WO1997024992A1 - Method for scar collagen formation and contraction - Google Patents

Method for scar collagen formation and contraction Download PDF

Info

Publication number
WO1997024992A1
WO1997024992A1 PCT/US1997/000162 US9700162W WO9724992A1 WO 1997024992 A1 WO1997024992 A1 WO 1997024992A1 US 9700162 W US9700162 W US 9700162W WO 9724992 A1 WO9724992 A1 WO 9724992A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue site
electromagnetic energy
collagen
tissue
delivered
Prior art date
Application number
PCT/US1997/000162
Other languages
French (fr)
Inventor
Edward W. Knowlton
Original Assignee
Knowlton Edward W
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=24334676&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997024992(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Knowlton Edward W filed Critical Knowlton Edward W
Priority to JP52533097A priority Critical patent/JP4116076B2/en
Priority to AU15273/97A priority patent/AU1527397A/en
Publication of WO1997024992A1 publication Critical patent/WO1997024992A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/003Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
    • A61M15/0033Details of the piercing or cutting means
    • A61M15/0035Piercing means
    • A61M15/0036Piercing means hollow piercing means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0028Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
    • A61M15/003Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up using capsules, e.g. to be perforated or broken-up
    • A61M15/0033Details of the piercing or cutting means
    • A61M15/0041Details of the piercing or cutting means with movable piercing or cutting means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/04Radiators for near-field treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/00488Esophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/0066Sensing and controlling the application of energy without feedback, i.e. open loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/06Solids
    • A61M2202/064Powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • A61M2205/071General characteristics of the apparatus having air pumping means hand operated
    • A61M2205/073Syringe, piston type

Definitions

  • This invention relates generally to a method for creating scar collagen, and more particularly to a method for initiating the formation and healing of scar collagen or bony callus, and subsequently remodeling the scar collagen or bony callus
  • the skin is composed of two basic elements, the epidermis and the underlying dermis.
  • the underlying dermis provides the main structural support of the skin
  • the epidermis contains the epithelial cells and pigment forming cells called melanocytes
  • the dermis vanes in thickness throughout the body For instance, the skin is 25 times thicker on the back than on the eyelid.
  • the dermis is composed mainly of an extracellular protein called collagen Collagen exists as a triple helix with three polypeptide chains that are connected with heat labile and heat stable chemical bonds When collagen is heated, alterations in the physical properties of this protein occur at a characteristic temperature This structural transition occurs at a specific shrinkage temperature
  • the selective induction of the basic wound healing process serves as the basis for the second major application of thermal shrinkage of collagen.
  • the wound healing response to injury involves an initial inflammatory process that subsequently leads to the deposition of scar tissue.
  • the initial inflammatory response consists of the infiltration by white blood cells or leukocytes that dispose of cellular debris. Forty-eight hours later, proliferation of fibroblasts at the injured site occurs. These cells then produce scar collagen that functions as the main support structure of a healed wound.
  • the deposition and subsequent remodeling of this nascent scar collagen provides the means to alter the consistency and geometry of soft tissue for both aesthetic and reconstructive purposes.
  • Skin resection procedures are limited in their application due to inherent scars. With face-lift procedures, scars can be hidden around the contour of the ear, thus providing an acceptable trade-off between the surgical scar and the aesthetic improvement.
  • Surgical resection of skin on the hips, thighs, arms, knees and legs provides only a modest improvement with fairly unsightly scarring.
  • patients must undergo a post-operative phase of healing that may be both painful and inconvenient. Other risk factors, such as bleeding and infection, may prolong healing.
  • Liposuction is effective at removing fat in some areas, however, it does not tighten the skin envelope.
  • Skin resurfacing techniques that secondarily tighten excess skin employ a standard thermal gradient that requires burning off the superficial skin as a second degree burn.
  • Adipose tissue more commonly known as fat, is formed of cells containing stored lipid. Adipose tissue is often subdivided into small loculations by connective collagen tissue serving as the fibrous septae.
  • Another object of the present invention is to provide a method for inducing the formation and contraction of scar collagen.
  • a further object of the present invention is to provide a method for inducing the formation and contraction of scar collagen in a selected tissue site while creating no deeper than a second degree bum on the surface of the selected tissue site.
  • Yet another object of the present invention is to provide a method for inducing the formation and contraction of bony callus in periosteum tissue.
  • Still a further object of the present invention is to provide a method for contracting collagen tissue no deeper than a second degree bum formed on a tissue surface overlying the contracted collagen tissue, and preferably no deeper than a first degree bu .
  • An electromagnetic energy apparatus includes an electromagnetic energy source and a delivery device.
  • the delivery device is positioned on the tissue surface.
  • Electromagnetic energy is produced from the electromagnetic energy source and delivered through the tissue surface to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site. No deeper than a second degree bum is formed on the tissue surface. The scar collagen is then contracted. This method is particularly useful in soft tissue sites that are devoid or deficient in collagen.
  • a method for forming callus deposition in a selected periosteum tissue site.
  • An electromagnetic energy apparatus includes an electromagnetic energy source and a delivery device. The delivery device is positioned on a tissue surface of the selected periosteum tissue site. Electromagnetic energy is produced from the electromagnetic energy source. Electromagnetic energy is transcutaneously delivered from the delivery device, through the tissue surface, and to the selected periosteum tissue site for a sufficient time to induce callus formation in the selected periosteum tissue site. After scar collagen formation the callus is then contracted.
  • Suitable applications for the methods of the present invention include but are not limited to, tightening and firming soft tissue, unstable joints due to collateral ligament laxity, the treatment of unstable spinal column disorders, treatment of weaknesses of the abdominal wall, treatment of other connective tissues, esophageal hernia with reflux, urinary incontinence in women, dysdynamic segments of the myrocardium and other aneurysmal dilatations of the vessel, sleep apnea, laxity and wrinkling of the skin, and the like.
  • Wrinkling of the skin occurs as a consequence of inadequate support of the epidermis.
  • the induction of scar collagen deposition is used for the treatment of wrinkles.
  • Improved skin turgor is accomplished by first replenishing the collagen matrix that has been lost with aging. Following the deposition of nascent scar collagen in the dermis, contraction of collagen with a reverse thermal gradient corrects wrinkling of the skin without resorting to resurfacing techniques that require the application of a standard thermal gradient bu to the skin. This is achieved without undergoing a lengthy post-operative healing process. Bleeding and infection is reduced. Second degree bums to the superficial skin are minimized. The melanocytes are not damaged and pigmentary irregularities are avoided.
  • One apparatus used to create the reverse thermal gradient is a combined heating pad that has both cooling elements and electromagnetic delivery devices.
  • the heating pad is configured to the topography of the treatment area and is incorporated into an elastic garment. Partial denaturization of collagen with contraction of skin is achieved with each treatment. Thermal transducers measure the surface temperature of the treatment area to avoid blistering. In one embodiment the deeper dermis is heated to above 65 degrees for collagen contraction. The temperature can vary depending on local tissue factors. Sequential treatments are designed to allow for more precision of the end result. Areas of application are not confined by requirements to either hide surgical incisions or transition along aesthetic boundaries. Because scarring and pigmentary irregularities are avoided, skin or other tightening occurs in areas previously considered "off-limits" to standard methods of surgical resection, laser and chemical resurfacing.
  • Skin tightening with a reverse thermal gradient contraction of collagen can correct areas including but not limited to the thighs, knees, arms, back and hips without unsightly scarring of standard techniques.
  • areas previously corrected by aesthetic procedures, such as face and neck lifts can be corrected without requiring surgery or the typical incisions around the ear.
  • Elastosis or stretching of the abdominal skin from pregnancy can be corrected without the extensive incision of an abdominoplasty.
  • the method of the present invention can also be used for mastopexies or breast uplifts.
  • the fibrous septae in subcutaneous fat layers can be contracted to tighten the soft tissue.
  • a second thermal device is used in tandem with the initial thermal device to achieve liposculpture of the treated area.
  • the second device can be designed with a convergent lens that is focused at the appropriate level on the subcutaneous tissue.
  • Suitable energy sources include but are not limited to RF, microwave, ultrasound and the like.
  • the preferred energy source is RF.
  • FIGT RES Fig. 1 is a perspective view of an apparatus for applying electromagnetic energy through the skin in order to cause a partial denaturization of collagen tissue, resulting in a tightening of the skin.
  • Figure 2 is a cross-sectional view of the skin and underlying tissue.
  • Figure 3 is a schematic representation of the collagen network.
  • Fig. 4 is a schematic diagram of an apparatus for applying electromagnetic energy to underlying subcutaneous layers or deeper soft tissue layers to create a desired contour effect by partially denaturing collagen tissue, and without substantially modifying melanocytes and other epithelial cells in the epidermis.
  • Figure 5 is a block diagram of an RF system which can be utilized with the present invention.
  • Figure 6 is a block diagram of processing circuit of one embodiment of the invention.
  • Pre-existing collagen is the protein substance normally present in the white fibers (collagenous fibers) of skin, tendon, bone cartilage and all other connective tissue.
  • Thermal induction of scar collagen deposition is a non-ablative neosynthetic process of collagen deposition as a reaction to inflammation induced by thermal injury.
  • the resulting scar collagen is frequently referred to as nascent, as opposed to pre-existing.
  • Standard thermal gradient is the thermal content of tissue that is greater on the skin surface.
  • Reverse thermal gradient is, (i) the application of electromagnetic energy to alter the biophysical properties of collagen, i.e., contraction, with minimal blistering of the tissue surface, (ii) a gradient in which the tissue surface temperature is cooler than the underlying collagen tissue, (iii) conditions in which a standard thermal gradient is reduced or equalized in temperature between the tissue surface and the underlying collagen, or (iv) monitoring the heat content (temperature and exposure duration) of the tissue surface to avoid blistering during treatment, regardless of the tissue surface temperature relative to the underlying collagen tissue.
  • Transcutaneously means that the delivery device delivers electromagnetic energy directly through the tissue surface.
  • Percutaneously means that the delivery device is inserted through the skin or the tissue surface through an endoscope, arthroscope, and the like.
  • Transmucosal means that the delivery device delivers electromagnetic energy directly through the mucosal surface
  • Permucosal means that a delivery device is inserted through a mucosal surface through an endoscope, arthroscope, and the like
  • a first degree bum means a bum that involves only the epidermis It is characterized by erythema
  • a second degree bu means a bum that destroys the epithelium and a variable portion of the dermis
  • a third degree bum means a bum that destroys the entire thickness of skin, including the epithelium and dermis
  • the present invention provides a method for forming and contracting scar collagen below a tissue surface in a selected tissue site
  • the formation or induction of scar collagen formation can be done transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally, permucosally, or through a device including but not limited to an endoscope
  • An electromagnetic energy apparatus is provided and includes an electromagnetic energy source and a delivery device The delivery device is positioned on the tissue surface Electromagnetic energy is produced from the electromagnetic energy source and delivered through the tissue surface to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site No deeper than a second degree bum is formed on the tissue surface
  • the scar collagen is subsequently contracted This method is particularly useful in soft tissue sites that are devoid or deficient in collagen
  • a method for forming callus deposition in a selected penosteum tissue site
  • An electromagnetic energy apparatus includes an electromagnetic energy source and a delivery device
  • the delivery device is positioned on a tissue surface of the selected periosteum tissue site
  • Electromagnetic energy is produced from the electromagnetic energy source
  • Electromagnetic energy is delivered from the delivery device, through the tissue surface, and to the selected periosteum tissue site for a sufficient time to induce callus formation in the selected penosteum tissue site The callus is subsequently contracted.
  • the method for forming callus can be done transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally permucosally, or through a device including but not limited to an endoscope
  • the methods of the present invention use an electromagnetic energy source to apply electromagnetic energy to a selected tissue site
  • the electromagnetic energy can be delivered transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally, permucosally, or through a device including but not limited to an endoscope
  • the electromagnetic energy induces scar collagen formation in tissue sites that, (i) have pre-existing collagen,
  • the methods of the present invention provide for the contraction of collagen tissue underlying a tissue surface area
  • the overlying layer of tissue is not ablated. No deeper than a second degree bum is produced in the overlying layer of tissue, and preferably no deeper than a first degree bum
  • Suitable applications for the methods of the present invention include but are not limited to, tightening and firming soft tissue, treatment of unstable joints due to collateral ligament laxity, the treatment of unstable spinal column disorders, treatment of weaknesses of the abdominal wall, treatment of other connective tissues, esophageal hernia with reflux, urinary incontinence in women, dysdynamic segments of the myrocardium and other aneurysmal dilatations of the vessels, sleep apnea, laxity and wrinkling of the skin, and the like.
  • Laxity and wrinkling of the skin occurs as a consequence of inadequate support of the epidermis.
  • the induction of scar collagen deposition is used for the treatment of wrinkles
  • Improved skin turgor is accomplished by first replenishing the collagen matrix that has been lost with aging. Following the deposition of nascent scar collagen in the dermis, contraction of collagen with a reverse thermal gradient corrects the laxity and wrinkling of the skin without resorting to resurfacing techniques that require the application of a standard thermal gradient bum to the skin. This is achieved without undergoing a lengthy post-operative healing process. Bleeding and infection are reduced. Second degree bums to the superficial skin are minimized. The melanocytes are not damaged and pigmentary irregularities are avoided.
  • skin tightening with a reverse thermal gradient contraction of collagen corrects areas such as the thighs, knees, arms, back, face and neck lifts, and hips without unsightly scarring. Elastosis, or stretching of the abdominal skin from pregnancy is corrected without the long scar commonly associated with an abdominoplasty. Breast uplifts, i.e., mastoplexies, no longer require extensive incisions.
  • Thermal remodeling of collagen can occur with both native (dermal) collagen and collagen produced as part of the healing process. Wound healing involves an initial inflammatory stage that is followed by a period of rapid nascent collagen production that morphologically appears as a scar. The biophysical properties of collagen are the same regardless of its origin.
  • One apparatus used to create the reverse thermal gradient is a composite heating pad that has both cooling elements and electromagnetic delivery devices.
  • the heating pad is configured to the topography of the treatment area and is incorporated into an elastic garment. Partial denaturization of collagen is achieved with each treatment. Thermal transducers measure the surface temperature of the treatment area to avoid blistering. In one embodiment the deeper dermis is heated to above 65 degrees for collagen contraction. Sequential treatments are designed to allow for more precision of the end result. Areas of application are not confined by requirements to either hide surgical incisions or transition along aesthetic boundaries.
  • Electromagnetic energy may be any kind that can cause cell heating or physical destruction by being applied to collagen tissue.
  • suitable electromagnetic energy sources include, but are not limited to RF, microwave, ultrasound, laser and the like.
  • an apparatus 10 applies electromagnetic energy through a skin layer 12, such as the epidermis, and to the underlying collagen tissue 14 without substantially modifying melanocytes and other epithelial cells 16 found in the lower layer of epidermis layer 12.
  • a porous membrane 18 is adapted to receive an electrolytic solution 20.
  • Porous membrane 18 becomes inflated to substantially conform a contacting exterior surface 22 of porous membrane 18 which is in close thermal contact with epidermis 12.
  • Porous membrane 18 includes a cooling lumen 24 for receiving a cooling fluid that imparts a cooling effect on epidermis layer 12.
  • One or more electromagnetic electrodes 26 are positioned at various places in porous membrane 18. In one embodiment, electromagnetic electrodes 26 are positioned on a side that is substantially opposing to contacting exterior surface 22. In other embodiments, electromagnetic electrodes 26 are placed closer to cooling lumen 24. In embodiment particularly suitable for the hips, porous membrane is about 20 cm by 30 cm, with an oval shape.
  • An electromagnetic power source 28 is coupled to electromagnetic electrodes 26 and a source of electrolytic solution 30 is coupled to porous membrane 18.
  • collagen tissue in a dermis underlying the epidermis of the skin is transcutaneously contracted with the use of a thermal heating apparatus.
  • Electromagnetic energy is transcutaneously delivered through the epidermis to the underlying dermis.
  • Fibroblast proliferation is initiated in the underlying dermis.
  • Scar collagen is formed in the underlying dermis. The scar collagen is subsequently contracted and the skin is tightened.
  • a method for contracting collagen tissue in a subcutaneous fat layer through an overlying epidermis layer.
  • a thermal heating apparatus produces electromagnetic energy.
  • the electromagnetic energy can be delivered transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally permucosally, or through a device including but not limited to an endoscope
  • the electromagnetic energy is directed through the epidermis to the underlying subcutaneous fat layer. Fibroblast proliferation is initiated in the subcutaneous fat layer. Scar collagen is formed and then tightened.
  • electromagnetic energy can be applied through epidermis layer 12, to papillary dermis layer 32, to reticular dermis layer
  • the extent of collagen in the various layers is ⁇ 5% in the epidermis, ⁇ 50% in the dermis, ⁇ 20 % in the subcutaneous, ⁇ 10% in the muscle with overlying fascia.
  • Shrinking of collagen tissue takes place in a direction parallel to the axis of the collagen fibers. Thermal shrinkage of collagen begins with the denaturization of the triple helix structure of the collagen fibers. This occurs when electromagnetic energy is applied to the collagen tissue causing the hydrolysis of heat labile cross links of the collagen network.
  • Fig. 3 is a schematic representation of a collagen network behavior under the influence of heat.
  • the thickened lines represent the chains originally bound by covalent cross links.
  • the arrows indicate tensions exerted on the collagen chains by the effect of heat. More particularly, Fig. 3 illustrates (i). native collagen network 40, (ii). collagen 42 under isometric conditions, (iii). collagen network without any restraint, (iv) collagen network 46 under isometric tension as long as the nodes are stable, and (v) collagen network 48 under isometric tension after some cross links have been cleaved.
  • Electromagnetic electrodes 26 can be RF electrodes comprising a single electrode, or a plurality which can form a segmented flexible circuit. Electromagnetic power source 28 is then an RF generator. Electrolytic solution 20 is introduced into porous membrane 18 and passes by RF electrodes 26
  • Electrolytic solution 20 transfers RF power from RF electrodes 28 to the desired underlying collagen tissue to achieve partial denaturization of the collagen molecule.
  • RF electrodes 26 can be monopolar or bipolar. In the monopolar mode, RF current flows through body tissue from a return electrode which can be in a form of a conductive pad applied to the patients outer skin. Maximum heating occurs where the current density is the greatest.
  • the denaturization of collagen molecules can be conducted under feedback control. Treatment can occur without the attention of medical supervision. Feedback is accomplished by (i). visualization,
  • thermal sensors 52 permit accurate determination of the surface temperature of epidermis layer 12.
  • Electrolytic solution 20 can be preheated to a selected temperature and modified as necessary. This reduces the amount of time needed to effect at satisfactory denaturization of collagen molecules and subsequent skin tightening.
  • Porous membrane 18 can be made of a material that is an insulator.
  • an insulator is a barrier to thermal or electrical energy flow.
  • Porous membrane 18 can be made of a material which permits controlled delivery of electrolytic solution 20 to epidermis layer 12.
  • Porous membrane 18 can be made of a variety of materials including, but not limited to knitted polyester, continuous filament polyester, polyester-cellulose, rayon, polyamide, polyurethane, polyethylene and the like. Suitable commercial products include, (i). Opcell available from Centinal Products Corp., Hyannis, Mass, and (ii). UltraSorb, HC 4201 or HT 4644 MD from Wilshire Contamination Control, Carlsbad, California.
  • Pockets or zones 56 can be formed around RF electrodes 26. Each pocket 56 has a lower porosity for the flow of electrolytic solution 20 than all other sections of porous membrane 18.
  • Electrolytic solution 20 is retained in pockets 56 longer than in non-pocket sections of porous membrane 18, and there is a greater transfer of RF energy to electrolytic solution 20, creating a larger electrode.
  • the larger electrode produces RF and thermal energy to create a larger electrode effect. However, this does not effect the creation of the reverse thermal gradient.
  • RF energy is still transferred through porous membrane 18 passing in the vicinity of cooling lumen 24, in order to create a lower temperature at epidermis layer 12 and the temperature increases as deeper layers are reached.
  • a tighter, more youthful skin envelope is achieved. This is accomplished without undergoing a lengthy post-operative healing process. Bleeding and infection is reduced. Second degree bums to the superficial skin are minimized. The melanocytes are not damaged and pigmentary irregularities are avoided.
  • skin or other tightening occurs in areas previously considered “off-limits" to standard methods of surgical resection, laser and chemical resurfacing.
  • Skin tightening with a reverse thermal gradient contraction of collagen can correct areas including but not limited to the thighs, knees, arms, back and hips without unsightly scarring of standard techniques.
  • areas previously corrected by aesthetic procedures, such as face and neck lifts can be corrected without requiring surgery or the typical incisions around the ear. Elastosis or stretching of the abdominal skin from pregnancy can be corrected without the extensive incision of an abdominoplasty.
  • the method of the present invention can also be used for mastopexies or breast uplifts..
  • the fibrous septae in subcutaneous fat layers can be contracted to tighten the soft tissue.
  • intracellular thermal induction effects upon the fat cell or lipocyte results in a net egress of fat from the lipocyte which achieves a net reduction of volume of the treated area.
  • a second thermal device is used in tandem with the initial thermal device to achieve liposculpture of the treated area.
  • the second device can be designed with a convergent lens that is focused at the appropriate level on the subcutaneous tissue.
  • FIG. 4 an apparatus 58 for creating a desired contour effect of underlying subcutaneous layers or deeper soft tissue layers which include loculations of fat with fibrous septae made of collagen tissue is illustrated.
  • the apparatus 58 of Fig 4 includes a porous membrane 18, electrolytic solution 20, a contacting exterior surface 22, a cooling lumen, electromagnetic electrodes 26, an electromagnetic power source 28, an electrolytic solution source 30, one or more thermal sensors 52, as well as one or more impedance monitors 54.
  • Apparatus 58 also includes a focussing element 60 which focuses electromagnetic energy from electrolytic solution 20 to the underlying collagen tissue. Focussing element 60 and electrolytic solution 20 create a reverse thermal gradient from epidermis layer 12 to the underlying collagen tissue 14.
  • Focussing element 62 can be, in the case of ultrasonic energy, a lens having a flat planer surface on the radiation wave incident side and a concave exit face, see Ultrasonics Theory and Application, by G.L. Goberman, Heart Publishing Co., New York (1959), at section 2.6. The use of such a focussing lens for ultrasonic energy with a planer wave receiving face and concave exit face is also described in the article "Deep Local Hypothermia for
  • Radio frequencies can be the electromagnetic energy source, and various localizing technique, well known in the art, can be utilized.
  • radio frequency energy is supplied by capacitive coupling directly to epidermis layer 12 for areas close to the dermal tissue.
  • Radio frequency induction focussing can be achieved with the use of plural focussing coils which are adaptive at the zone of interest and are elsewhere subtractive.
  • radio frequency energy may be focused by having a multiple beam phased array.
  • focussing element 60 can be a convergent lens. Further, focussing element 60 can be positioned in porous membrane 18, and at the exterior 16 between epidermis layer 12 and porous membrane 18. Further, a coupling device 62 can be included which couples focussing element 60 with porous membrane 18. In one embodiment, coupling device 62 is a bracket which is positioned around a periphery of porous membrane 18, and supports focussing element 50 in relation to porous membrane 18.
  • porous membrane 18 and thermal energy source 26 are provided.
  • a reverse thermal gradient is created which cools a surface of epidermis layer 12 while heating underlying collagen containing layers.
  • Epidermis layer 12 as well as underlying collagen containing tissue are heated, without substantially effecting the melanocytes and other epithelial cells in epidermis layer 12, resulting in a denaturization of collagen molecules, causing a contraction of the collagen tissue and a tightening of the skin.
  • This method can be applied numerous times. In many instances, it may be desirable to tighten the skin to a certain level and then in subsequent treatments the skin is tightened further. There may be four fine treatments to fine tune the contour effects with greater precision. In this method, collagen containing tissue is partial denatured and fat cell destruction is minimized. This is achieved by partially denaturing by cleaving heat labile cross links of the collagen molecules.
  • the reverse thermal gradient provides a variation in temperature throughout the various tissue layers.
  • the reverse thermal gradient has a tissue surface temperature range from about 40 to 60 degrees C, and a selected underlying tissue site temperature, i.e., where scar collagen is formed or where collagen is contracted, of about 60 to 80 degrees C.
  • the temperature ranges can be much broader.
  • a method for liposculpturing an area of the body where there is an underlying area comprised of a loculation of fat that has collagen tissue as a fibrous septae also includes creating a reverse thermal gradient from epidermis layer 12 to the desired underlying loculation of fat layer.
  • Sufficient electromagnetic energy is supplied through epidermis layer 12, without damaging or substantially modifying the melanocytes and other epithelial cells, through other skin layers and is focused on the collagen tissue of the fibrous septae.
  • Electromagnetic energy partially denatures the collagen tissue with a minimal destruction of fat cells. Again, this is achieved by partially denaturizing, e.g., by cleaving, heat labial cross links of collagen molecules.
  • power source 28 can be an RF source.
  • RF power source 28 feeds energy to an RF power generator 64 and then to RF electrodes 26.
  • a multiplexer 66 measures current, voltage and temperature, at the numerous thermal sensors associated with to each RF electrode 26. RF electrodes 26 can be individually measured.
  • Multiplexer 66 is driven by a controller 68 which can be a digital or analog controller, or a computer with software.
  • controller 68 When controller 68 is a computer it can include a CPU coupled through a system bus. On the system can be a keyboard, disk drive, or other non volatile memory systems, a display, and other peripherals, as are well known in the art. Also coupled to the bus are a program memory and a data memory.
  • An operator interface 70 includes operator controls 72 and a display 74.
  • Controller 68 can be coupled to different types of imaging systems including ultrasonic, thermal sensors 52, and impedance monitors 54.
  • a diagnostic phase can be initially run to determine the level of treatment activity. This can be done through ultrasound as well as other means. Diagnostics can be performed both before and after treatment.
  • Thermal sensors 52, and thermal sensors 76 contained within RF generator 64 measure voltage and current that is delivered to the desired treatment site. The output for these sensors is used by controller 68 to control the delivery of RF power. Controller 68 can also control temperature and power. An operator set level of power and/or temperature may be determined and this will not be exceeded. Controller 68 maintains the set level under changing conditions. The amount of RF energy delivered controls the amount of power. A profile of power delivered can be incorporated in controller 68, as well as a preset amount of energy to be delivered.
  • Feedback can be the measurement of impedance, temperature, or other indicators and occurs either at control 68 or at RF generator 64, if it incorporates a controller. For impedance measurement, this can be achieved by supplying a small amount of non therapeutic RF energy. Voltage and current are then measured to confirm electrical contact. Circuitry, software and feedback to controller 68 result in full process control and are used to change, (i). power, (ii). the duty cycle, (iii). monopolar or bipolar energy delivery, (iv). electrolytic solution 20 delivery, flow rate and pressure and (v). can determine when the process is completed through time, temperature and/or impedance.
  • thermal sensors 52 can be thermistors which have a resistance that varies with temperature.
  • Analog amplifier 78 can be a conventional differential amplifier circuit for use with thermistors and transducers. The output of analog amplifier is sequentially connected by an analog multiplexer 80 to the input of an analog digital converter 82. The output of amplifier 78 is a voltage which represents the respective sensed temperatures.
  • microprocessor 84 calculates the temperature or impedance of the tissue.
  • Microprocessor 84 can be a type 6800. However, it will be appreciated that any suitable microprocessor or general pu ⁇ ose digital or analog computer can be used to calculate impedance or temperature.
  • Microprocessor 84 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 84 corresponds to different temperatures and impedances.
  • Calculated temperature and impedance values can be indicated on display 74.
  • calculated impedance or temperature values can be compared by microprocessor 84 with temperature and impedance limits. When the values exceed predetermined temperature or impedance values a warning can be given on display 74 and additionally, the delivery of RF energy to its respective electrode can be decreased or multiplexed to another electrode.
  • a control signal from microprocessor 84 can reduce the power level by RF generator 64, or de- energize the power delivered to any particular electrode.
  • Controller 68 receives and stores the digital values which represent temperatures and impedances sent.
  • Calculated surface temperatures and impedances can be forwarded by controller 68 to display 74 If desired, the calculated surface temperature of epidermis layer 12 is compared with a temperature limit and a warning signal can be sent to display 74. Similarly, a control signal can be sent to RF power source 26 when temperature or impedance values exceed a predetermined level.

Abstract

A method is disclosed for forming and contracting scar collagen below a tissue surface in a selected tissue site. An electromagnetic energy apparatus is provided and includes an electromagnetic energy source and a delivery device. The delivery device is positioned on the tissue surface. Electromagnetic energy is produced from the electromagnetic energy source and delivered through the tissue surface to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site. No more than a second degree burn is formed on the tissue surface. The scar collagen is then contracted. This method is particularly useful in tissue sites that are devoid or deficient in collagen.

Description

METHOD FOR SCAR COLLAGEN FORMATION AND CONTRACTION
Cross-Reference to Related Cases
The present application is a continuation-on-part of U S Patent Application Serial No 08/435,822, filed May 5, 1995, entitled "Method and
Apparatus for Controlled Contraction of Collagen Tissue", having the same named inventor Edward W Knowlton, incoφorated herein by reference
BACKGROUND OF THF. TNVF.NTTON
Field of the Invention This invention relates generally to a method for creating scar collagen, and more particularly to a method for initiating the formation and healing of scar collagen or bony callus, and subsequently remodeling the scar collagen or bony callus
Description of Related Art The skin is composed of two basic elements, the epidermis and the underlying dermis. The underlying dermis provides the main structural support of the skin The epidermis contains the epithelial cells and pigment forming cells called melanocytes The dermis vanes in thickness throughout the body For instance, the skin is 25 times thicker on the back than on the eyelid. The dermis is composed mainly of an extracellular protein called collagen Collagen exists as a triple helix with three polypeptide chains that are connected with heat labile and heat stable chemical bonds When collagen is heated, alterations in the physical properties of this protein occur at a characteristic temperature This structural transition occurs at a specific shrinkage temperature
The phenomenon of thermal shrinkage of collagen begins with a denaturization of the triple helix of the collagen molecule Thermal energy severs the heat labile bonds that stabilize the triple stranded helix As a result, the longitudinal axis of the molecule contracts. Partial denaturization of collagen tissue occurs in second degree burns and is typically applied as a standard thermal gradient that is hotter on the surface and cooler in the underlying dermis. In burn patients, partial denaturization of dermal collagen provides a tightening effect on the skin. By applying a reverse thermal gradient which cools the surface of the skin while heating the underlying collagen-containing layers, contraction of collagen in the absence of a second degree burn (and its inherent blistering and pigmentary irregularities) is possible. Because collagen is found in tendon, bone, cartilage and all other connective tissue throughout the body, reverse thermal gradient contraction of collagen can have many applications.
The selective induction of the basic wound healing process serves as the basis for the second major application of thermal shrinkage of collagen. In higher developed animal species, the wound healing response to injury involves an initial inflammatory process that subsequently leads to the deposition of scar tissue. The initial inflammatory response consists of the infiltration by white blood cells or leukocytes that dispose of cellular debris. Forty-eight hours later, proliferation of fibroblasts at the injured site occurs. These cells then produce scar collagen that functions as the main support structure of a healed wound. The deposition and subsequent remodeling of this nascent scar collagen provides the means to alter the consistency and geometry of soft tissue for both aesthetic and reconstructive purposes.
There exists an aesthetic need to contract skin without the scars, surgical risks or pigmentary side effects of commonly employed technique. These techniques include surgical resection of skin and the use of lasers and chemical peels to achieve a tighter, more youthful skin appearance. Understandably, many patients are hesitant to subject themselves to these procedures, even though an overall aesthetic improvement is likely.
Skin resection procedures are limited in their application due to inherent scars. With face-lift procedures, scars can be hidden around the contour of the ear, thus providing an acceptable trade-off between the surgical scar and the aesthetic improvement. Surgical resection of skin on the hips, thighs, arms, knees and legs, however, provides only a modest improvement with fairly unsightly scarring. In addition, patients must undergo a post-operative phase of healing that may be both painful and inconvenient. Other risk factors, such as bleeding and infection, may prolong healing. Liposuction is effective at removing fat in some areas, however, it does not tighten the skin envelope. Skin resurfacing techniques that secondarily tighten excess skin (such as laser and chemical peels) employ a standard thermal gradient that requires burning off the superficial skin as a second degree burn.
The thermal effects of collagen contraction in the deeper dermis occur, but require a painful healing phase due to the second degree burn. These modalities depend upon reepithelialization with cell migration from the skin appendages.
This process of reepithelialization is similar to the healing of any thermal burn and is more likely to cause pigmentary irregularities due to the destruction of melanocytes in the epidermis. Adipose tissue, more commonly known as fat, is formed of cells containing stored lipid. Adipose tissue is often subdivided into small loculations by connective collagen tissue serving as the fibrous septae.
There exists a need for subcutaneously contracting of collagen without surgical scarring or pigmentary side effects of more invasive techniques. There is a further need for subcutaneously inducing the formation and contraction of scar collagen in a selected tissue site while creating no deeper than a second degree burn on the surface of the selected tissue site.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for thermal remodeling and contraction of collagen without surgical scarring or pigmentary side effects.
Another object of the present invention is to provide a method for inducing the formation and contraction of scar collagen. A further object of the present invention is to provide a method for inducing the formation and contraction of scar collagen in a selected tissue site while creating no deeper than a second degree bum on the surface of the selected tissue site. Yet another object of the present invention is to provide a method for inducing the formation and contraction of bony callus in periosteum tissue.
Still a further object of the present invention is to provide a method for contracting collagen tissue no deeper than a second degree bum formed on a tissue surface overlying the contracted collagen tissue, and preferably no deeper than a first degree bu .
These and other objects of the invention are provided in a method for forming and contracting scar collagen below a tissue surface in a selected tissue site. An electromagnetic energy apparatus is provided and includes an electromagnetic energy source and a delivery device. The delivery device is positioned on the tissue surface. Electromagnetic energy is produced from the electromagnetic energy source and delivered through the tissue surface to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site. No deeper than a second degree bum is formed on the tissue surface. The scar collagen is then contracted. This method is particularly useful in soft tissue sites that are devoid or deficient in collagen.
In another embodiment, a method is disclosed for forming callus deposition in a selected periosteum tissue site. An electromagnetic energy apparatus is provided and includes an electromagnetic energy source and a delivery device. The delivery device is positioned on a tissue surface of the selected periosteum tissue site. Electromagnetic energy is produced from the electromagnetic energy source. Electromagnetic energy is transcutaneously delivered from the delivery device, through the tissue surface, and to the selected periosteum tissue site for a sufficient time to induce callus formation in the selected periosteum tissue site. After scar collagen formation the callus is then contracted. Suitable applications for the methods of the present invention include but are not limited to, tightening and firming soft tissue, unstable joints due to collateral ligament laxity, the treatment of unstable spinal column disorders, treatment of weaknesses of the abdominal wall, treatment of other connective tissues, esophageal hernia with reflux, urinary incontinence in women, dysdynamic segments of the myrocardium and other aneurysmal dilatations of the vessel, sleep apnea, laxity and wrinkling of the skin, and the like.
Wrinkling of the skin occurs as a consequence of inadequate support of the epidermis. The induction of scar collagen deposition is used for the treatment of wrinkles. Improved skin turgor is accomplished by first replenishing the collagen matrix that has been lost with aging. Following the deposition of nascent scar collagen in the dermis, contraction of collagen with a reverse thermal gradient corrects wrinkling of the skin without resorting to resurfacing techniques that require the application of a standard thermal gradient bu to the skin. This is achieved without undergoing a lengthy post-operative healing process. Bleeding and infection is reduced. Second degree bums to the superficial skin are minimized. The melanocytes are not damaged and pigmentary irregularities are avoided.
One apparatus used to create the reverse thermal gradient is a combined heating pad that has both cooling elements and electromagnetic delivery devices.
The heating pad is configured to the topography of the treatment area and is incorporated into an elastic garment. Partial denaturization of collagen with contraction of skin is achieved with each treatment. Thermal transducers measure the surface temperature of the treatment area to avoid blistering. In one embodiment the deeper dermis is heated to above 65 degrees for collagen contraction. The temperature can vary depending on local tissue factors. Sequential treatments are designed to allow for more precision of the end result. Areas of application are not confined by requirements to either hide surgical incisions or transition along aesthetic boundaries. Because scarring and pigmentary irregularities are avoided, skin or other tightening occurs in areas previously considered "off-limits" to standard methods of surgical resection, laser and chemical resurfacing. Skin tightening with a reverse thermal gradient contraction of collagen can correct areas including but not limited to the thighs, knees, arms, back and hips without unsightly scarring of standard techniques. In addition, areas previously corrected by aesthetic procedures, such as face and neck lifts, can be corrected without requiring surgery or the typical incisions around the ear. Elastosis or stretching of the abdominal skin from pregnancy can be corrected without the extensive incision of an abdominoplasty. The method of the present invention can also be used for mastopexies or breast uplifts. The fibrous septae in subcutaneous fat layers can be contracted to tighten the soft tissue. Along with the extracellular effects of collagen, intracellular effects upon the fat cell, or lipocyte, by thermal induction cause a net reduction of fat in the lipocyte which achieves a net reduction in volume of the treated area. A second thermal device is used in tandem with the initial thermal device to achieve liposculpture of the treated area. The second device can be designed with a convergent lens that is focused at the appropriate level on the subcutaneous tissue.
A variety of electromagnetic energy sources can be employed. Suitable energy sources include but are not limited to RF, microwave, ultrasound and the like. In one embodiment, the preferred energy source is RF.
BRIEF DESCRIPTION QF THE FIGT RES Fig. 1 is a perspective view of an apparatus for applying electromagnetic energy through the skin in order to cause a partial denaturization of collagen tissue, resulting in a tightening of the skin. Figure 2 is a cross-sectional view of the skin and underlying tissue.
Figure 3 is a schematic representation of the collagen network. Fig. 4 is a schematic diagram of an apparatus for applying electromagnetic energy to underlying subcutaneous layers or deeper soft tissue layers to create a desired contour effect by partially denaturing collagen tissue, and without substantially modifying melanocytes and other epithelial cells in the epidermis.
Figure 5 is a block diagram of an RF system which can be utilized with the present invention. Figure 6 is a block diagram of processing circuit of one embodiment of the invention.
DETAILED DF.SCR TPTTDN For purposes of this specification, the following definitions apply. Pre-existing collagen is the protein substance normally present in the white fibers (collagenous fibers) of skin, tendon, bone cartilage and all other connective tissue.
Thermal induction of scar collagen deposition is a non-ablative neosynthetic process of collagen deposition as a reaction to inflammation induced by thermal injury. The resulting scar collagen is frequently referred to as nascent, as opposed to pre-existing.
Standard thermal gradient is the thermal content of tissue that is greater on the skin surface.
Reverse thermal gradient is, (i) the application of electromagnetic energy to alter the biophysical properties of collagen, i.e., contraction, with minimal blistering of the tissue surface, (ii) a gradient in which the tissue surface temperature is cooler than the underlying collagen tissue, (iii) conditions in which a standard thermal gradient is reduced or equalized in temperature between the tissue surface and the underlying collagen, or (iv) monitoring the heat content (temperature and exposure duration) of the tissue surface to avoid blistering during treatment, regardless of the tissue surface temperature relative to the underlying collagen tissue.
Transcutaneously means that the delivery device delivers electromagnetic energy directly through the tissue surface.
Percutaneously means that the delivery device is inserted through the skin or the tissue surface through an endoscope, arthroscope, and the like. Transmucosal means that the delivery device delivers electromagnetic energy directly through the mucosal surface
Permucosal means that a delivery device is inserted through a mucosal surface through an endoscope, arthroscope, and the like A first degree bum means a bum that involves only the epidermis It is characterized by erythema
A second degree bu means a bum that destroys the epithelium and a variable portion of the dermis
A third degree bum means a bum that destroys the entire thickness of skin, including the epithelium and dermis
The present invention provides a method for forming and contracting scar collagen below a tissue surface in a selected tissue site The formation or induction of scar collagen formation can be done transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally, permucosally, or through a device including but not limited to an endoscope An electromagnetic energy apparatus is provided and includes an electromagnetic energy source and a delivery device The delivery device is positioned on the tissue surface Electromagnetic energy is produced from the electromagnetic energy source and delivered through the tissue surface to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site No deeper than a second degree bum is formed on the tissue surface The scar collagen is subsequently contracted This method is particularly useful in soft tissue sites that are devoid or deficient in collagen
In another embodiment, a method is disclosed for forming callus deposition in a selected penosteum tissue site An electromagnetic energy apparatus is provided and includes an electromagnetic energy source and a delivery device The delivery device is positioned on a tissue surface of the selected periosteum tissue site Electromagnetic energy is produced from the electromagnetic energy source Electromagnetic energy is delivered from the delivery device, through the tissue surface, and to the selected periosteum tissue site for a sufficient time to induce callus formation in the selected penosteum tissue site The callus is subsequently contracted. The method for forming callus can be done transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally permucosally, or through a device including but not limited to an endoscope The methods of the present invention use an electromagnetic energy source to apply electromagnetic energy to a selected tissue site The electromagnetic energy can be delivered transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally, permucosally, or through a device including but not limited to an endoscope The electromagnetic energy induces scar collagen formation in tissue sites that, (i) have pre-existing collagen,
(ii) are deficient in pre-existing collagen, or (iii) lack pre-existing collagen Following the formation of the scar collagen, the application of electromagnetic energy contracts the scar collagen
Additionally, the methods of the present invention provide for the contraction of collagen tissue underlying a tissue surface area The overlying layer of tissue is not ablated. No deeper than a second degree bum is produced in the overlying layer of tissue, and preferably no deeper than a first degree bum Suitable applications for the methods of the present invention include but are not limited to, tightening and firming soft tissue, treatment of unstable joints due to collateral ligament laxity, the treatment of unstable spinal column disorders, treatment of weaknesses of the abdominal wall, treatment of other connective tissues, esophageal hernia with reflux, urinary incontinence in women, dysdynamic segments of the myrocardium and other aneurysmal dilatations of the vessels, sleep apnea, laxity and wrinkling of the skin, and the like.
Laxity and wrinkling of the skin occurs as a consequence of inadequate support of the epidermis. The induction of scar collagen deposition is used for the treatment of wrinkles Improved skin turgor is accomplished by first replenishing the collagen matrix that has been lost with aging. Following the deposition of nascent scar collagen in the dermis, contraction of collagen with a reverse thermal gradient corrects the laxity and wrinkling of the skin without resorting to resurfacing techniques that require the application of a standard thermal gradient bum to the skin. This is achieved without undergoing a lengthy post-operative healing process. Bleeding and infection are reduced. Second degree bums to the superficial skin are minimized. The melanocytes are not damaged and pigmentary irregularities are avoided.
In one embodiment, skin tightening with a reverse thermal gradient contraction of collagen corrects areas such as the thighs, knees, arms, back, face and neck lifts, and hips without unsightly scarring. Elastosis, or stretching of the abdominal skin from pregnancy is corrected without the long scar commonly associated with an abdominoplasty. Breast uplifts, i.e., mastoplexies, no longer require extensive incisions.
Thermal remodeling of collagen can occur with both native (dermal) collagen and collagen produced as part of the healing process. Wound healing involves an initial inflammatory stage that is followed by a period of rapid nascent collagen production that morphologically appears as a scar. The biophysical properties of collagen are the same regardless of its origin.
One apparatus used to create the reverse thermal gradient is a composite heating pad that has both cooling elements and electromagnetic delivery devices. The heating pad is configured to the topography of the treatment area and is incorporated into an elastic garment. Partial denaturization of collagen is achieved with each treatment. Thermal transducers measure the surface temperature of the treatment area to avoid blistering. In one embodiment the deeper dermis is heated to above 65 degrees for collagen contraction. Sequential treatments are designed to allow for more precision of the end result. Areas of application are not confined by requirements to either hide surgical incisions or transition along aesthetic boundaries.
Various types of electromagnetic energy can be utilized with the present invention. Electromagnetic energy may be any kind that can cause cell heating or physical destruction by being applied to collagen tissue. Examples of suitable electromagnetic energy sources include, but are not limited to RF, microwave, ultrasound, laser and the like. Referring now to Fig. 1, an apparatus 10 applies electromagnetic energy through a skin layer 12, such as the epidermis, and to the underlying collagen tissue 14 without substantially modifying melanocytes and other epithelial cells 16 found in the lower layer of epidermis layer 12. A porous membrane 18 is adapted to receive an electrolytic solution 20.
Porous membrane 18 becomes inflated to substantially conform a contacting exterior surface 22 of porous membrane 18 which is in close thermal contact with epidermis 12. Porous membrane 18 includes a cooling lumen 24 for receiving a cooling fluid that imparts a cooling effect on epidermis layer 12. One or more electromagnetic electrodes 26 are positioned at various places in porous membrane 18. In one embodiment, electromagnetic electrodes 26 are positioned on a side that is substantially opposing to contacting exterior surface 22. In other embodiments, electromagnetic electrodes 26 are placed closer to cooling lumen 24. In embodiment particularly suitable for the hips, porous membrane is about 20 cm by 30 cm, with an oval shape.
An electromagnetic power source 28 is coupled to electromagnetic electrodes 26 and a source of electrolytic solution 30 is coupled to porous membrane 18.
In one method of the present invention, collagen tissue in a dermis underlying the epidermis of the skin is transcutaneously contracted with the use of a thermal heating apparatus. Electromagnetic energy is transcutaneously delivered through the epidermis to the underlying dermis. Fibroblast proliferation is initiated in the underlying dermis. Scar collagen is formed in the underlying dermis. The scar collagen is subsequently contracted and the skin is tightened.
In another embodiment, a method is provided for contracting collagen tissue in a subcutaneous fat layer through an overlying epidermis layer. A thermal heating apparatus produces electromagnetic energy. The electromagnetic energy can be delivered transcutaneously, with a reverse thermal gradient, percutaneously, transmucosally permucosally, or through a device including but not limited to an endoscope The electromagnetic energy is directed through the epidermis to the underlying subcutaneous fat layer. Fibroblast proliferation is initiated in the subcutaneous fat layer. Scar collagen is formed and then tightened.
With referenced now to Fig. 2, electromagnetic energy can be applied through epidermis layer 12, to papillary dermis layer 32, to reticular dermis layer
34, to subcutaneous layer 35, as well as to underlying soft tissue 36. The extent of collagen in the various layers is < 5% in the epidermis, ~ 50% in the dermis, ~ 20 % in the subcutaneous, ~ 10% in the muscle with overlying fascia. Shrinking of collagen tissue takes place in a direction parallel to the axis of the collagen fibers. Thermal shrinkage of collagen begins with the denaturization of the triple helix structure of the collagen fibers. This occurs when electromagnetic energy is applied to the collagen tissue causing the hydrolysis of heat labile cross links of the collagen network.
Fig. 3 is a schematic representation of a collagen network behavior under the influence of heat. The thickened lines represent the chains originally bound by covalent cross links. The arrows indicate tensions exerted on the collagen chains by the effect of heat. More particularly, Fig. 3 illustrates (i). native collagen network 40, (ii). collagen 42 under isometric conditions, (iii). collagen network without any restraint, (iv) collagen network 46 under isometric tension as long as the nodes are stable, and (v) collagen network 48 under isometric tension after some cross links have been cleaved.
Electromagnetic electrodes 26 can be RF electrodes comprising a single electrode, or a plurality which can form a segmented flexible circuit. Electromagnetic power source 28 is then an RF generator. Electrolytic solution 20 is introduced into porous membrane 18 and passes by RF electrodes 26
Electrolytic solution 20 transfers RF power from RF electrodes 28 to the desired underlying collagen tissue to achieve partial denaturization of the collagen molecule.
Generally, RF electrodes 26 can be monopolar or bipolar. In the monopolar mode, RF current flows through body tissue from a return electrode which can be in a form of a conductive pad applied to the patients outer skin. Maximum heating occurs where the current density is the greatest.
During a treatment phase, the denaturization of collagen molecules can be conducted under feedback control. Treatment can occur without the attention of medical supervision. Feedback is accomplished by (i). visualization,
(ii). impedance, (iii). ultrasound, or (iv). temperature measurement. Optionally included and preferably positioned on contacting exterior surface 22 can be one ore more thermal sensors 52, as well as one or more impedance monitors 54. Thermal sensors 52 permit accurate determination of the surface temperature of epidermis layer 12.
Electrolytic solution 20 can be preheated to a selected temperature and modified as necessary. This reduces the amount of time needed to effect at satisfactory denaturization of collagen molecules and subsequent skin tightening.
Porous membrane 18 can be made of a material that is an insulator. For purposes of this disclosures, an insulator is a barrier to thermal or electrical energy flow. Porous membrane 18 can be made of a material which permits controlled delivery of electrolytic solution 20 to epidermis layer 12. Porous membrane 18 can be made of a variety of materials including, but not limited to knitted polyester, continuous filament polyester, polyester-cellulose, rayon, polyamide, polyurethane, polyethylene and the like. Suitable commercial products include, (i). Opcell available from Centinal Products Corp., Hyannis, Mass, and (ii). UltraSorb, HC 4201 or HT 4644 MD from Wilshire Contamination Control, Carlsbad, California. Pockets or zones 56 can be formed around RF electrodes 26. Each pocket 56 has a lower porosity for the flow of electrolytic solution 20 than all other sections of porous membrane 18.
Differences in porosity can be achieved with different types of materials which form porous membrane 18. Electrolytic solution 20 is retained in pockets 56 longer than in non-pocket sections of porous membrane 18, and there is a greater transfer of RF energy to electrolytic solution 20, creating a larger electrode. The larger electrode produces RF and thermal energy to create a larger electrode effect. However, this does not effect the creation of the reverse thermal gradient. RF energy is still transferred through porous membrane 18 passing in the vicinity of cooling lumen 24, in order to create a lower temperature at epidermis layer 12 and the temperature increases as deeper layers are reached.
In a skin contracting method of the present invention, a tighter, more youthful skin envelope is achieved. This is accomplished without undergoing a lengthy post-operative healing process. Bleeding and infection is reduced. Second degree bums to the superficial skin are minimized. The melanocytes are not damaged and pigmentary irregularities are avoided.
Because scarring and pigmentary irregularities are avoided, skin or other tightening occurs in areas previously considered "off-limits" to standard methods of surgical resection, laser and chemical resurfacing. Skin tightening with a reverse thermal gradient contraction of collagen can correct areas including but not limited to the thighs, knees, arms, back and hips without unsightly scarring of standard techniques. In addition, areas previously corrected by aesthetic procedures, such as face and neck lifts, can be corrected without requiring surgery or the typical incisions around the ear. Elastosis or stretching of the abdominal skin from pregnancy can be corrected without the extensive incision of an abdominoplasty. The method of the present invention can also be used for mastopexies or breast uplifts..
The fibrous septae in subcutaneous fat layers can be contracted to tighten the soft tissue. Along with these extracellular effects of collagen, intracellular thermal induction effects upon the fat cell or lipocyte results in a net egress of fat from the lipocyte which achieves a net reduction of volume of the treated area.
A second thermal device is used in tandem with the initial thermal device to achieve liposculpture of the treated area. The second device can be designed with a convergent lens that is focused at the appropriate level on the subcutaneous tissue. Referring now to Fig. 4, an apparatus 58 for creating a desired contour effect of underlying subcutaneous layers or deeper soft tissue layers which include loculations of fat with fibrous septae made of collagen tissue is illustrated. The apparatus 58 of Fig 4, includes a porous membrane 18, electrolytic solution 20, a contacting exterior surface 22, a cooling lumen, electromagnetic electrodes 26, an electromagnetic power source 28, an electrolytic solution source 30, one or more thermal sensors 52, as well as one or more impedance monitors 54. Apparatus 58 also includes a focussing element 60 which focuses electromagnetic energy from electrolytic solution 20 to the underlying collagen tissue. Focussing element 60 and electrolytic solution 20 create a reverse thermal gradient from epidermis layer 12 to the underlying collagen tissue 14. Focussing element 62 can be, in the case of ultrasonic energy, a lens having a flat planer surface on the radiation wave incident side and a concave exit face, see Ultrasonics Theory and Application, by G.L. Goberman, Heart Publishing Co., New York (1959), at section 2.6. The use of such a focussing lens for ultrasonic energy with a planer wave receiving face and concave exit face is also described in the article "Deep Local Hypothermia for
Cancer Therapy: Extreme Electromagnetic and Ultrasound Technics," A Y. Cheung and A. Neyzari, Cancer Research, Vol. 44, pp.4736-4744, October 1984.
Radio frequencies can be the electromagnetic energy source, and various localizing technique, well known in the art, can be utilized. In one embodiment, radio frequency energy is supplied by capacitive coupling directly to epidermis layer 12 for areas close to the dermal tissue. Radio frequency induction focussing can be achieved with the use of plural focussing coils which are adaptive at the zone of interest and are elsewhere subtractive. Alternatively, radio frequency energy may be focused by having a multiple beam phased array.
For concave focussing see, "Tumor reduction by radio frequency therapy response", H.H. Lavien et al., JAMA, Vol. 233, at 2198-2200.
Alternative radio frequency focussing methods are disclosed in "Equipment for Local Hypothermia Therapy of Cancer", CF. Babbs et al., Medical Instrumentation, Vol. 16, No. 5, Sept-Oct 1982, pp.245-248. It will be appreciated that focussing element 60 can be a convergent lens. Further, focussing element 60 can be positioned in porous membrane 18, and at the exterior 16 between epidermis layer 12 and porous membrane 18. Further, a coupling device 62 can be included which couples focussing element 60 with porous membrane 18. In one embodiment, coupling device 62 is a bracket which is positioned around a periphery of porous membrane 18, and supports focussing element 50 in relation to porous membrane 18.
In the method for tightening skin, porous membrane 18 and thermal energy source 26 are provided. A reverse thermal gradient is created which cools a surface of epidermis layer 12 while heating underlying collagen containing layers. Epidermis layer 12 as well as underlying collagen containing tissue are heated, without substantially effecting the melanocytes and other epithelial cells in epidermis layer 12, resulting in a denaturization of collagen molecules, causing a contraction of the collagen tissue and a tightening of the skin. This method can be applied numerous times. In many instances, it may be desirable to tighten the skin to a certain level and then in subsequent treatments the skin is tightened further. There may be four fine treatments to fine tune the contour effects with greater precision. In this method, collagen containing tissue is partial denatured and fat cell destruction is minimized. This is achieved by partially denaturing by cleaving heat labile cross links of the collagen molecules.
The reverse thermal gradient provides a variation in temperature throughout the various tissue layers. For example, in various embodiments, the reverse thermal gradient has a tissue surface temperature range from about 40 to 60 degrees C, and a selected underlying tissue site temperature, i.e., where scar collagen is formed or where collagen is contracted, of about 60 to 80 degrees C.
In other embodiments, when the reverse thermal gradient is a diminished or equalized standard thermal gradient the temperature ranges can be much broader.
In another embodiment, a method for liposculpturing an area of the body where there is an underlying area comprised of a loculation of fat that has collagen tissue as a fibrous septae also includes creating a reverse thermal gradient from epidermis layer 12 to the desired underlying loculation of fat layer. Sufficient electromagnetic energy is supplied through epidermis layer 12, without damaging or substantially modifying the melanocytes and other epithelial cells, through other skin layers and is focused on the collagen tissue of the fibrous septae. Electromagnetic energy partially denatures the collagen tissue with a minimal destruction of fat cells. Again, this is achieved by partially denaturizing, e.g., by cleaving, heat labial cross links of collagen molecules. The reverse thermal gradient produces a net mobilization of intra-cellular fat with diminished destruction of fat cells. In yet another embodiment of the invention, thermal induction of osteoblasts in the periosteum results in callus (calcium matrix) deposition. Callus contains a higher percentage of collagen than mature bone and subsequent remodeling with thermal contraction is possible. Maturation of the remodeled callus with calcium deposition results in stable bony fusion of treated areas. Without limitation, power source 28 can be an RF source. RF power source 28 feeds energy to an RF power generator 64 and then to RF electrodes 26. A multiplexer 66 measures current, voltage and temperature, at the numerous thermal sensors associated with to each RF electrode 26. RF electrodes 26 can be individually measured. Multiplexer 66 is driven by a controller 68 which can be a digital or analog controller, or a computer with software. When controller 68 is a computer it can include a CPU coupled through a system bus. On the system can be a keyboard, disk drive, or other non volatile memory systems, a display, and other peripherals, as are well known in the art. Also coupled to the bus are a program memory and a data memory. An operator interface 70 includes operator controls 72 and a display 74.
Controller 68 can be coupled to different types of imaging systems including ultrasonic, thermal sensors 52, and impedance monitors 54.
Current and voltage are used to calculate impedance. A diagnostic phase can be initially run to determine the level of treatment activity. This can be done through ultrasound as well as other means. Diagnostics can be performed both before and after treatment. Thermal sensors 52, and thermal sensors 76 contained within RF generator 64 measure voltage and current that is delivered to the desired treatment site. The output for these sensors is used by controller 68 to control the delivery of RF power. Controller 68 can also control temperature and power. An operator set level of power and/or temperature may be determined and this will not be exceeded. Controller 68 maintains the set level under changing conditions. The amount of RF energy delivered controls the amount of power. A profile of power delivered can be incorporated in controller 68, as well as a preset amount of energy to be delivered. Feedback can be the measurement of impedance, temperature, or other indicators and occurs either at control 68 or at RF generator 64, if it incorporates a controller. For impedance measurement, this can be achieved by supplying a small amount of non therapeutic RF energy. Voltage and current are then measured to confirm electrical contact. Circuitry, software and feedback to controller 68 result in full process control and are used to change, (i). power, (ii). the duty cycle, (iii). monopolar or bipolar energy delivery, (iv). electrolytic solution 20 delivery, flow rate and pressure and (v). can determine when the process is completed through time, temperature and/or impedance. These process variables can be controlled and varied based upon tissue temperature monitored at multiple sites on contacting exterior surface 22 as well as monitoring impedance to current flow at each RF electrode 26, indicating changes in current carrying capability of the tissue during the process. Further, controller 68 can provide multiplexing, monitor circuit continuity, and determine which RF electrode 26 is activated. A block diagram of one embodiment of suitable processing circuitry is shown in Fig. 6. Thermal sensors 52 can be thermistors which have a resistance that varies with temperature. Analog amplifier 78 can be a conventional differential amplifier circuit for use with thermistors and transducers. The output of analog amplifier is sequentially connected by an analog multiplexer 80 to the input of an analog digital converter 82. The output of amplifier 78 is a voltage which represents the respective sensed temperatures. The digitized amplifier output voltages are supplied by analog to digital converter 82 to a microprocessor 84. Microprocessor 84 calculates the temperature or impedance of the tissue. Microprocessor 84 can be a type 6800. However, it will be appreciated that any suitable microprocessor or general puφose digital or analog computer can be used to calculate impedance or temperature.
Microprocessor 84 sequentially receives and stores digital representations of impedance and temperature. Each digital value received by microprocessor 84 corresponds to different temperatures and impedances.
Calculated temperature and impedance values can be indicated on display 74. Alternatively, or in addition to the numerical indication of temperature or impedance, calculated impedance or temperature values can be compared by microprocessor 84 with temperature and impedance limits. When the values exceed predetermined temperature or impedance values a warning can be given on display 74 and additionally, the delivery of RF energy to its respective electrode can be decreased or multiplexed to another electrode. A control signal from microprocessor 84 can reduce the power level by RF generator 64, or de- energize the power delivered to any particular electrode. Controller 68 receives and stores the digital values which represent temperatures and impedances sent. Calculated surface temperatures and impedances can be forwarded by controller 68 to display 74 If desired, the calculated surface temperature of epidermis layer 12 is compared with a temperature limit and a warning signal can be sent to display 74. Similarly, a control signal can be sent to RF power source 26 when temperature or impedance values exceed a predetermined level.
The foregoing description of a preferred embodiment of the invention has been presented for puφoses of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. It is intended that the scope of the invention be defined by the following claims and their equivalents.

Claims

1. A method for forming and contracting scar collagen below a tissue surface in a selected tissue site, comprising: providing an electromagnetic energy apparatus including an electromagnetic energy source and a delivery device; positioning the delivery device on the tissue surface; producing electromagnetic energy from the electromagnetic energy source; delivering the electromagnetic energy from the delivery device through the tissue surface to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site; and contracting the scar collagen.
2. The method of claim 1, wherein the electromagnetic energy is transcutaneously delivered to the selected tissue site.
3. The method of claim 1, wherein the electromagnetic energy is percutaneously delivered to the selected tissue site.
4. The method of claim 1, wherein the electromagnetic energy is transmucosally delivered to the selected tissue site.
5. The method of claim 1, wherein the electromagnetic energy is permucosally delivered to the selected tissue site.
6. The method of claim 1, wherein the electromagnetic energy is transcutaneously delivered to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site with no deeper than a first degree burn formed on the tissue surface.
7. The method of claim 1, wherein the electromagnetic energy is transcutaneously delivered to the selected tissue site for a sufficient time to induce scar collagen formation in the selected tissue site with no deeper than a second degree bum formed on the tissue surface.
8 The method of claim 1, wherein a combination of an amount of electromagnetic energy delivered to the tissue surface and to the selected tissue site creates a reverse thermal gradient through the tissue surface to the selected tissue site.
9. The method of claim 1, wherein the selected tissue site is substantially devoid of collagen.
10. The method of claim 1, wherein the selected tissue site is deficient of collagen.
11. The method of claim 1, wherein the selected tissue site has pre¬ existing collagen.
12. The method of claim 1, wherein the electromagnetic energy source is an RF source.
13. The method of claim 1, wherein the electromagnetic energy source is a microwave source.
14. The method of claim 1, wherein the electromagnetic energy source is a short wave source.
15. The method of claim 1, wherein scar collagen is formed without ablating the surface of the soft tissue site.
16. The method of claim 1, wherein the surface of the selected tissue site is heated to a temperature range of 40 to 60 degrees C.
17. The method of claim 1, wherein the selected tissue site is heated to a temperature of 60 to 80 degrees or greater.
18. The method of claim 1, wherein the selected tissue site comprises soft tissue.
19. The method of claim 1, wherein the formation of the scar collagen alters a consistency of the selected tissue site.
20. The method of claim 1, wherein the formation of the scar collagen changes the geometry of the selected tissue site.
21. The method of claim 1 , wherein the tissue site is an unstable joint with collateral ligament laxity, and a contraction of the scar collagen reduces a hypermobility of the unstable joints.
22. The method of claim 1, wherein the tissue site is one or more sections of an unstable spinal column, and a contraction of the scar collagen reduces a vector of spinal deviation and increases the stability of the spine.
23. A method for contracting collagen below a tissue surface in a selected tissue site, comprising: providing an electromagnetic energy apparatus including an electromagnetic energy source and a delivery device; positioning the delivery device on the tissue surface; producing electromagnetic energy from the electromagnetic energy source; delivering the electromagnetic energy from the delivery device through the tissue surface to the selected tissue site for a sufficient time to contract collagen in the selected tissue site with no deeper than a first degree burn formed on the tissue surface.
24. The method of claim 23, wherein the collagen is contracted with no deeper than a second degree bum formed on the tissue surface.
25. The method of claim 23, wherein the electromagnetic energy is transcutaneously delivered to the selected tissue site.
26. The method of claim 23, wherein the electromagnetic energy is percutaneously delivered to the selected tissue site.
27. The method of claim 23, wherein the electromagnetic energy is transmucosally delivered to the selected tissue site.
28. The method of claim 23, wherein the electromagnetic energy is permucosally delivered to the selected tissue site.
29. The method of claim 23, wherein the surface of the selected tissue site is heated to a temperature range of 40 to 60 degrees C.
30. The method of claim 23, wherein the selected tissue site is heated to a temperature of 60 to 80 degrees or greater.
31. A method for forming callus deposition in a selected periosteum tissue site, comprising: providing an electromagnetic energy apparatus including an electromagnetic energy source and a delivery device; positioning the delivery device on a surface of the selected periosteum tissue site; producing electromagnetic energy from the electromagnetic energy source; delivering the electromagnetic energy from the delivery device to the selected periosteum tissue site for a sufficient time to induce callus formation in the selected periosteum tissue site; and contracting the callus.
32. The method of claim 31 , wherein the electromagnetic energy is transcutaneously delivered to the selected periosteum tissue site.
33. The method of claim 31 , wherein the electromagnetic energy is percutaneously delivered to the selected periosteum tissue site.
34. The method of claim 31, wherein the electromagnetic energy is transmucosally delivered to the selected periosteum tissue site.
35. The method of claim 31 , wherein the electromagnetic energy is permucosally delivered to the selected periosteum tissue site.
36. The method of claim 31, wherein the surface of the selected periosteum tissue site is heated to a temperature range of 40 to 60 degrees C.
37. The method of claim 31, wherein the selected periosteum tissue site is heated to a temperature of 60 to 80 degrees or greater.
38. The method of claim 31, wherein a reverse thermal gradient is formed through the surface of the selected periosteum tissue site.
39. The method of claim 31, wherein the selected periosteum tissue site is substantially devoid of collagen.
40. The method of claim 31, wherein the selected periosteum tissue site is deficient of collagen.
41. The method of claim 31 , wherein the selected periosteum tissue site has pre-existing collagen.
42. The method of claim 31, wherein the electromagnetic energy source is an RF source.
43. The method of claim 31, wherein the electromagnetic energy source is a microwave source.
44. The method of claim 31, wherein the electromagnetic energy source is a short wave source.
45. The method of claim 31, wherein the electromagnetic energy forms the callus with no more than a first degree bum formed on the surface of the selected periosteum tissue site.
46. The method of claim 31, wherein the electromagnetic energy forms the callus with no more than a second degree burn formed on the surface of the selected periosteum tissue site.
47. The method of claim 31, wherein the formation of callus alters a consistency of the selected periosteum tissue site.
48. The method of claim 31, wherein the formation of callus alters a geometry of the selected periosteum tissue site.
49. A method for contracting collagen below a tissue surface in a selected tissue site, comprising: providing an electromagnetic energy apparatus including an electromagnetic energy source and a delivery device; positioning the delivery device on the tissue surface; producing electromagnetic energy from the electromagnetic energy source; delivering the electromagnetic energy from the delivery device through the tissue surface to the selected tissue site for a sufficient time to contract native collagen in the selected tissue site with no deeper than a first degree bum formed on the tissue surface.
50. The method of claim 49, wherein the native collagen is contracted with no deeper than a second degree bum formed on the tissue surface.
51. The method of claim 49, wherein the electromagnetic energy is percutaneously delivered to the selected tissue site.
52. The method of claim 49, wherein the electromagnetic energy is permucosally delivered to the selected tissue site.
53. The method of claim 49, wherein the surface of the selected tissue site is heated to a temperature range of 40 to 60 degrees C.
54. The method of claim 49, wherein the selected tissue site is heated to a temperature of 60 to 80 degrees or greater.
PCT/US1997/000162 1996-01-05 1997-01-02 Method for scar collagen formation and contraction WO1997024992A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52533097A JP4116076B2 (en) 1996-01-05 1997-01-02 Method for formation and contraction of scar collagen
AU15273/97A AU1527397A (en) 1996-01-05 1997-01-02 Method for scar collagen formation and contraction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/583,815 US6241753B1 (en) 1995-05-05 1996-01-05 Method for scar collagen formation and contraction
US08/583,815 1996-01-05

Publications (1)

Publication Number Publication Date
WO1997024992A1 true WO1997024992A1 (en) 1997-07-17

Family

ID=24334676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/000162 WO1997024992A1 (en) 1996-01-05 1997-01-02 Method for scar collagen formation and contraction

Country Status (4)

Country Link
US (6) US6241753B1 (en)
JP (1) JP4116076B2 (en)
AU (1) AU1527397A (en)
WO (1) WO1997024992A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6081749A (en) * 1997-08-13 2000-06-27 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
EP1018994A1 (en) * 1997-10-02 2000-07-19 Arthrocare Corporation Systems and methods for electrosurgical tissue contraction
US6123083A (en) * 1997-08-29 2000-09-26 Urologix, Inc. Device and method for treatment of a prostate while preventing urethral constriction due to collagen rich tissue shrinkage
US6216704B1 (en) 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
JP2004501976A (en) * 2000-06-30 2004-01-22 ペプシン リミテッド Peptide composition
US7004942B2 (en) 1998-01-14 2006-02-28 Solarant Medical, Inc. Ribbed electrodes and methods for their use
JP2008302234A (en) * 2002-03-15 2008-12-18 General Hospital Corp:The Methods and devices for selective disruption of fatty tissue by controlled cooling
US8221410B2 (en) 1996-01-05 2012-07-17 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US8968284B2 (en) 2000-10-02 2015-03-03 Verathon Inc. Apparatus and methods for treating female urinary incontinence
US8979838B2 (en) 2010-05-24 2015-03-17 Arthrocare Corporation Symmetric switching electrode method and related system
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
US9452008B2 (en) 2008-12-12 2016-09-27 Arthrocare Corporation Systems and methods for limiting joint temperature
US9526556B2 (en) 2014-02-28 2016-12-27 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
US9597142B2 (en) 2014-07-24 2017-03-21 Arthrocare Corporation Method and system related to electrosurgical procedures
US9649148B2 (en) 2014-07-24 2017-05-16 Arthrocare Corporation Electrosurgical system and method having enhanced arc prevention

Families Citing this family (424)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024733A (en) * 1995-06-07 2000-02-15 Arthrocare Corporation System and method for epidermal tissue ablation
US20050187599A1 (en) * 1994-05-06 2005-08-25 Hugh Sharkey Method and apparatus for controlled contraction of soft tissue
US6780180B1 (en) * 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US7758537B1 (en) 1995-11-22 2010-07-20 Arthrocare Corporation Systems and methods for electrosurgical removal of the stratum corneum
US6228078B1 (en) 1995-11-22 2001-05-08 Arthrocare Corporation Methods for electrosurgical dermatological treatment
US6228082B1 (en) 1995-11-22 2001-05-08 Arthrocare Corporation Systems and methods for electrosurgical treatment of vascular disorders
US7452358B2 (en) * 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US7189230B2 (en) * 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US7229436B2 (en) * 1996-01-05 2007-06-12 Thermage, Inc. Method and kit for treatment of tissue
US20030212393A1 (en) * 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US7267675B2 (en) * 1996-01-05 2007-09-11 Thermage, Inc. RF device with thermo-electric cooler
US7141049B2 (en) * 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US8353908B2 (en) 1996-09-20 2013-01-15 Novasys Medical, Inc. Treatment of tissue in sphincters, sinuses, and orifices
US6480746B1 (en) 1997-08-13 2002-11-12 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6091995A (en) * 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US6653618B2 (en) 2000-04-28 2003-11-25 Palomar Medical Technologies, Inc. Contact detecting method and apparatus for an optical radiation handpiece
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US8182473B2 (en) 1999-01-08 2012-05-22 Palomar Medical Technologies Cooling system for a photocosmetic device
US6508813B1 (en) 1996-12-02 2003-01-21 Palomar Medical Technologies, Inc. System for electromagnetic radiation dermatology and head for use therewith
US5810801A (en) * 1997-02-05 1998-09-22 Candela Corporation Method and apparatus for treating wrinkles in skin using radiation
DK0991372T3 (en) 1997-05-15 2004-12-06 Palomar Medical Tech Inc Apparatus for dermatological treatment
US6104959A (en) 1997-07-31 2000-08-15 Microwave Medical Corp. Method and apparatus for treating subcutaneous histological features
US20030178032A1 (en) * 1997-08-13 2003-09-25 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
AUPP176898A0 (en) * 1998-02-12 1998-03-05 Moldflow Pty Ltd Automated machine technology for thermoplastic injection molding
WO1999049937A1 (en) 1998-03-27 1999-10-07 The General Hospital Corporation Method and apparatus for the selective targeting of lipid-rich tissues
US6391023B1 (en) 1998-05-28 2002-05-21 Pearl Technology Holdings, Llc Thermal radiation facelift device
US7494488B2 (en) * 1998-05-28 2009-02-24 Pearl Technology Holdings, Llc Facial tissue strengthening and tightening device and methods
US6236891B1 (en) * 1998-07-31 2001-05-22 Surx, Inc. Limited heat transfer devices and methods to shrink tissues
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
US7041094B2 (en) * 1999-03-15 2006-05-09 Cutera, Inc. Tissue treatment device and method
US20020087155A1 (en) 1999-08-30 2002-07-04 Underwood Ronald A. Systems and methods for intradermal collagen stimulation
BR0016874B1 (en) * 1999-12-30 2009-01-13 facial lifting apparatus.
US6595934B1 (en) 2000-01-19 2003-07-22 Medtronic Xomed, Inc. Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US6692450B1 (en) 2000-01-19 2004-02-17 Medtronic Xomed, Inc. Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US6413254B1 (en) * 2000-01-19 2002-07-02 Medtronic Xomed, Inc. Method of tongue reduction by thermal ablation using high intensity focused ultrasound
US6451013B1 (en) * 2000-01-19 2002-09-17 Medtronic Xomed, Inc. Methods of tonsil reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7300436B2 (en) * 2000-02-22 2007-11-27 Rhytec Limited Tissue resurfacing
US7335199B2 (en) * 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
US6629974B2 (en) 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
US20070027446A1 (en) * 2000-02-22 2007-02-01 Rhytec Limited Method of removing a tattoo
US7862564B2 (en) * 2000-02-22 2011-01-04 Plasmogen Inc. Method of remodelling stretch marks
US20110121735A1 (en) * 2000-02-22 2011-05-26 Kreos Capital Iii (Uk) Limited Tissue resurfacing
US7785322B2 (en) 2000-02-22 2010-08-31 Plasmogen Inc. Tissue treatment system
US20060116674A1 (en) * 2000-02-22 2006-06-01 Rhytec Limited Method of regenerating the recticular architecture of the dermis
US6558385B1 (en) 2000-09-22 2003-05-06 Tissuelink Medical, Inc. Fluid-assisted medical device
US7811282B2 (en) 2000-03-06 2010-10-12 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof
EP1946716B1 (en) 2000-03-06 2017-07-19 Salient Surgical Technologies, Inc. Fluid delivery system and controller for electrosurgical devices
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6689131B2 (en) 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6389319B1 (en) * 2000-06-01 2002-05-14 Justin J. Lee Tissue tensioning electrotheraphy device
US6801808B2 (en) 2000-06-01 2004-10-05 Justin J. Lee Tissue tensioning electrotherapy device
US6547794B2 (en) * 2000-08-18 2003-04-15 Auge', Ii Wayne K. Method for fusing bone during endoscopy procedures
US6902564B2 (en) 2001-08-15 2005-06-07 Roy E. Morgan Methods and devices for electrosurgery
US7771422B2 (en) * 2002-06-06 2010-08-10 Nuortho Surgical, Inc. Methods and devices for electrosurgery
US7445619B2 (en) * 2000-08-18 2008-11-04 Map Technologies Llc Devices for electrosurgery
US7819861B2 (en) * 2001-05-26 2010-10-26 Nuortho Surgical, Inc. Methods for electrosurgical electrolysis
US6882884B1 (en) 2000-10-13 2005-04-19 Soundskin, L.L.C. Process for the stimulation of production of extracellular dermal proteins in human tissue
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
AU2002217412B2 (en) * 2001-01-03 2006-09-14 Ultrashape Ltd. Non-invasive ultrasonic body contouring
US7347855B2 (en) * 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
US6535764B2 (en) * 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
US7066932B1 (en) 2001-05-26 2006-06-27 Map Technologies Llc Biologically enhanced irrigants
US6723090B2 (en) 2001-07-02 2004-04-20 Palomar Medical Technologies, Inc. Fiber laser device for medical/cosmetic procedures
US8591508B2 (en) * 2001-08-15 2013-11-26 Nuortho Surgical, Inc. Electrosurgical plenum
US8235979B2 (en) 2001-08-15 2012-08-07 Nuortho Surgical, Inc. Interfacing media manipulation with non-ablation radiofrequency energy system and method
US8734441B2 (en) * 2001-08-15 2014-05-27 Nuortho Surgical, Inc. Interfacing media manipulation with non-ablation radiofrequency energy system and method
US20030069569A1 (en) 2001-08-29 2003-04-10 Burdette Everette C. Ultrasound device for treatment of intervertebral disc tissue
US20030109787A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser diagnostics
US20030109860A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser treatment
US20040082940A1 (en) * 2002-10-22 2004-04-29 Michael Black Dermatological apparatus and method
US20030139740A1 (en) * 2002-01-22 2003-07-24 Syneron Medical Ltd. System and method for treating skin
US20030158505A1 (en) * 2002-02-21 2003-08-21 Calvert Jay Wynn Massager and method of using same
US8840608B2 (en) * 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
BR0312430A (en) 2002-06-19 2005-04-26 Palomar Medical Tech Inc Method and apparatus for treating skin and subcutaneous conditions
BR0215785A (en) * 2002-06-25 2006-06-06 Ultrashape Inc Useful devices and methodologies for body aesthetics
US7442192B2 (en) * 2002-07-14 2008-10-28 Knowlton Edward W Method and apparatus for surgical dissection
AU2003254107B2 (en) 2002-07-25 2008-06-19 Covidien Ag Electrosurgical pencil with drag sensing capability
US7250047B2 (en) * 2002-08-16 2007-07-31 Lumenis Ltd. System and method for treating tissue
EP1555948A2 (en) 2002-10-23 2005-07-27 Palomar Medical Technologies, Inc. Phototreatment device for use with coolants and topical substances
US8475455B2 (en) 2002-10-29 2013-07-02 Medtronic Advanced Energy Llc Fluid-assisted electrosurgical scissors and methods
US7244257B2 (en) 2002-11-05 2007-07-17 Sherwood Services Ag Electrosurgical pencil having a single button variable control
US7377917B2 (en) * 2002-12-09 2008-05-27 The Trustees Of Dartmouth College Feedback control of thermokeratoplasty treatments
US8348936B2 (en) * 2002-12-09 2013-01-08 The Trustees Of Dartmouth College Thermal treatment systems with acoustic monitoring, and associated methods
WO2004052223A2 (en) * 2002-12-09 2004-06-24 The Trustees Of Dartmouth College Electrically-induced thermokeratoplasty systems and method
ES2300746T3 (en) 2003-02-20 2008-06-16 Covidien Ag MOTION DETECTOR TO CONTROL THE ELECTROCHURGICAL OUTPUT.
ES2441408T3 (en) 2003-03-27 2014-02-04 The General Hospital Corporation Device for dermatological treatment and fractional skin rejuvenation
US9149322B2 (en) * 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
US20040206365A1 (en) * 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US7291140B2 (en) * 2003-07-18 2007-11-06 Cutera, Inc. System and method for low average power dermatologic light treatment device
US8915906B2 (en) * 2003-08-25 2014-12-23 Cutera, Inc. Method for treatment of post-partum abdominal skin redundancy or laxity
US8870856B2 (en) * 2003-08-25 2014-10-28 Cutera, Inc. Method for heating skin using light to provide tissue treatment
US7722600B2 (en) 2003-08-25 2010-05-25 Cutera, Inc. System and method for heating skin using light to provide tissue treatment
US20050209588A1 (en) * 2003-09-04 2005-09-22 Crum, Kaminski & Larson, Llc HIFU resculpturing and remodeling of heart valves
AU2004285412A1 (en) * 2003-09-12 2005-05-12 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
US7503917B2 (en) 2003-11-20 2009-03-17 Covidien Ag Electrosurgical pencil with improved controls
US7879033B2 (en) 2003-11-20 2011-02-01 Covidien Ag Electrosurgical pencil with advanced ES controls
US7156842B2 (en) 2003-11-20 2007-01-02 Sherwood Services Ag Electrosurgical pencil with improved controls
US7613523B2 (en) * 2003-12-11 2009-11-03 Apsara Medical Corporation Aesthetic thermal sculpting of skin
US7326199B2 (en) * 2003-12-22 2008-02-05 Cutera, Inc. System and method for flexible architecture for dermatologic treatments utilizing multiple light sources
US7282060B2 (en) 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7184184B2 (en) 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7857773B2 (en) * 2003-12-30 2010-12-28 Medicis Technologies Corporation Apparatus and methods for the destruction of adipose tissue
BRPI0418242A (en) * 2003-12-30 2007-04-17 Liposonix Inc transducer for ultrasound, transducer assemblies and interchangeable electronic medical instruments
US7993289B2 (en) * 2003-12-30 2011-08-09 Medicis Technologies Corporation Systems and methods for the destruction of adipose tissue
US7090670B2 (en) * 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
US7372606B2 (en) 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
US8535299B2 (en) * 2004-01-23 2013-09-17 Joseph Giovannoli Method and apparatus for skin reduction
JP2007519498A (en) 2004-01-30 2007-07-19 エヌエムティー メディカル, インコーポレイティッド Devices, systems, and methods for closure of cardiac openings
US7727232B1 (en) 2004-02-04 2010-06-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices and methods
US7331953B2 (en) * 2004-04-01 2008-02-19 The Gneral Hospital Corporation Method and apparatus for dermatological treatment
EP1742588B1 (en) 2004-04-01 2016-10-19 The General Hospital Corporation Apparatus for dermatological treatment and tissue reshaping
US20050251116A1 (en) * 2004-05-05 2005-11-10 Minnow Medical, Llc Imaging and eccentric atherosclerotic material laser remodeling and/or ablation catheter
US8235909B2 (en) 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US7413572B2 (en) 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
US20050283148A1 (en) 2004-06-17 2005-12-22 Janssen William M Ablation apparatus and system to limit nerve conduction
US20050283097A1 (en) * 2004-06-18 2005-12-22 Ultrastop Ltd. Devices and methodologies useful in non invasive termination of pregnancy
US20060036300A1 (en) * 2004-08-16 2006-02-16 Syneron Medical Ltd. Method for lypolisis
US20060047281A1 (en) 2004-09-01 2006-03-02 Syneron Medical Ltd. Method and system for invasive skin treatment
US7742795B2 (en) * 2005-03-28 2010-06-22 Minnow Medical, Inc. Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US7530958B2 (en) 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
EP2279696A3 (en) * 2004-10-06 2014-02-26 Guided Therapy Systems, L.L.C. Method and system for non-invasive mastopexy
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9827449B2 (en) * 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
KR101732144B1 (en) 2004-10-06 2017-05-02 가이디드 테라피 시스템스, 엘.엘.씨. Ultrasound treatment system
US7530356B2 (en) * 2004-10-06 2009-05-12 Guided Therapy Systems, Inc. Method and system for noninvasive mastopexy
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11207548B2 (en) * 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
WO2006077567A1 (en) * 2005-01-18 2006-07-27 Msq Ltd. Improved system and method for heating biological tissue via rf energy
US7536225B2 (en) * 2005-01-21 2009-05-19 Ams Research Corporation Endo-pelvic fascia penetrating heating systems and methods for incontinence treatment
US7643883B2 (en) * 2005-01-28 2010-01-05 Syneron Medical Ltd. Device and method for treating skin
US8244369B2 (en) * 2005-01-28 2012-08-14 Syneron Medical Ltd. Device and method for treating skin with temperature control
WO2006105222A2 (en) * 2005-03-25 2006-10-05 Scios Inc. Carboxamide inhibitors of tgfb
US7856985B2 (en) 2005-04-22 2010-12-28 Cynosure, Inc. Method of treatment body tissue using a non-uniform laser beam
US7571336B2 (en) 2005-04-25 2009-08-04 Guided Therapy Systems, L.L.C. Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered
US7500974B2 (en) 2005-06-28 2009-03-10 Covidien Ag Electrode with rotatably deployable sheath
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
WO2007030486A1 (en) * 2005-09-06 2007-03-15 Nmt Medical, Inc. In tunnel electrode for sealing intracardiac defects
US9259267B2 (en) 2005-09-06 2016-02-16 W.L. Gore & Associates, Inc. Devices and methods for treating cardiac tissue
WO2007030433A2 (en) 2005-09-06 2007-03-15 Nmt Medical, Inc. Removable intracardiac rf device
US9486274B2 (en) 2005-09-07 2016-11-08 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US8518069B2 (en) 2005-09-07 2013-08-27 Cabochon Aesthetics, Inc. Dissection handpiece and method for reducing the appearance of cellulite
US9011473B2 (en) 2005-09-07 2015-04-21 Ulthera, Inc. Dissection handpiece and method for reducing the appearance of cellulite
WO2007030415A2 (en) * 2005-09-07 2007-03-15 The Foundry, Inc. Apparatus and method for disrupting subcutaneous structures
US10548659B2 (en) 2006-01-17 2020-02-04 Ulthera, Inc. High pressure pre-burst for improved fluid delivery
US7967763B2 (en) * 2005-09-07 2011-06-28 Cabochon Aesthetics, Inc. Method for treating subcutaneous tissues
US9358033B2 (en) 2005-09-07 2016-06-07 Ulthera, Inc. Fluid-jet dissection system and method for reducing the appearance of cellulite
AU2006292526A1 (en) 2005-09-15 2007-03-29 Palomar Medical Technologies, Inc. Skin optical characterization device
US20070078502A1 (en) * 2005-10-05 2007-04-05 Thermage, Inc. Method and apparatus for estimating a local impedance factor
US7957815B2 (en) * 2005-10-11 2011-06-07 Thermage, Inc. Electrode assembly and handpiece with adjustable system impedance, and methods of operating an energy-based medical system to treat tissue
US8702691B2 (en) * 2005-10-19 2014-04-22 Thermage, Inc. Treatment apparatus and methods for delivering energy at multiple selectable depths in tissue
US20070106290A1 (en) * 2005-11-08 2007-05-10 Turano Thomas A Conformable electrode catheter and method of use
US20070142885A1 (en) * 2005-11-29 2007-06-21 Reliant Technologies, Inc. Method and Apparatus for Micro-Needle Array Electrode Treatment of Tissue
US20080195036A1 (en) * 2005-12-02 2008-08-14 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080197517A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US7885793B2 (en) 2007-05-22 2011-02-08 International Business Machines Corporation Method and system for developing a conceptual model to facilitate generating a business-aligned information technology solution
US20080200863A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US9248317B2 (en) 2005-12-02 2016-02-02 Ulthera, Inc. Devices and methods for selectively lysing cells
US20080014627A1 (en) * 2005-12-02 2008-01-17 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20080200864A1 (en) * 2005-12-02 2008-08-21 Cabochon Aesthetics, Inc. Devices and methods for selectively lysing cells
US20070135876A1 (en) * 2005-12-08 2007-06-14 Weber Paul J Acne and skin defect treatment via non-radiofrequency electrical current controlled power delivery device and methods
US7920926B2 (en) * 2005-12-09 2011-04-05 Apsara Medical Corporation Method and apparatus for carrying out the controlled heating of tissue in the region of dermis
JP2009527262A (en) * 2006-01-17 2009-07-30 エンディメド メディカル リミテッド Electrosurgical method and apparatus using phase controlled radio frequency energy
WO2007092610A2 (en) 2006-02-07 2007-08-16 Tivamed, Inc. Vaginal remodeling device and methods
WO2007095183A2 (en) * 2006-02-13 2007-08-23 Reliant Technologies, Inc. Laser system for treatment of skin laxity
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US20080031833A1 (en) * 2006-03-13 2008-02-07 Oblong John E Combined energy and topical composition application for regulating the condition of mammalian skin
BRPI0706055B8 (en) * 2006-04-28 2021-06-22 Zeltiq Aesthetics Inc system and set of components to remove heat from lipid-rich subcutaneous cells
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US20070260240A1 (en) 2006-05-05 2007-11-08 Sherwood Services Ag Soft tissue RF transection and resection device
US20070268955A1 (en) * 2006-05-17 2007-11-22 Pohl Hermann K Thermal fluid device with remote temperature indicator
US8246611B2 (en) * 2006-06-14 2012-08-21 Candela Corporation Treatment of skin by spatial modulation of thermal heating
WO2008005477A2 (en) * 2006-07-05 2008-01-10 Bovie Medical Apparatus and method for skin tightening and corrective forming
US8700176B2 (en) * 2006-07-27 2014-04-15 Pollogen Ltd. Apparatus and method for non-invasive treatment of skin tissue
US7586957B2 (en) 2006-08-02 2009-09-08 Cynosure, Inc Picosecond laser apparatus and methods for its operation and use
US20080183252A1 (en) * 2006-09-05 2008-07-31 Roee Khen Apparatus and method for treating cellulite
US20080161745A1 (en) * 2006-09-08 2008-07-03 Oliver Stumpp Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US20080077201A1 (en) * 2006-09-26 2008-03-27 Juniper Medical, Inc. Cooling devices with flexible sensors
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US9241683B2 (en) * 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US8273080B2 (en) 2006-10-16 2012-09-25 Syneron Medical Ltd. Methods and devices for treating tissue
US20080281389A1 (en) * 2006-10-16 2008-11-13 Primaeva Medical Inc. Methods and devices for treating tissue
US8133216B2 (en) 2006-10-16 2012-03-13 Syneron Medical Ltd. Methods and devices for treating tissue
US8007493B2 (en) 2006-10-16 2011-08-30 Syneron Medical Ltd. Methods and devices for treating tissue
US8142426B2 (en) 2006-10-16 2012-03-27 Syneron Medical Ltd. Methods and devices for treating tissue
EP2455034B1 (en) * 2006-10-18 2017-07-19 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
CA2666661C (en) 2006-10-18 2015-01-20 Minnow Medical, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
JP5479901B2 (en) * 2006-10-18 2014-04-23 べシックス・バスキュラー・インコーポレイテッド Induction of desired temperature effects on body tissue
US20080097557A1 (en) * 2006-10-19 2008-04-24 Apsara Medical Corporation Method and apparatus for carrying out the controlled heating of tissue in the region of dermis
WO2008091983A2 (en) * 2007-01-25 2008-07-31 Thermage, Inc. Treatment apparatus and methods for inducing microburn patterns in tissue
US20080200969A1 (en) * 2007-02-16 2008-08-21 Thermage, Inc. Temperature sensing apparatus and methods for treatment devices used to deliver high frequency energy to tissue
US8142200B2 (en) * 2007-03-26 2012-03-27 Liposonix, Inc. Slip ring spacer and method for its use
CA2684864A1 (en) * 2007-04-06 2008-10-16 Stephen Flock Inductive heating of tissues using alternating magnetic fields and uses thereof
US10441346B2 (en) 2007-04-06 2019-10-15 Rocky Mountain Biosystems, Inc Inductive heating of tissues using alternating magnetic fields and uses thereof
US10183183B2 (en) * 2007-04-13 2019-01-22 Acoustic Medsystems, Inc. Acoustic applicators for controlled thermal modification of tissue
CN101711134B (en) 2007-04-19 2016-08-17 米勒玛尔实验室公司 Tissue is applied the system of microwave energy and in organized layer, produces the system of tissue effect
WO2009075904A1 (en) 2007-04-19 2009-06-18 The Foundry, Inc. Methods, devices, and systems for non-invasive delivery of microwave therapy
US9149331B2 (en) 2007-04-19 2015-10-06 Miramar Labs, Inc. Methods and apparatus for reducing sweat production
US9241763B2 (en) 2007-04-19 2016-01-26 Miramar Labs, Inc. Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US20100211059A1 (en) 2007-04-19 2010-08-19 Deem Mark E Systems and methods for creating an effect using microwave energy to specified tissue
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US20080269735A1 (en) * 2007-04-26 2008-10-30 Agustina Vila Echague Optical array for treating biological tissue
DK2152167T3 (en) 2007-05-07 2018-12-10 Guided Therapy Systems Llc Methods and systems for coupling and focusing acoustic energy using a coupling element
US20150174388A1 (en) 2007-05-07 2015-06-25 Guided Therapy Systems, Llc Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
TWI526233B (en) 2007-05-07 2016-03-21 指導治療系統股份有限公司 Methods and systems for modulating medicants using acoustic energy
US20080287839A1 (en) * 2007-05-18 2008-11-20 Juniper Medical, Inc. Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator
US9364287B2 (en) * 2007-06-05 2016-06-14 Reliant Technologies, Inc. Method for reducing pain of dermatological treatments
US8845630B2 (en) * 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
US8216218B2 (en) * 2007-07-10 2012-07-10 Thermage, Inc. Treatment apparatus and methods for delivering high frequency energy across large tissue areas
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
CN101686834A (en) * 2007-07-13 2010-03-31 波士顿科学医学有限公司 Hybrid and portable power supplies for electrolytically detaching implantable medical devices
US20090018624A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Limiting use of disposable system patient protection devices
US20090018626A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. User interfaces for a system that removes heat from lipid-rich regions
US20090018625A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Managing system temperature to remove heat from lipid-rich regions
US8103355B2 (en) 2007-07-16 2012-01-24 Invasix Ltd Method and device for minimally invasive skin and fat treatment
EP3488833A1 (en) 2007-08-21 2019-05-29 Zeltiq Aesthetics, Inc. Monitoring the cooling of subcutaneous lipid-rich cells, such as the cooling of adipose tissue
US8506565B2 (en) 2007-08-23 2013-08-13 Covidien Lp Electrosurgical device with LED adapter
US8287579B2 (en) * 2007-09-17 2012-10-16 Thermage, Inc. Method of using cryogenic compositions for cooling heated skin
US8439940B2 (en) 2010-12-22 2013-05-14 Cabochon Aesthetics, Inc. Dissection handpiece with aspiration means for reducing the appearance of cellulite
US20090240146A1 (en) * 2007-10-26 2009-09-24 Liposonix, Inc. Mechanical arm
US20090112205A1 (en) * 2007-10-31 2009-04-30 Primaeva Medical, Inc. Cartridge electrode device
CN101902980A (en) * 2007-11-14 2010-12-01 新波医药系统股份有限公司 Effect of radiofrequency fields on cell growth and methods for laparoscopic treatment
US8235987B2 (en) 2007-12-05 2012-08-07 Tyco Healthcare Group Lp Thermal penetration and arc length controllable electrosurgical pencil
US20090149930A1 (en) * 2007-12-07 2009-06-11 Thermage, Inc. Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue
KR101654863B1 (en) 2007-12-12 2016-09-22 미라마 랩스 인코포레이티드 Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy
US20090156958A1 (en) * 2007-12-12 2009-06-18 Mehta Bankim H Devices and methods for percutaneous energy delivery
ES2471971T3 (en) 2007-12-12 2014-06-27 Miramar Labs, Inc. System and apparatus for non-invasive treatment of tissue using microwave energy
US8180458B2 (en) * 2007-12-17 2012-05-15 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
US8597292B2 (en) 2008-03-31 2013-12-03 Covidien Lp Electrosurgical pencil including improved controls
US8663218B2 (en) 2008-03-31 2014-03-04 Covidien Lp Electrosurgical pencil including improved controls
US8636733B2 (en) 2008-03-31 2014-01-28 Covidien Lp Electrosurgical pencil including improved controls
US8682426B2 (en) * 2008-04-07 2014-03-25 Old Dominion Research Foundation Delivery device, system, and method for delivering nanosecond pulsed electric fields
US8515553B2 (en) * 2008-04-28 2013-08-20 Thermage, Inc. Methods and apparatus for predictively controlling the temperature of a coolant delivered to a treatment device
US8348938B2 (en) * 2008-05-06 2013-01-08 Old Dominian University Research Foundation Apparatus, systems and methods for treating a human tissue condition
DK2282675T3 (en) 2008-06-06 2016-05-17 Ulthera Inc Cosmetic treatment and imaging system
US8285392B2 (en) * 2008-06-19 2012-10-09 Thermage, Inc. Leakage-resistant tissue treatment apparatus and methods of using such tissue treatment apparatus
US8121704B2 (en) * 2008-06-19 2012-02-21 Thermage, Inc. Leakage-resistant tissue treatment apparatus and methods of using same
US8162937B2 (en) 2008-06-27 2012-04-24 Tyco Healthcare Group Lp High volume fluid seal for electrosurgical handpiece
US8795264B2 (en) * 2008-07-01 2014-08-05 Ralph Zipper Method for decreasing the size and/or changing the shape of pelvic tissues
US20100016782A1 (en) * 2008-07-16 2010-01-21 John Erich Oblong Method of Regulating Hair Growth
US8275442B2 (en) 2008-09-25 2012-09-25 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
CN102271603A (en) * 2008-11-17 2011-12-07 明诺医学股份有限公司 Selective accumulation of energy with or without knowledge of tissue topography
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
CA2748362A1 (en) * 2008-12-24 2010-07-01 Michael H. Slayton Methods and systems for fat reduction and/or cellulite treatment
US8882758B2 (en) * 2009-01-09 2014-11-11 Solta Medical, Inc. Tissue treatment apparatus and systems with pain mitigation and methods for mitigating pain during tissue treatments
US8506506B2 (en) * 2009-01-12 2013-08-13 Solta Medical, Inc. Tissue treatment apparatus with functional mechanical stimulation and methods for reducing pain during tissue treatments
US8231620B2 (en) 2009-02-10 2012-07-31 Tyco Healthcare Group Lp Extension cutting blade
US9278230B2 (en) 2009-02-25 2016-03-08 Syneron Medical Ltd Electrical skin rejuvenation
US20100217254A1 (en) * 2009-02-25 2010-08-26 Primaeva Medical, Inc. Methods for applying energy to tissue using isolated energy sources
US8167280B2 (en) * 2009-03-23 2012-05-01 Cabochon Aesthetics, Inc. Bubble generator having disposable bubble cartridges
US8961577B2 (en) * 2009-04-02 2015-02-24 Julie Ann Reil Correction of female urinary incontinence and skin reduction
US20110245587A1 (en) * 2010-04-05 2011-10-06 Julie Ann Reil Method for correction of female urinary incontinence and skin reduction
WO2010127315A2 (en) 2009-04-30 2010-11-04 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
WO2010129899A1 (en) * 2009-05-08 2010-11-11 Cellutions, Inc. Treatment system with a pulse forming network for achieving plasma in tissue
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
US9532827B2 (en) 2009-06-17 2017-01-03 Nuortho Surgical Inc. Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US20100331867A1 (en) * 2009-06-26 2010-12-30 Joseph Giovannoli Apparatus and method for dermal incision
US8788060B2 (en) * 2009-07-16 2014-07-22 Solta Medical, Inc. Tissue treatment systems with high powered functional electrical stimulation and methods for reducing pain during tissue treatments
US9919168B2 (en) 2009-07-23 2018-03-20 Palomar Medical Technologies, Inc. Method for improvement of cellulite appearance
US9358064B2 (en) 2009-08-07 2016-06-07 Ulthera, Inc. Handpiece and methods for performing subcutaneous surgery
US11096708B2 (en) 2009-08-07 2021-08-24 Ulthera, Inc. Devices and methods for performing subcutaneous surgery
IN2012DN02321A (en) 2009-09-18 2015-08-21 Viveve Inc
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
CN102791227A (en) 2010-01-25 2012-11-21 斯尔替克美学股份有限公司 Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associated devices, systems and methods
US20110202048A1 (en) * 2010-02-12 2011-08-18 Solta Medical, Inc. Methods for pain reduction with functional thermal stimulation and tissue treatment systems
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
BR112012026871A2 (en) 2010-04-19 2017-06-06 Procter & Gamble combined application of topical composition and energy to regulate mammalian skin condition
EP2561092A1 (en) 2010-04-19 2013-02-27 The Procter & Gamble Company Genetic signatures and gene chips associated with administration of electrically conducted radio frequency current to skin and methods and treatments relating thereto
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8676338B2 (en) * 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
KR20200004466A (en) 2010-08-02 2020-01-13 가이디드 테라피 시스템스, 엘.엘.씨. System and Method for Ultrasound Treatment
EP2611500A4 (en) 2010-09-05 2014-03-12 Venus Concept Ltd A self operated esthetic device with a substrate
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US20130310715A1 (en) 2010-11-30 2013-11-21 Afschin Fatemi Apparatus for the treatment of hyperhidrosis
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
WO2012103242A1 (en) 2011-01-25 2012-08-02 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
US9408658B2 (en) 2011-02-24 2016-08-09 Nuortho Surgical, Inc. System and method for a physiochemical scalpel to eliminate biologic tissue over-resection and induce tissue healing
US20120271219A1 (en) * 2011-04-19 2012-10-25 David John Weisgerber Combined Energy and Topical Composition Application For Regulating the Condition of Mammalian Skin
US9452302B2 (en) 2011-07-10 2016-09-27 Guided Therapy Systems, Llc Systems and methods for accelerating healing of implanted material and/or native tissue
KR20140047709A (en) 2011-07-11 2014-04-22 가이디드 테라피 시스템스, 엘.엘.씨. Systems and methods for coupling an ultrasound source to tissue
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
WO2013016203A1 (en) 2011-07-22 2013-01-31 Boston Scientific Scimed, Inc. Nerve modulation system with a nerve modulation element positionable in a helical guide
US9314301B2 (en) 2011-08-01 2016-04-19 Miramar Labs, Inc. Applicator and tissue interface module for dermatological device
US8974478B2 (en) 2011-09-20 2015-03-10 Covidien Lp Ultrasonic surgical system having a fluid cooled blade and related cooling methods therefor
EP2765942B1 (en) 2011-10-10 2016-02-24 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
EP2768563B1 (en) 2011-10-18 2016-11-09 Boston Scientific Scimed, Inc. Deflectable medical devices
EP2775948B1 (en) 2011-11-08 2018-04-04 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
EP2779929A1 (en) 2011-11-15 2014-09-24 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9867996B2 (en) 2011-11-16 2018-01-16 Btl Holdings Limited Methods and systems for skin treatment
US8548599B2 (en) 2011-11-16 2013-10-01 Btl Holdings Limited Methods and systems for subcutaneous treatments
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
WO2013096913A2 (en) 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
WO2013101452A1 (en) 2011-12-28 2013-07-04 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US9277958B2 (en) 2012-02-22 2016-03-08 Candela Corporation Reduction of RF electrode edge effect
US9889297B2 (en) 2012-02-22 2018-02-13 Candela Corporation Reduction of RF electrode edge effect
CN103301567B (en) 2012-03-16 2016-04-06 女康乐公司 A kind of therapeutic apparatus repairing vagina tissue
US8403927B1 (en) 2012-04-05 2013-03-26 William Bruce Shingleton Vasectomy devices and methods
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
EP2839552A4 (en) 2012-04-18 2015-12-30 Cynosure Inc Picosecond laser apparatus and methods for treating target tissues with same
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
WO2014028770A1 (en) 2012-08-15 2014-02-20 Burdette Everette C Mri compatible ablation catheter system incorporating directional high-intensity ultrasound for treatment
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
EP2895095A2 (en) 2012-09-17 2015-07-22 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
JP6074051B2 (en) 2012-10-10 2017-02-01 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Intravascular neuromodulation system and medical device
US9579142B1 (en) 2012-12-13 2017-02-28 Nuortho Surgical Inc. Multi-function RF-probe with dual electrode positioning
US8968302B2 (en) 2012-12-31 2015-03-03 Tdm Surgitech, Inc. Methods, apparatus, and systems for tissue dissection and modification
US10045761B2 (en) 2012-12-31 2018-08-14 Tdm Surgitech, Inc. Systems, apparatus and methods for tissue dissection
WO2014135511A1 (en) 2013-03-04 2014-09-12 Afschin Fatemi Apparatus for the temporary treatment of hyperhidrosis
CN204637350U (en) 2013-03-08 2015-09-16 奥赛拉公司 Aesthstic imaging and processing system, multifocal processing system and perform the system of aesthetic procedure
WO2014143571A1 (en) 2013-03-11 2014-09-18 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
JP6220044B2 (en) 2013-03-15 2017-10-25 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
CN105228546B (en) 2013-03-15 2017-11-14 波士顿科学国际有限公司 Utilize the impedance-compensated medicine equipment and method that are used to treat hypertension
US10285757B2 (en) 2013-03-15 2019-05-14 Cynosure, Llc Picosecond optical radiation systems and methods of use
JP2016524949A (en) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Medical device for renal nerve ablation having a rotatable shaft
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
WO2015002787A1 (en) 2013-07-01 2015-01-08 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
EP3019106A1 (en) 2013-07-11 2016-05-18 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
EP3049007B1 (en) 2013-07-19 2019-06-12 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
WO2015013502A2 (en) 2013-07-24 2015-01-29 Miramar Labs, Inc. Apparatus and methods for the treatment of tissue using microwave energy
JP6159888B2 (en) 2013-08-22 2017-07-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Flexible circuit with improved adhesion to renal neuromodulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9168096B2 (en) 2013-09-09 2015-10-27 Invasix Corp. System and method for tissue treatment using non-symmetric radio-frequency energy waveform
CN105530885B (en) 2013-09-13 2020-09-22 波士顿科学国际有限公司 Ablation balloon with vapor deposited covering
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
EP3057520A1 (en) 2013-10-15 2016-08-24 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
JP6259099B2 (en) 2013-10-18 2018-01-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Balloon catheter comprising a conductive wire with flexibility, and related uses and manufacturing methods
CN105658163B (en) 2013-10-25 2020-08-18 波士顿科学国际有限公司 Embedded thermocouple in denervation flexible circuit
WO2015103617A1 (en) 2014-01-06 2015-07-09 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US9861421B2 (en) 2014-01-31 2018-01-09 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3102136B1 (en) 2014-02-04 2018-06-27 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
SG11201608691YA (en) 2014-04-18 2016-11-29 Ulthera Inc Band transducer ultrasound therapy
US20180001103A9 (en) 2014-04-22 2018-01-04 ThermiGen, LLC Radiofrequency treatment probe for treating vaginal laxity and associated systems and methods
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US9119628B1 (en) 2015-01-21 2015-09-01 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
US9113912B1 (en) 2015-01-21 2015-08-25 Serene Medical, Inc. Systems and devices to identify and limit nerve conduction
EP3261712B1 (en) 2015-02-24 2024-04-03 Elira, Inc. System for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch
US10335302B2 (en) 2015-02-24 2019-07-02 Elira, Inc. Systems and methods for using transcutaneous electrical stimulation to enable dietary interventions
US10765863B2 (en) 2015-02-24 2020-09-08 Elira, Inc. Systems and methods for using a transcutaneous electrical stimulation device to deliver titrated therapy
US9956393B2 (en) 2015-02-24 2018-05-01 Elira, Inc. Systems for increasing a delay in the gastric emptying time for a patient using a transcutaneous electro-dermal patch
US10376145B2 (en) 2015-02-24 2019-08-13 Elira, Inc. Systems and methods for enabling a patient to achieve a weight loss objective using an electrical dermal patch
US10864367B2 (en) 2015-02-24 2020-12-15 Elira, Inc. Methods for using an electrical dermal patch in a manner that reduces adverse patient reactions
US9962553B2 (en) 2015-03-04 2018-05-08 Btl Holdings Limited Device and method for contactless skin treatment
ES2892598T3 (en) 2015-10-19 2022-02-04 Zeltiq Aesthetics Inc Vascular treatment methods to cool vascular structures
JP6833869B2 (en) 2016-01-07 2021-02-24 ゼルティック エステティックス インコーポレイテッド Temperature-dependent adhesion between applicator and skin during tissue cooling
KR102615327B1 (en) 2016-01-18 2023-12-18 얼테라, 인크 Compact ultrasonic device with annular ultrasonic array locally electrically connected to a flexible printed circuit board and method of assembling the same
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10695219B2 (en) 2016-04-08 2020-06-30 ThermiGen, LLC Apparatus and method for treatment of dry eye using radio frequency heating
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
KR102593310B1 (en) * 2016-08-16 2023-10-25 얼테라, 인크 Ultrasound imaging system configured to reduce imaging misalignment, ultrasound imaging module, and method for reducing imaging misalignment
US11896823B2 (en) 2017-04-04 2024-02-13 Btl Healthcare Technologies A.S. Method and device for pelvic floor tissue treatment
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
WO2019165426A1 (en) 2018-02-26 2019-08-29 Cynosure, Inc. Q-switched cavity dumped sub-nanosecond laser
AU2019204574A1 (en) 2018-06-27 2020-01-23 Viveve, Inc. Methods for treating urinary stress incontinence
MX2021000902A (en) 2018-07-23 2021-08-24 Revelle Aesthetics Inc Cellulite treatment system and methods.
WO2020023406A1 (en) 2018-07-23 2020-01-30 Nc8, Inc. Cellulite treatment system and methods
KR20210038661A (en) 2018-07-31 2021-04-07 젤티크 애스세틱스, 인코포레이티드. Methods, devices, and systems for improving skin properties
US11564732B2 (en) 2019-12-05 2023-01-31 Covidien Lp Tensioning mechanism for bipolar pencil
USD971415S1 (en) 2019-12-30 2022-11-29 Cynosure, Llc Flexible applicator
CN112618307A (en) * 2021-01-05 2021-04-09 吉林大学第一医院 Cardiovascular internal medicine nursing piercing depth

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140130A (en) * 1977-05-31 1979-02-20 Storm Iii Frederick K Electrode structure for radio frequency localized heating of tumor bearing tissue
DE3121683A1 (en) * 1981-06-01 1982-12-16 Rosy geb. Tomaschko 6500 Mainz Mucha Device for reactivating slackened facial skin
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
FR2609245A1 (en) * 1987-01-06 1988-07-08 Physiolab Sarl Device for thermotherapy using electric heating plates with temperature adjustment and local elimination activator
US4889122A (en) * 1985-11-29 1989-12-26 Aberdeen University Divergent ultrasound arrays
US5143063A (en) * 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
WO1992019414A1 (en) * 1991-04-26 1992-11-12 Mmtc, Inc. Thermostatically-controlled microwave cyclodestruction as a treatment for glaucoma
EP0519415A1 (en) * 1991-06-19 1992-12-23 SMA SEGNALAMENTO MARITTIMO ED AEREO S.p.A. Microwave apparatus for clinical hyperthermia in endogenous thermotherapy
US5282797A (en) * 1989-05-30 1994-02-01 Cyrus Chess Method for treating cutaneous vascular lesions

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US32849A (en) * 1861-07-16 whipple
FR2057396A6 (en) 1968-10-04 1971-05-21 Bauche Yvonne
US3831604A (en) 1973-04-18 1974-08-27 C Neefe Method of reshaping the cornea
US4074718A (en) 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
US4164226A (en) 1976-08-25 1979-08-14 Robert Tapper Iontophoretic burn-protection electrode structure
USRE32849E (en) 1978-04-13 1989-01-31 Litton Systems, Inc. Method for fabricating multi-layer optical films
US4326529A (en) * 1978-05-26 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Corneal-shaping electrode
US4346715A (en) 1978-07-12 1982-08-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hyperthermia heating apparatus
US4290435A (en) 1979-09-07 1981-09-22 Thermatime A.G. Internally cooled electrode for hyperthermal treatment and method of use
US4343301A (en) 1979-10-04 1982-08-10 Robert Indech Subcutaneous neural stimulation or local tissue destruction
US4375220A (en) 1980-05-09 1983-03-01 Matvias Fredrick M Microwave applicator with cooling mechanism for intracavitary treatment of cancer
US4397314A (en) * 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4441486A (en) 1981-10-27 1984-04-10 Board Of Trustees Of Leland Stanford Jr. University Hyperthermia system
CA1244889A (en) 1983-01-24 1988-11-15 Kureha Chemical Ind Co Ltd Device for hyperthermia
US4545368A (en) 1983-04-13 1985-10-08 Rand Robert W Induction heating method for use in causing necrosis of neoplasm
JPS6055966A (en) 1983-09-05 1985-04-01 オリンパス光学工業株式会社 Medical electrode apparatus
US4702732A (en) * 1984-12-24 1987-10-27 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation and transdermal delivery of pharmacologically active ligands
IT206759Z2 (en) 1985-07-08 1987-10-01 Indiba Sa ELECTRONIC DEVICE FOR COSMETIC MEDICAL THERAPY.
US4976709A (en) 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5137530A (en) 1985-09-27 1992-08-11 Sand Bruce J Collagen treatment apparatus
US5304169A (en) 1985-09-27 1994-04-19 Laser Biotech, Inc. Method for collagen shrinkage
US4709701A (en) 1986-04-15 1987-12-01 Medical Research & Development Associates Apparatus for medical treatment by hyperthermia
US4786277A (en) * 1986-11-21 1988-11-22 Trustees Of Boston University Electrodes, electrode assemblies, methods, and systems for tissue stimulation
US4962761A (en) 1987-02-24 1990-10-16 Golden Theodore A Thermal bandage
US5003991A (en) 1987-03-31 1991-04-02 Olympus Optical Co., Ltd. Hyperthermia apparatus
JPS6456060A (en) 1987-08-27 1989-03-02 Hayashibara Takeshi Low frequency medical treatment device
US4957480A (en) 1988-02-02 1990-09-18 Universal Health Products, Inc. Method of facial toning
US4881543A (en) 1988-06-28 1989-11-21 Massachusetts Institute Of Technology Combined microwave heating and surface cooling of the cornea
US5613950A (en) * 1988-07-22 1997-03-25 Yoon; Inbae Multifunctional manipulating instrument for various surgical procedures
US5186181A (en) 1990-07-27 1993-02-16 Cafiero Franconi Radio frequency thermotherapy
US5107832A (en) 1991-03-11 1992-04-28 Raul Guibert Universal thermotherapy applicator
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5370642A (en) 1991-09-25 1994-12-06 Keller; Gregory S. Method of laser cosmetic surgery
US5697281A (en) 1991-10-09 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US5249575A (en) 1991-10-21 1993-10-05 Adm Tronics Unlimited, Inc. Corona discharge beam thermotherapy system
US5681282A (en) 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US5683366A (en) 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
US5366443A (en) 1992-01-07 1994-11-22 Thapliyal And Eggers Partners Method and apparatus for advancing catheters through occluded body lumens
US5843019A (en) 1992-01-07 1998-12-01 Arthrocare Corporation Shaped electrodes and methods for electrosurgical cutting and ablation
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5902272A (en) 1992-01-07 1999-05-11 Arthrocare Corporation Planar ablation probe and method for electrosurgical cutting and ablation
US5230334A (en) 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5342357A (en) 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
JP2931102B2 (en) 1993-05-10 1999-08-09 アースロケア コーポレイション Electrosurgical probe
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5507790A (en) 1994-03-21 1996-04-16 Weiss; William V. Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism
US5464436A (en) 1994-04-28 1995-11-07 Lasermedics, Inc. Method of performing laser therapy
US5458596A (en) * 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5692058A (en) 1995-03-02 1997-11-25 Eggers; Philip E. Dual audio program system
US5630426A (en) 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US5755753A (en) * 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US5660836A (en) * 1995-05-05 1997-08-26 Knowlton; Edward W. Method and apparatus for controlled contraction of collagen tissue
US5693045A (en) 1995-06-07 1997-12-02 Hemostatic Surgery Corporation Electrosurgical generator cable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4140130A (en) * 1977-05-31 1979-02-20 Storm Iii Frederick K Electrode structure for radio frequency localized heating of tumor bearing tissue
US4381007A (en) * 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
DE3121683A1 (en) * 1981-06-01 1982-12-16 Rosy geb. Tomaschko 6500 Mainz Mucha Device for reactivating slackened facial skin
US4889122A (en) * 1985-11-29 1989-12-26 Aberdeen University Divergent ultrasound arrays
FR2609245A1 (en) * 1987-01-06 1988-07-08 Physiolab Sarl Device for thermotherapy using electric heating plates with temperature adjustment and local elimination activator
US5143063A (en) * 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
US5282797A (en) * 1989-05-30 1994-02-01 Cyrus Chess Method for treating cutaneous vascular lesions
WO1992019414A1 (en) * 1991-04-26 1992-11-12 Mmtc, Inc. Thermostatically-controlled microwave cyclodestruction as a treatment for glaucoma
EP0519415A1 (en) * 1991-06-19 1992-12-23 SMA SEGNALAMENTO MARITTIMO ED AEREO S.p.A. Microwave apparatus for clinical hyperthermia in endogenous thermotherapy

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8221410B2 (en) 1996-01-05 2012-07-17 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US6216704B1 (en) 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US9023031B2 (en) 1997-08-13 2015-05-05 Verathon Inc. Noninvasive devices, methods, and systems for modifying tissues
US6081749A (en) * 1997-08-13 2000-06-27 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6123083A (en) * 1997-08-29 2000-09-26 Urologix, Inc. Device and method for treatment of a prostate while preventing urethral constriction due to collagen rich tissue shrinkage
EP1018994A4 (en) * 1997-10-02 2001-01-17 Arthrocare Corp Systems and methods for electrosurgical tissue contraction
EP1018994A1 (en) * 1997-10-02 2000-07-19 Arthrocare Corporation Systems and methods for electrosurgical tissue contraction
US7004942B2 (en) 1998-01-14 2006-02-28 Solarant Medical, Inc. Ribbed electrodes and methods for their use
JP2004501976A (en) * 2000-06-30 2004-01-22 ペプシン リミテッド Peptide composition
US8968284B2 (en) 2000-10-02 2015-03-03 Verathon Inc. Apparatus and methods for treating female urinary incontinence
JP2008302234A (en) * 2002-03-15 2008-12-18 General Hospital Corp:The Methods and devices for selective disruption of fatty tissue by controlled cooling
US9452008B2 (en) 2008-12-12 2016-09-27 Arthrocare Corporation Systems and methods for limiting joint temperature
US8979838B2 (en) 2010-05-24 2015-03-17 Arthrocare Corporation Symmetric switching electrode method and related system
US9526556B2 (en) 2014-02-28 2016-12-27 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
US9597142B2 (en) 2014-07-24 2017-03-21 Arthrocare Corporation Method and system related to electrosurgical procedures
US9649148B2 (en) 2014-07-24 2017-05-16 Arthrocare Corporation Electrosurgical system and method having enhanced arc prevention

Also Published As

Publication number Publication date
US6377854B1 (en) 2002-04-23
US5948011A (en) 1999-09-07
US6381498B1 (en) 2002-04-30
JP4116076B2 (en) 2008-07-09
US6381497B1 (en) 2002-04-30
US6377855B1 (en) 2002-04-23
AU1527397A (en) 1997-08-01
JP2001513654A (en) 2001-09-04
US6241753B1 (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US6241753B1 (en) Method for scar collagen formation and contraction
EP1407720A1 (en) Apparatus for skin resurfacing
US5919219A (en) Method for controlled contraction of collagen tissue using RF energy
US6438424B1 (en) Apparatus for tissue remodeling
JP2007268297A6 (en) Skin surface regeneration device
US6749624B2 (en) Fluid delivery apparatus
US20040186535A1 (en) Fluid delivery apparatus
WO1998005380A1 (en) Method for tightening skin
KR20040085141A (en) Fluid delivery apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 525330

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase