WO1997030635A1 - Procede et dispositif de diagnostic de l'osteoporose - Google Patents

Procede et dispositif de diagnostic de l'osteoporose Download PDF

Info

Publication number
WO1997030635A1
WO1997030635A1 PCT/JP1997/000501 JP9700501W WO9730635A1 WO 1997030635 A1 WO1997030635 A1 WO 1997030635A1 JP 9700501 W JP9700501 W JP 9700501W WO 9730635 A1 WO9730635 A1 WO 9730635A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
bone
reflected wave
osteoporosis
wave information
Prior art date
Application number
PCT/JP1997/000501
Other languages
English (en)
French (fr)
Inventor
Tetsuya Ishii
Masashi Kuriwaki
Yasuyuki Kubota
Yuichi Nakamori
Original Assignee
Sekisui Kagaku Kogyo Kabushiki Kaisya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Kagaku Kogyo Kabushiki Kaisya filed Critical Sekisui Kagaku Kogyo Kabushiki Kaisya
Priority to US08/930,998 priority Critical patent/US5902240A/en
Priority to EP97904609A priority patent/EP0821913A4/en
Publication of WO1997030635A1 publication Critical patent/WO1997030635A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • A61B5/4509Bone density determination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/015Attenuation, scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02483Other human or animal parts, e.g. bones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays

Definitions

  • the present invention relates to an ultrasonic reflection type osteoporosis apparatus and an osteoporosis diagnosis method for radiating an ultrasonic pulse toward a predetermined bone of a subject and detecting an echo from the bone to diagnose osteoporosis.
  • osteoporosis In recent years, with the advent of an aging society, a bone disease called osteoporosis has become a problem. This is a disease that causes calcium to escape from bones and becomes sparse, easily broken by a slight shock, and is one of the causes of so-called bedridden elderly people. Physical diagnosis of osteoporosis is mainly performed by using a diagnostic device such as DXA or QCT that uses X-rays to precisely measure the density of bones. In addition to the large scale, there is a risk of exposure.
  • a diagnostic device that uses ultrasonic waves measures the speed of sound and attenuation when the ultrasonic waves propagate through bone tissue, estimates the bone density and the elastic modulus (elastic strength) of the bone, and obtains low estimates. If so, it can be attributed to calcium escaping from the bone, so diagnose osteoporosis.
  • the ultrasonic pulse is emitted from one ultrasonic transducer toward the subject's bone tissue, and the ultrasonic pulse transmitted through the bone tissue is received by the other ultrasonic transducer.
  • the processing algorithm of the diagnostic device is established based on the empirical rule that sound velocity is proportional to bone density in bone tissue.
  • Japanese Patent Application Nos. 6-3101045, 7-1400730, and 7-214 both of which are filed by the present applicant.
  • a single ultrasonic transducer is used to repeatedly emit ultrasonic pulses toward flat bone tissue and return from the bone tissue.
  • the received echo is received, and the maximum echo (which can be regarded as a vertically reflected echo) is extracted from the received echoes.
  • the reflection coefficient, the acoustic impedance, and the like are calculated.
  • Ultrasound that calculates and diagnoses osteoporosis based on these calculated values Reflection type diagnostic devices have been proposed.
  • an ultrasonic pulse that can be regarded as a sufficiently plane wave is emitted toward a bone tissue having a flat surface while the ultrasonic transducer is in contact with the skin of the subject, and the ultrasonic pulse is emitted vertically.
  • the ultrasonic pulse is emitted vertically.
  • this also requires the operator to cooperate in changing the direction of the ultrasonic transducer and finding the maximum echo, which makes the operation cumbersome.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an osteoporosis diagnostic apparatus and an osteoporosis diagnostic method capable of obtaining high reliability with a simple operation without exposure. Disclosure of the invention
  • An osteoporosis diagnostic apparatus (and method) according to the present invention repeatedly emits an ultrasonic pulse toward a subject's bone, and receives an echo that is reflected back from the bone and returns each time. Based on the diagnosis of osteoporosis.
  • an ultrasonic transducer array comprising a two-dimensional or one-dimensional array of N (N is a natural number equal to or greater than 2) ultrasonic transducer elements; An ultrasonic transmission / reception unit connected to each of the ultrasonic conversion elements; an AZD converter for digitally converting a reception signal from each of the ultrasonic conversion elements; and a j-th one of the N ultrasonic conversion elements.
  • An echo waveform measuring means for receiving the echo from the bone caused by the emission of the ultrasonic pulse from the ultrasonic conversion element of the above by the i-th ultrasonic conversion element and measuring the received echo waveform (t);
  • An osteoporosis diagnostic apparatus comprising: a step; and reflected wave information calculating means for calculating reflected wave information of the subject's bone based on the Fourier-transformed NXN scattering matrix [S uiw)] is provided. .
  • the required combination of the ⁇ th ultrasonic conversion element and the jth ultrasonic conversion element is N (N + 1) 2 to N XN Is within the range.
  • an ultrasonic transducer array comprising a two-dimensional or one-dimensional array of N (N is a natural number of 2 or more) ultrasonic transducer elements;
  • An ultrasonic transmission / reception means connected to the ultrasonic conversion element, an AZD converter for digitally converting a reception signal from each of the ultrasonic conversion elements, and a j-th ultrasonic wave among the N ultrasonic conversion elements
  • a scattering matrix creating means for obtaining an N XN scattering matrix [Sij (t)], a Fourier transform means for
  • the reflected wave information calculating means calculates one or more values ⁇ of the values ⁇ that satisfy the equation (7) from the larger absolute value according to the processing algorithm, and obtains the calculated value ⁇ .
  • an osteoporosis diagnostic apparatus characterized by calculating reflected wave information of a subject's bone based on I.
  • 2 ( ⁇ is a natural number of 2 or more) 2
  • An ultrasonic transducer array having a one-dimensional or one-dimensional array, an ultrasonic transmitting and receiving means connected to each of the ultrasonic converting elements, and an A / D for digitally converting a received signal from each of the ultrasonic converting elements.
  • An echo that measures the echo waveform (t) a waveform measuring means, a means for performing this measurement for a required combination, and a scattering matrix creating means for obtaining the NXN scattering matrix [S u (t)].
  • Fourier transform means for performing a Fourier transform of [S ij (t)] with time; Based on the scattering matrix of the conversion has been NXN [S iw)], and a reflected wave information calculating means for calculating a reflected wave information of the bone of the subject
  • the reflected wave information calculating means obtains one or more eigenvalues ⁇ from the larger absolute value among the eigenvalues that satisfy Expression (8) according to the processing algorithm;
  • An osteoporosis diagnostic apparatus is provided that calculates reflected wave information of a subject's bone based on the above. In this case, as a preferable mode, it is preferable to calculate the bone reflectance by multiplying the eigenvalue ⁇ by a predetermined proportional constant.
  • an ultrasonic transducer array comprising a two-dimensional or one-dimensional array of N (N is a natural number of 2 or more) ultrasonic transducer elements, An ultrasonic transmission / reception means connected to the conversion element, an AZD converter for digitally converting a reception signal from each of the ultrasonic conversion elements, and a j-th ultrasonic conversion among the N ultrasonic conversion elements An echo that measures the received echo waveform (t) by receiving the echo from the bone caused by the ultrasonic pulse emission from the element by the i-th ultrasonic conversion element.
  • the reflected wave information calculation means obtains the coordinates of N (the same number as the ultrasonic conversion elements) bone elements in the measurement target based on the received echo single waveform (t) according to a processing algorithm, and In consideration of the propagation delay of each received echo, a plane wave problem reduction process for reducing the reflected wave from a predetermined shape to a plane wave problem is performed, and the reflected wave information of the bone when reduced to the plane wave problem is obtained.
  • An osteoporosis diagnostic apparatus characterized in that it is calculated is provided.
  • the calculated reflected wave information of the bone includes bone reflected wave information of cortical bone with respect to the soft tissue of the subject, and bone reflected wave information of cancellous bone with respect to the cortical bone. Is included.
  • an ultrasonic transducer array in which a plurality of ultrasonic transducers are arranged two-dimensionally or one-dimensionally is applied to the skin surface covering predetermined bones of a subject.
  • an ultrasonic pulse is sequentially emitted from the ultrasonic conversion elements one by one toward a predetermined region of the bone, and an echo from the bone is generated each time the ultrasonic pulse is fired.
  • Osteoporosis diagnosis for diagnosing osteoporosis by performing predetermined analysis processing after converting predetermined reception signals into digital echo signals with an analog / digital converter
  • An osteoporosis diagnostic device having a function of outputting a waveform of an ultrasonic wave represented by Formula (9) to a predetermined region of the bone as a measurement site from the plurality of ultrasonic conversion elements. Provided .
  • aaa N is 1st, 2nd ..., Nth super W 7/3
  • ⁇ ( ⁇ ) -1 is an inverse matrix of a matrix ⁇ ( ⁇ ) having a Green function including a distance from an arbitrary bone element to an arbitrary ultrasonic conversion element as a function.
  • the osteoporosis diagnostic apparatus includes a pulse generating means for repeatedly generating an electric pulse at a predetermined cycle, and an arbitrary one of the ultrasonic conversion elements. Then, one-to-one connection with the pulse generation means is made. ⁇ Output switching means for switching the connection destination, and any one of the ultrasonic conversion elements are selected, and one-to-one with the analog-to-digital converter is selected. ⁇ ⁇ input switching means for switching the connection destination, and controlling the output switching means to sequentially supply the electric pulses generated in the pulse generating means to the ultrasonic conversion elements, and An osteoporosis diagnostic apparatus, comprising: control means for controlling a switching means to sequentially guide the reception signal output from each of the ultrasonic conversion elements to the Xanagno gno digital converter.
  • the control unit controls the output switching unit to apply an electric pulse to each ultrasonic conversion element.
  • the input switching is performed for at least ⁇ echoes from the bone generated corresponding to ⁇ ultrasonic pulses sequentially emitted from the same ultrasonic conversion element while being sorted at a time.
  • the reception signals of the respective echoes are sequentially extracted from the different ultrasonic conversion elements and guided to the analog-to-digital converter.
  • it is divided into B blocks, and each block has A (B, A is a natural number of 2 or more) AXB as a whole.
  • An ultrasonic transducer array having an ultrasonic conversion element, pulse generating means for repeatedly generating electric pulses at a predetermined cycle, and B analog Z digital converters provided for each block, An output switching means for selecting any one of the ultrasonic conversion elements and connecting the pulse generating means in a one-to-one manner and switching a connection destination; and in each block, any one of the ultrasonic conversion elements Select an element, connect it to the corresponding analog digital converter one-to-one and switch the connection destination.Switch the input switch and the output switch to control the ultrasonic conversion element.
  • the above-mentioned input switching means is used for distributing at least A pieces and for A echoes from bones generated in response to A ultrasonic pulses sequentially emitted from the same ultrasonic conversion element.
  • Osteoporosis in each block comprising: control means for sequentially extracting the reception signals of the echoes from the ultrasonic conversion elements different from each other and leading the signals to the corresponding Xanaguchi digital converter.
  • a diagnostic device is provided.
  • the osteoporosis diagnostic apparatus includes a plurality of the anatomical Z digital devices connected to the ultrasonic transducer elements in a one-to-one manner.
  • a converter for repeatedly generating an electric pulse at a predetermined cycle, and an output switching means for arbitrarily selecting or switching the ultrasonic conversion element connected one-to-one to the pulse generating means.
  • An osteoporosis diagnostic apparatus comprising: a control unit that controls the output switching unit and sequentially supplies an electric pulse generated by the pulse generation unit to each of the ultrasonic conversion elements. Further, in still another preferred aspect of the first to fifth aspects of the present invention, the osteoporosis diagnostic apparatus further comprises a plurality of the analog-to-digital converters connected one-to-one to the ultrasonic conversion elements.
  • a plurality of pulse generating means connected one-to-one to each of the ultrasonic conversion elements, and control means for sequentially controlling each of the pulse generating means and sequentially supplying an electric pulse to each of the ultrasonic conversion elements.
  • an ultrasonic transducer array comprising a two-dimensional or one-dimensional array of N (N is a natural number of 2 or more) ultrasonic transducer elements; Using an ultrasonic transmission / reception means connected to the element and an A / D converter for digitally converting a received signal from each of the ultrasonic conversion elements, among the N ultrasonic conversion elements, It is necessary to measure the received echo waveform S i 3 (t) by receiving the received echo from the bone by the ultrasonic pulse emission from the ultrasonic conversion element by the i-th ultrasonic conversion element and measuring this.
  • an ultrasonic transducer array comprising a two-dimensional or one-dimensional array of N (N is a natural number of 2 or more) ultrasonic transducer elements, each of the above).
  • An ultrasonic transmission / reception means connected to the ultrasonic conversion element, and an AZD converter for digitally converting a reception signal from each of the ultrasonic conversion elements, and a j-th one of the N ultrasonic conversion elements
  • the received echo from the bone due to the ultrasonic pulse emission from the ultrasonic conversion element is ⁇ ⁇ Received by the ultrasonic conversion element of the eye, measure the received echo waveform S S j (t), perform this measurement for the required combination, and obtain the NXN scattering matrix [S i ”(t)] Based on the Fourier-transformed NXN scattering matrix [3 ⁇ ( ⁇ )] obtained from the obtained scattering matrix [S it)], the reflected wave information of the subject's bone is calculated.
  • two-dimensional ultrasonic conversion elements of N (N is a natural number of 2 or more)
  • An ultrasonic transducer array consisting of a two-dimensional or one-dimensional array, an ultrasonic transmitting and receiving means connected to each of the above-mentioned ultrasonic converting elements, and an AZD converter for digitally converting a received signal from each of the above-mentioned ultrasonic converting elements.
  • the reception echo from the bone caused by the ultrasonic pulse emission from the j-th ultrasonic conversion element is received by the i-th ultrasonic conversion element,
  • the received echo waveform S ; j (t) is measured, this measurement is performed for a necessary combination, an N XN scattering matrix [S ⁇ (t)] is obtained, and the obtained scattering matrix [S u (t) is obtained.
  • is the eigenvalue of the NxN real matrix
  • an ultrasonic transducer array comprising a two-dimensional or one-dimensional concave array of N (N is a natural number of 2 or more) ultrasonic transducers,
  • the ultrasonic transmission / reception means connected to the conversion element, and an A / D converter for digitally converting the received signal from each of the ultrasonic conversion elements, the j-th one of the N ultrasonic conversion elements
  • the i-th ultrasonic conversion element receives the received echo from the bone due to the ultrasonic pulse emission from the ultrasonic conversion element, and measures the received echo waveform Si ”(t), and the measured reception echo Based on the waveform (t), the coordinates of N (the same number as the ultrasonic conversion elements) bone elements in the object to be measured are determined, and each of them is determined in consideration of the propagation delay of the echo signal.
  • an ultrasonic transducer array in which a plurality of ultrasonic transducer elements are two-dimensionally or one-dimensionally arranged is applied to a corrosive surface covering predetermined bones of a subject.
  • an ultrasonic pulse is sequentially emitted from the one of the ultrasonic conversion elements one by one toward a predetermined region of the bone, and the ultrasonic pulse is emitted from the bone each time the ultrasonic pulse is emitted.
  • the ultrasonic wave is received by each of the above ultrasonic conversion elements, a predetermined received signal is converted into a digital echo signal by an analog / digital converter, and then a predetermined analysis process is performed to diagnose osteoporosis.
  • An osteoporosis diagnostic method is provided, which outputs an ultrasonic waveform represented by Formula (12) to a predetermined region of the bone as a measurement site from the plurality of ultrasonic conversion elements. Is done.
  • alt a 2 ,..., a N are the radiation waves from the first, second..., N th ultrasonic transducer elements
  • ⁇ ( ⁇ ) -1 is an inverse matrix of a matrix ⁇ ( ⁇ ) having a Green function element including a distance from an arbitrary bone element to an arbitrary ultrasonic conversion element as a function.
  • FIG. 1 is a block diagram showing an electrical configuration of a reflection ultrasound type osteoporosis diagnostic apparatus according to a first embodiment of the present invention.
  • FIG. 2 is an external view of the diagnostic apparatus. Is a schematic diagram showing the use state of the diagnostic device, FIG. 4 is a perspective view showing the configuration of a main part of an ultrasonic transducer array used in the diagnostic device, and FIG. 5 is an operation processing procedure of the diagnostic device.
  • FIG. 6 is a diagram for explaining the operation of the embodiment,
  • FIG. 7 is a diagram for explaining the operation of the embodiment, and
  • FIG. 8 is a diagram for illustrating a third embodiment of the present invention.
  • FIG. 9 is a block diagram illustrating an electrical configuration of a certain osteoporosis diagnostic apparatus.
  • FIG. 9 is a block diagram illustrating an electrical configuration of a certain osteoporosis diagnostic apparatus.
  • FIG. 9 is a diagram illustrating a process of establishing a fourth embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating an operation processing procedure of the fourth embodiment.
  • FIG. 11 is a block diagram showing an electrical configuration of a reflection ultrasonic osteoporosis diagnostic apparatus as another modified example of the first embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing an electrical configuration of a reflection ultrasonic osteoporosis diagnostic apparatus according to a first embodiment of the present invention
  • FIG. 2 is an external view of the diagnostic apparatus
  • FIG. FIG. 4 is a schematic view showing the state of use
  • FIG. 4 is a perspective view showing the configuration of a main part of an ultrasonic transducer array used in the diagnostic apparatus
  • FIG. 5 is a flowchart showing the operation processing procedure of the diagnostic apparatus. It is one.
  • the osteoporosis diagnostic apparatus of this example is, as shown in FIGS. 1 to 4, a transducer cell (hereinafter simply referred to as a cell) that is an ultrasonic conversion element (element). ) Supports 1 1 2 ,..., 1 M. It is equipped with an ultrasonic transducer array 3 consisting of 16 pieces arranged vertically on the disc 2 and 16 pieces horizontally, and a total of 256 pieces. operator, bone M b (cortical bone M b I cancellous bone M b 2, see FIG.
  • the ultrasound transducer array 3 is a measurement site of a subject towards and to start the operation, each cell 1 1 ( 1 2 ,..., 1 M , in order, frequency range 0.54 to; Ultrasonic pulse A i of L.62 MHz (center frequency 1 MHz) is fired a number of times as described below. E e returning from Mb A e force ⁇ , each cell 1 1 2 ,..., Is received by L w , and the device body 4 is connected to each cell I ,, 1 2 , ⁇ , 1 N The received signals are sequentially taken in from N , and a digital analysis process described later is performed to diagnose osteoporosis.
  • Each cell l, 12,... Has an electrode layer on both sides of a thickness vibration type piezoelectric element of approximately 3 mm square such as lead titan zirconate (PZT), and transmits and receives ultrasonic pulses Ai.
  • a common ultrasonic delay spacer 6 such as a polyethylen bulk is fixed to one of the electrode surfaces to remove the effects of transmission reverberation and the like.
  • the ultrasonic delay spacer 6 can also be used as a common support for the cells 11,..., 1 N.
  • the device body 4 includes a pulse generator 7, an output switch 8, a matching circuit 992,..., 9N , an input switch 10, an amplifier 11, a waveform shaper 12, and an AZD converter. It comprises a unit 13, a ROM 14, a RAM 15, a CPU (Central Processing Unit) 16, and a display 17.
  • a pulse generator 7 an output switch 8
  • a matching circuit 992,..., 9N an input switch 10
  • an amplifier 11 a waveform shaper 12
  • an AZD converter AZD converter
  • It comprises a unit 13, a ROM 14, a RAM 15, a CPU (Central Processing Unit) 16, and a display 17.
  • CPU Central Processing Unit
  • Matching circuit 9, 9 2, ⁇ , 9 M the cell I, 1 2, ⁇ ⁇ ⁇ , are connected to 1 N and 1 to 1, between the ultrasonic transformer inducer array 3 and instrumentation Okimoto body 4 So that signals can be transmitted and received without energy loss, Match the dance dance.
  • the input switch 10 is composed of a number of analog switches or relays interposed between the cells 1 12., 1 N and the amplifier 11 and, in accordance with an instruction supplied from the CPU 16, Reception signals output from any one cell 1 1 2 , 1 ⁇ ; 1 N are sequentially captured in a selectable manner.
  • the waveform shaper 12 is composed of a bandpass filter having an LC configuration, linearly shapes the waveform of the reception signal amplified by the amplifier 11, and then inputs the waveform to the AZD converter 13.
  • the AZD converter 13 includes a sample and hold circuit (not shown), a high-speed sampling memory, and the like, and outputs an output signal of the waveform shaper 12 (waveform shaped analog reception signal) according to a sampling start request of the CPU 16. ) Is converted into a digital echo signal by sampling at a predetermined frequency (for example, 12 MHz), whereby the digitized echo signal is stored in a high-speed sampling memory and then transmitted to the CPU 16. .
  • a predetermined frequency for example, 12 MHz
  • the ROM 14 stores a processing program for causing the CPU 16 to execute the diagnosis of osteoporosis.
  • This processing program includes a transmission / reception control subprogram, an echo waveform detection processing subprogram, a bone element coordinate calculation subprogram, a plane wave problem reduction processing subprogram, a reflected wave information calculation subprogram, and a bone Mb. And an image display control subprogram.
  • the RAMI 5 has a private area in which a work area of the CPU 16 is set, and a data area for temporarily storing various data. For example, echo data, each element of a scattering matrix, coordinate values of bone elements, etc. Temporarily stored in the data area.
  • CPU 16 executes the above-described processing program stored in R0M14. Executing using the RAM 15 controls the pulse generator 7, output switch 8, input switch 10, A / D converter 13, etc., and detects 256 x 256 echo waveforms ( Creation of scattering matrix), Fourier transformation of scattering matrix, calculation of bone element coordinates, calculation of matrix with Green function as element, plane wave problem reduction processing (scattering matrix inverse Fourier transform processing), calculation of reflected wave information, Calculation of acoustic impedance of bone Mb (diagnosis of osteoporosis), 3D image processing of bone shape, etc.
  • a CRT display or a liquid crystal display is used for the display 17, and the calculated acoustic impedance of the bone Mb and the three-dimensional image of the bone Mb are displayed.
  • a bone Mb with a sufficiently large radius of curvature compared to the ultrasonic pulse Ai wavelength is used as the measurement site.
  • Suitable measurement sites include, for example, the lumbar spine, humerus, tibia, calcaneus, or human neck.
  • the CPU 16 After the measurement site is determined and the device is turned on, the CPU 16 resets the measurement device after presetting each device, setting the count register, and setting various flags. One temple is pressed.
  • the operator applies the ultrasonic gel 18 on the surface (the surface X of the skin) covering the bone Mb, which is the measurement site of the subject.
  • 8 Apply the ultrasonic transducer array 3 to the surface X of the skin via and turn on the measurement start switch.
  • the CPU 16 executes various processes according to the processing procedure shown in FIG.
  • step SP10 the CPU 16: Under the control of the program, echo waveform detection processing subgram, and bone element coordinate calculation subprogram, the echo waveform S n:; (t) from the bone Mb is measured, and the three-dimensional shape of the bone Mb is measured. Perform the required processing.
  • the CPU 16 performs control of alternately repeating transmission of the ultrasonic pulse Ai and reception of the echo Ae 256 ⁇ 256 times.
  • the ultrasonic pulse A i controls the output switch 8
  • from the first cell 1 until the 256 th cell 1 N in order Ri vibration electric pulses by 256 I will divide. That is, first, the ultrasonic pulses A i from 1 to 256 th firing from the first cell 1, and firing the 257-51 2 -th ultrasonic pulses A i from the second cell 1 2 degree to be fired from (256 ⁇ - 255) ⁇ 256 ⁇ th ultrasonic pulses a i n th cell 1 [pi called.
  • the input switch 10 is controlled to sequentially switch the cells 1 12,..., 1,. That is, when there is the first echo A e, only the received signal output from the first cell 1, is guided to the AZD converter 13, and when there is the second echo A e, Only the received signal output from the second cell 1 2 is guided to the A / D converter 13, and if there is an n-th echo A e, only the received signal output from the n-th cell 1 n To the AZD converter 13.
  • the time t at which the n-th firing ultrasound pulses A i from the cell 1 [pi, the echo A e from bone M b when this is the n 'th cell l n receives Measuring the echo waveform S n . N (t), which is the function of the force, is performed for all combinations of power ⁇ 256 X 256.
  • the three-dimensional shape of the bone Mb is obtained by a processing algorithm substantially similar to the C-mode ultrasonic echo method.
  • the shape of the bone Mb surface consisting of 256 bone elements (see Fig. 6) equal to the number of cells 1 and 12 It is obtained in the form of a set of three-dimensional coordinates of elements. Therefore, under the control of the image display control subprogram, the CPU 16 can display the shape of the bone Mb on the screen of the display 17 as a three-dimensional image (see FIG. 3).
  • the CPU 16 moves to step SP20, and controls the plane wave problem reduction processing subprogram to control the 256 ⁇ 256 echo waveforms S n .n (t ) Is Fourier-transformed at time t (see Equation (13)).
  • the CPU 16 performs the processing of steps SP20 to SP40 under the control of the plane wave problem reduction processing subprogram.
  • step SP 30 the distance r nm from the m-th bone element to the n-th cell 1 n (see FIG. 6), from the coordinates of the bone elements that is calculated have you to Step SP 1 0
  • step SP40 25 6 given by the equation (15) is obtained.
  • ⁇ ( ⁇ ) is the scattering matrix of bone M b at the interface between cortical bone M bi and cancellous bone M b 2
  • [Srete ⁇ n (t)] is ⁇ tissue M is the scattering matrix of the bone Mb, taking into consideration the propagation delay of the echo a e back through the a, as described above, are intended to be measured.
  • ⁇ ( ⁇ ) -1 is the inverse matrix of the matrix ⁇ ( ⁇ ) having the Green function (Equation (14)) as an element.
  • Equation (15) which gives the bone scattering matrix ( ⁇ ) is derived as follows.
  • the ultrasonic pulse A i emitted from the cells 1 lt 1 2 , ... , 1 N in any combination is represented by the formula (16) at the position of the cortical bone M b,
  • the ultrasonic pulse A i force incident on the cortical bone M bi is scattered inside the bone M b (particularly the interface between the cortical bone M b, and the cancellous bone M b 2 ), and is released again into the ⁇ tissue.
  • d J, d 2,..., D N represent the reception amplitude in each cell N.
  • Equation (19) is obtained. From Equation (19), Equation (15) that gives the bone scattering matrix and ( ⁇ ) Is obtained.
  • step SP50 the CPU 16 controls the plane wave problem reduction processing subprogram and the reflected wave information calculation subprogram.
  • Equation (20) is obtained, and this is subjected to inverse Fourier transform to obtain the time waveform of the reflected wave information (t).
  • ⁇ ( ⁇ ) [11... 1 ⁇ ⁇ ( ⁇ )
  • Equation (20) is derived as follows.
  • equation (21) if the thickness of the cortical bone M is uniform and the radius of curvature of the cortical bone Mb is sufficiently large as compared with the wavelength of the incident ultrasonic wave, the equation (2 22) holds. If the mean is ( ⁇ ), equation (20) holds. here, . ( ⁇ ) is the sum of each element ( ⁇ ) taken' m of a square matrix (in this example, a square matrix of 256 ⁇ 256), and the physical meaning of element ( ⁇ ) repeat.
  • m is soft When the ultrasonic pulse A i is incident only on the m-th bone element from the tissue Ma, the incident acoustic wave and the ultrasonic wave are scattered inside the bone Mb, and the m-th It is the ratio to the sound wave emitted to the tissue M a from the th element.
  • the wave of the wave front parallel to the bone M b table surface reaction Isa is the same as at the interface between the cortical bone M bi and cancellous bone M b 2, cortex
  • the light propagates through the cortical bone M with a wavefront parallel to the surface of the bone Mb, and is emitted to the tissue Ma at a parallel wavefront.
  • step SP60 controls the cortical bone M b, based on the equations (2 3) and (2 4) by controlling the acoustic impedance calculation subprogram of the bone M b. Find the sound dance dance Z b 3 ⁇ 4 and the sound dance dance Z b 2 of cancellous bone M b 2.
  • Za represents the acoustic impedance of ⁇ tissue Ma.
  • Equations (23) and (24) are obtained from equations (25) and (26).
  • the area density of the cortical bone M b can be calculated from the product of M b and the acoustic impedance Z b.
  • the osteoporosis progresses based on the calculated acoustic impedance of the bone M b. Judge the situation.
  • the acoustic impedance of bone is given by the square root of [bone elastic modulus X bone density].
  • bone elastic modulus and “bone density” increases (decreases).
  • the other also increases (decreases). Therefore, As the bone density increases (decreases), the bone elasticity also increases (decreases), so that the acoustic impedance significantly increases (decreases) in response to this synergistic effect. Therefore, the acoustic impedance of bone is a very good indicator in determining bone density. For example, the operator knows that bone osteoporosis has worsened if the acoustic impedance of the subject's bone is significantly lower than the average for that age group.
  • a plane wave problem reduction process for reducing the reflected wave from the bone to a plane wave problem is performed, so that a bone having poor flatness can also be a measurement site, and the orientation of the ultrasonic transducer is also problematic. Does not.
  • the acoustic impedance of the bone can be measured without depending on the flatness or shape of the bone surface, it is very easy to use and the measurement reliability is improved.
  • the acoustic impedance of both the cortical bone and the interface bone can be obtained, so that the reliability is significantly improved.
  • diagnostic information is significantly added.
  • the second embodiment differs from the first embodiment in that the method of the plane wave problem reduction processing for reducing the reflected wave from the bone as the measurement site to the plane wave problem is different from that of the first embodiment described above.
  • the configuration is substantially the same.
  • This output wavefront is
  • F- 1 represents the inverse Fourier transform
  • ⁇ ( ⁇ ) -1 is the inverse of the matrix ⁇ ( ⁇ ) whose elements are green functions that include the distance from any bone element to any cell as a function.
  • Equation (29) the echo A e (Equation (28)) received by each cell 1 12,..., 1 ⁇ is Fourier transformed to obtain Equation (29), and further, Equation (30) is obtained.
  • Equation (30) corresponds to equation (20) in the first embodiment).
  • the inverse Fourier transform of equation (30) is used to determine the time waveform of the reflected wave information ⁇ (t). In this way, ⁇ the reflected wave information (reflection coefficient) of the cortical bone M b with respect to the tissue Ma and the reflected wave information ⁇ 2 of the cancellous bone M b 2 with respect to the cortical bone M b are obtained (FIG. 7).
  • e N represents the received waveform in each cell 1 12,..., 1 N.
  • FIG. 8 is a block diagram showing an electrical configuration of an osteoporosis diagnostic device according to a third embodiment of the present invention.
  • cell 1 9 have 1 9 2, ..., to each one of the 1 9 ", dedicated pulse generator 7 7 2, ⁇ ⁇ ', 7. 4, amplifier 1 1 ,, 1 1:, - ..., 1 1 4, the waveform shaper 1 2 1 2..., 1 2 64 and AZD converter 1 s 3 1 3 2, ..., 1 3 64 in that the provided.
  • Bok Ransudeyu one Well ray 3 a is approximately 1 in size mm X 1 mm square cell 1 9 1 9, ..., a 1 9 64, in 4 mm pitch, eight to ⁇ , eight laterally, total 6
  • the frequency range from 0.54 to 0.54 to: L.62 MHz (center frequency 1 MHz) from the k-th cell 19 k is arranged.
  • the configuration of the fourth embodiment is significantly different from the configurations of the above-described first to third embodiments in that: ⁇ Tissue Ma—Interface reflectance of bone Mb without assuming measurement of bone shape That Ia can be measured precisely.
  • the hardware configuration of the device is substantially the same as that of FIG. 8 (second embodiment).
  • the interface reflectance ⁇ a of ⁇ tissue M a bone M b is treated as an eigenvalue problem of a real symmetric matrix of N ⁇ N (Equation (31)).
  • the soft tissue M a is treated as an eigenvalue problem of the real symmetric matrix (Equation (3 1)) of the interface reflectance ⁇ a force ⁇ N XN of the bone M b.
  • the observation surface ⁇ is placed on the closed surface surrounding the reflector ⁇ . Is provided. This observation plane ⁇ . And summer to be able transmit any wave ⁇ in towards disposed countless transducer cell Atsute, the reflector ⁇ to.
  • the observation plane ⁇ the observation plane ⁇ .
  • the vertical reflectance ⁇ of the reflector ⁇ ⁇ is assumed to be constant (real number) regardless of the frequency ⁇ , and the reflector ⁇ and the observation surface ⁇ . Assuming that there is no attenuation of the wave in the medium ⁇ between Equation (32) holds.
  • Equation (35) is obtained from Equations (33) and (34).
  • Equation (36) is obtained from Equations (33) and (34).
  • a relational expression as shown in equation (36) holds between the scattered wave and the incident wave.
  • ⁇ ( ⁇ , ⁇ , ⁇ ') is the field created on X by the wave originating from the source on ⁇ ' being scattered on the surface of the reflector ⁇ . It is called evening.
  • Equation (37) is derived.
  • ⁇ sc ( ⁇ , i) , Means the input (received) signal when the unit output signal coming out of all N meshes (cells) is scattered by the reflector and returns to the i-th mesh (cell). I do.
  • equation (40) When equation (40) is written in matrix form, it is expressed by equation (41), equation (42), and equation (43).
  • equation (4 6) -S ⁇ 1 (3 ⁇ 4 ⁇ ( ⁇ )) (4 5)
  • Equation (46) is the vertical reflectance of the reflector ⁇ ; I is a real symmetric matrix of 2 N x 2 ⁇ ⁇ indicates that it is always a real eigenvalue problem. Therefore,
  • the eigenvector is, which corresponds to ⁇ ( ⁇ ) (
  • the eigenvalues ⁇ in Eq. (46) are ⁇ positive eigenvalues ⁇ 0 , ⁇ ; ,..., And N negative eigenvalues; I 0 ,- ⁇ ,,... I do.
  • the largest eigenvalue (absolute value) Corresponds to the largest reflectance.
  • the eigenvalue (absolute value) is obtained as being proportional to the reflectivity of the object due to the frequency characteristics of the cell. Therefore, in this example, the scattering parameter S ( ⁇ ) is measured for an object whose reflectance ⁇ b is known, and the largest eigenvalue (absolute value) ⁇ is obtained. Was calculated to obtain a proportionality constant.
  • bone Mb whose flatness is not good, but whose radius of curvature is sufficiently large compared to the wavelength of the ultrasonic pulse A i is selected as the measurement site.
  • Suitable measurement sites include, for example, the lumbar spine, humerus, tibia, calcaneus or femoral neck.
  • the CPU waits until the measurement start switch is pressed after initializing the components of the device.
  • the operator covers the measurement site of the subject, for example, a bone Mb such as a lumbar vertebra, a humerus, a tibia, a calcaneus, or a femoral neck.
  • the ultrasonic gel 18 is applied, and the ultrasonic transducer array 3 is applied to the skin surface X via the ultrasonic gel 18, and the measurement start switch is turned on.
  • the CPU executes various processing according to the processing procedure shown in FIG. First, in step SQ10, the CPU measures the reception waveform S (t) under the control of the transmission / reception control subprogram. Then, an 8 ⁇ 8 (8; number of cells) real symmetric matrix [S (t)] is created.
  • the ultrasonic pulse A i is transmitted from the cell No. 2
  • the echo A e is received by all the cells and input to the respective amplifiers, waveform shapers and AZD converters. , Is taken into the CPU.
  • the CPU gates the received waveform S (t), which is an 8x8 real symmetric matrix, to the waveform Snn (t) that is considered to be a received echo from the bone Mb. Multiplied by Fourier transform.
  • a scattering matrix [S nn ( ⁇ )], which is an 8 ⁇ 8 complex symmetric matrix, is created.
  • SQ 40 processes the scattering matrix created in SQ 30 [S n. ⁇ ( ⁇ )], to obtain a real symmetric matrix type NX New shown in Equation (3 1).
  • step SQ50 the largest eigenvalue (absolute value) is calculated from equation (34), and the calculated eigenvalue is multiplied by a proportional constant to obtain the reflectance of bone Mb.
  • step SQ60 the CPU proceeds to step SQ60, and obtains the acoustic impedance Zb of the bone Mb under the control of the acoustic impedance calculation subprogram of the bone Mb.
  • the ultrasonic transducer constituting the transformer user is not limited to the thickness vibration type, but may be a flexural vibration type.
  • the center frequency used is not limited.
  • the number of cells is not limited to 64 or 256, but can be reduced as needed.
  • the ultrasonic transducer is not limited to the two-dimensional structure, but may be a one-dimensional structure in which transducers are arranged in a line.
  • the acoustic impedance of the soft tissue M a is close to the acoustic impedance of water, when applying the equations (12) to (15)), instead of the acoustic impedance of the soft tissue M a, The acoustic impedance (known) of the above may be used.
  • the cells 1 ⁇ 1 2 ,..., 1 N may be divided into a plurality of blocks, and AZD converters 13 and 13 may be prepared for each block. .
  • N ⁇ N (N is the number of cells) pulses are generated.
  • N (N + 1) Z times may be generated according to the reciprocity theorem.
  • the present invention is not limited to the case where one largest eigenvalue is used, and a plurality of eigenvalues counted from the largest absolute value may be used.
  • An ultrasonic reflection type osteoporosis diagnostic apparatus and method of the present invention Suitable for installation in health facilities and health and welfare facilities, but the equipment is small and light, easy to operate, and free from radiation exposure. It is very preferable to use.

Description

明糸田書
骨粗鬆症診断装置及び方法 技術分野
この発明は、 超音波パルスを被験者の所定の骨に向けて放射し、 骨か らのエコーを検知して、 骨粗鬆症を診断する超音波反射式の骨粗鬆症装 置及び骨粗鬆症診断方法に関する。 背景技術
近年、 高齢化社会の到来に伴って、 骨粗鬆症 (osteoporosis) と呼ば れる骨の疾患が問題となっている。 これは、 骨からカルシウムが抜け出 してスカスカになり、 少しのショックで折れ易くなる病気で、 高齢者を いわゆる寝たきりにさせる原因の一つにもなつている。 骨粗鬆症の物理 的診断は、 主として、 X線を使用する D X Aや Q C T等の診断装置によ り、 骨の密度を精密に測定することによって行われるが、 X線による物 理的診断では、 装置が大がかりになる上、 被曝の虞がある。
そこで、 無被爆下で取り扱える簡易な装置として、 超音波を利用する 診断装置が普及してきている。 超音波を利用する診断装置では、 超音波 が骨組織中を伝搬するときの音速や減衰を計測して、 骨密度や骨の弾性 率 (弾性的強度) を推定し、 低い推定値が得られれば、 それは、 骨から カルシウムが抜け出したためであると考えることができるので、 骨粗鬆 症と診断する。
例えば、 特開平 2— 1 0 4 3 3 7号公報 (米国特許出願第 1 9 3 2 9 5号) に記載の診断装置では、 測定部位である被験者の骨を挟んで 2つ PC
2
の超音波トランスデューサを向かい合わせ、 一方の超音波トラ ンスデュ 一ザから被験者の骨組織に向けて超音波パルスを発射し、 骨組織を透過 してきた超音波パルスを他方の超音波卜ランスデューサで受信すること により、 骨組織中での音速を測定し、 骨組織内での音速が遅い程、 骨粗 鬆症が進行していると診断する。 これは、 同診断装置の処理アルゴリズ ムが、 骨組織中では音速は骨密度に比例する、 という経験則に基づいて 成立しているからである。
しかしながら、 骨密度と音速とを結び付ける理論的根拠は不確かで、 厳密に言うと、 骨組織中での音速は、 骨密度に比例するのではなく、
[骨の弾性率 Z骨密度] の平方根で与えられる。 しかも、 骨の弾性率と 骨密度とは、 骨密度が増加すれば骨の弾性率も上昇するという互いに相 殺する形で音速に寄与するために、 骨組織中での音速は骨密度の増加に 敏感には応答できず、 骨組織中での音速と骨密度との相関係数は、 けつ して高くはない。 また、 骨密度と超音波の減衰とを結び付ける理論的根 拠も不確かである。
したがって、 骨組織中での音速や超音波の'减衰についての計測結果か ら、 骨密度や骨の弾性率を推定するという従来の超音波透過式の診断装 置に信頼性の高い診断を求めることには無理があつた。
このような不都合を解消する手段として、 この出願人の出願に係る特 願平 6 - 3 1 0 4 4 5号公報、 特願平 7 - 1 4 0 7 3 0号公報及び特願 平 7— 1 4 0 7 3 4号公報等に記載されているように、 単一の超音波ト ランスデューサを用いて、 表面が平らな骨組織に向けて超音波パルスを 繰り返し放射し、 骨組織から戻ってくるエコーを受信し、 受信したェコ 一のうち (垂直反射のエコーであるとみなすことのできる) 最大エコー を抽出し、 抽出した最大エコーに基づいて、 反射係数や音響イ ンビーダ ンス等を算出し、 これらの算出値に基づいて骨粗鬆症を診断する超音波 反射式の診断装置が提案されている。
しかしながら、 上記公報記載の超音波反射式診断装置においては、 超 音波トランスデューサを被験者の皮膚に当てた伏態で、 表面が平らな骨 組織に向けて十分平面波とみなせる超音波パルスを放射し、 垂直反射の エコーを受信するようにしているものの、 このためには、 超音波トラン スデューザの向きをあれこれ変えて、 最大エコーを探し当てる、 という 操作者の作業協力も要求されるので、 操作が煩わしいという、 問題があ つた
この発明は、 上述の事情に鑑みてなされたもので、 無被爆下の簡単な 操作で、 高い信頼性を得ることのできる骨粗鬆症診断装置及び骨粗鬆症 診断方法を提供することを目的としている。 発明の開示
この発明の骨粗鬆症診断装置 (及び方法) は、 超音波パルスを被験者 の骨に向けて繰り返し発射し、 その都度、 該骨から反射して戻ってく る エコーを受波し、 得られたエコーデータに基づいて骨粗鬆症を診断する。
したがって、 この発明の第 1の観点によれば、 N個 (Nは 2以上の自 然数) の超音波変換要素の 2次元状又は 1次元伏配列からなる超音波卜 ランスデューサァレイと、 上記各超音波変換要素に接続される超音波送 受信手段と、 上記各超音波変換要素からの受信信号をデジタル変換する AZD変換器と、 N個ある上記超音波変換要素のうち、 第 j番目の超音 波変換要素からの超音波パルス発射による骨からのエコーを第 i 番目の 超音波変換要素によって受信して、 受信エコー波形 ( t ) を計測す るエコー波形計測手段と、 この計測を必要な組み合わせについて行い、 N X Nの散乱行列 [S S j ( t )〕 を求める散乱行列作成手段と、 求められ た上記散乱行列 [ S i^ t )] を時間でフーリエ変換するフーリエ変換手 段と、 フーリエ変換された NXNの散乱行列 [S u iw)] に基づいて、 被験者の骨の反射波情報を算出する反射波情報算出手段とを備えた骨粗 鬆症診断装置が提供される。
上記散乱行列作成手段の好ましい態様としては、 計測の際、 第〖番目 の超音波変換要素と第 j番目の超音波変換要素との必要な組み合わせは、 N (N+ 1 ) 2通り〜 N XN通りの範囲内である。
また、 上記フーリエ変換手段では、 処理アルゴリズムに従って、 骨か らの受信エコーと思われる波形にゲー卜をかけてフ一リェ変換するのが 好ましい。 また、 この発明の第 2の観点によれば、 N個 (Nは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元状配列からなる超音波卜ランス デューサアレイと、 上記各超音波変換要素に接続される超音波送受信手 段と、 上記各超音波変換要素からの受信信号をデジタル変換する A Z D 変換器と、 N個ある上記超音波変換要素のうち、 第 j番目の超音波変換 要素からの超音波パルス発射による骨からのエコーを第 i番目の超音波 変換要素によって受信して、 受信エコー波形 ( t ) を計測するェコ —波形計測手段と、 この計測を必要な組み合わせについて行い、 N XN の散乱行列 [Sij (t )] を求める散乱行列作成手段と、 求められた上記 散乱行列 [S ij (t )] を時間でフーリエ変換するフーリエ変換手段と、 フーリエ変換された N XNの散乱行列 [Si w)] に基づいて、 被験者 の骨の反射波情報を算出する反射波情報算出手段とを備え
該反射波情報算出手段は、 処理アルゴリズムに従って、 式 (7) の方 程式を成立させる値 λのうち、 絶対値の大きい方から数えて、 単数又は 複数の値 λを求め、 求められた値; Iに基づいて、 被験者の骨の反射波情 報を算出することに特徴を有する骨粗鬆症診断装置が提供される。 ∑5ϋ(ω)Ψ】·(ω) = λΨ*(ω) (7) また、 この発明の第 3の観点によれば、 Ν個 (Νは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元伏配列からなる超音波卜ランス デューサアレイと、 上記各超音波変換要素に接続される超音波送受信手 段と、 上記各超音波変換要素からの受信信号をデジタル変換する A / D 変換器と、 N個ある上記超音波変換要素のうち、 第 j番目の超音波変換 要素からの超音波パルス発射による骨からのエコーを第 i番目の超音波 変換要素によって受信して、 受信エコー波形 ( t ) を計測するェコ —波形計測手段と、 この計測を必要な組み合わせについて行い、 N X N の散乱行列 [S u ( t )] を求める散乱行列作成手段と、 求められた上記 散乱行列 [S ij ( t )] を時間でフーリエ変換するフーリエ変換手段と、 フーリエ変換された N X Nの散乱行列 [ S i w)] に基づいて、 被験者 の骨の反射波情報を算出する反射波情報算出手段とを備え
該反射波情報算出手段は、 処理アルゴリズムに従って、 式 (8 ) を成 立させる固有値; Iのうち、 絶対値の大きい方から数えて、 単数又は複数 の固有値 λを求め、 求められた固有値; Iに基づいて、 被験者の骨の反射 波情報を算出する骨粗鬆症診断装置が提供される。 なお、 この場合の好 ましい態様としては、 固有値 λに所定の比例定数を乗じて、 骨の反射率 を求めるようにするのが好ましい。
Re(S(w)) 一 Im(S(w)) Κβ(Ψίη(ω))
一 Im(S(o )一 Re(S(ω)) Ιηι(Ψΐη(ω))
Re (Ψ^ω))
= λ
ΙΐΉ(ψιη(ω)) (8)
Figure imgf000008_0001
スは NX Nの実 行列 の固有値である,
ImS(oi) — ReS(w)
また、 この発明の第 4の観点によれば、 N個 (Nは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元状配列からなる超音波トランス デューサアレイと、 上記各超音波変換要素に接続される超音波送受信手 段と、 上記各超音波変換要素からの受信信号をデジタル変換する AZD 変換器と、 N個ある上記超音波変換要素のうち、 第 j番目の超音波変換 要素からの超音波パルス発射による骨からのエコーを第 i番目の超音波 変換要素によって受信して、 受信エコー波形 ( t ) を計測するェコ —波形計測手段と、 この計測を必要な組み合わせについて行い、 NXN の散乱行列 [S i^ t )] を求める散乱行列作成手段と、 求められた上記 散乱行列 [S i t )] を時間でフーリエ変換するフーリエ変換手段と、 フーリエ変換された N XNの散乱行列 [S
Figure imgf000008_0002
に基づいて、 被験者 の骨の反射波情報を算出する反射波情報算出手段とを備え
該反射波情報算出手段は、 処理アルゴリズムに従って、 上記受信ェコ 一波形 ( t ) に基づいて、 測定対象内の N個 (上記超音波変換要素 と同数個) の骨要素の座標を求め、 かつ、 それぞれの受信エコーの伝搬 遅延を考慮して、 所定の形状からの反射波を平面波問題に帰着させる平 面波問題帰着処理を行い、 平面波問題に帰着されたときの上記骨の反射 波情報を算出することに特徴を有する骨粗鬆症診断装置が提供される。 上記反射波情報算出手段の好ましい態様としては、 算出される上記骨 の反射波情報には、 上記被験者の軟組織に対する皮質骨の骨反射波情報 と、 該皮質骨に対する海綿骨の骨反射波情報とが含まれる。
また、 上記骨反射波情報に基づいて、 上記骨の音響インビ一ダンス、 又は皮質骨の音響インビーダンスと海綿と骨の音響ィンビーダンスを算 出するのが好ましい。
また、 この発明の第 5の観点によれば、 超音波変換要素が 2次元状又 は 1次元状に複数配列されてなる超音波トランスデューサァレイを被験 者の所定の骨を覆う皮膚表面に当てた状態で、 上記超音波変換要素の一 つずつから順次超音波パルスを上記骨の所定の領域に向けて所定の回数 発射させ、 上記超音波パルスの発射の度に発生する上記骨からのエコー を上記各超音波変換要素によつて受信し、 所定の受信信号をアナ口ザ/ デジタル変換器によってデジタルのエコー信号に変換した後、 所定の解 析処理を行うことにより骨粗鬆症を診断する骨粗鬆症診断装置であって、 上記複数の超音波変換要素から測定部位たる上記骨の所定の領域に対し て、 式 (9 ) で表される超音波の波形を出力する機能を有して骨粗鬆症 診断装置が提供される。
Figure imgf000009_0002
Figure imgf000009_0001
で、 a a a Nは、 第 1番目、 第 2番目…、 第 N番目の超 W 7/3
8
音波変換要素からの放射波であり、
F は、 逆フーリエ変換を表し、
Τ (ω ) - 1は、 任意の骨要素から任意の超音波変換要素までの距離を関 数として含むグリ一ン関数を要素とする行列 Τ ( ω )の逆行列である。
また、 この発明の第 1〜第 5の観点の好ましい態様は、 この骨粗鬆症 診断装置は、 電気パルスを所定の周期で繰り返し発生するパルス発生手 段と、 任意の 1の上記超音波変換要素を選択して、 上記パルス発生手段 と 1対 1で接続させ Ζ接続先を切り替えるための出力切替手段と、 任意 の 1の上記超音波変換要素を選択して、 上記アナログノデジタル変換器 と 1対 1で接続させ Ζ接続先を切り替えるための入力切替手段と、 上記 出力切替手段を制御して、 上記パルス発生手段において生成される上記 電気パルスを上記各超音波変換要素に順次供給すると共に、 上記入力切 替手段を制御して、 上記各超音波変換要素から出力される上記受信信号 を上記ァナ口グノデジタル変換器に順次導く制御手段とを備えた骨粗鬆 症診断装置が提供される。 また、 この発明の第 1〜第 5の観点の別の好ましい態様としては、 こ の骨粗鬆症診断装置は、 上記制御手段は、 上記出力切替手段を制御して、 各超音波変換要素に電気パルスを少なく とも Ν個ずつ振り分けて行く と 共に、 同一の上記超音波変換要素から順次発射される Ν個の超音波パル スに対応して発生する上記骨からの Ν個のエコーについて、 上記入力切 替手段を制御して、 互いに異なる上記超音波変換要素から上記各エコー の受信信号を順次抽出して上記アナ口グ Ζデジ夕ル変換器に導く ように する。 また、 この発明の第 1〜第 5の観点のさらに別の好ましい態様として は、 Bブロックに分けられ、 各ブロックに A個 (B , Aは 2以上の自然 数) ずつ、 全体として A X B個の超音波変換要素を持つ超音波卜ランス デューサアレイと、 電気パルスを所定の周期で繰り返し発生するパルス 発生手段と、 各ブロックに対応して設けられた B個の上記アナログ Zデ ジタル変換器と、 任意の 1の上記超音波変換要素を選択して、 上記パル ス発生手段と 1対 1で接続させ 接続先を切り替えるための出力切替手 段と、 各ブロックにおいて、 任意の 1の上記超音波変換要素を選択して、 対応する上記アナ口グ デジタル変換器と 1対 1で接続させノ接続先を 切り替えるための入力切替手段と、 上記出力切替手段を制御して、 上記 各超音波変換要素に電気パルスを少なく とも A個ずつ振り分けて行く と 共に、 同一の上記超音波変換要素から順次発射される A個の超音波パル スに対応して発生する骨からの A個のエコーについて、 上記入力切替手 段を制御して、 各ブロックにおいて、 互いに異なる上記超音波変換要素 から上記各ェコ―の受信信号を順次抽出して対応する上記ァナ口グ デ ジタル変換器に導く制御手段とを備えた骨粗鬆症診断装置が提供される。 また、 この発明の第 1〜第 5の観点のさらに別の好ましい態様は、 こ の骨粗鬆症診断装置は、 上記各超音波変換要素に 1対 1で接続される複 数の上記アナ口グ Zデジタル変換器と、 電気パルスを所定の周期で繰り 返し発生するパルス発生手段と、 該パルス発生手段に 1対 1で接続され る上記超音波変換要素を任意に選択し又は切り替えるための出力切替手 段と、 該出力切替手段を制御して、 上記パルス発生手段において生成さ れる電気パルスを上記各超音波変換要素に順次供給する制御手段とを備 えた骨粗鬆症診断装置が提供される。 また、 この発明の第 1〜第 5の観点のさらに別の好ましい態様は、 こ の骨粗鬆症診断装置は、 上記各超音波変換要素に 1対 1で接続される複 数の上記アナログ デジタル変換器と、 上記各超音波変換要素に 1対 1 で接続される複数のパルス発生手段と、 上記各パルス発生手段を順次制 御して、 電気パルスを各超音波変換要素に順次供給する制御手段とを備 えた骨粗鬆症診断装置が提供される。 また、 この発明の第 6の観点によれば、 N個 (Nは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元状配列からなる超音波トランス デューサァレイと、 上記各超音波変換要素に接続される超音波送受信手 段と、 上記各超音波変換要素からの受信信号をデジタル変換する Aノ D 変換器とを用い、 N個ある上記超音波変換要素のうち、 第 j番目の超音 波変換要素からの超音波パルス発射による骨からの受信エコーを第 i番 目の超音波変換要素によって受信して、 受信エコー波形 S i 3 ( t ) を計 測し、 この計測を必要な組み合わせについて行い、 N X Nの散乱行列 [S ^ C t )] を求め、 求められた上記散乱行列 [S i t )] を時間でフ 一リエ変換し、 フーリエ変換された NXNの散乱行列 [S ij (w)] に基 づいて、 被験者の骨の反射波情報を算出する骨粗鬆症診断方法が提供さ れる。 また、 この発明の第 7の観点によれば、 N個 (Nは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元伏配列からなる超音波卜ランス デューサアレイと、 上記各) 音波変換要素に接続される超音波送受信手 段と、 上記各超音波変換要素からの受信信号をデジタル変換する A Z D 変換器とを用い、 N個ある上記超音波変換要素のうち、 第 j番目の超音 波変換要素からの超音波パルス発射による骨からの受信エコーを第 i番 ^ ^ 目の超音波変換要素によって受信して、 受信エコー波形 SS j ( t ) を計 測し、 この計測を必要な組み合わせについて行い、 N X Nの散乱行列 [S i」( t〕] を求め、 求められた上記散乱行列 [S i t )] を時間でフ —リエ変換し、 フーリエ変換された NXNの散乱行列 [3υ (ω)] に基 づいて、 被験者の骨の反射波情報を算出し、
この際、 式 (1 0) を成立させる値 λのうち、 絶対値の大きい方から 数えて、 単数又は複数の値 λを求め、 求められた値; Iに基づいて、 被験 者の骨の反射波情報を算出する骨粗鬆症診断方法が提供される。 ∑5ϋ(ω)Ψί(ω) = ΛΨί*(ω) … (10) また、 この発明の第 8の観点によれば、 N個 (Nは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元状配列からなる超音波トランス デューサアレイと、 上記各超音波変換要素に接続される超音波送受信手 段と、 上記各超音波変換要素からの受信信号をデジタル変換する AZD 変換器とを用い、 N個ある上記超音波変換要素のうち、 第 j番目の超音 波変換要素からの超音波パルス発射による骨からの受信エコーを第 i番 目の超音波変換要素によって受信して、 受信エコー波形 S ; j ( t ) を計 測し、 この計測を必要な組み合わせについて行い、 N XNの散乱行列 [S ^ ( t )] を求め、 求められた上記散乱行列 [S u ( t )] を時間でフ 一リエ変換し、 フーリエ変換された NXNの散乱行列 [Siパ ω)] に基 づいて、 被験者の骨の反射波情報を算出し、
この際、 式 (1 1) を成立させる固有値; Iのうち、 絶対値の大きい方 から数えて、 単数又は複数の固有値 λを求め、 求められた固有値; Iに基 づいて、 被験者の骨の反射波情報を算出する骨粗鬆症診断方法が提供さ れる。 Re(S(oj)) - Im(S(o)) Ι¾(Ψϊη(ω))
Im(S(o)))— Re(S(co)) ΙπιίΨίηίω))
=
Figure imgf000014_0001
λは NxNの実·行列 の固有値である (
ImS(co) -ReS( )
また、 この発明の第 9の観点によれば、 N個 (Nは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元伏配列からなる超音波トランス デューサアレイと、 上記各超音波変換要素に接続される超音波送受信手 段と、 上記各超音波変換要素からの受信信号をデジタル変換する A/D 変換器とを用い、 N個ある上記超音波変換要素のうち、 第 j番目の超音 波変換要素からの超音波パルス発射による骨からの受信エコーを第 i番 目の超音波変換要素によって受信して、 受信エコー波形 Si」 ( t ) を計 測し、 計測した受信エコー波形 ( t ) に基づいて、 測定対象内の N 個 (上記超音波変換要素と同数個) の骨要素の座標を求め、 かつ、 それ ぞれの: 信エコーの伝搬遅延を考慮して、 所定の形状からの反射波を平 面波問題に帰着させる平面波問題帰着処理を行い、 平面波問題に帰着さ れたときの上記骨の反射波情報を算出する骨粗鬆症診断方法が提供され る。 また、 この発明の第 1 0の観点によれば、 超音波変換要素が 2次元状 又は 1次元状に複数配列されてなる超音波トランスデューサアレイを被 験者の所定の骨を覆う皮腐表面に当てた状態で、 上記超音波変換要素の 一つずつから順次超音波パルスを上記骨の所定の領域に向けて所定の回 数発射させ、 上記超音波パルスの発射の度に発生する上記骨からのェコ ―を上記各超音波変換要素によつて受信し、 所定の受信信号をアナ口グ /デジタル変換器によってデジタルのエコー信号に変換した後、 所定の 解析処理を行うことにより骨粗鬆症を診断する骨粗鬆症診断方法であつ て、 上記複数の超音波変換要素から測定部位たる上記骨の所定の領域に 対して、 式 ( 1 2) で表される超音波の波形を出力する骨粗鬆症診断方 法が提供される。
Figure imgf000015_0002
Figure imgf000015_0001
ここで、 a lt a2, …, aNは、 第 1番目、 第 2番目…、 第 N番目の超 音波変換要素からの放射波であり、
F は、 逆フーリエ変換を表し、
Τ(ω)-1は、 任意の骨要素から任意の超音波変換要素までの距離を関 数として含むグリーン関数を要素とする行列 Τ(ω)の逆行列である。 図面の簡単な説明
図 1は、 この発明の第 1実施例である反射超音波式の骨粗鬆症診断装 置の電気的構成を示すブロック図、 図 2は、 同診断装置の外観図、 図 3 は、 同診断装置の使用状態を示す模式図、 図 4は、 同診断装置で使用さ れる超音波トランスデューサァレイの主要部の構成を示す斜視図、 図 5 は、 同診断装置の動作処理手順を示すフローチャー ト、 図 6は、 同実施 例の動作を説明するための図、 図 7は、 同実施例の動作を説明するため の図、 図 8は、 この発明の第 3実施例である骨粗鬆症診断装置の電気的 構成を示すブロック図、 図 9は、 この発明の第 4実施例の成立過程を説 明するための図、 図 1 0は、 同実施例の動作処理手順を示すフローチヤ ート、 図 1 1は、 同第 1実施例の別の変形例である反射超音波式の骨粗 鬆症診断装置の電気的構成を示すプロック図である。 発明を実施するための最良の形態
以下、 図面を参照して、 この発明の実施の形態について説明する。 説 明は、 実施例を用いて具体的に行う。
◊第 1実施例
図 1は、 この発明の第 1実施例である反射超音波式の骨粗鬆症診断装 置の電気的構成を示すブロック図、 図 2は、 同診断装置の外観図、 図 3 は、 同診断装置の使用伏態を示す模式図、 図 4は、 同診断装置で使用さ れる超音波トランスデューサァレイの主要部の構成を示す斜視図、 また、 図 5は、 同診断装置の動作処理手順を示すフローチヤ一 トである。
まず、 装置の全体構成から概説すると、 この例の骨粗鬆症診断装置は、 図 1乃至図 4に示すように、 超音波変換要素 (エレメ ン ト) である トラ ンスデューサセル (以下、 単にセルともいう) 1 1 2 , ···, 1 Mを支持 円板 2上に縦に 1 6個、 横に 1 6個、 合計 2 5 6個配列してなる超音波 トランスデューサアレイ 3を装備したもので、 操作者が、 この超音波ト ランスデューサアレイ 3を被験者の測定部位である骨 M b (皮質骨 M b I 海綿骨 M b 2、 図 3参照) に向けて、 動作を開始させると、 各セル 1 1( 12, ···, 1Mから順次、 周波数範囲 0. 54〜 ; L. 62MH z (中心 周波数 1 MH z) の超音波パルス A iが後述する回数発射し、 発射の度 に骨 Mbから戻ってく るエコー A e力《、 各セル 1 12, ···, : Lwによつ て受信され、 装置本体 4が、 ケーブル 5を介して、 各セル I,, 12, ···, 1 Nから順次受信信号を取り込んで、 後述するデジ夕ル解析処理を行つて 骨粗鬆症を診断する構成となっている。
次に、 装置各部について説明する。 各セル l , 12, ···, は、 チタ ンジルコン酸鉛 (P Z T) 等の略 3 mm角の厚み振動型圧電素子の両面 に電極層を有して構成され、 超音波パルス A iの送受信面となる一方の 電極面には、 送信残響等の影響を除去をするために、 必要に応じて、 ポ リェチレンバルク等の共通の超音波遅延スぺ一サ 6が固着される。 なお、 超音波遅延スベーサ 6もセル 1 1 , ···, 1 Nの共通の支持体として機 食 ¾し得る。
装置本体 4は、 パルス発生器 7と、 出力切替器 8と、 整合回路 9 9 2 , ···, 9Nと、 入力切替器 10と、 増幅器 1 1と、 波形整形器 12と、 AZD変換器 13と、 ROM14と、 RAM15と、 C PU (中央処理 装置) 16と、 ディスプレイ 1 7とから構成されている。
パルス発生器 7は、 電気パルスを所定の周期 (例えば、 1 msec) で繰 り返し生成し、 出力切替器 8、 整合回路 9ぃ 92> …, 9N及びケーブル 5を経由して超音波トランスデューサアレイ 3に送信する。 出力切替器 8は、 各セル 1ぃ 12, ··', 1Nとパルス発生器 7との間に介揷された多 数のアナログスィツチ又はリレーから構成され、 C P U 16から供給さ れる指示信号に従い、 任意の 1のセル 1 12. ·■·. 1Mに電気パルスを 選択 切替式に供給する。 整合回路 9 , 92, ···, 9Mは、 セル I , 1 2 , ···, 1 Nと 1対 1に接続され、 超音波トラ ンスデューサアレイ 3と装 置本体 4との間で、 エネルギの損失なしに信号の授受がなされるように、 ィンビ一ダンスの整合を行う。
また、 入力切替器 10は、 各セル 1 12. ···, 1Nと増幅器 1 1との 間に介挿きれた多数のァチログスィツチ又はリレーから構成され、 C P U 16から供給される指示指示に従い、 任意の 1のセル 1 12, ■■; 1Nから出力される受信信号を選択 切替式に順次取り込む。 増幅器 1 1 は、 整合回路 9 ^ 92, ···, 9Nを経由して入力される受信信号を所定の 増幅度で増幅した後、 波形整形器 12に入力する。 波形整形器 1 2は、 L C構成のバンドパスフィル夕からなり、 増幅器 1 1によって增幅され た受信信号を線形に波形整形した後、 AZD変換器 13に入力する。
AZD変換器 1 3は、 図示せぬサンプルホールド回路、 高速サンプリ ングメモリ等を備え、 C PU16のサンブリ ング開始要求に従って、 入 力される波形整形器 12の出力信号 (波形整形されたアナログの受信信 号) を所定の周波数 (例えば 1 2MH z) でサンプリングしてデジタル のエコー信号に変換し、 これにより、 デジタル化されたエコー信号を一 旦高速サンブリングメモリに格納した後、 C P U 16に送出する。
ROM14は、 CPU 16に骨粗鬆症の診断を実行させるための処理 プログラムを格納する。 この処理プログラムは、 送受信時制御サブプロ グラムと、 エコー波形検出処理サブプログラムと、 骨要素の座標算出サ ブプログラムと、 平面波問題帰着処理サブプログラムと、 反射波情報算 出サブプログラムと、 骨 M bの音響ィンビーダンス算出サブプログラ厶 と、 画像表示制御サブプログラムとを有して構成されている。
RAMI 5は、 CPU 16の作業領域が設定されるヮ一キングエリア と、 各種データを一時記憶するデータエリアとを有し、 例えば、 エコー データ、 散乱行列の各要素、 骨要素の座標値等もデータエリア内に一時 記憶される。
C PU 16は、 R0M14に格納されている上述の処理プログラムを R AM 15を用いて実行することにより、 パルス発生器 7、 出力切替器 8、 入力切替器 10、 A/D変換器 13等の装置各部の制御、 256 X 256通りのエコー波形の検出処理 (散乱行列の作成) 、 散乱行列のフ —リエ変換、 骨要素の座標算出、 グリーン関数を要素とする行列の算出、 平面波問題帰着処理 (散乱行列逆フーリエ変換処理) 、 反射波情報の算 出、 骨 Mbの音響インビーダンスの算出 (骨粗鬆症の診断) 、 骨形状の 3次元画像処理等を行う。
また、 ディ スプレイ 17には、 C RTディスプレイ又は液晶ディスブ レイ等が用いられ、 算出された骨 M bの音響ィンビ一ダンスの表示や骨 M b形状の 3次元画像表示等が行われる。 次に、 図 5を参照して、 この例の動作 (処理の流れ) について説明す る o
まず、 平面性は良くないが、 超音波パルス A i 波長と較べるなら曲 率半径が充分に大きい骨 M bを測定部位として igぶ。 好適な測定部位と しては、 例えば、 腰椎、 上腕骨、 脛骨、 踵骨又は人腿骨頸部を挙げるこ とができる。
測定部位が決定して、 装置に電源が投入されると、 C PU 16は、 装 置各邬のプリセッ ト、 カウンクゃ^種レジス夕、 各種フラグの初期設定 を行った後、 測定開始スィッチが押下されるのを 1寺つ。 ここで、 操作者 は、 図 3に示すように、 被験者の測定部位である骨 Mbを覆う钦組織] VI aの表面 (皮膚の表面 X) に、 超音波ゲル 18を塗り、 超音波ゲル 1 8 を介して超音波トランスデューサアレイ 3を皮膚の表面 Xに当て、 測定 開始スィッチをオンとする。 測定開始スィッチがオンとされると、 C P U 16は、 これより、 図 5に示す処理手順に従って各種処理を実行する。 まず、 ステップ SP 10において、 C PU 16:は、 送受信時制御サブ プログラム、 ェコ一波形検出処理サブブ口グラム及び骨要素の座標算出 サブプログラムの制御により、 骨 M bからのエコー波形 Sn :; ( t ) を計 測して、 骨 Mbの 3次元形状を求める処理を実行する。
すなわち、 C P U 16は、 超音波パルス A i送出とエコー A e受信と を各 256 X 256回交互に繰り返す制御を行う。 このとき、 超音波パ ルス A iを送出する際には、 出力切替器 8を制御して、 第 1番目のセル 1 から順に第 256番目のセル 1Nまで、 電気パルスを 256個ずつ振 り分けて行く。 すなわち、 まず、 1 ~256個目の超音波パルス A iを 第 1番目のセル 1 ,から発射し、 257 ~51 2個目の超音波パルス A i を第 2番目のセル 12から発射するという具合に、 (256 η— 255) 〜256 η個目の超音波パルス A iを第 n番目のセル 1 πから発射する。 一方、 エコー A eを受信する際には、 入力切替器 10を制御して、 1 回の受信毎に、 受信信号を抽出するセル 1 12 , ···, 1,,を順次切り替 えて行く。 つまり、 最初のエコー A eがあったときは、 第 1番目のセル 1 ,から出力される受信信号のみを AZD変換器 1 3に導き、 2回目のェ コー A eがあったときは、 第 2番目のセル 12から出力される受信信号の みを A/D変換器 13に導き、 n回目のエコー A eがあったときは、 第 n番目のセル 1 nから出力される受信信号のみを A ZD変換器 1 3に導く。 このようにして、 第 n番目のセル 1 πから超音波パルス A i を発射し、 こ のときの骨 M bからのエコー A eを第 n '番目のセル ln が受信するとき の時間 tの関数たるエコー波形 Sn. n ( t ) を計測すること力 \ 256 X 256通りの全ての組み合わせについて行われる。
そして、 計測された骨 M bからのエコー波形 Sn r, ( t ) に基づいて、 Cモ一 ド超音波エコー法に略類似する処理アルゴリズムにより、 骨 M b の 3次元形状を求める。 この結果、 セル 1い 12 , 1 の個数と同数 の 256箇所の骨要素 (図 6参照) からなる骨 Mb表面の形状が、 各骨 要素の 3次元座標の集合という形で求められる。 それゆえ、 C P U 1 6 は、 画像表示制御サブプログラムの制御により、 ディスプレイ 1 7の画 面に、 骨 Mbの形状を 3次元画像 (図 3参照) として表示できる。 次に、 C P U 1 6は、 ステップ S P 20へ移って、 平面波問題帰着処 理サブプログラムの制御により、 ステップ S P 1 0において実測された 2 5 6 x 25 6個のエコー波形 Sn. n ( t ) の行列表示である 2 5 6 x 2 5 6の散乱行列 [Sn. n( t )] を、 時間 tでフ一リェ変換する (式 ( 1 3) 参照) 。 フーリェ変換
S (t) = [Sn'n(t)] S(w) ( 1 3 )
次に、 C P U 1 6は、 平面波問題帰着処理サブプログラムの制御によ り、 ステップ S P 20 ~ S P 40の処理を行 ό。
C P U 1 6は、 ステップ S P 30において、 第 m番目の骨要素から第 n番目のセル 1 nまでの距離 r nm (図 6参照) を、 ステップ S P 1 0にお いて算出した骨要素の座標から計算し、 式 ( 1 4 ) で与えられるグリ一 ン関数を要素とする 2 56 X 2 56の行列 Τ (ω)を求めた後、 ステップ S P 40において、 式 (1 5) で与えられる 25 6 x 2 56の骨 M bの 散乱行列 σ (ω) を計算する。 なお、 σ (ω) は、 皮質骨 M b iと海綿骨 M b 2との界面における骨 M bの散乱行列であり、 これに対して、 [ S„ ■ n( t )] は、 钦組織 M a中を戻るエコー A eの伝搬遅延をも考慮に入れ た骨 Mbの散乱行列であり、 上記したように、 実測されるものである。 ΐ ω , Λ expt- jkrnm] f . Λ
2 π Fn Pm COS θη COS 6m - ηιη ここで、 Pnは、 第 η番目のセル 1 Πの面積であり、 Pmは、 第 m番目の 骨要素の面積である。 び(ω) = Τ_1(ω) SOw)
Figure imgf000022_0001
… (1 5)
(ω);骨の散乱行列 ここで、 Τ (ω)- 1は、 グリーン関数 (式 ( 1 4 ) ) を要素とする行列 Τ (ω)の逆行列である。
骨の散乱行列ひ (ω) を与える式 (1 5) は、 次のように導かれる。 任意の組み合わせのセル 1 l t 12, ·■·, 1 Nから発射された超音波パル ス A i は、 皮質骨 M b ,の位置では、 式 (1 6 ) のように表される。
ュ—サ
出力
Figure imgf000022_0002
Figure imgf000022_0003
ここで、 a l t a 2, ···, aNは、 各セル 1 1 2, …, l rJからの放射 波であり、 b . b ,. -■·, bNは、 皮質骨 M b ,の各骨要素 (m= l. 2, ···, N ; N= 2 5 6) への入射波を表している。
次に、 皮質骨 M biに入射した超音波パルス A i力 骨 M b内部 (特 {: 皮質骨 M b ,と海綿骨 M b 2との界面) で散乱されて、 再び钦組織へ放出 されたときの各骨要素 (m= 1, 2, ···, N ; N = 2 5 6) の表面での 散乱波の振幅 cい c 2, ···, c Nは、 式 (1 7 ) で与えられる。 W
21 骨からの散乱波
Figure imgf000023_0002
Figure imgf000023_0001
の散乱行列 骨 Mbからの散乱波が、 セル 1い 12, 1Nに戻ってきたときのェ コー A eの波形 (受信波形) は、 式 (1 8) で与えられる。 トランデュ—サアレイの
受波波形
Figure imgf000023_0003
.こで、 d J , d 2, ·, dNは、 各セル Nでの受信振 幅を表している。
したがって、 式 (16) 、 式 (17) 、 式 (1 8) を掛け合わせると- 式 (19) が得られ、 式 (19) より、 骨の散乱行列び (ω) を与える 式 (15) が得られる。
S(o>) = Τ(ω) σ(ω) Τ(ω) (19) 次に、 CPU 16は、 ステップ S P 50では、 平面波問題帰着処理サ ブプログラム及び反射波情報算出サブプログラムの制御により、 式 (2 0) を求めて、 これを逆フーリエ変換して、 反射波情報ひ(t)の時間波形 を求める。 このようにして、 図 7に示すような、 钦組織 Maに対する皮 質骨 Mb!の反射波情報 (反射係数) と、 皮質骨 Mbiに対する海綿骨 M b 2の反射波情報び 2とが求められる。
σ(ω) = [11… 1〗 σ(ω)
Figure imgf000024_0001
一∑ σ(ω)πι*πι (20)
ι\Ι mm'
式 (20) は、 次のように導かれる。
皮質骨 Mb への入射超音波 A iの波面が、 皮質骨 Mb ,の表面に平行 なときの骨 Mbからの散乱波の振幅は、 式 (16) , 式 (1 7) より導 かれる式 (21) で与えられる。
Figure imgf000024_0004
Figure imgf000024_0002
すなわち、 式 (21) において、 皮質骨 M の厚さが一様で、 皮質骨 Mb,の曲率半径が入射超音波の波長に較べて充分に大きければ、 式 (2 22) が成り立つので、 その平均をひ (ω)とすると、 式 (20) が成立 する。
Figure imgf000024_0003
ここで、 。 (ω)は、 正方行列 (この例では、 256 X 256の正方行 列) の各要素び(ω)„' mの和であり、 要素ひ (ω)„. mの物理的意味は、 軟 組織 Maから第 m番目の骨要素にだけ超音波パルス A iが入射したとき に、 この入射音波と、 骨 Mbの内部で超音波が散乱きれて、 再び第 m' 番目の要素から敉組織 M aに放射される音波との比である。
次に、 び (ω )の物理的意味、 すなわち、 正方行列の各要素ひ (w )m. m の和をとることの物理的意味は、 次の通りである。 式 (2 0 ) において、 右辺の縦行列の要素が全て" 1 "であるので、 各 骨要素に入射する超音波 A iは、 振幅が、 位相も含めて全て同じという ことになるが、 これは骨 M bの表面に平行な波面が入射したことと音響 学的に等価である。 また、 皮質骨 M b 3の厚さが一様であれば、 骨 M b表 面に平行な波面の波は皮質骨 M b iと海綿骨 M b 2の界面で同じように反 射され、 皮質骨 M b ,の表面に平行な波面を持って皮質骨 M 内を伝搬 し、 平行な波面で钦組織 M aへ放射される。 これは、 各要素で振幅と位 相が揃った波であるが、 ここでは、 分母に骨要素の総数 N ( = 2 5 6 ) があることで、 平均化されていることを表す。 このように考えると、 反 射面と波面とが平行なため、 この問題は、 簡単な平面波の問題に帰着さ れることになる。 この後、 C P U 1 6は、 ステップ S P 6 0に進み、 骨 M bの音響ィ ン ビーダンス算出サブプログラムの制御により、 式 (2 3 ) 及び式 (2 4 ) に基づいて、 皮質骨 M b ,の音饗ィンビーダンス Z b ¾と海綿骨 M b 2の音 響ィンビ一ダンス Z b 2とを求める。
Figure imgf000025_0001
Za; »] /30635
24
ここで、 Z aは、 钦組織 M aの音響イ ンピーダンスを表す。
Figure imgf000026_0001
ひ 2
1一ひ i 式 (2 3) 及び式 (24) は、 式 (2 5) 及び式 (26) から与えら れる。
„ o 一 = —一 Za十 Zbi― (25)
Za + Zbi
n _ -Zbl+Zb2 「、 ~ 2 Γ ~~ 2 ( R,
°2一 Zb1+Zb2 -び11 … (26)
なお、 図 7に示すように、 钦組織 Ma—皮質骨 M 界面からの反射波 受信時刻と、 皮質骨 Mb ,—海綿骨 M b2界面からの反射波受信時刻との 差てと、 皮質骨 M b ,の音響ィンビーダンス Z b との積から皮質骨 M b の面積密度 (て · Z を求めることもできる。 この例の構成では、 算出された骨 Mbの音響ィンビーダンスに基づい て、 骨粗鬆症の進行状況を判断する。
骨の音響インビーダンスは、 [骨弾性率 X骨密度] の平方根で与えら れ、 パラメ一夕である 「骨弾性率」 と 「骨密度」 とは、 一方が増加 (減 少) すると、 他方も増加 (減少) すると、 いう関係にある。 それゆえ、 骨密度が増加 (減少) すると、 骨弾性も增加 (減少) するので、 音響ィ ンビーダンスは、 この相乗効果により、 敏感に応答して顕著に増加 (减 少) する。 したがって、 骨の音響インビ一ダンスは、 骨密度を判断する 上で、 大変良い指標となる。 例えば、 操作者は、 被験者の骨の音響イン ビ一ダンスが、 その年齢層の平均値から著しく小さい場合には、 骨の骨 粗鬆症が悪化していることが判る。 また、 この例の構成では、 骨からの反射波を平面波問題に帰着させる 平面波問題帰着処理が行われるので、 平面性の悪い骨も測定部位となり 得、 また、 超音波トランスデューザの向きも問題とならない。 つまり、 骨表面の平坦性や形伏によらずに、 骨の音響ィンビーダンスを測定でき るので、 大変使い勝手が良く、 測定信頼性も向上する。 また、 皮質骨及 び界面骨の両方の音響ィンビーダンスを求めることができるので、 信頼 性が著しく向上する。 また、 ディスプレイ 1 7には、 骨の 3次元画像が 表示されるので、 診断情報が著しく增加する。
◊第 2実施例
次に、 この発明の第 2実施例について説明する。
この第 2実施例では、 測定部位たる骨からの反射波を平面波問題に帰 着させる平面波問題帰着処理の手法が、 上述の第 1実施例のそれと異な る点を除けば、 第 1実施例と略同様の構成である。
すなわち、 この第 2実施例では、 複数のセル 1 1 2 , ,' ·, 1 Nから測 定部位たる骨 M bに対して、 式 (2 7 ) で表される超音波の波形を略同 時に出力する構成となっている。 この出力波面は、
訂正された用紙 (規則 91) 一 ai (t)一 一 aN ω一
Figure imgf000028_0001
し こ ゝ a】, ? L 2 aNは、 各セル 1 Nからの放射 波であり、
F - 1は、 逆フーリエ変換を表し、
Τ(ω)-1は、 任意の骨要素から任意のセルまでの距離を関数と して含 むグリ一ン関数を要素とする行列 Τ (ω)の逆行列である。
このとき、 各セル 1 12, ···, 1Νにて受信されるエコー A e (式 ( 28) ) をフ一リェ変換して式 (29) を求め、 さらに、 式 ( 30 ) を求める (この式 (30) は、 第 1実施例における式 ( 20) に対応し ている) 。 次に、 式 ( 30) を逆フ一リェ変換して、 反射波情報 σ (t)の 時間波形を求める。 このようにして、 钦組織 Maに対する皮質骨 M b の 反射波情報 (反射係数) ひ ,と、 皮質骨 M b に対する海綿骨 M b 2の反射 波情報 σ 2とが求められる (図 7) 。
Figure imgf000028_0002
c で、 e! , e 2. eNは、 各セル 1 12 , ···, 1Nでの受信波 形を表している。
(29)
Figure imgf000028_0003
Figure imgf000029_0001
このように、 この第 2実施例によっても、 第 1実施例において上述し たと略同様の効果を得ることができる。
◊第 3実施例
図 8は、 この発明の第 3実施例である骨粗鬆症診断装置の電気的構成 を示すブロック図である。
この第 3実施例の構成が、 上述の第 1実施例のそれと大きく異なると ころは、 同図に示すように、 装置本体 4 aにおいて、 出力切替器 8と入 力切替器 1 0とを廃し、 セル 1 9い 1 92, ···, 1 9"の 1つ 1つに、 専用のパルス発生器 7 72, ·■', 7。4、 増幅器 1 1 ,, 1 1 :, ···, 1 1 4、 波形整形器 1 2 1 2 ···, 1 264及び AZD変換器 1 3い 1 32 , …, 1 364を設けた点である。 この例の超音波卜ランスデュ一サァ レイ 3 aは、 大きさが略 1 mm X 1 mmの正方形のセル 1 9 1 9 , …, 1 964を、 4 mmピッチで、 縱に 8個、 横に 8個、 合計 6 4個を配 列してなる。 この第 2実施例の構成では、 第 k番目のセル 1 9 kから周波数範囲 0. 5 4〜: L. 6 2 MH z (中心周波数 1 M H z ) の超音波パルス A iが送 出されると、 全てのセル 1 9,, 1 92 , ···, 1 964によって、 そのェコ — A eが受信され、 それぞれの増幅器 1 1い 1 1 2 , ···, 1 1 "、 波形 整形器 1 2 1 22, ···, 1 2ό4及び A/D変換器 1 3い 1 3」 , …, 1 3 "に入力され、 C P U 1 6 aに取り込まれる。 それゆえ、 超音波パルス A iの送出は、 第 1実施例では、 N X N (K はセル数) 回必要であるのに対し、 この例では、 N回で済む。 したがつ て、 この例の構成によれば、 第 1実施例の構成よりも、 N倍処理速度が 向上する。
◊第 4実施例
この第 4実施例の構成が、 上述の第 1〜第 3実施例の構成と大きく異 なるところは、 骨形状の測定を前提とせずに、 钦組織 M a—骨 M bの界 面反射率; I aを精密に測定できるようにした点である。 なお、 装置のハ — ドウエア構成では、 図 8 (第 2実施例) と略同一構成である。
この例では、 钦組織 M a一骨 M bの界面反射率 λ aは、 N X Nの実対 称行列 (式 ( 3 1 ) ) の固有値問題として取り扱われる。
Re(S( )) - Im(S( o))
(31)
Im(S(w)) - Re(S(o))
以下、 軟組織 M a—骨 M bの界面反射率 λ a力^ N XNの実対称行列 (式 (3 1 ) ) の固有値問題として取り扱われることを説明する。
いま、 図 9に示すように、 反射体 Πを囲む閉曲面上に観測面 Γ。を設け る。 この観測面 Γ。には無数のトランスデューサセルが配置されてあつて、 反射体 Πへ向かって任意の波動 ø i nを送波できるようになつている。 い ま、 t く 0で、 観測面 Γ。から波動 0 ,が送波され、 t =— 0で、 反射体 Πの表面 Γ\に沿った波面を形成したとする。 反射体 Πの垂直反射率 λは、 周波数 ωによらず一定 (実数) であるとし、 さらに、 反射体 Πと観測面 Γ。との間の媒質 Ω内では波動の減衰がないものとすると、 媒質 Ω内では、 式 (32) に示すような関係式が成立する。 sc(x,t) = A0in(x,-t) (t>0) - (32) ここで、 ø inは反射体 Πに向かう入射波の波動関数、 0s は反射体 Π から戻ってく る散乱波の波動関数、 Xは位置座標である。 式 (32) の両辺に、 e X p ( - j ω t ) を掛けて時間積分すると、 左辺 ョ —: sc(X,t)e- dt = c (x) . (3 3) 右辺ョ —: λ0ι„(Χ.- t)e— jwtdt
= /_e0in (X,t)e dt = λ ^ωίη (X) ·■· (34)
式 (33) , 式 (3 4) から式 (35) を得る。
Figure imgf000031_0001
また、 一般的に散乱波と入射波との間には、 式 ( 36) に示すような 関係式も成立する。
^(ω, )| = Jr。ひ(ω,χ'χ') ¾η(ω,χ')άχ' - (36)
Χ€Γο ここで、 σ (ω , χ , χ' ) は、 χ' 上の波元から出た波動が、 反射体 Πの表面 で散乱されて、 X上に作る場であり、 散乱パラメ一夕と称さ れる。
式 (35) と式 (36) とから、 式 (37) が導かれる。
Jro σ(ω,χ,χ')¾η(ω,χ')άχ' = λ Φίη(ω,χ) '·· (37) 次に、 式 ( 3 7) を離散化処理するため、 観測面 Γ。を小さなメ ッ シュ Δ j = 0, 1, ···, N— 1に分ける。 ここで、 メ ッシュ Δ j= 0, 1, ···, N— 1は、 微小セルのそれぞれの広がり (面積) に相当する。 メ ッシ 内では、 波動関数 0 i n, 0 ^の変化は無視できるので、 式 ( 3 7 ) は- 式 ( 3 8 ) の形で表される。
Figure imgf000032_0001
式 (3 8 ) の両辺に Δ "を掛けて変形すると、 式 (3 9 ) が得られ る
∑ (ω, i, xj) ·Γ Ϊ ¾" (¾η ( ω. xj) ¾)
= λ ( 0in (ω. xi )· ΔΤ) ... (39) ここで、 ( ) の中を W i n (ω ,j) 、
σ (ω , x i, x j) 厶丄レ 厶』' 1 - S (ω ,i, j) とすると、 式 ( 4 0 ) が得られる。 なお、 S (w .i.j) は、 離散化された散乱パラメータであ り、 j番面のメ ッシュ (セル) から出た出力 (送波) 信号が、 反射体 Π の表面 Γ\で散乱されて、 i番目のメ ッシュ (セル) に戻ってきたときの 入力 (受信) 信号を意味する。 ψ^ (ω, i ) = ∑ S(cu,i,j )Ψίη(ω,】') = λΨ^ (ω, i ) ··· (4 0) ここで、 ¥sc (ω , i) は、 N個の全てのメ ッシュ (セル) から出て行 く単位出力信号が、 反射体で散乱されて、 i番面のメ ッシュ (セル) に 戻ってきたときの入力 (受信) 信号を意味する。
式 (4 0) を行列形式で書く と、 式 (4 1 ) 、 式 (4 2) 、 式 (4 3 ) で表される。
S(co,o,o) S(w,o,i) S(OJ,0, N-l)
Figure imgf000032_0002
(4 1)
Ξί,ω, -ι, o) S(cO. N-l ,N-l)
Figure imgf000033_0001
Figure imgf000033_0002
この散乱パラメ一夕 S (ω)は、 Ν ΧΝの複素対称行列で、 则定により 得られるものである。 式 (4 3 ) を実部と虚部とに分けて書く と、 式 ( 4 4 ) 、 式 (4 5 ) が得られる。
Re(S(cj))Re(¾n(co))— Im(S(co))Im( n(oj))
Figure imgf000033_0003
Im (S (ω))Κβ (Ψίη(ω)) + Re (S(OJ)) Im (Ψίη (ω) )
= -ス ΐΗ1(¾η(ω)) (4 5) 式 (4 5 ) の両辺に一 1を掛けて、 式 (4 4 ) 、 式 ( 4 5 ) を行列形 式で書く と、 式 (4 6 ) が得られる。
Re(S(o>)) - Im(S(o)) Re(¾rin( )) 一 Im(S(o))) ― Re(S(oj)) Ιπ (Ψίη(ω))
Re (Ψί„(ω))
(4 6)
ここで、 散乱パラメータ S (ω) は Ν X Νの対称行列であるから、 式 ( 4 6 ) の形は、 反射体 Πの垂直反射率; Iが、 2 N x 2 Νの実対称行列 λは、 常に実数で の固有値問題となることを示している。 したがって、
ある。
が式(34)の; (に対する固有べクトルであるとき.
Figure imgf000034_0001
Re(S( ))一 Im(S(cj)) ΙπιζΨίηίω))
-Im(S(w)) - Re(S(oj)) -! Ψίη(ω)) に左からかけると、
Re(S(w))一 Im(S(w)) Ιπι(Ψίη(ω))
•Im(S(c ))— Re(S(oj)) - β(Ψίηίω))
Re(S(o>))Im(Vin( )) + Im(S ) ) Re (¾π(ω)) •Im(S(c ))Im(¾n(w)) + Re (S(OJ) ) Re ( u) )
Figure imgf000034_0002
となる (
(49)
Figure imgf000034_0003
ReS(co) — ImS(cu)
したがって、 一λは の固有値であり
Figure imgf000035_0001
固有べクトルは であり、 これは ίΨίη(ω)に対応する (
Figure imgf000035_0002
それゆえ、 式 (46) の固有値 λは、 Ν個の正の固有値 Λ 0, λ ; , ···, と、 N個の負の固有値一; I 0, - λ ,, …, ス が存在する。 最も 大きな固有値 (絶対値) ス。は、 最も大きな反射率に相当する。 しかしな がら、 実際には、 セルの周波数特性等のため、 固有値 (絶対値) は、 その物体の反射率に比例したものとして得られる。 そこで、 この例では、 反射率 λ bが既知の物体について、 散乱パラメ一夕 S (ω)を計測し、 最 も大きな固有値 (絶対値) λ。を算出して、 比例定数を得た。 次に、 図 1 0を参照して、 この例の動作 (処理の流れ) について説明 する。
まず、 平面性は良くないが、 超音波パルス A i の波長と較べるなら曲 率半径が充分に大きい骨 M bを測定部位として選ぶ。 好適な測定部位と しては、 例えば、 腰椎、 上腕骨、 脛骨、 踵骨又は大腿骨頸部を挙げるこ とができる。
装置に電源が投入されると、 C P Uは、 装置各部の初期設定を行った 後、 測定開始スィッチが押下されるのを待つ。 ここで、 操作者は、 図 3 に示すように、 被験者の測定部位、 例えば、 腰椎、 上腕骨、 脛骨、 踵骨 又は大腿骨頸部等の骨 M bを覆う钦組織 M aの表面 (皮膚の表面 X) に、 超音波ゲル 1 8を塗り、 超音波ゲル 1 8を介して超音波トランスデュー サアレイ 3を皮膚の表面 Xに当て、 測定開始スィッチをオンとする。 測 定開始スィッチがオンとされると、 C P Uは、 これより、 図 1 0に示す 処理手順に従って、 各種処理を実行する。 まず、 ステップ S Q 1 0において、 C P Uは、 送受信時制御サブプロ グラムの制御により、 受信波形 S ( t ) を計測する。 そして、 8 X 8 ( 8 ; セル個数) の実対称行列 [S ( t ) ] を作成する。
このとき、 C P Uは、 超音波パルス A i送出とエコー A e受信とを各 8 X 8 = 64回交互に繰り返す制御を行う。 この第 4実施例では、 第 番目のセルから超音波パルス A iが送出されると、 全てのセルによって、 そのエコー A eが受信され、 それぞれの増幅器、 波形整形器及び AZD 変換器に入力され、 C P Uに取り込まれる。 次に、 C P Uは、 ステップ S Q 20, S Q 30において、 8 x 8の実 対称行列である受信波形 S ( t ) について、 骨 M bからの受信エコーと 思われる波形 Sn n ( t ) にゲートをかけてフーリエ変換する。 そして、 8 X 8の複素対称行列である散乱行列 [Sn n (ω) ] を作成する。 ステ ッブ S Q 40では、 S Q 30において作成された散乱行列 [Sn. η (ω) ] を処理して、 式 (3 1 ) に示す NX Νの実対称行列式を得る。 ステップ S Q 50で、 式 (34) から一番大きな固有値 (絶対値) を算出し、 算出された固有値; に比例定数をかけて骨 M bの反射率を求める。
この後、 C P Uは、 ステップ S Q 60に進み、 骨 M bの音響インビー ダンス算出サブプログラムの制御により、 骨 M bの音響ィンピ一ダンス Z bを求める。 このように、 この例の構成によれば、 第 1〜第 3実施例では必要とな る骨形状の測定が不要となるので、 信号処理が著しく迅速となる。
以上、 この発明の実施例を図面により詳述してきたが、 具体的な構成 はこの実施例に限られるものではなく、 この発明の要旨を逸脱しない範 囲の設計の変更等があってもこの発明に含まれる。 例えば、 トランスデ ユーザを構成する超音波振動子は、 厚み振動型に限らず、 撓み振動型で も良い。
同様に、 使用中心周波数も限定されない。 セルの個数も 6 4個や 25 6個に限定されるものではなく、 必要に応じて、 增減できる。 また、 超 音波卜ランスデューサは、 2次元構造のものに限らず、 トランスデュー サが線状に並んだ 1次元構造のものでも良い。
また、 軟組織 M aの音響インピーダンスは、 水の音響インビーダンス に近いので、 式 ( 1 2) 〜式 ( 1 5) ) の適用に当たっては、 軟組織 M aの音響インビ一ダンスに代えて、 水の音響インビーダンス (既知) を 用いても良い。
なお、 図 1 1に示すように、 セル 1ぃ 12, ···, 1Nを複数のブロック に分け、 各プロック毎に A ZD変換器 1 3, 1 3を用意するようにして も良い。
また、 上述の第 1実施例では、 N XN回 (Nはセル個数) パルスを発 生させたが、 相反定理より、 最低限、 N (N + 1 ) Z2回発生させれば 良い。
なお、 1番大きな 1つの固有値を用いる場合に限らず、 絶対値の大き い方から数えて、 複数の固有値を用いても良い。 産業上の利用可能性
この発明の超音波反射式の骨粗鬆症診断装置及び方法は、 病院ゃスポ —ッ施設や健康福祉施設等に設置するのに適しているが、 装置が小型軽 量である上、 操作が簡易で、 しかも、 放射線被爆の虞もないので、 高齢 者家庭の健康管理機器として用いても大変好ましい。

Claims

請求の範囲
1. N個 (Nは 2以上の自然数) の超音波変換要素の 2次元状又は 1 次元状配列からなる超音波トランスデューサアレイと、
前記各超音波変換要素に接続される超音波送受信手段と、
前記各超音波変換要素からの受信信号をデジタル変換する A ZD変換
¾δと、
Ν個ある前記超音波変換要素のうち、 第 j番目の超音波変換要素から の超音波パルス発射による骨からのエコーを第 i番目の超音波変換要素 によって受信して、 受信エコー波形 S S j ( t ) を計測するエコー波形 1 測手段と、
この計測を必要な組み合わせについて行い、 N X Nの散乱行列 [S i ( t )] を求める散乱行列作成手段と、
求められた前記散乱行列 [S S j( t )] を時間でフーリエ変換するフー リェ変換手段と、
フーリエ変換された N X Nの散乱行列 [S i w)] に基づいて、 被験 者の骨の反射波情報を算出する反射波情報算出手段と
を備えてなることを特徴とする骨粗鬆症診断装置。
2. 前記散乱行列作成手段において、 必要な組み合わせは、 N (N + 1 ) ノ 2通り〜 N X N通りの範囲内であることを特徴とする請求の範囲 第 1項記載の骨粗鬆症診断装置。
3. 前記フーリエ変換手段は、 処理アルゴリズムに従って、 骨からの 受信エコーと思われる波形にゲートをかけてフーリェ変換することを特 徴とする請求の範囲第 1項記載の骨粗鬆症診断装置。
4. 前記反射波情報算出手段は、 処理アルゴリズムに従って、 式 ( 1 ) の方程式を成立させる値 λのうち、 絶対値の大きい方から数えて、 単数 又は複数の値 λを求め、 求められた値 λに基づいて、 被験者の骨の反射 波情報を算出することを特徴とする請求の範囲第 1, 第 2又は第 3項記 載の骨粗鬆症診断装置。 "(ω)Ψ】(ω) = λΨ*( ) - (1 )
Sii(oj) ;前記散乱行列 [ Sij(c )]の要素 ί(ω) :第 j番目の超音波変換要素から骨に向かって発信する信号 ΨΓ(ω); Ψ ω)の複衆共役 )(ω)は規格化されている。
5. 前記反射波情報算出手段は、 処理アルゴリズムに従って、 式 (2 ) を成立させる固有値 λのうち、 絶対値の大きい方から数えて、 単数又は 複数の固有値 λを求め、 求められた固有値 λに基づいて、 被験者の骨の 反射波情報を算出することを特徴とする請求の範囲第 1, 第 2又は第 3 項記載の骨粗鬆症診断装置。
Re(S(oj)) - Im(S(oj)) Κβ(Ψίη(ω))
一 Im(S(i ))一 Re(S(w)) ΙΐΏ(Ψίη(ω))
(2)
Figure imgf000040_0001
式(1)を行列形式で書くと、
S(w) Ψΐη(ω) = λΨι*(ω) となる <
Figure imgf000041_0001
Figure imgf000041_0002
S (ω)は複素対称行列で、 これを実部と虚部とに分けて行列形式
で書いたものが式(2)である,
したがって、 式(2)の; Iは NX Nの実対称行列
Figure imgf000041_0003
の固有値である。
6. 前記反射波情報算出手段は、 処理アルゴリズムに従って、 得られ た前記値 λ又は固有値 λに所定の比例定数を乗じて、 骨の反射率を求め ることを特徴とする請求の範囲第 3 , 4又は第 5項記載の骨粗鬆症診断 装置。
7. 前記反射波情報算出手段は、 処理アルゴリズムに従って、 前記受 信エコー波形 S S j ( t ) に基づいて、 測定対象内の N個 (前記超音波変 換要素と同数個) の骨要素の座標を求め、 かつ、 それぞれの受信エコー の伝搬遅延を考慮して、 所定の形状からの反射波を平面波問題に帰着さ せる平面波問題帰着処理を行い、 平面波問題に帰着されたときの前記骨 の反射波情報を算出することを特徴とする請求の範囲第 1項記載の骨粗 鬆症診断装置。
8 . 前記反射波情報算出手段によって算出される前記骨の反射波情報 には、 前記被験者の钦組織に対する皮質骨の骨反射波情報と、 該皮質骨 に対する海綿骨の骨反射波情報とが含まれることを特徴とする請求の範 囲第 7項記載の骨粗鬆症診断装置。
9. 前記反射波情報算出手段によって算出された前記骨反射波情報に 基づいて、 前記骨の音響インピーダンス、 又は皮質骨の音響インビーダ ンスと海綿と骨の音響ィンビ一ダンスを算出する音響ィンピ一ダンス算 出手段が設けられていることを特徴とする請求の範囲第 1乃至 8の何れ か 1に項記載の骨粗鬆症診断装置。
1 0. 電気パルスを所定の周期で繰り返し発生するパルス発生手段と、 任意の 1の前記超音波変換要素を選択して、 前記パルス発生手段と 1対 1で接続させノ接続先を切り替えるための出力切替手段と、
任意の 1の前記超音波変換要素を選択して、 前記アナ口グ Zデジ夕ル 変換器と 1対 1で接続させ Z接統先を切り替えるための入力切替手段と、 前記出力切替手段を制御して、 前記パルス発生手段において生成され る前記電気パルスを前記各超音波変換要素に順次供給すると共に、 前記入力切替手段を制御して、 前記各超音波変換要素から出力される 前記受信信号を前記アナログ Zデジタル変換器に順次導く制御手段とを 備えてなることを特徴とする請求の範囲第 1乃至 8の何れか 1に項記載 の骨粗鬆症診断装置。
1 1 . 超音波変換要素が 2次元状又は 1次元状に N個 (Nは 2以上の 自然数) 配列されてなる超音波トランスデューサアレイを備え、 かつ、 前記制御手段は、 前記出力切替手段を制御して、 前記各超音波変換要 素に電気パルスを少なく とも N個ずつ振り分けて行く と共に、
同一の前記超音波変換要素から順次発射される N個の超音波パルスに 対応して発生する前記骨からの N個のエコーについて、 前記入力切替手 段を制御して、 互いに異なる前記超音波変換要素から前記各エコーの受 信信号を順次抽出して前記アナログ デジタル変換器に導く ことを特徴 とする請求の範囲第 1 0項記載の骨粗鬆症診断装置。
1 2. Bブロックに分けられ、 各ブロックに A個 (B , Aは 2以上の 自然数) ずつ、 全体として A X B個の超音波変換要素を持つ超音波トラ ンスデューサァレイと、
電気パルスを所定の周期で繰り返し発生するパルス発生手段と、 各ブ 口ックに対応して設けられた B個の前記アナログ/デジタル変換器と、 任意の 1の前記超音波変換要素を選択して、 前記パルス発生手段と 1 対 1で接続させ/接続先を切り替えるための出力切替手段と、
各ブロックにおいて、 任意の 1の前記超音波変換要素を選択して、 対 応する前記ァナ口グ デジタル変換器と 1対 1で接続させ Z接続先を切 り替えるための入力切替手段と、
前記出力切替手段を制御して、 前記各超音波変換要素に電気パルスを 少なく とも A個ずつ振り分けて行く と共に、
同一の前記超音波変換要素から順次発射される A個の超音波パルスに 対応して発生する骨からの A個のエコーについて、 前記入力切替手段を 制御して、 各ブロックにおいて、 互いに異なる前記超音波変換要素から 前記各エコーの受信信号を順次抽出して対応する前記アナログ デジ夕 ル変換器に導く制御手段とを備えてなることを特徴とする請求の範囲第 1乃至 8の何れか 1に項記載の骨粗鬆症診断装置。
1 3. 前記各超音波変換要素に 1対 1で接続される複数の前記アナ口 グノデジタル変換器と、 電気パルスを所定の周期で繰り返し発生するパルス発生手段と、 該パルス発生手段に 1対 1で接続される前記超音波変換要素を任意に 選択し又は切り替えるための出力切替手段と、
該出力切替手段を制御して、 前記パルス発生手段において生成される 電気パルスを前記各超音波変換要素に順次供給する制御手段とを備えて なることを特徴とする請求の範囲第 1乃至 8の何れか 1に項記載の骨粗 鬆症診断装置。
1 4. 前記各超音波変換要素に 1対 1で接続される複数の前記アナ口 グ /デジタル変換器と、
前記各超音波変換要素に 1対 1で接続される複数のパルス発生手段と、 前記各パルス発生手段を順次制御して、 電気パルスを各超音波変換要 素に順次供給する制御手段とを備えてなることを特徴とする請求の範囲 第 1乃至 8の何れか 1に項記載の骨粗鬆症診断装置。
1 5. 超音波変換要素が 2次元状又は 1次元状に複数配列されてなる 超音波トランスデューサァレイを被験者の所定の骨を覆う皮膚表面に当 てた状態で、 前記超音波変換要素の一つずつから順次超音波パルスを前 記骨の所定の領域に向けて所定の回数発射させ、 前記超音波パルスの発 射の度に発生する前記骨からのエコーを前記各超音波変換要素によって 受信し、 所定の受信信号をアナ口グ デジタル変換器によってデジタル のエコー信号に変換した後、 所定の解析処理を行 όことにより骨粗鬆症 を診断する骨粗鬆症診断装置であつて、
前記複数の超音波変換要素から測定部位たる前記骨の所定の領域に対 して、 式 (3) で表される超音波の波形を出力する機能を有してなるこ とを特徴とする骨粗鬆症診断装置。
Figure imgf000045_0002
Figure imgf000045_0001
ここで、 a i, a 2, ···, aNは、 第 1番目、 第 2番目…、 第 N番目の超 音波変換要素からの放射波であり、
F-1は、 逆フ一リエ変換を表し、
Τ (ω)- 'は、 任意の骨要素から任意の超音波変換要素までの距離を関 数として含むグリーン関数を要素とする行列 Τ(ω)の逆行列である。
1 6. 測定部位となる前記骨は、 腰椎、 上腕骨、 脛骨、 踵骨又は大腿 骨頸部であることを特徴とする請求の範囲第 1乃至 1 5の何れか 1に項 記載の骨粗鬆症診断装置。
7 Ν個 (Νは 2以上の自然数) の超音波変換要素の 2次元状又は 1次元状配列からなる超音波卜ランスデューサァレイと、 前記各超音波 変換要素に接続される超音波送受信手段と、 前記各超音波変換要素から の受信信号をデジタル変換する A/D変換器とを用い、
N個ある前記超音波変換要素のうち、 第 j番目の超音波変換要素から の超音波パルス発射による骨からの受信エコーを第 i番目の超音波変換 要素によって受信して、 受信エコー波形 Si」 ( t ) を計測し、 この計測 を必要な組み合わせについて行い、 NXNの散乱行列 [S u i t )] を求 め、
求められた前記散乱行列 [S i t )] を時間でフーリエ変換し、 フーリエ変換された N X Nの散乱行列 [S i w)] に基づいて、 被験 者の骨の反射波情報を算出することを特徴とする骨粗鬆症診断方法。
1 8. 前記反射波情報の算出には、 式 (4) を成立させる値; Iのうち、 絶対値の大きい方から数えて、 単数又は複数の値 λを求め、 求められた 値; Iに基づいて、 被験者の骨の反射波情報を算出することを特徴とする 請求の範囲第 1 7項記載の骨粗鬆症診断方法。
∑8υ(ω)Ψ](ω) = λΨ*(ω) … (4)
Sii(c ) :前記散乱行列 [Sij(co)]の要素
Ψί(ω) ;第 j番目の超音波変換要紫から骨に向かって発信する信号 Ψί*(ω); Ψί(ω)の複素共役 Ψ)(ω)は規格化されている。
1 9. 前記反射波情報の算出には、 式 (5) を成立させる固有値; Iの うち、 絶対値の大きい方から数えて、 単数又は複数の固有値 λを求め、 求められた固有値 λに基づいて、 被験者の骨の反射波情報を算出するこ O 97/30635
45
とを特徴とする請求の範囲第 7項記載の骨粗鬆症診断方法 c
【数 5】
Re(S(w))一 Im(S(c )) Κβ(Ψίη(ω))
Im(S(oj))一 Re(S(oj)) Ιπι(Ψίη(ω))
Re (Ψίηίω))
= λ
(5) 式(4)を行列形式で害くと、
^ (ω) Ψη (ω) = λ Ψ* (ω) となる (
Figure imgf000047_0001
20. 前記受信エコー波形 ( t ) に基づいて、 測定対象内の N個 (前記超音波変換要素と同数個) の骨要素の座標を求め、 かつ、 それぞ れの受信エコーの伝搬遅延を考慮して、 所定の形状からの反射波を平面 波問題に帰着させる平面波問題帰着処理を行い、 平面波問題に帰着され たときの前記骨の反射波情報を算出することを特徴とする請求の範囲第 1 7項記載の骨粗鬆症診断方法。
2 1. 超音波変換要素が 2次元状又は 1次元状に複数配列されてなる 超音波トランスデューサァレイを被験者の所定の骨を覆う皮膚表面に当 てた状態で、 前記超音波変換要素の一つずつから順次超音波パルスを前 記骨の所定の領域に向けて所定の回数発射させ、
前記超音波パルスの発射の度に発生する前記骨からのエコーを前記各 超音波変換要素によって受信し、
所定の受信信号をァナログノデジタル変換器によってデジタルのェコ —信号に変換した後、 所定の解析処理を行うことにより骨粗鬆症を診断 する骨粗鬆症診断方法であって、
前記複数の超音波変換要素から測定部位たる前記骨の所定の領域に対 して、 式 (6 ) で表される超音波の波形を出力することとしたことを特 徴とする骨粗鬆症診断方法。
Figure imgf000048_0002
Figure imgf000048_0001
ここで、 a ,, a2( …, aNは、 第 1番目、 第 2番目…、 第 N番目の超 音波変換要素からの放射波であり、
F- ま、 逆フ一リエ変換を表し、
Τ (ω)-1は、 任意の骨要素から任意の超音波変換要素までの距離を関 数として含むグリーン関数を要素とする行列 Τ(ω)の逆行列である。
PCT/JP1997/000501 1996-02-21 1997-02-21 Procede et dispositif de diagnostic de l'osteoporose WO1997030635A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US08/930,998 US5902240A (en) 1996-02-21 1997-02-21 Method and apparatus for osteoporosis diagnosis
EP97904609A EP0821913A4 (en) 1996-02-21 1997-02-21 METHOD AND OSTEOPOROSIS DIAGNOSTIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3410096 1996-02-21
JP8/34100 1996-02-21

Publications (1)

Publication Number Publication Date
WO1997030635A1 true WO1997030635A1 (fr) 1997-08-28

Family

ID=12404864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000501 WO1997030635A1 (fr) 1996-02-21 1997-02-21 Procede et dispositif de diagnostic de l'osteoporose

Country Status (5)

Country Link
US (1) US5902240A (ja)
EP (1) EP0821913A4 (ja)
KR (1) KR19990007913A (ja)
CA (1) CA2218682A1 (ja)
WO (1) WO1997030635A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1751999A (en) * 1997-12-22 1999-07-12 Kare Christiansen A method and an apparatus for investigating material properties of bone using ultrasound
US6200266B1 (en) * 1998-03-31 2001-03-13 Case Western Reserve University Method and apparatus for ultrasound imaging using acoustic impedance reconstruction
EP1207786B1 (en) * 1999-08-09 2009-10-07 Sonavation, Inc. Piezoelectric film fingerprint scanner
KR100887275B1 (ko) * 2000-03-23 2009-03-06 크로스 매치 테크놀로지스, 인크. 압전 식별 디바이스 및 그 응용
US7067962B2 (en) 2000-03-23 2006-06-27 Cross Match Technologies, Inc. Multiplexer for a piezo ceramic identification device
US20030001459A1 (en) * 2000-03-23 2003-01-02 Cross Match Technologies, Inc. Secure wireless sales transaction using print information to verify a purchaser's identity
EP1451732A4 (en) * 2001-12-10 2007-08-08 Mentor Graphics Corp AUTOMATED ELECTRONIC DESIGN REALIZED IN PARALLEL: SHARED SIMULTANEOUS MODIFICATION
US7516435B2 (en) * 2001-12-10 2009-04-07 Mentor Graphics Corporation Reservation of design elements in a parallel printed circuit board design environment
US7590963B2 (en) * 2003-11-21 2009-09-15 Mentor Graphics Corporation Integrating multiple electronic design applications
US7305648B2 (en) * 2003-11-21 2007-12-04 Mentor Graphics Corporation Distributed autorouting of conductive paths in printed circuit boards
US20060101368A1 (en) * 2004-09-08 2006-05-11 Mentor Graphics Corporation Distributed electronic design automation environment
US7546571B2 (en) * 2004-09-08 2009-06-09 Mentor Graphics Corporation Distributed electronic design automation environment
JP4854212B2 (ja) * 2005-03-31 2012-01-18 日立アロカメディカル株式会社 超音波診断装置
US7738683B2 (en) * 2005-07-22 2010-06-15 Carestream Health, Inc. Abnormality detection in medical images
US8326926B2 (en) * 2005-09-13 2012-12-04 Mentor Graphics Corporation Distributed electronic design automation architecture
US7938778B2 (en) * 2007-12-26 2011-05-10 Aloka Co., Ltd. Ultrasound diagnosis apparatus
US7861791B2 (en) * 2008-05-12 2011-01-04 Halliburton Energy Services, Inc. High circulation rate packer and setting method for same
JP5280927B2 (ja) * 2009-04-14 2013-09-04 古野電気株式会社 音速測定装置及び音速測定方法
US20120010509A1 (en) * 2010-07-09 2012-01-12 Cyberlogic, Inc. Ultrasonic Vertebral Bone Assessment Apparatus and Method
CN102641155B (zh) * 2011-02-16 2014-11-26 中国康复研究中心 一种骨科手术中实时定位导航仪器
ITPI20110054A1 (it) * 2011-05-16 2012-11-17 Echolight S R L Apparato ad ultrasuoni per valutare lo stato della struttura ossea di un paziente
CN110769754B (zh) * 2017-06-21 2023-06-27 夏里特柏林大学医学院 用于测定皮质骨的系统、方法和计算机程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454944A (ja) * 1990-06-26 1992-02-21 Noritoshi Nakabachi 骨の超音波診断装置
JPH05220147A (ja) * 1992-02-14 1993-08-31 Shimadzu Corp 超音波透過検査装置
JPH06269447A (ja) * 1993-03-16 1994-09-27 Aloka Co Ltd 生体組織中の超音波伝搬特性に関する係数値の推定方法
JPH08613A (ja) * 1994-06-23 1996-01-09 Aloka Co Ltd 骨表位置検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930511A (en) * 1988-05-11 1990-06-05 Lunar Radiation, Inc. Ultrasonic densitometer device and method
US5305752A (en) * 1991-05-31 1994-04-26 Thermotrex Corporation Acoustic imaging device
US5749363A (en) * 1994-12-14 1998-05-12 Sekisui Kagaku Kogyo Kabushiki Kaisya Osteoporosis diagnosing apparatus and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0454944A (ja) * 1990-06-26 1992-02-21 Noritoshi Nakabachi 骨の超音波診断装置
JPH05220147A (ja) * 1992-02-14 1993-08-31 Shimadzu Corp 超音波透過検査装置
JPH06269447A (ja) * 1993-03-16 1994-09-27 Aloka Co Ltd 生体組織中の超音波伝搬特性に関する係数値の推定方法
JPH08613A (ja) * 1994-06-23 1996-01-09 Aloka Co Ltd 骨表位置検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0821913A4 *

Also Published As

Publication number Publication date
EP0821913A1 (en) 1998-02-04
EP0821913A4 (en) 1999-04-28
US5902240A (en) 1999-05-11
KR19990007913A (ko) 1999-01-25
CA2218682A1 (en) 1997-08-28

Similar Documents

Publication Publication Date Title
WO1997030635A1 (fr) Procede et dispositif de diagnostic de l&#39;osteoporose
JP5760080B2 (ja) せん断波を使用する撮像方法および装置
US6607489B2 (en) Focus correction for ultrasound imaging through mammography compression plate
US20090124901A1 (en) Imaging Method and Device Using Shear Waves
Tasinkevych et al. Modified synthetic transmit aperture algorithm for ultrasound imaging
JP2013503681A (ja) 対側アレイベースの経頭蓋超音波収差補正
JP2009531107A (ja) 超音波画像診断のための方法および装置
US20180296190A1 (en) Ultrasonic diagnostic device and ultrasonic signal processing method
Wear Autocorrelation and cepstral methods for measurement of tibial cortical thickness
US7727152B2 (en) Method and apparatus for scanning confocal acoustic diagnostic for bone quality
WO2007120890A2 (en) Phased array ultrasound with electronically controlled focal point for assessing bone quality via acoustic topology and wave transmit functions
KR101993743B1 (ko) 초음파 프로브 및 초음파 영상장치
Hata et al. Simulation study of axial ultrasonic wave propagation in heterogeneous bovine cortical bone
JP3730743B2 (ja) 骨粗鬆症診断装置
Saeki et al. FDTD simulation study of ultrasonic wave propagation in human radius model generated from 3D HR-pQCT images
Litniewski et al. Statistics of the envelope of ultrasonic backscatter from human trabecular bone
JPH1176230A (ja) 骨粗鬆症診断装置及び骨粗鬆症診断方法
Chatar et al. Analysis of existing designs for fpga-based ultrasound imaging systems
Matrone et al. Modeling and simulation of ultrasound fields generated by 2D phased array transducers for medical applications
JPH11313820A (ja) 骨粗鬆症診断装置及び骨粗鬆症診断方法
Mohammed Investigation of Fluid Loading Effects on CMUT Arrays for Cardiac Imaging
JP2000287969A (ja) 骨粗鬆症測定装置
JP2000316852A (ja) 骨粗鬆症診断装置及び骨粗鬆症診断方法
JP2000287968A (ja) 骨粗鬆症測定装置
Mahmud et al. A Low Cost and Ionizing Radiation-free Method based on Pulse-Echo Ultrasonic for the Diagnosis of Osteoporosis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2218682

Country of ref document: CA

Ref country code: CA

Ref document number: 2218682

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019970707436

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 08930998

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997904609

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997904609

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707436

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997904609

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019970707436

Country of ref document: KR