WO1997000302A1 - Composition de cristaux liquides pour elements d'affichage a cristaux liquides et procede de production de cette composition - Google Patents

Composition de cristaux liquides pour elements d'affichage a cristaux liquides et procede de production de cette composition Download PDF

Info

Publication number
WO1997000302A1
WO1997000302A1 PCT/JP1996/001656 JP9601656W WO9700302A1 WO 1997000302 A1 WO1997000302 A1 WO 1997000302A1 JP 9601656 W JP9601656 W JP 9601656W WO 9700302 A1 WO9700302 A1 WO 9700302A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
crystal composition
compound
Prior art date
Application number
PCT/JP1996/001656
Other languages
English (en)
French (fr)
Inventor
Kisei Kitano
Toshiharu Suzuki
Susumu Koyama
Original Assignee
Chisso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corporation filed Critical Chisso Corporation
Priority to EP96917701A priority Critical patent/EP0832954A4/en
Priority to AU60171/96A priority patent/AU6017196A/en
Priority to US08/981,046 priority patent/US6022493A/en
Publication of WO1997000302A1 publication Critical patent/WO1997000302A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/0403Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit the structure containing one or more specific, optionally substituted ring or ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40

Definitions

  • Liquid crystal composition for liquid crystal display device and method for producing the same
  • the present invention relates to a liquid crystal composition for a liquid crystal display device, a method for producing the same, and a liquid crystal display device using the same.
  • AM-LCD active matrix displays
  • TFTs thin-film transistors
  • twisted nematic and guest twisted nematic and guest '
  • conventional passive displays such as the host system, super twist nematic system and SBE (Super Birefringence Effect) system
  • AM-LCDs with low voltage holding ratios cannot display high-level displays because they cause display unevenness, display flicker, and reduced display contrast.
  • the voltage holding ratio under an environment where the AM-LCD is used, such as temperature and light, is also a problem.
  • Liquid crystal materials used for display the temperature range of liquid crystal phase, viscosity, refractive index anisotropy, dielectric anisotropy, elastic constant (Kn, ⁇ 22, ⁇ 33 ), the driving voltage, chemical, physical,
  • a single compound does not satisfy the various required characteristics suitable for various displays, such as stability over time, current consumption, specific resistance, voltage holding ratio, and temperature dependence of these physical properties. Therefore, a mixture of a plurality of compounds (hereinafter, sometimes referred to as a liquid crystal composition) is generally used.
  • the chemical structure of a liquid crystalline compound used for a display is usually a rod-like structure, and can be roughly classified into a terminal group, a ring structure, and a bonding group for bonding rings. Further, the ring-bonding group may be substituted by a lateral substituent.
  • the following can be cited as documents showing this fact.
  • Literature 1 Takashi Inukai, Liquid Crystal, Fundamentals (co-edited by Koji Okano and Shunsuke Kobayashi), p.178-P.204, Baifukan (1985)
  • a liquid crystal compound for a display is an organic compound having a structure represented by the following general formula (2).
  • R is a chain group
  • a 1 and A 2 are cyclic groups
  • Z is a covalent bond or a bonding group (bridge)
  • n is an integer of 1 or more
  • X is an electron-withdrawing group or a chain group.
  • R is called “side chain”
  • one (A 1 — Z) n — A 2 — is called “core”
  • X is called “terminal group”.
  • the terminal group X is an electron withdrawing group, it is called a "polar group”
  • the ring of the “core” has a substituent such as halogen on the side, and such a substituent is referred to as a “lateral group”.
  • n represents an integer of 1 or more, but a liquid crystal compound having n of 4 or more is rare.
  • (A 1 — Z) is often not a repetition of the same structure.
  • Representative side chains corresponding to R and X include alkyl groups, alkoxy groups, alkenyl groups, alkenyloxy groups, oxaalkyl groups, and the like.These groups are usually straight-chain, Sometimes.
  • the polar group corresponding to X Shiano group, halogen, One CF 3, One 0CF 3, One 0CHF 2, - OC 2 F 5 , one OC F 2 CHF 2, -NCO, etc. are representative.
  • Cyclic radicals A 1 and A 2 in the core include chopped 4-phenylene, trans-1,4-cyclohexylene, 1,3-dioxane-trans-1,2,5-diyl, pyrimidine— 2,5 —A 6-membered ring such as diyl is typical, but 5-membered, 4-membered, and compound rings such as naphthalene are also known.
  • a lateral hydrogen atom may be replaced by a polar group such as halogen.
  • Z is a bridge group
  • - CH 2 CH 2 -, - CH 2 0-, -OCH 2 one, One COO-, One OCO- one CF 2 0-, One ⁇ _CF 2 - one (CH 2 ) 4 — etc. are known in which the main chain has an even number of atoms.
  • a hydrogen atom in a compound is replaced with an isotope such as deuterium.
  • Liquid crystal compounds are classified according to the value of their dielectric anisotropy ( ⁇ ⁇ ), and those having a positive ⁇ £ are called ⁇ -type, and those having a negative or weak positive value are ⁇ -type.
  • ⁇ ⁇ dielectric anisotropy
  • a compound in which X is a polar group has a ⁇ type
  • a compound in which X is a side chain has a ⁇ type.
  • the molecular structure of liquid crystal compounds has been designed by combining various partial structures, and the composition has been designed by selecting and mixing the compounds according to the purpose of use.
  • the AM-LCD is required to have a high voltage holding ratio, and one of the physical properties of the liquid crystal material related to the voltage holding ratio is considered to be specific resistance. In other words, it is considered that a liquid crystal material with high specific resistance is required for AM-LCD.
  • AM—Liquid crystal materials used in LCDs include polar groups, lateral substituents, 1 F, 1 Cl, 1 OCF 3 , 1 CHF 2 , 1 CF 3 , 1 CF 2 CHF 2 , 1 C towards those using a compound having 2 F 5 or the like, it is known that the specific resistance than those using a compound having a Shiano group is high is preferable. Thus, a method of increasing the specific resistance by focusing on the electron withdrawing group has been applied as a conventional technique. The prior art, which focuses on the power and the electron-withdrawing group, is insufficient to obtain a liquid crystal composition having a higher voltage holding ratio and suitable for AM-LCD.
  • the present inventors have determined that the voltage holding ratio of the AM-LCD is not limited to the polar group in the molecule of the component of the liquid crystal material used therein, the lateral group, but also the carbon atom in the acyclic hydrocarbon site of the side chain or the bridge group.
  • the present inventors have found that they greatly depend on the sum of numbers, and have completed the present invention. Even if the chemical structure of the compound is the same except for the acyclic hydrocarbon moiety, the AM-LCD using a liquid crystal composition containing more compounds with a large sum of the number of carbon atoms in the acyclic hydrocarbon moiety holds the voltage. The rate is higher, which is preferable.
  • Such a liquid crystal composition containing a compound having a higher voltage holding ratio more preferably has a higher voltage holding ratio.
  • the average value of the sum of the number of carbon atoms of the liquid crystal compound in the liquid crystal composition which contains one or more liquid crystal compounds having a total of 4 to 24 carbon atoms in the acyclic hydrocarbon moiety. Is a liquid crystal composition of 5 or more.
  • liquid crystal composition according to (3) wherein the liquid crystal compound is a compound represented by the following general formula (3).
  • R represents a chain group having 1 to 12 carbon atoms in the hydrocarbon moiety
  • a 1 and A 2 are each independently a trans-1,4-cyclohexylene group, or Represents a 1,4-phenylene group which may be unsubstituted or a lateral part of which may be substituted by fluorine
  • Z 1 and Z 2 each independently represent a covalent bond or a bridge group having a main chain composed of an even number of atoms.
  • X is one F, -CK - CF 3, one ⁇ _CF 3, one ⁇ _CH F 2, - OC 2 represents F 5 or single ⁇ _CF 2 CHF 2, Y 1 and Y 2 independently of one another hydrogen Represents an atom or a fluorine atom, and m represents 0, 1, 2 or 3.
  • liquid crystal composition according to any one of (1) to (3), wherein the acyclic hydrocarbon moiety of the liquid crystal compound is in a side chain.
  • liquid crystal composition according to any one of (1) to (3), wherein the acyclic hydrocarbon moiety is an alkyl group or an alkoxy group.
  • the sum of carbon atoms of the acyclic hydrocarbon moiety represented by the following general formula (1) is from 4 to 2
  • a liquid crystal composition comprising at least one liquid crystal compound represented by the formula: and wherein the average value of the sum of the carbon atoms of the liquid crystal compound in the liquid crystal composition is 5 or more.
  • R 1 represents an alkyl group or an alkoxy group having 4 to 24 carbon atoms
  • A, B, and C each independently represent 1,4-phenylene, trans-1,4-cyclohexylene, 1 , 3-Dioxane-1,2,5-diyl, pyrimidine-1,2,5-diyl or pyridine 2,5-diyl, each independently when A, B, and C are 1,4-phenylene
  • 1 to 4 hydrogen atoms may be replaced by F, C 0 CF 3 or CF 3
  • a, b, and c each independently represent an integer of 0 to 3, but a + b— c ⁇ 3
  • Z l and Z 2 each independently represent a single bond, one CQO—, one CH 2 CH 2 one or — C ⁇ C one, and X is F, C 1, 0 ( CH 2) "CH, F 3 -!
  • CN point or SN point is ⁇ 10 ° C or lower, NI point is 60 ° C or higher, and is composed of a liquid crystal compound of 7 or more components (9) or (10) 3.
  • the CN point indicates a crystal-nematic phase transition point
  • the SN point indicates a smectic phase-nematic phase transition point
  • the NI point indicates a nematic phase-isotropic liquid phase transition point.
  • liquid crystal compound and the content thereof are selected by using the number of carbon atoms in the acyclic hydrocarbon portion of the liquid crystal compound constituting the liquid crystal composition as a parameter so that the ratio becomes a predetermined value or more. Method of manufacturing a product.
  • the sum of the number of carbon atoms of the acyclic hydrocarbon site in the liquid crystal compound is from 4 to 24, and the sum of the number of carbon atoms of the acyclic hydrocarbon site of the liquid crystal compound in the liquid crystal composition.
  • R 1 represents an alkyl group or an alkoxy group having 4 to 24 carbon atoms
  • A, B, and C each independently represent 1,4-phenylene, trans-1,4-cyclohexylene, 1,3-dioxane-1,2,5-pyryl, pyrimidine-1,2,5-diyl or pyridine 2,5-diyl
  • A, B, and C are 1,4-phenylene, independently a hydrogen atom from one 4 is F, C l, 0 CF 3 or CF 3 may be substituted by, a, b, c are is independently an integer of 3-0 independently of one another, a + b- c ⁇ is 3,
  • Z l, Z 2 are independently a single bond to physicians each other, respectively, one C00-, shows an CH 2 CH 2 one or -C three C one
  • X is F, C l , ⁇ (CH 2) n CH, F 3 -,, or (CH 2) "CH, F 3 -
  • FIG. 1 is a diagram showing the relationship between the average alkyl chain length and the voltage holding ratio (100 ° C.) of various liquid crystal compositions in the present invention.
  • the carbon atom in the acyclic hydrocarbon moiety refers to a carbon atom having at least one hydrogen atom (CH group, CH 2 group and CH 3 group), and is substituted with two or more halogen atoms. Carbon atoms (eg, one CHF 2 group), carbon atoms of a carbonyl group, and carbon atoms related to triple bonds (one C ⁇ C one) are excluded. Liquid crystal molecules generally have at least one acyclic hydrocarbon moiety in their chemical structure. According to the present invention, the balance between the number of carbon atoms in the acyclic hydrocarbon moiety and the characteristics other than the voltage holding ratio is determined.
  • a liquid crystal compound suitable for an active matrix liquid crystal display can be obtained, and by adding a liquid crystal compound having a high voltage holding ratio to this, A liquid crystal composition that satisfies required characteristics other than the voltage holding ratio can be provided. Further, a high-level display can be provided by using a liquid crystal composition having a high voltage holding ratio and excellent other characteristics.
  • the acyclic hydrocarbon moiety of the liquid crystalline compound is present in the side chain, but also in the bridge group when the core has a bridging group.
  • both ends of the molecule are side chains (N-type), they are present at both ends.
  • the group constituting the bridge is a group whose main chain is composed of an even number of atoms.
  • the group constituting the side chain is a linear, branched, or optically active chain group.
  • liquid crystalline compound having a total of 4 to 24 (preferably 5 to 12) carbon atoms in an acyclic hydrocarbon moiety present in a side chain or a ridge group.
  • the voltage holding ratio of the liquid crystal composition may not be able to be sufficiently increased. It may adversely affect properties other than the voltage holding ratio.
  • the main component is composed of a liquid crystal compound having a positive dielectric anisotropy (P-type). This is because a P-type liquid crystal compound can lower the driving voltage of the display.
  • a liquid crystal compound having a negative (N-type) dielectric anisotropy is often used as a component as necessary. Even when an N-type compound is used, the voltage holding ratio of a liquid crystal display can be increased by using a compound having a large number of carbon atoms in the acyclic hydrocarbon moiety present in a side chain or a bridge group.
  • a compound in which the sum of the number of carbon atoms in the acyclic hydrocarbon moiety present in the side chain or the bridge group is 6 to 16 is particularly preferable.
  • AM— P-type liquid crystal compound for LCD has the following general formula (3)
  • R represents a chain group having 1 to 12 carbon atoms in the hydrocarbon moiety
  • a 1 and A 2 are each independently a trans-1,4-cyclohexylene group, or Represents a 1,4-phenylene group which may be unsubstituted or a lateral part of which may be substituted by fluorine
  • Z 1 and Z 2 each independently represent a covalent bond or a bridge group having a main chain composed of an even number of atoms.
  • X represents —F, —Cl, —CF 3 , one OCF 3 , —OCH F 2 , —OC 2 F 5 or —OCF 2 CHF 2 , and Y 1 and Y 2 are each independently a hydrogen atom Or a fluorine atom, and m represents 0, 1, 2 or 3.) is preferable.
  • compounds suitable for use in the present invention are those in which the sum of the number of carbon atoms constituting the hydrocarbon site in R, Z 1 and Z 2 is from 4 to 24. From the viewpoint of keeping the viscosity of the liquid crystal composition low and keeping the nematic temperature range appropriately wide, those having a sum of 6 to 12 are more preferable.
  • both Z 1 and Z 2 are covalent bonds or do not constitute a hydrocarbon moiety
  • it is a group
  • the following side chains corresponding to R are preferable. Butyl, pentyl, hexyl, heptyl, octyl, nonyl, de Sil group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group, nonyloxy group, decyloxy group,
  • Trans-2-butenyl group trans-2-pentenyl group, cis-2-pentenyl group, trans-2-hexenyl group, cis-2-hexenyl group, trans-2-heptenyl group, cis-1-heptenyl Group, trans-2-octenyl, cis-2-octenyl, trans-1-nonenyl, cis-2-nonenyl, trans-2-decenyl, cis-2-decenyl,
  • Trans-2-butenyloxy trans-12-pentenyloxy, trans-2-hexenyloxy, trans-12-heptenyloxy, trans-12-octenyloxy, trans-12-nonenyloxy, trans-12-decenyloxy,
  • both Z 1 and Z 2 are —CH 2 CH 2 —, or when one of Z 1 and Z 2 is 1 (CH 2 ) 4 —, the above-mentioned preferred side chain corresponding to R is And a methyl group and a methoxy group.
  • an N-type compound is used as a component of the liquid crystal composition of the present invention
  • a compound obtained by combining any two groups from the above-exemplified groups as both side chains is used, and the acyclic hydrocarbon in the molecule is used. It is preferable to use one in which the sum of the number of carbon atoms at the site is 4 to 24 in total. From the viewpoint of keeping the viscosity of the liquid crystal composition low and securing an appropriately wide nematic temperature range, those having a sum of 6 to 16 are more preferable.
  • the C N point or the S N point is 1 1
  • NI point is 60 ° C. or more
  • the liquid crystal composition contains 70% by weight or more of one or more liquid crystal compounds in which the sum of carbon atoms in the acyclic hydrocarbon moiety is 4 to 24, and the sum of the carbon atoms of the liquid crystal compounds in the liquid crystal composition is More preferably, the average value is 5 or more. The higher the content of the liquid crystal compound having a total of 4 to 24 carbon atoms, the more preferable.
  • the liquid crystal composition of the present invention is prepared by mixing two or more liquid crystal compounds by a conventional method. For example, a method of dissolving various liquid crystal compounds and other components at a high temperature with each other, a method of dissolving and mixing in an organic solvent in which the liquid crystal compound is dissolved, and then distilling off the solvent under reduced pressure are used. Further, the liquid crystal composition of the present invention can be improved and optimized depending on the intended use by appropriate additives.
  • the voltage holding ratio of the liquid crystal cell depends not only on the level but also on the structure of the liquid crystal compound. Toes In general formula (1), the voltage holding ratio is determined by the combination of the types and numbers of the rings A, B, and C, the bridge groups such as Zl and Z2, and the substituents such as X, Yl and ⁇ 2. Change. It also varies depending on the combination and content of the liquid crystal compound in the liquid crystal composition.
  • the present invention by increasing the number of carbon atoms in the non-cyclic hydrocarbon portion even if the constituent portions other than the non-cyclic hydrocarbon portion of the liquid crystal compound constituting the liquid crystal composition are the same, other physical properties can be obtained. Since the voltage holding ratio can be increased with little effect, it is useful for the production of a liquid crystal composition for AM-LCD, which requires a particularly high voltage holding ratio.
  • the present invention will be described in more detail with reference to Examples and Comparative Examples.
  • liquid crystal compound of the general formula (1) a group of compounds mainly having the same structure except for R 1 is taken, and as the number of carbon atoms such as R 1 increases, the voltage holding ratio ( It has been shown that a liquid crystal composition having a high voltage holding ratio and also excellent in other physical properties can be formed by combining compounds having as high a VHR) and a long R1 as possible.
  • the sum of the number of carbon atoms in the acyclic hydrocarbon site of the i-th compound constituting the composition in the example is Ni
  • the content of the i-th compound constituting the composition is Xi
  • the average value of the sum of the number of carbon atoms in the acyclic hydrocarbon portion of the compound constituting the composition was determined.
  • Average alkyl chain length ⁇ (N i ⁇ X i)
  • the voltage holding ratio was measured according to the method described in Tatsuo Shimazaki et al., Voltage holding characteristics of TFT-LCD I, p.78, Proceedings of the 14th Liquid Crystal Panel Discussion (1988). .
  • a polyimide-based alignment film was aligned on a glass substrate on which an ITO pattern with an electrode area of lcnf was deposited by rubbing, and the liquid crystal composition for evaluation was attached to a measurement cell bonded through a 7-m spacer. The product was injected and the inlet was sealed with a UV-curable sealant.
  • the measurement temperature was set to 100 ° C. even if there was no difference in the voltage holding ratio near room temperature. In this case, there is no difference in the voltage holding ratio, and there is no display failure in the high-temperature operation aging test for a composition with a higher voltage holding ratio at 100 ° C. Is strongly correlated with the high-temperature operation aging test results (Kei Sasaki et al.
  • TFT Nematic liquid crystal materials for LCDs and display characteristics, p.184, Proceedings of the 17th Liquid Crystal Symposium (1991).
  • liquid crystal compounds are represented by the following abbreviations.
  • composition 1 The physical properties of this composition 1 are shown below.
  • VHR 100 ° C
  • 95.0% voltage holding ratio at 100 ° C
  • SN point ⁇ 140 ° C
  • Threshold voltage (V 10 ) 2.2 volts
  • composition 2 The physical properties of this composition 2 are shown below.
  • Threshold voltage (V 10 ) 2.2 volts
  • Table 1 summarizes the measurement results of the average alkyl chain length and the voltage holding ratio VHR (100 ° C.) obtained for the compositions of Examples and Comparative Examples.
  • Composition 2 contains a large number of compounds having a small number of carbon atoms in the acyclic hydrocarbon moiety as compared to Composition 1 (the average alkyl chain length of Composition 1 is 5.57, The average alkyl chain length of composition 2 is 4.18). As a result, it can be seen that VHR (100 ° C.) is 1% better for Composition 1 than for Composition 2.
  • the nematic temperature range, the anisotropy of the refractive index of the viscosity, the anisotropy of the dielectric constant, the threshold voltage, and the specific resistance show the same values.
  • the VHR (100 ° C.) of this composition 3 was 97.0%.
  • the VHR (100 ° C.) of this composition 4 was 95.7%.
  • the average alkyl chain length of Composition 3 is 5.33, while the average alkyl chain length of Composition 4 is 5.33. That is, the composition 3 of the compound having a large number of carbon atoms in the noncyclic hydrocarbon portion (in this case, the alkyl group) has a significantly higher voltage holding ratio than the composition 4 of the compound having a small number of carbon atoms in the noncyclic hydrocarbon, It turns out to be preferable.
  • the VHR (100 ° C.) of this composition 5 was 95.2%.
  • the average alkyl chain length of composition 5 is 5.75, while the average alkyl chain length of composition 6 is 4.75. That is, the composition 5 of the compound having a large number of carbon atoms in the non-cyclic hydrocarbon portion (in this case, the alkyl group) has a higher voltage holding ratio than the composition 6 of the compound having a small number of carbon atoms in the non-cyclic hydrocarbon, which is preferable. I understand.
  • the VHR (100 ° C.) of this composition 8 was 95.9%.
  • the difference between the chemical structures of the compound constituting the composition 7 and the compound constituting the composition 8 shown in Example 4 is a ring-to-ring bonding group (in this case, an ethylene group and a single bond).
  • Composition 7 has an average alkyl chain length of 5.4
  • Composition 8 has an average alkyl 25 chain length of 3.4. That is, it can be seen that the composition 7 of the compound having a large number of carbon atoms in the non-cyclic hydrocarbon portion has a higher voltage holding ratio, and is more preferable than the composition 8 of the compound having a small number of carbon atoms of the non-cyclic hydrocarbon.
  • composition 9 2-H2HB-FF 2.0 weight parts
  • the VHR (100 ° C.) of this composition 9 was 974%.
  • the VHR (100 ° C.) of this composition 10 was 96.0%.
  • Composition 9 contains 5 parts by weight of 3-HB-04, and composition 10 contains 5 parts by weight of 3-HB-02. That is, the difference between composition 9 and composition 10 is whether the composition contains a compound having a butoxy group or a compound having an ethoxy group. Also, from Table 1, the average alkyl chain length of Composition 9 is 6.2, while the average alkyl chain length of Composition 10 is 5.2. As described above, it is understood that the more the sum of the number of carbon atoms in the acyclic hydrocarbon site (alkoxy group) is 5 or more, and the larger the value, the higher the voltage holding ratio and the more preferable.
  • This composition 11 had an average alkyl chain length of 6.0 and a VHR (100 ° C.) of 96.5%.
  • Table 2 shows the chain length and VHR (100 ° C).
  • Table 2 Composition Example No. Liquid crystal compound added Average alkyl
  • the additive compound is represented by the general formula (1) where R 1 is the number of carbon atoms.
  • compositions 26 and 27 differ from compositions 29 and 30 only in that the additive compound is that in formula (1), Z 2 is a single bond or CH 2 CH 2 .
  • Composition 26 has composition 29 with composition 29 and composition 27 has composition 30 with the same R 1, but the difference in Z 2 results in the sum of the number of carbon atoms in the acyclic hydrocarbon moiety. It can be seen that the VHR (100 ° C) has increased by two each.
  • compositions 32 to 35 differ from compositions 28 to 31 only in that the added compound is that in formula (1), Z 1 is a single bond or CH 2 CH 2 c Composition 32 for 28, Composition 33 for 29, Composition 34 for 30, Composition 33 for 31 and R 1 for each additive compound It is the same, but it can be seen that the difference in Z 2 increases the sum of the number of carbon atoms in the acyclic hydrocarbon site by two, and the VHR (100 ° C) increases accordingly.
  • VHR 100 ° C
  • the difference between the VHR (100 ° C) of the compositions 26 and 27 and the compositions 29 and 30 is the VHR of the compositions 32 to 35 and the compositions 28 to 31. (100 ° C.) is significantly larger.
  • more than two rings WO 97/00302 PCT / JP paints have a higher VHR when there is a bridge group made of a non-cyclic hydrocarbon such as CH 2 CH 2 as close as possible to R 1 which is a long-chain alkyl group It is shown that.
  • a ⁇ 1 and Z 1 is a bridge group consisting of an acyclic hydrocarbon such as CH 2 CH 2
  • the smaller a is the higher the VHR is .
  • the average alkyl chain length of these compositions is 5 or more, and it can be seen that the VHR (100 ° C.) increases as the number of carbon atoms of X increases.
  • Composition 39 differs from composition 38 only in that the added compound is that in formula (1), R 1 and Z 1 are a single bond or CH 2 CH 2 .
  • Composition 39 has 38 carbon atoms less than R 1 in the additive compound compared to 38, but Z 2 has two more carbon atoms in the opposite direction. The sum of the number of carbon atoms is equal. Therefore, it can be seen that the VHR (100 ° C) of both is equal.
  • VHR 100 ° C.
  • VHR voltage holding ratio
  • the acyclic carbonization of the compounds constituting the composition The average value of the sum of the number of carbon atoms in the hydrogen site (in this case, the alkyl group), that is, if the liquid crystal compound is selected so that the average alkyl length increases, the VHR of the composition correspondingly increases. It can be seen that it can be increased. For this reason, for example, the sum of the number of carbon atoms in the acyclic hydrocarbon part of the liquid crystal compound in a certain liquid crystal composition (the average alkyl chain length in Fig.
  • liquid crystal display especially an AM-LCD
  • a higher voltage holding ratio than conventional ones can be realized.

Description

SB %
液晶表示素子用液晶組成物およびその製法
技術分野
本発明は、 液晶表示素子用の液晶組成物、 その製造方法、 及びこれを用いる液 晶表示素子に関する。
背景技術
スィッチング素子として、 バイリスタまたはダイォード等の非線形 2端子素子 や、 薄膜トランジスタ (TFT) 等の非線形 3端子素子に代表される集積非線形 素子を有するアクティブマトリックスディスプレイ (AM— LCD) では、 ツイ ストネマチック方式、 ゲスト 'ホスト方式、 スーパーツイストネマチック方式お よび SBE (Super Birefringence Effect)方式等の従来のパッシブ方式のディ スプレイと比較して、 電圧保持率が高いことが必要とされる。 電圧保持率の低い AM— LCDは、 表示ムラ、 表示のちらつき、 表示コントラストの低下等の現象 を招くため、 高度なディスプレイ表示ができない。 更に、 AM— LCDの使用さ れる温度や光等の環境下においての電圧保持率の低下も問題となる。
ディスプレイに使用される液晶材料は、 液晶相の温度範囲、 粘度、 屈折率異方 性、 誘電率異方性、 弾性常数 (Kn, Κ22, Κ33) 、 駆動電圧、 化学的、 物理的、 及びこれらの経時的な安定性、 消費電流、 比抵抗、 電圧保持率、 及びこれら物性 値の温度依存性など、 種々のディスプレイに適合した様々な要求特性を単一の化 合物では満たさない場合が多いので、 複数の化合物の混合物 (以下、 液晶組成物 と称することがある) が一般に使用されている。
従来、 ディスプレイに使用される液晶性化合物の化学構造は通常棒状であり、 末端基部、 環構造部、 及び環と環を結合する結合基部に大別できることが知られ ている。 更に、 環結合基部には側方置換基が置換することもある。 このことを示 す文献として、 例えば、 次に示すものを挙げることが出来る。
文献 1 :犬飼孝, 液晶 ·基礎編 (岡野光治, 小林駿介 共編) , p.178-P.204, 培風館 (1985)
文献 2 :竹中俊介, 液晶材料 (艸林成和 編) , Ρ.67- ρ.94, 講談社 (1991) 文献 3 : V.Vill, Landolt-Boernstein/New Series Group IV Volume 7a - d Liquid Crystals, Springer - Verlag (1992) 文献 4 : D. Demus, H. Deraus. H. Zaschke, Fluessige Kristalle in Tabellen, VE B Deutscher Verlag fuer Grundstoff Industrie, Leipzig (1976)
文献 5 : D. Demus, H. Zaschke, Fluessige Kristalle in Tabellen II, VEB Deu tscher Verlag fuer Grundstoff Industrie, Leipzig (1984)
ディスプレイ用の液晶性化合物をさらに具体的に示すと、 次の一般式 (2)で表さ れるような構造の有機化合物になる。
R— (A'-Z) „-A2-X (2)
式中、 Rは鎖状の基、 A1および A2は環状の基、 Zは共有結合または結合基 (ブリッジ) 、 nは 1以上の整数、 Xは電子吸引基または鎖状の基を表す。 一般 的に Rを 「側鎖」 と呼び、 一 (A1— Z) n— A2—の部分を 「コア」 と呼び、 X を 「末端基」 と呼んでいる。 末端基 Xが電子吸引基である場合これを 「極性基」 と呼び、 これが鎖状の基である場合もう一^ 3の 「側鎖」 と呼んでいる。 「コア」 の環が側方にハロゲンなどの置換基を持つ場合もあり、 このような置換基を Γラ テラル基」 と呼んでいる。 nは 1以上の整数を表すが、 液晶性化合物として nが 4以上のものは希である。 また、 nが 2以上の場合、 (A1— Z) は同一の構造 の繰り返しではないことも多い。
Rおよび Xに相当する側鎖としては、 アルキル基、 アルコキシ基、 アルケニル 基、 アルケニルォキシ基、 ォキサアルキル基などが代表的なものでり、 これらの 基は通常直鎖であるが、 分岐していることもある。 Xに相当する極性基としては、 シァノ基、 ハロゲン、 一CF3、 一 0CF3、 一 0CHF2、 — OC2F5、 一 OC F2CHF2、 —NCOなどが代表的なものである。
コアの中の環状の基 A1および A2としてはし 4一フエ二レン、 トランス一 1, 4ーシクロへキシレン、 1, 3—ジォキサン一トランス一 2, 5—ジィル、 ピリ ミジン— 2, 5—ジィルなどの 6員環が代表的なものであるが、 5員環、 4員環、 ナフタレンのような複合環なども知られている。 また、 1, 4一フエ二レンゃピ リ ミジン— 2, 5—ジィルのような芳香環の場合は、 側方の水素原子がハロゲン などの極性基で置き換えられていることもある。
Zがブリッジ基である場合として、 — CH2CH2—、 — CH20—、 -OCH2 一、 一 COO—、 一 OCO—、 一 CF20—、 一〇CF2—、 一 (CH2) 4—など の主鎖が偶数の原子よりなる基が知られている。
また化合物中の水素原子が重水素等の同位体で置き換えられる場合もある。 液晶性化合物は、 その誘電率異方性 (Δ ε) の値によって分類され、 Δ £が正 の値を持つものを Ρ型といい、 負または弱い正の値を持つものを Ν型という。一 般式 (2)において、 Xが極性基の化合物は Ρ型になり、 Xが側鎖の化合物は Ν型と な 。
このように、 様々な部分構造を組合せることにより液晶性化合物の分子構造設 計が行われ、 使用目的に応じた化合物を選んで混合することにより組成設計が行 われてきた。
従来の液晶性化合物の構造設計において、 最も重要と考えられてきた観点は、 ディスプレイ用液晶材料としての物性に深く関わる極性基やコアの構造である。 AM— LCDにおいては、 電圧保持率を高くすることが要求されており、 電圧保 持率に関わる液晶材料の物性の一つは比抵抗であると考えられている。 つまり、 AM— LCD用には、 比抵抗の高い液晶材料が必要であると考えられている。 A M— LCD¾に使用される液晶材料としては、 極性基ゃラテラル置換基に、 一 F、 一 C l、 一 OCF3、 一〇CHF2、 一 CF3、 一〇CF2CHF2、 一〇C2F5等 を有する化合物を用いたものの方が、 シァノ基を有する化合物を用いたものより 比抵抗が高く好適であることが知られている。 この様に電子吸引基に着目し比抵 抗を高くする方法が従来技術として応用されてきた。 し力、し、 電子吸引基に着目 した従来技術では、 より高い電圧保持率を有する AM— LCDに適する液晶組成 物を得るには不十分である。
発明の開示
そこで、 本発明者等は、 AM— LCDの電圧保持率がそれに用いる液晶材料の 成分の分子中の極性基ゃラテラル基だけでなく、 側鎖やプリッジ基部の非環状炭 化水素部位の炭素原子数の和に大きく依存することを見い出し、 本発明を完成し た。 化合物の非環状炭化水素部位以外の化学構造は同じであっても、 非環状炭化 水素部位の炭素原子数の和が大きい化合物をより多く含有する液晶組成物を用い た AM— LCDは、 電圧保持率がより高くなり好ましい。 この様な電圧保持率が 高い化合物をより多く含有する液晶組成物は電圧保持率がより高くなり好ましい 本願で特許請求される発明の態様は以下のとおりである。
( 1 ) 非環状炭化水素部位の炭素原子数の和が 4から 24である液晶性化合物 1 種以上を含有し、 かつ液晶組成物中の前記液晶化合物の前記炭素原子数の和の平 均値が 5以上である液晶組成物。
( 2 ) 前記液晶性化合物 1種以上を 70重量%以上含有する ( 1 ) に記載の液晶 組成物。
(3) 前記液晶性化合物が P型である ( 1 ) に記載の液晶組成物。
(4) 前記液晶性化合物が下記一般式 (3)で表される化合物である (3) に記載の 液晶組成物。
Y1
Figure imgf000006_0001
(式中、 Rは炭化水素部位の炭素数が 1から 1 2の鎖状の基を表し、 A 1および A 2は相互に独立してトランス一 1 , 4ーシクロへキシレン基であるか、 または 無置換もしくはラテラル部位がフッ素で置換されていてもよい 1 , 4—フヱニレ ン基を表し、 Z 1および Z 2は相互に独立して共有結合または主鎖が偶数の原子 よりなるブリッジ基を表し、 Xは一 F、 -C K — CF3、 一〇CF3、 一〇CH F2、 — OC2F5または一〇CF2CHF2を表し、 Y 1および Y 2は相互に独立 して水素原子またはフッ素原子を表し、 mは 0、 1、 2または 3を表す。 )
(5) 前記液晶性化合物の非環状炭化水素部位が側鎖中にある ( 1 ) ないし ( 3) のいずれかに記載の液晶組成物。
(6) 前記非環状炭化水素部位がアルキル基またはアルコキシ基である ( 1 ) な いし (3) のいずれかに記載の液晶組成物。
(7) ( 1 ) ないし (6) のいずれかに記載した液晶組成物を使用した液晶ディ
(8) ( 1 ) ないし ( 6) のいずれかに記載した液晶組成物を使用したァクティ ブマトリックス方式液晶ディスプレイ。
( 9) 下記一般式 (1)で表される、 非環状炭化水素部位の炭素原子の和が 4から 2 である液晶性化合物 1種以上を含有し、 かつ液晶組成物中の前記液晶性化合物 の前記炭素原子数の和の平均値が 5以上である液晶組成物。
Y1
Rl- (A) a-Zl- (B) b-Z2- (C) (1)
Figure imgf000007_0001
(上式において R 1は炭素原子数 4から 24のアルキル基またはアルコキシ基を 示し、 A、 B、 Cはそれぞれ互いに独立して 1 , 4一フヱニレン、 トランス— 1, 4—シクロへキシレン、 1, 3—ジォキサン一 2, 5ジィル、 ピリ ミジン一 2, 5—ジィルまたはピリジン 2, 5—ジィルの各基を示し、 A、 B、 Cが 1, 4一 フエ二レンのときはそれぞれ互いに独立して 1から 4の水素原子が F、 C 0 CF3 または CF3 で置換されていてもよく、 a、 b、 cはそれぞれ互いに独立 して 0から 3の整数を示すが、 a + b— c≤ 3であり、 Z l、 Z 2はそれぞれ互 いに独立して単結合、 一 CQO—、 一 CH2 CH2 一または— C≡C一を示し、 Xは F、 C 1、 0 (CH2 ) „ CH, F3-! 、 または (CH2 ) „ CH, F3-. 、 炭素原子数 1から 24のアルキル基もしくはアルキルォキシ基を示す。 ただし n は 0から 4の整数を、 1は 0から 2の整数を示し、 Y l、 Υ 2はそれぞれ互いに 独立して H、 Fまたは C 1を示す。 )
(1 0)前記液晶性化合物 1種以上を 70重量%以上含有する (9) に記載の液 晶組成物。
(1 1) CN点または SN点がー 1 0°C以下、 N I点が 60°C以上であって、 か つ 7成分以上の液晶性化合物により構成されている (9) または (1 0) に記載 の液晶組成物。 ここで CN点は結晶ーネマチック相転移点、 SN点はスメクチッ ク相ーネマチック相転移点、 N I点はネマチック相—等方性液体相転移点を示す。
(1 2) (9) ないし (1 1) のいずれかに記載した液晶組成物を使用した液晶 ディスプレイ。
(1 3) (9) ないし (1 1) のいずれかに記載した液晶組成物を使用したァク ティブマトリクス方式液晶ディスプレイ。
(1 4) 液晶組成物を封入して液晶セルを構成したときの該液晶セルの電圧保持 率が所定値以上になるように、 液晶組成物を構成する液晶性化合物の非環状炭化 水素部位の炭素原子数をパラメータとして前記液晶性化合物およびその含有量を 選定することを特徴とする液晶組成物の製造方法。
(1 5) 液晶性化合物中の非環状炭化水素部位の炭素原子数の和が 4から 24で あり、 かつ液晶組成物中の前記液晶性化合物の非環状炭化水素部位の炭素原子数 の和の平均値が 5以上になるように前記液晶性化合物およびその含有量を選定す ることを特徴とする (1 4) に記載の液晶組成物の製造方法。
(1 6) 前記液晶性化合物が下記一般式 (1)で表される化合物から選択され、 かつ その含有量が 70重量%以上である (1 4) に記載の液晶組成物の製造方法。
Y1
R1 -(A) a-Zl- (B) b— Z2 - (C) c (1)
Figure imgf000008_0001
(上式において R 1は炭素原子数 4から 24のアルキル基またはアルコキシ基を 示し、 A、 B、 Cはそれぞれ互いに独立して 1 , 4一フエ二レン、 トランス— 1, 4ーシクロへキシレン、 1, 3—ジォキサン一 2, 5ジィル、 ピリ ミジン一 2, 5—ジィルまたはピリジン 2, 5—ジィルの各基を示し、 A、 B、 Cが 1, 4一 フエ二レンのときはそれぞれ互いに独立して 1から 4の水素原子が F、 C l、 0 CF3 または CF3 で置換されていてもよく、 a、 b、 cはそれぞれ互いに独立 して 0から 3の整数を示すが、 a + b— c≤ 3であり、 Z l、 Z 2はそれぞれ互 いに独立して単結合、 一 C00—、 一 CH2 CH2 一または—C三 C一を示し、 Xは F、 C l、 〇 (CH2 ) n CH, F3-, 、 または (CH2 ) „ CH, F3-. 、 炭素原子数 1から 24のアルキル基もしくはアルキルォキシ基を示す。 ただし n は 0から 4の整数を、 1は 0から 2の整数を示し、 Y l、 Υ2はそれぞれ互いに 独立して H、 Fまたは C 1を示す。 )
図面の簡単な説明
図 1は、 本発明における種々の液晶組成物の平均アルキル鎖長と電圧保持率 (1 00°C) との関係を示す図である。
発明を実施するための最良の形態 本発明においては、 非環状炭化水素部位の炭素原子とは、 少なくとも一つの水 素原子を有する炭素原子 (C H基、 C H 2基および C H 3基) をいうが、 2個以上 のハロゲン原子で置換された炭素原子 (例えば一 C H F 2基) 、 カルボニル基の 炭素原子、 および三重結合に関わる炭素原子 (一 C≡C一) は除くものとする。 液晶分子は、 その化学構造中に通常非環状炭化水素部位を少なくとも 1つ有す るが、 本発明によれば、 非環状炭化水素部位の炭素原子数と電圧保持率以外の特 性のバランスを考慮して液晶性化合物の分子設計をすることにより、 アクティブ マトリックス方式液晶ディスプレイ (AM— L C D ) に好適な液晶性化合物を得、 さらにこれに電圧保持率の高い液晶性化合物を配合することにより、 電圧保持率 以外の要求特性も満足できる液晶組成物を提供することができる。 さらに、 この 様に電圧保持率が高く他の特性も優れる液晶組成物を使用して高度なディスプレ ィが提供できる。
液晶性化合物の非環状炭化水素部位は、 側鎖中に存在するが、 コア中にブリツ ジ基を持つ場合は、 そのブリッジ基中にも存在する。 また、 分子の両端が側鎖で ある場合 (N型) は、 両端に存在する。 なお、 ブリッジを構成する基は、 主鎖が 偶数の原子よりなる基である。
側鎖を構成する基は、 直鎖、 分岐、 又は光学活性の鎖状基である。 この鎖状基 は、 基本的にはアルキル基であるが、 このアルキル基中の 1つ又は隣接しない複 数の一 C H 2—は、 同時又は別個に一〇—及び一 C H = C H— (トランス) に置 換してもよい。 更に、 このアルキル基及びアルキル基の置換体の 1つ若しくは複 数の水素原子はフッ素原子に置換してもよい。
本発明において好ましい態様は、 側鎖またはプリッジ基中に存在する非環状炭 化水素部位の炭素原子数の和が 4から 2 4、 (好ましくは 5から 1 2 ) である 1 種以上の液晶性化合物からなる主成分を 7 0重量%以上含有し、 かつ液晶組成物 中の液晶性化合物の前記炭素原子数の和の平均値が 5以上 (好ましくは 6以上、 8以下) である液晶組成物である。
上記炭素原子数の和が 4未満または上記炭素原子数の和の平均値が 5未満であ ると、 液晶組成物の電圧保持率を充分上げることができない場合があり、 また 2 4を越えると電圧保持率以外の物性に悪影響を及ぼすことがある。 上記の本発明の各態様のうち、 主成分が誘電率異方性が正 (P型) の液晶性化 合物により構成される場合はさらに好ましい。 P型の液晶性化合物は、 ディスプ レイの駆動電圧を低くすることができるからである。
しかし、 必要に応じて誘電率異方性が負 (N型) の液晶性化合物を成分として 用いる場合も多い。 N型の化合物を用いる場合でも、 側鎖またはブリッジ基中に 存在する非環状炭化水素部位の炭素原子数が多い化合物を用いることにより、 液 晶ディスプレイの電圧保持率を高めることができる。 本発明において、 N型の化 合物を用いる場合、 側鎖またはプリッジ基中に存在する非環状炭化水素部位の炭 素原子数の和が 6から 1 6である化合物が特に好ましい。
AM— LCD用の P型の液晶性化合物としては、 次の一般式 (3)
Y1
R - (A1 - Z 1) m— A2 - Z2 (3)
Figure imgf000010_0001
(式中、 Rは炭化水素部位の炭素数が 1から 1 2の鎖状の基を表し、 A 1および A 2は相互に独立してトランス一 1 , 4ーシクロへキシレン基であるか、 または 無置換もしくはラテラル部位がフッ素で置換されていてもよい 1 , 4—フヱニレ ン基を表し、 Z 1および Z 2は相互に独立して共有結合または主鎖が偶数の原子 よりなるブリッジ基を表し、 Xは— F、 —C l、 —CF3、 一 OCF3、 -OCH F2、 — OC2F5または— OCF2CHF2を表し、 Y 1および Y 2は相互に独立 して水素原子またはフッ素原子を表し、 mは 0、 1、 2または 3を表す。 ) で表 される化合物が好ましい。 ここで、 本発明に用いる化合物として好適なものは、 R、 Z 1および Z 2の中の炭化水素部位を構成する炭素原子数の和が 4から 24 のものである。 液晶組成物の粘度を低く保ちネマチック温度範囲を適度に広く確 保するという観点から、 その和が 6から 1 2のものがさらに好ましい。
本発明の液晶組成物の成分として一般式 (3)で表される P型の化合物を用いる場 合で、 Z 1および Z 2が共に共有結合であるか、 または炭化水素部位を構成しな い基である場合は、 Rに相当する側鎖として例えば次に挙げるものが好ましい。 ブチル基、 ペンチル基、 へキシル基、 ヘプチル基、 ォクチル基、 ノニル基、 デ シル基、 ブチルォキシ基、 ペンチルォキシ基、 へキシルォキシ基、 へプチルォキ シ基、 ォクチルォキシ基、 ノニルォキシ基、 デシルォキシ基、
トランス一 2—ブテニル基、 トランス一 2—ペンテニル基、 シス— 2—ペンテ ニル基、 トランス— 2—へキセニル基、 シス— 2—へキセニル基、 トランス— 2 一ヘプテニル基、 シス一 2—ヘプテニル基、 トランス— 2 —ォクテニル基、 シス — 2—ォクテニル基、 トランス一 2—ノネニル基、 シス一 2—ノネニル基、 トラ ンス— 2—デセニル基、 シス一 2—デセニル基、
3—ブテニル基、 トランス一 3—ペンテニル基、 トランス— 3—へキセニル基、 トランス一 3—ヘプテニル基、 トランス一 3—ォクテニル基、 トランス一 3—ノ ネニル基、 トランス— 3—デセニル基、
4 一ペンテニル基、 トランス— 4一へキセニル基、 シス一 4一へキセニル基、 トランス— 4—ヘプテニル基、 シスー 4 一ヘプテニル基、 トランス— 4 一ォクテ ニル基、 シス一 4ーォクテニル基、 トランス一 4 一ノネニル基、 シス一 4 一ノネ ニル基、 トランス一 4ーデセニル基、 シス一 4—デセニル基、
5—へキセニル基、 トランス一 5 —ヘプテニル基、 トランス一 5—ォクテニル 基、 トランス一 5—ノネニル基、 トランス一 5—デセニル基、
トランス— 2—ブテニルォキシ基、 トランス一 2—ペンテニルォキシ基、 トラ ンスー 2—へキセニルォキシ基、 トランス一 2—ヘプテニルォキシ基、 トランス 一 2—ォクテニルォキシ基、 トランス一 2—ノネニルォキシ基、 トランス一 2— デセニルォキシ基、
3—ブテニルォキシ基、 トランス— 3—ペンテニルォキシ基、 シス一 3—ペン テニルォキシ基、 トランス一 3—へキセニルォキシ基、 シス— 3—へキセニルォ キシ基、 トランス一 3—ヘプテニルォキシ基、 シス一 3—ヘプテニルォキシ基、 トランス— 3—ォクテニルォキシ基、 シス一 3—ォクテニルォキシ基、 トランス 一 3 —ノネニルォキシ基、 シス一 3 —ノネニルォキシ基、 トランス一 3—デセニ ルォキシ基、 シス一 3—デセニルォキシ基、
プロピルォキシメチル基、 ブチルォキシメチル基、 ペンチルォキシメチル基、 へキシルォキシメチル基、 ヘプチルォキシメチル基、 ォクチルォキシメチル基、 ノニルォキシメチル基、 デシルォキシメチル基、 本発明の液晶組成物の成分として一般式 (3)で表される P型の化合物を用いる場 合で、 Z 1および Z 2の一方が— C H 2 C H 2 -であり他方が共有結合であるか、 ま たは炭化水素部位を構成しない基である化合物を用いる場合は、 Rに相当する好 ましい側鎖として上記の基に加えて次の基を挙げることができる。
ェチル基、 プロピル基、 エトキシ基、 プロピルォキシ基、 ァリル基、 ァリルォ キシ基、 メ トキシメチル基、 エトキシメチル基、
さらに、 Z 1および Z 2の両方が— C H 2 C H 2—である場合や、 Z 1および Z 2の一方が一 (C H 2) 4—である場合は、 Rに相当する好ましい側鎖として上記 の基に加えてメチル基、 メ トキシ基を挙げることができる。
本発明の液晶組成物の成分として N型の化合物を用いる場合も、 両方の側鎖と して上に例示した基から任意の 2つの基を組み合わせてなる化合物で、 分子中の 非環状炭化水素部位の炭素原子数の和が合わせて 4から 2 4となるものを用いる ことが好ましい。 液晶組成物の粘度を低く保ちネマチック温度範囲を適度に広く 確保するという観点から、 その和が 6から 1 6のものがさらに好ましい。
本発明の液晶組成物においては、 実用的な見地から C N点または S N点が一 1
0 °C以下、 N I点が 6 0 °C以上であって、 7成分以上の液晶性化合物により構成 されており、 一般式 (1)で表される化合物 1種以上を含み、 かつ分子中の非環状炭 化水素部位の炭素原子の和が 4から 2 4である液晶性化合物 1種以上を 7 0重量 %以上含有し、 かつ液晶組成物中の前記液晶性化合物の前記炭素原子の和の平均 値が 5以上であることがさらに好ましい。 上記炭素原子数の和が 4から 2 4であ る液晶性化合物の含有量が多ければ多レ、程好ましい。
本発明の液晶組成物は、 2種以上の液晶性化合物をそれき体慣用な方法で混合 することにより調製される。 例えば種々の液晶性化合物、 その他の成分を高い温 度で互いに溶解させる方法、 液晶性化合物が溶解する有機溶媒に溶かし混合した のち、 減圧下溶媒を留去する方法等がとられる。 また、 本発明の液晶組成物は、 適当な添加物によって意図する用途に応じた改良がなされ、 最適化することがで きる。
液晶組成物を封入して液晶セルを構成した場合、 その液晶セルの電圧保持率の 高低はもちろん液晶性化合物の構造に左右されることは周知の事実である。 つま り、 一般式 (1)における、 A、 B、 Cの環の種類や数、 Z l、 Z 2等のブリッジ基、 そして X、 Y l、 Υ 2等の置換基の組み合わせにより電圧保持率が変化する。 ま た液晶組成物中の液晶性化合物の組合せや含有率によっても変化する。 本発明で は、 液晶組成物を構成する液晶性化合物の非環状炭化水素部位以外の構成部分が 同じでも、 該非環状炭化水素部位の炭素原子数を増加させることにより、 他の物 理的性質にほとんど影響を与えずに電圧保持率を高くすることができるので、 特 に高い電圧保持率が要求される AM— LCD用液晶組成物の製造に有用である。 以下、 本発明を実施例および比較例によりさらに詳しく説明する。 これらの実 施例では、 一般式 (1)の液晶性化合物において、 主に R 1以外が同じ構造をもつ化 合物群を取り上げ、 R 1等の炭素原子数が大きくなるにつれて電圧保持率 (VH R) が高くなり、 なるべく R 1の長い化合物同志を組み合わせることにより、 電 圧保持率が高く、 しかもその他の物理的性質にも優れた液晶組成物を構成できる ことを示した。
また、 例中の組成物を構成する i番目の化合物の非環状炭化水素部位の炭素原 子数の和を N i、 組成物を構成する i番目の化合物の含有率を X iとし、 下式に よりその組成物を構成する化合物の非環状炭化水素部位の炭素原子数の和の平均 値 (以下、 平均アルキル鎖長と称する) を求めた。
平均アルキル鎖長 =∑ (N i · X i )
また電圧保持率の測定は、 嶋崎達男 他, TFT - LCDの電圧保持特性 I, P.78, 第 1 4回液晶討論会講演予稿集 ( 1 988年) に記載の方法に準じて行つ た。 すなわち、 まず、 電極面積 lcnfの I TOパターンを蒸着したガラス基板上に ポリイミ ド系配向膜をラビングにより配向処理し、 7 mのスぺーサを介して貼 り合わせた測定セルに評価用液晶組成物を注入し、 注入口を UV硬化型封止剤で 封止した。 測定セルを 1 00°Cに設定した夕バイェスペック (株) 製の恒温槽 (PU— 1 S型) 中に設置したシールドボックス (後述の測定システムの一部) 内にセッ トし、 槽内が所望の温度に到達してから充分な時間放置した後、 (株) 東陽テク二力製 VHR— 1 S型液晶電圧保持率測定システムを用い、 フレーム周 波数 30Hz、 電圧 5. 0V、 ON時間 60 秒の信号を測定セルに印加して、 電圧保持率を測定した。 求めた電圧保持率は、 測定システムを構成するコンビュ 一夕の解析ソフトウ アにより、 (+) 波形印加時と (一) 波形印加時のそれぞ れの電圧保持率の平均値として算出された。
なお、 AM— LCD用の液晶組成物の電圧保持率の評価において、 測定温度を 1 0 0°Cに設定したのは、 室温付近での電圧保持率に差がなくとも、 1 0 0°Cで は電圧保持率に差が出てくることや、 1 0 0での高温での電圧保持率の高い組成 物ほど高温動作エージング試験での表示不良の発生がなく、 この電圧保持率の差 異が高温動作エージング試験結果と強い相関があるからである (佐々木圭 他、
TFT— LCD用ネマティック液晶材料と表示特性、 P184、 第 1 7回液晶討論会 講演予稿集 ( 1 9 9 1年) ) 。 つまり、 AM - LCD用液晶組成物の優劣を明確 につけるためには、 多大な時間と費用のかかる高温動作エージング試験をするま でもなく、 1 0 0ででの電圧保持率の測定をすることで十分評価できる。 すなわ ち、 1 0 0°Cでの電圧保持率が高い組成物ほど液晶表示素子としたときの寿命が 長く、 優れたものであると言える。
なお、 以下の実施例では、 液晶性化合物を次に示す略号で示す。
Figure imgf000014_0001
F
5 -HHB - F F C,H, :〇
Figure imgf000014_0002
F
3 -H 2HB - F F 3ί¾Τ D F ω t U1 01
CD ω CO 03
1 I 1 1 1 1 1 1
1 1 1 1 1 1
ffi w
W CO CO D ω W to ω to t to w ω Cd to CO td ca
1 1 CU
1 1 1 1 1 ω
1 〇 〇 1 1 1 1
1 to
^
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000017_0002
実施例 1
組成物 1
7 -HB-FF 1 3. Owt %
4 -HHB-FF 1 5. Owt %
5 -HHB-FF 1 5. 0 w t %
7 -HHB-FF 1 0. 0 w t %
2- H2HB-FF 9. 6 w t ¾
3 - H2HB-FF 4. wt %
5 -H2HB-FF 9. 6 w t %
5 -HBB-FF 1 5. 0 wt %
7 -HBB-FF 8. 0 w t %
平均アルキル鎖長: 5. 57
この組成物 1の物性値を次に示す。
VHR ( 1 0 0°C) 95. 0 % ( 1 0 0 °Cでの電圧保持率) SN点 <一 4 0°C
N I点 8 6 °C
粘度 ( 20 °C) 24 c p
屈折率異方性 0. 0 8 6
誘電率異方性 4. 8
しきい値電圧 (V10) 2. 2ボルト
比抵抗 ( 25°C) 2 X 1 014Ω cm
比較例 1
組成物 2
5 -H 2 B-FF 9. 0 0 w t %
2 -HHB-FF 1 6. 6 7 w t %
3 -HHB-FF 1 6. 6 7wt %
5 -HHB-FF 1 6. 6 7wt %
2 -H2HB-FF 8. 4 0 t %
3 -H2HB-FF 4. 20 w t % P
5 -H2HB-FF 8. 4 0 w t %
2 - HBB-FF 5. 0 0 w t %
3 - HHB-FF 5. 0 0 w t %
5 -HBB-FF 1 0. 0 0 w t %
平均アルキル鎖長: 4. 1 8
この組成物 2の物性値を次に示す。
VHR ( 1 0 0 °C) 94. 0 %
SN点 く— 4 0°C
N I点 8 6
粘度 ( 20で) 25 c p
屈折率異方性 0. 0 8 6
誘電率異方性 4. 8
しきい値電圧 (V10) 2. 2ボルト
比抵抗 (25°C) 2 X 1 01 Qcm
表 1に実施例および比較例の組成物について求めた平均アルキル鎖長と電圧保 持率 VHR ( 1 0 0°C) の測定結果をまとめて示す。
表 1 組成物 No. 例 No. 平均アルキル鎖長 VHR(100°C)
1 実施例 1 5. 57 9 5. 0
2 比較例 1 4. 1 8 9 4. 0
3 実施例 2 5. 33 9 7. 0
4 比較例 2 3. 33 9 5. 7
5 実施例 3 5. 75 9 5. 2
6 比較例 3 4. 75 9 2. 0
7 実施例 4 5. 4 9 7. 2
8 比較例 4 3. 4 9 5. 9
9 実施例 5 6. 2 9 7. 4
1 0 比較例 5 5. 2 9 6. 0 組成物 1に比較して組成物 2は非環状炭化水素部位の炭素原子数が少ない化合 物を多く含有している (組成物 1の平均アルキル鎖長は 5. 5 7であるのに対し、 組成物 2の平均アルキル鎖長は 4. 1 8) 。 その結果、 VHR ( 1 0 0°C) は組 成物 1の方が組成物 2より 1 %優れていることがわかる。 なお、 ネマチック温度 範囲、 粘度屈折率異方性、 誘電率異方性、 しきい値電圧、 及び比抵抗に関しては 同等の値を示している。
実施例 2
組成物 3
4 - HHB-F F 0 0重量部
5 - HHB-FF 0 0重量部
7 -HHB-FF 0 0重量部
この組成物 3の VHR ( 1 0 0°C) は 9 7. 0%であった。
比較例 2 (実施例 2の比較例)
組成物 4
2-HHB-FF 1. 0 0重量部
3 -HHB-FF 1. 0 0重量部
5 -HHB-FF 1. 0 0重量部
この組成物 4の VHR ( 1 0 0°C) は 9 5. 7%であった。
表 1より、 組成物 3の平均アルキル鎖長 5. 33に対し、 組成物 4の平均アル キル鎖長は 3. 33である。 すなわち、 非環伏炭化水素部 (この場合はアルキル 基) の炭素数が大きい化合物の組成物 3の方が非環状炭化水素の炭素数が小さい 化合物の組成物 4より電圧保持率が著しく高く、 好ましいことがわかる。
実施例 3
組成物 5
4 -HBB-FF 1. 0 0重量部
5 -HBB-FF 1. 0 0重量部
7 -HBB-FF 2. 0 0重量部
この組成物 5の VHR ( 1 0 0°C) は 9 5. 2%であった。
比較例 3 (実施例 3の比較例) ― 組成物 6
2 -HBB-FF 1. 0 0重量部
3 -HBB-FF 1. 0 0重量部
5 -HBB-FF 2. 0 0重量部
5 この組成物 5の VHR ( 1 0 0°C) は 92. 0 %であった。 表 1より、 組成物
5の平均アルキル鎖長は 5. 75であるのに対し、 組成物 6の平均アルキル鎖長 は 4. 75である。 すなわち、 非環状炭化水素部 (この場合はアルキル基) の炭 素数が大きい化合物の組成物 5の方が非環状炭化水素の炭素数が小さい化合物の 組成物 6より電圧保持率が高く、 好ましいことがわかる。
10 実施例 4
組成物 7
2 - H2HB-FF 2. 0 0重量部
3 -H2HB-FF 1. 0 0重量部
5 -H2HB-FF 2. 0 0重量部
15 この組成物 7の VHR ( 1 0 0°C) は 97. 2%であった。
比較例 4 (実施例 4の比較例)
組成物 8
2 - HHB-FF 2. 0 0重量部
3 - HHB-FF 1. 0 0重量部
20 5 -HHB-FF 2. 0 0重量部
この組成物 8の VHR ( 1 0 0°C) は 9 5. 9%であった。 実施例 4に示した 組成物 7を構成する化合物と組成物 8を構成する化合物の化学構造の違いは環と 環を結合する結合基 (この場合はエチレン基と単結合) である。 また表 1より、 組成物 7の平均アルキル鎖長は 5. 4であるのに対し、 組成物 8の平均アルキル 25 鎖長は 3. 4である。 すなわち、 非環状炭化水素部の炭素数が大きい化合物の組 ' 成物 7の方が非環状炭化水素の炭素数が小さい化合物の組成物 8より電圧保持率 , が高く、 好ましいことがわかる。
実施例 5
組成物 9 2 - H2HB-FF 2. 0 0重量部
3 - H2HB-FF 1. 0 0重量部
5 -H2HB-FF 2. 0 0重量部
3 -HB-04 5. 0 0重量部
この組成物 9の VHR ( 1 0 0°C) は 97 4 %であった。
実施例 6
組成物 1 0
2 - H2HB-FF 2 0 0重量部
3 - H2HB-FF 1 00重量部
5 -H2HB-FF 2 0 0重量部
3 -HB-02 5 0 0重量部
この組成物 1 0の VHR ( 1 0 0°C) は 9 6. 0 %であった。
組成物 9は 3— H B— 04を 5重量部含有しており、 組成物 1 0は 3— H B— 02を 5重量部含有している。 即ち、 組成物 9と組成物 1 0の相違点は、 ブトキ シ基を有する化合物を含有するか、 エトキシ基を有する化合物を含有するかであ る。 また表 1より、 組成物 9の平均アルキル鎖長は 6. 2であるのに対し、 組成 物 1 0の平均アルキル鎖長は 5. 2である。 このように非環状炭化水素部位 (ァ ルコキシ基) の炭素原子数の和が 5以上で、 かつその数値が大きい程、 電圧保持 率が高く、 好ましいことがわかる。
実施例 7
組成物 1 1
3 -HB-02 1. 0 0重量部
3 -HB-04 1. 0 0重量部
この組成物 1 1の平均アルキル鎖長は 6. 0、 VHR ( 1 0 0°C) は 9 6. 5 %であった。
実施例 8〜 33、 比較例 6〜 1 2
実施例 7の組成物 1 1 (3— HB— 02と 3— HB— 04の等量混合物系) に 表 2に示した液晶化合物を 3 0〜5 0重量%で混合した組成物の平均アルキル鎖 長および VHR ( 1 00°C) を表 2に示す。 表 2 組成物 例 No. 添加液晶化合物 平均アルキル
No. (wt%) 鎖長
1 2 比較例 6 2-HBB-FF 4 0 4. 4 94. 1
1 3 比較例 7 3-HBB-FF 4 0 4. 8 94. 6
1 4 実施例 8 4-HBB-FF 4 0 5. 2 9 5. 5
1 5 実施例 9 5-HBB-FF 4 0 5. 6 9 5. 9
1 6 実施例 10 6-HBB-FF 4 0 6. 0 9 6. 2
1 7 実施例 11 7-HBB-FF 4 0 6. 4 9 6. 7
1 8 比較例 8 2-HHB-FF 4 0 4. 4 9 5. 0
1 9 比較例 9 3-HHB-FF 4 0 4. 8 9 5. 9
20 実施例 12 4-HHB-FF 4 0 5. 2 9 6. 7
2 1 実施例 13 5-HHB-FF 4 0 5. 6 9 7. 1
22 実施例 14 6-HHB-FF 4 0 6. 0 9 7. 3
23 実施例 15 7-HHB-FF 4 0 6. 4 9 7. 8
24 比較例 10 3-HBB-FFF 5 0 4. 5 9 5. 1
25 実施例 16 5-HBB-FFF 5 0 5. 5 9 6. 4
2 6 実施例 17 3-HH2B-FFF 5 0 5. 5 9 6. 4
27 実施例 18 4-HH2B-FFF 5 0 6. 5 9 6. 7
28 比較例 11 2-HHB-FFF 5 0 4. 0 9 5. 3
29 比較例 12 3-HHB-FFF 5 0 4. 5 9 6. 2
30 比較例 19 4-HHB-FFF 5 0 5. 0 9 6. 6
3 1 比較例 20 5-HHB-FFF 5 0 5. 5 9 7. 2
32 実施例 21 2-H2HB-FFF 5 0 5. 0 9 7. 1
3 3 実施例 22 3-H2HB-FFF 5 0 5. 5 9 7. 2
34 実施例 23 4-H2HB-FFF 5 0 6. 0 9 7. 5
3 5 実施例 24 5-H2HB-FFF 50 6. 5 9 7. 6
3 6 実施例 25 3-HH-4 4 0 6. 4 9 8. 0
3 7 実施例 26 3-HH-5 4 0 6. 8 9 8. 1 表 2 (続き)
Figure imgf000024_0001
組成物 1 2から 1 7は、 その添加化合物が一般式 (1)において R 1が炭素原子数 2から 7のアルキル基であり、 Aがトランス一 1 , 4ーシクロへキシレン、 a = 1、 b = 0、 Z lおよび Z 2は単結合、 Cは 1 , 4一フエ二レン、 c = l、 Xお よび Y 1が F、 Y 2が Hである化合物群の例である。 平均アルキル鎖長が 5以上 で、 かつ R 1の炭素原子数が多くなるに従い、 VHR ( 1 0 0 °C) が高くなるの がわかる。
組成物 1 8から 2 3は、 その添加化合物が一般式 (1)において R 1が炭素原子数 2から 7のアルキル基であり、 Aおよび Bがトランス— 1 , 4ーシクロへキシレ ン、 a = l、 b= K Z lおよび Z 2は単結合、 c = 0、 Xおよび Y 1が F、 Y 2が Hである化合物群の例である。 平均アルキル鎖長が 5以上で、 かつ R 1の炭 素原子数が多くなるに従い、 VHR ( 1 0 0°C) が高くなるのがわかる。
組成物 2 4および 2 5は、 その添加化合物が一般式 (1)において R 1が炭素原子 数 2から 5のアルキル基であり、 Αがトランス一 1 , 4—シクロへキシレン、 a = 1、 b= 0、 Z lおよび Z 2は単結合、 Cは 1 , 4一フエ二レン、 c = l、 X および Y 1および Y 2が Fである化合物群の例である。 平均アルキル鎖長が 5以 上で、 R 1の炭素原子数が多くなるに従い、 VHR ( 1 0 0°C) が高くなるのが わかる。
組成物 2 6および 2 7は、 その添加化合物が一般式 (1)において R 1が炭素原子 数 3から 4のアルキル基であり、 Aおよび Bがトランス— 1 , 4—シクロへキシ レン、 a= l、 b= l、 Z 1は単結合、 Z 2は CH2CH2、 c = 0、 Xおよび Y 1お よび Y2が Fである化合物群の例である。 平均アルキル鎖長が 5以上で、 R 1の 炭素原子数が多くなるに従い、 VHR ( 1 0 0°C) が高くなるのがわかる。
組成物 28から 3 1は、 その添加化合物が一般式 (1)において R 1が炭素原子数
2から 5のアルキル基であり、 Aおよび Bがトランス— 1 , 4ーシクロへキシレ ン、 a= l、 b= l、 Z lおよび Z 2は単結合、 c = 0、 Xおよび Y 1が F、 Y 2が Hである化合物群の例である。 この化合物群は平均アルキル鎖長が小さくて もかなり高い VHR値を示すが、 特に平均アルキル鎖長が 5以上で、 R 1の炭素 原子数が多くなるに従い、 VHR ( 1 0 0°C) が著しく高くなることがわかる。 組成物 32から 3 5は、 その添加化合物が一般式 (1)において R 1が炭素原子数 2から 5のアルキル基であり、 Aおよび Bがトランス— 1 , 4ーシクロへキシレ ン、 a= l、 b= l、 Z lは CH2CH2、 Z 2は単結合、 c = 0、 Xおよび Y 1およ び Y 2が Fである化合物群の例である。 平均アルキル鎖長が 5以上で、 R 1の炭 素原子数が多くなるに従い、 VHR ( 1 0 0 °C) が高くなることがわかる。
組成物 26、 27は、 組成物 29、 30と比較したときに、 その添加化合物が 一般式 (1)において Z 2が単結合か CH2CH2であるかという点のみ異なっている。 組 成物 2 6は 2 9に対して、 組成物 27は 30に対して、 それぞれ R 1は同じであ るが、 Z 2の部分の差で非環状炭化水素部位の炭素原子数の和が 2ケ多くなり、 それぞれ VHR ( 1 0 0 °C) が高くなつているのがわかる。
組成物 32から 3 5は、 組成物 28から 3 1 と比較したときに、 その添加化合 物が一般式 (1)において Z 1が単結合か CH2CH2であるかという点のみ異なっている c 組成物 32は 2 8に対して、 組成物 33は 29に対して、 組成物 34は 3 0に対 して、 組成物 3 3は 3 1に対して、 それぞれの添加化合物の R 1は同じであるが、 Z 2の部分の差で非環状炭化水素部位の炭素原子数の和が 2ケ多くなり、 それだ け VHR ( 1 0 0 °C) が高くなつているのがわかる。
ここで注目したいのは前述した組成物 2 6、 27と組成物 2 9、 3 0の VHR ( 1 0 0°C) の差よりこの組成物 32から 35と組成物 2 8から 3 1の VHR ( 1 0 0°C) の差の方が顕著に大きいことである。 このことは 2環以上の多環化 WO 97/00302 PCT/JP画お ό 合物では長鎖アルキル基である R 1になるべく近い位置に CH2CH2等の非環状炭化 水素からなるブリッジ基があった方が、 VHRは高くなることを示している。 つ まり一般式 (1)で言えば、 a≥ 1で、 Z 1が CH2CH2等の非環状炭化水素からなるブ リッジ基である場合は aが小さいほど VHRは高くなるということである。
組成物 3 6および 3 7は、 その添加化合物が一般式 (1)において R 1が炭素原子 数 3のアルキル基であり、 Aがトランス一 1 , 4ーシクロへキシレン、 a = 2、 b = 0、 Z lおよび Z 2は単結合、 c = 0、 Xが炭素原子数 4から 5のアルキル 基、 Y 1および Y 2が Hである化合物群の例である。 これらの組成物の平均アル キル鎖長は 5以上であり、 Xの炭素原子数が多くなるに従い、 VHR ( 1 0 0 °C) が高くなるのがわかる。
組成物 3 9は組成物 38と比較したときに、 その添加化合物が一般式 (1)におい て R 1 と Z 1が単結合か CH2CH2であるかという点のみ異なっている。 組成物 3 9 は 38に対して、 添加化合物中の R 1は炭素原子数が 2ケ少ないが、 Z 2の部分 では逆に炭素原子数が 2ケ多くなつており、 非環状炭化水素部位の炭素原子数の 和は等しい。 そのため両者の VHR ( 1 00°C) は等しくなつているのがわかる。 組成物 4 1および 4 2は、 その添加化合物が一般式 (1)において R 1が炭素原子 数 5から 7のアルキル基であり、 Aがトランス一 1, 4—シクロへキシレン、 a = 1、 b = 0、 Z lおよび Z 2は単結合、 c = 0、 Xが C l、 丫 1ぉょび丫 2が Hである化合物群の例である。 これらの平均アルキル鎖長が 5以上であり、 R 1 の炭素原子数が多くなるに従い、 VHR ( 1 0 0°C) が高くなつているのがわか る。
組成物 4 3から 4 5は、 その添加化合物が一般式 (1)において R 1が炭素原子数 2から 5のアルキル基であり、 Aおよび Bがトランス一 1 , 4—シクロへキシレ ン、 a= l、 b= l、 Z lおよび Z 2は単結合、 c = 0、 Xが OCF 3、 Y 1お よび Y 2が Hである化合物群の例である。 平均アルキル鎖長が 5以上であり、 R 1の炭素原子数が多くなるに従い、 VHR ( 1 0 0°C) が高くなるのがわかる。 以上の組成物 1 2〜4 5について、 それぞれの組成物の平均アルキル鎮長と電 圧保持率 VHR ( 1 0 0°C) との関係をプロットすると図 1のようになる。 この 図より、 ある液晶組成物系において、 その組成物を構成する化合物の非環状炭化 水素部位 (この場合はアルキル基) の炭素原子数の和の平均値、 すなわち、 平均 アルキル鎮長が大きくなるように液晶性化合物を選択すれば、 これに対応してそ の組成物の VHRを大きくすることができることがわかる。 このため、 例えばあ る液晶組成物中の液晶性化合物の非環状炭化水素部位の炭素原子数の和 (図 1で は平均アルキル鎖長) をパラメ一夕一として、 図 1のような VHRとの相関関係 を求めておくと、 他の物理的性質をそれ程変化させずに、 平均アルキル鎖長のみ 変化させて所望の VHRを有する液晶組成物を得ることができる。 これは特に高 い電圧保持率を要求される AM— LCD用の液晶組成物の設計に有用である。 産業上の利用可能性
本発明の液晶組成物を用いることにより、 従来のものより高い電圧保持率を持 つた液晶ディスプレイ (特に AM— LCD) を実現することができる。

Claims

請求の範囲
1. 非環状炭化水素部位の炭素原子数の和が 4から 24である液晶性化合物 1種 以上を含有し、 かつ液晶組成物中の前記液晶化合物の前記炭素原子数の和の平均 値が 5以上である液晶組成物。
2. 前記液晶性化合物 1種以上を 70重量%以上含有する請求の範囲 1に記載の 液晶組成物。
3. 前記液晶性化合物が P型である請求の範囲 1に記載の液晶組成物。
4. 前記液晶性化合物が下記一般式 (3)で表される化合物である請求の範囲 3に記 載の液晶組成物。
Y1
Figure imgf000028_0001
Y2
(式中、 Rは炭化水素部位の炭素数が 1から 1 2の鎖状の基を表し、 A 1および A 2は相互に独立してトランス一 1, 4ーシクロへキシレン基であるか、 または 無置換もしくはラテラル部位がフッ素で置換されていてもよい 1 , 4ーフヱニレ ン基を表し、 Z 1および Z 2は相互に独立して共有結合または主鎖が偶数の原子 よりなるブリッジ基を表し、 Xは— F、 — C l、 — CF3、 — OCF3、 —〇CH F2、 一 OC2F5または—〇CF2CHF2を表し、 Y 1および Y 2は相互に独立 して水素原子またはフッ素原子を表し、 mは 0、 1、 2または 3を表す。 )
5. 前記液晶性化合物の非環状炭化水素部位が側鎖中にある請求の範囲 1ないし 3のいずれかに記載の液晶組成物。
6. 前記非環状炭化水素部位がアルキル基またはアルコキシ基である請求の範囲 1ないし 3のいずれかに記載の液晶組成物。
7. 請求の範囲 1ないし 6のいずれかに記載した液晶組成物を使用した液晶ディ
8. 請求の範囲 1ないし 6のいずれかに記載した液晶組成物を使用したァクティ ブマトリックス方式液晶ディスプレイ。
9. 下記一般式 (1)で表される、 非環状炭化水素部位の炭素原子の和が 4から 24 である液晶性化合物 1種以上を含有し、 かつ液晶組成物中の前記液晶性化合物の 前記炭素原子数の和の平均値が 5以上である液晶組成物。
Y1
Rl- (A) a-Zl- (B) b— Z2— (C) (1)
Figure imgf000029_0001
(上式において R 1は炭素原子数 4から 24のアルキル基またはアルコキシ基を 示し、 A、 B、 Cはそれぞれ互いに独立して 1 , 4—フヱ二レン、 トランス一 1, 4ーシクロへキシレン、 1, 3—ジォキサン一 2, 5ジィル、 ピリ ミジン一 2, 5—ジィルまたはピリジン 2, 5—ジィルの各基を示し、 A、 B、 Cが 1, 4一 フエ二レンのときはそれぞれ互いに独立して 1から 4の水素原子が F、 C l、 0 CF3 または CF3 で置換されていてもよく、 a、 b、 cはそれぞれ互いに独立 して 0から 3の整数を示すが、 3 +13—(:≤ 3でぁり、 Z l、 Z 2はそれぞれ互 いに独立して単結合、 一 COQ—、 一 CH2 CH2 一または一 Cョ C—を示し、 Xは F、 C 1、 0 (CH2 ) „ CH, F3— , 、 または (CH2 ) n CH, F3-. 、 炭素原子数 1から 24のアルキル基もしくはアルキルォキシ基を示す。 ただし nは 0から 4の整数を、 1は 0から 2の整数を示し、 Y l、 Υ 2はそれぞれ互い に独立して H、 Fまたは C 1を示す。 )
1 0. 前記液晶性化合物 1種以上を 70重量%以上含有する請求の範囲 9に記載 の液晶組成物。
1 1. CN点または SN点が一 1 0°C以下、 N I点が 60°C以上であって、 かつ 7成分以上の液晶性化合物により構成されている請求の範囲 9または 1 0に記載 の液晶組成物。 ここで CN点は結晶ーネマチック相転移点、 SN点はスメクチッ ク相ーネマチック相転移点、 N I点はネマチック相一等方性液体相転移点を示す c 12. 請求の範囲 9ないし 1 1のいずれかに記載した液晶組成物を使用した液晶 ディスプレイ。
1 3. 請求の範囲 9ないし 1 1のいずれかに記載した液晶組成物を使用したァク ティブマトリックス方式液晶ディスプレイ。
1 4. 液晶組成物を封入して液晶セルを構成したときの該液晶セルの電圧保持率 が所定値以上になるように、 液晶組成物を構成する液晶性化合物の非環状炭化水 素部位の炭素原子数をパラメータとして前記液晶性化合物およびその含有量を選 定することを特徴とする液晶組成物の製造方法。
1 5. 液晶性化合物中の非環状炭化水素部位の炭素原子数の和が 4から 24であ り、 かつ液晶組成物中の前記液晶性化合物の非環状炭化水素部位の炭素原子数の 和の平均値が 5以上になるように前記液晶性化合物およびその含有量を選定する ことを特徴とする請求の範囲 1 4に記載の液晶組成物の製造方法。
1 6. 前記液晶性化合物が下記一般式 (1)で表される化合物から選択され、 かつそ の含有量が 70重量%以上である請求の範囲 1 4に記載の液晶組成物の製造方法。
Y1
Rl- (A) a-Zl- (B) b-Z2- (C) X (1)
Figure imgf000030_0001
Y2
(上式において R 1は炭素原子数 4から 24のアルキル基またはアルコキシ基を 示し、 A、 B、 Cはそれぞれ互いに独立して 1 , 4一フエ二レン、 トランス一 1, 4—シクロへキシレン、 1, 3—ジォキサン一 2, 5ジィル、 ピリミジン一 2, 5—ジィルまたはピリジン 2, 5—ジィルの各基を示し、 A、 B、 Cが 1, 4一 フエ二レンのときはそれぞれ互いに独立して 1から 4の水素原子が F、 C l、 0 CF3 または CF3 で置換されていてもよく、 a、 b、 cはそれぞれ互いに独立 して 0から 3の整数を示すが、 a + b— c≤ 3であり、 Z l、 Z 2はそれぞれ互 いに独立して単結合、 —COO—、 一 CH2 CH2 一または— C≡C一を示し、 Xは F、 C 1、 0 (CH2 ) „ CH, F3— , 、 または (CH2 ) „ CH, F3— , 、 炭素原子数 1から 24のアルキル基もしくはアルキルォキシ基を示す。 ただし ηは 0から 4の整数を、 1は 0から 2の整数を示し、 Y l、 Υ 2はそれぞれ互い に独立して H、 Fまたは C 1を示す。 )
PCT/JP1996/001656 1995-06-16 1996-06-17 Composition de cristaux liquides pour elements d'affichage a cristaux liquides et procede de production de cette composition WO1997000302A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96917701A EP0832954A4 (en) 1995-06-16 1996-06-17 LIQUID CRYSTAL COMPOSITION FOR LIQUID CRYSTAL DISPLAY ELEMENTS AND METHOD FOR PRODUCING THIS COMPOSITION
AU60171/96A AU6017196A (en) 1995-06-16 1996-06-17 Liquid-crystal composition for liquid-crystal display elements and process for producing the composition
US08/981,046 US6022493A (en) 1995-06-16 1996-06-17 Liquid-crystal composition for liquid-crystal display elements and process for producing the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/174088 1995-06-16
JP17408895 1995-06-16

Publications (1)

Publication Number Publication Date
WO1997000302A1 true WO1997000302A1 (fr) 1997-01-03

Family

ID=15972447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001656 WO1997000302A1 (fr) 1995-06-16 1996-06-17 Composition de cristaux liquides pour elements d'affichage a cristaux liquides et procede de production de cette composition

Country Status (5)

Country Link
US (1) US6022493A (ja)
EP (1) EP0832954A4 (ja)
KR (1) KR19990028275A (ja)
AU (1) AU6017196A (ja)
WO (1) WO1997000302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179675A (ja) * 2003-12-17 2005-07-07 Merck Patent Gmbh 液晶媒体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289682A (ja) * 1989-02-14 1990-11-29 Chisso Corp 液晶組成物
JPH0385532A (ja) * 1989-08-22 1991-04-10 Merck Patent Gmbh 液晶マトリックスディスプレイ
JPH03215591A (ja) * 1989-07-06 1991-09-20 Sharp Corp ネマチック型液晶組成物
JPH04226589A (ja) * 1990-09-05 1992-08-17 Sharp Corp ネマチック型液晶組成物
JPH05500679A (ja) * 1990-04-02 1993-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ネマチック液晶混合物類およびマトリックス液晶ディスプレイ
JPH05500681A (ja) * 1990-04-13 1993-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 液晶媒体
JPH05105876A (ja) * 1991-03-04 1993-04-27 Sharp Corp ネマチツク液晶組成物
JPH06108052A (ja) * 1992-09-29 1994-04-19 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536442A (en) * 1987-09-25 1996-07-16 Merck Patent Gesellschaft Mit Beschrankter Haftung Fluorinated liquid crystal compounds and liquid crystal medium containing same
KR100215370B1 (ko) * 1989-01-27 1999-08-16 플레믹 크리스티안 비페닐릴에탄 및 액정상
BR9006906A (pt) * 1989-09-06 1991-11-12 Merck Patent Gmbh Derivados de fluorbenzeno e meio cristalino liquido
US5616284A (en) * 1990-04-13 1997-04-01 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
DE4107119A1 (de) * 1990-08-03 1992-02-06 Merck Patent Gmbh Fluessigkristallines medium
DE59209827D1 (de) * 1991-02-12 2000-05-25 Merck Patent Gmbh Flüssigkristalline verbindungen
US5520846A (en) * 1991-07-16 1996-05-28 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
EP0575791B1 (en) * 1992-06-10 1997-05-07 Sharp Corporation Liquid crystal composite layer of dispersion type, production method thereof and liquid crystal material to be used therein
KR100323836B1 (ko) * 1993-05-10 2002-06-20 플레믹 크리스티안 벤젠유도체,이를포함하는액정매질및당해액정매질을포함하는전기광학액정디스플레이
US5718840A (en) * 1993-05-10 1998-02-17 Merck Patent Gesellschaft Mit Beschrankter Haftung Benzene derivatives, and liquid-crystalline medium
US5730904A (en) * 1993-05-19 1998-03-24 Merck Patent Gesellschaft Mit Beschrankter Haftung Partially fluroinated benzene derivatives, and liquid-crystalline medium
DE4416272C2 (de) * 1993-05-19 2003-09-11 Merck Patent Gmbh Partiell fluorierte Benzolderivate
DE4334363A1 (de) * 1993-10-08 1995-04-13 Hoechst Ag 3,4,5-Trifluorbenzole und ihre Verwendung in Flüssigkristallmischungen
US5534187A (en) * 1994-03-29 1996-07-09 Chisso Corporation Liquid crystalline compound and liquid crystal composition
JP3579727B2 (ja) * 1994-05-06 2004-10-20 チッソ株式会社 液晶組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289682A (ja) * 1989-02-14 1990-11-29 Chisso Corp 液晶組成物
JPH03215591A (ja) * 1989-07-06 1991-09-20 Sharp Corp ネマチック型液晶組成物
JPH0385532A (ja) * 1989-08-22 1991-04-10 Merck Patent Gmbh 液晶マトリックスディスプレイ
JPH05500679A (ja) * 1990-04-02 1993-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング ネマチック液晶混合物類およびマトリックス液晶ディスプレイ
JPH05500681A (ja) * 1990-04-13 1993-02-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 液晶媒体
JPH04226589A (ja) * 1990-09-05 1992-08-17 Sharp Corp ネマチック型液晶組成物
JPH05105876A (ja) * 1991-03-04 1993-04-27 Sharp Corp ネマチツク液晶組成物
JPH06108052A (ja) * 1992-09-29 1994-04-19 Dainippon Ink & Chem Inc ネマチック液晶組成物及びこれを用いた液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0832954A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179675A (ja) * 2003-12-17 2005-07-07 Merck Patent Gmbh 液晶媒体

Also Published As

Publication number Publication date
KR19990028275A (ko) 1999-04-15
AU6017196A (en) 1997-01-15
EP0832954A4 (en) 1999-02-10
EP0832954A1 (en) 1998-04-01
US6022493A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
CN108373924B (zh) 化合物和液晶介质
KR101175089B1 (ko) 액정 조성물 및 액정 표시 소자
KR102566087B1 (ko) 액정 매질 및 전기-광학 디스플레이
CN105189701B (zh) 液晶组合物与其用途及液晶显示元件
TWI609069B (zh) 液晶顯示元件、以及液晶組成物及其用途
JP5816210B2 (ja) 液晶媒体およびそれを含む電気光学ディスプレイ
KR20100014471A (ko) 액정 조성물 및 액정 표시 소자
KR20080072557A (ko) 액정 매질
KR20080031657A (ko) 액정 매질
CN108219801B (zh) 具有负介电各向异性的液晶组合物及其应用
CN108699442A (zh) 液晶组合物及液晶显示元件
TWI550072B (zh) 液晶組成物與其用途、及液晶顯示元件
CN107686462B (zh) 哌啶衍生物和液晶介质
US20040119051A1 (en) Liquid crystal composition having high-speed response property and liquid crystal display using the same
KR101109529B1 (ko) 액정 조성물
JP6006038B2 (ja) 液晶組成物
WO1997000302A1 (fr) Composition de cristaux liquides pour elements d&#39;affichage a cristaux liquides et procede de production de cette composition
CN114702966A (zh) 液晶介质
TW201615809A (zh) 向列型液晶組成物
JP2003013066A (ja) 液晶組成物
JP3902834B2 (ja) トラン誘導体化合物、液晶組成物、および液晶電気光学素子
JPH11106753A (ja) ネマチック液晶組成物及びこれを用いた液晶表示装置
JP3852705B2 (ja) 液晶組成物
JP4030566B2 (ja) トラン誘導体化合物、液晶組成物および液晶電気光学素子
JP4316052B2 (ja) 液晶組成物および液晶光学素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96194800.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN FI HU IL JP KR MX NO NZ PL RO RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08981046

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019970709589

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1996917701

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1996917701

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019970709589

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019970709589

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1996917701

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996917701

Country of ref document: EP