WO1997012849A1 - Gas generator for air bag - Google Patents

Gas generator for air bag Download PDF

Info

Publication number
WO1997012849A1
WO1997012849A1 PCT/JP1996/002796 JP9602796W WO9712849A1 WO 1997012849 A1 WO1997012849 A1 WO 1997012849A1 JP 9602796 W JP9602796 W JP 9602796W WO 9712849 A1 WO9712849 A1 WO 9712849A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas generating
generating agent
combustion
agent
gas
Prior art date
Application number
PCT/JP1996/002796
Other languages
French (fr)
Japanese (ja)
Inventor
Tadao Yoshida
Yasuo Shimizu
Kazuo Hara
Shiro Chijiwa
Tsukasa Maekawa
Junichi Onishi
Shigeru Sumitomo
Takashi Kazumi
Original Assignee
Otsuka Kagaku Kabushiki Kaisha
Nippon Koki Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7353203A external-priority patent/JPH09157080A/en
Priority claimed from JP8059405A external-priority patent/JPH09249635A/en
Priority claimed from JP8234977A external-priority patent/JPH1077258A/en
Priority claimed from JP8234987A external-priority patent/JPH1077259A/en
Application filed by Otsuka Kagaku Kabushiki Kaisha, Nippon Koki Co., Ltd. filed Critical Otsuka Kagaku Kabushiki Kaisha
Priority to EP96932011A priority Critical patent/EP0801045A4/en
Publication of WO1997012849A1 publication Critical patent/WO1997012849A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/20Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component
    • C06B45/22Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an organic explosive or an organic thermic component the coating containing an organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids

Definitions

  • the present invention relates to a gas generating agent for air packs.
  • the gas generating agent for an air bag according to the present invention has an appropriate combustion performance, a low combustion temperature, a low concentration of toxic components such as CO and NOx in a gas generated by the combustion, and The concentration of released suspended particulate matter is low, the thermal stability is good, and the safety is significantly higher than conventional azide and non-azide gas generating agents. It has new characteristics.
  • the demand for airbag systems is increasing exponentially as the demands on vehicle safety increase.
  • the airbag system inflates a nylon bag (air bag) installed inside a handle or dashboard when a car crashes at high speed. This prevents the occupant from colliding with any part of the vehicle and causing death or injury, and the expansion of the knock requires the inflation in the system.
  • the gas generated by the combustion of the gas generating agent loaded in the tar (gas generating container) is used.
  • the first requirement is "showing a moderate burning rate in the inflator".
  • the impact on the vehicle is detected by a sensor, and it is determined whether or not the collision is a true collision. It ignites the gas generant inside and releases gas to inflate the airbag and protect the occupant's body, especially the head.
  • the air bag needs to be deployed in accordance with the movement of the head. Therefore, it is inappropriate if the burning rate of the gas generating agent is too fast or too slow.
  • the second requirement is “low combustion temperature”. If the combustion temperature of the gas generating agent is high, the temperature of the gas released during the bag rises and damages the bag, and furthermore, the gas leaked outside due to the damage of the bag May cause burns to the occupants.
  • solids are usually produced as a by-product, and are removed by a finolator provided between the inflator and the bag. Not included in the released gas. If the combustion temperature is high, the solids evaporate and are released together with the gas into the bag, where they condense into suspended particulate matter, damaging the bag. In some cases, it can be done.
  • the third requirement is that “the concentration of toxic components such as C • and NOx in the gas generated by combustion should be low”.
  • Airbag In the system, the bag releases some of the gas into the vehicle immediately after inflation and shrinks somewhat to reduce the impact of occupant collision with the inflated bag. High levels of components can cause occupant poisoning.
  • the fourth requirement is “good thermal stability”. Gas generants must have a long life, usually 10 years or more. It is imperative that the gas generants not decompose at temperatures to which vehicles are exposed, especially at high temperatures in summer.
  • the fifth requirement is that the raw materials, intermediates, and products be highly safe.
  • impact ignitability ignition sensitivity to impact
  • the sixth requirement is “low toxicity”. High toxicity of gas generant raw materials, intermediates and products can cause manufacturing and disposal problems.
  • an azide-based gas generating agent using azurized sodium as a gas generating base has been widely used.
  • Azide-based gas generating agents have the drawback of high force impact ignitability, which is an excellent gas generating agent that satisfies the above first to fourth requirements. Be careful with handling.
  • sodium azide is toxic and requires protective equipment during handling.
  • wastewater treatment for work using azide sodium requires special treatment equipment.
  • azide-based gas generating agents with the above-mentioned disadvantages are not preferred. Therefore, there is a strong demand for the development of a non-azide-based gas-generating base that can be used in place of azimuthized sodium.
  • a non-azide-based gas generating agent containing a nitrogen-containing organic compound such as azodicarbonamide (ADCA) and an oxidizing agent is used.
  • ADCA azodicarbonamide
  • JP-A-6-32698, JP-A-6-89 Known (JP-A-6-32698, JP-A-6-89)
  • the gas generating agent exhibits an appropriate burning rate comparable to that of a conventional azide-based gas generating agent, has a low impact ignition property, and has a remarkably low detonation property and toxicity. Further, it is desired to further reduce the combustion temperature and the concentration of active ingredients such as CO and N0X in the gas, which are sufficiently low to be practically usable. In addition, this non-azide gas generating agent is required to be further improved in terms of thermal stability.
  • Japanese Unexamined Patent Publication No. 7-300383 discloses excellent thermal stability.
  • non-azide gas generating agents bis-carba'moinolehydrazine (hydrazolic canolebon amide) and oxono-oleate are used as active ingredients.
  • the gas generants are highly detonable and dangerous.
  • chloride lime which easily becomes suspended particulate matter, is produced as a by-product during the combustion.
  • German Published Patent Application No. 195 168 188 describes viscalbamoyl hydrazine and oxidizing agents such as oxohalogenates and nitrates and III, IV, V and VI
  • a gas generating agent containing a heat reducing agent such as a sulfate hydrate, a nitrate hydrate, a carbonate, a carbonate hydrate, a hydroxide, a hydroxide hydrate, etc. of a periodic metal is described.
  • the gas generating agent does not have sufficient combustion performance, and often causes incomplete combustion.If incomplete combustion occurs, the air bag does not expand instantaneously. Serious defects.
  • One object of the present invention is to exhibit a combustion rate and combustion temperature equal to or higher than those of conventional azide-based and non-azide-based gas generating agents, and to reduce the concentration of toxic components such as CO and NOx in the gas. It is still another object of the present invention to provide a gas generating agent for airbags which is remarkably excellent in thermal stability. Another object of the present invention is to have remarkably low impact ignitability, detonation, and toxicity as compared with the above-mentioned non-azide gas generant, and to release suspended particulate matter. An object of the present invention is to provide a gas generating agent for an air pack having a low concentration of a substance.
  • Another object of the present invention is to provide a gas generating agent for an air bag which does not cause incomplete combustion.
  • biscarbamoinolehydrazine which is a gas generating base
  • oxohalogenate which is an acidifier
  • a gas generating agent for an airbag comprising a nitrate as an oxidizing agent and (4) a combustion catalyst as an active ingredient is provided.
  • the gas generating agent for an air bag of the present invention satisfies all of the above first to sixth requirements. That is, the gas generating agent for an air bag of the present invention does not cause incomplete combustion and has a combustion speed and a combustion temperature equal to or higher than those of the conventional azide and non-azide gas generating agents. Indicate CO, NOx, etc. in gas The concentration of toxic components is even lower, the impact ignitability, detonation and toxicity are remarkably low, the concentration of released suspended particulate matter is low, and the heat stability is remarkably excellent. is there.
  • Biscanoleno which is the gas generating base of the gas generating agent for airbags of the present invention, is also known as piurea or hydrazolic amide.
  • ) Is a compound that has been mainly used as a raw material for ADCA.
  • screw-power balbamoyl hydrazine is used to adjust the shape of the foamed cell when foaming a synthetic resin with high chemical resistance and heat resistance, such as vinyl chloride resin, using ADCA. It is only used as a cell nucleating agent.
  • Biskanolevamo inolehydrazine has a higher thermal stability than ADCA and a remarkably higher stability against alkali, so if the selection range of oxidizing agents and combustion catalysts is expanded, It has such advantages and contributes to remarkable improvement of the thermal stability of the gas generating agent of the present invention.
  • Biscarno's hydrazine has very low toxicity and no danger of explosion, which contributes to the safety of the gas generating agent of the present invention.
  • the particle size is not particularly limited, and may be wide depending on various conditions such as, for example, the amount of the compound, the type and ratio of other components used in combination, and the capacity of the airbag. What is necessary is just to select from a range suitably.
  • viscous rubamoyl hydrazine has a scale-like or plate-like crystal shape and a weak bonding force between the particles, which may lead to insufficient moldability during formulation. .
  • the binder described below is replaced with a non-azide gas generating agent (0.5 to 2.0 parts by weight). Or more)
  • a method of surface-treating a bismuth rubamoyl hydrazine with an inorganic surface treating agent will be described.
  • Known inorganic surface treatment agents can be used, and among them, water-soluble metal salts are preferable.
  • water-soluble metal salts for example, A 1 C] 3, C o C l 2, Z r C l 4, S n C 1 2, S n C 1 T i C 1 3, T i C 1 F e Ch,
  • One type of surface treatment agent can be used alone, or two or more types can be used in combination.
  • the amount of the surface treating agent used is not particularly limited, and the type of the surface treating agent, the type and amount of other components constituting the gas generating agent other than the modified bis-carbamoyl hydrazine, and the obtained gas generating agent
  • the force can be appropriately selected from a wide range according to the desired performance, etc., and the weight of the total weight of the visco-metal hydrazine that is normally subjected to surface treatment It may be about 0.01 to 5% by weight, preferably about 0.1 to 2% by weight.
  • the surface treatment can be performed according to a known method.
  • the pH regulator used for neutralization is not particularly limited, and known acids and alkalis can be used. Specific examples of acids Examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, oxalic acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid.
  • Al-Li are, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and carbonic acid. Hydrogen potassium, ammonia, etc. can be mentioned.
  • the drying is preferably performed at about 0 to 250 ° C, considering that the thermal decomposition temperature of bis-carbocene hydrazine hydrazine is about 2 ⁇ 0 to 260 ° C. Is carried out at a temperature of about 50 to 50 ° C. Drying can also be performed under reduced pressure, which is usually performed under normal pressure. Before the surface treatment of the bismuth rubamoyl hydrazine, it can be finely pulverized or recrystallized.
  • the surface may be coated, for example, by adding the hydrophilic polymer to an aqueous solution or aqueous dispersion of biscarbamoyl hydrazine and mixing. . Since bis-hydranol hydrazine has low solubility in water, it is preferably used in the form of an aqueous dispersion in consideration of treatment efficiency and the like. During the mixing, the mixture may be heated if necessary.
  • the hydrophilic polymer compound is not particularly limited. Any known ones can be used. For example, cellulose such as ruboxymethyl cellulose, modified canoleboxyl methylcellulose, hydroxymethyl cellulose, microcrystalline cellulose, etc. And polyvinyl alcohols such as fully-genated poly-vinyl alcohol and partially-genated poly-vinyl alcohol, and starches such as soluble starch. You. One of these hydrophilic polymer compounds can be used alone, or two or more can be used in combination.
  • the hydrophilic polymer compound can be added as it is or in the form of an aqueous solution.
  • the amount of the hydrophilic polymer compound used is not particularly limited, and it can be selected from a wide range as appropriate, as well as the amount of viscanoleno to be treated normally. O About 0.1 to 5% by weight, preferably about 0.5 to 3% by weight o
  • an aqueous solution or dispersion of biscarpa'moinolehydrazine is added to a hydrophilic polymer compound or an aqueous solution.
  • the same compounds as described above can be used as the c- hydrophilic polymer compound which may be added to the mixture and heated while adding a compound and a water-soluble polymerization initiator.
  • any of those conventionally known having a polymerizable double bond can be used.
  • acrylic acid, mesylate Examples include unsaturated carboxylic acids such as acrylic acid, maleic acid, and itaconic acid, and compounds having a vinyl group such as vinyl acetate and divinylbenzene.
  • (meth) acrylic acid alkyl esters in which the alkyl portion is a linear or branched alkyl group having about 1 to 4 carbon atoms can also be used.
  • Specific examples of the alkyl (meth) acrylate include, for example, (meth) ethyl acrylate and methyl (meth) acrylate. Can be done.
  • (meth) acrylic acid aryl esters such as phenyl (meth) acrylinoleate can also be used.
  • One or more of the orifices can be used alone or in combination of two or more.
  • the use amount of the olefins is not particularly limited and can be appropriately selected from a wide range. However, it is preferably about 0.1 to 3% by weight of the amount of the bismuth rubamoyl hydrazine that is usually processed. Or about 0.5 to 1% by weight.
  • the water-soluble polymerization initiator is not particularly limited, and any conventionally known water-soluble polymerization initiator can be used.
  • hydroxyperoxides such as cumene hydroxyperoxide and water-soluble polymerization initiators; Potassium peroxosulfate, ammonium peroxosulfate, hydrogen peroxide, azobisisobutyronitrile, azobiscyclohexanocanolevonil, azobis Valeric acid, 2, 2'-azobis (2-amidinopropane) ⁇ dihydrochloride, etc.
  • the water-soluble polymerization initiator one type can be used alone, or two or more types can be used in combination.
  • the amount of the water-soluble polymerization initiator used is not particularly limited, and can be appropriately selected from a wide range.
  • the amount is about 0.01 to 5% by weight based on the amount of the ordinary olefins used. Preferably, it should be about 0.05 to 1 weight 0/6 .
  • the temperature at the time of heating is not particularly limited.
  • the force is usually about 50 to 90 ° C, preferably about 80 ° C.
  • the modified bismuth rubamoyl hydrazine may be separated by a usual separation means such as filtration or centrifugation, and dried.
  • the pulverization can be produced, for example, by processing a powder of bis-forced hydrazine hydrohydrazine with a high-pressure pulverizer.
  • a high-pressure crusher blows high-pressure air into the device from at least two directions on the side of the device to generate an air current to pulverize the powder, and floats inside the device by air pressure. It is a method of collecting the fine powder that has risen, and specifically, for example, a counter jet minole (The Netherlands, Ano Piné Co., Ltd.) Manufactured by Kurimoto Tekkosho Co., Ltd.) and Crossjet Mill (manufactured by Kurimoto Iron Works).
  • biscarbamoyl hydrazine which is finely pulverized as described above, usually has an average particle diameter of 20 zm or less and a BET specific surface area of 0.5 m 2 Zg or more. However, it is preferable to use those having an average particle diameter of 10 m or less and a BET specific surface area of 5 m 2 ng or more. The average particle size is significantly above 2 and the Z or BET specific surface area
  • the average particle diameter in the present invention was measured using a laser diffraction type particle size distribution analyzer: Horiba, Ltd.].
  • the BET specific surface area in the present invention is a BET specific surface area measuring device [manufactured by Shimadzu Corporation] It was measured using.
  • the finely powdered bismuth rubamoyl hydrazine obtained in this way can be used as it is as a gas generating base, the moldability, the formability of the obtained gas generating agent, and the like. From the viewpoint of further improving combustion performance, it is more preferable to use granules.
  • the particle size of the granules is usually about 0.05 to 1 mm, preferably about 0.1 to 0.5 mm.
  • a known method can be employed.For example, if necessary, an appropriate amount of water or hot water is added to finely powdered bis-forced rubamoyl hydrazine, followed by granulation and drying. Good.
  • granulation for example, various extrusion granulations such as a screw type, a roll type, a blade type, a self-molding type, and a ram type.
  • extrusion granulations such as a screw type, a roll type, a blade type, a self-molding type, and a ram type.
  • the method of using a machine can be mentioned.
  • a rolling granulation method, a spray-dry method, or the like may be employed.
  • a nitrate or an oxohalogenate is used alone, or a nitrate and an oxohalogenate are used. Are used together.
  • nitrate examples include alkali metal salts such as lithium nitrate, sodium nitrate, and potassium nitrate, magnesium nitrate, sodium nitrate, and sodium nitrate.
  • Alkaline such as um Examples include earth metal salts and ammonium salts such as ammonium nitrate. Of these, alkali metal salts and alkaline earth metal salts are preferred, and potassium nitrate and sodium nitrate are particularly preferred.
  • Known oxohalogenates can be used, and examples thereof include perhalogenates and halogenates.
  • perhalogenates include, for example, lithium perchlorate, potassium perchlorate, sodium perchlorate, lithium perbromate, Alkali metal salts such as potassium perbromate and sodium perbromate, magnesium perchlorate, barium perchlorate, calcium perchlorate, perbromine Alkaline earth metal salts such as magnesium acid salt, barium perbromate, and calcium perbromate; ammonia such as ammonium perchlorate and ammonium perbromate And the like.
  • the halogenates include, for example, lithium chlorate, potassium chlorate, sodium chlorate, lithium bromate, and potassium bromate.
  • Alkali metal salts such as sodium bromide, magnesium chlorate, barium chlorate, calcium chlorate, magnesium bromate, barium bromate , Alkaline earth metal salts such as calcium bromate, and ammonium salts such as ammonium chlorate and ammonium bromate.
  • Ganoic acid and perhalogenic acid Metal salts are preferred, and potassium perchlorate and chlorinated lithium are particularly preferred.
  • Nitrate and oxohalogenate can be used as they are on the market, and their shapes, particle sizes, etc. are not particularly limited. It may be appropriately selected and used according to various conditions such as the ratio and the capacity of the airbag.
  • the amount of these oxidizing agents is Normally, the stoichiometric amount may be sufficient to completely oxidize and burn the bis-powered rubamoyl hydrazine based on the oxygen amount.However, the mixing ratio of the gas generating base and the oxidizing agent may be appropriately changed. Thus, the combustion speed, the combustion temperature (gas temperature), the composition of the combustion gas, and the like can be arbitrarily adjusted, so that it is possible to appropriately select from a wide range.
  • Nitrate, oxohalogenate, or nitrate and oxohalogenate is preferably used in an amount of about 100 to 400 parts by weight based on 100 parts by weight of hydrogen hydrazine. May be blended in an amount of about 100 to 240 parts by weight.
  • the mixing ratio thereof is not particularly limited and may be appropriately selected. If the mixing ratio of oxohalogenate is higher than the above-mentioned amount, the combustion temperature becomes high. This is not preferable because a large amount of halogenated metal, such as chlorinated lithium, is generated as a result of the possibility of detonation, which becomes suspended particulate matter.
  • the combustion catalyst which is one of the active ingredients, mainly has an effect of lowering the combustion temperature and reducing the concentration of C0 and / or N0X in the gas. It is considered to have.
  • the combustion catalyst an oxide of a metal having the fourth to sixth periods of the periodic table, an oxygen-containing metal compound capable of generating the metal oxide by heating, heteropoly acid, or the like is used.
  • metal oxides of the fourth to sixth periods of the periodic table include copper oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide, manganese oxide, and oxide.
  • Zinc, calcium oxide, titanium oxide, vanadium oxide, cerium oxide, holmium oxide, ytterbium oxide, molybdenum oxide-tungsten oxide, oxide Antimony, tin oxide, titanium oxide, and the like can be given.
  • copper oxide, nickel oxide, cobalt oxide, molybdenum oxide, oxide oxide, iron oxide, tin oxide, zinc oxide, chromium oxide, and the like are preferred.
  • M o 0 3, W 0 3 , C r 2 0 a. T i O a, S n O, Z n O, F e 2 0 3 , etc. are more preferable arbitrariness.
  • These metal oxides include: The hydrate is also included. Taking a hydrate of data down Goes te emission oxide as an example, W 0 3 'H Ru 2 0 Hitoshidea. Is as a child are these metal oxides, preferred to rather than the BET specific surface area of 5 m 2 "g or more on, rather than the preferred Ri good is 1 0 m 2 Roh g or more, and still more preferred to rather than the 4 0 m 2 Roh g have good to use more.
  • M o 0, W 0 3, etc. preferred would leave that obtained simultaneously reduce the CO concentration and NOX concentration It has new characteristics.
  • the oxygen-containing metal compound capable of producing an oxide of a metal having the fourth to sixth periods of the periodic table by heating is not particularly limited, and any known compounds can be used. Taking oxygen - containing Mo Li Bude down compounds to generate a M o 0 3 Ri by the heating in Examples, mode re Bude phosphate edge Le Bok, mode re Buden dihydrogen Tsu VIII, the mode re Bude phosphate Kell such Metal salts, molybdenic acid, and molybdenum hydroxide. Also, oxygen Motota emissions Gusute emissions reduction Gobutsu that generates a W ⁇ 3 Ri by the heating, for example, Ru metal salts thereof such as Der the motor down Holdings te phosphate.
  • metal salts of tangstenic acid examples include alkali metals such as lithium tangstenate, potassium tangstenate, and sodium tangstenate. Salts, alkaline earth metal salts such as magnesium tungstate, magnesium tungstate, copper tungstate, nickel tungstate Gels, Group VIII metal salts such as iron tungstate, tangs Copper tenate and the like can be mentioned.
  • heteropolyacids include, for example, linmolibdenic acid, linguistic acid, and metal salts thereof.
  • the metal salt of heteropolyacid is not particularly limited.
  • a Group VIII metal salt such as Co salt, Ni salt, Fe salt, Mg salt, Sr salt, P salt b salt, Bi salt and the like can be mentioned, and among them, Group VIII metal salt is preferable, and Co salt is particularly preferable.
  • M o O a, W 0 3 that generates an M o 0 3 Ri by the heating including oxygen Mo Li Bude down compounds, oxygen Motota down Gusute emissions compounds which form W 0 3 Ri by the heating, re Nmo Li Bude phosphate Copa 'Le DOO, C r 20 3, T i 0 2, S n O, Z n O, F e 2 0 3 Hitoshiryoku rather specifically preferred, C o O, n i O , n i 2 O 3.
  • M 0 O 3, WO 3, Group VIII metal salt of Mo Li Bude phosphate, Linmolibdenic acid phenol is more preferred.
  • One of the above-mentioned combustion catalysts can be used alone, or two or more can be used in combination.
  • the particle size of the combustion catalyst is not particularly limited, and may be appropriately selected from a wide range according to various conditions such as the amount of the catalyst, the ratio of the catalyst to other components, and the capacity of the airbag.
  • the blending amount is 7/12849
  • the amount of the combustion catalyst varies depending on whether oxohalogenate and nitrate are used alone or in combination as oxidizing agents.
  • the gas generating base and the oxidizing agent are used from the viewpoint of achieving further reduction of both CO and NOx.
  • the gas generating base and the oxidizing agent are used from the viewpoint of achieving further reduction of both CO and NOx.
  • about 5 to 150 parts by weight preferably about 10 to 120 parts by weight, more preferably about 30 to 80 parts by weight, based on 100 parts by weight of the total amount of the agent It should be about the degree.
  • the gas generating base is considered from the viewpoint of achieving a further reduction of both CO and NOx.
  • 0.1 to 30 parts by weight preferably 0.5 to 25 parts by weight, more preferably 3 to 1 part by weight based on 100 parts by weight of the total amount of It may be about 5 parts by weight.
  • the amount of the generated metal oxide may be set so as to fall within the range specified above.
  • the airbag gas generating agent of the present invention further includes It is preferable to add an agent.
  • Combustion regulators generally lower the combustion temperature, adjust the combustion rate, and cause gas generators to become involved in fires or other impacts in the process of manufacturing, transporting, or storing gas generating agents. It is used to prevent the explosion forest from receiving fire.
  • combustion regulator examples include the following (a) to (h).
  • Alkaline earth metal carbonates and bicarbonates such as Ca, Mg, Ba, and Sr
  • Periodic table 4th to 6th periodic elements other than the above (mouth) to (c) for example, Zn, Cu, Fe, Pb, Ti, V,
  • Organic acids such as amino acids such as glycine, organic carboxylic acids such as acetic acid, and citric acid.
  • combustion regulators for example, it is preferable to use (i) to (ii) or (h), and to use a simple metal such as B, Al, Ti, Zr, or B 20. 3, a] 2 0 metal oxides such as 3, carbonate Li Ji ⁇ beam, carbonate magnesiate U beam, alkali metal and alkaline earth metal carbonates such as carbonates Kanoreshi ⁇ beam, hydroxide Aluminum two ⁇ Particularly preferred are metal hydroxides such as aluminum and amino acids such as glycine.
  • combustion regulator can be used alone, or two or more types can be used in combination.
  • Commercially available products may be used as the combustion control agents.
  • the particle size is not particularly limited, and may be appropriately selected from a wide range according to various conditions such as, for example, the compounding amount, the mixing ratio with other components, and the airbag capacity.
  • the blending amount is not particularly limited, and the mixing ratio of biscarbamoyl hydrazine and the oxidizing agent, the type of the combustion regulator itself, and the other Can be appropriately selected from a wide range according to various conditions such as the type of component of the air bag and the capacity of the air bag.
  • the amount of bismuth phenol and oxidized biscalpa molybdenum hydrazine is lower than the viewpoint of obtaining a lower combustion temperature and an appropriate combustion rate.
  • the amount is preferably about 0.5 to 5 parts by weight, and more preferably about 1 to 3 parts by weight, based on 100 parts by weight of the total amount of the agent.
  • a slag forming agent can be added.
  • the slag forming agent is an additive that solidifies the residue generated after the combustion of the gas generating agent and makes it easier to remove by the filsator inside the airbag inflator. It is.
  • a scan lag forming agent can be used known ones, for example, already silicon dioxide and Aluminum Na exemplified by the combustion modifiers, oxidation boric arsenide (especially this elevation gel B 2 0 etc.
  • the amount thereof is not particularly limited. It may be appropriately selected from a wide range according to the composition of the gas generating agent, etc.
  • the amount of the oxidizing agent is determined by the molar ratio of the oxidizing agent.
  • An appropriate value is around 1/2
  • An oxide containing an alkaline earth metal and an alkaline earth metal compound which reacts to form an oxide, such as sulfur oxide Tronium, strontium nitrate, etc. can also be used as a slag-forming agent.
  • additives conventionally used for this purpose may be blended as long as the preferable properties of the gas generating agent of the present invention are not impaired.
  • oxidizing agents other than nitrates and oxohalogenates can be used in combination as long as the preferable properties of the gas generating agent of the present invention are not impaired. Wear.
  • the oxidizing agent is not particularly limited, and may be suitably selected from those conventionally used in the art, and those which can generate and / or supply oxygen at high temperature and are preferred. Examples include nitrites, metal peroxides, superoxides, ozone compounds and the like. Examples of the nitrite include alkali metal salts such as lithium nitrite, sodium nitrite, and lithium nitrite, magnesium nitrite, and barium nitrite.
  • alkaline earth metal salts such as calcium nitrite and the like.
  • the metal peroxide include alkali metal salts such as lithium peroxide, sodium peroxide, and potassium peroxide, magnesium peroxide, and peroxide.
  • Alkaline earth metal salts such as calcium and barium peroxide can be mentioned.
  • the superoxide include alkali metal compounds such as sodium superoxide and potassium superoxide, and superoxide.
  • Alkaline earth metal compounds such as calcium oxide, super-histonium oxide, and barium superoxide, rubidium superoxide, cesium superoxide and the like. Can be done.
  • Is the o zone down compounds for example, the formula M 0 3 (wherein M is N a, K, shows the I a group element such as a R b C s.)
  • Compounds I table are exemplified up by .
  • metal sulfides such as molybdenum disulfide, bismuth-containing compounds, lead-containing compounds and the like can also be used as the oxidizing agent.
  • oxidizing agents may be used as they are commercially available, and their shape, particle size, etc. are not particularly limited.For example, the amount of the oxidizing agent, the type and the mixing ratio of each component used in combination, It may be appropriately selected and used according to various conditions such as the capacity of the air bag.
  • Preferred embodiments of the gas generating agent of the present invention described above may include a slag forming agent and other known additives.
  • the gas generating base and / or components other than the gas generating base are reduced. Both types may be surface-treated with a coupling or chelating agent.
  • the coupling agent is not particularly limited, and any known coupling agent can be used.
  • any known coupling agent can be used.
  • amide aminopropyl triethoxy Silane-based coupling agents such as lan, arginosine propylenoxy-produced methoxysilane, methyltrimethoxysilane, isopropynole Titanium-based couplings such as triisostealoinolecitaneate, etc.
  • Alminium-based capacitors such as IJ, acetate alcohol miniatures, etc. Examples include a coupling agent.
  • Known chelating agents can also be used.
  • EDTA ethylenediamine tetraacetic acid
  • EDTA.2Na salt EDTA.2K salt
  • ETDA 2Li salt EDTA / 2 ammonium salt, etc.
  • sodium getinoresitiocarbamate sodium getinoresitiocarbamate and the like.
  • the surface treatment is carried out by mixing the component to be treated with a coupling agent and / or a chelating agent in an appropriate solvent or in the absence of a solvent according to a usual method.
  • the gas generating agent of the present invention is produced by mixing bis-carbamide molybdenum hydrazine, an oxidizing agent and, if necessary, other components according to a usual method.
  • the gas generating agent of the present invention can be formulated into an appropriate form.
  • an appropriate amount of a binder may be mixed with the gas generating agent of the present invention, followed by tableting or tablet drying. At this time, it is particularly preferable to add an appropriate amount of water or hot water for safety.
  • a binder that is commonly used for such purposes. Just do it.
  • the formulation is not particularly limited, and examples thereof include pellets, discs, spheres, spheres, rods, hollow cylinders, sugary sugars, tetrapods, and the like. It can be non-porous or perforated (for example, briquette-like). Further, the pellet-shaped or disk-shaped one may have one to several projections on one or both sides.
  • the shape of the projection is not particularly limited, and examples thereof include a columnar shape, a conical shape, a polygonal pyramid shape, and a polygonal columnar shape.
  • the size of the preparation of the gas generating agent of the present invention is not particularly limited, and the particle size is selected in order to further lower the combustion temperature, which can be appropriately selected from a wide range, and to obtain a more appropriate combustion rate. It is preferable to formulate into a granule having a diameter of about 0.3 to 1.5 mm, preferably the above-mentioned particle diameter.
  • each of the components of the gas generating agent of the present invention may be formulated individually, and these may be mixed and used.
  • the gas generating agent of the present invention formulated as described above can be safely stored and transported by being filled in a synthetic resin or metal container such as polyethylene. can do.
  • the gas generating agent of the present invention is not limited to automobiles, and can be suitably used as a gas generating source of an air bag system mounted on various transportation devices.
  • BCH Biscanolenomoisolehydrazine
  • ADC Azoji Carbon Amide
  • Potassium perchlorate manufactured by Nihon Carrit Co., Ltd.
  • Silicon dioxide Nippseil NPS, trade name, manufactured by Nihon Silica Industry Co., Ltd.
  • Soluble starch First-class reagent, manufactured by Wako Pure Chemical Industries, Ltd.
  • CuO specific surface area 48 m 2 Z g and average particle size about 7.4 m. JGC Chemicals, Inc.
  • parts and % indicate “parts by weight” and “% by weight”, respectively, unless otherwise specified.
  • the amount of perchloric acid value Li U beam was changed to 6 7.7 parts, except that use C u O l O unit in place of the ⁇ one M o 0 3, the same procedure as in Example 1 A pellet of the gas generating agent of the present invention was produced.
  • Test example 1 Example of a combustion chamber equipped with a gas exhaust hole with a diameter of 7 mm and filled with 0.8 g of Boron Z sodium phosphate as a transfer medium A 0.3 mm-thick aluminum cup filled with the gas generating agent pellets obtained in Examples 1 and 2 and Comparative Example 1 was loaded. This inflator is placed in a 60 liter tank and is operated by passing an electric current to burn the pellets of the gas generating agent. The pressure and temperature in the tank and in the 60 liter tank were measured. In addition, the gas in the 60-litre tank after combustion is sampled from a sampling hole into a 1-litre bag, and the C0 concentration and ⁇ '0X concentration in the gas are detected. It was measured using a tube. Table 1 shows the results.
  • TP max The maximum pressure (kgf Z cm 2 ) within the 60-litre tank. This parameter indicates the gas generating capacity of the gas generating agent.
  • tTPMaX Time required for the pressure in the 60 litre tank to reach its maximum (msec). A parameter that simulates the deployment speed when the airbag is deployed.
  • t TP 90 Time required for the pressure in the 60 liter tank to reach 90% of the maximum value (msec:). Airbag Parameter that simulates the deployment speed when
  • the gas generating agent of the present invention has the same combustion rate as the gas generating agent using azocarbonamide as the gas generating base, and the toxic components such as CO and NOX in the post-gas. It can also be seen that the concentration of Hb is as low as the same.
  • the gas generating agent of No. 2 had a residual weight ratio of 99.5% or more, and it was confirmed that the bismuth rubamoinolehydrazine was not substantially decomposed.
  • the residual weight ratio (%) was examined in the same manner as described above except that the storage time was set to 190 hours. The residual weight ratio was 75%. there were. Despite the storage time being less than half of the pellet of the gas generating agent of the present invention, the decomposition power of azodicarbon amide, and the fact that it has progressed considerably. I understand.
  • the gas generating agent of the present invention has much higher thermal stability than the gas generating agent using azodicarbonamide as a gas generating base. is there.
  • the combustion temperatures of the gas generating agents of Example 2 and Comparative Example 2 were measured using NASA's thermal equilibrium calculation program (B, J, McBride, 'CET89-Chemical Equilibrium with Transport Properties, 1989 Com ", COSMIC Program itLE W-15113 (1989). ), NASA, hereinafter, this program is referred to as “CET89”.) Based on the simulation calculation, the gas generating agent of Example 2 was about 210 1 The amount of the gas generating agent of Comparative Example 2 was about 2300 ⁇ .
  • the gas generating agent of the present invention is preferably azodicarbon. It can be seen that the combustion temperature is about 200 K lower than the gas generating agent using amide as the gas generating base.
  • a pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1 except that the components were used in the amounts (parts) shown in Table 2 below.
  • Example 3 Using each of the pellets of the gas generating agent of the present invention obtained in Example 3, the same operation as in Test Example 1 was performed to determine the combustion performance of the gas generating agent, the C 0 concentration in the post-gas, and the N 0. The X concentration was determined.
  • the gas generating agent of the present invention has excellent combustion performance and a low C ⁇ concentration and NO X concentration in the post-gas.
  • a pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1 except that the components were used in the amounts (parts) shown in Table 4 below.
  • Table 4 the gas generating agents of Nos. 1 to 18 correspond to Example 4, and the gas generating agents of Nos. 19 to 20 correspond to Comparative Example 3 (German Patent Publication No. 1995). 1618-18).
  • Example 4 Using each pellet of the gas generating agent of the present invention obtained in Example 4 and Comparative Example 3, the same operation as in Test Example 1 was carried out, and the combustion performance of the gas generating agent and the C0 concentration in the gas were used. And N ⁇ X concentration. Table 5 shows the results. Sample CPmax TPmax tTPmax tTP90 Ttemp.CO C ⁇ 2 NO x
  • Example 5 Comparative Example 4
  • Example 5 Each component was used in the amounts (parts) shown in Table 6 below.
  • the pellet of the gas generating agent of the present invention Example 5
  • the pellet of the gas generating agent described in Japanese Patent Application Laid-Open No. Hei 7-303383 was produced.
  • the following tests were performed on these gas generating agents. Table 6 shows the results.
  • thermochemical calculation temperature (adiabatic flame temperature) of the gas generant was calculated based on the NASA thermal equilibrium calculation program (CET89) and used as a guide to know the combustion temperature.
  • T DSCJ D S C exothermic decomposition onset temperature
  • T DSC thermal stability of the gas generant.
  • the thermal stability of the gas generating agent for air back is measured by maintaining the inflator loaded with the gas generating agent at 107 ° C for 400 hours and then operating the gas generator. The generation performance is evaluated based on the fact that it is the same as before heating. Force according to this method As already shown in Test Example 2, the canister was filled with a gas generating agent and kept at 107 ° C for 400 hours to reduce the amount of the gas generating agent. This is a method to evaluate weighing and thermal stability (heating loss test).
  • the present inventor has developed a correlation between the results of the weight loss test and the exothermic decomposition onset temperature (T DSC) of DSC (differential scanning calorimetry). And found that if the T DSC was 473 K or more, it passed the weight loss test on heating, and based on this finding, evaluated the thermal stability of the gas generating agent.
  • T DSC exothermic decomposition onset temperature
  • the gas generating agent was molded into a square rod-shaped strand of 7 mm in length and 3 O mm in length, and a restrictor was applied except for the upper end to prepare a sample body.
  • This sample was burned in a pressure vessel with an internal volume of about 1 liter under nitrogen pressure (70 kg Zcm 2 ), the time-pressure curve was recorded, and the linear burning rate (mmsec) was measured. It was calculated. The detonation tends to increase as the linear burning rate increases.
  • the detonation propagation of the gas generant was determined by a UN recommendation gap test.
  • a sample gas generating agent
  • a No. 6 detonator was attached, and a mild steel plate of 100 111 111 100 101 3 mm (thickness) was placed at the upper end as a proof plate.
  • the No. 6 detonator was energized to detonate the detonator and the explosive.
  • the fact that the sample propagated through the explosion forest was judged based on the fact that the steel pipe was broken.
  • the non-detonation was judged based on the fact that the steel pipe did not become fragments and the unreacted sample remained. 6
  • thermochemical calculation temperature (Tc) of the gas generator based on the thermal equilibrium calculation program (CET89) of NASA in the same way as in Example 5, and calculate the DSC exothermic decomposition temperature (Tc).
  • T DSC thermochemical calculation temperature
  • Tc DSC exothermic decomposition temperature
  • T DSC exothermic decomposition onset temperature
  • thermochemical calculation temperature was calculated based on the thermal equilibrium calculation program of NASA (CET89) and a strand test was performed in the same manner as in Example 5. The results are shown in Table 9.
  • Example 9 was repeated in the same manner as in Example 9 except that the amount of potassium perchlorate was changed to 67.7 parts and 10 parts of copper oxide was used instead of molybdenum oxide. A pellet of a gas generating agent for the invention airbag was manufactured.
  • Example 9 For comparison, operate in the same manner as in Example 9 except that unmodified bis-canolebamoinolehydrazine was used.
  • a pellet of gas generating agent (diameter 6 mm, thickness 3 mm, weight 0.15 g) was manufactured.
  • Visible Luba Moylhydrazine manufactured by Otsuka Chemical Co., Ltd., BET specific surface area: 0.20 m 2 / g, median diameter;
  • Example 11 In the same manner as in Example 11 except that the modified screw power of Reference Example 2 was replaced with that of Reference Example 3 in place of the rubamoin hydrazine hydrazine, the pelletizing agent for the airbag gas generating agent was used. A tut was manufactured.
  • a pellet of a gas generating agent for an air bag was manufactured in the same manner as in Example 11 except that untreated biscanolebacyl hydrazine was used.
  • Example 11 Pellets of three types of airbag gas generating agents obtained using 1 to 12 and untreated screw power Lubamoyl hydrazine were respectively applied to a hardness tester (product Name: HARDNESSTESTERKHT — 20 N, manufactured by Fujiwara Seisakusho Co., Ltd.), and apply a load to the pellet. The load when the pellet collapses Hardness. The hardness was measured several times and the average value was calculated. Table 11 shows the results.
  • Test example 9 Example 11 A combustion chamber equipped with a gas outlet of 7 mm in diameter and filled with 0.8 g of boron / potassium nitrate as a transfer medium was installed in an infra-red combustion chamber. 0.3 mm-thick aluminum cutlet filled with 40 g of a pellet of a gas generating agent obtained using ⁇ 12 and untreated screw-powered rubamoyl hydrazine. was loaded. This inflator is installed in a 60-litre tank, and is operated by applying an electric current to burn a pellet of the gas generating agent. Measurements of the pressure and temperature in one tank and 60 liter tank yielded similar results for all of them. After burning
  • the gas in the 60 liter tank was sampled from a sampling hole into a 1 liter driver bag, and the c0 concentration and N0X concentration in the gas were measured using a detector tube. At the same time, similar results were obtained for all of them.
  • Bi scan mosquito Runokumo Lee Sole arsenide de la di emissions (average particle size 5 2 m, BET specific surface area 0. 2 m 2 Z g, Otsuka Chemical Co., Ltd.), mosquitoes c te over di E Tsu DOO Crushed with minole.
  • the grinding conditions using a counterjet mill are air pressure 6.5 kg ⁇ / cm, rotation speed 1500 rpm, and feed rate 5 kgZ.
  • Example 13 In the same manner as in Example 13 except that the granules of Reference Example 5 were used instead of the fine powdered viscous lipa'moylhydrazine of Reference Example 4, a gas generating agent for an airpack was used.
  • Manufactured pellets For comparison, the same operation as in Example 13 was carried out except that unground pulverized bis-carbanol moist hydrazine was used in place of the finely powdered bis-rubber hydrazine hydrazine of Reference Example 4. To produce pellets of gas generating agents for air packs.
  • the pellets of the gas generating agents of Examples 13 to 14 and the pellets of the gas generating agent obtained by using the unmilled screw power Lubamoyl hydrazine were respectively used as hardness testers (products). Name: HARDNESSTESTERKHT — 20 N, manufactured by Fujiwara Seisakusho Co., Ltd.), apply a load to the pellet, and apply the load when the pellet collapses It was decided. The hardness was determined several times, and the average value was calculated. The results are shown in Table 12.
  • Examples 13 to 1 were installed in the combustion chamber of an inflator equipped with a gas outlet of 7 mm in diameter and charged with 0.8 g of boron nitrate as a transfer medium. Pellet of gas generating agent and

Abstract

A gas generator for air bags comprising (1) biscarbamoylhydrazine as a base of the generator, (2) a salt of oxoacid of halogen as an oxidizing agent, (3) a nitrate as another oxidizing agent, and (4) a combustion catalyst as the active ingredients. This generator has a proper combustion performance and a low combustion temperature, generates a gas lowered in the content of toxic components such as CO and NOx and that of emitted suspended particles, is excellent in heat stability, and is preferably far superior to azide and non-azide gas generators of prior art in safeness.

Description

明 細 書  Specification
ェァパ' ッ グ用ガス発生剤  Gas generating agent for paper bags
技 術 分 野  Technical field
本発明は、 エアパ' ッ グ用 ガス発生剤に関する。  The present invention relates to a gas generating agent for air packs.
本発明のエアバ ッ グ用ガス発生剤は、 適度な燃焼性能 を有 し、 燃焼温度が低 く、 その燃焼によ り 生成する ガス 中の C O、 N O x 等の有毒成分の濃度が低 く、 放出 さ れ る 浮遊粒子状物質の濃度が低 く、 熱安定性が良好で、 し かも従来のア ジ ド系及び非ア ジ ド系ガス発生剤に比べて 安全性が顕著に高い とい う 好ま しい特性を有する。  INDUSTRIAL APPLICABILITY The gas generating agent for an air bag according to the present invention has an appropriate combustion performance, a low combustion temperature, a low concentration of toxic components such as CO and NOx in a gas generated by the combustion, and The concentration of released suspended particulate matter is low, the thermal stability is good, and the safety is significantly higher than conventional azide and non-azide gas generating agents. It has new characteristics.
宜 M 技 術  Y M technology
自動車の安全性に対する 要求が一層高ま る 中、 ェアバ ッ グシ ステムの需要は飛躍的に増大 しつつあ る。 ェアバ ッ グ シ ス テ ムは、 自動車が高速で衝突 した際、 ハ ン ドル やダ ッ シ ュ ボー ド等の内部に装着さ れたナイ ロ ン製バ ッ グ (エアバ ッ グ) を膨張さ せる こ と に よ り、 乗員が車両 内の各部に衝突 して死傷する のを防止 し ょ う とする もの であ り、 ノ ッ グの膨張には、 該 シ ステム 中のイ ン フ レ一 タ ー ( ガス発生容器) に装填さ れたガス発生剤が燃焼 し て発生する ガスが利用 さ れる。  The demand for airbag systems is increasing exponentially as the demands on vehicle safety increase. The airbag system inflates a nylon bag (air bag) installed inside a handle or dashboard when a car crashes at high speed. This prevents the occupant from colliding with any part of the vehicle and causing death or injury, and the expansion of the knock requires the inflation in the system. The gas generated by the combustion of the gas generating agent loaded in the tar (gas generating container) is used.
ェァバ ッ グ用ガス発生剤には種々 の性能が要求 さ れる 、 特に次の 6 つの要件が重要であ る。 第 1 の要件は 「 イ ン フ レ一タ ー 内で適度な燃焼速度を 示すこ と」 であ る。 エアバ ッ グ シ ステ ム においては、 自 動車への衝撃をセ ンサ ー で検知 し、 それが真の衝突であ る か否かを判断 し、 真の衝突であればイ ン フ レ一夕 一内 のガス発生剤に点火 し、 ガスを放出 してエアバ ッ グを膨 ら ま せ、 乗員の体特に頭部を保護する。 即 ち、 自動車が 衝突す る と、 あ る 時間をおいて乗員の頭部が移動 し始め る ので、 こ の頭部の移動に合わせてエアバ ッ グが展開す る必要があ る。 従っ て、 ガス発生剤の燃焼速度が速すぎ て も、 ま た遅すぎて も不適当であ る。 Various properties are required for a gas generating agent for a webbing. The following six requirements are particularly important. The first requirement is "showing a moderate burning rate in the inflator". In the air bag system, the impact on the vehicle is detected by a sensor, and it is determined whether or not the collision is a true collision. It ignites the gas generant inside and releases gas to inflate the airbag and protect the occupant's body, especially the head. Immediately, when a car collides, the occupant's head begins to move after a certain time, so the air bag needs to be deployed in accordance with the movement of the head. Therefore, it is inappropriate if the burning rate of the gas generating agent is too fast or too slow.
第 2 の要件は 「燃焼温度が低いこ と」 であ る。 ガス発 生剤の燃焼温度が高い と、 バ ッ グ中に放出 さ れる ガス温 度が高 く な つ てバ ッ グを損傷 し、 更にはバ ッ ク の損傷に よ り 外部に漏れたガスが乗員に火傷を負わせる こ とがあ る。 ま た、 通常、 燃焼の際には固形物が副生する力く、 ィ ン フ レ ー タ ー とパ' ッ グと の間に設け られた フ イ ノレタ ーに よ っ て除去さ れ、 放出 さ れる ガス中には含ま れない。 と こ ろ力、'、 燃焼温度が高い と、 前記固形物が気化 してガス と共にバ ッ グ中に放出 され、 そ こ で凝縮 して浮遊粒子状 物質 と な り、 バ ッ グを損傷さ せる こ と も あ る。  The second requirement is “low combustion temperature”. If the combustion temperature of the gas generating agent is high, the temperature of the gas released during the bag rises and damages the bag, and furthermore, the gas leaked outside due to the damage of the bag May cause burns to the occupants. In addition, during combustion, solids are usually produced as a by-product, and are removed by a finolator provided between the inflator and the bag. Not included in the released gas. If the combustion temperature is high, the solids evaporate and are released together with the gas into the bag, where they condense into suspended particulate matter, damaging the bag. In some cases, it can be done.
第 3 の要件は 「燃焼によ り 生成する ガス 中の C ◦ や N 0 X 等の有毒成分濃度が低い こ と」 であ る。 エアバ ッ グ シ ス テ ムにおいては、 膨張 したバ ッ グに乗員が衝突する 衝撃を和 ら げる ために、 バ ッ グは膨張直後ガスの一部を 車内に放出 して幾分収縮す る が、 有効成分濃度が高い と、 乗員が中毒を起こ す可能性があ る。 The third requirement is that “the concentration of toxic components such as C • and NOx in the gas generated by combustion should be low”. Airbag In the system, the bag releases some of the gas into the vehicle immediately after inflation and shrinks somewhat to reduce the impact of occupant collision with the inflated bag. High levels of components can cause occupant poisoning.
第 4 の要件は 「熱安定性が良い こ と」 であ る。 ガス発 生剤は通常 1 0 数年以上の長期寿命を持たな ければな ら ない。 ガス発生剤は、 自動車が晒さ れる程度の温度、 特 に夏季の高温に よ つ て分解 しない こ と は必須条件であ る。  The fourth requirement is “good thermal stability”. Gas generants must have a long life, usually 10 years or more. It is imperative that the gas generants not decompose at temperatures to which vehicles are exposed, especially at high temperatures in summer.
第 5 の要件は 「原料、 中間体及び製品の安全性が高い こ と」 であ る。 安全性の中で も、 衝撃着火性 (衝撃に対 する着火感度) が低い こ とが重要であ る。 衝撃着火性が 高い と、 取扱い上の危険性が大き く、 混合や成型等の製 造工程で爆轟が起こ り 易 く、 周囲の設備や環境を破壊 し た り、 更には人体に致命傷を負わせる虞れ も あ る。  The fifth requirement is that the raw materials, intermediates, and products be highly safe. In terms of safety, it is important that impact ignitability (ignition sensitivity to impact) is low. If the impact ignitability is high, there is a large risk of handling, and detonation is likely to occur during the manufacturing process such as mixing and molding, which may damage surrounding facilities and the environment, and even cause injury to humans. There is also a risk of incurring it.
第 6 の要件は 「毒性が低い こ と」 である。 ガス発生剤 の原料、 中間体及び製品の毒性が高い と、 製造及び廃棄 の際に問題を起こ す可能性があ る。  The sixth requirement is “low toxicity”. High toxicity of gas generant raw materials, intermediates and products can cause manufacturing and disposal problems.
従来か らエアバ ッ グ用ガス発生剤 と しては、 ァ ジ化ナ ト リ ゥ ムをガス発生基剤 とする ア ジ ド系ガス発生剤が汎 用 されてい る。 ア ジ ド系ガス発生剤は、 上記第 1 〜第 4 の要件を充たす優れたガス発生剤であ る力 衝撃着火性 が高い とい う 欠点があ り、 その製造作業等における取 り 扱いには注意を要する。 ま た、 ア ジ化ナ ト リ ウ ムは毒性 を有す る ため、 取 り 扱い作業においては防護設備等が必 要 とな る。 更に、 ア ジ化ナ ト リ ウ ムを使 っ た作業の排水 処理に は専用の処理設備が必要と な る等の欠点があ る。 Conventionally, as an airbag gas generating agent, an azide-based gas generating agent using azurized sodium as a gas generating base has been widely used. Azide-based gas generating agents have the drawback of high force impact ignitability, which is an excellent gas generating agent that satisfies the above first to fourth requirements. Be careful with handling. In addition, sodium azide is toxic and requires protective equipment during handling. In addition, there is a drawback in that wastewater treatment for work using azide sodium requires special treatment equipment.
環境保全及び作業者や使用者の安全性を重視する考え 方が主流であ る現状にあ っ ては、 上記のよ う な欠点を有 する ア ジ ド系ガス発生剤は好ま し く ない も のであ り、 ァ ジ化ナ ト リ ゥ ムに代る非ア ジ ド系ガス発生基剤の開発が 強 く 要望さ れてい る。  Under the current situation where emphasis is placed on environmental protection and the safety of workers and users, azide-based gas generating agents with the above-mentioned disadvantages are not preferred. Therefore, there is a strong demand for the development of a non-azide-based gas-generating base that can be used in place of azimuthized sodium.
上記ア ジ ド系ガス発生剤の代替品 と しては、 例えば、 ァ ゾジ カルボ ンア ミ ド ( A D C A ) 等の含窒素有機化合 物 と酸化剤とを含む非ア ジ ド系ガス発生剤が知 られてい る (特開平 6 — 3 2 6 8 9 号公報、 特開平 6 —  As an alternative to the azide-based gas generating agent, for example, a non-azide-based gas generating agent containing a nitrogen-containing organic compound such as azodicarbonamide (ADCA) and an oxidizing agent is used. Known (JP-A-6-32698, JP-A-6-89)
3 2 6 9 0 号公報、 特開平 6 — 2 2 7 8 8 4 号公報等) 。 該ガス発生剤は、 従来のア ジ ド系ガス発生剤 と 同程度の 適度な燃焼速度を示すと共に、 衝撃着火性が低 く、 爆轟 性や毒性も著 し く 低い。 更に燃焼温度、 ガス 中の C O や N 0 X 等の有効成分の濃度等 も実用に供 し得 る 程十分に 低い力、'、 よ り 一層の低減化が望ま れている。 加えて、 こ の非ア ジ ド系ガス発生剤は、 熱安定性の面で も更な る改 良が要望さ れてい る。  JP-A-32690, JP-A-6-227840, etc.). The gas generating agent exhibits an appropriate burning rate comparable to that of a conventional azide-based gas generating agent, has a low impact ignition property, and has a remarkably low detonation property and toxicity. Further, it is desired to further reduce the combustion temperature and the concentration of active ingredients such as CO and N0X in the gas, which are sufficiently low to be practically usable. In addition, this non-azide gas generating agent is required to be further improved in terms of thermal stability.
特開平 7 — 3 0 0 3 8 3 号公報には、 熱安定性に優れ た非ア ジ ド系ガス発生剤 と して、 ビス カルパ'モイ ノレ ヒ ド ラ ジ ン ( ヒ ド ラ ゾ ジ カ ノレボ ン ア ミ ド) と ォキ ソ ノヽ 口 ゲ ン 酸塩 と を有効成分 とする組成物が開示 さ れている。 しか しなが ら、 該ガス発生剤は高い爆轟性を示 し、 危険であ る。 更に燃焼温度が高い こ と に加え、 その燃焼の際に、 浮遊粒子状物質にな り 易い塩化力 リ ゥ ムが多量に副生す る と い う 欠点を も有 してい る。 Japanese Unexamined Patent Publication No. 7-300383 discloses excellent thermal stability. As non-azide gas generating agents, bis-carba'moinolehydrazine (hydrazolic canolebon amide) and oxono-oleate are used as active ingredients. Is disclosed. However, the gas generants are highly detonable and dangerous. In addition to the high combustion temperature, it also has the disadvantage that a large amount of chloride lime, which easily becomes suspended particulate matter, is produced as a by-product during the combustion.
ドイ ツ公開公報第 1 9 5 1 6 8 1 8 号には、 ビ ス カル バモイ ル ヒ ドラ ジ ン とォキ ソハ ロ ゲ ン酸塩、 硝酸塩等の 酸化剤 と第 I I I、 I V、 V、 V I周期の金属の硫酸塩水和物、 硝酸塩水和物、 炭酸塩、 炭酸塩水和物、 水酸化物、 水酸 化物水和物等の減熱剤 とを有効成分とする ガス発生剤が 記載さ れている。 しか しなが ら、 該ガス発生剤は、 燃焼 性能が充分と は言えず、 不完全燃焼を起こ す場合が多い 不完全燃焼を起こ すと、 エアバ ッ グが瞬時に膨張 しない と い う 重大な欠陥を生ずる。  German Published Patent Application No. 195 168 188 describes viscalbamoyl hydrazine and oxidizing agents such as oxohalogenates and nitrates and III, IV, V and VI A gas generating agent containing a heat reducing agent such as a sulfate hydrate, a nitrate hydrate, a carbonate, a carbonate hydrate, a hydroxide, a hydroxide hydrate, etc. of a periodic metal is described. ing. However, the gas generating agent does not have sufficient combustion performance, and often causes incomplete combustion.If incomplete combustion occurs, the air bag does not expand instantaneously. Serious defects.
発 明 の 開 示  Disclosure of the invention
本発明の 1 つの 目 的は、 従来のア ジ ド系及び非ア ジ ド 系ガス発生剤と 同等以上の燃焼速度、 燃焼温度を示 し、 ガス中の C O、 N O x 等の有毒成分濃度がよ り 一層低 く . 熱安定性に も顕著に優れたエアバ ッ グ用 ガス発生剤を提 供する こ と にあ る。 本発明の他の 1 つの 目 的は、 上記非ア ジ ド系ガス発生 剤 と比較 して、 衝撃着火性、 爆轟性及び毒性が著 し く 低 く、 ま た放出 さ れ る浮遊粒子状物質の濃度が低い、 エア パ' ッ グ用ガス発生剤を提供する こ と にあ る。 One object of the present invention is to exhibit a combustion rate and combustion temperature equal to or higher than those of conventional azide-based and non-azide-based gas generating agents, and to reduce the concentration of toxic components such as CO and NOx in the gas. It is still another object of the present invention to provide a gas generating agent for airbags which is remarkably excellent in thermal stability. Another object of the present invention is to have remarkably low impact ignitability, detonation, and toxicity as compared with the above-mentioned non-azide gas generant, and to release suspended particulate matter. An object of the present invention is to provide a gas generating agent for an air pack having a low concentration of a substance.
本発明の他の 1 つの 目 的は、 不完全燃焼を起こ すこ と のないエアバ ッ グ用 ガス発生剤を提供する こ と にあ る。  Another object of the present invention is to provide a gas generating agent for an air bag which does not cause incomplete combustion.
本発明のその他の特徴は以下の記載によ り 明 らかにす 。  Other features of the present invention will be apparent from the following description.
本発明によれば、 ( 1 ) ガス発生基剤であ る ビス カル バモ イ ノレ ヒ ド ラ ジ ン、 ( 2 ) 酸ィ匕剤であ る ォキ ソ ハ ロ ゲ ン酸塩、 ( 3 ) 酸化剤であ る 硝酸塩、 及び ( 4 ) 燃焼触 媒を有効成分とする エアバ ッ グ用ガス発生剤が提供さ れ る。  According to the present invention, (1) biscarbamoinolehydrazine, which is a gas generating base, (2) oxohalogenate, which is an acidifier, (3) A gas generating agent for an airbag, comprising a nitrate as an oxidizing agent and (4) a combustion catalyst as an active ingredient is provided.
ま た、 本発明 に よれば、 ( 1 ) ガス発生基剤であ る ビ ス カ ノレバモイ ル ヒ ド ラ ジ ン、 ( 2 ) 酸化剤であ る ォキ ソ ハ ロ ゲ ン酸塩又は硝酸塩、 及び ( 3 ) 燃焼触媒を有効成 分 とする エアバ ッ グ用 ガス発生剤が提供さ れる。  In addition, according to the present invention, (1) biscanolevamoyl hydrazine, which is a gas generating base, (2) oxohalogenate or nitrate, which is an oxidizing agent, And (3) A gas generating agent for an air bag, which contains a combustion catalyst as an effective component, is provided.
本発明のエアバ ッ グ用 ガス発生剤は、 上記第 1 〜第 6 の要件を全て満足する ものであ る。 即ち、 本発明のエア バ ッ グ用ガス発生剤は、 不完全燃焼を起こ すこ とな く、 従来のア ジ ド系及び非ア ジ ド系ガス発生剤 と 同等以上の 燃焼速度、 燃焼温度を示 し、 ガス 中の C O 、 N O x 等の 有毒成分濃度がよ り 一層低 く、 衝撃着火性、 爆轟性及び 毒性が著 し く 低 く、 放出 さ れる 浮遊粒子状物質の濃度が 低 く、 熱安定性に も顕著に優れた ものであ る。 The gas generating agent for an air bag of the present invention satisfies all of the above first to sixth requirements. That is, the gas generating agent for an air bag of the present invention does not cause incomplete combustion and has a combustion speed and a combustion temperature equal to or higher than those of the conventional azide and non-azide gas generating agents. Indicate CO, NOx, etc. in gas The concentration of toxic components is even lower, the impact ignitability, detonation and toxicity are remarkably low, the concentration of released suspended particulate matter is low, and the heat stability is remarkably excellent. is there.
本発明のエアバ ッ グ用ガス発生剤のガス発生基剤であ る ビ ス カ ノレ ノ <モ イ ノレ ヒ ド ラ ジ ン (別名 ピ ウ レ ア 又 は ヒ ド ラ ゾジ カ ルボ ンア ミ ド) は、 主に、 A D C Aの原料と し て使用 さ れてき た化合物であ る。 ビス力ルバモイ ル ヒ ド ラ ジ ン は、 上記以外には、 塩化 ビニル樹脂等の耐薬品性 及び耐熱性の高い合成樹脂を A D C A によ り 発泡させる 際に、 発泡セ ルの形状を整える ためのセ ル核剤 と して用 い られている に過ぎない。  Biscanoleno, which is the gas generating base of the gas generating agent for airbags of the present invention, is also known as piurea or hydrazolic amide. ) Is a compound that has been mainly used as a raw material for ADCA. In addition to the above, screw-power balbamoyl hydrazine is used to adjust the shape of the foamed cell when foaming a synthetic resin with high chemical resistance and heat resistance, such as vinyl chloride resin, using ADCA. It is only used as a cell nucleating agent.
ビ ス カ ノレバモ イ ノレ ヒ ド ラ ジ ン は、 A D C A よ り も 更 に 熱安定性が高 く、 アルカ リ に対する安定性も顕著に高い の で、 酸化剤や燃焼触媒等の選択範囲が広がる と い う 利 点を有 し、 本発明 ガス発生剤の熱安定性の顕著な向上に も寄与 している。 ま た ビス カルノ 'モイ ル ヒ ドラ ジ ンは毒 性が非常に低 く、 爆発危険性も ないので、 その点で本発 明ガス発生剤の安全性の向上に寄与 してい る。  Biskanolevamo inolehydrazine has a higher thermal stability than ADCA and a remarkably higher stability against alkali, so if the selection range of oxidizing agents and combustion catalysts is expanded, It has such advantages and contributes to remarkable improvement of the thermal stability of the gas generating agent of the present invention. Biscarno's hydrazine has very low toxicity and no danger of explosion, which contributes to the safety of the gas generating agent of the present invention.
本発明において、 ビス カルバモイ ノレ ヒ ドラ ジ ンは市販 品をそのま ま使用 して も よ い。 ま た、 その粒度は特に制 限 されず、 例えばその配合量、 併用する他の成分種類や 配合比率、 エアバ ッ グの容量等の各種条件に応 じて広い 範囲か ら適宜選択すればよ い。 In the present invention, commercially available biscarbamoyl hydrazine may be used as it is. In addition, the particle size is not particularly limited, and may be wide depending on various conditions such as, for example, the amount of the compound, the type and ratio of other components used in combination, and the capacity of the airbag. What is necessary is just to select from a range suitably.
尚、 ビ ス 力 ルバモイ ル ヒ ドラ ジ ン は結晶形状が鱗片状 又は板状であ り、 粒子同士の結合力が弱いため、 製剤化 の際の成形性が不充分にな る場合が認め られる。 本発明 においては、 こ の様な場合をでき る 限 り な く すために、 後記す るバイ ンダーを通常の非ア ジ ド系ガス発生剤の場 合 ( 0. 5 〜 2. 0 重量部程度) よ り 多 く 添加 した り  In addition, viscous rubamoyl hydrazine has a scale-like or plate-like crystal shape and a weak bonding force between the particles, which may lead to insufficient moldability during formulation. . In the present invention, in order to minimize such a case, the binder described below is replaced with a non-azide gas generating agent (0.5 to 2.0 parts by weight). Or more)
( 2. 0 〜 1 0 重量部.程度、 好ま し く は 3 〜 6 重量部程 度) 、 或いはバイ ン ダーの量は変更せずに、 ビス カ ルバ モイ ル ヒ ドラ ジ ンを改質及びノ又は微粉砕する のが好ま しい。 ビス 力ルバモイ ゾレ ヒ ドラ ジ ンの改質方法と して は、 例えば、 ビス 力ルバモイ ル ヒ ドラ ジ ンを無機系表面処理 剤で表面処理する方法、 ビス 力 ルバモイ ル ヒ ドラ ジ ンを 親水性高分子化合物又はその架橋物で表面被覆す る 方法 等を挙げる こ とができ る。  (About 2.0 to 10 parts by weight, preferably about 3 to 6 parts by weight), or modify and modify bis-carbamic hydrazine without changing the amount of binder. No, or finely pulverized. Examples of the method for modifying bis-powered rubamoyl hydrazine include a method in which bis-powered rubamoyl hydrazine is subjected to a surface treatment with an inorganic surface treating agent, and a method in which bis-powered rubamoyl hydrazine is hydrophilically modified. And a method of coating the surface with a hydrophilic polymer compound or a crosslinked product thereof.
ま ず、 ビス 力 ルバモイ ル ヒ ドラ ジ ンを無機系表面処理 剤で表面処理する方法について説明する。 無機系表面処 理剤 と しては公知の も のを使用でき るが、 その 中で も水 溶性金属塩が好ま しい。 水溶性金属塩の具体例 と しては、 例えば、 A 1 C 】 3、 C o C l 2、 Z r C l 4、 S n C 1 2, S n C 1 T i C 1 3、 T i C 1 F e C h、 First, a method of surface-treating a bismuth rubamoyl hydrazine with an inorganic surface treating agent will be described. Known inorganic surface treatment agents can be used, and among them, water-soluble metal salts are preferable. Is a specific example of the water-soluble metal salts, for example, A 1 C] 3, C o C l 2, Z r C l 4, S n C 1 2, S n C 1 T i C 1 3, T i C 1 F e Ch,
F e C 1 3、 C u C 1 2 . N i C 1 2、 M o C 1 5等の塩化 物、 A 】 、 C o、 Z r、 S n、 T i、 F e、 C u、 N i、 M o 等の金属の硝酸塩、 N a 4 S i 0 4、 K 2 S i 40 9等の 珪酸化物、 Z r C 1 20、 N a A 1 0 2等を挙げる こ と力 でき、 こ れ らの中で も、 A l C l 3、 N a A 1 0 2 F e C 1 3, C u C 1 2. N i C 1 2, M o C 1 5 like chloride Things, A], C o, Z r, S n, T i, F e, C u, N i, metal nitrates, such as M o, N a 4 S i 0 4, K 2 S i 4 0 9 etc. silicate product of, Z r C 1 2 0, N a a 1 0 2 , etc. can this and force include, among this is found, a l C l 3, N a a 1 0 2,
F e C ) z、 F e C l 3等が好ま し く、 N a A 1 0 2等が特 に好ま しい。 表面処理剤は 1 種を単独で又は 2 種以上を 併用 して使用でき る。 表面処理剤の使用量は特に制限さ れず、 表面処理剤の種類、 改質 ビス 力ルバモイ ル ヒ ドラ ジ ン以外のガス発生剤を構成する他の成分の種類や使用 量、 得 られる ガス発生剤において 目 的とする諸性能等に 応 じて広い範囲か ら適宜選択でき る 力、'、 通常表面処理を 施そ う とする ビ ス カ ルメくモ イ ノレ ヒ ド ラ ジ ン の総重量の 0. 0 1 〜 5 重量%程度、 好ま し く は 0. 1 〜 2 重量% 程度とすればよ い。 F e C) z, F e C l 3 etc. is rather preferred, N a A 1 0 2 or the like is arbitrarily favored especially. One type of surface treatment agent can be used alone, or two or more types can be used in combination. The amount of the surface treating agent used is not particularly limited, and the type of the surface treating agent, the type and amount of other components constituting the gas generating agent other than the modified bis-carbamoyl hydrazine, and the obtained gas generating agent The force can be appropriately selected from a wide range according to the desired performance, etc., and the weight of the total weight of the visco-metal hydrazine that is normally subjected to surface treatment It may be about 0.01 to 5% by weight, preferably about 0.1 to 2% by weight.
表面処理は公知の方法に従っ て行う こ と ができ る。  The surface treatment can be performed according to a known method.
例えば、 表面処理剤 と して水溶性金属塩を用い る場合 を例に取れば、 ビス カルバモイ ル ヒ ドラ ジ ン と水溶性金 属塩を水中で混合 し、 こ の混合液を中和 し た後、 ビス力 ノレバモイ ノレ ヒ ドラ ジ ンを分取 し、 乾燥する こ と に よ り、 改質 ビ ス カ ルメ モ イ ノレ ヒ ド ラ ジ ンを得る こ と がで き る。 こ こ で中和に用い る p H調整剤 と して は特に制限さ れず、 公知の酸及びアルカ リ を使用でき る。 酸の具体例 と して は、 例えば、 塩酸、 硫酸、 シ ユ ウ酸、 硝酸、 リ ン酸等の 無機酸類、 酢酸等の有機酸類等を挙げる こ とができ る。 アル力 リ の具体例 と しては、 例えば、 水酸化ナ ト リ ゥ 厶、 水酸化カ リ ウ ム、 炭酸ナ ト リ ウ ム、 炭酸カ リ ウ ム、 炭酸 水素ナ ト リ ウ ム、 炭酸水素カ リ ウ ム、 ア ン モニア等を挙 げ る こ とができ る。 乾燥は、 ビス カ ルノくモイ ノレ ヒ ドラ ジ ンの熱分解温度が約 2 δ 0 - 2 6 0 °Cであ る こ とを考慮 し、 通常 0 〜 2 5 0 °C程度、 好ま し く は 5 0 〜 : L 5 0 °C 程度の温度下に行われる。 ま た、 乾燥は通常常圧下に行 われる 力、'、 減圧下に行う こ と も でき る。 尚、 ビス 力 ルバ モイ ル ヒ ドラ ジ ン を表面処理する前に、 微粉砕 した り 或 いは再結晶 した り す る こ と もで き る。 For example, in the case of using a water-soluble metal salt as a surface treatment agent, biscarbamoyl hydrazine and a water-soluble metal salt were mixed in water to neutralize the mixture. After that, by separating and drying the screw-powered norebamoinolehydrazine, it is possible to obtain the modified biscalmeinolehydrazine. Here, the pH regulator used for neutralization is not particularly limited, and known acids and alkalis can be used. Specific examples of acids Examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, oxalic acid, nitric acid, and phosphoric acid, and organic acids such as acetic acid. Specific examples of Al-Li are, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, and carbonic acid. Hydrogen potassium, ammonia, etc. can be mentioned. The drying is preferably performed at about 0 to 250 ° C, considering that the thermal decomposition temperature of bis-carbocene hydrazine hydrazine is about 2δ0 to 260 ° C. Is carried out at a temperature of about 50 to 50 ° C. Drying can also be performed under reduced pressure, which is usually performed under normal pressure. Before the surface treatment of the bismuth rubamoyl hydrazine, it can be finely pulverized or recrystallized.
次いで、 ビス 力 ルバモイ ル ヒ ド ラ ジ ンを親水性高分子 化合物又はその架橋物によ つ て表面被覆す る方法につい て説明する。 親水性高分子化合物で被覆す る場合、 表面 被覆の方法と して は、 例えば、 ビス カルバモイ ノレ ヒ ドラ ジ ンの水溶液又は水分散液に親水性高分子化合物を添加 し、 混合すればよ い。 ビス 力ルノく'モイ ル ヒ ドラ ジ ン は水 に対する溶解度が低いので、 処理効率等を考慮する と、 水分散液の形態で用 いる のが好ま しい。 混合の際には、 必要に応 じて、 加温 して も よい。  Next, a method of surface-coating bis-forcebamoyl hydrazine with a hydrophilic polymer compound or a crosslinked product thereof will be described. In the case of coating with a hydrophilic polymer, the surface may be coated, for example, by adding the hydrophilic polymer to an aqueous solution or aqueous dispersion of biscarbamoyl hydrazine and mixing. . Since bis-hydranol hydrazine has low solubility in water, it is preferably used in the form of an aqueous dispersion in consideration of treatment efficiency and the like. During the mixing, the mixture may be heated if necessary.
こ こ で親水性高分子化合物と しては特に制限 されず、 公知の ものがいずれ も使用でき る 力 例えば、 力 ルボキ シ メ チルセルロ ー ス、 改質カノレボキ シ メ チルセノレ ロ ー ス、 ヒ ド ロ キ シ メ チルセルロ ー ス、 微結晶性セルロ ー ス等の セルロ ー ス類、 完全ゲ ン化型ポ リ ビニルアルコ ール、 部 分ゲ ン化型ポ リ ビニルアル コ ール等のポ リ ビニルアルコ —ル類、 可溶性デ ンプン等のデ ンプン類等を挙げる こ と ができ る。 これ らの親水性高分子化合物は、 1 種を単独 で使用でき又は 2 種以上を併用 でき る。 Here, the hydrophilic polymer compound is not particularly limited. Any known ones can be used. For example, cellulose such as ruboxymethyl cellulose, modified canoleboxyl methylcellulose, hydroxymethyl cellulose, microcrystalline cellulose, etc. And polyvinyl alcohols such as fully-genated poly-vinyl alcohol and partially-genated poly-vinyl alcohol, and starches such as soluble starch. You. One of these hydrophilic polymer compounds can be used alone, or two or more can be used in combination.
親水性高分子化合物は、 その ま ま又は水溶液の形態で 添加でき る。 親水性高分子化合物の使用量は特に制限さ れず、 広い範囲か ら適宜選択でき る力、'、 通常処理 し ょ う とする ビ ス カ ノレ ノ 'モ イ ノレ ヒ ド ラ ジ ン の 量の 0 . 1 〜 5 重 量%程度、 好ま し く は 0 . 5 〜 3 重量%程度とすればよ い o  The hydrophilic polymer compound can be added as it is or in the form of an aqueous solution. The amount of the hydrophilic polymer compound used is not particularly limited, and it can be selected from a wide range as appropriate, as well as the amount of viscanoleno to be treated normally. O About 0.1 to 5% by weight, preferably about 0.5 to 3% by weight o
ま た、 親水性高分子化合物の架橋物によ っ て表面被覆 する には、 例えば、 ビスカルパ'モイ ノレ ヒ ドラ ジ ンの水溶 液又は水分散液に、 親水性高分子化合物、 ォ レ フ ィ ン類 及び水溶性重合開始剤を加え、 加温下に混合すればよい c 親水性高分子化合物と しては、 上記と 同 じ も のを使用 でき る。 In order to coat the surface with a crosslinked product of a hydrophilic polymer compound, for example, an aqueous solution or dispersion of biscarpa'moinolehydrazine is added to a hydrophilic polymer compound or an aqueous solution. The same compounds as described above can be used as the c- hydrophilic polymer compound which may be added to the mixture and heated while adding a compound and a water-soluble polymerization initiator.
ォ レ フ ィ ン類と しては重合性二重結合を有する 従来公 知の も のがいずれ も使用でき、 例えば、 ア ク リ ル酸、 メ タ ク リ ル酸、 マ レイ ン酸、 ィ タ コ ン酸等の不飽和カ ルボ ン酸類、 酢酸 ビニル、 ジ ビニルベ ンゼ ン等の ビニル基含 有化合物等を挙げる こ とができ る。 ま た、 アルキル部分 が炭素数 1 〜 4 程度の直鎖又は分岐鎖状のアルキル基で あ る ( メ タ ) ア ク リ ル酸アルキルエステル も使用でき る。 該 ( メ タ ) ア ク リ ル酸アルキルエステルの具体例 と して は、 例えば、 ( メ タ ) ァ ク リ ノレ酸ェチル、 ( メ タ ) ァ ク リ ル酸メ チル等を挙げ る こ とができ る。 更に、 ( メ タ ) ァ ク リ ノレ酸フ エ ニル等の ( メ タ ) ア ク リ ル酸ァ リ ールェ ステル も使用でき る。 ォ レ フ ィ ン類は、 1 種を単独で使 用でき 又は 2 種以上を併用でき る。 ォ レ フ ィ ン類の使用 量は特に制限さ れず、 広い範囲か ら適宜選択でき るが、 通常処理する ビス 力 ルバモイ ル ヒ ドラ ジ ンの量の 0 . 1 〜 3 重量%程度、 好ま し く は 0 . 5 〜 1 重量%程度 とす ればよ い。 As the olefins, any of those conventionally known having a polymerizable double bond can be used. For example, acrylic acid, mesylate Examples include unsaturated carboxylic acids such as acrylic acid, maleic acid, and itaconic acid, and compounds having a vinyl group such as vinyl acetate and divinylbenzene. In addition, (meth) acrylic acid alkyl esters in which the alkyl portion is a linear or branched alkyl group having about 1 to 4 carbon atoms can also be used. Specific examples of the alkyl (meth) acrylate include, for example, (meth) ethyl acrylate and methyl (meth) acrylate. Can be done. Further, (meth) acrylic acid aryl esters such as phenyl (meth) acrylinoleate can also be used. One or more of the orifices can be used alone or in combination of two or more. The use amount of the olefins is not particularly limited and can be appropriately selected from a wide range. However, it is preferably about 0.1 to 3% by weight of the amount of the bismuth rubamoyl hydrazine that is usually processed. Or about 0.5 to 1% by weight.
水溶性重合開始剤 と しては特に制限さ れず、 従来公知 の ものがいずれ も使用でき るカ^ 例えば、 ク メ ン ヒ ド ロ キ シペルォキ シ ド等の ヒ ド ロ キ シペルォキ シ ド類、 水溶 性のペルォ ク ソ硫酸カ リ ウ ム、 ペルォ ク ソ硫酸ア ンモニ ゥ 厶、 過酸化水素、 ァ ゾ ビスイ ソ プチ ロ ニ ト リ ル、 ァ ゾ ビス シ ク ロへキサ ン カ ノレボニル、 ァ ゾ ビス吉草酸、 2, 2 ' — ァ ゾ ビス ( 2 — ア ミ ジ ノ プロパ ン ) · 2 塩酸塩等 を挙げる こ とができ る。 水溶性重合開始剤は、 1 種を単 独で使用でき又は 2 種以上を併用でき る。 水溶性重合開 始剤の使用量は特に制限さ れず、 広い範囲か ら適宜選択 でき る 力、'、 通常ォ レ フ ィ ン類の使用量に対 し、 0 . 0 1 〜 5 重量%程度、 好ま し く は 0 . 0 5 〜 1 重量 0 /6程度と すればよ い。 The water-soluble polymerization initiator is not particularly limited, and any conventionally known water-soluble polymerization initiator can be used. For example, hydroxyperoxides such as cumene hydroxyperoxide and water-soluble polymerization initiators; Potassium peroxosulfate, ammonium peroxosulfate, hydrogen peroxide, azobisisobutyronitrile, azobiscyclohexanocanolevonil, azobis Valeric acid, 2, 2'-azobis (2-amidinopropane) · dihydrochloride, etc. Can be mentioned. As the water-soluble polymerization initiator, one type can be used alone, or two or more types can be used in combination. The amount of the water-soluble polymerization initiator used is not particularly limited, and can be appropriately selected from a wide range. The amount is about 0.01 to 5% by weight based on the amount of the ordinary olefins used. Preferably, it should be about 0.05 to 1 weight 0/6 .
加温の際の温度は特に制限はない力 通常 5 0 ~ 9 0 °C程度、 好ま し く は 8 0 °C前後 とすればよ い。 混合に要 する 時間 も特に制限はないカ^ 通常 3 0 分〜 5 時間程度、 好ま し く は 1 〜 2 時間程度とすればよ い。  The temperature at the time of heating is not particularly limited. The force is usually about 50 to 90 ° C, preferably about 80 ° C. There is no particular limitation on the time required for mixing. Usually, it is about 30 minutes to 5 hours, preferably about 1 to 2 hours.
処理後、 濾過、 遠心分離等の通常の分離手段に従っ て 改質 ビス 力 ルバモ イ ル ヒ ド ラ ジ ンを分離 し、 乾燥すれば よい。  After the treatment, the modified bismuth rubamoyl hydrazine may be separated by a usual separation means such as filtration or centrifugation, and dried.
更に、 ビス カ ルノくモイ ル ヒ ド ラ ジ ンを微粉砕する方法 について説明する。 微粉砕は、 例えば、 ビス 力ルバ'モ イ ノレ ヒ ド ラ ジ ンの粉末を高圧粉砕機で処理す る こ と によ り 製造でき る。  Furthermore, a method for finely pulverizing bis-carnoyl hydrazine is described. The pulverization can be produced, for example, by processing a powder of bis-forced hydrazine hydrohydrazine with a high-pressure pulverizer.
高圧粉砕機と は、 例えば装置の側面の少な く と も 2 方 向か ら装置内部に高圧空気を噴出 して気流を発生さ せて 粉体を粉砕 し、 空気圧によ っ て装置内部に浮き 上がっ た 微粉状末を捕集す る 方式の も の であ り、 具体的には、 例 えば、 カ ウ ン タ ー ジ ヱ ッ ト ミ ノレ (オラ ンダ、 ァノレ ピネ社 製) 、 ク ロ ス ジ ェ ッ ト ミ ル ( (株) 栗本鉄工所製) 等を 挙げる こ とができ る。 A high-pressure crusher, for example, blows high-pressure air into the device from at least two directions on the side of the device to generate an air current to pulverize the powder, and floats inside the device by air pressure. It is a method of collecting the fine powder that has risen, and specifically, for example, a counter jet minole (The Netherlands, Ano Piné Co., Ltd.) Manufactured by Kurimoto Tekkosho Co., Ltd.) and Crossjet Mill (manufactured by Kurimoto Iron Works).
尚、 本発明では、 高圧粉砕機に よ る粉砕において、 空 気圧、 粉砕時間等を適宜選択する こ と によ り、 所望の微 粉状 ビス 力ルバモイ ノレ ヒ ドラ ジ ンを得る こ とができ る 力、 空気圧は通常 3 〜 8 k g f Z c m 2程度、 好ま し く は 5 ~ k g f Z c m 2程度、 粉砕時間は通常 5 0 0 0 〜 In the present invention, in the pulverization by a high-pressure pulverizer, by appropriately selecting the air pressure, the pulverization time, and the like, it is possible to obtain a desired finely powdered viscous rubamoinolehydrazine. that force, air pressure is usually 3 ~ 8 kgf Z cm 2 approximately, favored by rather is 5 ~ kgf Z cm 2 or so, the grinding time is usually 5 0 0 0 -
2 0 0 0 0 r p m程度、 好ま し く は 1 0 0 0 0 〜  About 200 000 rpm, preferably 100 000-
1 5 0 0 0 r p m程度とする のがよ い。  It is better to be about 150 000 rpm.
本発明では、 上記の よ う に して微粉砕さ れる ビス カル バモ イ ル ヒ ドラ ジ ン の う ち、 通常平均粒子径 2 0 z m以 下及び B E T比表面積 0. 5 m 2Z g以上の も の、 好ま し く は平均粒子径は 1 0 m以下及び B E T比表面積は 5 m 2ノ g以上の も のを使用する のがよ い。 平均粒子径が 2 を著 し く 越え るか及び Z又は B E T比表面積がIn the present invention, biscarbamoyl hydrazine which is finely pulverized as described above, usually has an average particle diameter of 20 zm or less and a BET specific surface area of 0.5 m 2 Zg or more. However, it is preferable to use those having an average particle diameter of 10 m or less and a BET specific surface area of 5 m 2 ng or more. The average particle size is significantly above 2 and the Z or BET specific surface area
0. 5 m 2Z g を大幅に下回る と、 未粉砕の ビス カルバモ ィ ル ヒ ドラ ジ ン と 同様に、 成形性の向上が不充分とな り、 製剤化によ り 得 られる ペ レ ツ 卜 の強度が低下する可能性 が生ずる。 本発明 におけ る平均粒子径は、 レーザー回折 式粒度分布測定装置 : (株) ホ リ バ製作所製 ] を用 いて 測定 した も のであ る。 ま た、 本発明におけ る B E T比表 面積は、 B E T比表面積測定装置 [ (株) 島津製作所製 ] を用いて測定 した ものであ る。 If it is significantly less than 0.5 m 2 Zg, as in the case of unground pulverized biscarbamoyl hydrazine, the moldability will not be sufficiently improved, and the pellet obtained by formulation will be insufficient. There is a possibility that the strength of the steel decreases. The average particle diameter in the present invention was measured using a laser diffraction type particle size distribution analyzer: Horiba, Ltd.]. The BET specific surface area in the present invention is a BET specific surface area measuring device [manufactured by Shimadzu Corporation] It was measured using.
こ の よ う に して得 られる微粉状 ビス 力 ルバモイ ル ヒ ド ラ ジ ン は、 そのま ま、 ガス発生基剤 と して用いる こ とが でき る 力 、 成形性や得 られる ガス発生剤の燃焼性能をよ り 一層向上さ せる と い う 観点カヽ ら は、 顆粒化 して用いる のが更に好ま しい。 顆粒の粒径は、 通常 0 . 0 5 〜 1 m m程度、 好ま し く は 0 . 1 〜 0 . 5 m m程度とする の がよ い。 顆粒化する に 当た っ て は、 公知の方法が採用で き、 例えば、 微粉状 ビス 力 ルバモイ ル ヒ ドラ ジ ン に必要 に応 じて適量の水又は温水を加え、 造粒及び乾燥すれば よい。 造粒に当た っ ては公知の方法が採用でき、 例えば. ス ク リ ュ ー型、 ロ ール型、 ブ レ ー ド型、 自 己成形型、 ラ ム型等の各種の押出造粒機を用 いる方法等を挙げる こ と ができ る。 ま た、 転動造粒法、 スプ レー ド ラ イ 法等を採 用 して も よい。  The finely powdered bismuth rubamoyl hydrazine obtained in this way can be used as it is as a gas generating base, the moldability, the formability of the obtained gas generating agent, and the like. From the viewpoint of further improving combustion performance, it is more preferable to use granules. The particle size of the granules is usually about 0.05 to 1 mm, preferably about 0.1 to 0.5 mm. For granulation, a known method can be employed.For example, if necessary, an appropriate amount of water or hot water is added to finely powdered bis-forced rubamoyl hydrazine, followed by granulation and drying. Good. Known methods can be used for granulation, for example, various extrusion granulations such as a screw type, a roll type, a blade type, a self-molding type, and a ram type. The method of using a machine can be mentioned. Alternatively, a rolling granulation method, a spray-dry method, or the like may be employed.
本発明ガス発生剤の他の一つの有効成分であ る 酸化剤 と しては、 硝酸塩又はォキソハ ロ ゲ ン酸塩を単独で使用 する 力、、 或いは硝酸塩とォキ ソハ ロ ゲ ン酸塩とを併用す る。  As an oxidizing agent which is another active ingredient of the gas generating agent of the present invention, a nitrate or an oxohalogenate is used alone, or a nitrate and an oxohalogenate are used. Are used together.
硝酸塩と しては、 例えば、 硝酸 リ チウ ム、 硝酸ナ ト リ ゥ ム、 硝酸カ リ ウ ム等のアルカ リ 金属塩、 硝酸マ グネ シ ゥ ム、 硝酸ノ リ ウ ム、 硝酸ス ト ロ ンチ ウ ム等のアルカ リ 土類金属塩、 硝酸ア ンモニ ゥ ム等のア ンモニ ゥ ム塩等を 挙げる こ とができ る。 その中で も アルカ リ 金属塩、 アル カ リ 土類金属塩等が好ま し く、 硝酸カ リ ウ ム、 硝酸ス ト 口 ン チ ウ ム等が特に好ま しい。 Examples of the nitrate include alkali metal salts such as lithium nitrate, sodium nitrate, and potassium nitrate, magnesium nitrate, sodium nitrate, and sodium nitrate. Alkaline such as um Examples include earth metal salts and ammonium salts such as ammonium nitrate. Of these, alkali metal salts and alkaline earth metal salts are preferred, and potassium nitrate and sodium nitrate are particularly preferred.
ォキ ソ ハ ロ ゲ ン酸塩 と しては公知の ものが使用でき、 例えば過ハ ロ ゲ ン酸塩、 ハ ロ ゲ ン酸塩等を挙げる こ とが でき る。 過ハ ロ ゲ ン酸塩の具体例 と しては、 例えば、 過 塩素酸 リ チ ウ ム、 過塩素酸カ リ ウ ム、 過塩素酸ナ ト リ ウ ム、 過臭素酸 リ チ ウ ム、 過臭素酸カ リ ウ ム、 過臭素酸ナ ト リ ウ ム等のアルカ リ 金属塩、 過塩素酸マ グネ シ ウ ム、 過塩素酸バ リ ウ ム、 過塩素酸カ ルシ ウ ム、 過臭素酸マ グ ネ シ ゥ ム、 過臭素酸バ リ ウ ム、 過臭素酸カ ルシ ウ ム等の アルカ リ 土類金属塩、 過塩素酸ア ンモニゥ 厶、 過臭素酸 ア ンモニゥ ム等の ア ンモニゥ ム塩等が挙げ られる。 ハ ロ ゲ ン酸塩の具体例 と しては、 例えば、 塩素酸 リ チ ウ ム、 塩素酸カ リ ウ ム、 塩素酸ナ ト リ ウ ム、 臭素酸 リ チウ ム、 臭素酸カ リ ウ ム、 臭素酸ナ ト リ ウ ム等のアルカ リ 金属塩- 塩素酸マ グネ シ ウ ム、 塩素酸バ リ ウ ム、 塩素酸カルシ ゥ ム、 臭素酸マ グネ シ ウ ム、 臭素酸バ リ ウ ム、 臭素酸カ ル シ ゥ ム等のアルカ リ 土類金属塩、 塩素酸ア ンモニゥ ム、 臭素酸ァ ンモニゥ ム等のァ ン モニゥ ム塩等が挙げ られる , こ れ らの中で も、 ハ ロ ゲ ン酸及び過ハ ロ ゲ ン酸のァノレ力 リ 金属塩が好ま し く、 過塩素酸カ リ ウ ム、 塩素酸力 リ ウ ム等が特に好ま しい。 Known oxohalogenates can be used, and examples thereof include perhalogenates and halogenates. Specific examples of perhalogenates include, for example, lithium perchlorate, potassium perchlorate, sodium perchlorate, lithium perbromate, Alkali metal salts such as potassium perbromate and sodium perbromate, magnesium perchlorate, barium perchlorate, calcium perchlorate, perbromine Alkaline earth metal salts such as magnesium acid salt, barium perbromate, and calcium perbromate; ammonia such as ammonium perchlorate and ammonium perbromate And the like. Specific examples of the halogenates include, for example, lithium chlorate, potassium chlorate, sodium chlorate, lithium bromate, and potassium bromate. Alkali metal salts such as sodium bromide, magnesium chlorate, barium chlorate, calcium chlorate, magnesium bromate, barium bromate , Alkaline earth metal salts such as calcium bromate, and ammonium salts such as ammonium chlorate and ammonium bromate. Ganoic acid and perhalogenic acid Metal salts are preferred, and potassium perchlorate and chlorinated lithium are particularly preferred.
硝酸塩及びォキ ソ ハ ロ ゲ ン酸塩は市販品をそのま ま使 用する こ と もでき、 ま たその形状、 粒径等は特に制限さ れず、 例えばその配合量、 各成分との配合比率、 ェアバ ッ グの容量等の各種条件に応 じて適宜選択 して使用すれ ばよい。  Nitrate and oxohalogenate can be used as they are on the market, and their shapes, particle sizes, etc. are not particularly limited. It may be appropriately selected and used according to various conditions such as the ratio and the capacity of the airbag.
ま た、 硝酸塩又はォキ ソハ ロ ゲ ン酸塩を単独で使用す る場合及び硝酸塩 とォキソハ ロ ゲ ン酸塩 とを併用する場 合のいずれにおいて も、 こ れ ら酸化剤の配合量は、 通常 酸素量を基準と して ビス 力 ルバモイ ル ヒ ドラ ジ ンを完全 に酸化燃焼 し得る化学量論量とすればよ いが、 ガス発生 基剤及び酸化剤の配合割合を適宜変更さ せる こ と によ り, 燃焼速度、 燃焼温度 ( ガス温度) 、 燃焼ガス組成等を任 意に調整でき る の で、 広い範囲か ら適宜選択する こ とが で き、 例えば、 ビ ス カ ノレ ノ 'モ イ ノレ ヒ ド ラ ジ ン 1 0 0 重量 部に対 して硝酸塩、 ォキソハロ ゲ ン酸塩又は硝酸塩と ォ キ ソ ハ ロ ゲ ン酸塩を 1 0 〜 4 0 0 重量部程度、 好ま し く は 1 0 0 〜 2 4 0 重量部程度配合 して も よい。 尚、 硝酸 塩 とォキ ソハ ロ ゲ ン酸塩と を併用する 場合、 こ れ らの混 合割合は特に制限 さ れず適宜選択すればよ い。 ォキ ソハ ロ ゲ ン酸塩の配合比が前記の量よ り 多い と燃焼温度が高 く な り、 爆轟の可能性が生 じ、 浮遊粒子状物質と な る ァ ノレカ リ 金属のハ ロ ゲ ン化物、 例えば塩化力 リ ゥ 厶が多量 に生成する ので、 好ま し く ない。 In both cases where nitrate or oxohalogenate is used alone or when nitrate and oxohalogenate are used in combination, the amount of these oxidizing agents is Normally, the stoichiometric amount may be sufficient to completely oxidize and burn the bis-powered rubamoyl hydrazine based on the oxygen amount.However, the mixing ratio of the gas generating base and the oxidizing agent may be appropriately changed. Thus, the combustion speed, the combustion temperature (gas temperature), the composition of the combustion gas, and the like can be arbitrarily adjusted, so that it is possible to appropriately select from a wide range. Nitrate, oxohalogenate, or nitrate and oxohalogenate is preferably used in an amount of about 100 to 400 parts by weight based on 100 parts by weight of hydrogen hydrazine. May be blended in an amount of about 100 to 240 parts by weight. When a nitrate and an oxohalogenate are used in combination, the mixing ratio thereof is not particularly limited and may be appropriately selected. If the mixing ratio of oxohalogenate is higher than the above-mentioned amount, the combustion temperature becomes high. This is not preferable because a large amount of halogenated metal, such as chlorinated lithium, is generated as a result of the possibility of detonation, which becomes suspended particulate matter.
本発明のエアバ ッ グ用ガス発生剤において、 有効成分 の一つ とな る燃焼触媒は、 主に燃焼温度を下げ、 ガス中 の C 0及び /又は N 0 X の濃度を低減化す る作用を有す る もの と考え られる。 燃焼触媒と しては、 周期律表第 4 〜 6 周期の金属の酸化物、 加熱によ り 前記金属酸化物を 生成 し得る含酸素金属化合物、 ヘテ ロ ポ リ 酸等が使用 さ れる。  In the gas generating agent for airbags of the present invention, the combustion catalyst, which is one of the active ingredients, mainly has an effect of lowering the combustion temperature and reducing the concentration of C0 and / or N0X in the gas. It is considered to have. As the combustion catalyst, an oxide of a metal having the fourth to sixth periods of the periodic table, an oxygen-containing metal compound capable of generating the metal oxide by heating, heteropoly acid, or the like is used.
周期律表第 4 〜 6 周期の金属の酸化物の具体例 と して は、 例えば、 酸化銅、 酸化ニ ッ ケル、 酸化 コバル ト、 酸 化鉄、 酸化 ク ロ ム、 酸化マ ンガ ン、 酸化亜鉛、 酸化カル シ ゥ 厶、 酸化チタ ン、 酸化バナ ジ ウ ム、 酸化セ リ ウ ム、 酸化ホル ミ ウ ム、 酸化イ ッ テル ビウ ム、 酸化モ リ ブデ ン- 酸化タ ン グステ ン、 酸化ア ンチモ ン、 酸化錫、 酸化チタ ン等を挙げる こ とができ る。 こ れ らの中で も、 酸化銅、 酸化ニ ッ ケル、 酸化 コバル ト、 酸化モ リ ブデ ン、 酸化夕 ン グステ ン、 酸化鉄、 酸化錫、 酸化亜鉛、 酸化ク ロ ム等 が好ま し く、 C u O、 C o O、 N i O、 N i 20 3 Specific examples of the metal oxides of the fourth to sixth periods of the periodic table include copper oxide, nickel oxide, cobalt oxide, iron oxide, chromium oxide, manganese oxide, and oxide. Zinc, calcium oxide, titanium oxide, vanadium oxide, cerium oxide, holmium oxide, ytterbium oxide, molybdenum oxide-tungsten oxide, oxide Antimony, tin oxide, titanium oxide, and the like can be given. Among these, copper oxide, nickel oxide, cobalt oxide, molybdenum oxide, oxide oxide, iron oxide, tin oxide, zinc oxide, chromium oxide, and the like are preferred. , C u O, C o O , N i O, N i 20 3
M o 0 3、 W 0 3、 C r 20 a . T i O a , S n O、 Z n O、 F e 20 3等が更に好ま しい。 こ れ らの金属酸化物には、 そ の水和物 も包含さ れ る。 タ ン グス テ ン酸化物の水和物 を例に とれば、 W 0 3 ' H 20等であ る。 こ れ らの金属酸 化物と しては、 好ま し く は B E T比表面積が 5 m 2 " g以 上、 よ り 好ま し く は 1 0 m 2ノ g以上、 更に好ま し く は 4 0 m 2ノ g以上の ものを使用する のがよ い。 尚、 上記金 属酸化物の中で、 M o 0、 W 0 3等は、 C O濃度及び N O X 濃度を同時に低減化 し得 る とい う 好ま しい特性を 有 してい る。 M o 0 3, W 0 3 , C r 2 0 a. T i O a, S n O, Z n O, F e 2 0 3 , etc. are more preferable arbitrariness. These metal oxides include: The hydrate is also included. Taking a hydrate of data down Goes te emission oxide as an example, W 0 3 'H Ru 2 0 Hitoshidea. Is as a child are these metal oxides, preferred to rather than the BET specific surface area of 5 m 2 "g or more on, rather than the preferred Ri good is 1 0 m 2 Roh g or more, and still more preferred to rather than the 4 0 m 2 Roh g have good to use more. Incidentally, in the above metals oxides, M o 0, W 0 3, etc., preferred would leave that obtained simultaneously reduce the CO concentration and NOX concentration It has new characteristics.
加熱によ り 周期律表第 4 〜 6 周期の金属の酸化物を生 成 し得 る含酸素金属化合物と しては特に制限さ れず、 公 知の も のを使用でき る。 加熱に よ り M o 0 3を生成する含 酸素モ リ ブデ ン化合物を例に とれば、 モ リ ブデ ン酸コバ ル 卜、 モ リ ブデン酸ニ ッ ケル等のモ リ ブデ ン酸の第 V I I I 属金属塩、 モ リ ブデ ン酸、 水酸化モ リ ブデ ン等であ る。 ま た、 加熱によ り W◦ 3を生成す る含酸素タ ン グステ ン化 合物は、 例えば、 タ ン グス テ ン酸とその金属塩等であ る。 タ ン グステ ン酸の金属塩と して は、 例えば、 タ ン グステ ン酸 リ チ ウ ム、 タ ン グステ ン酸カ リ ウ ム、 タ ン グステ ン 酸ナ ト リ ウ ム等のアルカ リ 金属塩、 タ ン グステ ン酸力ノレ シ ゥ ム、 タ ン グステ ン酸マグネ シ ウ ム等のアルカ リ 土類 金属塩、 タ ン グス テ ン酸コパ'ル ト、 タ ン グス テ ン酸ニ ッ ゲル、 タ ン グステ ン酸鉄等の第 VI I I属金属塩、 タ ン グス テ ン酸銅等を挙げる こ とができ る。 The oxygen-containing metal compound capable of producing an oxide of a metal having the fourth to sixth periods of the periodic table by heating is not particularly limited, and any known compounds can be used. Taking oxygen - containing Mo Li Bude down compounds to generate a M o 0 3 Ri by the heating in Examples, mode re Bude phosphate edge Le Bok, mode re Buden dihydrogen Tsu VIII, the mode re Bude phosphate Kell such Metal salts, molybdenic acid, and molybdenum hydroxide. Also, oxygen Motota emissions Gusute emissions reduction Gobutsu that generates a W◦ 3 Ri by the heating, for example, Ru metal salts thereof such as Der the motor down Holdings te phosphate. Examples of the metal salts of tangstenic acid include alkali metals such as lithium tangstenate, potassium tangstenate, and sodium tangstenate. Salts, alkaline earth metal salts such as magnesium tungstate, magnesium tungstate, copper tungstate, nickel tungstate Gels, Group VIII metal salts such as iron tungstate, tangs Copper tenate and the like can be mentioned.
ヘテ ロ ポ リ 酸の具体例 と しては、 例えば、 リ ンモ リ ブ デ ン酸、 リ ン タ ン グステ ン酸、 こ れ ら の金属塩等を挙げ る こ とができ る。 ヘテ ロ ポ リ 酸の金属塩と しては特に制 限 さ れないカ^ 例えば、 C o 塩、 N i 塩、 F e 塩等の第 VIII属金属塩、 M g塩、 S r 塩、 P b塩、 B i 塩等を挙 け る こ とができ、 これ らの中で も第 V I I I属金属塩が好ま し く、 C o 塩が特に好ま しい。  Specific examples of heteropolyacids include, for example, linmolibdenic acid, linguistic acid, and metal salts thereof. The metal salt of heteropolyacid is not particularly limited. For example, a Group VIII metal salt such as Co salt, Ni salt, Fe salt, Mg salt, Sr salt, P salt b salt, Bi salt and the like can be mentioned, and among them, Group VIII metal salt is preferable, and Co salt is particularly preferable.
これ らの燃焼触媒の 中で も、 C u O、 C o O、 N i O、 N i 2 O a . M o O a , W 03、 加熱によ り M o 03を生成す る含酸素モ リ ブデ ン化合物、 加熱によ り W 0 3を生成する 含酸素タ ン グステ ン化合物、 リ ンモ リ ブデ ン酸コパ'ル ト、 C r 20 3 , T i 0 2、 S n O、 Z n O、 F e 20 3等力 特に 好ま し く、 C o O、 N i O、 N i 2 O 3. M 0 O 3, W O 3, モ リ ブデ ン酸の第 V I I I属金属塩、 リ ンモ リ ブデ ン酸コノ ' ル ト 等がよ り 一層好ま しい。 Among these combustion catalyst, C u O, C o O , N i O, N i 2 O a. M o O a, W 0 3, that generates an M o 0 3 Ri by the heating including oxygen Mo Li Bude down compounds, oxygen Motota down Gusute emissions compounds which form W 0 3 Ri by the heating, re Nmo Li Bude phosphate Copa 'Le DOO, C r 20 3, T i 0 2, S n O, Z n O, F e 2 0 3 Hitoshiryoku rather specifically preferred, C o O, n i O , n i 2 O 3. M 0 O 3, WO 3, Group VIII metal salt of Mo Li Bude phosphate, Linmolibdenic acid phenol is more preferred.
上記燃焼触媒は、 1 種を単独で使用でき 又は 2 種以上 を併用でき る。  One of the above-mentioned combustion catalysts can be used alone, or two or more can be used in combination.
燃焼触媒の粒径は特に制限はな く、 例えば、 その配合 量、 他の成分との配合比率、 エアバ ッ グの容量等の各種 条件に応 じて広い範囲か ら適宜選択すればよ い。 本発明 のガス発生剤に燃焼触媒を配合する場合、 その配合量は 7/12849 The particle size of the combustion catalyst is not particularly limited, and may be appropriately selected from a wide range according to various conditions such as the amount of the catalyst, the ratio of the catalyst to other components, and the capacity of the airbag. When a combustion catalyst is blended with the gas generating agent of the present invention, the blending amount is 7/12849
21 特に制限はな く、 併用す る他の成分の種類や配合比率、 エアバ ッ グの容量等の各種条件に応 じて広い範囲か ら適 宜選択でき る。  21 There is no particular limitation, and it can be appropriately selected from a wide range according to various conditions such as the type and mixing ratio of other components used in combination and the capacity of the airbag.
燃焼触媒の配合量は、 酸化剤 と してォキ ソハ ロ ゲ ン酸 塩及び硝酸塩をそれぞれ単独で使用する か又は両方を併 用する かによ り 異な る。  The amount of the combustion catalyst varies depending on whether oxohalogenate and nitrate are used alone or in combination as oxidizing agents.
酸化剤 と してォキソハ ロ ゲ ン酸塩又は硝酸塩を単独で 使用する場合、 C O と N O x の両方のよ り 一層の低減化 を達成する と い う 観点か ら は、 ガス発生基剤 と酸化剤の 合計量 1 0 0 重量部に対 して通常 5 〜 1 5 0 重量部程度, 好ま し く は 1 0 ~ 1 2 0 重量部程度、 よ り 好ま し く は 3 0 〜 8 0 重量部程度とすればよい。  When oxohalogenate or nitrate is used alone as the oxidizing agent, the gas generating base and the oxidizing agent are used from the viewpoint of achieving further reduction of both CO and NOx. Usually about 5 to 150 parts by weight, preferably about 10 to 120 parts by weight, more preferably about 30 to 80 parts by weight, based on 100 parts by weight of the total amount of the agent It should be about the degree.
酸化剤 と してォキ ソハ ロ ゲ ン酸塩 と硝酸塩と を併用す る場合、 C O と N O x の両方の よ り 一層の低減化を達成 する と い う 観点か らは、 ガス発生基剤 と酸化剤 との合計 量 1 0 0 重量部に対 して通常 0. 1 〜 3 0 重量部程度、 好ま し く は 0. 5 ~ 2 5 重量部程度、 よ り 好ま し く は 3 〜 1 5 重量部程度 とすればよ い。  When oxohalogenate and nitrate are used in combination as oxidizing agents, the gas generating base is considered from the viewpoint of achieving a further reduction of both CO and NOx. 0.1 to 30 parts by weight, preferably 0.5 to 25 parts by weight, more preferably 3 to 1 part by weight based on 100 parts by weight of the total amount of It may be about 5 parts by weight.
尚、 加熱によ り 金属酸化物を生成する含酸素金属化合 物を用いる場合は、 生成する金属酸化物の量が上記規定 の範囲内にな る よ う にすればよ い。  When an oxygen-containing metal compound that generates a metal oxide by heating is used, the amount of the generated metal oxide may be set so as to fall within the range specified above.
本発明のエアバ ッ グ用ガス発生剤には、 更に燃焼調節 剤を配合するのが好ま しい。 燃焼調節剤は、 一般的に燃 焼温度を下げた り、 燃焼速度を調節 した り、 ガス発生剤 の製造、 輸送、 保存等の工程において、 ガス発生剤が火 災等に巻き込まれ又は強い衝撃を受けて爆森するのを防 止 した りするために使用される。 The airbag gas generating agent of the present invention further includes It is preferable to add an agent. Combustion regulators generally lower the combustion temperature, adjust the combustion rate, and cause gas generators to become involved in fires or other impacts in the process of manufacturing, transporting, or storing gas generating agents. It is used to prevent the explosion forest from receiving fire.
燃焼調節剤と しては、 例えば、 下記 (ィ ) 〜 (チ) の もの等を挙げる こ とができ る。  Examples of the combustion regulator include the following (a) to (h).
(ィ ) B、 A l、 M g、 T i、 Z r、 M o 等の金属単体 (口) A l、 M g、 S i、 B等の周期律表第 2 〜 3周期 元素の酸化物、 水酸化物、 炭酸塩、 重炭酸塩 (好ま し く は、 B 203、 水酸化ァノレ ミ ニゥ ム、 ベ ン ト ナイ ト、 アル ミ ナ、 珪藻土、 二酸化珪素等) (B) Simple metals such as B, Al, Mg, Ti, Zr, Mo, etc. (Mouth) Oxides of elements from the second to third periods of the periodic table, such as Al, Mg, Si, B, etc. , hydroxides, carbonates, bicarbonates (the rather then preferred, B 2 0 3, hydroxide Anore Mi Niu arm, base down bets Nai DOO, Aluminum Na, diatomaceous earth, silicon dioxide, etc.)
(ハ) N a、 K等のアルカ リ 金属の炭酸塩、 重炭酸塩、 酸化物  (C) Alkali metal carbonates, bicarbonates, oxides such as Na and K
(二) C a、 M g、 B a、 S r 等のアルカ リ 土類金属の 炭酸塩、 重炭酸塩  (Ii) Alkaline earth metal carbonates and bicarbonates such as Ca, Mg, Ba, and Sr
(ホ) 前記 ( 口) 乃至 (ハ) 以外の、 周期律表第 4 〜 6 周期元素 (例えば、 Z n、 C u、 F e、 P b、 T i、 V、 (E) Periodic table 4th to 6th periodic elements other than the above (mouth) to (c) (for example, Zn, Cu, Fe, Pb, Ti, V,
C e、 H o、 C a、 Y b等) の塩化物、 炭酸塩、 硫酸塩 (へ) カ ルボキ シ メ チルセノレロ ー ス、 ヒ ド ロ キ シ メ チル セルロース、 これ らのエーテル、 微結晶性セルロース粉 末等のセル ロ ー ス系化合物 ( ト ) 可溶性デ ン プ ン、 ポ リ ビニルアルコ ール、 その部 分ゲ ン化物等の有機高分子化合物 Ce, Ho, Ca, Yb, etc.) chlorides, carbonates, sulphates (f) carboxymethyl chillenololose, hydroxymethyl cellulose, their ethers, microcrystalline Cellulose compounds such as cellulose powder (G) Organic polymer compounds such as soluble starch, polyvinyl alcohol, and partial genated products
(チ) グ リ シ ン等のア ミ ノ 酸、 ァス コ ノレ ビ ン酸、 ク ェ ン 酸等の有機カルボ ン酸等の有機酸  (H) Organic acids such as amino acids such as glycine, organic carboxylic acids such as acetic acid, and citric acid.
上記燃焼調節剤の 中で も、 例えば、 (ィ ) 〜 (二) や (チ) のィ匕合物力べ好ま し く、 B、 A l、 T i、 Z r 等の 金属単体、 B 2 0 3、 A 】 2 0 3等の金属酸化物、 炭酸 リ チ ゥ ム、 炭酸マグネ シ ウ ム、 炭酸カノレシ ゥ ム等のアルカ リ 金属及びアルカ リ 土類金属の炭酸塩、 水酸化アル ミ ニ ゥ 厶等の金属水酸化物、 グ リ シ ン等のア ミ ノ 酸等が特に好 ま しい。 Among the above-mentioned combustion regulators, for example, it is preferable to use (i) to (ii) or (h), and to use a simple metal such as B, Al, Ti, Zr, or B 20. 3, a] 2 0 metal oxides such as 3, carbonate Li Ji © beam, carbonate magnesiate U beam, alkali metal and alkaline earth metal carbonates such as carbonates Kanoreshi © beam, hydroxide Aluminum two © Particularly preferred are metal hydroxides such as aluminum and amino acids such as glycine.
燃焼調節剤は、 1 種を単独で使用でき又は 2 種以上を 併用でき る。 燃焼調節剤は市販品をその ま ま 使用 して も よ い。 ま た、 その粒度は特に制限されず、 例えば、 その 配合量、 他成分と の配合比率、 エアバ ッ グの容量等の各 種条件に応 じて広い範囲か ら適宜選択すればよい。  One type of combustion regulator can be used alone, or two or more types can be used in combination. Commercially available products may be used as the combustion control agents. The particle size is not particularly limited, and may be appropriately selected from a wide range according to various conditions such as, for example, the compounding amount, the mixing ratio with other components, and the airbag capacity.
本発明のガス発生剤に燃焼調節剤を配合する場合、 そ の配合量は特に制限さ れず、 ビス カルバモイ ル ヒ ドラ ジ ン と酸化剤 との混合比率、 燃焼調節剤その ものの種類、 併用する他の成分の種類、 エアバ ッ グの容量等の各種条 件に応 じて広い範囲か ら適宜選択でき るカ^ 通常 ビス力 ルバ'モイ ル ヒ ドラ ジ ン と酸化剤 との合計量 1 0 0 重量部 に対 して、 0 . 5 〜 5 0 重量部程度、 好ま し く は 1 〜 3 0 重量部程度、 よ り 好ま し く は 3 〜 1 5 重量部程度と すればよ い。 尚、 燃焼調節剤 と して硼素を用い る場合、 よ り 低い燃焼温度及び適度な燃焼速度を得る と い う 観点 力、 ら、 その使用量は ビス カ ルパ'モイ ノレ ヒ ドラ ジ ン と酸化 剤 と の合計量 1 0 0 重量部に対 して 0 . 5 〜 5 重量部程 度、 好ま し く は 1 〜 3 重量部程度 とする のがよい。 When a combustion regulator is blended with the gas generating agent of the present invention, the blending amount is not particularly limited, and the mixing ratio of biscarbamoyl hydrazine and the oxidizing agent, the type of the combustion regulator itself, and the other Can be appropriately selected from a wide range according to various conditions such as the type of component of the air bag and the capacity of the air bag. ^ Normal screw strength Luba 'Total amount of hydrazine and oxidant 100 Parts by weight The amount may be about 0.5 to 50 parts by weight, preferably about 1 to 30 parts by weight, and more preferably about 3 to 15 parts by weight. When boron is used as a combustion regulator, the amount of bismuth phenol and oxidized biscalpa molybdenum hydrazine is lower than the viewpoint of obtaining a lower combustion temperature and an appropriate combustion rate. The amount is preferably about 0.5 to 5 parts by weight, and more preferably about 1 to 3 parts by weight, based on 100 parts by weight of the total amount of the agent.
本発明のエアバ ッ グ用 ガス発生剤においては、 スラ グ 形成剤を添加する こ とができ る。 ス ラ グ形成剤は、 ガス 発生剤の燃焼後に発生する残渣を固形化 し、 エアバ ッ グ イ ン フ レ一 夕 一内の フ イ ソレタ ー に よ っ て除去 し易 く する ための添加剤であ る。 ス ラ グ形成剤 と して は公知の もの を使用でき、 例えば、 既に燃焼調節剤 と して例示 した二 酸化珪素やアル ミ ナ、 酸化ホ ウ 素 (特に B 2 0 等を挙 げる こ とができ、 こ れ らの 1 種を単独で使用でき 又は 2 種以上を併用でき る。 本発明のガス発生剤に ス ラ グ形成 剤を配合する場合、 その配合量は特に制限 さ れず、 ガス 発生剤の組成等に応 じて広い範囲か ら適宜選択すればよ い。 例えば、 二酸化珪素をス ラ グ形成剤 と して用い る場 合、 その配合量は、 モル比で酸化剤の 1 / 2 付近が適当 であ る。 アルカ リ 土類金属を含む酸化物及び反応 して酸 化物を生成する アルカ リ 土類金属化合物、 例えば酸化ス 卜 ロ ンチ ウ ムゃ硝酸ス ト ロ ンチ ウ ム等 も ス ラ グ形成剤 と して使用でき る。 In the gas generating agent for an air bag of the present invention, a slag forming agent can be added. The slag forming agent is an additive that solidifies the residue generated after the combustion of the gas generating agent and makes it easier to remove by the filsator inside the airbag inflator. It is. Is a scan lag forming agent can be used known ones, for example, already silicon dioxide and Aluminum Na exemplified by the combustion modifiers, oxidation boric arsenide (especially this elevation gel B 2 0 etc. When the slag forming agent is added to the gas generating agent of the present invention, the amount thereof is not particularly limited. It may be appropriately selected from a wide range according to the composition of the gas generating agent, etc. For example, when silicon dioxide is used as the slag forming agent, the amount of the oxidizing agent is determined by the molar ratio of the oxidizing agent. An appropriate value is around 1/2 An oxide containing an alkaline earth metal and an alkaline earth metal compound which reacts to form an oxide, such as sulfur oxide Tronium, strontium nitrate, etc. can also be used as a slag-forming agent.
更に、 本発明のガス発生剤の好ま しい特性を損なわな い範囲で、 従来か ら こ の用途に用い られて いる各種添加 剤が配合さ れていて も よ い。  Further, various additives conventionally used for this purpose may be blended as long as the preferable properties of the gas generating agent of the present invention are not impaired.
更に本発明では、 本発明のガス発生剤の好ま しい特性 を損なわない範囲で、 硝酸塩及びォキソハ ロ ゲ ン酸塩以 外の公知の酸化剤の少な く と も 1 種を併用する こ とがで き る。 該酸化剤 と しては特に制限さ れず、 従来か ら 当該 分野で使用 さ れる ものか ら適宜選択すればよ い力、'、 高温 下で酸素を発生及び Z又は供給 し得る ものが好ま し く、 例えば、 亜硝酸塩、 金属過酸化物、 超酸化物、 オ ゾ ン化 合物等を挙げる こ とができ る。 亜硝酸塩と しては、 例え ば、 亜硝酸 リ チウ ム、 亜硝酸ナ ト リ ウ ム、 亜硝酸力 リ ウ ム等のアルカ リ 金属塩、 亜硝酸マ グネ シ ウ ム、 亜硝酸バ リ ウ ム、 亜硝酸カ ルシ ウ ム等のアルカ リ 土類金属塩等を 挙げる こ とができ る。 金属過酸化物と して は、 例え ば、 過酸化 リ チ ウ ム、 過酸化ナ ト リ ウ ム、 過酸化カ リ ウ ム等 のアルカ リ 金属塩、 過酸化マ グネ シ ウ ム、 過酸化カルシ ゥ 厶、 過酸化バ リ ウ ム等のアルカ リ 土類金属塩等を挙げ る こ と ができ る。 超酸化物と しては、 例えば、 超酸化ナ ト リ ウ ム、 超酸化カ リ ウ ム等のアルカ リ 金属化合物、 超 酸化カ ル シ ウ ム、 超酸ィヒス ト ロ ンチ ウ 厶、 超酸化バ リ ウ 厶等のアルカ リ 土類金属化合物、 超酸化ル ビ ジ ウ ム、 超 酸化セ シ ウ ム等を挙げる こ とができ る。 オ ゾ ン化合物 と しては、 例えば、 一般式 M 0 3 (式中 Mは N a、 K、 R b C s 等の I a 族元素を示す。 ) で表わ さ れる化合物が挙 げ られる。 本発明においては、 二硫化モ リ ブデ ン等の金 属硫化物、 ビスマ ス含有化合物、 鉛含有化合物等 も酸化 剤 と して使用でき る。 こ れ らの酸化剤は市販品をそのま ま 使用する こ と も でき、 ま たその形状、 粒径等は特に制 限 されず、 例えばその配合量、 併用する各成分の種類や 配合比率、 エアバ ッ グの容量等の各種条件に応 じて適宜 選択 して使用すればよい。 Furthermore, in the present invention, at least one of known oxidizing agents other than nitrates and oxohalogenates can be used in combination as long as the preferable properties of the gas generating agent of the present invention are not impaired. Wear. The oxidizing agent is not particularly limited, and may be suitably selected from those conventionally used in the art, and those which can generate and / or supply oxygen at high temperature and are preferred. Examples include nitrites, metal peroxides, superoxides, ozone compounds and the like. Examples of the nitrite include alkali metal salts such as lithium nitrite, sodium nitrite, and lithium nitrite, magnesium nitrite, and barium nitrite. And alkaline earth metal salts such as calcium nitrite and the like. Examples of the metal peroxide include alkali metal salts such as lithium peroxide, sodium peroxide, and potassium peroxide, magnesium peroxide, and peroxide. Alkaline earth metal salts such as calcium and barium peroxide can be mentioned. Examples of the superoxide include alkali metal compounds such as sodium superoxide and potassium superoxide, and superoxide. Alkaline earth metal compounds such as calcium oxide, super-histonium oxide, and barium superoxide, rubidium superoxide, cesium superoxide and the like. Can be done. Is the o zone down compounds, for example, the formula M 0 3 (wherein M is N a, K, shows the I a group element such as a R b C s.) Compounds I table are exemplified up by . In the present invention, metal sulfides such as molybdenum disulfide, bismuth-containing compounds, lead-containing compounds and the like can also be used as the oxidizing agent. These oxidizing agents may be used as they are commercially available, and their shape, particle size, etc. are not particularly limited.For example, the amount of the oxidizing agent, the type and the mixing ratio of each component used in combination, It may be appropriately selected and used according to various conditions such as the capacity of the air bag.
上記の本発明 ガス発生剤の好ま しい実施態様には、 ス ラ グ形成剤及びそれ以外の公知の添加剤が含ま れていて も よい。  Preferred embodiments of the gas generating agent of the present invention described above may include a slag forming agent and other known additives.
本発明においては、 本発明の ガス発生剤の熱安定性、 製剤化の し易 さ 等をよ り 一層向上させる ために、 ガス発 生基剤及び/又はガス発生基剤以外の成分の少な く と も 1 種に、 カ ッ プ リ ン グ剤又はキ レー ト剤を用 いて表面処 理を施 して も よ い  In the present invention, in order to further improve the thermal stability, ease of formulation, etc. of the gas generating agent of the present invention, the gas generating base and / or components other than the gas generating base are reduced. Both types may be surface-treated with a coupling or chelating agent.
。 カ ッ プ リ ン グ剤 と しては特に制限さ れず公知の ものを 使用でき、 例えば、 ァ ー ァ ミ ノ プロ ピル ト リ エ ト キ シ シ ラ ン、 ァ ー グ リ シ ジノレォキシプロ ビル ト リ メ ト キ シ シ ラ ン、 メ チル ト リ メ ト キ シ シ ラ ン等の シ ラ ン系カ ッ プ リ ン グ剤、 イ ソ プロ ピ ノレ ト リ イ ソ ステア ロ イ ノレチタ ネ ー ト 等 のチタ ネ ー ト 系 カ ッ プ リ ン グ斉 IJ、 ァセ 卜 アルコキ シアル ミ ニ ゥ ム ジイ ソ プロ ピ レー ト 等のアル ミ ニウ ム系カ ッ プ リ ン グ剤等を挙げる こ とができ る。 ま たキ レー ト剤と し て も公知の ものを使用でき、 例えば、 エチ レ ン ジァ ミ ン 4 酢酸 ( E D T A ) 及びその金属塩 ( E D T A . 2 N a 塩、 E D T A . 2 K塩、 E T D A . 2 L i 塩、 E D T A · 2 ア ンモニゥ 厶塩等) 、 ジェチノレジチォカルバ ミ ン酸 ナ ト リ ウ ム等を挙げる こ とができ る。 表面処理は通常の 方法に従い、 適当 な溶媒中又は無溶媒下で、 被処理成分 と カ ツ プ リ ン グ剤及び /又はキ レ一 ト 剤 と を混合する こ と によ り 行なわれ る。 . The coupling agent is not particularly limited, and any known coupling agent can be used. For example, amide aminopropyl triethoxy Silane-based coupling agents such as lan, arginosine propylenoxy-produced methoxysilane, methyltrimethoxysilane, isopropynole Titanium-based couplings such as triisostealoinolecitaneate, etc.Alminium-based capacitors such as IJ, acetate alcohol miniatures, etc. Examples include a coupling agent. Known chelating agents can also be used. Examples thereof include ethylenediamine tetraacetic acid (EDTA) and its metal salts (EDTA.2Na salt, EDTA.2K salt, ETDA 2Li salt, EDTA / 2 ammonium salt, etc.), sodium getinoresitiocarbamate and the like. The surface treatment is carried out by mixing the component to be treated with a coupling agent and / or a chelating agent in an appropriate solvent or in the absence of a solvent according to a usual method.
本発明のガス発生剤は、 ビス カルメくモイ ル ヒ ド ラ ジ ン, 酸化剤及び必要に応 じてその他の成分を通常の方法に従 つ て混合する こ と によ り、 製造さ れる。  The gas generating agent of the present invention is produced by mixing bis-carbamide molybdenum hydrazine, an oxidizing agent and, if necessary, other components according to a usual method.
本発明のガス発生剤は、 適当な形状に製剤化する こ と ができ る。 例えば、 本発明のガス発生剤にバィ ン ダ一を 適量混合 して打錠又は打錠乾燥すればよい。 その際、 水 又は温水を適量加え る のが安全上特に好ま しい。 バイ ン ダ一 と しては斯かる 目 的に常用 さ れている も のを使用す ればよ い。 製剤形状は特に制限はな く、 例え ば、 ペ レ ツ ト 状、 デ ィ ス ク 状、 球状、 棒状、 中空円筒状、 こ んぺい 糖状、 テ ト ラ ポ ッ ト 状等を挙げ る こ とができ、 無孔の も ので も よ いが有孔状の もの (例えば煉炭状の も の) で も よ い。 更に、 ペ レ ッ ト状、 デ ィ ス ク 状の も のは、 片面又 は両面に 1 個〜数個程度の突起を設けて も よい。 突起の 形状は特に制限さ れず、 例えば、 円柱状、 円錐状、 多角 錐状、 多角柱状等を挙げる こ とができ る。 更に、 本発明 ガス発生剤の製剤の大き さ も特に制限 さ れず、 広い範囲 か ら適宜選択でき る 力 燃焼温度をよ り 一層低 く し且つ よ り 一層適度な燃焼速度を得る ために、 粒径 0 . 3 〜 1 . 5 m m程度、 好ま し く は前記粒径の粒状に製剤化す る のがよい。 The gas generating agent of the present invention can be formulated into an appropriate form. For example, an appropriate amount of a binder may be mixed with the gas generating agent of the present invention, followed by tableting or tablet drying. At this time, it is particularly preferable to add an appropriate amount of water or hot water for safety. Use a binder that is commonly used for such purposes. Just do it. The formulation is not particularly limited, and examples thereof include pellets, discs, spheres, spheres, rods, hollow cylinders, sugary sugars, tetrapods, and the like. It can be non-porous or perforated (for example, briquette-like). Further, the pellet-shaped or disk-shaped one may have one to several projections on one or both sides. The shape of the projection is not particularly limited, and examples thereof include a columnar shape, a conical shape, a polygonal pyramid shape, and a polygonal columnar shape. Further, the size of the preparation of the gas generating agent of the present invention is not particularly limited, and the particle size is selected in order to further lower the combustion temperature, which can be appropriately selected from a wide range, and to obtain a more appropriate combustion rate. It is preferable to formulate into a granule having a diameter of about 0.3 to 1.5 mm, preferably the above-mentioned particle diameter.
或いは、 本発明 ガス発生剤の各成分をそれぞれ単独で 製剤化 し、 こ れ ら を混合 して使用 して も よ い。  Alternatively, each of the components of the gas generating agent of the present invention may be formulated individually, and these may be mixed and used.
上記のよ う に して製剤化さ れた本発明ガス発生剤は、 ポ リ ェチ レ ン等の合成樹脂製又は金属製の容器に充填す る こ と によ り、 安全に保管及び輸送す る こ とができ る。  The gas generating agent of the present invention formulated as described above can be safely stored and transported by being filled in a synthetic resin or metal container such as polyethylene. can do.
本発明ガス発生剤は、 自動車に限定さ れず、 各種輸送 用機器に搭載さ れ るエアバ ッ グ シ ステムのガス発生源と して好適に使用で き る。  The gas generating agent of the present invention is not limited to automobiles, and can be suitably used as a gas generating source of an air bag system mounted on various transportation devices.
発明を害施するための最 _ の形態 以下に実施例、 比較例及び試験例を挙げ、 本発明を具 体的に説明する。 以下において用 いた原料の製造会社は 特に断 ら ない限 り、 次の通 り であ る。 _ The best form to harm the invention Hereinafter, the present invention will be specifically described with reference to Examples, Comparative Examples, and Test Examples. The manufacturers of the raw materials used below are as follows unless otherwise specified.
ビス カ ノレ ノ モイ ゾレ ヒ ドラ ジ ン ( B C H ) : 大塚化学 (株) 製  Biscanolenomoisolehydrazine (BCH): manufactured by Otsuka Chemical Co., Ltd.
ァ ゾ ジ カルボ ンア ミ ド ( A D C A ) : 大塚化学 (株) 製  Azoji Carbon Amide (ADC): Otsuka Chemical Co., Ltd.
硝酸カ リ ウ ム : 大塚化学 (株) 製  Potassium nitrate: Otsuka Chemical Co., Ltd.
過塩素酸カ リ ウ ム : 日 本カ ー リ ツ ト (株) 製  Potassium perchlorate: manufactured by Nihon Carrit Co., Ltd.
二酸化珪素 : 商品名ニ ッ プシ ール N P S、 日 本 シ リ カ 工業 (株) 製  Silicon dioxide: Nippseil NPS, trade name, manufactured by Nihon Silica Industry Co., Ltd.
可溶性デンプン (デ ンプン ) : 試薬一級品、 和光純薬 (株) 製  Soluble starch (starch): First-class reagent, manufactured by Wako Pure Chemical Industries, Ltd.
C u O : 比表面積 4 8 m 2Z g及び平均粒子径約 7. 4 m. 日 揮化学 (株) CuO: specific surface area 48 m 2 Z g and average particle size about 7.4 m. JGC Chemicals, Inc.
M o 0 3 : 日 本無機化学工業 (株)  Mo03: Japan Inorganic Chemical Industry Co., Ltd.
ま た、 以下において 「部」 及び 「%」 と あ る のは、 特 に断わ らない限 り それぞれ 「重量部」 及び 「重量%」 を 示す。  In the following, “parts” and “%” indicate “parts by weight” and “% by weight”, respectively, unless otherwise specified.
実施例 1 Example 1
ビス 力ルバモイ ル ヒ ドラ ジ ン 4 5 部、 過塩素酸力 リ ウ ム 7 2. 1 部、 硝酸カ リ ウ ム 1 0 部、 M 0 0 31 0 部及び 二酸化珪素 1 部の各粉末をよ く 混合 し、 こ れにデ ンプ ン 含有量が 3. 5 部 とな る よ う に可溶性デ ン プ ンの 2 0 % 水溶液を加えて更に混合 し、 湿潤粉体を製造 した。 こ の 湿潤粉体を造粒機に よ り 造粒 し、 得 られた湿潤顆粒を乾 燥 し、 更に油圧式打錠成形機にて押圧 し、 ガス発生剤の ペ レ ッ ト (径 6 m m、 厚さ 3 m m、 重量 0. 1 5 g ) を 製造 した。 45 parts of bismuth hydramoyl hydrazine, 72.1 parts of perchloric acid lime, 10 parts of potassium nitrate, M 0 3 10 parts and One part of each powder of silicon dioxide is mixed well, and a 20% aqueous solution of soluble starch is added to the mixture so that the starch content becomes 3.5 parts. Powder was produced. This wet powder is granulated by a granulator, and the obtained wet granules are dried and further pressed by a hydraulic tableting machine to form a pellet (diameter 6 mm) of a gas generating agent. , With a thickness of 3 mm and a weight of 0.15 g).
実施例 2 Example 2
過塩素酸カ リ ウ ムの配合量を 6 7. 7 部に変更 し、 且 つ M o 0 3に代えて C u O l O 部を使用す る以外は、 実施 例 1 と 同様に して本発明ガス発生剤のペ レ ツ ト を製造 し た。 The amount of perchloric acid value Li U beam was changed to 6 7.7 parts, except that use C u O l O unit in place of the且one M o 0 3, the same procedure as in Example 1 A pellet of the gas generating agent of the present invention was produced.
比較例 1  Comparative Example 1
ァ ゾジ カ ルボ ンア ミ ド 4 5 部、 過塩素酸カ リ ウ ム 5 6. 3 部、 硝酸カ リ ウ ム 1 0 部、 二酸化珪素 1 部及び M o 0 36 部の各粉末をよ く 混合 し、 こ れにデ ンプ ン含有 量が 1. 5 部とな る よ う に可溶性デ ンプ ンの 1 0 %水溶 液を加えて更に混合 し、 湿潤粉体を製造 した。 こ の湿潤 粉体を造粒機に よ り 造粒 して乾燥 した後、 更に打錠成形 機にて押圧 し、 ガス発生剤のペ レ ッ ト (径 6 m m、 厚さ 3 m m、 重量 0. 1 5 g ) を製造 した。 § zone di Ca Rubo N'a mi de 4 5 parts, perchloric oxide Li c arm 5 6.3 parts of 1 0 parts nitrate Ca Li c arm, each powder of 1 part of silicon dioxide and M o 0 3 6 parts Then, a 10% aqueous solution of soluble starch was added to the mixture so that the starch content became 1.5 parts, and further mixed to produce a wet powder. The wet powder is granulated by a granulator and dried, and then pressed by a tableting machine to form a pellet of a gas generating agent (diameter 6 mm, thickness 3 mm, weight 0%). . 15 g).
試験例 1 径 7 m mのガス噴出孔を備え、 伝火薬 と してボ ロ ン Z 石肖酸カ リ ウ ム 0. 8 gが装填さ れたイ ン フ レ 一 夕 一の燃 焼室に、 実施例 1 〜 2 及び比較例 1 で得 ら れたガス発生 剤のペ レ ツ 卜 を充填 した板厚 0. 3 m mの アル ミ ニ ウ ム 製カ ッ プを装填 し た。 こ のイ ン フ レ一 夕 一を 6 0 リ ッ ト ルタ ン ク 内に設置 し、 電流を流 して作動さ せてガス発生 剤のペ レ ツ ト を燃焼さ せ、 イ ン フ レ一タ ー 内及び 6 0 リ ッ ト ルタ ン ク 内の圧力及び温度を測定 した。 ま た燃焼後 の 6 0 リ ッ ト ノレタ ン ク 内のガスを採取孔よ り 1 リ ッ ト ノレ テ ドラ 一バ ッ グに採取 し、 ガス 中の C 0濃度及び λ' 0 X 濃度を検知管を用 いて測定 した。 結果を表 1 に示す。 Test example 1 Example of a combustion chamber equipped with a gas exhaust hole with a diameter of 7 mm and filled with 0.8 g of Boron Z sodium phosphate as a transfer medium A 0.3 mm-thick aluminum cup filled with the gas generating agent pellets obtained in Examples 1 and 2 and Comparative Example 1 was loaded. This inflator is placed in a 60 liter tank and is operated by passing an electric current to burn the pellets of the gas generating agent. The pressure and temperature in the tank and in the 60 liter tank were measured. In addition, the gas in the 60-litre tank after combustion is sampled from a sampling hole into a 1-litre bag, and the C0 concentration and λ'0X concentration in the gas are detected. It was measured using a tube. Table 1 shows the results.
尚、 表 1 中の英記号は下記の意味であ る。  The English symbols in Table 1 have the following meanings.
C P m a x : イ ン フ レ 一 夕一-の燃焼室 ( チ ャ ンノく一 ) 内の最大圧力 ( k g i Z c m ^ a  C P max: the maximum pressure (kg i Z cm ^ a) in the combustion chamber
T P m a x : 6 0 リ ッ ト ノレタ ン ク 内の最大圧力 ( k g f Z c m 2 ) 。 ガス発生剤のガス発生能力を示すパラ メ 一 タ ーであ る。 TP max: The maximum pressure (kgf Z cm 2 ) within the 60-litre tank. This parameter indicates the gas generating capacity of the gas generating agent.
t T P m a X : 6 0 リ ッ ト ノレタ ン ク 内の圧力が最大に な る ま での所要時間 ( m s e c ) 。 エアバ ッ グが展開す る 時の、 展開速度を模擬するパラ メ ー タ ー。  tTPMaX: Time required for the pressure in the 60 litre tank to reach its maximum (msec). A parameter that simulates the deployment speed when the airbag is deployed.
t T P 9 0 : 6 0 リ ッ ト ルタ ン ク 内の圧力が最大値の 9 0 % にな る ま での所要時間 ( m s e c: ) 。 エアバ ッ グ が展開する 時の、 展開速度を模擬するパラ メ ー タ t TP 90: Time required for the pressure in the 60 liter tank to reach 90% of the maximum value (msec:). Airbag Parameter that simulates the deployment speed when
表 1  table 1
Figure imgf000034_0001
Figure imgf000034_0001
表 1 か ら、 本発明のガス発生剤が、 ァ ゾ ジカ ルボ ンァ ミ ドをガス発生基剤とする ガス発生剤と 同等の燃焼速度 を有 し、 後ガス中の C O や N O X 等の有毒成分の濃度 も 同等程度に低い こ とが判 る。  From Table 1, it can be seen that the gas generating agent of the present invention has the same combustion rate as the gas generating agent using azocarbonamide as the gas generating base, and the toxic components such as CO and NOX in the post-gas. It can also be seen that the concentration of Hb is as low as the same.
比較例 2  Comparative Example 2
ビ ス カ ノレバ モ イ ソレ ヒ ド ラ ジ ン に 代え て ァ ゾ ジ 力 ノレ ボ ン ア ミ ドを用い る以外は、 実施例 2 と 同様に操作 し、 ガス 発生剤のペ レ ツ ト を製造 した。  Manufacture of a pellet of a gas generating agent in the same manner as in Example 2 except that azozinolamide is used instead of viscanoleva moisolehydrazine. did.
試験例 2  Test example 2
実施例 2 で得 られたガス発生剤のペ レ ッ ト を、 1 0 7 °Cの恒温機中にて 4 0 0 時間保存 して重量残存率 (% ) を算出 し、 ガス発生基剤の分解の程度を調べた。 実施例 97/12849 The pellet of the gas generating agent obtained in Example 2 was stored in a thermostat at 107 ° C. for 400 hours, and the residual weight ratio (%) was calculated. The extent of decomposition was investigated. Example 97/12849
33  33
2 の ガス発生剤は、 重量残存率が 9 9. 5 %以上であ り、 ビス 力 ルバモイ ノレ ヒ ドラ ジ ンが実質的に分解 していない こ とが確認さ れた。 The gas generating agent of No. 2 had a residual weight ratio of 99.5% or more, and it was confirmed that the bismuth rubamoinolehydrazine was not substantially decomposed.
一方、 比較例 2 のガス発生剤について も、 保存時間を 1 9 0 時間 とする以外は上記と 同様に して重量残存率 ( % ) を調べた と こ ろ、 重量残存率は 7 5 %であ っ た。 保存時間が本発明のガス発生剤のペ レ ツ 卜 の 1 / 2 以下 であ る に もかかわ らず、 ァ ゾジ カルボ ン ア ミ ドの分解力、' かな り 進行 してい る こ とが判る。  On the other hand, also for the gas generating agent of Comparative Example 2, the residual weight ratio (%) was examined in the same manner as described above except that the storage time was set to 190 hours. The residual weight ratio was 75%. there were. Despite the storage time being less than half of the pellet of the gas generating agent of the present invention, the decomposition power of azodicarbon amide, and the fact that it has progressed considerably. I understand.
以上の結果か ら、 本発明のガス発生剤が、 ァ ゾジ カル ボ ンア ミ ドをガス発生基剤 とす る ガス発生剤に比べ、 熱 安定性が非常に高い こ とが明 らかであ る。  From the above results, it is clear that the gas generating agent of the present invention has much higher thermal stability than the gas generating agent using azodicarbonamide as a gas generating base. is there.
試験例 3 Test example 3
実施例 2 及び比較例 2 のガス発生剤の燃焼温度を、 N A S Aの熱平衡計算プロ グラ ム ( B, J, McBride, 'CET89 -Chemical Equilibrium with Transport Properties, 1989Com", COSMIC Program itLE W - 15113 ( 1989 ) , NASA, 以下 こ のプロ グラ ムを 「 C E T 8 9 」 とい う ) に基づいて シ ユ ミ レ ー シ ヨ ン計算 した と こ ろ、 実施例 2 のガス発生剤 は約 2 1 0 0 Κ、 比較例 2 のガス発生剤は約 2 3 0 0 Κ であ つ 7こ。  The combustion temperatures of the gas generating agents of Example 2 and Comparative Example 2 were measured using NASA's thermal equilibrium calculation program (B, J, McBride, 'CET89-Chemical Equilibrium with Transport Properties, 1989 Com ", COSMIC Program itLE W-15113 (1989). ), NASA, hereinafter, this program is referred to as “CET89”.) Based on the simulation calculation, the gas generating agent of Example 2 was about 210 1 The amount of the gas generating agent of Comparative Example 2 was about 2300Κ.
以上の様に、 本発明のガス発生剤は、 ァ ゾ ジカルボ ン ア ミ ドをガス発生基剤 とす る ガス発生剤に比ベ、 燃焼温 度が約 2 0 0 K低い こ とが判る。 As described above, the gas generating agent of the present invention is preferably azodicarbon. It can be seen that the combustion temperature is about 200 K lower than the gas generating agent using amide as the gas generating base.
実施例 3  Example 3
下記表 2 に記載の配合量 (部) で各成分を用 い、 実施 例 1 と 同様に操作 して、 本発明のガス発生剤のペ レ ッ ト を製造 した。  A pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1 except that the components were used in the amounts (parts) shown in Table 2 below.
表 2  Table 2
Figure imgf000036_0001
Figure imgf000036_0001
試験例 4  Test example 4
実施例 3 で得 ら れた本発明ガス発生剤の各ペ レ ツ ト を 用い、 試験例 1 と 同様に操作 して、 ガス発生剤の燃焼性 能及び後ガス 中の C 0濃度と N 0 X 濃度を調べた。  Using each of the pellets of the gas generating agent of the present invention obtained in Example 3, the same operation as in Test Example 1 was performed to determine the combustion performance of the gas generating agent, the C 0 concentration in the post-gas, and the N 0. The X concentration was determined.
結果を表 3 に示す。 Table 3 shows the results.
T/ 96/02796 T / 96/02796
35  35
3Three
Figure imgf000037_0001
Figure imgf000037_0001
表 3 か ら、 本発明のガス発生剤が、 優れた燃焼性能を 有 し、 後ガス 中の C ◦濃度や N O X 濃度が低い こ とが判 る。  From Table 3, it can be seen that the gas generating agent of the present invention has excellent combustion performance and a low C◦ concentration and NO X concentration in the post-gas.
実施例 4 及び比較例 3 Example 4 and Comparative Example 3
下記表 4 に記載の配合量 (部) で各成分を用い、 実施 例 1 と 同様に操作 して、 本発明のガス発生剤のペ レ ッ ト を製造 した。 尚、 表 4 において、 N o . 1 〜 1 8 のガス 発生剤が実施例 4 であ り、 N o . 1 9 ~ 2 0 のガス発生 剤が比較例 3 ( ドイ ツ公開公報第 1 9 5 1 6 8 1 8 号に 記載の もの) であ る。 A pellet of the gas generating agent of the present invention was produced in the same manner as in Example 1 except that the components were used in the amounts (parts) shown in Table 4 below. In Table 4, the gas generating agents of Nos. 1 to 18 correspond to Example 4, and the gas generating agents of Nos. 19 to 20 correspond to Comparative Example 3 (German Patent Publication No. 1995). 1618-18).
4 Four
Figure imgf000038_0001
Figure imgf000038_0001
試験例 5 Test example 5
実施例 4 及び比較例 3 で得 られた本発明 ガス発生剤の 各ペ レ ッ ト を用 い、 試験例 1 と 同様に操作 して、 ガス発 生剤の燃焼性能及びガス 中の C 0濃度 と N ◦ X 濃度を調 ベた。 結果を表 5 に示す。 試料 CPmax TPmax tTPmax tTP90 Ttemp. CO C〇2 NO xUsing each pellet of the gas generating agent of the present invention obtained in Example 4 and Comparative Example 3, the same operation as in Test Example 1 was carried out, and the combustion performance of the gas generating agent and the C0 concentration in the gas were used. And N ◦ X concentration. Table 5 shows the results. Sample CPmax TPmax tTPmax tTP90 Ttemp.CO C〇 2 NO x
No. 量 (g) Kgf/cm2 msec °C % % ppmNo.Amount (g) Kgf / cm 2 msec ° C%% ppm
1 40 120 1.3 64 34 95 0.41 7.0 25001 40 120 1.3 64 34 95 0.41 7.0 2500
2 40 104 1.0 115 57 78 0.34 6.8 27502 40 104 1.0 115 57 78 0.34 6.8 2750
3 40 80 0.8 201 77 67 0.36 6.2 35003 40 80 0.8 201 77 67 0.36 6.2 3500
4 40 88 1.2 76 36 87 0.37 8.0 14504 40 88 1.2 76 36 87 0.37 8.0 1450
5 40 118 0.9 384 82 0.52 7.1 〉12005 40 118 0.9 384 82 0.52 7.1〉 1200
6 40 46 0.7 24 16 56 0.68 7.7 12806 40 46 0.7 24 16 56 0.68 7.7 1280
7 40 194 0.9 159 60 67 0.58 7.6 15007 40 194 0.9 159 60 67 0.58 7.6 1500
8 40 158 0.6 1364 一 57 0.47 6.7 17008 40 158 0.6 1364 1 57 0.47 6.7 1700
9 40 1丄18 1 1 74 26 80 0.52 7.4 1050 in 35 122 1.2 21 13 77 0.37 7.3 9509 40 1 丄 18 1 1 74 26 80 0.52 7.4 1050 in 35 122 1.2 21 13 77 0.37 7.3 950
11 40 194 1.4 19 10 60 0.47 7.5 37011 40 194 1.4 19 10 60 0.47 7.5 370
12 40 106 0.9 35 49 0.82 6.5 98012 40 106 0.9 35 49 0.82 6.5 980
13 40 162 0.4 22 一 35 1.02 5.8 165013 40 162 0.4 22 1 35 1.02 5.8 1650
14 40 196 1.4 19 9 86 0.38 6.7 105014 40 196 1.4 19 9 86 0.38 6.7 1050
15 40 120 1.3 23 14 63 0.37 8.5 95015 40 120 1.3 23 14 63 0.37 8.5 950
16 40 204 1.8 27 8 72 0.27 9.0 120016 40 204 1.8 27 8 72 0.27 9.0 1200
17 40 82 0.7 16 12 52 0.60 6.9 80017 40 82 0.7 16 12 52 0.60 6.9 800
18 40 122 0.8 23 14 65 0.61 9.0 70018 40 122 0.8 23 14 65 0.61 9.0 700
19 40 86 0.1 42 33 0.35 2.0 20019 40 86 0.1 42 33 0.35 2.0 200
20 40 100 <0.1 25 0.16 1.2 120 比較例 3 ( N o . 1 9 〜 2 0 ) のガス発生剤は、 T P max力 0. l k g i Z c m 2又はそれ以下と著 し く 低 く、 且つ C 0 2瀵度カ、' 2. 0 %又は 1. 2 %であ る こ と力、 ら、 不完全燃焼を起こ してい る こ とが明 らかであ る。 実施例 5 及び比較例 4 下記表 6 に記載の配合量 (部) で各成分を用い、 実施 例 1 と 同様に操作 して、 本発明のガス発生剤のペ レ ッ ト (実施例 5 ) 及び特開平 7 - 3 0 0 3 8 3 号公報に記載 のガス発生剤のペ レ ツ ト (比較例 4 ) を製造 した。 こ れ らのガス発生剤について、 下記の試験を行 っ た。 結果を 表 6 に併記す る。 20 40 100 <0.1 25 0.16 1.2 120 The gas generating agent of Comparative Example 3 (No. 19 to 20) has remarkably low TP max power of 0.1 lkgi Z cm 2 or less, and C 0 It is clear that incomplete combustion has occurred from the power of 2%, '2.0% or 1.2%. Example 5 and Comparative Example 4 Each component was used in the amounts (parts) shown in Table 6 below. By operating in the same manner as in Example 1, the pellet of the gas generating agent of the present invention (Example 5) and the pellet of the gas generating agent described in Japanese Patent Application Laid-Open No. Hei 7-303383 (the Comparative Example 4) was produced. The following tests were performed on these gas generating agents. Table 6 shows the results.
1 ) 熱化学計算温度 ( 「 T c 一 とする )  1) Thermochemical calculation temperature ("Tc one")
N A S Aの熱平衡計算プロ グラ ム ( C E T 8 9 ) に基 づいて、 ガス発生剤の熱化学計算温度 (断熱火炎温度) を算出 し、 燃焼温度を知る 目安 と した。  The thermochemical calculation temperature (adiabatic flame temperature) of the gas generant was calculated based on the NASA thermal equilibrium calculation program (CET89) and used as a guide to know the combustion temperature.
2 ) D S C 発熱分解開始温度 ( 「 T DSCJ とする )  2) D S C exothermic decomposition onset temperature (referred to as “T DSCJ”)
D S C (示差走査熱量測定) の発熱分解開始温度  Exothermic decomposition onset temperature of D S C (differential scanning calorimetry)
( T DSC ) を測定 し、 ガス発生剤の熱安定性を調べた。 エアバ ッ ク 用ガス発生剤の熱安定性は、 該ガス発生剤 が装填 さ れたイ ン フ レ 一 タ ーを 1 0 7 °Cで 4 0 0 時間保 持 した後作動さ せて、 ガス発生性能が加熱前と変わ らな い こ と によ っ て評価 さ れる。 こ の方法に準拠 したの力 既に試験例 2 で示 した様に、 ガス発生剤をキ ヤ ニス タ ー に充填 し、 1 0 7 °Cで 4 0 0 時間保持 してガス発生剤の 減量を量 り、 熱安定性を評価す る方法 (加熱減量試験) であ る。  (T DSC) was measured to determine the thermal stability of the gas generant. The thermal stability of the gas generating agent for air back is measured by maintaining the inflator loaded with the gas generating agent at 107 ° C for 400 hours and then operating the gas generator. The generation performance is evaluated based on the fact that it is the same as before heating. Force according to this method As already shown in Test Example 2, the canister was filled with a gas generating agent and kept at 107 ° C for 400 hours to reduce the amount of the gas generating agent. This is a method to evaluate weighing and thermal stability (heating loss test).
本発明者は加熱減量試験の結果 と D S C (示差走査熱 量測定) の発熱分解開始温度 ( T DSC) との間の相関関係 を研究 し、 T DSCが 4 7 3 K以上であれば加熱減量試験に 合格す る こ とを見い出 し、 こ の知見に基づいてガス発生 剤の熱安定性を評価 した。 The present inventor has developed a correlation between the results of the weight loss test and the exothermic decomposition onset temperature (T DSC) of DSC (differential scanning calorimetry). And found that if the T DSC was 473 K or more, it passed the weight loss test on heating, and based on this finding, evaluated the thermal stability of the gas generating agent.
3 ) ス ト ラ ン ド燃焼速度試験 ( 「 r 」 とする )  3) Strand burning rate test (referred to as “r”)
ガス発生剤を縦横 7 m m、 長さ 3 O m mの角型棒状の ス ト ラ ン ドに成型 し、 上端を残 して レ ス ト リ ク タ 一を塗 布 し、 試料体を作製 した。 こ の試料体を内容積約 1 リ ツ ト ルの圧力容器中で窒素加圧下 ( 7 0 k g Z c m 2) に燃 焼さ せて時間 一圧力曲線を記録 し、 線燃焼速度 ( m m s e c ) を算出 した。 線燃焼速度が大き い程、 爆轟性が 大き く な る傾向にあ る。 The gas generating agent was molded into a square rod-shaped strand of 7 mm in length and 3 O mm in length, and a restrictor was applied except for the upper end to prepare a sample body. This sample was burned in a pressure vessel with an internal volume of about 1 liter under nitrogen pressure (70 kg Zcm 2 ), the time-pressure curve was recorded, and the linear burning rate (mmsec) was measured. It was calculated. The detonation tends to increase as the linear burning rate increases.
4 ) 爆轟性試験  4) Detonation test
ガス発生剤の爆轟伝播性は国連勧告のギ ヤ ッ プ試験に よ っ て調べた。 内径 4 0 m m、 外径 4 8 m mの引 き抜き 鋼管に試料 (ガス発生剤) を充填 し、 下端に 1 6 0 gの ペ ン ト ラ イ ト ( P E T N Z T N T = 5 0 5 0 ) 伝爆薬 と 6 号雷管を装着 し、 上端に 1 0 0 111 111 1 0 0 01 11 3 m m (厚さ ) の軟鋼板を証拠板と して置いた。 6 号雷 管に通電 して該雷管 と伝爆薬を起爆 した。 試料が爆森を 伝播 した こ と は、 鋼管が破片にな る こ とで判定 した。 不 伝爆であ る こ と は、 鋼管が破片 と な らず、 未反応試料が 残留 してい る こ とで判定 した。 6 実施例 5 比較例 4 The detonation propagation of the gas generant was determined by a UN recommendation gap test. A sample (gas generating agent) is filled in a drawn steel pipe with an inner diameter of 40 mm and an outer diameter of 48 mm, and 160 g of pentelite (PETNZTNT = 550) at the lower end. A No. 6 detonator was attached, and a mild steel plate of 100 111 111 100 101 3 mm (thickness) was placed at the upper end as a proof plate. The No. 6 detonator was energized to detonate the detonator and the explosive. The fact that the sample propagated through the explosion forest was judged based on the fact that the steel pipe was broken. The non-detonation was judged based on the fact that the steel pipe did not become fragments and the unreacted sample remained. 6 Example 5 Comparative Example 4
B C H 1 6. 8 3 7. 0  B C H 1 6.8 3 7.0
硝酸カ リ ウ ム 6 4. 2  Potassium nitrate 6 4.2
二酸化珪素 1 4. 0  Silicon dioxide 14.0
可溶性デ ンプ ン 2. 0  Soluble starch 2.0
硼素 3. 0  Boron 3.0
過塩素酸力 リ ゥ ム 6 1 . 0  Perchloric acid power room 61.0
T c ( K ) 1 6 7 9 2 3 7 1  T c (K) 1 6 7 9 2 3 7 1
T DSC ( K ) 5 3 8 O Ό T DSC (K) 5 3 8 O Ό
O  O
r ( m m s ) 20. 4(7. OMPa ) 爆森性 不伝爆 伝爆 表 6 か ら、 本発明のガス発生剤は燃焼温度が低 く、 熱 安定性が良好で、 爆轟性がな く、 しか も燃焼を持続でき る とい う 好ま しい特性を有す る こ とが明 らかであ る。 一 方、 特開平 7 - 3 0 0 3 8 3 号公報に記載のガス発生剤 は適当な燃焼速度を持ち、 熱安定性 も良好であ る が、 燃 焼温度が高 く、 爆森性があ る と い う 問題を有す る。 実施例 6 下記表 7 に記載の配合量 (部) で各成分を用い、 実施 例 1 と 同様に操作 して、 本発明のガス発生剤のペ レ ッ ト を製造 し、 こ れ らのガス発生剤について、 実施例 5 と 同 様に して N A S A の熱平衡計算プロ グラ ム ( C E T 8 9 ) に基づ く ガス発生剤の熱化学計算温度 ( T c ) の算出、 D S C 発熱分解開始温度 ( T DSC ) の測定及びス ト ラ ン ド 燃焼速度試験 ( 「 r 」 とする ) 試験を行 っ た。 結果を表 7 に併記する。 r (mms) 20.4 (7. OMPa) Explosive forest Unexploded explosion Explosion Table 6 shows that the gas generating agent of the present invention has a low combustion temperature, good thermal stability, and no detonation. In addition, it is clear that it has the favorable property of sustaining combustion. On the other hand, the gas generating agent described in Japanese Patent Application Laid-Open No. 7-300383 has an appropriate burning rate and good thermal stability, but has a high burning temperature and explosive forest properties. I have a problem. Example 6 Pellets of the gas generating agent of the present invention were produced by using the components in the blending amounts (parts) shown in Table 7 below and operating in the same manner as in Example 1 to produce a pellet of the gas generating agent of the present invention. For the generator, calculate the thermochemical calculation temperature (Tc) of the gas generator based on the thermal equilibrium calculation program (CET89) of NASA in the same way as in Example 5, and calculate the DSC exothermic decomposition temperature (Tc). T DSC) measurement and strand A burning rate test (referred to as “r”) was performed. The results are shown in Table 7.
表 7  Table 7
Figure imgf000043_0002
Figure imgf000043_0002
実施例 7 Example 7
ヒ ド ラ ゾジカノレボ ン ア ミ ド 2 9 部、 硝酸カ リ ウ ム 4 4 部、 二酸化珪素 1 3 部、 過塩素酸カ リ ウ ム 1 2 部、 表 8 に示す燃焼触媒 5 部及びデ ンプ ン 3 部か らな る ガス発生 剤について、 実施例 5 と 同様に して D S C 発熱分解開始 温度 ( T DSC ) の測定及びス ト ラ ン ド試験を行 っ た。 結果 を表 8 に併記する。  29 parts of hydrazodicanolone amide, 44 parts of potassium nitrate, 13 parts of silicon dioxide, 12 parts of potassium perchlorate, 5 parts of combustion catalyst shown in Table 8 and starch The exothermic decomposition onset temperature (T DSC) of DSC was measured and a strand test was performed on the gas generating agent consisting of three parts in the same manner as in Example 5. The results are shown in Table 8.
表 8  Table 8
Figure imgf000043_0001
表 8 か ら、 燃焼触媒、 特に M o 0 3及び C u 0 の添カロに よ り、 燃焼速度が増大する こ とが明 らかであ る。
Figure imgf000043_0001
Table 8 or et al., Combustion catalyst, Ri in particular by the added Caro M o 0 3 and C u 0, Ru this TogaAkira Rakadea the combustion speed increases.
実施例 8 Example 8
表 9 に示す組成 (重量部) の ヒ ドラ ゾジ カルボ ン ア ミ ド、 硝酸カ リ ウ ム、 過塩素酸カ リ ウ ム、 二酸化珪素、 デ ンプ ン及び燃焼調節剤からな る ガス発生剤について、 実 施例 5 と 同様に して N A S Aの熱平衡計算プロ グラ ム ( C E T 8 9 ) に基づ く 熱化学計算温度 ( T c ) の算出 及びス ト ラ ン ド試験を行 っ た。 結果を表 9 に併記する。  Gas generator consisting of hydrazodicarbonamide, potassium nitrate, potassium perchlorate, silicon dioxide, starch, and a combustion regulator with the composition (parts by weight) shown in Table 9 As for Example 5, the thermochemical calculation temperature (Tc) was calculated based on the thermal equilibrium calculation program of NASA (CET89) and a strand test was performed in the same manner as in Example 5. The results are shown in Table 9.
表 9  Table 9
Figure imgf000044_0001
Figure imgf000044_0001
表 9 か ら、 燃焼調節剤、 特に Z r、 A 1、 T i 等の添 加によ り、 燃焼速度が向上する こ とが明 らかであ る。 参考例 1  From Table 9, it is clear that the addition of a combustion regulator, especially Zr, A1, Ti, etc., improves the combustion rate. Reference example 1
ビ ス カ ノレノ モ イ ソレ ヒ ド ラ ジ ン 7 0 g を水 6 3 0 m 1 に 分散さ せ、 こ れに、 アル ミ ン酸ナ ト リ ウ ム 1 . 6 8 g ( ビ ス 力 ルバ モ イ ノレ ヒ ド ラ ジ ン に対 しァ ノレ ミ ナ と し て 1 % ) を水 7 0 m 1 に溶解さ せた溶液を撹拌下に 8 分かけ て滴下 した。 更に、 撹拌下に硫酸 (濃硫酸 1 部に水 1 5 部を添加 した も の ) を滴下 し、 6 0 分かけて p H 7 に調 整 した。 引 き続き 3 0 分間撹拌 した後、 硫酸を滴下 して p H 7 に再調整 した。 固形物 ( ビス 力ルバモイ ル ヒ ドラ ジ ン) を濾取 し、 水洗 して Disperse 70 g of biscanolenomoisolehydrazine in 630 ml of water, and add 1.668 g of sodium aluminate ( For hydra hydrazine as an ano mina 1 %) In 70 ml of water was added dropwise over 8 minutes with stirring. Further, sulfuric acid (a solution obtained by adding 15 parts of water to 1 part of concentrated sulfuric acid) was added dropwise with stirring, and the pH was adjusted to 60 over 60 minutes. After stirring for 30 minutes, sulfuric acid was added dropwise to readjust the pH. The solid (Bisubarumylhydrazine) is filtered off and washed with water.
p H調整に よ り 生成 した硫酸ナ ト リ ウ ムを除去 し、 Remove sodium sulfate generated by pH adjustment.
1 2 0 °Cで 1 時間乾燥 し、 粗砕 ( 1 0 メ ッ シ ュ ) し、 改 質 ビス 力ルバモイ ル ヒ ドラ ジ ンを製造 した。 改質 ビス 力 ルバ、モイ ル ヒ ドラ ジ ンは、 中和に よ り 生成 した水酸化ァ ル ミ 二ゥ 厶カ ビス カ ノレバモイ ル ヒ ドラ ジ ン表面に特定の 状態で付着 した も の と推測 さ れる。 こ の改質 ビス 力ルバ モ イ ノレ ヒ ド ラ ジ ン の B E T比表面積は 3. 3 8 m 2Z gで あ り、 処理前 ( 0. 2 0 m 2Z g ) に比べ著 し く 増大 して いた。 It was dried at 120 ° C for 1 hour and crushed (10 mesh) to produce a modified bismuth rubamoyl hydrazine. It is presumed that the modified bisphenol Luba and Moylhydrazine were adhered in a specific state to the surface of the aluminum hydroxide, Biskanolevamoylhydrazine generated by neutralization. Is done. The BET specific surface area of this modified bis-potassium hydramoylhydrazine is 3.38 m 2 Z g, which is remarkably increased compared to that before the treatment (0.20 m 2 Z g). Was.
比較参考例 1 Comparative Reference Example 1
ビス カ ノレ ノ 'モイ ノレ ヒ ド ラ ジ ン 7 0 g と水酸ィ匕ア ル ミ ニ ゥ ム 1. 0 7 g ( アル ミ ン酸ナ ト リ ウ ム 1. 6 8 g を 中和する こ とによ り 生成する水酸化アル ミ 二ゥ ムの理論 量) と を混合 した。  70 g of biscanoleno's hydrazine hydrazine and 1.07 g of hydroxyaluminum (neutralizes 1.68 g of sodium aluminum phosphate) The theoretical amount of aluminum hydroxide produced by this is mixed.
比較参考例 2 Comparative Reference Example 2
ビス カ ルノくモイ ル ヒ ド ラ ジ ン 7 0 g と アル ミ ナ 0. 7 2 g (水酸化ア ル ミ 二ゥ ム し 0 7 g を 2 0 0 °C以上に 加熱す る こ と に よ り 生成する アル ミ ナの理論量) と を混 合 した 70 g of biscarnoyl hydrazine and aluminum 0.7 2 g (theoretical amount of aluminum formed by heating 0.7 g of aluminum hydroxide to 200 ° C or more)
試験例 6 Test example 6
参考例 1 の改質 ビス カルパ'モ イ ノレ ヒ ド ラ ジ ン、 比較参 考例 1 〜 2 の ビス 力 ルノく モ イ ル ヒ ド ラ ジ ン 及び無処理の ビス 力 ノレノ モ イ ノレ ヒ ドラ ジ ン 0. 3 g を、 それぞれ、 直 径 1 0 m m X 深さ 7 m mの型 (石飛製作所 (株) 製) に 入れ、 杵をセ ッ ト し、 8 0 0 k g f でプレ ス し、 ペ レ ツ ト を製造 した。 こ れ ら のペ レ ツ ト を硬度測定機 (商品名 Modified bis-carpa 'molyhydrhydrazine of Reference Example 1, Bis-force molyhydrhydrazine of Comparative Reference Examples 1-2, and untreated bis-force molyhydrhydrazine Each 0.3 g of the gin was put into a mold (manufactured by Ishihi Seisakusho Co., Ltd.) with a diameter of 10 mm and a depth of 7 mm, and the punch was set. Lett was manufactured. These pellets are used as a hardness tester (trade name)
: A N D E S S T E S T E R K H T - 2 0 N、 (株) 藤原製作所製 ) にセ ッ 卜 し、 ペ レ ツ ト に荷重を加 えてい き、 ペ レ ッ ト が崩壊 した時点での荷重をペ レ ツ ト の硬さ と した。 硬さ の測定を複数回行い、 平均値を算出 した。 結果を表 1 0 に示す。 : ANDESSTESTERKHT-20N, manufactured by Fujiwara Seisakusho Co., Ltd.), and apply a load to the pellet. The load at the time when the pellet collapses is used to harden the pellet. It was decided. The hardness was measured several times and the average value was calculated. The results are shown in Table 10.
表 1 0  Table 10
Figure imgf000046_0001
Figure imgf000046_0001
表 1 0 において、 「 R」 は測定にお け る 最大値と最 /J、 値の差を示す。 表 1 0 力、 ら、 ビ ス 力 ルバモ イ ノレ ヒ ド ラ ジ ン に表面処理 を施す こ と によ り、 無処理の場合及び単に ビス カルバモ イ ノレ ヒ ドラ ジ ン と表面処理剤 と を混合す る場合に比 し、 ビス 力 ルバモイ ル ヒ ドラ ジ ンの成形性が著 し く 向上する こ とが明 らかであ る。 In Table 10, "R" indicates the difference between the maximum value and the maximum value / J in the measurement. Table 10 By applying surface treatment to bismuth rubamoinolehydrazine, it is possible to mix biscarbamoinolehydrazine with a surface treatment agent without treatment or simply It is evident that the formability of the screw-powered Lubamoyl hydrazine is significantly improved as compared with the conventional case.
実施例 9 Example 9
参考例 1 の改質 ビス力ルバモイ ノレ ヒ ドラ ジ ン 4 5 部、 過塩素酸カ リ ウ ム 7 2 . 1 部、 硝酸カ リ ウ ム 1 0 部、 酸 化モ リ ブデ ン 5 部及び二酸化珪素 1 部の各粉末をよ く 混 合 し、 こ れにデ ンプ ン含有量力 1 . 5 部と な る よ う に可 溶性デ ンプン の 2 0 %水溶液を加えて更に混合 し、 湿潤 粉体を製造 した。 こ の湿潤粉体を造粒機に よ り 造粒 し、 得 られた湿潤顆粒を乾燥 し、 更に油圧式打錠成形機にて 押圧 し、 エアバ ッ グ用ガス発生剤のペ レ ツ ト (径 6 m m、 厚さ 3 m m、 重量 0 . 1 5 g ) を製造 した。  45 parts of the modified bis-forced rubamoinolehydrazine of Reference Example 1, 72.1 parts of potassium perchlorate, 10 parts of potassium nitrate, 5 parts of molybdenum oxide and 5 parts of dioxide 1 part of silicon powder was mixed well, and then a 20% aqueous solution of soluble starch was added so that the starch content became 1.5 parts, and the mixture was further mixed. Was manufactured. This wet powder is granulated by a granulator, the obtained wet granules are dried, and further pressed by a hydraulic tableting machine, and a pellet of a gas generating agent for an air bag is formed. 6 mm in diameter, 3 mm in thickness, and 0.15 g in weight) were manufactured.
実施例 1 0 Example 10
過塩素酸カ リ ウ ムの配合量を 6 7 . 7 部に変更 し、 且 つ酸化モ リ ブデ ン に代えて酸化銅 1 0 部を使用する以外 は、 実施例 9 と 同様に して本発明エアバ ッ グ用 ガス発生 剤のペ レ ッ ト を製造 した。  Example 9 was repeated in the same manner as in Example 9 except that the amount of potassium perchlorate was changed to 67.7 parts and 10 parts of copper oxide was used instead of molybdenum oxide. A pellet of a gas generating agent for the invention airbag was manufactured.
比較のため、 未改質の ビス カ ノレバモイ ノレ ヒ ド ラ ジ ンを 用いる 以外は、 実施例 9 と 同様に操作 し、 エアバ ッ グ用 ガス発生剤のペ レ ツ ト (径 6 m m、 厚さ 3 m m、 重量 0. 1 5 g ) を製造 した。 For comparison, operate in the same manner as in Example 9 except that unmodified bis-canolebamoinolehydrazine was used. A pellet of gas generating agent (diameter 6 mm, thickness 3 mm, weight 0.15 g) was manufactured.
試験例 7 Test example 7
径 7 m mの ガス噴出孔を備え、 伝火薬と してボ ロ ン Z 硝酸カ リ ウ ム 0. 8 g が装填さ れたイ ン フ レ一タ ーの燃 焼室に、 実施例 9 〜 1 0 のガス発生剤のペ レ ッ ト 及び未 改質の ビス 力 ルバモイ ノレ ヒ ドラ ジ ンを用いて製造さ れた ガス発生剤のペ レ ッ ト を充填 した板厚 0. 3 m mのアル ミ ニゥ ム製カ ッ プを装填 した。 こ のイ ン フ レ一 夕一を 6 0 リ ッ トノレタ ン ク 内 に設置 し、 電流を流 して作動さ せ てガス発生剤のペ レ ッ ト を燃焼させ、 イ ン フ レ一タ ー内 及び 6 0 リ ッ ト ルタ ン ク 内の圧力及び温度を測定 した と こ ろ、 いずれの も の について も 同程度の結果が得 られた。 ま た燃焼後の 6 0 リ ッ ト ルタ ン ク 内のガス を採取孔よ り 1 リ ッ ト ルテ ドラ ーバ ッ グに採取 し、 ガス 中の C 0濃度 及び N 0 X 濃度を検知管を用いて測定 した と こ ろ、 いず れの も のについて も 同程度の結果が得 られた。  In the combustion chamber of an inflator equipped with a gas outlet of 7 mm in diameter and charged with 0.8 g of boron Z potassium nitrate as a transfer medium, Examples 9 to 0.3 mm thick plate filled with a pellet of gas generating agent and a pellet of gas generating agent manufactured using unmodified screw-powered rubamoinolehydrazine. A mini cup was loaded. This inflator is installed in a 60-litre tank, and is operated by passing an electric current to burn the pellet of gas generating agent, and the inflator is operated. Measurements of the pressure and temperature in the tank and in the 60-litre tank yielded comparable results for all of them. In addition, the gas in the 60 liter tank after combustion is sampled from the sampling hole into a 1 liter driver bag, and the C0 and N0X concentrations in the gas are detected. As a result, the same results were obtained for each of them.
参考例 2  Reference example 2
ビ ス 力 ルバ モ イ ル ヒ ド ラ ジ ン (大塚化学 (株) 製、 B E T 比表面積 ; 0. 2 0 m 2/ g、 メ ジ ア ン径 ; Visible Luba Moylhydrazine (manufactured by Otsuka Chemical Co., Ltd., BET specific surface area: 0.20 m 2 / g, median diameter;
4 5. 4 3 m、 以下同 じ ) 1 0 0 g を水 1 リ ッ ト ル に 分散さ せ、 撹拌下、 こ れに カノレボキ シ メ チルセメ ロ ー ス の 1 0 %水溶液 2 5 m 1 を加え、 5 0 °Cに力 Π温 しな力 ら 2 時間混合 した。 撹拌を止め、 沈殿 した ビス 力 ルバモ イ ル ヒ ド ラ ジ ンを濾取 し、 8 0 °Cで 1 時間乾燥 し、 改質 ビ ス カ ルバモ イ ル ヒ ド ラ ジ ンを製造 した。 45.43 m, same hereafter) Disperse 100 g in 1 liter of water, and stir with stirring to this. 25 ml of a 10% aqueous solution of the above was added, and mixed at 50 ° C. for 2 hours under a vigorous force. The agitation was stopped, and the precipitated viscous Rubamoyl hydrazine was collected by filtration and dried at 80 ° C. for 1 hour to produce a modified biscalvamoyl hydrazine.
参考例 3 Reference example 3
ビス カ ノレノくモ イ ノレ ヒ ドラ ジ ン 1 0 0 g を水 1 リ ッ ト ノレ に分散 さ せ、 撹拌下、 こ れに カ ルボキ シ メ チルセ メ ロ ー ス の 1 0 %水溶液 2. 5 g、 ア タ リ ノレ酸 l m l (約 l g ) 及びァ ゾ ビス吉草酸 0. 5 gを加え、 8 0 °Cに加温 しな が ら 2 時間混合 した。 撹拌を止め、 沈殿 した ビス力ルバ モイ ル ヒ ドラ ジ ンを濾取 し、 8 0 °Cで 1 時間乾燥 し、 改 質 ビス 力 ルバモ イ ノレ ヒ ドラ ジ ン を製造 し た。  Disperse 100 g of bisphenol hydrazine hydrazine in 1 liter of water, and stir with stirring to add 10% aqueous solution of carboxymethylcellose 2.5 g, tallinoleic acid 1 ml (about lg) and azobisvaleric acid 0.5 g were added, and mixed for 2 hours while heating to 80 ° C. The stirring was stopped, and the precipitated bismuth rubamoyl hydrazine was collected by filtration and dried at 80 ° C for 1 hour to produce a modified bismuth rubamoyl hydrazine.
実施例 1 1 Example 1 1
参考例 2 の改質 ビス 力 ルバモイ ル ヒ ドラ ジ ン 4 5 部、 過塩素酸カ リ ウ ム 7 2. 1 部、 硝酸カ リ ウ ム 1 0部、 酸 化モ リ ブデ ン 5 部及び二酸化珪素 1 部の各粉末をよ く 混 合 し、 こ れにデ ンプン含有量が 1. 5 部と な る よ う に可 溶性デ ンプンの 2 0 %水溶液を加えて更に混合 し、 湿潤 粉体を製造 した。 こ の湿潤粉体を造拉機に よ り 造粒 し、 更に油圧式打錠成形機にて押圧 し、 エアバ ッ グ用 ガス発 生剤のペ レ ッ ト (径 6 m m、 厚さ 3 m m、 重量 0. 1 5 g ) を製造 した。 実施例 1 2 45 parts of modified bis-powered rubamoyl hydrazine of Reference Example 2, 72.1 parts of potassium perchlorate, 10 parts of potassium nitrate, 5 parts of molybdenum oxide and 5 parts of dioxide Mix well each powder of 1 part of silicon, add 20% aqueous solution of soluble starch so that the starch content becomes 1.5 parts, and further mix. Was manufactured. The wet powder is granulated by a press and then pressed by a hydraulic tableting machine to form a pellet of gas generator for airbag (diameter 6 mm, thickness 3 mm). , Weighing 0.15 g). Example 1 2
参考例 2 の改質 ビス力 ルバモイ ノレ ヒ ド ラ ジ ンに代えて 参考例 3 の も のを使用する以外は、 実施例 1 1 と 同様に して、 エアバ ッ グ用ガス発生剤のペ レ ツ ト を製造 した。  In the same manner as in Example 11 except that the modified screw power of Reference Example 2 was replaced with that of Reference Example 3 in place of the rubamoin hydrazine hydrazine, the pelletizing agent for the airbag gas generating agent was used. A tut was manufactured.
比較のため、 無処理の ビス カ ノレバモイ ル ヒ ドラ ジ ンを 用 いる 以外は、 実施例 1 1 と 同様に して、 エアバ ッ グ用 ガス発生剤のペ レ ツ ト を製造 した。  For comparison, a pellet of a gas generating agent for an air bag was manufactured in the same manner as in Example 11 except that untreated biscanolebacyl hydrazine was used.
試験例 8 Test example 8
実施例 1 1 ~ 1 2 及び無処理の ビス 力 ルバモイ ル ヒ ド ラ ジ ンを用いて得 られた 3 種のエアバ ッ グ用ガス発生剤 のペ レ ッ ト を、 それぞれ、 硬度測定機 (商品名 : H A R D N E S S T E S T E R K H T — 2 0 N、 (株) 藤 原製作所製) にセ ッ ト し、 ペ レ ツ 卜 に荷重を加えてい き. ペ レ ツ ト が崩壊 した時点での荷重をペ レ ツ ト の硬さ と し た。 硬さ の測定を複数回行い、 平均値を算出 した。 結果 を表 1 1 に示す。  Example 11 Pellets of three types of airbag gas generating agents obtained using 1 to 12 and untreated screw power Lubamoyl hydrazine were respectively applied to a hardness tester (product Name: HARDNESSTESTERKHT — 20 N, manufactured by Fujiwara Seisakusho Co., Ltd.), and apply a load to the pellet. The load when the pellet collapses Hardness. The hardness was measured several times and the average value was calculated. Table 11 shows the results.
表 1 1  Table 11
Figure imgf000050_0001
Figure imgf000050_0001
試験例 9 径 7 m mのガス噴出孔を備え、 伝火薬と して ボ ロ ン / 硝酸カ リ ウ ム 0. 8 g が装填 さ れたイ ン フ レ一 夕 一の燃 焼室に、 実施例 1 1 〜 1 2 及び無処理の ビス 力 ルバモイ ノレ ヒ ド ラ ジ ンを用いて得 られたガス発生剤のペ レ ツ ト 4 0 g を充填 した板厚 0. 3 m mのアル ミ ニウ ム製カ ツ プを装填 した。 こ の イ ン フ レ 一 タ ーを 6 0 リ ッ ト ノレ タ ン ク 内に設置 し、 電流を流 して作動さ せてガス発生剤のぺ レ ツ ト を燃焼さ せ、 イ ン フ レ 一 タ ー内及び 6 0 リ ッ ト ル タ ン ク 内の圧力及び温度を測定 した と こ ろ、 いずれの も のについて も 同程度の結果が得 られた。 ま た燃焼後のTest example 9 Example 11 A combustion chamber equipped with a gas outlet of 7 mm in diameter and filled with 0.8 g of boron / potassium nitrate as a transfer medium was installed in an infra-red combustion chamber. 0.3 mm-thick aluminum cutlet filled with 40 g of a pellet of a gas generating agent obtained using 〜12 and untreated screw-powered rubamoyl hydrazine. Was loaded. This inflator is installed in a 60-litre tank, and is operated by applying an electric current to burn a pellet of the gas generating agent. Measurements of the pressure and temperature in one tank and 60 liter tank yielded similar results for all of them. After burning
6 0 リ ッ ト ルタ ン ク 内のガスを採取孔よ り 1 リ ッ ト ルテ ドラ ーバ ッ グに採取 し、 ガス中の c 0濃度及び N 0 X 濃 度を検知管を用いて測定 した と こ ろ、 いずれの も の につ いて も 同程度の結果が得 られた。 The gas in the 60 liter tank was sampled from a sampling hole into a 1 liter driver bag, and the c0 concentration and N0X concentration in the gas were measured using a detector tube. At the same time, similar results were obtained for all of them.
参考例 4 Reference example 4
ビ ス カ ルノくモ イ ソレ ヒ ド ラ ジ ン (平均粒子径 5 2 m、 B E T 比表面積 0. 2 m 2Z g、 大塚化学 (株) 製) を、 カ ウ ン タ ー ジ ェ ッ ト ミ ノレで粉砕 した。 カ ウ ンタ ー ジ エ ツ ト ミ ルに よ る粉砕条件は、 空気圧 6. 5 k g Ϊ / c m 回転数 1 5 0 0 0 r p m、 供給量 5 k g Z時であ る。 こ の よ う に して、 平均粒子径 2 ^ m、 B E T比表面積 Bi scan mosquito Runokumo Lee Sole arsenide de la di emissions (average particle size 5 2 m, BET specific surface area 0. 2 m 2 Z g, Otsuka Chemical Co., Ltd.), mosquitoes c te over di E Tsu DOO Crushed with minole. The grinding conditions using a counterjet mill are air pressure 6.5 kgΪ / cm, rotation speed 1500 rpm, and feed rate 5 kgZ. Thus, the average particle size 2 ^ m, BET specific surface area
8. 0 m 2 / g の微粉状 ビス 力 ルバモイ ル ヒ ドラ ジ ンを製 ie した。 8.0 m 2 / g powdered bismuth rubamoyl hydrazine ie.
参考例 5 Reference example 5
造粒機 (商品名 : ハイ ス ピー ド ミ キサー、 深江工業 (株) 製) 上にて、 参考例 4 で得 られた微粉状 ビス カ ル ノくモイ ノレ ヒ ド ラ ジ ン 1 0 0 g に水 2 0 ΤΉ 1 を徐々 に力 [] えて顆粒を生成さ せた。 こ の顆粒を 8 0 °Cで 1 時間乾燥 し、 平均粒子径 0 . 3 m mの微粉状 ビ ス力 ルバモ イ ノレ ヒ ドラ ジ ンの顆粒を製造 した。  On a granulator (trade name: High Speed Mixer, manufactured by Fukae Kogyo Co., Ltd.) 100 g of the finely powdered bis-carbo-mono hydrazine obtained in Reference Example 4 Then, 20 顆粒 1 of water was gradually applied to generate granules. The granules were dried at 80 ° C. for 1 hour to produce granules of fine powdery bismuth rubamoinolehydrazine having an average particle diameter of 0.3 mm.
実施例 1 3 Example 13
参考例 4 の微粉状 ビス 力ルバモイ ル ヒ ド ラ ジ ン 4 5 部、 過塩素酸カ リ ウ ム 7 2 . 1 部、 硝酸カ リ ウ ム 1 0 部、 酸 化モ リ ブデ ン 5 部及び二酸化珪素 1 部の各粉末をよ く 混 合 し、 こ れにデ ン プ ン含有量が 1 . 5 部と な る よ う に可 溶性デ ンプ ン の 2 0 %水溶液を加えて更に混合 し、 湿潤 粉体を製造 した。 こ の湿潤粉体を造粒機に よ り 造粒 し、 更に油圧式打锭成形機にて押圧 し、 エアバ ッ グ用ガス発 生剤のペ レ ッ ト (怪 6 m m、 厚さ 3 m m、 重量 0 . 1 5 g ) を製造 した。  45 parts of fine powdered bis-forced bamoyl hydrazine of Reference Example 4, 72.1 parts of potassium perchlorate, 10 parts of potassium nitrate, 5 parts of molybdenum oxide and One part of each powder of silicon dioxide is mixed well, and a 20% aqueous solution of a soluble starch is added thereto so that the starch content becomes 1.5 parts, and further mixed. A wet powder was produced. This wet powder is granulated by a granulator, and further pressed by a hydraulic compression molding machine, and a pellet of a gas generating agent for airbag (6 mm thick, 3 mm thick) , Weighing 0.15 g).
実施例 1 4  Example 14
参考例 4 の微粉状 ビス 力ルパ'モイ ル ヒ ド ラ ジ ンに代え て参考例 5 の顆粒を使用する以外は、 実施例 1 3 と 同様 に して、 エアパ' ッ グ用 ガス発生剤のペ レ ツ ト を製造 した, 比較のため、 参考例 4 の微粉状 ビス 力 ルバモイ ル ヒ ド ラ ジ ン に代えて、 未粉砕の ビス カ ルノぐモイ ノレ ヒ ドラ ジ ン を用い る以外は、 実施例 1 3 と 同様に して、 エアパ' ッ グ 用 ガス発生剤のペ レ ツ ト を製造 した。 In the same manner as in Example 13 except that the granules of Reference Example 5 were used instead of the fine powdered viscous lipa'moylhydrazine of Reference Example 4, a gas generating agent for an airpack was used. Manufactured pellets, For comparison, the same operation as in Example 13 was carried out except that unground pulverized bis-carbanol moist hydrazine was used in place of the finely powdered bis-rubber hydrazine hydrazine of Reference Example 4. To produce pellets of gas generating agents for air packs.
試験例 1 0 Test example 10
実施例 1 3 〜 1 4 のガス発生剤のペ レ ツ ト 及び未粉砕 ビス力 ルバモイ ル ヒ ドラ ジ ンを用いて得 られたガス発生 剤のペ レ ツ ト を、 それぞれ、 硬度測定機 (商品名 : H A R D N E S S T E S T E R K H T — 2 0 N、 (株) 藤原製作所製) にセ ッ ト し、 ペ レ ツ 卜 に荷重を加えてい き、 ペ レ ツ 卜 が崩壊 した時点での荷重をペ レ ツ 卜 の硬さ と した。 硬さ の側定を複数回行い、 平均値を算出 した。 結果を表 1 2 に示す。  The pellets of the gas generating agents of Examples 13 to 14 and the pellets of the gas generating agent obtained by using the unmilled screw power Lubamoyl hydrazine were respectively used as hardness testers (products). Name: HARDNESSTESTERKHT — 20 N, manufactured by Fujiwara Seisakusho Co., Ltd.), apply a load to the pellet, and apply the load when the pellet collapses It was decided. The hardness was determined several times, and the average value was calculated. The results are shown in Table 12.
表 1 2  Table 1 2
Figure imgf000053_0001
Figure imgf000053_0001
試験例 1 1 Test example 1 1
径 7 m mのガス噴出孔を備え、 伝火薬と してボロ ン 硝酸カ リ ウ ム 0. 8 gが装填さ れたイ ン フ レ 一 タ ーの燃 焼室に、 実施例 1 3 〜 1 4 のガス発生剤のペ レ ッ ト 及び Examples 13 to 1 were installed in the combustion chamber of an inflator equipped with a gas outlet of 7 mm in diameter and charged with 0.8 g of boron nitrate as a transfer medium. Pellet of gas generating agent and
> - 1 >-1
δ 52 未粉砕 ビス 力 ルバモイ ル ヒ ドラ ジ ンを用いて製造さ れた ガス発生剤のペ レ ッ ト 4 0 g を充填 した板厚 0 . 3 m m のアル ミ ニウ ム製カ ッ プを装填 した。 こ のイ ン フ レ— 夕 一を 6 0 リ ッ ト ルタ ン ク 内に設置 し、 電流を流 して作動 させてガス発生剤のペ レ ッ ト を燃焼させ、 イ ン フ レ 一 タ 一内及び 6 0 リ ッ ト ルタ ン ク 内の圧力及び温度を測定 し た と こ ろ、 いずれの も のについて も 同程度の結果が得 ら れた。 ま た燃焼後の 6 0 リ ッ ト ノレタ ン ク 内のガスを採取 孔よ り 1 リ ッ ト ルテ ドラ ーバ ッ グに採取 し、 ガス 中の 0 C 0濃度及び N O X 濃度を検知管を用いて測定 した と こ ろ、 やは り、 いずれの ものについて も 同程度の結果が得 られた。  δ 52 0.3 mm thick aluminum cup filled with 40 g of a gas generating agent pellet made from unmilled screw-powered Lubamoyl hydrazine did. This inflator is placed in a 60-litre tank, and is operated by passing an electric current to burn a pellet of a gas generating agent. Measurements of the pressure and temperature in the tank and in the 60-litre tank yielded comparable results for all of them. In addition, the gas in the 60 liter noretank after combustion is sampled from a sampling hole into a 1 liter driver bag, and the 0 C0 concentration and NOX concentration in the gas are detected using a detector tube. As a result, similar results were obtained for all of them.
2 0 2 0

Claims

請 求 の 範 囲  The scope of the claims
( 1 ) ガス発生基剤であ る ビス 力ルバモイ ノレ ヒ ドラ ジ ン、 ( 2 ) 酸化剤であ る ォキ ソハ ロ ゲ ン酸塩、 ( 3 ) 酸化剤であ る 硝酸塩、 及び ( 4 ) 燃焼触媒を有効成分 とするエアバ ッ グ用ガス発生剤。 更に燃焼調節剤が配合さ れた請求の範囲第 1 項に (1) Bis-powered balbamoinolehydrazine as a gas generating base, (2) oxohalogenate as an oxidizing agent, (3) nitrate as an oxidizing agent, and (4) A gas generator for airbags containing a combustion catalyst as an active ingredient. Claim 1 further includes a combustion regulator
3  Three
記載のェアバ ッ グ用ガス発生剤。 The gas generating agent for airbags described.
( 1 ) ガス発生基剤であ る ビス カルノ モイ ル ヒ ドラ ジ ン、 ( 2 ) 酸化剤であ る ォキ ソハ ロ ゲ ン酸塩又は硝 酸塩、 及び ( 3 ) 燃焼触媒を有効成分 とするエアバ ッ グ用ガス発生剤。  (1) Biscarnomoyl hydrazine as a gas generating base, (2) oxohalogenate or nitrate as an oxidizing agent, and (3) Combustion catalyst as active ingredients. Gas generator for airbags.
更に燃焼調節剤が配合さ れた請求の範囲第 3 項に 記載のェアバ ッ グ用 ガス発生剤。 ビス 力 ルバモイ ル ヒ ドラ ジ ン力 、 無機系表面処理 剤で表面処理さ れている 力、、 親水性高分子化合物又は その架橋物で表面被覆さ れてい る力、、 或いは微粉砕さ れた ものであ る請求の範囲第 1 項又は第 3 項に記載の ェアバ ッ グ用 ガス発生剤。 燃焼触媒が、 周期律表第 4 〜 6 周期の金属の酸化物、 加熱によ り 前記金属酸化物を生成 し得 る含酸素金属化 合物及びへテ ロ ポ リ 酸か ら な る 群か ら選ばれる少な く と も 1 種であ る請求の範囲第 1 項又は第 3 項に記載の ェァバ ッ グ用 ガス発生剤。 4. The gas generating agent for airbags according to claim 3, further comprising a combustion regulator. Screw force Lubamoyl hydrazine force, force that has been surface-treated with an inorganic surface treating agent, force that has been surface-coated with a hydrophilic polymer compound or a crosslinked product thereof, or has been pulverized The gas generating agent for airbags according to claim 1 or 3, wherein A group consisting of a metal oxide of the fourth to sixth cycles of the periodic table, an oxygen-containing metal compound capable of producing the metal oxide by heating, and heteropolyacid; Claim 1 or Claim 3 which is at least one member selected from the group consisting of: Gas generating agent for webbing.
7. 燃焼触媒の配合量が、 ガス発生基剤 と酸化剤 との 合計量 1 0 0 重量部に対 して 0. 5 〜 3 0 重量部であ る 請求の範囲第 1 項に記載のエアバ ッ グ用 ガス発生剤。 8. 燃焼触媒の配合量が、 ガス発生基剤 と酸化剤 と の 合計量 1 0 0 重量部に対 して 1 0 〜 1 5 0 重量部であ る請求の範囲第 3 項に記載のエアバ ッ グ用 ガス発生剤。 9. 燃焼調節剤が、 B、 A l、 M g、 T i、 Z r 及び M o か ら選ばれる金属単体、 周期律表第 2 〜 3 周期元 素 (アルカ リ 金属及びアルカ リ 土類金属を除 く ) の酸 化物、 水酸化物、 炭酸塩、 重炭酸塩、 アルカ リ 金属の 炭酸塩、 重炭酸塩、 酸化物、 アルカ リ 土類金属の炭酸 塩、 重炭酸塩、 前記以外の周期律表第 4 ~ 6 周期元素 の塩化物、 炭酸塩、 硫酸塩、 セル ロ ー ス系化合物、 有 機高分子化合物、 並びに有機カ ルボ ン酸か らな る群か ら選ばれる少な く と も 1 種であ る請求の範囲第 2 項又 は第 4 項に記載のエアバ ッ グ用ガス発生剤。 7. The airbag according to claim 1, wherein the blending amount of the combustion catalyst is 0.5 to 30 parts by weight with respect to 100 parts by weight of the total amount of the gas generating base and the oxidizing agent. Gas generating agent for rugs. 8. The airbag according to claim 3, wherein the blending amount of the combustion catalyst is 10 to 150 parts by weight based on 100 parts by weight of the total amount of the gas generating base and the oxidizing agent. Gas generating agent for rugs. 9. The combustion modifier is a simple metal selected from B, Al, Mg, Ti, Zr and Mo, and the second to third periodic elements of the periodic table (alkali metals and alkaline earth metals) Oxides, hydroxides, carbonates, bicarbonates, alkali metal carbonates, bicarbonates, oxides, alkaline earth metal carbonates, bicarbonates, other periods At least one selected from the group consisting of chlorides, carbonates, sulfates, cellulose compounds, organic polymer compounds, and organic carboxylic acids of the 4th to 6th periodic elements The gas generating agent for an air bag according to claim 2 or 4, which is a kind.
1 0. 粒径 0. 3 〜 1. 5 m mの粒状に成形さ れた請 求の範囲第 1 項又は第 3 項に記載のエアバ ッ グ用ガス 発生剤。  10. The airbag gas generating agent according to claim 1 or 3, which is formed into a granule having a particle size of 0.3 to 1.5 mm.
PCT/JP1996/002796 1995-09-29 1996-09-27 Gas generator for air bag WO1997012849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP96932011A EP0801045A4 (en) 1995-09-29 1996-09-27 Gas generator for air bag

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP7/253309 1995-09-29
JP25330995 1995-09-29
JP7/353203 1995-12-29
JP7353203A JPH09157080A (en) 1995-09-29 1995-12-29 Gas generating agent for air bag
JP8/59405 1996-03-15
JP8059405A JPH09249635A (en) 1996-03-15 1996-03-15 Modified biscarbamoyl hydrazine and gas generator for air bag
JP8/234987 1996-09-05
JP8234977A JPH1077258A (en) 1996-09-05 1996-09-05 Modified biscarbamoylhydrazine and gas generating agent for air bag
JP8/234977 1996-09-05
JP8234987A JPH1077259A (en) 1996-09-05 1996-09-05 Finely powdery biscarbamoylhydrazine, granulated product thereof and gas generating agent for air bag

Publications (1)

Publication Number Publication Date
WO1997012849A1 true WO1997012849A1 (en) 1997-04-10

Family

ID=27523507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/002796 WO1997012849A1 (en) 1995-09-29 1996-09-27 Gas generator for air bag

Country Status (2)

Country Link
EP (1) EP0801045A4 (en)
WO (1) WO1997012849A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905108A1 (en) * 1997-09-24 1999-03-31 TRW Airbag Systems GmbH & Co. KG Particle-free gas generating mixture
WO2004024652A1 (en) * 2002-09-12 2004-03-25 Daicel Chemical Industries, Ltd. Gas generant composition
US6964716B2 (en) 2002-09-12 2005-11-15 Daicel Chemical Industries, Ltd. Gas generating composition

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043633A1 (en) * 1998-02-25 1999-09-02 Nippon Kayaku Kabushiki-Kaisha Gas generator composition
DE29821541U1 (en) * 1998-12-02 1999-02-18 Trw Airbag Sys Gmbh & Co Kg Azide-free, gas generating composition
US6523855B2 (en) 1999-09-24 2003-02-25 Breed Automotive Technologies, Inc. Air bag, method of manufacture and system therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632690A (en) * 1992-07-13 1994-02-08 Nippon Koki Kk Gas-generating agent for air bag
JPH06227884A (en) * 1993-02-05 1994-08-16 Nippon Koki Kk Gas generator for air bag
JPH06239683A (en) * 1993-02-15 1994-08-30 Daicel Chem Ind Ltd Gas generating agent for air bag
WO1995000462A1 (en) * 1993-06-22 1995-01-05 Automotive Systems Laboratory, Inc. Azide-free gas generant compositions and processes
JPH07223890A (en) * 1994-02-15 1995-08-22 Nippon Koki Kk Gas producing agent composition
JPH07300383A (en) * 1994-05-09 1995-11-14 Nippon Oil & Fats Co Ltd Gas-generating agent
JPH0812481A (en) * 1994-06-29 1996-01-16 Otsuka Chem Co Ltd Gas-generating agent for air bag
JPH08143388A (en) * 1994-11-15 1996-06-04 Nippon Oil & Fats Co Ltd Gas generating agent
JPH08169792A (en) * 1994-12-16 1996-07-02 Miyata Ind Co Ltd Gas generating agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632689A (en) * 1992-07-13 1994-02-08 Nippon Koki Kk Gas-generating agent for air bag
CA2115557C (en) * 1992-07-13 2000-07-25 Tadao Yoshida Air bag gas generating composition
FR2719578B1 (en) * 1994-05-09 1996-12-20 Nof Corp Gas generator compositions comprising a deoxidized agent and an oxidizing agent.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632690A (en) * 1992-07-13 1994-02-08 Nippon Koki Kk Gas-generating agent for air bag
JPH06227884A (en) * 1993-02-05 1994-08-16 Nippon Koki Kk Gas generator for air bag
JPH06239683A (en) * 1993-02-15 1994-08-30 Daicel Chem Ind Ltd Gas generating agent for air bag
WO1995000462A1 (en) * 1993-06-22 1995-01-05 Automotive Systems Laboratory, Inc. Azide-free gas generant compositions and processes
JPH07223890A (en) * 1994-02-15 1995-08-22 Nippon Koki Kk Gas producing agent composition
JPH07300383A (en) * 1994-05-09 1995-11-14 Nippon Oil & Fats Co Ltd Gas-generating agent
JPH0812481A (en) * 1994-06-29 1996-01-16 Otsuka Chem Co Ltd Gas-generating agent for air bag
JPH08143388A (en) * 1994-11-15 1996-06-04 Nippon Oil & Fats Co Ltd Gas generating agent
JPH08169792A (en) * 1994-12-16 1996-07-02 Miyata Ind Co Ltd Gas generating agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0801045A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905108A1 (en) * 1997-09-24 1999-03-31 TRW Airbag Systems GmbH & Co. KG Particle-free gas generating mixture
WO2004024652A1 (en) * 2002-09-12 2004-03-25 Daicel Chemical Industries, Ltd. Gas generant composition
US6964716B2 (en) 2002-09-12 2005-11-15 Daicel Chemical Industries, Ltd. Gas generating composition

Also Published As

Publication number Publication date
EP0801045A4 (en) 2000-11-02
EP0801045A1 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
WO1997012848A1 (en) Gas generating agent for air bags
US5883330A (en) Azodicarbonamide containing gas generating composition
KR100411997B1 (en) Low Residual Azide-Glass Gas Generator Compositions
EP1538137B1 (en) Gas generant composition
US5460667A (en) Gas generating agent and gas generator for automobile air bags
JPH03153593A (en) Azide gas generating composition
US20110169254A1 (en) Active-active failover for a direct-attached storage system
PL175606B1 (en) Propellant for a gas generator
JP5719763B2 (en) GAS GENERATOR COMPOSITION, MOLDED BODY THEREOF, AND GAS GENERATOR USING THE SAME
JPH05213687A (en) Composition and method for generating gas containing nitrogen and air bag apparatus for automobile
EP2164823A1 (en) Gas generating compositions and airbag inflators
JP3848257B2 (en) Propellant for gas generant
WO1994001381A1 (en) Gas generating agent for air bags
WO1997012849A1 (en) Gas generator for air bag
JP2019172570A (en) Improved booster composition
WO2003086814A2 (en) Gas generating composition
US6228191B1 (en) Gas-generating preparation with iron and/or copper carbonate
KR20010041919A (en) Propellants for gas generator
EP1335890B1 (en) Gas generation via metal complexes of guanylurea nitrate
JP2926321B2 (en) Gas generator for airbag
JP2988891B2 (en) Mica-containing improved gas generating composition
JP2018154539A (en) Gas generating agent composition
JP2893329B2 (en) Gas generator for airbag
JPH0812481A (en) Gas-generating agent for air bag
JPH08301682A (en) Gas generater for air bag

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996932011

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 849652

Date of ref document: 19970529

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996932011

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996932011

Country of ref document: EP