WO1997001122A1 - Microscope calibration slide utilizing computer control - Google Patents

Microscope calibration slide utilizing computer control Download PDF

Info

Publication number
WO1997001122A1
WO1997001122A1 PCT/US1996/010644 US9610644W WO9701122A1 WO 1997001122 A1 WO1997001122 A1 WO 1997001122A1 US 9610644 W US9610644 W US 9610644W WO 9701122 A1 WO9701122 A1 WO 9701122A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide
specimen
calibration
microscope
determined
Prior art date
Application number
PCT/US1996/010644
Other languages
French (fr)
Inventor
Mark Weissman
Original Assignee
Neopath, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neopath, Inc. filed Critical Neopath, Inc.
Priority to AU63369/96A priority Critical patent/AU6336996A/en
Publication of WO1997001122A1 publication Critical patent/WO1997001122A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor

Definitions

  • This invention relates to methods for the quality control microscope re-examination of specimens, and review of areas of interest thereon, and particularly to specimens on microscope slides, wherein information with respect to the original examination is recorded and stored by computer.
  • Microscope slides having pathology specimens thereon have been manually screened and re-screened without regard or even any need for exact placement of the slide on a microscope slide holder.
  • slides are physically marked, such as with dots, to indicate events of interest.
  • Mapping of the slide such as with grids for sector location, requires only a simple alignment for calibration. This is usually effected by initially moving markings in the lens eyepiece into alignment with a landmark on the slide, most often an upper corner of the slide.
  • slide position calibration is a direct function of the system which includes the particular microscope being utilized.
  • the system is designed such that slides can only be properly positioned relative to the computer scanning and for information retrieval.
  • Figure 1 depicts a typical microscope with a slide stage, movable in an x-y axes plane and a slide holder;
  • Figure 2 is a view taken along line 2-2 of Figure 1, showing a slide, with specimen, positioned for viewing, with indication of possible deviations from orthogonality;
  • Figure 3 is a view similar to that of Figure 2, but with a calibration slide of the present invention positioned thereon;
  • Figure 4 depicts the view through the microscope lens for fixing the diagonal end points
  • Figure 5 depicts the determined diagonal relative to the true orthogonal slope
  • Figure 6 schematically depicts the correction from a computer retrieved location site on the specimen to a corrected one.
  • the present invention comprises a method and device for the orthogonal calibration of holders for specimens and slides having specimens thereon (hereafter collectively referred to as specimens) placed on microscope stages which are movable in an x-y axes plane and with the location calibration of specimens held by said holders.
  • the method and device provide calibration means for accurate and repeatable position location and relocation of specific areas of a specimen, particularly with use of computer correlated location of specimen events.
  • repeatable position location on a specimen, relative to microscope viewing areas is effected by the steps of: a. determining the deviation of a specimen holder on the microscope stage from orthogonal positioning thereof relative to the x-y axes of the movement of the stage; and b.
  • a device suitable for use in effecting the aforementioned method comprises a calibration slide of predetermined diagonal length and slope (relative to an orthogonal position) .
  • the calibration slide is used with computer means programmed with said diagonal length and slope.
  • the device further comprises means for marking two points on or at the ends of the diagonal of the calibration slide (preferably for the same diagonal as the predetermined diagonal, though the other diagonal can be properly correlated as well) , as positioned on the specimen holder of a microscope stage, or at two points on the slide which are a predetermined relative distance from the diagonal, whereby diagonal length and slope, as positioned, is determinable by the computer means.
  • the computer means is programmed to compare the stored orthogonally positioned value of slope to that of the actual slope value, as determined, and to generate a correction or calibration factor.
  • the correction or calibration factor is then used by the computer means to provide a matching correlation between computer location on the specimen of sites (based on originally orthogonal based entry) , with actual viewable sites on the specimen.
  • typical microscope 10 As used in pathology examinations, has lenses 11, 12, and 13, of various magnification which can be separately adjusted to be in visual alignment with specimen containing portions of slide 20.
  • slide 20 Prior to initial viewing, slide 20, with specimen 21 thereon, is fixedly positioned and held on movable slide stage 23 of the microscope, by abutted insertion thereof against microscope slide holder 24.
  • the slide 20 is abuttingly placed against right angled corner 24a of slide holder 24, with the upper edge of the slide being aligned with edge 24b of the slide holder, whereby the slide is orthogonal to the slide holder.
  • Spring clip 24c holds the left edge 20a of the slide 20 to maintain such orthogonal positioning.
  • Slide stage 23 is movable in the x-y axis plane as shown, by manipulation of controls 25 and 26 for the x and y axis movements respectively. Such movement enables all portions of the specimen on the slide to be viewable as desired.
  • the slide holder 24 and therefore the slide 20, held thereby are orthogonal to the respective x and y axes, whereby x-axis movement of the slide stage tracks across the slide 20 between the lateral edges 20a and 20b of the slide, with a track 40 which is parallel to upper and lower edges 20c and 20d of the slide.
  • tracking between upper and lower edges 20c and 20d, with y-axis movement provides a track 41 which is parallel to lateral edges 20a and 20b.
  • any position on the slide is thereby accessible by combination of x-axis and y-axis movements, with such movement and viewing positions, being continuously monitored by computer and recorded, as described in co-pending application nos. 08/089,243.
  • the slide holder 24 While the holder 24 itself is machined to exacting tolerances, to provide an orthogonal holding of the slide relative to itself, the slide holder is attached to the microscope stage such as with screws 43 and 44, which permit slight deviations (on the order of several millimeters) from orthogonality of the slide holder (and the slide and specimen held therewith) relative to the slide stage, as indicated by the dashed line.
  • the deviation from orthogonality is extrapolated to the viewing position of specimen, it can result in complete removal of an expected area 27 from the actual viewing site 28.
  • initial slide screening on one microscope with computerized viewing area location recordation includes the orthogonal deviation, if any, of the first microscope, which may then be additive to a further deviation on a different microscope, used for re-screening.
  • a calibration slide 1 is utilized to correct for all instances of deviations from orthogonality, whereby only a single, preferably true orthogonal location of specimen sites, is recorded and thereafter calibrated for accurate review with other microscopes having additional deviations.
  • the initial screening and subsequent re-screenings are calibrated to the same orthogonality.
  • calibration slide 1 is positioned against the fixed right angled upper right hand corner 24a of slide holder 24 and the upper end of the slide is aligned with edge 24b of the slide holder.
  • Calibration slide 1 has a predetermined length for diagonal 2, with a predetermined slope ( ⁇ y/ ⁇ x) based on true orthogonality which is contained in memory of computer 100, correlatively attached to the slide stage 23. Deviation from orthogonality is determined by moving the viewfinder Ila of lens 11 to superimpose and enter a calibration mark 3 directly on two opposite corners 4 , 5 of the calibration slide 1, or on location marks 6 on the calibration slide, which are a pre-set distance from such opposite corners.
  • Deviation D of the slope of the obtained diagonal line 2' from the slope of the predetermined diagonal line 2 is calculated and used to compensate for deviations of specimen event locations from orthogonally based locations, as depicted in Figure 6.
  • Such deviation correction is effected in initial recording of specific positions of the specimen, and in all subsequent re-screenings, to provide a uniform basis for location and relocation of specimen events, regardless of the nature of the particular microscope being utilized.

Abstract

A method and device for the calibration of microscope slides (20) for use in accurate and repeatable position location and relocation of specific areas (28) of a specimen (21) on the slide (20), particularly with use of computer correlated location of specimen (21) events. Deviation from orthogonality of a specimen holder (20) positioned on a stage (23) (relative to the movement of the microscope slide stage) is determined and compensated for by means of a rectangular calibration slide (1) having a predetermined fixed length diagonal (2) and visual fixation sites (6) at the ends of the diagonal, i.e., opposite corners (4, 5) of the slide (1), for the position marking of the corners and determination of the diagonal (2) and its position. The calibration slide (1) is placed on the microscope stage (23) against a fixed position portion of a slide holder (24). The viewfinder of the lens is then moved to superimpose and enter a calibration mark (6) directly on two opposite corners (4, 5) of the calibration slide (1), or the location marks on the calibration slide which are at a preset distance from such opposite corners (4, 5).

Description

MICROSCOPE CALIBRATION SLIDE UTILIZING COMPUTER CONTROL
Field of the Invention
This invention relates to methods for the quality control microscope re-examination of specimens, and review of areas of interest thereon, and particularly to specimens on microscope slides, wherein information with respect to the original examination is recorded and stored by computer.
BACKGROUND OF THE INVENTION
Microscope slides having pathology specimens thereon have been manually screened and re-screened without regard or even any need for exact placement of the slide on a microscope slide holder. With standard manual examination, slides are physically marked, such as with dots, to indicate events of interest. Mapping of the slide such as with grids for sector location, requires only a simple alignment for calibration. This is usually effected by initially moving markings in the lens eyepiece into alignment with a landmark on the slide, most often an upper corner of the slide.
With the advent of computerized systems, such as the HOME system, for use in slide analysis, screening and re-examination, slide position calibration is a direct function of the system which includes the particular microscope being utilized.
Accordingly, the system is designed such that slides can only be properly positioned relative to the computer scanning and for information retrieval.
It has been believed that microscopes used professionally such as in commercial laboratories, hospitals and the like, are built to close tolerances whereby slides placed on different microscopes, even of different manufacturers, if properly positioned, are always orthogonal to the x-y axes in which the microscope slide stages are movable, i.e., the top and bottom edges of the slide are parallel to the x-axis and the right and left sides of the slide are parallel to the y-axis. Accordingly, calibration has been effected in the prior art normal manner of alignment of a calibration mark with a slide landmark such as the aforementioned upper corner of the slide. It has however been discovered that while the slide holder of professional microscopes is built to close tolerances, the manner in which such holders or other types of specimen holders are affixed to the microscope stages allows for slight, almost imperceptible (particularly at the corner calibration points) deviations from true orthogonality of the holder relative to the stage, with up to several millimeters of deviation towards the center of- a slide held by the holder and in the specimen mounted thereon, and/or specimen otherwise held without a slide. This is of little or no consequence with respect to the normal use for which these microscopes are designed. However, when such microscopes are linked to computer systems, such as described in co-pending application no. 08/089,243, wherein computers provide location points of the specimen being examined, corresponding to particular fields of view (based on an absolute of true orthogonality) , deviations of only several millimeters can actually result in locations of the specimen, designated by the computer, being outside of the actual field of view.
The standard calibration method of the prior art of focussing cross-hairs on a corner of the slide or other location point on a specimen itself, while effective for locating a starting point for scanning, has however been discovered to be insufficient to correct for deviations from orthogonality. For example, at the normal calibrating position of the upper corners of a slide, deviations are often visibly imperceptible and are thus unaccounted for.
It is accordingly an object of the present invention to provide an economical yet accurate means for determining deviations from orthogonality, of specimen holders and the items held thereby (slides or specimens) which are affixed to the movable stage of any microscope, from the x-y axes of movement of the stage of such microscope. It is another object of the present invention to provide further means for using the determined deviation as a calibration for accurate location and relocation of computerized specimen location sites based on true orthogonality.
These and other objects, features and advantages will become more evident from the following discussion and drawings in which:
SHORT DESCRIPTION OF THE DRAWINGS
Figure 1 depicts a typical microscope with a slide stage, movable in an x-y axes plane and a slide holder;
Figure 2 is a view taken along line 2-2 of Figure 1, showing a slide, with specimen, positioned for viewing, with indication of possible deviations from orthogonality;
Figure 3 is a view similar to that of Figure 2, but with a calibration slide of the present invention positioned thereon;
Figure 4 depicts the view through the microscope lens for fixing the diagonal end points;
Figure 5 depicts the determined diagonal relative to the true orthogonal slope; and
Figure 6 schematically depicts the correction from a computer retrieved location site on the specimen to a corrected one.
SUMMARY OF THE INVENTION
Generally the present invention comprises a method and device for the orthogonal calibration of holders for specimens and slides having specimens thereon (hereafter collectively referred to as specimens) placed on microscope stages which are movable in an x-y axes plane and with the location calibration of specimens held by said holders. The method and device provide calibration means for accurate and repeatable position location and relocation of specific areas of a specimen, particularly with use of computer correlated location of specimen events. In accordance with the method of the present invention, repeatable position location on a specimen, relative to microscope viewing areas is effected by the steps of: a. determining the deviation of a specimen holder on the microscope stage from orthogonal positioning thereof relative to the x-y axes of the movement of the stage; and b. utilizing the determined deviation to calibrate a specimen, held by the holder, relative to computer stored location ,of viewing areas of the specimen, based on initial orthogonal placement of the specimen relative to the x-y axes of the stage movement . ' A device suitable for use in effecting the aforementioned method comprises a calibration slide of predetermined diagonal length and slope (relative to an orthogonal position) . The calibration slide is used with computer means programmed with said diagonal length and slope. The device further comprises means for marking two points on or at the ends of the diagonal of the calibration slide (preferably for the same diagonal as the predetermined diagonal, though the other diagonal can be properly correlated as well) , as positioned on the specimen holder of a microscope stage, or at two points on the slide which are a predetermined relative distance from the diagonal, whereby diagonal length and slope, as positioned, is determinable by the computer means. The computer means is programmed to compare the stored orthogonally positioned value of slope to that of the actual slope value, as determined, and to generate a correction or calibration factor. The correction or calibration factor is then used by the computer means to provide a matching correlation between computer location on the specimen of sites (based on originally orthogonal based entry) , with actual viewable sites on the specimen.
DETAILED DESCRIPTION OF THE DRAWINGS
AND THE PREFERRED EMBODIMENT
With reference to Figure 1, typical microscope 10, as used in pathology examinations, has lenses 11, 12, and 13, of various magnification which can be separately adjusted to be in visual alignment with specimen containing portions of slide 20. Prior to initial viewing, slide 20, with specimen 21 thereon, is fixedly positioned and held on movable slide stage 23 of the microscope, by abutted insertion thereof against microscope slide holder 24. As more clearly seen in Figure 2, the slide 20 is abuttingly placed against right angled corner 24a of slide holder 24, with the upper edge of the slide being aligned with edge 24b of the slide holder, whereby the slide is orthogonal to the slide holder. Spring clip 24c holds the left edge 20a of the slide 20 to maintain such orthogonal positioning.
Slide stage 23 is movable in the x-y axis plane as shown, by manipulation of controls 25 and 26 for the x and y axis movements respectively. Such movement enables all portions of the specimen on the slide to be viewable as desired. Ideally, the slide holder 24 and therefore the slide 20, held thereby, are orthogonal to the respective x and y axes, whereby x-axis movement of the slide stage tracks across the slide 20 between the lateral edges 20a and 20b of the slide, with a track 40 which is parallel to upper and lower edges 20c and 20d of the slide. Similarly, tracking between upper and lower edges 20c and 20d, with y-axis movement, provides a track 41 which is parallel to lateral edges 20a and 20b. Any position on the slide is thereby accessible by combination of x-axis and y-axis movements, with such movement and viewing positions, being continuously monitored by computer and recorded, as described in co-pending application nos. 08/089,243. While the holder 24 itself is machined to exacting tolerances, to provide an orthogonal holding of the slide relative to itself, the slide holder is attached to the microscope stage such as with screws 43 and 44, which permit slight deviations (on the order of several millimeters) from orthogonality of the slide holder (and the slide and specimen held therewith) relative to the slide stage, as indicated by the dashed line. When the deviation from orthogonality is extrapolated to the viewing position of specimen, it can result in complete removal of an expected area 27 from the actual viewing site 28. While this is not of any concern with manual viewing and recordation of events of interest on the specimen with ink dots, it is detrimental to accurate review of slides by computerized location and relocation, since accurate starting points for the location and relocation have not been established. In this latter regard, initial slide screening on one microscope with computerized viewing area location recordation, includes the orthogonal deviation, if any, of the first microscope, which may then be additive to a further deviation on a different microscope, used for re-screening.
In accordance with the present invention and with reference to Figures 3-6, a calibration slide 1 is utilized to correct for all instances of deviations from orthogonality, whereby only a single, preferably true orthogonal location of specimen sites, is recorded and thereafter calibrated for accurate review with other microscopes having additional deviations. The initial screening and subsequent re-screenings are calibrated to the same orthogonality.
As shown, for calibration of slides (and/or specimens) for initial screening and all subsequent re-screenings, calibration slide 1, is positioned against the fixed right angled upper right hand corner 24a of slide holder 24 and the upper end of the slide is aligned with edge 24b of the slide holder. Calibration slide 1 has a predetermined length for diagonal 2, with a predetermined slope (Δy/Δx) based on true orthogonality which is contained in memory of computer 100, correlatively attached to the slide stage 23. Deviation from orthogonality is determined by moving the viewfinder Ila of lens 11 to superimpose and enter a calibration mark 3 directly on two opposite corners 4 , 5 of the calibration slide 1, or on location marks 6 on the calibration slide, which are a pre-set distance from such opposite corners. Entry of the corner positions, via keyboard 101 locates a diagonal line 2' of the appropriate length and of a particular slope, relative to the x-y axes of microscope stage movement. Deviation D of the slope of the obtained diagonal line 2' from the slope of the predetermined diagonal line 2 is calculated and used to compensate for deviations of specimen event locations from orthogonally based locations, as depicted in Figure 6. Such deviation correction is effected in initial recording of specific positions of the specimen, and in all subsequent re-screenings, to provide a uniform basis for location and relocation of specimen events, regardless of the nature of the particular microscope being utilized.
It is understood that changes may be made in structure, markings and procedure in effecting the requisite calibrations, without departing from the scope of the present invention as defined in the following claims. Though the invention has been exemplified and the drawings show the use of a calibration slide, other similar devices with predetermined slope measurements, relative to a fixed line, may be similarly utilized for calibration purposes for specimens of like kind.

Claims

What is claimed is:
1. A method for calibration of a specimen holder in a fixed position relative to a movable stage of a microscope, with said stage having x-y axes of movement; for use in accurate and repeatable position location and relocation of specific areas of a specimen held by said holder, with said microscope; said method comprising the steps of : a. determining the deviation of the specimen holder and a specimen thereon, from orthogonal positioning' thereof, relative to the x-y axes of the movement of the stage; b. utilizing the determined deviation to correct computer recordation of location of events of said specimen as a true orthogonally positioned specimen relative to said x-y axes; and/or c. utilizing the determined deviation to correctly relocate events of said specimen from computer stored location of events of said specimen on a true orthogonally positioned specimen relative to said x-y axes.
2. The method of claim 1, wherein said deviation is determined by the steps of: a. placing a calibration slide in said holder in said fixed position on the stage, with said calibration slide being rectangular and having a diagonal of predetermined slope when positioned in a true orthogonal position relative to x-y axes; b. recording two positions on the calibration slide whereby the position and slope of the diagonal of the calibration slide, as positioned, is determined; and c. comparing the predetermined slope and the determined slope and calculating the deviation of the determined slope from the predetermined slope.
3. The method of claim 2, wherein said two positions comprise diagonally opposed corners of the slide.
4. The method of claim 2, wherein said two positions comprise marked positions on the calibration slide, each being of pre-calculated distance and relative position from the diagonal of the calibration slide.
5. The method of claim 2, wherein said two positions are recorded when an image within a lens of the microscope is separately superimposed on each of the diagonally opposed corners of the slide.
6. The method of claim 4, wherein said two positions are recorded when an image within a lens of the microscope is separately superimposed on each of the diagonally opposed corners of the slide.
7. The method of claim 2, wherein said two positions are recorded when an image within a lens of the microscope is separately superimposed on specified markings on the calibration slide.
8. The method of claim 2, wherein the length of the actual diagonal .of the calibration slide is pre-determined and wherein the length of the determined diagonal is compared to the actual length, and wherein significant deviations therebetween effects a rejection of said calibration.
9. A device for use in calibration in accordance with the method of claim 1, comprising a calibration slide having a diagonal of predetermined slope relative to a true orthogonal placement thereof relative to the x-y axes of the stage; computer means having the pre-determined slope recorded therein; means for such for recording the two positions on the calibration slide for determination of the actual slope; means for comparing the predetermined slope and the determined slope and calculating the variation therebetween and means for utilizing said variation in calibrating actual position of events in the specimen to a position of a specimen correspondingly positioned in a true orthogonal position relative to said x-y axes.
10. The device of claim 9, wherein said calibration slide comprises marked portions thereof corresponding to said two positions .
PCT/US1996/010644 1995-06-20 1996-06-20 Microscope calibration slide utilizing computer control WO1997001122A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU63369/96A AU6336996A (en) 1995-06-20 1996-06-20 Microscope calibration slide utilizing computer control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/492,847 US5694212A (en) 1995-06-20 1995-06-20 Method for calibrating specimen with specimen holder of a microscope
US08/492,847 1995-06-20

Publications (1)

Publication Number Publication Date
WO1997001122A1 true WO1997001122A1 (en) 1997-01-09

Family

ID=23957864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/010644 WO1997001122A1 (en) 1995-06-20 1996-06-20 Microscope calibration slide utilizing computer control

Country Status (3)

Country Link
US (1) US5694212A (en)
AU (1) AU6336996A (en)
WO (1) WO1997001122A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006674B1 (en) 1999-10-29 2006-02-28 Cytyc Corporation Apparatus and methods for verifying the location of areas of interest within a sample in an imaging system

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081336A (en) * 1997-09-26 2000-06-27 Picker International, Inc. Microscope calibrator
AU769499B2 (en) * 1999-10-29 2004-01-29 Cytyc Corporation Apparatus and methods for verifying the location of areas of interest within a sample in an imaging system
US7369304B2 (en) 1999-10-29 2008-05-06 Cytyc Corporation Cytological autofocusing imaging systems and methods
US7062091B2 (en) * 2001-01-16 2006-06-13 Applied Precision, Llc Coordinate calibration for scanning systems
US7199712B2 (en) * 2004-06-17 2007-04-03 Tafas Triantafyllos P System for automatically locating and manipulating positions on an object
US20070009389A1 (en) * 2005-07-08 2007-01-11 Antti Seppo Slide deposition chamber
US20080239478A1 (en) * 2007-03-29 2008-10-02 Tafas Triantafyllos P System for automatically locating and manipulating positions on an object
US7940479B2 (en) * 2007-04-02 2011-05-10 Volk Optical, Inc. Positioners and microscopes incorporating the same
US8335360B2 (en) 2007-05-14 2012-12-18 Historx, Inc. Compartment segregation by pixel characterization using image data clustering
ES2599902T3 (en) 2007-06-15 2017-02-06 Novartis Ag Microscope system and method to obtain standardized sample data
CA2604317C (en) 2007-08-06 2017-02-28 Historx, Inc. Methods and system for validating sample images for quantitative immunoassays
CA2596204C (en) 2007-08-07 2019-02-26 Historx, Inc. Method and system for determining an optimal dilution of a reagent
CH708797B1 (en) * 2007-08-17 2015-05-15 Tecan Trading Ag Sample part magazine for a slide transport device of a laser scanner device.
WO2009029810A1 (en) 2007-08-31 2009-03-05 Historx, Inc. Automatic exposure time selection for imaging tissue
CN101464129B (en) * 2007-12-17 2010-08-25 中芯国际集成电路制造(上海)有限公司 Calibration method for micro-image
CA2737116C (en) 2008-09-16 2019-01-15 Historx, Inc. Reproducible quantification of biomarker expression
DE102011111546A1 (en) 2011-08-24 2013-02-28 Carl Zeiss Microlmaging Gmbh Interchangeable alignment marking unit
DE102012005587A1 (en) 2012-03-20 2013-09-26 Metasystems Hard & Software Gmbh Automatic calibration of a microscope scanning system
US9581800B2 (en) 2014-11-21 2017-02-28 General Electric Company Slide holder for detection of slide placement on microscope
WO2017109175A1 (en) * 2015-12-23 2017-06-29 Koninklijke Philips N.V. Calibration slide for digital pathology
EP3751251A1 (en) 2019-06-11 2020-12-16 Anton Paar GmbH Sample transfer with easy tracking of target area

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055376A (en) * 1975-10-02 1977-10-25 Rockwell International Corporation Calibration reticle for measuring microscopes
US5000554A (en) * 1990-05-23 1991-03-19 Gibbs David L Method and apparatus for use in microscope investigations with a carrier having exactly one x-y coordinate system reference mark

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367401A (en) * 1990-11-23 1994-11-22 Perceptive Scientific Instruments, Inc. Microscope slide rotary stage
US5499097A (en) * 1994-09-19 1996-03-12 Neopath, Inc. Method and apparatus for checking automated optical system performance repeatability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055376A (en) * 1975-10-02 1977-10-25 Rockwell International Corporation Calibration reticle for measuring microscopes
US5000554A (en) * 1990-05-23 1991-03-19 Gibbs David L Method and apparatus for use in microscope investigations with a carrier having exactly one x-y coordinate system reference mark

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7006674B1 (en) 1999-10-29 2006-02-28 Cytyc Corporation Apparatus and methods for verifying the location of areas of interest within a sample in an imaging system

Also Published As

Publication number Publication date
AU6336996A (en) 1997-01-22
US5694212A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
US5694212A (en) Method for calibrating specimen with specimen holder of a microscope
US6122562A (en) Method and apparatus for selectively marking a semiconductor wafer
US5985680A (en) Method and apparatus for transforming a substrate coordinate system into a wafer analysis tool coordinate system
US6002136A (en) Microscope specimen holder and grid arrangement for in-situ and ex-situ repeated analysis
US5117110A (en) Composite scanning tunnelling microscope with a positioning function
US7812310B2 (en) Charged particle beam apparatus and specimen holder
JP4772153B2 (en) Apparatus and method for verifying the location of a region of interest in a sample in an image generation system
US6515494B1 (en) Silicon wafer probe station using back-side imaging
US10282647B2 (en) Substrate pre-scanning for high throughput microscopy
US7006674B1 (en) Apparatus and methods for verifying the location of areas of interest within a sample in an imaging system
US4755747A (en) Wafer prober and a probe card to be used therewith
EP2642326B1 (en) Automatic calibration of a microscope scanning system
US7330307B2 (en) Stage apparatus
US20080247091A1 (en) Stand-alone quasi-static tester
EP0353504A2 (en) Automatic structure analyzing/processing apparatus
JPS5953523B2 (en) Device for accurately and immovably placing objective slides on the slide carrier tray of a microscope
CN106525620B (en) Hardness testing device and hardness testing method
DE2635356A1 (en) SCANNING ELECTRON MICROSCOPE FOR CONTROL OF OBJECT STRUCTURES
US5376804A (en) Optical analysis system and positioning apparatus thereof
JP3333669B2 (en) Scanning electron microscope and pattern dimension measuring method
US7053642B2 (en) Method and apparatus for enabling reliable testing of printed circuit assemblies using a standard flying prober system
JP2968915B2 (en) Positioning method for probe microscope equipment
JPS59228222A (en) Optical microscope
SE2250140A1 (en) Imaging apparatus and method for determning a focal point of a well-plate
McCaffrey Easy Guide to Calibrating TEM's and STEM's

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase