WO1997037448A2 - Apparatus and method for encoding and decoding supplementary data in analog signals - Google Patents

Apparatus and method for encoding and decoding supplementary data in analog signals Download PDF

Info

Publication number
WO1997037448A2
WO1997037448A2 PCT/US1997/004617 US9704617W WO9737448A2 WO 1997037448 A2 WO1997037448 A2 WO 1997037448A2 US 9704617 W US9704617 W US 9704617W WO 9737448 A2 WO9737448 A2 WO 9737448A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
peaks
symbols
predetermined
signal peaks
Prior art date
Application number
PCT/US1997/004617
Other languages
French (fr)
Other versions
WO1997037448A3 (en
Inventor
Jack Wolosewicz
Kanaan Jemili
Original Assignee
Aris Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aris Technologies, Inc. filed Critical Aris Technologies, Inc.
Publication of WO1997037448A2 publication Critical patent/WO1997037448A2/en
Publication of WO1997037448A3 publication Critical patent/WO1997037448A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/28Arrangements for simultaneous broadcast of plural pieces of information
    • H04H20/30Arrangements for simultaneous broadcast of plural pieces of information by a single channel
    • H04H20/31Arrangements for simultaneous broadcast of plural pieces of information by a single channel using in-band signals, e.g. subsonic or cue signal

Definitions

  • This invention relates to apparatus and methods for encoding and decoding information in analog signals, such as audio, video and data signals, either transmitted by radio wave transmission or wired transmission, or stored in a recording medium such as optical or magnetic disks, magnetic tape, or solid state memory.
  • An area of particular interest to certain embodiments of the present invention relates to the market for musical recordings.
  • a large number of people listen to musical recordings on radio or television. They often hear a recording which they like enough to purchase, but don't know the name of the song, the artist performing it, or the record, tape, or CD album of which it is part.
  • the number of recordings which people purchase is less than it otherwise would be if there was a simple way for people to identify which of the recordings that they hear on the radio or TV they wish to purchase.
  • Another area of interest to certain embodiments of the invention is copy control.
  • audio software products such as musical recordings.
  • One of the problems in this market is the ease of copying such products without paying those who produce them.
  • U.S. Patent No. 4,937,807 to Weitz et al. (1990) discloses a method and apparatus for encoding signals for producing sound transmissions with digital information to enable addressing the stored representation of such signals.
  • the apparatus in Weitz et al converts an analog signal for producing such sound transmissions to clocked digital signals comprising for each channel an audio data stream, a step-size stream and an emphasis stream.
  • the prior art fails to provide a method and an apparatus for encoding and decoding analog audio frequency signals for producing humanly perceived audio transmissions with signals that define digital information such that the audio frequency signals produce substantially identical humanly perceived audio transmission prior to and after encoding.
  • the prior art also fails to provide relatively simple apparatus and methods for encoding and decoding audio frequency signals for producing humanly perceived audio transmissions with signals defining digital information.
  • the prior art also fails to disclose a method and apparatus for limiting unauthorized copying of audio frequency signals for producing humanly perceived audio transmissions.
  • the present invention provides apparatus and methods for encoding, storing and decoding information on an analog source signal in a way which has minimal impact on the human perception of the source information when the signal is applied to an appropriate output device, such as a speaker or a display monitor.
  • the present invention further provides apparatus and methods for encoding, storing and decoding machine readable signals in an audio signal which control the ability of a device to copy the audio signal.
  • the present invention provides apparatus and methods for keeping track of the identity of audio recordings which are transmitted over radio or television broadcasts.
  • the present invention provides a method for encoding information symbols onto an analog host signal, comprising the steps of identifying signal peaks of the host signal within a predetermined time interval, which peaks have values within a preselected range, modifying the values of identified signal peaks to fall within a first predetermined band, defining a set of a plurality of symbols wherein each symbol corresponds to a defined number of signal peaks, and further modifying the values of identified signal peaks within the first predetermined band, according to the symbol desired to be encoded in the predetermined time interval, such that the number of signal peaks remaining within a second predetermined band within the first predetermined band corresponds to the desired symbol .
  • the present invention further provides apparatus for encoding information in accordance with the above method, and a method and apparatus for decoding the encoded information on the host signals.
  • FIG. 1 is a waveform diagram of a host analog signal
  • FIG 2 is a waveform diagram of a host analog signal with signal peaks scaled by a predetermined constant
  • FIG. 3 is a waveform diagram of the signal of FIG.
  • FIG. 4 is a waveform diagram of the signal of FIG.
  • FIG. 5 is a waveform of the modified host signal after being scaled by the inverse constant of FIG. 2;
  • FIG. 6 is a diagram showing normalized peak values for encoded information according to one alternative embodiment of the invention.
  • FIG. 7 is a diagram illustrating a masking curve profile
  • FIGS. 8A and 8B are diagrams illustrating possible formats of encoded information according to the present invention.
  • FIG. 9 is a flow chart diagram of an encoding process according to one preferred embodiment of the present invention.
  • FIG. 10 is a flow chart diagram of a decoding process according to one preferred embodiment of the present invention.
  • FIG. 11 is a block diagram of an encoder apparatus according to one preferred embodiment of the present invention.
  • FIG. 12 is a block diagram of a decoder apparatus according to one preferred embodiment of the present inven ion ;
  • FIG. 13 is a waveform diagram showing an encoding signal according to an alternate embodiment of the present invention.
  • FIG. 14 is a waveform diagram showing the use of the encoding signal of FIG. 13 in a spread spectrum decoding scheme .
  • the present invention is based on the novel principle of using a host signal as a carrier of encoded information as opposed to treating the host signal as noise, as in prior encoding schemes.
  • Prior art encoding methods typically were designed to work with a host signal which is unknown and unpredictable, and therefore rejected as noise at the decoder.
  • the host signal (such as an audio or video signal) is used as a carrier of encoded information.
  • host signal rejection is the main limitation as far as performance characteristics are concerned, because the host signal is several orders of magnitude larger than any other noise source such as distortion or additive noise. Avoiding the necessity of host rejection enables the present invention to achieve orders of magnitude better performance in terms of signal-to- noise ratio, while at the same time being computationally simpler.
  • the host signal is observed for the occurrence of peak events within predetermined intervals of time, and suitable peak events are incrementally altered in amplitude to represent information symbols, such as binary ones and zeros.
  • suitable peak events are incrementally altered in amplitude to represent information symbols, such as binary ones and zeros.
  • FIGS. 1-5 An original analog host signal shown in FIG. 1 is observed for the occurrence of signal peaks within a predetermined time interval.
  • a time interval may be 0.1 sec ; however any value may be chosen, the only criterion being a sufficient number of peaks occurring within the interval to allow suitable encoding which will survive the level of expected noise.
  • all major peaks 1 of similar value within the time frame under consideration are identified whose values are approximately equal to a constant, K.
  • the peaks are then scaled by coarse increments of full value (wherein all bits are 1) to the constant K.
  • the constant K can be any value between zero and full value.
  • K is chosen as one-tenth full value.
  • the coarse increment also may be on the order of one-tenth full value.
  • all major peaks fall within a first predetermined band B, surrounding the constant level K, as shown in FIG. 3, while some peaks will fall within a second predetermined narrow band EB (called the event band) within band B. It is the presence or absence of peaks within the event band EB which is used to encode information onto the host signal.
  • the encoding scheme may be such that a pair of peaks must be detected within EB during the predetermined time interval to indicate a binary "1" for digital encoding. If less than a pair of peaks is detected, this indicates a binary "0", as shown in FIG. 4.
  • any number of peaks may be selected as the "event” which must be detected in the selected time interval to indicate a "1", otherwise a "0" will be encoded.
  • encoding events may be represented by any number from a single peak to the highest number of peaks naturally occurring within the selected time interval (which will vary according to the frequency content of the host signal) .
  • the signal peaks may be manipulated so that the event band must be empty for a digital "0", by modifying the peaks to be either above or below the event band EB within the time frame. If any peaks are detected, they will be treated as representing a digital "1". Alternatively, an event may be defined as 10 peaks occurring within EB to designate a digital "1". If less than 10 peaks are detected, the time frame will be encoded as a "0".
  • the host signal peaks are inversely scaled by the original coarse scaling, to reconstitute the original host signal, with peak alterations added, as shown in FIG. 5.
  • Decoding at a receiving apparatus is accomplished simply by scaling incoming peaks to the constant K and detecting peak values falling within the predefined bands B and EB.
  • FIG. 6 An alternative embodiment of the invention is shown in FIG. 6.
  • a plurality of bands are defined around the constant K, alternating between "0" and "1".
  • a reference peak NR is provided for synchronization purposes in detecting altered peak values, P A . If a "0" is to be encoded, the corresponding peak is scaled to fall within the closest "0" band, and if a "1" is to be encoded, the corresponding peak is scaled to fall within the closest "1" band. Modification or scaling of any peak to fall within an appropriate band requires only a small adjustment in amplitude, thus the altering signal is an inband alteration, which occurs exactly at the host signal frequency.
  • reference peaks NR are spaced from altered peaks NP A by 5 peaks to further reduce the perception level by an order of magnitude .
  • the relationship between each peak pair (NR and NP A ) is defined as an event. If 10 events are used to signify digital "l"s and "0"s, for example, in the case of an analog audio signal having a median frequency of 5 kHz, a bit rate of 50 bps per channel or 100 bps for a stereo signal would be achieved, for a very robust signal survivable in a noisy analog environment. For digital transmission or recorded applications such as compact optical disks, the redundancy requirements are not needed and may be discarded, yielding a tenfold increase in bit rate to 1 kbps stereo.
  • FIGS. 8A and 8B show a packet structure for low bandwidth encoding (to 100 Hz) .
  • the beginning of the packet contains a packet start and packet type field, followed by a serial number field, a record enable field, and various information fields such as artist name, song name, album name, recording label, and time code.
  • the end of the packet is denoted by a packet end field.
  • FIG. 8B shows a packet structure for high bandwidth encoding (up to 1 kHz) .
  • the packet may contain fields designating a compression algorithm ID, sender ID, receiver ID, date of purchase of the recorded program, stock number, and lyrics.
  • the record enable fields comprise codes which will enable a recording device if a disable chip is built into such a device. Inability to read the enable field will render copying impossible.
  • a universal record enable field would be present if the particular program or piece of music carrying the encoded information is in the public domain.
  • a mix of both packet types may be included in the same host signal, such that the higher bandwidth packets may be decoded under low noise environments, while the low bandwidth packets may be decoded even in the presence of additive noise.
  • FIG. 9 A flow chart diagram of an encoding procedure according to one embodiment of the invention is provided by FIG. 9. An example of corresponding hardware to implement the encoding procedure is shown in FIG. 11.
  • a computer 200 such as a personal computer or other equivalent processor is provided in conjunction with a Digital Signal Processor (DSP) board 202.
  • DSP board 202 includes SPDIF (Sony-Phillips Digital
  • the SPDIF chip uses a digital standard intended for the consumer market .
  • the digital interface chips may be implemented using AESEBU (Audio Engineering
  • a host signal from a source 208, such as a CD, DAT, or live audio signal is fed into the DSP board 202.
  • the packet architecture i.e. , either FIG. 8A or 8B
  • Text fields are then generated at step 93a from text input by the operator, and the packet configuration matrix is generated at step 93b.
  • text-to- binary conversion is performed to convert the inputted text into digital format.
  • start/stop sequences are added to the packet, and at step 99 the data is sent to the encode buffer in the memory of the DSP 202 via a standard communication link, such as an RS-232 transmission line.
  • the PC 200 then sends an encode start command to the DSP board 202.
  • the DSP board detects an encode start command, and initiates data input from the source 208.
  • a predetermined time interval of the host signal from the source such as 0.1 seconds of host signal, is read into the buffer 205, and sent to the DSP 204 at step 96 for appropriate identification and scaling of signal peaks at step 98 as described in detail above.
  • the DSP determines the appropriate information symbols, such as "l"s and "0"s, which should be encoded onto the signal interval in accordance with the data received from the PC 200.
  • the appropriate symbol is encoded by peak manipulation.
  • the appropriate bit rate is determined. Based on the specified bit rate, the appropriate number of redundant events will be encoded by steps 108a and 108b.
  • the end of the stored time interval is detected at step 110.
  • FIG. 10 illustrates one example of a decoding procedure according to the invention, which can be carried out by hardware as shown in FIG. 12.
  • a DSP board 320 including an analog-to-digital (A/D) converter 304, SPDIF 34, buffer memory 306 and DSP chip 308 is provided in a device such as a stereo receiver, along with a display 310, such as an LED or LCD or a CRT display.
  • Analog sources such as radio broadcasts, tapes or LPs are inputted to A/D converter ' 304, while digital sources such as CDs and DATs are inputted to
  • SPDIF 314. The incoming digital signal is then sent to buffer memory 306.
  • DSP 308 analyzes all incoming peak pairs, by appropriate scaling as discussed above.
  • the start of a packet is determined by detecting a packet start field, and synchronization to peak events is performed at step 403.
  • packet decoding is carried out at step 404.
  • the record enable field is first decoded at step 405. If copying is allowed, the recording device, if any, is enabled at step 406. If the record enable field indicates that copying is not allowed, the recording device is disable at step 406. The remaining data fields are then decoded at step 407, and the corresponding alphanumeric text is displayed on display 310 at step 408.
  • FIGs. 13 and 14 Another application of the invention is shown in FIGs. 13 and 14.
  • the polarity and magnitude of alterations to signal peaks are functions of the information symbol, such as "1" or "0", to be encoded onto the host signal.
  • FIG. 13 illustrates an example of such an alteration signal without the host signal.
  • This signal could be synchronously detected if the polarity changes were to occur in a predetermined sequence, and such manner the alteration signal would function as a very narrow baseband spread spectrum signal, which would have the advantage of being highly survivable noisy or distorting environments .
  • Encoding predetermined polarity sequences could be accomplished in addition to the peak alteration as shown FIG. 6, if the peaks are modified to fall not merely into the nearest correct "0" or “1” band, but into the next correct band up or down depending on whether the predetermined sequence calls for the next polarity change to be up or down.
  • An example of a predetermined sequence is shown m FIG. 14A.
  • FIG. 14B shows a corresponding alteration signal encoded to correspond to sequence A. The effect of such encoding is to create an additional low bandwidth channel for encoding additional information.
  • the sequence of FIG. 14A could represent a "1" bit, while another specific sequence could represent a "0" bit.
  • a plurality of sequences could be defined which represent multiple b ts. High bandwidth encoding still would be accomplished as in FIG. 6, with each peak falling into a specific band designating a particular information symbol
  • the signal peak polarities would be correlated with predetermined sequence "templates" such as shown FIG. 14A. High correlation would signify the corresponding information symbol associated with the sequence .

Abstract

A method and apparatus for encoding information symbols onto an analog host signal modifies signal peaks of the host signal to fall within predetermined amplitude bands. A set of symbols is defined wherein each symbol corresponds to a defined number of signal peaks or to a particular value of signal peak within a band. An additional information channel may be created by altering polarity changes of signal peaks in accordance with predetermined polarity sequences to represent a second set of defined symbols.

Description

APPARATUS AND METHOD FOR ENCODING AND DECODING SUPPLEMENTARY DATA IN ANALOG SIGNALS
BACKGROUND OF THE INVENTION Field of the Invention This invention relates to apparatus and methods for encoding and decoding information in analog signals, such as audio, video and data signals, either transmitted by radio wave transmission or wired transmission, or stored in a recording medium such as optical or magnetic disks, magnetic tape, or solid state memory. Background and Description of Related Art
An area of particular interest to certain embodiments of the present invention relates to the market for musical recordings. Currently, a large number of people listen to musical recordings on radio or television. They often hear a recording which they like enough to purchase, but don't know the name of the song, the artist performing it, or the record, tape, or CD album of which it is part. As a result, the number of recordings which people purchase is less than it otherwise would be if there was a simple way for people to identify which of the recordings that they hear on the radio or TV they wish to purchase. Another area of interest to certain embodiments of the invention is copy control. There is currently a large market for audio software products, such as musical recordings. One of the problems in this market is the ease of copying such products without paying those who produce them. This problem is becoming particularly troublesome with the advent of recording techniques, such as digital audio tape (DAT) , which make it possible for copies to be of very high quality. Thus it would be desirable to develop a scheme which would prevent the unauthorized copying of audio recordings, including the unauthorized copying of audio works broadcast over the airwaves.
Various prior art methods of encoding additional information onto a source signal are known. For example, it is known to pulse-width modulate a signal to provide a common or encoded signal carrying at least two information portions or other useful portions. In U.S. Patent No. 4,497,060 to Yang (1985) binary data is transmitted as a signal having two differing pulse- widths to represent logical "0" and "1" (e.g., the pulse-width durations for a "1" are twice the duration for a "0") . This correspondence also enables the determination of a clocking signal.
U.S. Patent No. 4,937,807 to Weitz et al. (1990) discloses a method and apparatus for encoding signals for producing sound transmissions with digital information to enable addressing the stored representation of such signals. Specifically, the apparatus in Weitz et al . converts an analog signal for producing such sound transmissions to clocked digital signals comprising for each channel an audio data stream, a step-size stream and an emphasis stream.
With respect to systems in which audio signals produce audio transmissions, U.S. Patent Nos. 4,876,617 to Best et al . (1989) and 5,113,437 to Best et al .
(1992) disclose encoders for forming relatively thin and shallow (e.g., 150 Hz wide and 50 dB deep) notches in mid-range frequencies of an audio signal. The earlier of these patents discloses paired notch filters centered about the 2883 Hz and 3417 Hz frequencies; the later patent discloses notch filters but with randomly varying frequency pairs to discourage erasure or inhibit filtering of the information added to the notches. The encoders then add digital information in the form of signals in the lower frequency indicating a "0" and in the higher frequency a "1". In the later Best et al . patent an encoder samples the audio signal, delays the signal while calculating the signal level, and determines during the delay whether or not to add the data signal and, if so, at what signal level. The later Best et al . patent also notes that the "pseudo-random manner" in moving the notches makes the data signals more difficult to detect audibly.
The prior art fails to provide a method and an apparatus for encoding and decoding analog audio frequency signals for producing humanly perceived audio transmissions with signals that define digital information such that the audio frequency signals produce substantially identical humanly perceived audio transmission prior to and after encoding. The prior art also fails to provide relatively simple apparatus and methods for encoding and decoding audio frequency signals for producing humanly perceived audio transmissions with signals defining digital information. The prior art also fails to disclose a method and apparatus for limiting unauthorized copying of audio frequency signals for producing humanly perceived audio transmissions.
SUMMARY OF THE INVENTION The present invention provides apparatus and methods for encoding, storing and decoding information on an analog source signal in a way which has minimal impact on the human perception of the source information when the signal is applied to an appropriate output device, such as a speaker or a display monitor.
The present invention further provides apparatus and methods for encoding, storing and decoding machine readable signals in an audio signal which control the ability of a device to copy the audio signal.
Still further, the present invention provides apparatus and methods for keeping track of the identity of audio recordings which are transmitted over radio or television broadcasts.
In particular, the present invention provides a method for encoding information symbols onto an analog host signal, comprising the steps of identifying signal peaks of the host signal within a predetermined time interval, which peaks have values within a preselected range, modifying the values of identified signal peaks to fall within a first predetermined band, defining a set of a plurality of symbols wherein each symbol corresponds to a defined number of signal peaks, and further modifying the values of identified signal peaks within the first predetermined band, according to the symbol desired to be encoded in the predetermined time interval, such that the number of signal peaks remaining within a second predetermined band within the first predetermined band corresponds to the desired symbol .
The present invention further provides apparatus for encoding information in accordance with the above method, and a method and apparatus for decoding the encoded information on the host signals.
BRIEF DESCRIPTION OF THE DRAWINGS These and other aspects of the present invention will become more fully understood from the following detailed description of the preferred embodiments in conjunction witn the accompanying drawings, in which: FIG. 1 is a waveform diagram of a host analog signal ;
FIG 2 is a waveform diagram of a host analog signal with signal peaks scaled by a predetermined constant,
FIG. 3 is a waveform diagram of the signal of FIG.
2 with signal peaks scaled to fall within a predetermined band B; FIG. 4 is a waveform diagram of the signal of FIG.
3 w th signal peaks within band B further scaled to fall withm predetermined narrow band EB according to the information desired to be encoded in each time interval; FIG. 5 is a waveform of the modified host signal after being scaled by the inverse constant of FIG. 2;
FIG. 6 is a diagram showing normalized peak values for encoded information according to one alternative embodiment of the invention; FIG. 7 is a diagram illustrating a masking curve profile;
FIGS. 8A and 8B are diagrams illustrating possible formats of encoded information according to the present invention; FIG. 9 is a flow chart diagram of an encoding process according to one preferred embodiment of the present invention;
FIG. 10 is a flow chart diagram of a decoding process according to one preferred embodiment of the present invention;
FIG. 11 is a block diagram of an encoder apparatus according to one preferred embodiment of the present invention;
FIG. 12 is a block diagram of a decoder apparatus according to one preferred embodiment of the present inven ion ;
FIG. 13 is a waveform diagram showing an encoding signal according to an alternate embodiment of the present invention; and FIG. 14 is a waveform diagram showing the use of the encoding signal of FIG. 13 in a spread spectrum decoding scheme .
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is based on the novel principle of using a host signal as a carrier of encoded information as opposed to treating the host signal as noise, as in prior encoding schemes. Prior art encoding methods typically were designed to work with a host signal which is unknown and unpredictable, and therefore rejected as noise at the decoder.
According to the present invention, the host signal (such as an audio or video signal) is used as a carrier of encoded information. When treated as noise, host signal rejection is the main limitation as far as performance characteristics are concerned, because the host signal is several orders of magnitude larger than any other noise source such as distortion or additive noise. Avoiding the necessity of host rejection enables the present invention to achieve orders of magnitude better performance in terms of signal-to- noise ratio, while at the same time being computationally simpler.
According to the present invention, the host signal is observed for the occurrence of peak events within predetermined intervals of time, and suitable peak events are incrementally altered in amplitude to represent information symbols, such as binary ones and zeros. One preferred embodiment of the invention will now be described with reference to FIGS. 1-5. An original analog host signal shown in FIG. 1 is observed for the occurrence of signal peaks within a predetermined time interval. For purposes of illustration, such a time interval may be 0.1 sec ; however any value may be chosen, the only criterion being a sufficient number of peaks occurring within the interval to allow suitable encoding which will survive the level of expected noise.
As shown in FIG. 2, all major peaks 1 of similar value within the time frame under consideration are identified whose values are approximately equal to a constant, K. The peaks are then scaled by coarse increments of full value (wherein all bits are 1) to the constant K. The constant K can be any value between zero and full value. For purposes of illustration, K is chosen as one-tenth full value. The coarse increment also may be on the order of one-tenth full value. As a result, all major peaks fall within a first predetermined band B, surrounding the constant level K, as shown in FIG. 3, while some peaks will fall within a second predetermined narrow band EB (called the event band) within band B. It is the presence or absence of peaks within the event band EB which is used to encode information onto the host signal. For example, the encoding scheme may be such that a pair of peaks must be detected within EB during the predetermined time interval to indicate a binary "1" for digital encoding. If less than a pair of peaks is detected, this indicates a binary "0", as shown in FIG. 4. Alternatively, any number of peaks may be selected as the "event" which must be detected in the selected time interval to indicate a "1", otherwise a "0" will be encoded. For example, encoding events may be represented by any number from a single peak to the highest number of peaks naturally occurring within the selected time interval (which will vary according to the frequency content of the host signal) .
Many different encoding schemes are possible. For example, in a digital encoding scheme, the signal peaks may be manipulated so that the event band must be empty for a digital "0", by modifying the peaks to be either above or below the event band EB within the time frame. If any peaks are detected, they will be treated as representing a digital "1". Alternatively, an event may be defined as 10 peaks occurring within EB to designate a digital "1". If less than 10 peaks are detected, the time frame will be encoded as a "0".
After the fine scaling has been completed, the host signal peaks are inversely scaled by the original coarse scaling, to reconstitute the original host signal, with peak alterations added, as shown in FIG. 5. Decoding at a receiving apparatus is accomplished simply by scaling incoming peaks to the constant K and detecting peak values falling within the predefined bands B and EB.
An alternative embodiment of the invention is shown in FIG. 6. In this embodiment, a plurality of bands are defined around the constant K, alternating between "0" and "1". A reference peak NR is provided for synchronization purposes in detecting altered peak values, PA. If a "0" is to be encoded, the corresponding peak is scaled to fall within the closest "0" band, and if a "1" is to be encoded, the corresponding peak is scaled to fall within the closest "1" band. Modification or scaling of any peak to fall within an appropriate band requires only a small adjustment in amplitude, thus the altering signal is an inband alteration, which occurs exactly at the host signal frequency. This approach takes advantage of the known psychoacoustic phenomenon that a signal is perceptively masked by another stronger signal of a similar frequency, which has characteristics which fall under the curve shown in FIG. 7. See Beerends et al . , "A Perceptual Audio Quality Measure Based on a Psychoacoustic Sound Representation, " J. Audio Eng. Soc, Vol. 40, No. 12, December 1992. The present encoding method places the altering signal right at the center of the masking curve. As a result, the information encoding is completely imperceptible to the ordinary listener.
According to one preferred embodiment, reference peaks NR are spaced from altered peaks NPA by 5 peaks to further reduce the perception level by an order of magnitude . The relationship between each peak pair (NR and NPA) is defined as an event. If 10 events are used to signify digital "l"s and "0"s, for example, in the case of an analog audio signal having a median frequency of 5 kHz, a bit rate of 50 bps per channel or 100 bps for a stereo signal would be achieved, for a very robust signal survivable in a noisy analog environment. For digital transmission or recorded applications such as compact optical disks, the redundancy requirements are not needed and may be discarded, yielding a tenfold increase in bit rate to 1 kbps stereo.
One preferred format for encoded information is shown in FIGS. 8A and 8B. FIG. 8A shows a packet structure for low bandwidth encoding (to 100 Hz) . The beginning of the packet contains a packet start and packet type field, followed by a serial number field, a record enable field, and various information fields such as artist name, song name, album name, recording label, and time code. The end of the packet is denoted by a packet end field. FIG. 8B shows a packet structure for high bandwidth encoding (up to 1 kHz) . In addition to packet start and end fields, the packet may contain fields designating a compression algorithm ID, sender ID, receiver ID, date of purchase of the recorded program, stock number, and lyrics. The record enable fields comprise codes which will enable a recording device if a disable chip is built into such a device. Inability to read the enable field will render copying impossible. A universal record enable field would be present if the particular program or piece of music carrying the encoded information is in the public domain. A mix of both packet types may be included in the same host signal, such that the higher bandwidth packets may be decoded under low noise environments, while the low bandwidth packets may be decoded even in the presence of additive noise.
A flow chart diagram of an encoding procedure according to one embodiment of the invention is provided by FIG. 9. An example of corresponding hardware to implement the encoding procedure is shown in FIG. 11.
A computer 200 such as a personal computer or other equivalent processor is provided in conjunction with a Digital Signal Processor (DSP) board 202. DSP board 202 includes SPDIF (Sony-Phillips Digital
Interface Format) chips 203 and 206, a DSP chip 204, and a buffer memory chip 205. The SPDIF chip uses a digital standard intended for the consumer market . Alternatively, the digital interface chips may be implemented using AESEBU (Audio Engineering
Society/European Broadcast Union) chips which utilize a digital standard intended for professionals. A host signal from a source 208, such as a CD, DAT, or live audio signal is fed into the DSP board 202. At step 91, the packet architecture (i.e. , either FIG. 8A or 8B) is chosen by the operator at the PC 200. Text fields are then generated at step 93a from text input by the operator, and the packet configuration matrix is generated at step 93b. At step 95, text-to- binary conversion is performed to convert the inputted text into digital format. At step 97, start/stop sequences are added to the packet, and at step 99 the data is sent to the encode buffer in the memory of the DSP 202 via a standard communication link, such as an RS-232 transmission line. At step 102, the PC 200 then sends an encode start command to the DSP board 202.
At step 90, the DSP board detects an encode start command, and initiates data input from the source 208. At step 94, a predetermined time interval of the host signal from the source, such as 0.1 seconds of host signal, is read into the buffer 205, and sent to the DSP 204 at step 96 for appropriate identification and scaling of signal peaks at step 98 as described in detail above. At step 100, the DSP determines the appropriate information symbols, such as "l"s and "0"s, which should be encoded onto the signal interval in accordance with the data received from the PC 200. At steps 104 and 105, the appropriate symbol is encoded by peak manipulation. At steps 106a and 106b, the appropriate bit rate is determined. Based on the specified bit rate, the appropriate number of redundant events will be encoded by steps 108a and 108b. The end of the stored time interval is detected at step 110. At step 112, it is determined whether an encode start command or stop command has been transmitted by the PC
200. If no stop command has been received, the next time interval of host signal is read into memory at 94 and processing continues. Upon reception of a stop command after all data to be encoded has been transmitted, processing will be terminated at step 112. FIG. 10 illustrates one example of a decoding procedure according to the invention, which can be carried out by hardware as shown in FIG. 12. A DSP board 320 including an analog-to-digital (A/D) converter 304, SPDIF 34, buffer memory 306 and DSP chip 308 is provided in a device such as a stereo receiver, along with a display 310, such as an LED or LCD or a CRT display. Analog sources such as radio broadcasts, tapes or LPs are inputted to A/D converter' 304, while digital sources such as CDs and DATs are inputted to
SPDIF 314. The incoming digital signal is then sent to buffer memory 306.
Referring to FIG. 10, at step 401 DSP 308 analyzes all incoming peak pairs, by appropriate scaling as discussed above. At step 402 the start of a packet is determined by detecting a packet start field, and synchronization to peak events is performed at step 403. Upon synchronization, packet decoding is carried out at step 404. The record enable field is first decoded at step 405. If copying is allowed, the recording device, if any, is enabled at step 406. If the record enable field indicates that copying is not allowed, the recording device is disable at step 406. The remaining data fields are then decoded at step 407, and the corresponding alphanumeric text is displayed on display 310 at step 408.
Another application of the invention is shown in FIGs. 13 and 14. Referring to FIG. 13, it will be recalled that the polarity and magnitude of alterations to signal peaks are functions of the information symbol, such as "1" or "0", to be encoded onto the host signal. FIG. 13 illustrates an example of such an alteration signal without the host signal.
This signal could be synchronously detected if the polarity changes were to occur in a predetermined sequence, and such manner the alteration signal would function as a very narrow baseband spread spectrum signal, which would have the advantage of being highly survivable noisy or distorting environments .
Encoding predetermined polarity sequences could be accomplished in addition to the peak alteration as shown FIG. 6, if the peaks are modified to fall not merely into the nearest correct "0" or "1" band, but into the next correct band up or down depending on whether the predetermined sequence calls for the next polarity change to be up or down. An example of a predetermined sequence is shown m FIG. 14A. FIG. 14B shows a corresponding alteration signal encoded to correspond to sequence A. The effect of such encoding is to create an additional low bandwidth channel for encoding additional information.
For example, the sequence of FIG. 14A could represent a "1" bit, while another specific sequence could represent a "0" bit. Alternatively, a plurality of sequences could be defined which represent multiple b ts. High bandwidth encoding still would be accomplished as in FIG. 6, with each peak falling into a specific band designating a particular information symbol Additionally, the signal peak polarities would be correlated with predetermined sequence "templates" such as shown FIG. 14A. High correlation would signify the corresponding information symbol associated with the sequence . The invention having been thus described, it will be apparent to those skilled in the art that the same may be varied many ways without departing from the spirit and scope of the invention. Any and all such modifications are mtended to be included with the scope of the followmg claims.

Claims

What is claimed is :
1. A method for encoding information symbols onto an analog host signal, comprising the steps of: identifying signal peaks of said host signal within a predetermined time interval, which peaks have values within a preselected range; modifying the values of identified signal peaks to fall within a first predetermined band; defining a set of a plurality of symbols wherein each symbol corresponds to a defined number of signal peaks; and further modifying the values of identified signal peaks within said first predetermined band, according to the symbol desired to be encoded in said predetermined time interval, such that the number of signal peaks remaining within a second predetermined band within said first predetermined band corresponds to said desired symbol.
2. A method according to claim 1, wherein said symbol set consists of the set of binary digits.
3. A method according to claim 1, wherein said symbol sets includes alphanumeric characters .
4. A method according to claim 1, wherein the step of modifying the values of identified signal peaks to fall within a first predetermined band includes the step of multiplying said peaks by a constant.
5. A method according to claim 4, further comprising the step of multiplying modified signal peaks within said second predetermined band by the inverse of said constant .
6. A method for decoding information symbols encoded onto an analog host signal, comprising the steps of: modifying signal peaks of said host signal within a predetermined time interval by a predetermined value so that said signal peaks fall within a first predetermined band; defining a set of a plurality of symbols wherein each symbol corresponds to a defined number of signal peaks ; and detecting signal peaks contained within a second predetermined band within said first predetermined band, and outputting the symbol corresponding to the number of signal peaks detected within said second predetermined band.
7. A method according to claim 6, wherein said symbol set consists of the set of binary digits.
8. A method according to claim 6, wherein said symbol sets includes alphanumeric characters.
9. A method according to claim 6, wherein the step of modifying includes the step of multiplying said peaks by a constant .
10. Apparatus for encoding information symbols onto an analog host signal, comprising: means for identifying signal peaks of said host signal within a predetermined time interval, which peaks have values within a preselected range; means for modifying the values of identified signal peaks to fall within a first predetermined band; means for defining a set of a plurality of symbols wherein each symbol corresponds to a defined number of signal peaks,- and means for further modifying the values of identified signal peaks within said first predetermined band, according to the symbol desired to be encoded in said predetermined time interval, such that the number of signal peaks remaining within a second predetermined band within said first predetermined band corresponds to said desired symbol .
11 Apparatus for decoding information symbols encoded onto an analog host signal, comprising- means for modifying signal peaks of said host signal with a predetermined time interval by a predetermined value so that said signal peaks fall withm a first predetermined band, means for defining a set of a plurality of symbols wherem each symbol corresponds to a defined number of signal peaks; means for detecting signal peaks contained with a second predetermined band withm said first predetermined band, and means for outputting the symbol corresponding to the number of signal peaks detected with said second predetermined band.
12. Apparatus accordmg to claim 11, where said outputting means comprises an alphanumeric display.
13. A method for encoding information onto an analog host signal, comprismg the steps of: defining a set of a plurality of symbols wherem each symbol corresponds to a predetermined amplitude ban ; and modifying the values of signal peaks of said host signal to fall withm predetermined bands accordance with a sequence of symbols to be encoded m said host signal .
14. A method accordmg to claim 13 , wherem said symbols are binary digits.
15. A method accordmg to claim 13 , wherem said symbols are alphanumeric characters.
16. A method for encoding information onto an analog host signal, comprising the steps of. defining a first set of symbols where each symbol corresponds to a predetermined amplitude band; defining a second set of symbols wherem each symbol corresponds to a predetermined sequence of polarities of alterations to signal peaks of said host signal; modifying the values of signal peaks of said host signal to fall within predetermined bands accordance with a sequence of symbols of said first set to be encoded said host signal, and to have polarities of signal peak alterations m accordance with a sequence of symbols of said second set to be encoded in said host signal.
17. A method according to claim 16, wherein said first and second set of symbols are binary digits .
18. A method according to claim 16, wherein said first and second set of symbols are alphanumeric characters.
PCT/US1997/004617 1996-04-03 1997-03-21 Apparatus and method for encoding and decoding supplementary data in analog signals WO1997037448A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/627,107 US5828325A (en) 1996-04-03 1996-04-03 Apparatus and method for encoding and decoding information in analog signals
US08/627,107 1996-04-03

Publications (2)

Publication Number Publication Date
WO1997037448A2 true WO1997037448A2 (en) 1997-10-09
WO1997037448A3 WO1997037448A3 (en) 1997-11-13

Family

ID=24513208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/004617 WO1997037448A2 (en) 1996-04-03 1997-03-21 Apparatus and method for encoding and decoding supplementary data in analog signals

Country Status (2)

Country Link
US (1) US5828325A (en)
WO (1) WO1997037448A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370955A (en) * 2001-01-09 2002-07-10 Independent Media Distrib Plc Encoding and decoding of data in audio signals

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944298B1 (en) 1993-11-18 2005-09-13 Digimare Corporation Steganographic encoding and decoding of auxiliary codes in media signals
US6408082B1 (en) 1996-04-25 2002-06-18 Digimarc Corporation Watermark detection using a fourier mellin transform
US6122403A (en) 1995-07-27 2000-09-19 Digimarc Corporation Computer system linked by using information in data objects
US6611607B1 (en) 1993-11-18 2003-08-26 Digimarc Corporation Integrating digital watermarks in multimedia content
US6424725B1 (en) 1996-05-16 2002-07-23 Digimarc Corporation Determining transformations of media signals with embedded code signals
US5748763A (en) 1993-11-18 1998-05-05 Digimarc Corporation Image steganography system featuring perceptually adaptive and globally scalable signal embedding
US6681028B2 (en) 1995-07-27 2004-01-20 Digimarc Corporation Paper-based control of computer systems
US6681029B1 (en) 1993-11-18 2004-01-20 Digimarc Corporation Decoding steganographic messages embedded in media signals
US6614914B1 (en) 1995-05-08 2003-09-02 Digimarc Corporation Watermark embedder and reader
US7171016B1 (en) 1993-11-18 2007-01-30 Digimarc Corporation Method for monitoring internet dissemination of image, video and/or audio files
US6983051B1 (en) 1993-11-18 2006-01-03 Digimarc Corporation Methods for audio watermarking and decoding
US6516079B1 (en) 2000-02-14 2003-02-04 Digimarc Corporation Digital watermark screening and detecting strategies
US6522770B1 (en) 1999-05-19 2003-02-18 Digimarc Corporation Management of documents and other objects using optical devices
US8094949B1 (en) 1994-10-21 2012-01-10 Digimarc Corporation Music methods and systems
US7362775B1 (en) 1996-07-02 2008-04-22 Wistaria Trading, Inc. Exchange mechanisms for digital information packages with bandwidth securitization, multichannel digital watermarks, and key management
US6760463B2 (en) * 1995-05-08 2004-07-06 Digimarc Corporation Watermarking methods and media
US7224819B2 (en) 1995-05-08 2007-05-29 Digimarc Corporation Integrating digital watermarks in multimedia content
US5613004A (en) 1995-06-07 1997-03-18 The Dice Company Steganographic method and device
US6411725B1 (en) 1995-07-27 2002-06-25 Digimarc Corporation Watermark enabled video objects
US7171018B2 (en) 1995-07-27 2007-01-30 Digimarc Corporation Portable devices and methods employing digital watermarking
US6965682B1 (en) 1999-05-19 2005-11-15 Digimarc Corp Data transmission by watermark proxy
US6408331B1 (en) 1995-07-27 2002-06-18 Digimarc Corporation Computer linking methods using encoded graphics
US7051086B2 (en) 1995-07-27 2006-05-23 Digimarc Corporation Method of linking on-line data to printed documents
US7664263B2 (en) 1998-03-24 2010-02-16 Moskowitz Scott A Method for combining transfer functions with predetermined key creation
US6205249B1 (en) 1998-04-02 2001-03-20 Scott A. Moskowitz Multiple transform utilization and applications for secure digital watermarking
US6381341B1 (en) 1996-05-16 2002-04-30 Digimarc Corporation Watermark encoding method exploiting biases inherent in original signal
US7159116B2 (en) 1999-12-07 2007-01-02 Blue Spike, Inc. Systems, methods and devices for trusted transactions
US7346472B1 (en) 2000-09-07 2008-03-18 Blue Spike, Inc. Method and device for monitoring and analyzing signals
US7457962B2 (en) * 1996-07-02 2008-11-25 Wistaria Trading, Inc Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US7095874B2 (en) 1996-07-02 2006-08-22 Wistaria Trading, Inc. Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US7107451B2 (en) * 1996-07-02 2006-09-12 Wistaria Trading, Inc. Optimization methods for the insertion, protection, and detection of digital watermarks in digital data
US5889868A (en) 1996-07-02 1999-03-30 The Dice Company Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
US6078664A (en) * 1996-12-20 2000-06-20 Moskowitz; Scott A. Z-transform implementation of digital watermarks
US7177429B2 (en) 2000-12-07 2007-02-13 Blue Spike, Inc. System and methods for permitting open access to data objects and for securing data within the data objects
US7730317B2 (en) 1996-12-20 2010-06-01 Wistaria Trading, Inc. Linear predictive coding implementation of digital watermarks
GB9700854D0 (en) 1997-01-16 1997-03-05 Scient Generics Ltd Sub-audible acoustic data transmission mechanism
US6233347B1 (en) 1998-05-21 2001-05-15 Massachusetts Institute Of Technology System method, and product for information embedding using an ensemble of non-intersecting embedding generators
US6314192B1 (en) 1998-05-21 2001-11-06 Massachusetts Institute Of Technology System, method, and product for information embedding using an ensemble of non-intersecting embedding generators
US7644282B2 (en) 1998-05-28 2010-01-05 Verance Corporation Pre-processed information embedding system
US7197156B1 (en) 1998-09-25 2007-03-27 Digimarc Corporation Method and apparatus for embedding auxiliary information within original data
US7055034B1 (en) 1998-09-25 2006-05-30 Digimarc Corporation Method and apparatus for robust embedded data
US6442283B1 (en) * 1999-01-11 2002-08-27 Digimarc Corporation Multimedia data embedding
US7664264B2 (en) 1999-03-24 2010-02-16 Blue Spike, Inc. Utilizing data reduction in steganographic and cryptographic systems
US6871180B1 (en) 1999-05-25 2005-03-22 Arbitron Inc. Decoding of information in audio signals
US6785815B1 (en) 1999-06-08 2004-08-31 Intertrust Technologies Corp. Methods and systems for encoding and protecting data using digital signature and watermarking techniques
US8103542B1 (en) 1999-06-29 2012-01-24 Digimarc Corporation Digitally marked objects and promotional methods
GB9917985D0 (en) 1999-07-30 1999-09-29 Scient Generics Ltd Acoustic communication system
US7475246B1 (en) 1999-08-04 2009-01-06 Blue Spike, Inc. Secure personal content server
US6631165B1 (en) * 1999-09-01 2003-10-07 Northrop Grumman Corporation Code modulation using narrow spectral notching
JP3728621B2 (en) * 2000-02-10 2005-12-21 松下電器産業株式会社 Digital data copy control method and playback apparatus
US6737957B1 (en) 2000-02-16 2004-05-18 Verance Corporation Remote control signaling using audio watermarks
US7305104B2 (en) 2000-04-21 2007-12-04 Digimarc Corporation Authentication of identification documents using digital watermarks
US6674876B1 (en) 2000-09-14 2004-01-06 Digimarc Corporation Watermarking in the time-frequency domain
US7127615B2 (en) 2000-09-20 2006-10-24 Blue Spike, Inc. Security based on subliminal and supraliminal channels for data objects
ATE411658T1 (en) * 2000-11-30 2008-10-15 Intrasonics Ltd APPARATUS AND SYSTEM FOR USING A DATA SIGNAL INTEGRATED IN AN ACOUSTIC SIGNAL
AU2211102A (en) 2000-11-30 2002-06-11 Scient Generics Ltd Acoustic communication system
US7159118B2 (en) * 2001-04-06 2007-01-02 Verance Corporation Methods and apparatus for embedding and recovering watermarking information based on host-matching codes
US7024018B2 (en) * 2001-05-11 2006-04-04 Verance Corporation Watermark position modulation
US8572640B2 (en) * 2001-06-29 2013-10-29 Arbitron Inc. Media data use measurement with remote decoding/pattern matching
US6862355B2 (en) 2001-09-07 2005-03-01 Arbitron Inc. Message reconstruction from partial detection
US7392394B2 (en) * 2001-12-13 2008-06-24 Digimarc Corporation Digital watermarking with variable orientation and protocols
US7392392B2 (en) * 2001-12-13 2008-06-24 Digimarc Corporation Forensic digital watermarking with variable orientation and protocols
DK1456810T3 (en) 2001-12-18 2011-07-18 L 1 Secure Credentialing Inc Multiple image security features to identify documents and methods of producing them
US7694887B2 (en) 2001-12-24 2010-04-13 L-1 Secure Credentialing, Inc. Optically variable personalized indicia for identification documents
DK1464172T3 (en) * 2001-12-24 2013-06-24 Intrasonics Sarl Subtitle system
EP1459239B1 (en) 2001-12-24 2012-04-04 L-1 Secure Credentialing, Inc. Covert variable information on id documents and methods of making same
EP1459246B1 (en) 2001-12-24 2012-05-02 L-1 Secure Credentialing, Inc. Method for full color laser marking of id documents
US7728048B2 (en) 2002-12-20 2010-06-01 L-1 Secure Credentialing, Inc. Increasing thermal conductivity of host polymer used with laser engraving methods and compositions
WO2003083094A1 (en) * 2002-03-29 2003-10-09 Innogenetics N.V. Hbv drug resistance drug resistance detection methods
US7287275B2 (en) 2002-04-17 2007-10-23 Moskowitz Scott A Methods, systems and devices for packet watermarking and efficient provisioning of bandwidth
US7824029B2 (en) 2002-05-10 2010-11-02 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over the counter card issuing
US7239981B2 (en) 2002-07-26 2007-07-03 Arbitron Inc. Systems and methods for gathering audience measurement data
US7222071B2 (en) 2002-09-27 2007-05-22 Arbitron Inc. Audio data receipt/exposure measurement with code monitoring and signature extraction
US9711153B2 (en) 2002-09-27 2017-07-18 The Nielsen Company (Us), Llc Activating functions in processing devices using encoded audio and detecting audio signatures
US8959016B2 (en) 2002-09-27 2015-02-17 The Nielsen Company (Us), Llc Activating functions in processing devices using start codes embedded in audio
AU2003282763A1 (en) 2002-10-15 2004-05-04 Verance Corporation Media monitoring, management and information system
US6845360B2 (en) 2002-11-22 2005-01-18 Arbitron Inc. Encoding multiple messages in audio data and detecting same
US7804982B2 (en) 2002-11-26 2010-09-28 L-1 Secure Credentialing, Inc. Systems and methods for managing and detecting fraud in image databases used with identification documents
US7712673B2 (en) 2002-12-18 2010-05-11 L-L Secure Credentialing, Inc. Identification document with three dimensional image of bearer
US7483835B2 (en) * 2002-12-23 2009-01-27 Arbitron, Inc. AD detection using ID code and extracted signature
US7174151B2 (en) 2002-12-23 2007-02-06 Arbitron Inc. Ensuring EAS performance in audio signal encoding
ATE491190T1 (en) 2003-04-16 2010-12-15 L 1 Secure Credentialing Inc THREE-DIMENSIONAL DATA STORAGE
US6934370B1 (en) * 2003-06-16 2005-08-23 Microsoft Corporation System and method for communicating audio data signals via an audio communications medium
US7616776B2 (en) * 2005-04-26 2009-11-10 Verance Corproation Methods and apparatus for enhancing the robustness of watermark extraction from digital host content
US7369677B2 (en) 2005-04-26 2008-05-06 Verance Corporation System reactions to the detection of embedded watermarks in a digital host content
US9055239B2 (en) 2003-10-08 2015-06-09 Verance Corporation Signal continuity assessment using embedded watermarks
US20060239501A1 (en) 2005-04-26 2006-10-26 Verance Corporation Security enhancements of digital watermarks for multi-media content
US7744002B2 (en) 2004-03-11 2010-06-29 L-1 Secure Credentialing, Inc. Tamper evident adhesive and identification document including same
US7483975B2 (en) * 2004-03-26 2009-01-27 Arbitron, Inc. Systems and methods for gathering data concerning usage of media data
US8738763B2 (en) 2004-03-26 2014-05-27 The Nielsen Company (Us), Llc Research data gathering with a portable monitor and a stationary device
US8020004B2 (en) 2005-07-01 2011-09-13 Verance Corporation Forensic marking using a common customization function
US8781967B2 (en) 2005-07-07 2014-07-15 Verance Corporation Watermarking in an encrypted domain
CN103000210A (en) 2005-10-21 2013-03-27 尼尔逊媒介研究股份有限公司 Methods and apparatus for metering portable media players
KR101488317B1 (en) * 2005-12-20 2015-02-04 아비트론 인코포레이티드 Methods and systems for conducting research operations
CA2947649C (en) 2006-03-27 2020-04-14 The Nielsen Company (Us), Llc Methods and systems to meter media content presented on a wireless communication device
CN103593562A (en) 2006-07-12 2014-02-19 奥比融公司 Methods and systems for compliance confirmation and incentives
CA3063376C (en) 2007-01-25 2022-03-29 Arbitron Inc. Research data gathering
EP2212775A4 (en) 2007-10-06 2012-01-04 Fitzgerald Joan G Gathering research data
AU2008347134A1 (en) 2007-12-31 2009-07-16 Arbitron, Inc. Survey data acquisition
US8930003B2 (en) 2007-12-31 2015-01-06 The Nielsen Company (Us), Llc Data capture bridge
GB2460306B (en) 2008-05-29 2013-02-13 Intrasonics Sarl Data embedding system
US8259938B2 (en) 2008-06-24 2012-09-04 Verance Corporation Efficient and secure forensic marking in compressed
US8826317B2 (en) 2009-04-17 2014-09-02 The Nielson Company (Us), Llc System and method for determining broadcast dimensionality
US20100268573A1 (en) * 2009-04-17 2010-10-21 Anand Jain System and method for utilizing supplemental audio beaconing in audience measurement
US10008212B2 (en) * 2009-04-17 2018-06-26 The Nielsen Company (Us), Llc System and method for utilizing audio encoding for measuring media exposure with environmental masking
US8838977B2 (en) 2010-09-16 2014-09-16 Verance Corporation Watermark extraction and content screening in a networked environment
KR20120029656A (en) * 2010-09-17 2012-03-27 삼성전자주식회사 Computer system, power supply apparatus and control method thereof
US8615104B2 (en) 2011-11-03 2013-12-24 Verance Corporation Watermark extraction based on tentative watermarks
US8923548B2 (en) 2011-11-03 2014-12-30 Verance Corporation Extraction of embedded watermarks from a host content using a plurality of tentative watermarks
US8682026B2 (en) 2011-11-03 2014-03-25 Verance Corporation Efficient extraction of embedded watermarks in the presence of host content distortions
US8533481B2 (en) 2011-11-03 2013-09-10 Verance Corporation Extraction of embedded watermarks from a host content based on extrapolation techniques
US8745403B2 (en) 2011-11-23 2014-06-03 Verance Corporation Enhanced content management based on watermark extraction records
US9323902B2 (en) 2011-12-13 2016-04-26 Verance Corporation Conditional access using embedded watermarks
US9547753B2 (en) 2011-12-13 2017-01-17 Verance Corporation Coordinated watermarking
US9571606B2 (en) 2012-08-31 2017-02-14 Verance Corporation Social media viewing system
US8869222B2 (en) 2012-09-13 2014-10-21 Verance Corporation Second screen content
US8726304B2 (en) 2012-09-13 2014-05-13 Verance Corporation Time varying evaluation of multimedia content
US9106964B2 (en) 2012-09-13 2015-08-11 Verance Corporation Enhanced content distribution using advertisements
US9262793B2 (en) 2013-03-14 2016-02-16 Verance Corporation Transactional video marking system
US9325381B2 (en) 2013-03-15 2016-04-26 The Nielsen Company (Us), Llc Methods, apparatus and articles of manufacture to monitor mobile devices
US9251549B2 (en) 2013-07-23 2016-02-02 Verance Corporation Watermark extractor enhancements based on payload ranking
US9208334B2 (en) 2013-10-25 2015-12-08 Verance Corporation Content management using multiple abstraction layers
WO2015138798A1 (en) 2014-03-13 2015-09-17 Verance Corporation Interactive content acquisition using embedded codes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972471A (en) * 1989-05-15 1990-11-20 Gary Gross Encoding system
GB2260246A (en) * 1991-09-30 1993-04-07 Arbitron Company The Method and apparatus for automatically identifying a program including a sound signal
WO1994010771A1 (en) * 1992-11-03 1994-05-11 Thames Television Plc Simultaneous transmission of audio and data signals
GB2292506A (en) * 1991-09-30 1996-02-21 Arbitron Company The Automatically identifying a program including a sound signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706282A (en) * 1985-12-23 1987-11-10 Minnesota Mining And Manufacturing Company Decoder for a recorder-decoder system
DE3851724T2 (en) * 1987-07-08 1995-05-04 Matsushita Electric Ind Co Ltd Method and device for protecting copy signals.
US5251041A (en) * 1991-06-21 1993-10-05 Young Philip L Method and apparatus for modifying a video signal to inhibit unauthorized videotape recording and subsequent reproduction thereof
US5402488A (en) * 1991-08-30 1995-03-28 Karlock; James A. Method and apparatus for modifying a video signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972471A (en) * 1989-05-15 1990-11-20 Gary Gross Encoding system
GB2260246A (en) * 1991-09-30 1993-04-07 Arbitron Company The Method and apparatus for automatically identifying a program including a sound signal
GB2292506A (en) * 1991-09-30 1996-02-21 Arbitron Company The Automatically identifying a program including a sound signal
WO1994010771A1 (en) * 1992-11-03 1994-05-11 Thames Television Plc Simultaneous transmission of audio and data signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2370955A (en) * 2001-01-09 2002-07-10 Independent Media Distrib Plc Encoding and decoding of data in audio signals
GB2370955B (en) * 2001-01-09 2005-04-20 Independent Media Distrib Plc Encoding and decoding of data in audio signals

Also Published As

Publication number Publication date
WO1997037448A3 (en) 1997-11-13
US5828325A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US5828325A (en) Apparatus and method for encoding and decoding information in analog signals
JP4431047B2 (en) Method and system for encoding and detecting multiple messages in voice data
US6175627B1 (en) Apparatus and method for embedding and extracting information in analog signals using distributed signal features
US6005501A (en) Apparatus and method for encoding and decoding information in audio signals
KR100287536B1 (en) Signal Synthesis Method and Device
AU774862B2 (en) Scalable coding method for high quality audio
EP1002388B1 (en) Apparatus and method for embedding and extracting information in analog signals using distributed signal features
US7209565B2 (en) Decoding of an encoded wideband digital audio signal in a transmission system for transmitting and receiving such signal
EP0372601B1 (en) Coder for incorporating extra information in a digital audio signal having a predetermined format, decoder for extracting such extra information from a digital signal, device for recording a digital signal on a record carrier, comprising such a coder, and record carrier obtained by means of such a device
US20020009000A1 (en) Adding imperceptible noise to audio and other types of signals to cause significant degradation when compressed and decompressed
US5864813A (en) Method, system and product for harmonic enhancement of encoded audio signals
US20040054525A1 (en) Encoding method and decoding method for digital voice data
Platte et al. A burst error concealment method for digital audio tape application
JPH07508375A (en) Data organization method for storing and/or communicating digital audio signals for studio use
McLaughlin et al. A test of MPEG using time-inverted spoken audio
NL8802769A (en) Digital audio signal coder having predetermined format - allows transmission or recording of additional channels without increased bandwidth

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP KR

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA