焼室全体としては希薄な燃料濃度状態で、 消費燃料の少ない運転を実 現することができる。
上述の構成を換言すると、 燃料噴射角度に対する凹所 2 2 Aの外縁を 吸気行程前半, 圧縮行程後半の略同一ピス トン位置 〔例えば B T D C 3 0 0 ° (吸気上死点前 3 0 0 ° 、 即ち、 排気上死点後 6 0 ° ) と B T D C 6 0 ° (圧縮上死点前 6 0 ° ) 〕 において、 次のように表現すること ができる。 例えば吸気行程前半における燃料噴射弁からの燃料噴射によ ると、 ピストン 2 2上面に到達する噴霧先端の噴霧外径が凹所 2 2 Aよ りも大きく拡がり、 圧縮行程後半における燃料噴射弁からの燃料噴射に よると、 ピストン 2 2上面に到達する噴霧先端の噴霧外径が凹所 2 2 A 内に納まるように、 凹所の外縁の大きさが設定されていることが好まし い。
これにより、 燃料噴射弁の吸気行程前半での燃料噴射では、 燃料が該 凹所 2 2 A内だけでなく燃焼室 2 1全体に拡散するようになり、 十分な 量の燃料を空気と混合させながら燃焼室全体に供給させることができ、 大きな出力を効率よく得やすくなる。 一方、 燃料噴射弁の圧縮行程後半 での燃料噴射では、 燃料が凹所 2 2 A内に納まるため、 凹所 2 2 A内や この上方空間で十分な燃料濃度とでき、 燃料の安定した着火性能を確保 しながら、 燃焼室 2 1全体としては希薄な燃料濃度状態で、 消費燃料の 少ない運転を実現することができ、 高出力時の予混合燃焼と低出力時の 層状燃焼とを行なう機関に適用することにより、 効果が大きい。
また、 要求燃料量が多い吸気行程噴射の場合には、 ピストン 2 2上面 に到達する燃料噴霧の先端が凹所 2 2 Aよりも大きいだけでなく、 ビス トン 2 2上面全体よりも広く拡散するように設定できれば、 さらに燃焼 室 2 1内で燃料が十分にミキシングされて、 出力向上効果が著しくなる c これは、 単に、 噴射角度だけでなく、 噴霧到達時のピストン 2 2上面位 置、 即ち、 噴射タイミングにもよるので、 これらを合わせて設定する必 要力ある。
ところで、 上述の各実施形態のように、 本発明にかかる筒内噴射式内 燃機関では、 予混合燃焼による高出力化と層状燃焼による燃費向上とを ともに得ようとするものである。 つまり、 吸気行程噴射で燃料を筒内全 体に拡げて噴霧することで十分な量の燃料をより完全に燃焼させて高出 力を得るようにする一方で、 圧縮行程噴射で燃料をビストン 2 2上面の 凹所 2 2 A内にコンパク 卜に噴霧して凹所 2 2 A内面の案内により点火 プラグの着火点近傍のみに過濃な燃料を供給する層状化により燃費改善 効果を得ようとしている。
ところが、 このような高出力化と燃費向上との両立、 さらには排ガス 特性は、 燃料噴射弁からの噴霧形状 (燃料の微粒化) に大きく依存する。 つまり、 本内燃機関用燃料噴射弁は、 旋回流発生手段としての燃料案内 流路 1 0を有しており、 燃料流に旋回成分を加えて旋回流として噴射す ることで、 噴霧燃料が円錐状のコーン型旋回流 Bとして周辺噴霧 B ' が 形成される。 このようなコーン型旋回流 Bの形状、 即ち拡がり状態 (コ ーン型噴射角度, 以後、 前述の噴射角度と区別するために噴霧角度とい う) などが、 高出力化と燃費向上との両立ゃ排ガス特性に大きく影響す るのである。
そこで、 どのような燃料噴霧形状が高出力化と燃費向上との両立ゃ排 ガス特性向上に適しているか、 さらに、 このような望ましい燃料噴霧形 状を実現させるには、 燃料噴射弁の形状、 特に、 噴口部分の形状をどの ような観点から設定したらよいかといつた更なる指針が、 かかる筒内噴 射式内燃機関についての技術の実用性をより高めるために必要となる。
これについては、 以下に説明するようにして、 適正な燃料噴霧形状を 得られる燃料噴射弁の形状を規定していく ことができる。
なお、 第 1, 2実施形態で使用しうる内燃機関及び後述する各実験時 の内燃機関の諸元は、 以下のようなものとしている。
圧縮比: 8〜: I 2程度
S B比: 0. 8〜 1. 2程度
噴射圧: 30〜 1 50気圧程度
まず、 適正な燃料噴霧形状について考えるが、 その前に、 この噴霧形 状を数値的に評価できるように規定する必要がある。 噴霧形状とは、 円 錐状に形成されるコーン型旋回流 Bの円錐面の角度と考えることができ る。 このような角度 (コーン型噴射角度又は噴霧角度) は噴霧を外観す ることで検出しうるが、 また、 実際の jーン型旋回流 Bの噴霧形状は、 F I G. 8 (a) , F I G. 8 (b) , F I G. 1 0に示すように、 噴 射角度方向に厚みをもつた円錐面状であり、 このような噴霧角度は外観 に基づいて検出することができるが、 必ずしも容易ではない。 そこで、 ここでは、 水平流量分布図心という値を噴霧形状指標として用いること にする。
この水平流量分布図心とは、 上述した F I G. 9に示す測定システム により、 水平流量分布計測用多点採取容器 1 2の各採取容器 1 2 Aにお いて採取された燃料量の測定結果に基づいて、 次式により求めることが できる。
水平流量図心 =∑ (各採取容器の噴霧捕集量 X噴射角度)
÷∑ (各採取容器の噴霧捕集量)
すなわち、 既に F I G. 9を参照して説明したように、 この測定シス テムに基づく結果から燃料の水平流量分布を、 F I G. 1 0に示すよう な噴射角度 Xに対する燃料量の割合 Yとして得ることができる。 採取容 器 1 2 Aを噴射角度 X方向により細かく分割して、 このような燃料噴霧 の水平流量分布のより子細に検出すると、 F I G. 22に示すような結 果が得られる。
この F I G. 22では、 横軸に噴射角度 (d e g) をとり、 縦軸に各 採取容器 1 2 Aで捕集された燃料捕集量を燃料の静的流量 〔単位時間又 は単位パルス (噴射パルス : 1ms e c) あたりの燃料噴射量〕 で除算 したもの (水平分布量) をとつている。 測定結果から、 F I G. 2 2中 の曲線 (水平分布量曲線) に示すような分布特性が得られるが、 水平流 量分布図心とは、 このようにして得られる水平分布量で重み付けした噴 射角度の加重平均に相当する値であり、 F I G. 22中に☆で示す。
このような水平流量分布図心と、 コーン型旋回流 Bの噴霧角度 (コ一 ン型噴霧角度) との関係を調べると、 F I G. 23に示すような結果が 得られる。 水平流量分布図心とコ一ン型噴霧角度とがほぼ一時相関する ことがわかる。 つまり、 水平流量分布図心を噴霧形状指標として用いる ことが妥当であることがわかる。
さて、 水平流量分布図心が所定角度よりも小さくなるコーン型噴霧角 度の狭い燃料噴霧 (狭角噴霧) で燃料噴射すると、 機関の全開運転時に スモークの発生や出力低下や圧縮行程噴射時の燃費悪化を招く。 一方、 水平流量分布図心が所定角度よりも大きくなるコーン型噴霧角度の拡ぃ 燃料噴霧 (拡角噴霧) で燃料噴射すると、 圧縮行程噴射時の燃焼が不安 定になったり噴射弁の個体差による噴霧のバラツキが大きくなつてしま い、 所望の噴霧形状を確実に得ることが困難になる。
そこで、 まず、 燃費改善に着目すると、 水平流量分布図心 (コーン型 噴霧角度) に対する燃費率特性は、 F I G. 2 4に示すようになり、 良 好な燃費率の得られる水平流量分布図心は、 F I G. 2 4中に網かけし て示すように、 4 0〜 7 0 d e gの範囲 (コーン型噴霧角度では 5 0〜 8 0 d e g) と考えられる。 即ち、 燃費に着目すると、 水平流量分布図 心は 4 0〜 7 0 d e gの範囲が適正と考えられる。
そこで、 このような適正な水平流量分布図心 (4 0〜 7 0 d e g) の 得られる燃料噴射弁の形状を調べる。
まず、 燃料噴射弁の諸元、 即ち、 噴口径 D o, 噴口長 L, 旋回径 D s, 旋回溝断面積 A s 〔F I G. 2 5 (a) , F I G. 2 5 (b) 参照〕 及 びガソリン燃料における燃料圧力 P, 燃料密度 p, 動粘度 に対して、 旋回室流速 V s CF I G. 2 5 (b) 参照〕 , 旋回レイノルズ数 R e, 噴口 L ZDはそれぞれ次式のようにあらわすことができる。
V s =K · (D oZD s) · ( 2 P/p) 0 5
但し、 Kl/K)2— 1 } 0 5 — K · I n Cl/K + Kl/K)2— 1 } 。· 5 〕 = 4 ' A S ( TT - D O ' D S )
旋回レイノルズ数 R e =D s - V s /2 v
噴口 L/D = L/D 0
F I G. 2 6は噴口 L ZDを一定 (ここでは、 LZD = 2 ) , 噴射圧 4 M P aとした場合の旋回レイノルズ数 R eに対する水平流量分布図心 の特性についての実験結果を示すもので、 旋回レイノルズ数 R eが大き くなると噴射弁加工時の噴口等の加工誤差による水平流量分布図心のバ ラツキが大きくなり、 所望の噴霧形状を得にく くなることがわかる。 し たがって、 水平流量分布図心のバラツキを抑えるという観点からは、 旋 回レイノルズ数 R eが小さいほうが有利になる。
また、 F I G. 2 7は旋回レイノルズ数 R eを一定 (ここでは、 Re = 30000 ) , 噴射圧 4MP aとした場合の噴口 LZDに対する水平 流量分布図心の特性についての実験結果を示すもので、 噴口 LZDが小 さくなると水平流量分布図心のバラツキが大きくなり、 所望の噴霧形状 を得にく くなることがわかる。 したがって、 水平流量分布図心のバラッ キを抑えるという観点からは、 噴口 L / Dが大きいほうが有利になる。 ところで、 噴口 LZDについては、 これを拡大することで水平流量分 布図心のバラツキを小さくでき、 噴射弁間の個体差を抑制することがで きるが、 これは、 F I G. 2 8に示すように、 噴口において、 旋回力を 与えられた燃料の旋回流は図示するように噴口内を螺旋状に周回しなが ら噴霧の拡がりを抑制されると同時にスワール溝間の寸法のバラツキを 平準化され噴霧が安定するようになる。
特に、 このような旋回流は、 噴口の噴出部 (噴口径 D sの部分) で少 なくとも 1回転以上は周回した上で噴出されることが望ましい。
しかしながら、 噴口 LZDを大きくすると、 噴口内でのカーボン堆積 の原因となるので、 噴口 L Dの大きさにも限度がある。
そこで、 このような特性を考慮すると、 噴口 LZDは 1〜3程度とす るのが望ましい。
また、 F I G. 2 9は、 噴射弁の噴射圧を 4 MP aに設定したときの 旋回レイノルズ数 R eに対する水平流量分布図心を各噴口 L ZD毎に表 したものであり、 前述の適正な水平流量分布図心 (4 0〜70 d e g) に応じた旋回レイノルズ数 R eは 2 00 00〜 4 000 0程度であるこ とがわかる。 したがって、 噴射圧を 4 MP aとした場合には、 F I G. 2 9中の網かけを付す領域内に旋回レイノルズ数 R e, 水平流量分布図 心, 及び噴口 LZDが設定されるように、 燃料噴射弁の各諸元を設定す ることが好ましい。
ところで、 水平流量分布図心は燃料圧力 Pにも依存するので、 噴射圧 を上記 4 MP a以外で考えた場合、 最適な燃料噴射状態は、 水平流量分 布図心と燃料圧力 Pとを用 L、て表すほう力より正確なものになる。 そこ で、 実験データに基づいて、 水平流量分布図心と燃料噴射圧力 (噴射圧 又は燃料圧力ともいう) とを加味した燃料噴射状態の指標を与えると、 水平流量分布図心 X燃料圧力 Ρ°· 25
とすることが考えられる。
また、 旋回レイノルズ数 R eは燃料圧力 Pの平方根の関数であること に着目して、 旋回レイノルズ数 R eは燃料圧力 Pの平方根で除算して得 られる値 (ReZ^ P) を設定することができる。 そして、 この値 (R e/^P) と水平流量分布図心との対応から、 適正な値 (ReZ P) を求めることができる。 なお、 値 (R e P) の単位は、 〔lZP a °- 5 〕 となる。
F I G. 30は、 この値 (ReZ^ P) に対する水平流量分布図心を 各噴口 LZD毎に表したものであり、 図示するように値 (ReZ P) を 1 0 00 0〜2 000 0 〔1 /MP a °· 5 〕 の範囲内に設定すること で、 適正な燃料噴射状態の指標 (即ち、 水平流量分布図心) を得ること ができる。
このように、 値 (ReZ P) に着目すると、 噴口 7に関する各諸元 を F I G. 30中の網かけを付す領域内となるように設定することが好 ましい。
さらに、 弁座部開口面積の限定に関する指針を説明する。 F I G. 3 1は噴口の弁座部近傍を示す模式図であり、 旋回溝通路面積 S l, 弁座 部開口面積 (最大リフト時の弁座と二一ドル弁との間の最短部の開口面 積) S 2, 噴口部断面積 S 3に関して、 以下のような範囲内に設定する ことが望ましい。
0. 5≤ S 3/ (S 1 X旋回溝数) ≤ 1. 5
0. 1≤ S 2/ (S 1 X旋回溝数) ≤ 0. 5
特に、 S 3/ (S 1 X旋回溝数) の値については、 各条件にもよるが 、 1. 0近傍が最適なものと考えられるが、 種々の条件下を考慮すると、 上記のように 0. 5〜 1. 5の範囲内とすることができる。 S 3Z (S 1 X旋回溝数) の値が 0. 5よりも小さくなると、 旋回力が小さくなり 過ぎるおそれがあり、 S 3 (S 1 X旋回溝数) の値が 1. 5よりも大 きくなると、 旋回力が大きくなり過ぎるおそれがある。
また、 S 2Z (S i x旋回溝数) の値については、 各条件にもよるが、 0. 2近傍が最適なものと考えられるが、 種々の条件下を考慮すると、 上記のように 0. 1〜0. 5の範囲内とすることができる。 この S 2 (S 1 X旋回溝数) の値が 0. 1よりも小さくなると、 旋回流量が限定 され流量が小さくなり過ぎるおそれがあり、 S 2Z (S i x旋回溝数) の値が 0. 5よりも大きくなると、 旋回力を十分に得られないおそれが ある。
なお、 実際には、 噴射弁は、 その小型化やレスポンスを考えると、 旋 回溝通路面積 S 1, 弁座部開口面積 S 2, 噴口部断面積 S 3の何れかが 又はいずれもがある程度制限されるので、 このような各種の制限下で上 述のような範囲内になるように設定することになる。
特に、 このような設定を行なう場合、 噴射弁の小型化やレスポンスの 面から弁座開口面積 S 2を旋回通路面積 S 1及び噴口部断面積 S 3より も小さく設定することが好ましい。
上述のような観点から、 燃料噴射弁の各諸元を設定することで、 前述 の本発明の筒内噴射式内燃機関による効果をより容易に得ることができ るのである。 産業上の利用可能性
本発明を、 高出力時の予混合燃焼と低出力時の層状燃焼とを行なう 4 サイクル筒内噴射式内燃機関に用いることで、 予混合燃焼による機関出 力の確保を十分に行なえる一方で層状燃焼による節約運転を確実に行な えるようになり、 出力増加と燃費向上といった相反する要求を同時に満 たすことができるようになる。 このような筒内噴射式内燃機関を、 例え ば自動車用エンジンとして採用することで、 自動車の性能、 即ち、 出力 性能と経済性能とを大きく向上させることができる。 もちろん、 自動車 以外にも採用することができ、 同様に、 出力性能向上と経済性能向上と を両立するという利点が得られ、 その有用性は極めて高いものと考えら
4しな o

Claims

請 求 の 範 囲
1. シリンダ (2 0) 内に挿嵌された往復動ビストン (2 2) の上面と シリンダへッ ド (2 7) の下面との間に形成された燃焼室 (2 1) と、 該燃焼室 (2 1) 内へ直接燃料を噴射する単一の燃料噴射弁 (30) と- 該燃焼室 (2 1) 内へ臨んだ点火プラグ (2 5) とをそなえた 4サイク ルの筒内噴射式内燃機関において、
該燃料噴射弁 (30) が、 噴口を頂点とし該燃料噴射弁 (30) の軸 線方向に向かって均一に円錐形状に拡がる噴霧で該燃焼室 (2 1) 内へ 向けての燃料噴射を行なうとともに、 要求燃料量の多い機関運転状態の ときには該機関の吸気行程中に燃料噴射を行ない、 該要求燃料量の少な い機関運転状態のときには該吸気行程よりも筒内圧の高い該機関の圧縮 行程後半に燃料が供給されるよう燃料噴射を行なうように構成されてい ることを特徴とする、 筒内噴射式内燃機関。
2. 該燃料噴射弁 (30) は、 該要求燃料量が少ない場合には、 該燃焼 室 (2 1) 内の雰囲気圧力が 2気圧以上となる時に燃料噴射を行なうよ うに構成されていることを特徴とする、 請求の範囲第 1項記載の筒内噴 射式内燃機関。
3. 該燃料噴射弁 (30) から噴射される燃料の噴霧形状が、 要求燃料 量が多い場合には該噴霧先端に向かってある所定の噴射角度をもった円 錐状に拡径した形状となり、 該要求燃料量が少ない場合には該噴霧先端 に向かつて拡径度合が小さくなり次第に縮径する形状となることを特徴 とする、 請求の範囲第 1項記載の筒内噴射式内燃機関。
4. 該ピス トン (22) 上面の一部に凹所 (22 A) が形成されて、 該 凹所 (22 A) と対向する位置に点火プラグ (2 5) が設けられるとと もに、 該要求燃料量が多い場合には該ピストン (22) 上面に到達する 該噴霧先端が該凹所 (2 2 A) よりも大きく拡がって該燃焼室 (2 1 ) 内で拡散し、 該要求燃料量が少ない場合には該ピス ト ン ( 2 2 ) 上面に 到達する該噴霧先端が該凹所 (2 2 A) 内に収まるように縮径しながら 該凹所 (2 2 A) によって該点火プラグ (2 5 ) に向けて案内され該点 火プラグ (2 5) の着火点近傍に偏在するように集合するように構成さ れていることを特徴とする、 請求の範囲第 3項記載の筒内噴射式内燃機 関。
5. 該燃料噴射弁 (3 0 ) 力 噴口 (7 ) を有する噴射弁本体 (8) と、 該噴射弁本体 (8 ) 内に設けられ該噴ロ (7 ) を開閉しうる開閉手段 ( 4 ) と、 該開閉手段 (4 ) に設けられ該噴射弁本体 (8 ) 内を流通する 燃料に対してコーン型旋回流を与え得る旋回流発生手段 ( 1 0) とをそ なえた、 スワール型燃料噴射弁であることを特徴とする、 請求の範囲第 3項記載の筒内噴射式内燃機関。
6. 該シリンダへッ ド (2 7 ) 下面の該シリンダ (2 0 ) の軸心線 (2 8) を含む基準面の一側に形成された吸気ポート (2 3) と、 該吸気ポ
—ト (2 3) の該燃焼室 (2 1 ) への開口を開閉するように該吸気ポー ト (2 3 ) に装備された吸気弁 (2 4 ) とをそなえ、
該シリンダ (2 0 ) 上面における該基準面の一側の該吸気ポート (2 3 ) 開口と対向する部位に、 該吸気ポート (2 3 ) から該燃焼室 (2 1 ) 内に進入した吸気の縦渦流を促進するように該シリンダ (2 0) 上面 に対して窪んだ曲面状凹所 (2 2 A) が形成され、
該シリンダ (2 0) 上面における該基準面の他側に、 該凹所 (2 2 A ) から隆起するとともに該ピストン (2 2 ) の上死点において該シリン ダへッ ド (2 7) 下面に接近しうる隆起部 (2 2 B) がその頂部を該基 準面の近くに配置するように形成されて、
該シリンダへッ ド (2 7 ) 下面における該シリンダ軸心線 (2 8 ) の 近傍に点火プラグ (2 5) が配設されるとともに、
該燃料噴射弁 (3 0) の噴口が該凹所 ( 2 2 A) へ向くように配設さ れていることを特徴とする、 請求の範囲第 5項記載の筒内噴射式内燃機 関。
7. 該噴霧の形状が、 該燃料噴射弁 (3 0) の軸線の近傍に収束するよ うな小さな噴霧角度からなる中心噴霧と、 該中心噴霧の外周を取り巻く ように該中心噴霧よりも大きな噴霧角度で且つ該中心噴霧から離隔した 円錐状の周辺噴霧とから構成されていることを特徴とする、 請求の範囲 第 1項筒内噴射式内燃機関。
8. 該燃料噴射弁 (3 0) 力 ^ 噴口 (7) を有する噴射弁本体 (8) と、 該噴射弁本体 (8) 内に設けられ該噴ロ (7) を開閉しうる開閉手段 ( 4) と、 該開閉手段 (4) に設けられ該噴射弁本体 (8) 内を流通する 燃料に対してコーン型旋回流を与え得る旋回流発生手段 ( 1 0) とをそ なえた、 スワール型燃料噴射弁であることを特徵とする、 請求の範囲第 7項筒内噴射式内燃機関。
9. 該燃料噴射弁 (3 0) から噴射される燃料の噴霧形状が、 吸気行程 前半において燃料噴射した場合には該噴霧先端に向かって所定角度以上 に拡径した形状となり、 圧縮行程後半において燃料噴射した場合には該 噴霧先端に向かつて該所定角度未満に縮径した形状となるように設定さ れるとともに、
該ピストン (2 2) 上面の一部に凹所 (2 2 A) が形成されて、 該凹 所 (2 2 A) の外縁が、 吸気行程前半及び圧縮行程後半のほぼ同一ビス トン位置において、 該燃料噴射弁 (3 0) の吸気行程前半で該ピス トン (2 2) 上面に到達する該噴霧先端の噴霧外径よりも小さく、 該燃料噴 射弁 (3 0) の圧縮行程後半で該ピス トン (2 2) 上面に到達する該噴 霧先端の噴霧外径よりも大きく設定されていることを特徴とする、 請求 の範囲第 1項記載の筒内噴射式内燃機関。
1 0. 該燃料噴射弁 (3 0 ) 力、 噴口 (7 ) を有する噴射弁本体 (8 ) と、 該噴射弁本体 (8 ) 内に設けられるとともに、 先端に該噴ロ (7 ) を形成するコーン型噴口内周面 (7 a ) と当接し密着しうる当接部 (3 a) を有し該当接部 (3 a) を通じて該噴ロ (7 ) を開閉しうる開閉手 段 (4 ) と、 該当接部 (3 a ) の直上に設けられ該噴射弁本体 (8 ) 内 を流通する燃料を該噴ロ (7 ) へ向けて案内し燃料流に旋回成分を与え て旋回流を発生させる旋回流発生手段 ( 1 0 ) とをそなえた、 スワール 型燃料噴射弁であって、
水平流量分布計測で得られる該燃料噴射弁 (3 0 ) から噴射される燃 料の水平流量分布図心の角度が、 4 0〜 7 Odeg の範囲内になるように、 該当接部分から該噴口先端までの長さ (L) と該噴口の最小内径 (D ) との比率 (LZD) を 1〜 3の範囲内に設定するとともに、
該旋回流の旋回径 (D s ) , 該旋回流の旋回流速 (V s ) , 燃料の動 粘度 O ) に基づいて式 〔R e =D s · V s / ( 2 · u ) 〕 で定義され る該噴口における旋回レイノルズ数 (R e ) と、 該燃料噴射弁 (3 0 ) の噴射圧 (P) とから得られ単位が 〔 1ノ MP a °' 5 〕 である値 (R e /{ P) を 1 0 0 0 0〜2 0 0 0 0の範囲内に設定した
ことを特徴とする、 請求の範囲第 1項記載の筒内噴射式内燃機関。
PCT/JP1996/001292 1995-05-16 1996-05-16 Moteur a combustion interne de type a injection dans le cylindre WO1996036808A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08527488A JP3087309B2 (ja) 1995-05-16 1996-05-16 筒内噴射式内燃機関
US08/765,927 US5740777A (en) 1995-05-16 1996-05-16 In-cylinder injection internal combustion engine
SE9700102A SE511466C2 (sv) 1995-05-16 1997-01-16 Förbränningsmotor med cylinderinsprutning

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11755895 1995-05-16
JP7/117558 1995-05-16
JP23313195 1995-09-11
JP7/233131 1995-09-11

Publications (1)

Publication Number Publication Date
WO1996036808A1 true WO1996036808A1 (fr) 1996-11-21

Family

ID=26455652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001292 WO1996036808A1 (fr) 1995-05-16 1996-05-16 Moteur a combustion interne de type a injection dans le cylindre

Country Status (4)

Country Link
US (1) US5740777A (ja)
JP (1) JP3087309B2 (ja)
SE (1) SE511466C2 (ja)
WO (1) WO1996036808A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019058A1 (de) * 1996-10-30 1998-05-07 Ficht Gmbh & Co. Kg Verfahren zum betreiben einer brennkraftmaschine
EP0848147A2 (en) * 1996-12-13 1998-06-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
EP0848146A2 (en) * 1996-12-13 1998-06-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
FR2759422A1 (fr) * 1997-02-10 1998-08-14 Sagem Injecteur de carburant pour moteur a allumage commande
EP0879944A3 (en) * 1997-05-21 1999-07-14 Nissan Motor Company, Limited Cylinder direct injection spark-ignition engine
WO1999036692A1 (fr) * 1998-01-20 1999-07-22 Sagem S.A. Injecteur de carburant pour moteur a combustion interne
FR2773852A1 (fr) 1998-01-20 1999-07-23 Sagem Injecteur de carburant pour moteur a combustion interne a allumage commande
WO1999067514A1 (fr) * 1998-06-22 1999-12-29 Hitachi, Ltd. Moteur a combustion interne de type a injection dans le cylindre
EP0928887A3 (en) * 1998-01-07 2000-03-08 Nissan Motor Company, Limited In-cylinder direct-injection spark-ignition engine
US6125818A (en) * 1997-03-19 2000-10-03 Hiatchi, Ltd. Fuel injector and internal combustion engine having the same
WO2000077361A1 (fr) * 1999-06-11 2000-12-21 Hitachi, Ltd. Moteur a combustion interne du type a injection de cylindres
WO2000077360A1 (fr) * 1999-06-11 2000-12-21 Hitachi, Ltd. Moteur a injection directe et injecteur de carburant utilise dans ledit moteur
WO2000077359A1 (fr) * 1999-06-11 2000-12-21 Hitachi, Ltd. Moteur a injection directe et procede de combustion destine audit moteur
US6578778B2 (en) 2000-01-27 2003-06-17 Aisan Kogyo Kabushiki Kaisha Fuel injection valve
DE19740026B4 (de) * 1997-01-30 2006-02-23 Mitsubishi Denki K.K. Kraftstoffeinspritzventil
JP2006322392A (ja) * 2005-05-19 2006-11-30 Toyota Motor Corp 燃料噴射弁
JP2013113096A (ja) * 2011-11-24 2013-06-10 Mitsubishi Heavy Ind Ltd 燃料噴射装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265997B2 (ja) * 1996-08-20 2002-03-18 三菱自動車工業株式会社 内燃機関の制御装置
JP3211677B2 (ja) * 1996-08-28 2001-09-25 三菱自動車工業株式会社 筒内噴射式内燃機関の点火時期制御装置
US6938607B1 (en) * 1997-04-02 2005-09-06 Hitachi, Ltd. Fuel injection apparatus and control method thereof
JPH1193731A (ja) * 1997-09-18 1999-04-06 Toyota Motor Corp 筒内噴射内燃機関の燃料噴射制御装置
JPH11182249A (ja) * 1997-12-18 1999-07-06 Nissan Motor Co Ltd 直噴火花点火式内燃機関
JP4055315B2 (ja) * 1999-03-17 2008-03-05 株式会社日立製作所 燃料噴射弁およびこれを搭載した内燃機関
DE19936944A1 (de) * 1999-08-05 2001-02-08 Bosch Gmbh Robert Verfahren zum Zumessen von Brennstoff mit einem Brennstoffeinspritzventil
EP1134400B1 (en) * 2000-01-27 2012-01-18 Nissan Motor Company Limited Auto-ignition combustion management in internal combustion engine
DE10012969B4 (de) * 2000-03-16 2008-06-19 Daimler Ag Einspritzdüse und ein Verfahren zur Bildung eines Kraftstoff-Luftgemischs
FR2827913B1 (fr) * 2001-07-27 2003-09-19 Inst Francais Du Petrole Procede de controle de l'injection d'un carburant pour un moteur a combustion interne a injection directe
JP3860454B2 (ja) * 2001-10-12 2006-12-20 株式会社日立製作所 吸気管噴射式エンジン
US6659074B2 (en) 2002-05-08 2003-12-09 General Motors Corporation Spark ignition direct injection engine with shaped multihole injectors
DK200201605A (da) * 2002-10-22 2004-04-23 Hans Jensen Lubricators As Ventil til montering i cyllindervæg
US7422000B2 (en) * 2005-07-11 2008-09-09 Caterpillar Inc. Method of transitioning between operating modes in an internal combustion engine
US20090065535A1 (en) * 2007-09-11 2009-03-12 Intel Corporation Fluid dispenser system
JP5035366B2 (ja) * 2010-03-02 2012-09-26 トヨタ自動車株式会社 燃料噴射制御装置及び内燃機関
KR20120061640A (ko) * 2010-12-03 2012-06-13 현대자동차주식회사 노킹 방지 장치 및 이를 제어하는 방법
JP6030585B2 (ja) 2014-01-17 2016-11-24 トヨタ自動車株式会社 オイルジェットバルブの取付方法
JP6555309B2 (ja) * 2017-08-25 2019-08-07 マツダ株式会社 エンジンの燃料噴射装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159460A (ja) * 1987-09-25 1989-06-22 Hitachi Ltd 電磁式燃料噴射弁
JPH02238164A (ja) * 1989-03-10 1990-09-20 Hitachi Ltd 電磁式燃料噴射弁
JPH04116264A (ja) * 1990-09-05 1992-04-16 Nippondenso Co Ltd 電磁式燃料噴射弁
JPH04166612A (ja) * 1990-10-31 1992-06-12 Toyota Motor Corp 筒内噴射式内燃機関
JPH05231266A (ja) * 1991-12-26 1993-09-07 Hitachi Ltd 電磁式燃料噴射弁、電磁式燃料噴射弁用燃料旋回部材及びこの弁を用いた燃料噴射装置
JPH05240047A (ja) * 1992-02-28 1993-09-17 Mitsubishi Motors Corp 内燃機関
JPH0681651A (ja) * 1992-02-28 1994-03-22 Mitsubishi Motors Corp 筒内噴射型内燃機関

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2600275B2 (ja) * 1988-04-25 1997-04-16 トヨタ自動車株式会社 燃料噴射弁
JP3183896B2 (ja) * 1990-12-14 2001-07-09 ヤマハ発動機株式会社 筒内噴射式2サイクルエンジンの空気燃料噴射装置
JPH04219445A (ja) * 1990-12-17 1992-08-10 Toyota Motor Corp 多気筒内燃機関の燃料噴射制御装置
AT407425B (de) * 1995-05-03 2001-03-26 Avl Verbrennungskraft Messtech Brennkraftmaschine mit fremdzündung
JP3175535B2 (ja) * 1995-05-16 2001-06-11 三菱自動車工業株式会社 内燃エンジンのアイドル回転数制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159460A (ja) * 1987-09-25 1989-06-22 Hitachi Ltd 電磁式燃料噴射弁
JPH02238164A (ja) * 1989-03-10 1990-09-20 Hitachi Ltd 電磁式燃料噴射弁
JPH04116264A (ja) * 1990-09-05 1992-04-16 Nippondenso Co Ltd 電磁式燃料噴射弁
JPH04166612A (ja) * 1990-10-31 1992-06-12 Toyota Motor Corp 筒内噴射式内燃機関
JPH05231266A (ja) * 1991-12-26 1993-09-07 Hitachi Ltd 電磁式燃料噴射弁、電磁式燃料噴射弁用燃料旋回部材及びこの弁を用いた燃料噴射装置
JPH05240047A (ja) * 1992-02-28 1993-09-17 Mitsubishi Motors Corp 内燃機関
JPH0681651A (ja) * 1992-02-28 1994-03-22 Mitsubishi Motors Corp 筒内噴射型内燃機関

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019058A1 (de) * 1996-10-30 1998-05-07 Ficht Gmbh & Co. Kg Verfahren zum betreiben einer brennkraftmaschine
EP0848147A2 (en) * 1996-12-13 1998-06-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
EP0848146A2 (en) * 1996-12-13 1998-06-17 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
EP0848147A3 (en) * 1996-12-13 1999-05-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
EP0848146A3 (en) * 1996-12-13 1999-05-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Control apparatus for an in-cylinder injection type internal combustion engine
CN1090282C (zh) * 1996-12-13 2002-09-04 三菱自动车工业株式会社 气缸内喷射式内燃机控制装置
CN1079893C (zh) * 1996-12-13 2002-02-27 三菱自动车工业株式会社 缸内喷射式内燃机的控制装置
DE19740026B4 (de) * 1997-01-30 2006-02-23 Mitsubishi Denki K.K. Kraftstoffeinspritzventil
FR2759422A1 (fr) * 1997-02-10 1998-08-14 Sagem Injecteur de carburant pour moteur a allumage commande
US6341592B2 (en) 1997-03-19 2002-01-29 Hitachi, Ltd. Fuel injector and internal combustion engine having the same
US6125818A (en) * 1997-03-19 2000-10-03 Hiatchi, Ltd. Fuel injector and internal combustion engine having the same
US6216665B1 (en) 1997-03-19 2001-04-17 Hitachi, Ltd. Fuel injector and internal combustion engine having the same
EP0879944A3 (en) * 1997-05-21 1999-07-14 Nissan Motor Company, Limited Cylinder direct injection spark-ignition engine
EP0928887A3 (en) * 1998-01-07 2000-03-08 Nissan Motor Company, Limited In-cylinder direct-injection spark-ignition engine
US6138639A (en) * 1998-01-07 2000-10-31 Nissan Motor Co., Ltd. In-cylinder direct-injection spark-ignition engine
EP1365123A1 (en) * 1998-01-07 2003-11-26 Nissan Motor Co., Ltd. Direct-injection spark-ignition engine
FR2773852A1 (fr) 1998-01-20 1999-07-23 Sagem Injecteur de carburant pour moteur a combustion interne a allumage commande
FR2773851A1 (fr) * 1998-01-20 1999-07-23 Sagem Injecteur de carburant pour moteur a combustion interne
WO1999036692A1 (fr) * 1998-01-20 1999-07-22 Sagem S.A. Injecteur de carburant pour moteur a combustion interne
US7121253B2 (en) 1998-06-22 2006-10-17 Hitachi, Ltd. Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
US6390059B1 (en) 1998-06-22 2002-05-21 Hitachi, Ltd. Cylinder-injection type internal combustion engine, method of controlling the engine, and fuel injection nozzle
US6427659B2 (en) 1998-06-22 2002-08-06 Hitachi, Ltd. Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
US6732706B2 (en) 1998-06-22 2004-05-11 Hitachi, Ltd. Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
US6520144B2 (en) 1998-06-22 2003-02-18 Hitachi, Ltd. Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
US7013863B2 (en) 1998-06-22 2006-03-21 Hitachi, Ltd. Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
WO1999067514A1 (fr) * 1998-06-22 1999-12-29 Hitachi, Ltd. Moteur a combustion interne de type a injection dans le cylindre
WO2000077359A1 (fr) * 1999-06-11 2000-12-21 Hitachi, Ltd. Moteur a injection directe et procede de combustion destine audit moteur
US6722340B1 (en) 1999-06-11 2004-04-20 Hitachi, Ltd. Cylinder injection engine and fuel injection nozzle used for the engine
US6659075B1 (en) 1999-06-11 2003-12-09 Hitachi, Ltd. Cylinder injection engine and method of combusting engine
WO2000077360A1 (fr) * 1999-06-11 2000-12-21 Hitachi, Ltd. Moteur a injection directe et injecteur de carburant utilise dans ledit moteur
WO2000077361A1 (fr) * 1999-06-11 2000-12-21 Hitachi, Ltd. Moteur a combustion interne du type a injection de cylindres
US6578778B2 (en) 2000-01-27 2003-06-17 Aisan Kogyo Kabushiki Kaisha Fuel injection valve
JP2006322392A (ja) * 2005-05-19 2006-11-30 Toyota Motor Corp 燃料噴射弁
JP2013113096A (ja) * 2011-11-24 2013-06-10 Mitsubishi Heavy Ind Ltd 燃料噴射装置

Also Published As

Publication number Publication date
SE9700102D0 (sv) 1997-01-16
US5740777A (en) 1998-04-21
SE511466C2 (sv) 1999-10-04
SE9700102L (sv) 1997-03-14
JP3087309B2 (ja) 2000-09-11

Similar Documents

Publication Publication Date Title
WO1996036808A1 (fr) Moteur a combustion interne de type a injection dans le cylindre
JP3932697B2 (ja) 筒内噴射型内燃機関の燃料噴射方法および、燃料噴射弁,内燃機関,燃焼方法
US5058548A (en) Combustion chamber of an internal combustion engine
US5086737A (en) Fuel injection timing control system for an internal combustion engine with a direct fuel injection system
US6520144B2 (en) Cylinder injection type internal combustion engine, control method for internal combustion engine, and fuel injection valve
JPH01219311A (ja) 火花点火筒内噴射エンジン
US7047946B2 (en) Method for operating an internal combustion engine
JP3741494B2 (ja) 筒内噴射式エンジン
WO2001055567A1 (fr) Moteur a combustion interne a injection directe
JPH10115223A (ja) 筒内噴射エンジンの燃焼室構造
CN101484680B (zh) 用于直喷式火花点火内燃发动机的燃料喷射控制方法
JP2012154209A (ja) 内燃機関の制御装置及び内燃機関
EP0862691B1 (en) Fuel injection piston engines
JPH0681656A (ja) ガソリンエンジン
JP3275713B2 (ja) リーンバーンエンジンの燃料噴射装置
US5724937A (en) Internal combustion engine with direct fuel injection
US20020033163A1 (en) Gasoline direct injection engine
JP2007051549A (ja) 燃料噴射弁及びそれを備えた筒内噴射式エンジン
JPS5812456B2 (ja) ネンリヨウフンシヤシキ 2 サイクルエンジン
JPS63120815A (ja) 内燃機関の燃料噴射方法
JPH01240763A (ja) 燃料噴射弁
JPH1182029A (ja) 内燃機関の成層燃焼方法
JP3800764B2 (ja) 筒内噴射式内燃機関のピストン
JP2001027170A (ja) 筒内直噴式ガソリンエンジン及び燃料噴射弁
JPH0518244A (ja) 筒内噴射式内燃機関

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP SE US

WWE Wipo information: entry into national phase

Ref document number: 97001028

Country of ref document: SE

WWP Wipo information: published in national office

Ref document number: 97001028

Country of ref document: SE

WWE Wipo information: entry into national phase

Ref document number: 08765927

Country of ref document: US