WO1997022010A1 - Accelerometre et procede de fabrication - Google Patents

Accelerometre et procede de fabrication Download PDF

Info

Publication number
WO1997022010A1
WO1997022010A1 PCT/FR1996/001968 FR9601968W WO9722010A1 WO 1997022010 A1 WO1997022010 A1 WO 1997022010A1 FR 9601968 W FR9601968 W FR 9601968W WO 9722010 A1 WO9722010 A1 WO 9722010A1
Authority
WO
WIPO (PCT)
Prior art keywords
arms
stops
axis
along
plate
Prior art date
Application number
PCT/FR1996/001968
Other languages
English (en)
Inventor
Olivier Lefort
Sylvie Pedraza-Ramos
René Presset
Pierre Giroud
Original Assignee
Sextant Avionique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sextant Avionique filed Critical Sextant Avionique
Priority to JP9521794A priority Critical patent/JP2000502441A/ja
Priority to US09/077,888 priority patent/US6089093A/en
Priority to EP96941729A priority patent/EP0866972B1/fr
Priority to AU11015/97A priority patent/AU706765B2/en
Priority to BR9612776-7A priority patent/BR9612776A/pt
Priority to DE69609627T priority patent/DE69609627D1/de
Publication of WO1997022010A1 publication Critical patent/WO1997022010A1/fr
Priority to NO982667A priority patent/NO982667L/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/13Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
    • G01P15/132Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electromagnetic counterbalancing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Definitions

  • the field of the invention is that of deformable microstructures with bidirectional operation, in particular that of accelerometers comprising a movable mass connected to a fixed frame by means of fine suspension arms.
  • the accelerations undergone by the moving mass can typically be detected thanks to the presence of piezoresistive gauges at the level of the fine suspension arms.
  • piezoresistive gauges can also control an electromagnetic servo device for the moving mass, to compensate for the displacements.
  • the strain gauges of the accelerometer are intended to generate by means of an electronic circuit, a supply current from a coil to compensate, by electromagnetic induction phenomena, for a displacement of the mobile mass. under the effect of external conditions, for example seismic movements.
  • Such accelerometers can be produced from silicon wafers, using silicon etching techniques, developed in the context of the manufacture of semiconductor electronic components.
  • silicon etching techniques developed in the context of the manufacture of semiconductor electronic components.
  • the use of such technologies makes it possible to produce the moving mass and the elements associated with it by a collective process on silicon wafers and thus to define a series of acceleration sensors, in a limited number of technological steps.
  • the manufacture of this type of sensor includes the assembly of several silicon wafers, at least one central wafer in which the movable mass is produced and two outer wafers having abutment elements for the movable mass, thus making it possible to limit the 'extent of movements to which said moving mass could be subjected, and therefore to optimize the protection of the moving mass and the suspension arms.
  • An example of an accelerometer consisting of at least three silicon wafers according to the prior art is illustrated in FIG. 1.
  • Figure 1 illustrates a cross section of this type of accelerometer, the manufacture of which results in particular from the assembly of 4 silicon wafers, a so-called upper wafer constituting a part of the fixed frame and comprising upper stops Bs, two central plates constituting the moving mass 1 and part of the fixed frame and a fourth plate, called the lower comprising a part of the fixed frame and an abutment plane Bi for the lower face of the moving mass.
  • the invention relates to an accelerometer resulting from the assembly of the two plates in which all the elements and functions are defined (mobile mass, arm of suspension, frame, stop functions).
  • the subject of the invention is an accelerometer comprising a moving mass 1 connected to a fixed frame 3 characterized in that the moving mass 1 and the fixed frame 3 are defined in the stack of two monocrystalline silicon plates called the upper plate 6 and bottom plate 7
  • the upper plate comprising: * the upper part 11 of the mobile mass, comprising two counter-stops 41 and 42 along an axis Y defined in the plane of the mobile mass;
  • the stops are defined as fixed elements of the accelerometer on which abut counter-stops, mobile elements of the accelerometer.
  • the accelerometer is characterized in that: - Part 11 includes a central part 13 and two locking arms 14 and 15 located on either side of said central part, along the axis Y;
  • - Part 31 includes a peripheral part 33 and two arms 34 and 35 located inside the peripheral part, along the axis
  • the upper plate 6 comprising two suspension arms 21 and 22 connecting the central part 13 to the arms 34 and 35;
  • Part 12 includes a central part 16 and two locking arms 17 and 18 located on either side of said central part, along the axis X;
  • - Part 32 includes a peripheral part 36 and two arms 37 and 38 located inside the peripheral part along the axis
  • the plates 6 and 7 of the accelerometer include thin guide arms connecting the moving mass 1 to the frame 3 so that only movements of the moving mass along an axis Z perpendicular to the plane of said mass, are possible.
  • these arms can be located along two axes oriented at 45 ° to the X and Y axes and located at the upper part of the plate 6 and at the lower level of the lower plate 7, that is to say in planes corresponding to the outside plane of the plate 6 and the outside plane of the plate 7, the inside planes of said plates corresponding to the contact plane of these plates.
  • FIG. 1 illustrates an accelerometer according to the prior art
  • FIG. 2a illustrates the upper plate used in an example of an accelerometer according to the invention
  • FIG. 2b illustrates the lower plate used in an example of an accelerometer according to the invention
  • FIG. 3a illustrates a cross section along a plane represented by the axis AA 'of the set of plates 6 and 7, shown in Figures 2a and 2b;
  • FIG. 3b illustrates a cross section along a plane represented by the axis BB 'of all the plates 6 and 7 shown in Figures 2a and 2b;
  • FIG. 4a illustrates an example of plate 6 with four guide arms
  • FIG. 4b illustrates an example of plate 7 with four guide arms
  • FIG. 5 illustrates the process steps for producing a bottom plate used in an accelerometer according to the invention
  • FIG. 6 illustrates the process steps for producing an upper plate used in an accelerometer according to the invention.
  • FIGS. 2a and 2b relate to the plates 6 and 7, the stacking of which makes it possible to define the mass mobilized 1 connected to a fixed frame 3.
  • FIG. 2a relates to the upper plate 6.
  • This plate 6 comprises the upper part 11 of the movable mass consisting of a central part 13 and two locking arms 14 and 15 located on either side of the central part and oriented in Figure 2a along the Y axis.
  • the upper plate 6 also includes the upper part 31 of the fixed frame, consisting of a peripheral part 33 and two arms 34 and 35, oriented in FIG. 2a along the axis X.
  • a part 42 of the locking arm 15 and a part 43 of the locking arm 14 constitute counter-stops on the part 11 of the movable mass.
  • a part 43 of the arm 34 and a part 44 of the arm 35 constitute stops on the part 31 of the fixed frame.
  • This plate 6 also includes two suspension arms 21 and 22 connecting the central part 13 of the movable mass to the arms 34 and 35 secured to the fixed frame.
  • FIG. 2b relates to the lower plate 7.
  • This plate 7 comprises the lower part 12 of the movable mass consisting of a central part 16 and two locking arms 17 and 18 oriented in the figure along the axis X.
  • the plate 7 also includes the lower part 32 of the fixed frame, consisting of a peripheral part 36 and two arms 37 and 38, oriented in the figure along the Y axis.
  • a part 42 of the blocking arm 15 and a part 41 of the blocking arm 14 constitute counter-stops respectively opposite the stop 48 part of the arm 38 and the stop 47 part of the arm 37.
  • a part 45 of the blocking arm 17 and a part 46 of the blocking arm 18 constitute counter-stops respectively opposite the stop 43 of the arm 34 and the stop 44 of the arm 35.
  • Figures 3a and 3b illustrate how the different stops and the different counter-stops can be made.
  • the arms 17, 18, 37 and 38 of the lower plate 7 have the same architecture. They consist of a second element of thickness e-
  • the arms 14, 15, 34 and 35 of the upper plate 6 all have the same architecture. They consist of a single element of thickness e 0 , a part of each arm facing the thinned part constituting an arm in the lower plate 7.
  • FIGS. 5 and 6 respectively illustrate the steps of the method for producing the lower plate without piezoresistive gauge and the method for producing the upper plate with piezoresistive gauges.
  • FIG. 5 describes the construction of the elements 36, 17, 16 shown in FIG. 3a
  • the assembly of FIG. 6 describes the construction of the elements 33, 43, 21, 13 represented in FIG. 3a.
  • the upper and lower plates may include thin guide arms, ensuring that the movable mass is held relative to the fixed frame.
  • FIGS. 4a and 4b illustrate an exemplary configuration in which the upper plate comprises four guide arms 81, 82, 83, 84 (FIG. 4a) and the lower plate also comprises four guide arms 85, 86, 87, 88 (FIG. 4b).
  • the guide arms may have a thickness close to that of the suspension arms 21 and 22 and be on the one hand located in the upper part of the plate 6 (in the same plane as the suspension arms) and located elsewhere in the lower part of plate 7.
  • Two layers of oxide or nitride 91 and 92 are then produced on the two faces of the SIMOX type substrate (FIG. 5b).
  • a mask is produced by photolithography and etching at the level of layer 91 (FIG. 5c). This mask is refined by a second etching step as illustrated in FIG. 5d.
  • the oxide or nitride layer 91 is then thinned as illustrated in FIG. 5f.
  • a second silicon etching step is carried out which makes it possible to define the counter-stop 45 in the blocking arm 17 (FIG. 5g).
  • a laser etching step is carried out which leads to the separation of the locking arm 17 from the peripheral part 36 of the fixed frame (FIG. 5h).
  • a silicon wafer in which two insulating layers 93 and 94 have been produced, said wafer being moreover covered on the opposite face with a insulating layer 95.
  • the two implanted layers 93 and 94 can be produced in several ways.
  • a SIMOX type plate can be used in which the layer 93 is implanted in a conventional manner.
  • a layer of thickness 4000 ⁇ can conventionally be implanted at a depth of approximately 4000A. It is then possible to proceed by epitaxy to the growth of the monocrystalline silicon layer. In this epitaxial layer, it is then possible to implant the oxide layer 94 (FIG. 6a).
  • Another method consists in welding at high temperature two silicon wafers, one of which is oxidized on the surface. We obtain a set of two silicon wafers assembled at the level of the oxide layer which then constitutes layer 93. One of the wafers can then be machined so as to define the desired thickness of silicon in which a ion implantation of oxygen to define layer 94.
  • the thin layer 96 makes it possible to define silicon elements isolated from the rest of the wafers which may constitute piezoelectric gauges better defined and calibrated than those resulting conventionally, from implantation within a silicon substrate (FIG. 6b).
  • the piezoelectric gauges are protected by a layer 97 of nitride for example, or of oxide, or both, openings at the level of layer 97 are locally made to allow the electrical connections (FIG. 6c).
  • a conductive layer can then be deposited and then etched to form in known manner, connecting tracks for each gauge, not shown in FIG. 6c.
  • a mask is produced by etching through the layer 95 as illustrated in FIG. 5d.
  • this mask is followed by a step of chemical etching of the silicon, making it possible to define the suspension arm 21, the arm 34 with its stop 43 as well as the upper central part of the movable mass 13.
  • the two silicon plates 6 and 7 thus machined can be welded by heating typically at a temperature of the order of 1000 ° C.
  • the assembly of the two plates can be carried out before carrying out the laser cutting illustrated in FIG. 5h which makes it possible to separate the locking arm 17 from the peripheral part of the frame 36, so as to facilitate said assembly.
  • the thin guide arms 81, 82, 83, 84 can also be produced in the upper plate in the same way as the fine suspension arms and in the same plane thanks to the etching stop layer.
  • the thin guide arms 85, 86, 87, 88 can also be produced in the lower plate thanks to the silicon layer between the oxide layers 90 and 92.

Abstract

L'invention concerne un accéléromètre à base de silicium monocristallin comprenant une masse mobile (1) reliée à un cadre fixe (3) par des bras de suspension (21, 22). Ce capteur est réalisé dans l'empilement de deux plaques de silicium (6, 7), dans lesquelles sont réalisées des fonctions de butées (43, 44, 47, 48) et de contre-butées (41, 42, 45, 46) pour limiter l'ampleur des mouvements de la masse mobile (1).

Description

ACCELEROMETRE ET PROCEDE DE FABRICATION
Le domaine de l'invention est celui des micro-structures déformables à fonctionnement bidirectionnel, en particulier, celui des accéléromètres comprenant une masse mobile reliée à un cadre fixe par l'intermédiaire de bras fins de suspension.
Les accélérations subies par la masse mobile peuvent typiquement être détectées grâce à la présence de jauges piézorésistives au niveau des bras fins de suspension. De telles jauges piézorésistives peuvent également commander un dispositif d'asservissement électromagnétique de la masse mobile, pour en compenser les déplacements.
Dans ce cas, les jauges de contraintes de l'accéléromètre sont destinées à générer au moyen d'un circuit électronique, un courant d'alimentation d'une bobine pour compenser, par des phénomènes d'induction électromagnétique, un déplacement de la masse mobile sous l'effet de conditions extérieures, par exemple de mouvements sismiques.
Actuellement, de tels accéléromètres peuvent être élaborés à partir de plaquettes de silicium, en utilisant des techniques de gravure du silicium, développées dans le cadre de la fabrication des composants électroniques à semiconducteurs. L'emploi de telles technologies permet de réaliser la masse mobile et les éléments qui y sont associés par un processus collectif sur des tranches de silicium et ainsi de définir une série de capteurs d'accélération, en un nombre limité d'étapes technologiques.
Typiquement, la fabrication de ce type de capteurs comprend l'assemblage de plusieurs plaquettes de silicium, au moins une plaquette centrale dans laquelle est réalisée la masse mobile et deux plaquettes extérieures possédant des éléments de butées pour la masse mobile, permettant ainsi de limiter l'ampleur des mouvements auxquels pourrait être soumis ladite masse mobile, et donc d'optimiser la protection de la masse mobile et des bras de suspension. Un exemple d'accéléromètre constitué d'au moins trois plaquettes de silicium selon l'art connu est illustré en figure 1.
Plus précisément, la figure 1 illustre une coupe transversale de ce type d'accéléromètre dont la fabrication résulte notamment de l'assemblage de 4 plaquettes de silicium, une plaquette dite supérieure constituant une partie du cadre fixe et comprenant des butées supérieures Bs, deux plaquettes centrales constituant la masse mobile 1 et une partie du cadre fixe et une quatrième plaquette, dite inférieure comprenant une partie du cadre fixe et un plan de butée Bi pour la face inférieure de la masse mobile.
Pour simplifier l'architecture de ce type d'accéléromètre et en faciliter le procédé de fabrication, l'invention a pour objet un accéléromètre résultant de l'assemblage des deux plaquettes dans lesquelles tous les éléments et fonctions sont définis (masse mobile, bras de suspension, cadre, fonctions de butées).
Plus précisément, l'invention a pour objet un accéléromètre comprenant une masse mobile 1 reliée à un cadre fixe 3 caractérisé en ce que la masse mobile 1 et le cadre fixe 3 sont définis dans l'empilement de deux plaques de silicium monocristallin dites plaque supérieure 6 et plaque inférieure 7
- la plaque supérieure comprenant : * la partie supérieure 11 de la masse mobile, comportant deux contre-butées 41 et 42 le long d'un axe Y défini dans le plan de ia masse mobile ;
* la partie supérieure 31 du cadre fixe, comportant deux butées 43 et 44 le long d'un axe X perpendiculaire à l'axe Y et défini dans le plan de la masse mobile ;
* les parties 11 et 31 étant reliées par des bras de suspension 21 et 22 ;
- la plaque inférieure comprenant :
* la partie inférieure 12 de la masse mobile, comportant deux contre-butées 45 et 46 le long de l'axe X ;
* la partie inférieure 32 du cadre fixe, comportant deux butées 47 et 48 le long de l'axe Y ;
- les contre-butées 41 et 42 étant en regard des butées 47 et 48 ; - les contre-butées 45 et 46 étant en regard des butées 43 et 44.
Par convention, les butées sont définies comme des éléments fixes de l'accéléromètre sur lesquelles viennent buter des contre-butées, éléments mobiles de l'accéléromètre.
Selon une variante de l'invention, l'accéléromètre est caractérisé en ce que : - la partie 11 comprend une partie centrale 13 et deux bras de blocage 14 et 15 situés de part et d'autre de ladite partie centrale, selon l'axe Y ;
- la partie 31 comprend une partie périphérique 33 et deux bras 34 et 35 situés à l'intérieur de la partie périphérique, selon l'axe
X, la plaque supérieure 6 comprenant deux bras de suspension 21 et 22 reliant la partie centrale 13 aux bras 34 et 35 ;
- la partie 12 comprend une partie centrale 16 et deux bras de blocage 17 et 18 situés de part et d'autre de ladite partie centrale, selon l'axe X ;
- la partie 32 comprend une partie périphérique 36 et deux bras 37 et 38 situés à l'intérieur de la partie périphérique selon l'axe
Y i
- les contre-butées 41 et 42 étant définies dans les bras de blocage 14 et 15 ;
- les butées 43 et 44 étant définies dans les bras 34 et 35 ;
- les contre-butées 45 et 46 étant définies dans les bras de blocage 17 et 18 ;
- les contre-butées 47 et 48 étant définies dans les bras 37 et 38.
Selon une variante de l'invention, les plaques 6 et 7 de l'accéléromètre comprennent des bras fins de guidage reliant la masse mobile 1 au cadre 3 de manière à ce que seuls des mouvements de la masse mobile selon un axe Z perpendiculaire au plan de ladite masse, soient possibles. Avantageusement, ces bras peuvent être situés selon deux axes orientés à 45° des axes X et Y et situés au niveau de la partie supérieure de la plaque 6 et au niveau inférieur de la plaque inférieure 7, c'est-à-dire dans des plans correspondant au plan extérieur de la plaque 6 et au plan extérieur de la plaque 7, les plans intérieurs desdites plaques correspondant au plan de contact de cesdites plaques.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre, donnée à titre non limitatif et grâce aux figures annexées, parmi lesquelles :
- la figure 1 illustre un accéléromètre selon l'art antérieur ; - la figure 2a illustre la plaque supérieure utilisée dans un exemple d'accéléromètre selon l'invention ;
- la figure 2b illustre la plaque inférieure utilisée dans un exemple d'accéléromètre selon l'invention ; - la figure 3a illustre une coupe transversale selon un plan représenté par l'axe AA' de l'ensemble des plaques 6 et 7, représentés sur les figures 2a et 2b ;
- la figure 3b illustre une coupe transversale selon un plan représenté par l'axe BB' de l'ensemble des plaques 6 et 7 représentées sur les figures 2a et 2b ;
- la figure 4a illustre un exemple de plaque 6 avec quatre bras de guidage ;
- la figure 4b illustre un exemple de plaque 7 avec quatre bras de guidage ; - la figure 5 illustre les étapes de procédé de réalisation d'une plaque inférieure utilisée dans un accéléromètre selon l'invention ;
- la figure 6 illustre les étapes de procédé de réalisation d'une plaque supérieure utilisée dans un accéléromètre selon l'invention.
Un mode de réalisation de l'accéléromètre selon l'invention est illustré par l'ensemble des figures 2 et 3. Les figures 2a et 2b sont relatives aux plaques 6 et 7 dont l'empilement permet de définir la masse mobiie 1 reliée à un cadre fixe 3. La figure 2a est relative à la plaque supérieure 6. Cette plaque 6 comprend la partie supérieure 11 de la masse mobile constituée d'une partie centrale 13 et de deux bras de blocage 14 et 15 situés de part et d'autre de la partie centrale et orientés sur la figure 2a selon l'axe Y.
La plaque supérieure 6 comprend aussi la partie supérieure 31 du cadre fixe, constituée d'une partie périphérique 33 et de deux bras 34 et 35, orientés sur la figure 2a selon l'axe X.
Une partie 42 du bras de blocage 15 et une partie 43 du bras de blocage 14 constituent des contre-butées sur la partie 11 de la masse mobile. Une partie 43 du bras 34 et une partie 44 du bras 35 constituent des butées sur la partie 31 du cadre fixe.
Cette plaque 6 comprend également deux bras de suspension 21 et 22 reliant la partie centrale 13 de la masse mobile aux bras 34 et 35 solidaires du cadre fixe.
La figure 2b est relative à la plaque inférieure 7. Cette plaque 7 comprend la partie inférieure 12 de la masse mobile constituée d'une partie centrale 16 et de deux bras de blocage 17 et 18 orientés sur la figure selon l'axe X. La plaque 7 comprend également la partie inférieure 32 du cadre fixe, constituée d'une partie périphérique 36 et de deux bras 37 et 38, orientés sur la figure selon l'axe Y.
Une partie 42 du bras de blocage 15 et une partie 41 du bras de blocage 14 constituent des contre-butées respectivement en regard de la butée 48 partie du bras 38 et de la butée 47 partie du bras 37.
De même, une partie 45 du bras de blocage 17 et une partie 46 du bras de blocage 18 constituent des contre-butées respectivement en regard de la butée 43 du bras 34 et de la butée 44 du bras 35.
Les figures 3a et 3b illustrent comment peuvent être réalisées les différentes butées et les différentes contre-butées.
Les bras 17, 18, 37 et 38 de la plaque inférieure 7 présentent la même architecture. Ils sont constitués d'un second élément d'épaisseur e-| inférieure à l'épaisseur e0 d'une plaque de silicium. La différence d'épaisseur entre ces bras et les autres parties de la plaque de silicium permet d'élaborer des butées ou contre-butées pour les contre-butées ou butées qui sont respectivement en regard.
Les bras 14, 15, 34 et 35 de la plaque supérieure 6 présentent tous la même architecture. Ils sont constitués d'un seul élément d'épaisseur e0, une partie de chaque bras étant en regard de la partie amincie constituant un bras dans la plaque inférieure 7.
Nous allons décrire un exemple de procédé de réalisation d'un accéléromètre selon l'invention, élaboré à partir de l'empilement de deux plaques de silicium. Les figures 5 et 6 illustrent respectivement les étapes de procédé de réalisation de la plaque inférieure sans jauge piézorésistive et le procédé de réalisation de la plaque supérieure avec jauges piézorésistives.
Plus exactement, l'ensemble de la figure 5 décrit la réalisation des éléments 36, 17, 16 représentés en figure 3a, et l'ensemble de la figure 6 décrit la réalisation des éléments 33, 43, 21, 13 représentés en figure 3a.
Pour conférer une certaine robustesse à l'accéléromètre, les plaques supérieure et inférieure peuvent comprendre des bras fins de guidage, assurant un maintien de la masse mobile par rapport au cadre fixe. Les figures 4a et 4b illustrent un exemple de configuration dans laquelle la plaque supérieure comprend quatre bras de guidage 81 , 82, 83, 84 (figure 4a) et la plaque inférieure comprend également quatre bras de guidage 85, 86, 87, 88 (figure 4b). Typiquement, les bras de guidage peuvent avoir une épaisseur voisine de celle des bras de suspension 21 et 22 et être d'une part situés dans la partie supérieure de la plaque 6 (dans le même plan que les bras de suspension) et situés d'autre part dans ia partie inférieure de la plaque 7.
Pour élaborer les différents éléments de la plaque inférieure 7, on peut utiliser un substrat de type SIMOX correspondant à un substrat silicium monocristallin dans lequel est implantée une couche d'oxyde 90 (figure 5a).
Deux couches d'oxyde ou de nitrure 91 et 92 sont ensuite réalisées sur les deux faces du substrat de type SIMOX (figure 5b).
On réalise un masque par photolithographie et gravure au niveau de la couche 91 (figure 5c). Ce masque est affiné par une seconde étape de gravure comme l'illustre la figure 5d.
On procède à une gravure chimique classique du silicium dans les régions dépourvues de couche de protection (figure 5e).
La couche d'oxyde ou de nitrure 91 est ensuite amincie comme illustrée en figure 5f.
On procède à une seconde étape de gravure silicium qui permet de définir la contre butée 45 dans le bras de blocage 17 (figure 5g).
On procède enfin à une étape de gravure laser qui conduit à la séparation du bras de blocage 17 de la partie périphérique 36 du cadre fixe (figure 5h). Pour réaliser les fonctions désirées au niveau de la plaque supérieure 6, il peut être particulièrement avantageux d'utiliser une plaquette de silicium dans laquelle ont été réalisées deux couches isolantes 93 et 94, ladite plaquette étant par ailleurs recouverte sur la face opposée d'une couche isolante 95.
Les deux couches implantées 93 et 94 peuvent être réalisées de plusieurs manières.
On peut utiliser une plaquette de type SIMOX dans laquelle est implantée de manière classique la couche 93. On peut de manière classique implanter une couche d'épaisseur 4000 Â, à une profondeur d'environ 4000A. II est alors possible de procéder par épitaxie à la croissance de la couche de silicium monocristallin. Dans cette couche épitaxiée on peut alors implanter la couche d'oxyde 94 (figure 6a).
Un autre procédé consiste à souder à haute température deux plaquettes de silicium dont une est oxydée en surface. On obtient un ensemble de deux plaquettes de silicium assemblées au niveau de la couche d'oxyde qui constitue alors la couche 93. L'une des plaquettes peut ensuite être usinée de manière à définir l'épaisseur désirée de silicium dans laquelle on peut réaliser une implantation ionique d'oxygène pour définir la couche 94.
La couche 96 de faible épaisseur permet de définir des éléments de silicium isolés du reste des plaquettes pouvant constituer des jauges piézoélectriques mieux définies et calibrées que celles résultant de manière classique, d'implantation au sein d'un substrat silicium (figure 6b). Les jauges piézoélectriques sont protégées par une couche 97 de nitrure par exemple, ou d'oxyde, ou les deux, des ouvertures au niveau de la couche 97 sont localement réalisées pour permettre les connexions électriques (figure 6c).
Une couche conductrice peut alors être déposée puis gravée pour former de manière connue, des pistes de raccordement de chaque jauge, non représentée en figure 6c.
Un masque est réalisé par gravure au travers de la couche 95 comme illustré en figure 5d.
La fabrication de ce masque est suivie d'une étape de gravure chimique du silicium, permettant de définir le bras de suspension 21 , le bras 34 avec sa butée 43 ainsi que la partie centrale supérieure de la masse mobile 13.
Les deux plaques de silicium 6 et 7 ainsi usinées peuvent être soudées par chauffage typiquement à une température de l'ordre de 1000°C. L'assemblage des deux plaques peut être effectué avant de réaliser la découpe laser illustrée en figure 5h qui permet de désolidariser le bras de blocage 17 de la partie périphérique du cadre 36, de manière à faciliter ledit assemblage.
Pour réaliser les bras 14, 15, 37 et 38 selon l'axe Y, on utilise également toutes les étapes qui ont été décrites ci-dessus.
Les bras fins de guidage 81 , 82, 83, 84 peuvent également être réalisés dans la plaque supérieure de la même façon que les bras fins de suspension et dans le même plan grâce à la couche d'arrêt de gravure.
Les bras fins de guidage 85, 86, 87, 88 peuvent aussi être réalisés dans la plaque inférieure grâce à la couche de silicium comprise entre les couches d'oxyde 90 et 92.

Claims

REVENDICATIONS
1. Accéléromètre comprenant une masse mobile (1 ) reliée à un cadre fixe (3) caractérisé en ce que la masse mobile (1 ) et le cadre fixe (3) sont définis dans l'empilement de deux plaques de silicium monocristallin dites plaque supérieure (6) et plaque inférieure (7)
- la plaque supérieure comprenant :
* la partie supérieure (11 ) de la masse mobile, comportant deux contre-butées (41 ) et (42) le long d'un axe (Y) défini dans le plan de la masse mobile ;
* la partie supérieure (31 ) du cadre fixe, comportant deux butées (43) et (44) le long d'un axe (X) perpendiculaire à l'axe (Y) et défini dans le plan de la masse mobile ;
* les parties (11 ) et (31 ) étant reliées par des bras de suspension (21 ) et (22) ;
- la plaque inférieure comprenant :
* la partie inférieure (12) de la masse mobile, comportant deux contre-butées (45) et (46) le long de l'axe (X) ;
* la partie inférieure (32) du cadre fixe, comportant deux butées (47) et (48) le long de l'axe (Y) ;
- les contre-butées (41 ) et (42) étant en regard des butées (47) et (48) ;
- les contre-butées (45) et (46) étant en regard des butées (43) et (44).
2. Accéléromètre selon la revendication 1 , caractérisé en ce que :
- la partie (11 ) comprend une partie centrale (13) et deux bras de blocage (14) et (15) situés de part et d'autre de ladite partie centrale, selon l'axe (Y) ;
- la partie (31 ) comprend une partie périphérique (33) et deux bras (34) et (35) situés à l'intérieur de la partie périphérique, selon l'axe (X), la plaque supérieure (6) comprenant deux bras de suspension (21 ) et (22) reliant la partie centrale (13) aux bras (34) et (35) ;
- la partie (12) comprend une partie centrale (16) et deux bras de blocage (17) et (18) situés de part et d'autre de ladite partie centrale, selon l'axe (X) ; - la partie (32) comprend une partie périphérique (36) et deux bras (37) et (38) situés à l'intérieur de la partie périphérique selon Taxe (Y) ;
- les contre-butées (41 ) et (42) étant définies dans les bras de blocage (14) et (15) ;
- les butées (43) et (44) étant définies dans les bras (34) et (35) ;
- les contre-butées (45) et (46) étant définies dans les bras de blocage (17) et (18) ;
- les butées (47) et (48) étant définies dans les bras (37) et (38).
3. Accéléromètre selon la revendication 2, caractérisé en ce que les plaques (6) et (7) comprennent des bras fins de guidage, reliant la masse mobile (1 ) au cadre fixe (3), lesdits bras étant situés selon deux axes orientés à 45° des axes (X) et (Y).
4. Accéléromètre selon la revendication 3, caractérisé en ce que la plaque supérieure (6) comprend quatre bras de guidage (81 ), (82), (83),
(84) et que la plaque inférieure (7) comprend quatre bras de guidage (85),
(86), (87), (88), lesdits bras (81 ), (82), (83), (84) étant situés au niveau supérieur de la plaque (6), lesdits bras (85), (86), (87), (88) étant situés au niveau inférieur de la plaque (7).
5. Accéléromètre selon l'une des revendications 2 à 4, caractérisé en ce que les bras de suspension (21 ) et (22) comprennent des jauges piézorésistives.
6 Accéléromètre selon l'une des revendications 1 à 5, caractérisé en ce qu'il comprend un système d'asservissement électromagnétique de la masse mobile (1 ).
PCT/FR1996/001968 1995-12-12 1996-12-10 Accelerometre et procede de fabrication WO1997022010A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP9521794A JP2000502441A (ja) 1995-12-12 1996-12-10 加速度計および製造方法
US09/077,888 US6089093A (en) 1995-12-12 1996-12-10 Accelerometer and method for making same
EP96941729A EP0866972B1 (fr) 1995-12-12 1996-12-10 Accelerometre et procede de fabrication
AU11015/97A AU706765B2 (en) 1995-12-12 1996-12-10 Accelerometer and method of manufacture
BR9612776-7A BR9612776A (pt) 1995-12-12 1996-12-10 AcelerÈmetro e processo de fabricação
DE69609627T DE69609627D1 (de) 1995-12-12 1996-12-10 Beschleunigungssensor und verfahren zu seiner herstellung
NO982667A NO982667L (no) 1995-12-12 1998-06-10 Aksellerometer, samt fremgangsmÕte til fremstilling av samme

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9514686A FR2742230B1 (fr) 1995-12-12 1995-12-12 Accelerometre et procede de fabrication
FR95/14686 1995-12-12

Publications (1)

Publication Number Publication Date
WO1997022010A1 true WO1997022010A1 (fr) 1997-06-19

Family

ID=9485396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001968 WO1997022010A1 (fr) 1995-12-12 1996-12-10 Accelerometre et procede de fabrication

Country Status (10)

Country Link
US (1) US6089093A (fr)
EP (1) EP0866972B1 (fr)
JP (1) JP2000502441A (fr)
AU (1) AU706765B2 (fr)
BR (1) BR9612776A (fr)
CA (1) CA2239106A1 (fr)
DE (1) DE69609627D1 (fr)
FR (1) FR2742230B1 (fr)
NO (1) NO982667L (fr)
WO (1) WO1997022010A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073815A1 (fr) * 1999-05-28 2000-12-07 Fisher-Tortolano Systems Limited Appareil et procede de navigation
US6672168B2 (en) 2001-09-24 2004-01-06 Andrew Braugh Multi-level machine vibration tester marker pen

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788163B1 (fr) 1998-12-30 2001-03-16 Sextant Avionique Actionneur electromagnetique equipe de moyens d'ajustement de la position de son element polaire mobile
JP2003172745A (ja) * 2001-09-26 2003-06-20 Hitachi Metals Ltd 半導体加速度センサ
US7372616B2 (en) * 2001-12-06 2008-05-13 Microfabrica, Inc. Complex microdevices and apparatus and methods for fabricating such devices
US7185542B2 (en) * 2001-12-06 2007-03-06 Microfabrica Inc. Complex microdevices and apparatus and methods for fabricating such devices
CA2366030A1 (fr) 2001-12-20 2003-06-20 Global E Bang Inc. Systeme de profilage
US20070121423A1 (en) * 2001-12-20 2007-05-31 Daniel Rioux Head-mounted display apparatus for profiling system
FR2834055B1 (fr) * 2001-12-20 2004-02-13 Thales Sa Capteur inertiel micro-usine pour la mesure de mouvements de rotation
JP2003232803A (ja) * 2002-02-12 2003-08-22 Hitachi Metals Ltd 半導体型加速度センサ
FR2838423B1 (fr) * 2002-04-12 2005-06-24 Thales Sa Procede de fabrication d'une microstructure comportant une cavite sous vide et microstructure correspondante
JP2004198280A (ja) * 2002-12-19 2004-07-15 Hitachi Metals Ltd 加速度センサ
FR2856789B1 (fr) * 2003-06-27 2005-08-26 Thales Sa Gyrometre a masse vibrante
KR101454123B1 (ko) * 2013-08-29 2014-10-22 삼성전기주식회사 가속도 센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3740688A1 (de) * 1987-12-01 1989-06-15 Messerschmitt Boelkow Blohm Mikromechanischer beschleunigungssensor mit hoher achsenselektivitaet
DE4027046A1 (de) * 1989-09-29 1991-04-11 Siemens Ag Vorrichtung zum pruefen der funktionsfaehigkeit und/oder eichen eines beschleunigungs-sensors, insbesondere eines aufprall-sensors fuer ein kraftfahrzeug, und verfahren zum betrieb der vorrichtung
DE4016472A1 (de) * 1990-05-22 1991-11-28 Bosch Gmbh Robert Verfahren zur herstellung von mikromechanischen sensoren mit ueberlastsicherung
US5121633A (en) * 1987-12-18 1992-06-16 Nissan Motor Co., Ltd. Semiconductor accelerometer
WO1995004284A2 (fr) * 1993-07-26 1995-02-09 Litton Systems, Inc. Accelerometre en silicium a equilibrage electrostatique des forces

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5000817A (en) * 1984-10-24 1991-03-19 Aine Harry E Batch method of making miniature structures assembled in wafer form
US4882933A (en) * 1988-06-03 1989-11-28 Novasensor Accelerometer with integral bidirectional shock protection and controllable viscous damping
US5060504A (en) * 1988-09-23 1991-10-29 Automotive Systems Laboratory, Inc. Self-calibrating accelerometer
US5008774A (en) * 1989-02-28 1991-04-16 United Technologies Corporation Capacitive accelerometer with mid-plane proof mass
FR2706634B1 (fr) * 1993-06-11 1995-07-21 Sextant Avionique Dispositif optique compact pour la vision nocturne et son application à des lunettes.
FR2713449B1 (fr) * 1993-12-10 1996-01-05 Sextant Avionique Visière d'équipement de tête à transmission variable.
KR0139506B1 (ko) * 1994-10-07 1998-07-15 전성원 자체진단 기능을 구비한 대칭질량형 가속도계 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3740688A1 (de) * 1987-12-01 1989-06-15 Messerschmitt Boelkow Blohm Mikromechanischer beschleunigungssensor mit hoher achsenselektivitaet
US5121633A (en) * 1987-12-18 1992-06-16 Nissan Motor Co., Ltd. Semiconductor accelerometer
DE4027046A1 (de) * 1989-09-29 1991-04-11 Siemens Ag Vorrichtung zum pruefen der funktionsfaehigkeit und/oder eichen eines beschleunigungs-sensors, insbesondere eines aufprall-sensors fuer ein kraftfahrzeug, und verfahren zum betrieb der vorrichtung
DE4016472A1 (de) * 1990-05-22 1991-11-28 Bosch Gmbh Robert Verfahren zur herstellung von mikromechanischen sensoren mit ueberlastsicherung
WO1995004284A2 (fr) * 1993-07-26 1995-02-09 Litton Systems, Inc. Accelerometre en silicium a equilibrage electrostatique des forces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073815A1 (fr) * 1999-05-28 2000-12-07 Fisher-Tortolano Systems Limited Appareil et procede de navigation
US6672168B2 (en) 2001-09-24 2004-01-06 Andrew Braugh Multi-level machine vibration tester marker pen

Also Published As

Publication number Publication date
AU1101597A (en) 1997-07-03
EP0866972A1 (fr) 1998-09-30
US6089093A (en) 2000-07-18
JP2000502441A (ja) 2000-02-29
BR9612776A (pt) 2001-01-02
FR2742230B1 (fr) 1998-01-09
CA2239106A1 (fr) 1997-06-19
AU706765B2 (en) 1999-06-24
NO982667L (no) 1998-08-11
NO982667D0 (no) 1998-06-10
EP0866972B1 (fr) 2000-08-02
DE69609627D1 (de) 2000-09-07
FR2742230A1 (fr) 1997-06-13

Similar Documents

Publication Publication Date Title
EP0605300B1 (fr) Procédé de fabrication d'accéléromètres utilisant la technologie silicium sur isolant
EP0866972B1 (fr) Accelerometre et procede de fabrication
EP1835294B1 (fr) Accelerometre triaxal a membrane
EP0557217B1 (fr) Micro-capteur capacitif à faible capacité parasite et procédé de fabrication
EP0605302B1 (fr) Procédé de fabrication d'un capteur de pression utilisant la technologie silicium sur isolant et capteur obtenu
EP1966825B1 (fr) Procede de fabrication collective de modules electroniques 3d
EP2038929B1 (fr) Procédé pour la réalisation d'une matrice de composants électroniques individuels et matrice réalisée par ce procédé
EP1626442B1 (fr) Capteur d'image
EP3401848B1 (fr) Dispositif quantique a qubits de spin
EP0798548B1 (fr) Capteur à jauge de contrainte utilisant l'effet piézorésistif et son procédé de fabrication
EP2546188B1 (fr) Procédé de réalisation d'une structure à membrane suspendue et à électrode enterrée
EP0194953A1 (fr) Capteur intégré de grandeurs mécaniques à effet capacitif et procédé de fabrication
EP0983609B1 (fr) Procede de fabrication d'un micro-capteur en silicium usine
EP1774588A1 (fr) Assemblage par adhesion moleculaire de deux substrats
EP2776364B1 (fr) Procede ameliore de realisation d'un dispositif a cavites formees entre un element suspendu reposant sur des plots isolants semi-enterres dans un substrat et ce substrat
FR2993873A1 (fr) Structure micromecanique et son procede de fabrication
EP1700343A1 (fr) Procede de fabrication de puces electroniques en silicium aminci
EP0866973B1 (fr) Accelerometre electromagnetique
EP3551574B1 (fr) Réduction de capacités parasites dans un dispositif microélectronique
EP3886159A1 (fr) Puce d'interconnexion
EP4092746A1 (fr) Procédé de fabrication d'un dispositif optoélectronique
FR2938974A1 (fr) Composant microelectromecanique et procede de fabrication
FR3037720A1 (fr) Composant electronique et son procede de fabrication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA JP MX NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996941729

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2239106

Country of ref document: CA

Ref country code: CA

Ref document number: 2239106

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 521794

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PA/a/1998/004726

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 09077888

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996941729

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996941729

Country of ref document: EP