WO1997045739A1 - Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays - Google Patents

Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays Download PDF

Info

Publication number
WO1997045739A1
WO1997045739A1 PCT/EP1997/002662 EP9702662W WO9745739A1 WO 1997045739 A1 WO1997045739 A1 WO 1997045739A1 EP 9702662 W EP9702662 W EP 9702662W WO 9745739 A1 WO9745739 A1 WO 9745739A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
dye
fluorescence
luminescent
light
Prior art date
Application number
PCT/EP1997/002662
Other languages
English (en)
French (fr)
Inventor
Thomas Krahn
Wolfgang Paffhausen
Andreas Schade
Martin Bechem
Delf Schmidt
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7795451&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997045739(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CA002256629A priority Critical patent/CA2256629C/en
Priority to US09/194,099 priority patent/US6420183B1/en
Priority to DE59706875T priority patent/DE59706875D1/de
Priority to EP97927032A priority patent/EP0906572B1/de
Priority to DK97927032T priority patent/DK0906572T3/da
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to JP54157897A priority patent/JP3452068B2/ja
Priority to AT97927032T priority patent/ATE215698T1/de
Publication of WO1997045739A1 publication Critical patent/WO1997045739A1/de
Priority to US09/966,137 priority patent/US7063952B2/en
Priority to US10/263,607 priority patent/US7138280B2/en
Priority to US12/199,317 priority patent/US7615376B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/542Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with steric inhibition or signal modification, e.g. fluorescent quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5306Improving reaction conditions, e.g. reduction of non-specific binding, promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/80Fluorescent dyes, e.g. rhodamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/805Optical property
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/823Immunogenic carrier or carrier per se
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/13Tracers or tags

Definitions

  • the invention is based on a method for the quantitative optical analysis of fluorescence-labeled biological cells which are in contact with a fluorescent dye solution or of luminescent cells which are applied in the form of a coherent cell layer on a transparent support at the bottom of a reaction vessel, or else Fluorescence- or luminescence-labeled reaction partners in a solution in which a fluorescent or luminescent ligand is dissolved, the solution being in contact with a receptor layer which is specific to this ligand and is located on the transparent support at the bottom of the reaction vessel and whose receptor layer fluorescence or luminescence radiation characteristic of the receptor-ligand binding is detected through the transparent base and evaluated
  • Measuring systems can only reduce this background fluorescence with a special laser illumination geometry (excitation at approx. 45 °).
  • Reason for the failure of all problem solving Trying about the measurement geometry is the fact that the actual cause of the background fluorescence cannot be decisively influenced
  • the invention is based on the object of improving the sensitivity of the optical analysis of fluorescence-labeled or luminescent cells in a cellular assay, in order, for example, to be able to measure as small as possible changes in membrane potential based on fluorescence changes in potential-sensitive dyes.
  • the sensitivity of the measuring system should be so high that that potential changes below 5 mV can be at least qualitatively demonstrated. In the case of luminescent cells, an increase in the detection of the luminescence signal is to be achieved.
  • the method should also be suitable for screening with a high sample throughput
  • a further object of the invention is to simplify receptor binding studies based on fluorescence or luminescence-labeled ligands or receptors and to enable continuous measurement of the receptor binding interaction (kinetics). By reducing the required procedural steps, this method should be particularly suitable for high-throughput screening and for diagnostic applications.
  • the required high resolution with low membrane potential changes could only be achieved after the cause of the disturbing overlay of the non-specific background and specific fluorescence of the cells could be eliminated.
  • the method according to the invention developed for this purpose is based on the fundamentally new idea, the excitation energy and not the biological one To mask object-derived fluorescence.
  • a further dye is added which completely absorbs the excitation light of the fluorescent dye and / or its emission light without influencing the fluorescence of the cells. This absorption means that the non-specific background signal can be masked and the cell useful signal can be detected with a resolution that was previously not possible.
  • An alternative solution within the scope of the invention consists in applying a separating layer which is permeable to the solution and which absorbs and / or reflects the excitation light for the fluorescent dye and / or its emission light without negatively influencing the cell properties.
  • the thickness of the separating layer is chosen so that no fluorescence can be detected in the solution mixture with the fluorescent dye, but without the cells
  • a further variant of the invention consists in that the method of the separating layer according to the invention is also used to increase sensitivity in the quantitative optical analysis of luminescent (self-luminous) biological cells which are applied in the form of a coherent cell layer on a transparent support.
  • the optical properties of the separating layer which is permeable to the solution are selected such that they reflect the luminescent light as strongly as possible without negatively influencing the cell properties. In this way, the luminescence intensity and thus the measurement effect can be considerably increased.
  • the method according to the invention can be used in a completely analogous manner for the quantitative optical analysis of fluorescent or luminescence-labeled reaction partners in a reaction vessel filled with a solution, the fluorescent or luminescent ligand being in dissolved form and the solution having a specific, ligand-specific on a transparent support at the bottom of the reaction vessel or on the receptor layer
  • the solution according to the invention is based on the above described task that the free ligand in the supernatant, ie in solution, and its unspecific fluorescence or luminescence is masked by an additional dye and / or by a diffusely absorbing or reflecting separating layer and thus the cause of the disturbing overlay of the unspecific background and the specific fluorescence of the ligands in the solution is eliminated.
  • the unbound ligand is masked, the measured fluorescence or luminescence is a direct measure of the interaction ligand-receptor. In this method it can be measured directly in terms of time become
  • the invention thus relates to a process variant in which a masking dye is added to the solution and / or a separating layer which is permeable to the solution is applied to the receptor layer, the optical properties of the masking dye and / or of the separating layer are chosen such that the excitation light for the fluorescent dye of the ligand present in the solution and / or its emission light or its luminescent light is absorbed by the solution or the separating layer or reflected on the separating layer.
  • the thickness of the separating layer is selected so that that fluorescence is no longer detectable in the solution mixture with the fluorescent dye, but without the receptor layer
  • the separating layer preferably consists of polymeric latex spheres (e.g. polystyrene, polyurethane, butadiene acrylonitrile).
  • the latex spheres can also be colored with a masking dye, which in this case must have a sufficiently high polymer dyeability
  • the masking dye should be distributed as well as possible in the solution, which also contains the fluorescent dye in dissolved form. Since the solvent is generally water, a masking dye is expediently used which has good water solubility (> 2 g / ml) and has no cell-toxic side effects. According to a further development of the invention, after the supernatant containing a fluorescent dye is replaced by a fluorescent dye-free solution, a further masking dye is added, which suppresses non-specific fluorescence on the reaction vessel wall
  • the new method described is not tied to a specific measuring system, but, because it is not a specific technical solution, can be used by many commercially available devices. Virtually all fluorescent readers that illuminate transparent reaction vessels, for example microtiter plates, from the underside pay for this and can also measure.
  • the time required for a measuring program is significantly reduced and the possibility is created by a simple individual measurement (for example end point determination) using the reference to a separate account rolling approach to obtain the same results
  • the required uniformity of the biological approach e.g. homogeneous cell layer
  • the advantage essential to the invention is that, because of the masking of the unspecific fluorescence or luminescence, it is no longer necessary to remove the unbound portion of the ligands. This considerably simplifies the test procedures, damage and disruption of the sensitive coatings or biological objects such as
  • the usable surface for coating fluorescent or luminescence-labeled ligands can be significantly increased by suitable measures, for example higher specific density or The use of magneusable particles can ensure that the microparticles settle and accumulate on the transparent support. In this case too, the fluorescence or luminescence of the unbound ligands in the supernatant is effectively suppressed by the masking
  • Fig. 1 is a reaction vessel 1 for a fluorescence assay with a transparent
  • a fluorescent dye solution 3 in which the fluorescent dye molecules 4 are indicated schematically.
  • the solution 3 is also referred to as a supernatant the biological cells to be examined are arranged on a transparent support.
  • Light (excitation light) 6 is irradiated through the base 2 in order to excite the cells 5 to fluoresce.
  • the fluorescent light 7 emitted by the cells 5 is superimposed on a background fluorescent radiation 8, which originates from the likewise excited fluorescent dye molecules 4 in the supernatant 3.
  • This disadvantage can be avoided by the method according to the invention according to FIG. 2 in that the background fluorescence is suppressed by a masking dye in the supernatant 3.
  • the background fluorescence 8 present in FIG. 1 is gladly absorbed completely in the supernatant.
  • the masking dye added to the supernatant 3 ( denoted schematically by 9) can be present either in dissolved form or in finely divided disperse phase (color pigmented systems).
  • soluble dyes are preferably used because the addition can be carried out particularly easily with the aid of a pipette and because in contrast to one Pigment system, the physical influences of the particle size distribution and of sedimentation processes and layer thickness nonuniformities need not be taken into account
  • the membrane does not pass through the membrane to avoid staining the cells high specific absorption in the excitation and / or emission wavelength range of the fluorescent dye
  • FIG. 3 shows the optical (spectral) properties of a fluorescent and a masking dye in a diagram.
  • the curve ⁇ shows the spectral distribution of the excitation level
  • curve B the spectral distribution of the emitted
  • the improvement in contrast or the increase in sensitivity can be better understood with reference to FIGS. 4 and 5.
  • two video recordings of the same image detail were made before and after adding 100 mg / ml of the soluble masking dye B ⁇ lhantschwarz made in the presence of the potential-sensitive fluorescent dye D ⁇ bac 4 (3) (5 mM). Both times the same video line was evaluated image-analytically and the two fluorescence intensity profiles were shown over the identical sections in the reaction vessel.
  • the area Z corresponds to the area in which the cell layer, ie the biological sample, is located to the right of it in zone U for the most part the fluorescence signal from the supernatant is measured.
  • the measuring range of the recording system (8 bit) is between 0 (black) and 255 (white) for the unmasked Record
  • An alternative way of improving the ratio of useful signal to background signal, according to FIG. 6, is to overlay the cell layer with a fine-particle optical separating layer 10.
  • the separating layer 10 suitably consists of a fine-particle inorganic white pigment, such as TiO 2 or Al 2 O ? This not only shields the background fluorescent radiation from the supernatant 3, but also increases the measurable size of the cell fluorescence by reflection on the inorganic particles.
  • the separating layer can consist of polymeric latex beads with a diameter preferably in the range from 200 nm to 5 mm.
  • Suitable polymers are, for example, polystyrene, polyurethane, butadiene acrylonitrile.
  • the latex beads can also be dyed with a suitable masking dye to which the same criteria apply as for the absorption dye added to the solution (see above).
  • a suitable class of dyes are, for example, ® Resoiine.
  • luminescence assays self-luminous cells
  • a reflective separating layer 10 analogously to the method of suppressing the background fluorescence (according to FIG. 6)
  • the luminescence signal of the biological cells can be amplified.
  • radiation components 1 1 of the non-directional luminescent light are reflected in the direction of the detector and thus increase the specific measurement signal
  • the fluorescent dye FURA2-AM is e.g. split into the free dye after penetration into the cell and thereby loses its cell membrane permeability. This leads to an accumulation of the impermeable fluorescent dye in the cell.
  • the fluorescent supernatant 3 can be replaced by a fluorescent dye-free one
  • Solution 3 a can be replaced without changing the specific cell fluorescence.
  • the non-specific background fluorescence of the supernatant is removed in this way.
  • FURA2-AM stains reaction vessels sustainably (wall fluorescence) and thus generates another non-specific fluorescence signal which is comparable to the background fluorescence of distribution dyes. This fact is shown in Fig. 8.
  • the background fluorescent radiation 8 is due to the fluorescent dye molecules 4 adhering to the vessel walls.
  • This unspecific fluorescence signal can also be completely suppressed by introducing masking dyes into the fluorescent dye-free supernatant 3a.
  • FIG. 10 additionally shows an exemplary embodiment analogous to FIG. 2, in which the biological layer applied on a transparent support at the bottom 2 of the reaction vessel 1 consists of receptors 12 which are compatible with those in the supernatant
  • the measurement effect is therefore largely due to the ligands 14 bound to the receptors 12 and is not falsified by the background radiation of the unbound ligands 13 in the solution 3.
  • the measurement signal is therefore a direct measure of the strength of the ligand-receptor binding.
  • the layer thickness of the receptor layer is in the nm range, while the dimensions of the overhang located above are in the order of magnitude of several mm.
  • the separating layer 10 which is permeable to the solution, can be used in a completely analogous manner when examining ligand-receptor bonds for masking or suppressing the background fluorescence or luminescence.
  • the interfering background fluorescence or luminescence is shielded by the separating layer 10 and, in the case of luminescent ligands, the radiation components 11 of the luminescent light originating from bound ligands are reflected in the direction of the detector and the useful signal is thus amplified.
  • the non-fluorescent or luminescent reaction partner to be assessed in terms of its binding strength in classic pharmacological receptor binding studies was not shown here for reasons of clarity

Abstract

Bei einem Verfahren zur quantitativen optischen Analyse von fluoreszenzmarkierten biologischen Zellen (5) steht eine Zellschicht auf einem transparenten Träger am Boden (2) eines Reaktionsgefäßes (1) mit einer den Fluoreszenzfarbstoff (4) enthaltenden Lösung (3) in Kontakt. Die Empfindlichkeit des analytischen Nachweises kann erheblich verbessert werden, wenn der Lösung (3) zusätzlich zu dem bereits vorhandenen Fluoreszenzfarbstoff (4) ein Maskierungsfarbstoff (9) hinzugegeben wird, welcher das Anregungslicht (6) für den Fluoreszenzfarbstoff (4) und/oder sein Emissionslicht (7) absorbiert und/oder wenn auf die Zellschicht am Boden (2) eine für die Lösung durchlässige, das Anregungslicht (6) oder das Emissionslicht (7) absorbierende und/oder reflektierende Trennschicht (10) aufgebracht wird. Dieses Verfahren kann auch zur Verbesserung der Empfindlichkeit bei der quantitativen optischen Analyse einer lumineszenten biologischen Zellschicht angewandt werden. Die Trennschicht (10) muß in diesem Fall so beschaffen sein, daß sie ein hohes Reflexionsvermögen für das Lumineszenzlicht (11) besitzt. In analoger Weise können diese Verfahrensprinzipien auch bei Rezeptorstudien zur Maskierung der störenden Hintergrundstrahlung bei der quantitativen optischen Analyse von Fluoreszenz- oder Lumineszenz-markierten Reaktionspartnern angewendet werden. In diesem Fall steht eine Rezeptorschicht (12) am Boden (2) eines Reaktionsgefäßes (1) mit einer Lösung (Überstand 3) in Kontakt, in der ein fluoreszierender oder lumineszierender Ligand (13) gelöst ist. Die Empfindlichkeit und Genauigkeit des analytischen Nachweises können dabei erheblich verbessert werden, wenn dem Überstand 3 ein Maskierungsfarbstoff (9) hinzugegeben wird, welcher das Anregungslicht (6) für den Fluoreszenzfarbstoff und/oder sein Emissionslicht oder (im Falle von lumineszenten Liganden) das Lumineszenzlicht absorbiert. Anstelle des Maskierungsfarbstoffes in der Lösung (3) oder ggf. als zusätzliche Maßnahme kann auf die Zell- bzw. Rezeptorschicht (12) am Boden (2) eine für die Lösung (3) durchlässige, das Anregungslicht (6) und/oder das Emissionslicht bzw. das Lumineszenzlicht absorbierende und/oder reflektierende Trennschicht (10) aufgebracht werden.

Description

Maskierung der Hintergrundfluoreszenz und -lumineszenz bei der optischen Analyse biologisch medizinischer Assavs
Die Erfindung geht aus von einem Verfahren zur quantitativen optischen Analyse von fluoreszenzmarkierten biologischen Zellen, die mit einer Fluoreszenzfarbstofflosung in Kontakt stehen oder von lumineszenten Zellen, die in Form einer zusammenhangen¬ den Zellschicht auf einem transparenten Trager am Boden eines Reaktionsgefaßes aufgebracht sind, oder auch von Fluoreszenz- oder Lumineszenz-markierten Reak¬ tionspartnern in einer Losung, in der ein fluoreszierender oder lumineszenter Ligand gelost ist wobei die Losung mit einer für diesen Ligand spezifischen, am trans¬ parenten Trager am Boden des Reaktionsgefäß befindlichen Rezeptorschicht in Kon¬ takt steht, deren für die Rezeptor-Liganden Bindung charakteristische Fluoreszenz- oder Lumineszenzstrahlung durch den transparenten Boden hindurch erfaßt und aus¬ gewertet wird
Ein Problem bei der Fluoreszenzmessung in biologisch medizinischen Assays besteht häufig dann daß die mit der biologischen Zellaktion korreherten Fluoreszenzan- derungen klein gegenüber der unspezifischen Hintergrundfluoreszenz sind Dadurch wird das Auflösungsvermögen stark eingeschränkt Herkömmliche kommerzielle Meßsysteme (Fluoreszenzreader, Fa Dynatech bzw SLT) können das Problem nicht losen, weil durch ihre optischen Meßanordnung (Anregung \ on oben durch die fluoreszente Flussigkeitssaule des Uberstands) das Signal im \ ergleich zum Hinter- grund kaum detektiert werden kann Gerate neuerer Konstruktion (Fa Labsystems), die die Zellen von der Ruckseite durch den transparenten Trager des Reaktions¬ gefaßes beleuchten, haben zwar den Vorteil, daß bei Eintritt des Anregungshchts die Zellen zur Fluoreszenz angeregt werden Da das Anregungslicht aber weiter in den ebenfalls fluoreszenten Überstand eintritt, laßt es sich nicht vermeiden, daß das unspezifische Hmtergrundsignal das Zellsignal verfälscht Selbst sehr aufwendige
Meßsysteme (Fa NovelTech, FLLPR Flurescence Imaging Plate Reader) können mit einer speziellen Laser-Beleuchtungsgeometπe (Anregung unter ca 45°) diese Hinter- grundfluoreseszenz nur vermindern Grund für das Scheitern aller Problemlosungs- versuche über die Meßgeometrie ist der Umstand, daß hierüber die eigentliche Ursache für die Hintergrundfluoreszenz nicht entscheidend beeinflußt werden kann
Bei den bisher durchgeführten Rezeptor-Bindungstudien mit Fluoreszenz- oder Lumineszenz-markierten Liganden muß der jeweils markierte und nicht gebundene
Anteil durch waschähnliche Vorgänge entfernt werden Viele Beschichtungen sind jedoch empfindlich für diese Waschschritte Außerdem ist das Entfernen des unge¬ bundenen Liganden mit einem beträchtlichen Aufwand verbunden Die direkte Mes¬ sung der Rezeptor-Ligand Assoziation bzw. Dissoziation ist bei diesem Verfahren nicht möglich
Der Erfindung hegt die Aufgabe zugrunde, die Empfindlichkeit der optischen Analyse von fluoreszenzmarkierten oder lumineszenten Zellen in einem zellularen Assay zu verbessern, um z B möglichst geringe Membranpotentialänderungen auf der Basis von Fluoreszenzanderungen potentialsensitiver Farbstoffe messen zu können Dabei soll die Empfindlichkeit des Meßsystems so hoch sein, daß sich Potentialanderungen unter 5 mV mindestens qualitativ nachweisen lassen Im Falle von lumineszenten Zellen soll eine Steigerung in der Detektion des Lumineszenzsignals erreicht werden. Außerdem soll die Methode für ein Screening mit hohem Probendurchsatz geeignet sein
Weiterhin liegt der Erfindung die Aufgabe zugrunde, Rezeptor-Bindungsstudien auf der Basis von Fluoreszenz- bzw Lumineszenz-markierten Liganden bzw Rezeptoren zu vereinfachen und eine kontinuierliche Messung der Rezeptor-Bindungsinteraktion (Kinetik) zu ermöglichen. Durch die Reduzierung der erforderlichen Verfahrens¬ schritte soll diese Methode insbesondere für ein Screening mit hohem Durchsatz und für diagnostische Anwendungen geeignet sein.
Die geforderte hohe Auflosung bei geringen Membranpotentialanderungen konnte erst erzielt werden, nachdem die Ursache für die störende Überlagerung der un¬ spezifischen Hintergrund- und der spezifischen Fluoreszenz der Zellen beseitigt wer¬ den konnte. Das hierzu entwickelte erfindungsgemaße Verfahren beruht auf der grundsätzlich neuen Idee, die Anregungsenergie und die nicht von dem biologischen Objekt stammende Fluoreszenz zu maskieren. Hierzu wird neben dem Fluoreszenz¬ farbstoff ein weiterer Farbstoff hinzugefügt, der das Anregungslicht des Fluoreszenz¬ farbstoffs und/oder dessen Emissionslicht vollkommen absorbiert, ohne die Fluor¬ eszenz der Zellen zu beeinflussen. Durch diese Absorption wird erreicht, daß das unspezifische Hintergrundsignai maskiert und das Zell-Nutzsignal mit einer bisher nicht möglichen Auflosung detektiert werden kann.
Eine im Rahmen der Erfindung liegende Alternativlosung besteht darin, daß auf die Zellschicht eine für die Losung durchlassige Trennschicht aufgebracht wird, die das Anregungslicht für den Fluoreszenzfarbstoff und/oder sein Emissionslicht absorbiert und/oder reflektiert, ohne die Zelleigenschaften negativ zu beeinflussen. Dabei wird die Dicke der Trennschicht so gewählt, daß im Losungsansatz mit dem Fiuoreszenz- farbstoff aber ohne die Zellen keine Fluoreszenz mehr nachweisbar ist
Eine weitere Variante der Erfindung besteht darin, daß die Methode der erfindungs¬ gemaßen Trennschicht auch zur Empfindlichkeitssteigerung bei der quantitativen optischen Analyse von lumineszenten (selbstleuchtenden) biologischen Zellen verwen¬ det wird, die in Form einer zusammenhangenden Zellschicht auf einem transparenten Träger aufgebracht sind. Zu diesem Zweck werden die optischen Eigenschaften,der für die Losung durchlassigen Trennschicht so gewählt, daß sie das Lumineszenzlicht möglichst stark reflektiert, ohne die Zelleigenschaften negativ zu beeinflussen Auf diese Weise kann die Lumineszenzintensitat und damit der Meßeffekt betrachtlich erhöht werden.
Das erfindungsgemaße Verfahren kann in ganz analoger Weise zur quantitativen optischen Analyse von Fluoreszenz- oder Lumineszenz-markierten Reaktionspartnern in einem mit einer Losung gefüllten Reaktionsgefaß herangezogen werden, wobei der fluoreszierende oder lumineszente Ligand in gelöster Form vorliegt und die Losung mit einer für diesen Ligand spezifischen, auf einem transparenten Trager am Boden des Reaktionsgefäß aufgebrachten oder sich darauf absetzenden Rezeptorschicht in
Kontakt steht, deren für die Rezeptor-Liganden Bindung charakteristische Fluor¬ eszenz- oder Lumineszenzstrahlung durch den transparenten Boden hindurch erfaßt und ausgewertet wird. In diesem Fall beruht die erfindungsgemaße Losung der oben beschriebenen Aufgabe darauf, daß der sich im Überstand, d.h in Losung befindliche freie Ligand und dessen unspezifische Fluoreszenz oder Lumineszenz durch einen zusätzlichen Farbstoff und/oder durch eine diffus absorbierende oder reflektierende Trennschicht maskiert wird und damit die Ursache für die störende Überlagerung der unspezifischen Hintergrund- und der spezifischen Fluoreszenz der Liganden in der Losung beseitigt wird Da auf diese Weise der nicht gebundene Ligand maskiert wird, stellt die gemessene Fluoreszenz oder Lumineszenz ein direktes Maß für die Inter¬ aktion Ligand-Rezeptor dar. Sie kann bei diesem Verfahren zeitlich aufgelost direkt gemessen werden
Gegenstand der Erfindung ist also bei Rezeptorstudien in Analogie zu dem oben beschriebenen Verfahren eine Verfahrensvariante, bei der der Losung ein Maskie¬ rungsfarbstoff hinzugefügt und/oder auf die Rezeptorschicht eine für die Losung durchlässige Trennschicht aufgebracht wird, wobei die optischen Eigenschaften des Maskierungsfarbstoffs und/oder der Trennschicht so gewählt werden, daß das Anre¬ gungslicht für den Fluoreszenzfarbstoff des in der Losung vorhandenen Liganden und/oder sein Emissionslicht oder sein Lumineszenzlicht von der Losung oder der Trennschicht absorbiert oder an der Trennschicht reflektiert wird Dabei wird die Dicke der Trennschicht so gewählt, daß im Losungsansatz mit dem Fluoreszenzfarb- stoff, aber ohne die Rezeptorschicht, keine Fluoreszenz mehr nachweisbar ist
Vorzugsweise besteht die Trennschicht aus polymeren Latexkugelchen (z.B. Poly¬ styrol, Polyurethan, Butadien Acrylnitril). Die Latexkugelchen können dabei auch mit einem Maskierungsfärbstoff gefärbt sein, der in diesem Fall eine hinreichend große Polymeranfärbbarkeit aufweisen muß
Bei dem zuerst erwähnten Verfahren soll sich der Maskierungsfarbstoff möglichst gut in der Lösung, die auch den Fluoreszenzfarbstoff in gelöster Form enthält, verteilen. Da das Lösungsmittel in der Regel Wasser ist, wird zweckmäßig ein Maskierungsfarb- stoff eingesetzt, der eine gute Wasserlöslichkeit besitzt (>2g/ml) und keine zelltoxi¬ schen Nebeneffekte aufweist. Gemaß einer Weiterentwicklung der Erfindung wird nach dem Austausch des einen Fluoreszenzfarbstoff enthaltenden Uberstandes durch eine Fluoreszenzfarbstoff-freie Losung ein weiterer Maskierungsfarbstoff zugegeben, weicher eine unspezifische Fluoreszenz an der Reaktionsgefäßwand unterdrückt
Mit der Erfindung werden folgende Vorteile erzielt
Das beschriebene neue Verfahren ist nicht an ein bestimmtes Meßsystem gebunden, sondern kann, weil es keine spezifisch technische Losung darstellt, von vielen handels¬ üblichen Geräten benutzt werden Hierzu zahlen praktisch alle Fluoreszenzreader, die transparente Reaktionsgefaße z B Mikrotiterplatten von der Unterseite her beleuch¬ ten und auch messen können. Mit einem sehr geringen Aufwand (minimale Zusatz- kosten nur für die speziellen Absorptionsfarbstoffe) wird es hierdurch erstmals mög¬ lich, in einen Auflosungsbereich z B. bei der Messung von Potentialanderungen in Zellmembranen durch Messung der Fluoreszenzanderung potentialsensitiver Fluor- eszenzfarb Stoffe vorzudringen, der bisher unerreicht war Erstmals wird es möglich, auch bei sehr kleinen Änderungen einen direkten Vergleich der Ergebnisse aus ver¬ schiedenen Reaktionsgefaßen (z B verschiedene Vertiefungen in einer Mikrotiter- platte) durchzuführen, so daß auf das aufwendige Verfahren der Bestimmung der rela¬ tiven Änderung in einem Reaktionsgefaß verzichtet werden kann Dadurch verringert sich die Anzahl der zu erfassenden Meßwerte z B für Kinetikmessungen Der zeitliche Aufwand für ein Meßprogramm wird deutlich reduzieπ und die Möglichkeit geschaffen, durch eine simple Einzelmessung (z B Endpunktbestimmung) unter Verwendung des Bezugs auf einen getrennten Kontrollansatz gleiche Resultate zu erhalten Die hierbei geforderte Uniformitat des biologischen Ansatz (z B homogene Zellschicht) ist z.B für Mikrotiterplatten im allgemeinen gegeben
Überraschenderweise zeigte die Anwendung verschiedener wasserlöslicher Farbstoffe und auch deren Mischungen in den verschiedensten getesteten Zellen keine negative Auswirkung auf die Physiologie der Zellen (z B Reaktion der Zellen im Vergleich zu elektrophysiologischen Messungen wie Whole-cell-patch-clamp, bzw Effekte der untersuchten Pharmaka) Auch der Einsatz von unlöslichen Farbpigmenten bzw. anor¬ ganischen feinverteilten Teilchen wurde erstaunlich gut von den biologischen Objek¬ ten toleriert. Durch das beschriebene einfache Verfahren der Maskierung der Hintergrundfluor¬ eszenz bei der quantitativen Fluoreszenzmessung in biologisch medizinischen Assays verbunden mit einer Steigerung der Empfindlichkeit z B beim Einsatz \ on potential¬ sensitiven Fluoreszenzfarbstoffen und die Adaptionsfahigkeit dieses Verfahrens z B auf Mikrotiterplatten als Reaktionsgefaße wird der Einsatz solcher Meßtechniken das High-Throughput-Screening wesentlich vereinfachen zumal zur Realisierung der ge¬ schilderten Vorteile kein erhöhter technischer Aufwand notwendig ist sondern vor¬ handene kommerzielle Meßgerate dazu ausreichen
Bei Rezeptor-Liganden Studien hegt der erfindungsuesentliche Vorteil dann daß es aufgrund der Maskierung der unspezifischen Fluoreszenz bzw Lumineszenz nicht mehr erförderlich ist, den nicht gebundenen Anteil der Liganden zu entfernen Dadurch werden die Testverfahren erheblich vereinfacht, Beschädigungen und Zer- Störungen der empfindlichen Beschichtungen bzw der biologischen Objekte wie z B
Zellen, vermieden und die Empfindlichkeit und damit auch die Genauigkeit der Messung verbessert Durch die Verwendung von Mikropartikeln kann die nutzbare Oberflache zur Beschichtung von Fluoreszenz- oder Lumineszenz-markierten Ligan¬ den wesentlich vergrößert werden Durch geeignete Maßnahmen z B höhere spezi- fische Dichte bzw die Verwendung von magneüsierbaren Partikeln kann erreicht werden, daß sich die Mikropartikel am tranparenten Trager absetzen und anreichern Auch in diesem Fall wird die Fluoreszenz bzw Lumineszenz der nicht gebundenen, im Überstand befindlichen Liganden durch die Maskierung wirkungsvoll unterdruckt
Da die Interaktion zwischen dem Liganden und dem Rezeptor nicht durch das Ent¬ fernen des ungebundenen Anteils unterbrochen weden muß kann auf diese Weise sogar in einem einzelnen Reaktionsansatz eine kontinuierliche Messung der Inter¬ aktion zwischen Ligand und Rezeptor (Kinetik) erfolgen Im Folgenden wird die Erfindung an Hand von Ausführungsbeispielen und Zeich¬ nungen naher erläutert Es zeigen
Fig 1 ein Reaktionsgefaß für einen Fluoreszenzassay nach dem Stand der Technik
Fig 2 die Unterdrückung der Hintergrundfluoreszenz bei einem Fluoreszenzassay mit einem Maskierungsfärbstoff im Überstand
Fig 3 die spektrale Anregung und Emission für einen Verteilungsfarbstoff und die spektrale Absorption des Maskierungsfarbstoffes
Fig 4 die ortsabhangige Zellfluoreszenz ohne Maskierungsfarbstoff
Fig 5 die ortsabhangige Zellfluoreszenz mit Maskierungsfarbstoff
Fig 6 die Unterdrückung der Hintergrundfluoreszenz bei einem Fluoreszenzassay mit Hilfe einer Trennschicht
Fig 7 die Verstärkung der Lumineszenz durch Ruckreflexion an einer Trennschicht
Fig 8 die Wandfluoreszenz bei einem Fluoreszenzassay nach dem Stand der 1 echnik
Fig 9 die Unterdrückung der Wandfluoreszenz bei einem Fluoreszenzassay mit Hilfe eines Maskierungsfärbstoffes und
Fig 10 die Unterdrückung der Hintergrund-fluoreszenz oder lumineszenz bei einem Fluoreszenz- oder Lummeszenzassay zur Untersuchung von Rezeptor-Ligan- denbmdungen mit Hilfe eines Maskierungsfarbstoffs im Überstand
In Fig 1 ist ein Reaktiongefaß 1 für ein Fluoreszenzassay mit einem transparenten
Boden 2 dargestellt In dem Reaktionsgefaß 1 befindet sich eine Fluoreszenzfarbstoff¬ losung 3, in der die Fluoreszenzfarbstoffmolekule 4 schematisch angedeutet sind Die Losung 3 wird auch als Überstand bezeichnet Auf dem transparenten Boden 2 sind die zu untersuchenden biologischen Zellen auf einem transparenten Trager ange¬ ordnet Durch den Boden 2 wird Licht (Anregungslicht) 6 eingestrahlt, um die Zellen 5 zur Fluoreszenz anzuregen. Dem von den Zellen 5 ausgestrahlten Fluoreszenzlicht 7 ist eine Hintergrundfluoreszenz-Strahlung 8 überlagert, die von den ebenfalls ange- regten Fluoreszenzfärbstoffmolekulen 4 im Überstand 3 herrührt Für die biologisch¬ analytische Untersuchung und Auswertung der Zellen 5 ist aber nur das Fluoreszenz¬ licht 7 maßgebend Da aber bei allen bekannten Fluoreszenz-Analysegeraten die Hintergrundfluoreszenz 8 mit erfaßt wird, gehen kleine Fluoreszenzunterschiede der Zellen 5 vor der starken Hintergrundfluoreszenz 8 unter, was zu einem deutlichen Empfindlichkeitsverlust führt
Dieser Nachteil kann durch das erfindungsgemaße Verfahren nach Fig 2 dadurch vermieden werden, daß die Hintergrundfluoreszenz durch einen Maskierungsfarbstoff im Überstand 3 unterdruckt wird Die in Fig 1 vorhandene Hintergrundfluoreszenz 8 wird gern Fig 2 vollständig im Überstand absorbiert Der zu dem Überstand 3 hinzu¬ gefügte Maskierungsfarbstoff (schematisch mit 9 bezeichnet) kann entweder in ge¬ löster Form oder in fein verteilter disperser Phase (färbpigmentierte Systeme) vorlie¬ gen Bevorzugt werden jedoch lösliche Farbstoffe eingesetzt, weil hier die Zugabe besonders einfach mit Hilfe einer Pipette erfolgen kann und weil im Gegensatz zu einem Pigment-System die physikalischen Einflüsse der Teilchengroßenverteilung und von Sedimentationsprozessen und Schichtdickenungleichmaßigkeiten nicht berück¬ sichtigt werden müssen
An die Eigenschaften eines derartigen Farbstoffs werden folgende Anforderungen gestellt
bei Verwendung eines loslichen Absorptionsfärbstoffes gute Wasserloslichkeit für den Einsatz in biologischen Assays
- keine Membrangangigkeit des Farbstoffs, um eine Anfarbung der Zellen zu vermeiden hohe spezifische Absorption im Excitations- und/oder Emissions-Wellenlan- genbereich des Fluoreszenzfarbstoffes
keine toxischen Nebeneffekte (Vermeidung von Zellschadigungen)
Als gute Wasserloshchkeit wird eine Loshchkeit von >2 mg/ml angesehen Die Zell- toxizitat kann mit Hilfe bekannter Testverfahren (z B Zytotoxizitatstest) bestimmt werden Fig 3 zeigt die optischen (spektralen) Eigenschaften eines Fluoreszenz- und eines Maskierungsrarbstoffes in einem Diagramm Die Kurve \ zeigt die spektrale Verteilung des Anregungshchtes, die Kurve B die spektrale Verteilung des emittierten
Fluoreszenzlichts für den handelsüblichen Verteilungsfluoreszenz-Farbstoff Bιs-(1,3- dιbutvlbarbιtuπcacιd)tπmethaneoxonol (Dιbac,ι(3)) und die Kurve C die spektrale Transmission (Absorptionsspektrum) des verwendeten Maskierungsfarbstoffs (Bπl- Iiant Black BN, C I 28440, Food Black 1, z B Sigma B-8384) Man erkennt, daß der Maskierungsfarbstoff im Wellenlangenbereich der Anregung und Emission des Fluor¬ eszenzfarbstoffs fast vollständig absorbiert
Die Kontrastverbesserung bzw Empfindlichkeitssteigerung laßt sich noch besser an Hand der Figuren 4 und 5 verstehen Zur Demonstration der Wirkung des Maskie- rungsfarbstoffs auf die unspezifische Hintergrundfluoreszenz wurden zwei Videoauf¬ nahmen von dem gleichen Bildausschnitt vor und nach Hinzufügen von 100 mg/ml des loslichen Maskierungsfärbstoffes Bπlhantschwarz in Anwesenheit des potential¬ sensitiven Fluoreszenzfarbstoffes Dιbac4(3) (5 mM) gemacht Beide Male wurden die¬ selbe Videozeiie bildanalytisch ausgewertet und die beiden Fluoreszenzmtensitatspro- file über die identischen Ausschnitte im Reaktionsgefaß dargestellt Der Bereich Z entspricht dabei dem Bereich, in dem sich die Zellschicht, d h die biologische Probe befindet, wahrend rechts davon in der Zone U zum größten Teil das vom Überstand herkommende Fluoreszenzsignal gemessen wird Der Meßbereich des Aufnahme¬ systems (8 bit) liegt zwischen 0 (schwarz) und 255 (weiß) Für die unmaskierte Auf- nähme ergibt sich ein Kontrastverhaltnis von ca 1 3,6 (Intensitatsverhaltnis der dun¬ kelsten und hellsten Bildanteile) und im Falle der maskierten Aufnahme ein Kontrast¬ verhaltnis von ca 1 14,4 Das entspπcht einer Kontraststeigerung um den Faktor 4 Eine alternative Möglichkeit, das Verhältnis von Nutz- zu Hintergrund signal zu ver¬ bessern, besteht gemäß Fig. 6 in einer Überlagerung der Zellschicht mit einer fein- teiligen optischen Trennschicht 10. Die Trennschicht 10 besteht zweckmäßig aus einem feinteiligen anorganischen Weißpigment, wie z.B. TiO2 oder Al2O? Hierdurch wird nicht nur die Hintergrundfluoreszenzstrahlung aus dem Überstand 3 abgeschirmt, sondern auch die meßbare Größe der Zellfluoreszenz durch Reflexion an den anorga¬ nischen Teilchen verstärkt.
Alternativ kann die Trennschicht aus polymeren Latexkügelchen mit einem Durch- messer vorzugsweise im Bereich von 200 nm bis 5 mm bestehen. Geeignete Polymere sind z.B. Polystyrol, Polyurethan, Butadien Acrylnitril. Die Latexkügelchen können auch mit einem geeigneten Maskierungsfarbstoff angefärbt werden, für den die glei¬ chen Kriterien gelten, wie für den der Lösung zugefügten Absorptionsfarbstoff (s. oben). Eine geeignete Farbstoffklasse sind z.B. ®Resoiine.
In Lumineszenz-Assays (selbstleuchtende Zellen) besteht grundsätzlich die Anfor¬ derung, die spezifische sehr geringe Lichtintensität einer biologischen Zelle mit hoher Empfindlichkeit zu detektieren. Durch Einbringen einer reflektierenden Trennschicht 10 gemäß Fig. 7 kann, analog zur Methode der Unterdrückung der Hintergrundfluor- eszenz (gem. Fig. 6), das Lumineszenzsignal der biologischen Zellen verstärkt wer¬ den. Hierbei werden Strahlungsanteile 1 1 des ungerichteten Lumineszenzlichtes in Richtung des Detektors reflektiert und erhöhen so das spezifische Meßsignal
Bei einer Vielzahl anderer fluoreszenter Testverfahren an biologischen Zellen ist es im Gegensatz zu Verteilungsfärbstoffen möglich, den Fluoreszenzfärb stoff nach Anfär- bung der Zellen durch Lösungswechsel aus dem Überstand zu entfernen. Der Fluor¬ eszenzfarbstoff FURA2- AM wird z.B. nach Eindringen in die Zelle in den freien Farb¬ stoff gespalten und verliert hierbei seine Zellmembranpermeabilität. Dadurch kommt es zu einer Anreicherung des impermeablen Fluoreszenzfarbstoffes in der Zelle. In diesem Fall kann der fluoreszente Überstand 3 durch eine Fluoreszenzfarbstoff-freie
Lösung 3 a ausgetauscht werden, ohne die spezifische Zellfluoreszenz zu verändern. Die unspezifische Hintergrundfluoreszenz des Überstandes wird auf diese Weise entfernt. FURA2-AM färbt jedoch Reaktionsgefäße nachhaltig an (Wandfluoreszenz) und erzeugt so ein anderes unspezifisches Fluoreszenzsignal, das der Hintergrund¬ fluoreszenz von Verteilungsfarbstoffen vergleichbar ist. Dieser Sachverhalt ist in Fig. 8 dargestellt. In diesem Fall geht also die Hintergrundfluoreszenzstrahlung 8 auf die an den Gefäßwänden anhaftenden Fluoreszenzfarbstoffmoleküle 4 zurück. Durch Ein- bringung von Maskierungsfarbstoffen in den Fluoreszenzfarbstoff-freien Überstand 3a kann auch dieses unspezifische Fluoreszenzsignal vollständig unterdrückt werden.
In Fig. 10 ist zusätzlich ein zu Fig. 2 analoges Ausführungsbeispiel dargestellt, bei dem die auf einem transparenten Träger am Boden 2 des Reaktionsgefäßes 1 aufge- brachte biologische Schicht aus Rezeptoren 12 besteht, die mit den im Überstand
(Lösung) 3 vorhandenen, Fluoreszenz- oder Lumineszenz-markierten Liganden 13 eine spezifische Bindung eingehen, Die gebundenen Liganden sind hier mit 14 be¬ zeichnet. Das durch den Boden 2 eingestrahlte Primärlicht 6 regt im Falle der nicht maskierten Lösung die Fluoreszenz-markierten Liganden 13 und 14 zur Fluoreszenz an. Im Falle von Lumineszenz-markierten Liganden entfällt das Primärlicht 6. Analog zur Ausführung nach Fig. 2 wird der Lösung 3 wiederum ein Maskierungsfarbstoff beigefügt, der dafür sorgt, daß die von den ungebundenen Liganden 13 ausgehende Fluoreszenz- oder Lumineszenzstrahlung in der Lösung vollständig absorbiert wird. Die am Boden 2 erfaßte Fluoreszenz- oder Lumineszenzstrahlung 15, d.h. der Meß- effekt, geht daher ganz überwiegend auf die an die Rezeptoren 12 gebundenen Ligan¬ den 14 zurück und wird nicht durch die Hintergrundstrahlung der ungebundenen Liganden 13 in der Lösung 3 verfälscht. Das Meßsignal ist daher ein direktes Maß für die Stärke der Ligand-Rezeptorbindung. Dabei liegt die Schichtdicke der Rezeptor¬ schicht im nm-Bereich, während die Dimensionen des darüber befindlichen Über- Standes in der Größenordnung mehrerer mm liegt.
Gemäß Fig. 6 und 7 kann die für die Lösung durchlässige Trennschicht 10 in ganz analoger Weise bei der Untersuchung von Liganden-Rezeptorbindungen zur Mas¬ kierung bzw. Unterdrückung der Hintergrundfluoreszenz bzw. -lumineszenz einge- setzt werden. In diesem Fall wird die störende Hintergrundfluoreszenz bzw. -lumin¬ eszenz durch die Trennschicht 10 abgeschirmt und im Falle von lumineszenten Ligan¬ den Strahlungsanteile 1 1 des von gebundenen Liganden stammenden Lumineszenz¬ lichts in Richtung auf den Detektor reflektiert und damit das Nutzsignal verstärkt. Der in klassischen pharmakologischen Rezeptorbindungsstudien hinsichtlich seiner Bindungsstarke zu bewertende, nicht fluoreszierende bzw lumineszierende Reaktions¬ partner wurde hier aus Gründen der Übersichtlichkeit nicht dargestellt

Claims

Patentansprüche
1 Verfahren zur quantitativen optischen Analyse von fluoreszenzmarkierten bio¬ logischen Zellen (5), die in Form einer zusammenhangenden Zellschicht auf einem transparenten Trager am Boden (2) eines Reaktionsgefaßes (1) aufge¬ bracht sind und mit einer den Fluoreszenzfarbstoff (4) enthaltenden Losung (3) in Kontakt stehen, oder von lumineszenten, biologischen Zellen in Form einer zusammenhangenden, auf dem transparenten Trager befindlichen Zell¬ schicht, dadurch gekennzeichnet, daß der Losung (3) zusätzlich zu dem bereits vorhandenen Fluoreszenzfarbstoff (4) ein Maskierungsfarbstoff (9) hinzugege¬ ben wird, welcher das Anregungslicht (6) für den Fluoreszenzfarbstoff (4) und/oder sein Emissionshcht (7) absorbiert und/oder daß auf die Zellschicht eine für die Losung durchlassige Trennschicht (10) aufgebracht wird, die das Anregungslicht (6) für den Fluoreszenzfarbstoff (4) und/oder sein Emissions- licht (7) absorbiert und/oder reflektiert oder im Falle der lumineszenten
Zellschicht das Lumineszenhcht reflektiert
2 Verfahren zur quantitativen optischen Analyse von Fluoreszenz- oder Lumin¬ eszenz-markierten Reaktionspartnern in einem mit einer Losung (3) gefüllten Reaktionsgefaß (1), in der ein fluoreszierender oder lumineszenter Ligand (13) gelost ist und die Losung (3) mit einer für diesen Ligand ( 13) spezifischen, auf einem transparenten Trager am Boden (2) des Reaktionsgefaß (1) aufgebrach¬ ten oder sich darauf absetzenden Rezeptorschicht ( 12) in Kontakt steht, deren für die Rezeptor-Liganden Bindung charakteristische Fluoreszenz- oder Lumineszenzstrahiung (7, 15) durch den transparenten Boden (2) hindurch er¬ faßt und ausgewertet wird, dadurch gekennzeichnet, daß der Losung (3) ein Maskierungsfarbstoff (9) hinzugefügt und/oder auf die Rezeptorschicht (12) eine für die Losung (3) durchlassige Trennschicht (10) aufgebracht wird, wo¬ bei die optischen Eigenschaften des Maskierungsfärbstoffs (9) und/oder der Trennschicht (10) so gewählt werden, daß das Anregungslicht (6) für den
Fluoreszenzfarbstoff (4) des in der Losung (3) vorhandenen Liganden (13) und/oder sein Fluoreszenzlicht (8) oder sein Lumineszenzlicht von der Losung (3) oder der Trennschicht (10) absorbiert oder an der Trennschicht (10) re¬ flektiert wird
Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet daß als Trenn- Schicht (10) eine Schicht aus polymeren Latexkügelchen verwendet wird
Verfahren nach Anspruch 3, dadurch gekennzeichnet daß die polymeren Latexkügelchen mit einem Maskierungsfarbstoff gefärbt sind
Verfahren nach Anspruch 1 - 2, dadurch gekennzeichnet daß ein Maskie¬ rungsfarbstoff verwendet wird, der eine gute Wasserloslichkeit und keine zell¬ toxischen Nebeneffekte aufweist
Verfahren nach Anspruch 1 - 2, dadurch gekennzeichnet daß bei einem Aus- tausch des einen Fluoreszenzfarbstoff (4) enthaltenden Uberstandes (3) durch eine Fluoreszenzfarbstoff-freie Losung (3a) ein Maskierungsfarbstoff zuge¬ geben wird, welcher die unspezifische, von der angefärbten Reaktionsgefä߬ wand ausgehende Fluoreszenz unterdruckt
PCT/EP1997/002662 1996-05-28 1997-05-23 Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays WO1997045739A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
AT97927032T ATE215698T1 (de) 1996-05-28 1997-05-23 Maskierung der hintergrundfluoreszenz und - lumineszenz bei der optischen analyse biologisch medizinischer assays
US09/194,099 US6420183B1 (en) 1996-05-28 1997-05-23 Masking background fluorescence and luminescence in optical analysis of biomedical assays
DE59706875T DE59706875D1 (de) 1996-05-28 1997-05-23 Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays
EP97927032A EP0906572B1 (de) 1996-05-28 1997-05-23 Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays
DK97927032T DK0906572T3 (da) 1996-05-28 1997-05-23 Maskering af baggrundsfluorescensen og -luminescensen ved den optiske analyse i biomedicinske prøver
CA002256629A CA2256629C (en) 1996-05-28 1997-05-23 Masking background fluorescence and luminescence in optical analysis of biomedical assays
JP54157897A JP3452068B2 (ja) 1996-05-28 1997-05-23 生物医学的アッセイの光学的分析における背景の蛍光及びルミネセンスのマスキング
US09/966,137 US7063952B2 (en) 1996-05-28 2001-09-28 Masking background flourescence and luminescence in optical analysis of biomedical assays
US10/263,607 US7138280B2 (en) 1996-05-28 2002-10-03 Masking of the background fluorescence and luminescence in the optical analysis of biomedical assays
US12/199,317 US7615376B2 (en) 1996-05-28 2008-08-27 Masking background fluorescence and luminescence in the optical analysis of biomedical assays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19621312A DE19621312A1 (de) 1996-05-28 1996-05-28 Maskierung der Hintergrundfluoreszenz und Signalverstärkung bei der optischen Analyse biologisch medizinischer Assays
DE19621312.6 1996-05-28

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US09194099 A-371-Of-International 1997-05-23
US09/966,552 Continuation US20030063750A1 (en) 2001-09-26 2001-09-26 Unique on-line provisioning of user terminals allowing user authentication
US09/966,522 Division US8178359B2 (en) 1996-05-28 2001-09-28 Masking of the background fluorescence and luminescence in the optical analysis of biomedical assays
US09/966,522 Continuation US8178359B2 (en) 1996-05-28 2001-09-28 Masking of the background fluorescence and luminescence in the optical analysis of biomedical assays
US09/966,137 Division US7063952B2 (en) 1996-05-28 2001-09-28 Masking background flourescence and luminescence in optical analysis of biomedical assays

Publications (1)

Publication Number Publication Date
WO1997045739A1 true WO1997045739A1 (de) 1997-12-04

Family

ID=7795451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/002662 WO1997045739A1 (de) 1996-05-28 1997-05-23 Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays

Country Status (9)

Country Link
US (5) US6420183B1 (de)
EP (1) EP0906572B1 (de)
JP (1) JP3452068B2 (de)
AT (1) ATE215698T1 (de)
CA (1) CA2256629C (de)
DE (2) DE19621312A1 (de)
DK (1) DK0906572T3 (de)
ES (1) ES2175416T3 (de)
WO (1) WO1997045739A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420183B1 (en) 1996-05-28 2002-07-16 Bayer Aktiengesellschaft Masking background fluorescence and luminescence in optical analysis of biomedical assays
US7067324B2 (en) 1997-08-01 2006-06-27 Invitrogen Corporation Photon reducing agents for fluorescence assays

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19927051C2 (de) 1999-06-14 2002-11-07 November Ag Molekulare Medizin Verfahren und Vorrichtung zur Identifizierung einer Nukleotidsequenz
US6181413B1 (en) * 1999-09-03 2001-01-30 Biometric Imaging, Inc. Displacing volume in field of view
DE10006309A1 (de) * 2000-02-12 2001-08-23 Aventis Pharma Gmbh Verfahren zur Identifizierung von Substanzen, die die Aktivität von hyperpolarisationsaktivierten Kationen-kanälen modulieren
AU2001276830A1 (en) * 2000-06-23 2002-01-08 Irm, Llc Method and apparatus for performing an assay
US6552794B2 (en) * 2001-04-04 2003-04-22 Applied Spectral Imaging Ltd. Optical detection method for improved sensitivity
WO2003005005A1 (fr) * 2001-07-03 2003-01-16 Hitachi, Ltd. Procede de mesure optique de prelevement biologique et appareil de mesure optique de prelevement biologique
JP4150374B2 (ja) * 2003-02-26 2008-09-17 富士通株式会社 アレイ導波路型波長合分波器
US6972184B2 (en) * 2003-12-23 2005-12-06 Millipore Corporation Cell motility assay
WO2005095929A1 (ja) * 2004-03-30 2005-10-13 Hamamatsu Photonics K.K. マスキング部材、光測定方法、光測定用キット及び光測定用容器
DE102004016361B4 (de) * 2004-04-01 2006-07-06 Cybio Ag Optisches Analysenmessgerät für Fluoreszenzmessungen an Multiprobenträgern
US7371534B2 (en) * 2004-05-25 2008-05-13 Discoverx Corporation Sensitive intracellular calcium assay
FR2873445A1 (fr) * 2004-07-26 2006-01-27 Genewave Soc Par Actions Simpl Dispositif de detection de la fluorescence emise par des elements chromophores dans des puits d'une plaque a puits multiples
US8396731B2 (en) * 2005-12-30 2013-03-12 Sap Ag Architectural design for service procurement application software
EP1991873B1 (de) * 2006-02-21 2013-10-16 Harri HÄRMÄ Trennungsfreies testverfahren
US9097730B2 (en) 2007-04-13 2015-08-04 Aat Bioquest, Inc. Fluorescein lactone ion indicators and their applications
US20080254498A1 (en) 2007-04-13 2008-10-16 Abd Bioquest, Inc. Fluorescent ion indicators and their applications
US9279817B2 (en) 2007-04-13 2016-03-08 Aat Bioquest, Inc. Carbofluorescein lactone ion indicators and their applications
WO2009105583A1 (en) * 2008-02-19 2009-08-27 Anstron Technologies Company Fluorescence resonance energy transfer (fret) binding assays that are surface-based
US7994485B2 (en) * 2008-04-08 2011-08-09 Carestream Health, Inc. Apparatus and method for fluorescence measurements using spatially structured illumination
US20090270398A1 (en) * 2008-04-21 2009-10-29 Institute For Oneworld Health Compounds, Compositions and Methods Comprising Pyridazine Derivatives
US20090264433A1 (en) * 2008-04-21 2009-10-22 Institute For Oneworld Health Compounds, Compositions and Methods Comprising Triazine Derivatives
WO2009131951A2 (en) * 2008-04-21 2009-10-29 Institute For Oneworld Health Compounds, compositions and methods comprising isoxazole derivatives
EP2278879B1 (de) * 2008-04-21 2016-06-15 PATH Drug Solutions Verbindungen, zusammensetzungen und verfahren umfassend oxadiazolderivate
US20110237528A1 (en) * 2008-09-19 2011-09-29 Institute For Oneworld Health Compositions and methods comprising imidazole and triazole derivatives
US8511216B2 (en) * 2009-03-30 2013-08-20 Kanzaki Kokyukoki Mfg. Co., Ltd. Hydraulic actuator unit
US8343976B2 (en) * 2009-04-20 2013-01-01 Institute For Oneworld Health Compounds, compositions and methods comprising pyrazole derivatives
EP2577311A1 (de) * 2010-05-31 2013-04-10 Boehringer Ingelheim Microparts GmbH Verfahren und vorrichtung zur optischen untersuchung
WO2012027331A1 (en) 2010-08-27 2012-03-01 Ironwood Pharmaceuticals, Inc. Compositions and methods for treating or preventing metabolic syndrome and related diseases and disorders
CN104755931B (zh) 2012-05-02 2016-08-31 查尔斯河实验室公司 用于检测细胞样品中的活细胞的方法
US8993259B2 (en) 2012-05-02 2015-03-31 Charles River Laboratories, Inc. Method of viability staining with membrane permeable fluorescent dye and membrane impermeable fluorescence quencher
WO2013166338A2 (en) 2012-05-02 2013-11-07 Charles River Laboratories, Inc. Cell capture system and use thereof
FR3019900B1 (fr) 2014-04-09 2017-12-22 Bio-Rad Innovations Utilisation de particules absorbantes pour ameliorer la detection du signal dans un procede d'analyse
US9810700B1 (en) 2017-05-31 2017-11-07 Aat Bioquest, Inc. Fluorogenic calcium ion indicators and methods of using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002642A1 (en) * 1992-07-17 1994-02-03 Aprogenex, Inc. Background-reducing compounds for probe-mediated in-situ fluorimetric assays

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506827A (en) * 1968-01-22 1970-04-14 James R Alburger Method of masking fluorescence in fluorescent dye tracer inspection process materials
US3785735A (en) * 1972-01-19 1974-01-15 Bio Physics Systems Inc Photoanalysis method
US4476231A (en) 1981-07-22 1984-10-09 International Remote Imaging Systems, Inc. Method of analyzing the distribution of a reagent between particles and liquid in a suspension
DE3213183A1 (de) 1982-04-08 1983-10-20 Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., 3400 Göttingen Anordnung zur optischen messung physikalischer groessen
JPS5934154A (ja) * 1982-08-19 1984-02-24 Konishiroku Photo Ind Co Ltd 免疫分析素子測定法
US5082768A (en) * 1984-06-15 1992-01-21 Mast Immunosystems, Inc. Attenuator to suppress extraneous light in luminescent specific-binding assays
US4665024A (en) * 1984-10-01 1987-05-12 Becton, Dickinson And Company Fluorescent gram stain
US4639421A (en) * 1984-10-01 1987-01-27 Becton, Dickinson And Company Fluorescent gram stain
US4716121A (en) * 1985-09-09 1987-12-29 Ord, Inc. Fluorescent assays, including immunoassays, with feature of flowing sample
CA1291031C (en) * 1985-12-23 1991-10-22 Nikolaas C.J. De Jaeger Method for the detection of specific binding agents and their correspondingbindable substances
US4891324A (en) * 1987-01-07 1990-01-02 Syntex (U.S.A.) Inc. Particle with luminescer for assays
US5326692B1 (en) * 1992-05-13 1996-04-30 Molecular Probes Inc Fluorescent microparticles with controllable enhanced stokes shift
US5830766A (en) * 1990-05-23 1998-11-03 Ares-Serono Research & Development Ltd. Partnership Enhanced signal-to-noise ratio and sensitivity optical immunoassay
US5164301A (en) * 1990-06-22 1992-11-17 Difco Laboratories Process and kit for detecting microbial metabolism
US5264565A (en) * 1991-01-22 1993-11-23 Affymax Technologies, N.V. Nucleic acid encoding the D2 /Ml chimeric receptor
FI913443A0 (fi) * 1991-07-17 1991-07-17 Rolf Kroneld Metod, apparat och indikator foer att indikera flyktiga kolvaeten eller miljoegifter i vatten och vaetskor.
EP0643836B1 (de) * 1991-12-13 1999-09-08 Bion Diagnostic Sciences, Inc. Agglutierungsassays und kolloide farbstoffe verwendende testsätze
WO1994017388A1 (en) * 1993-01-26 1994-08-04 Fci-Fiberchem, Inc. Ion selective fluorosensor based on the inner filter effect
US5556764A (en) * 1993-02-17 1996-09-17 Biometric Imaging, Inc. Method and apparatus for cell counting and cell classification
US5545535A (en) * 1993-04-13 1996-08-13 Molecular Probes, Inc. Fluorescent assay for bacterial gram reaction
JP3326708B2 (ja) * 1993-08-31 2002-09-24 日水製薬株式会社 光学的測定装置およびその方法
DE69519783T2 (de) * 1994-04-29 2001-06-07 Perkin Elmer Corp Verfahren und vorrichtung zur echtzeiterfassung der produkte von nukleinsäureamplifikation
AU2636995A (en) * 1994-05-18 1995-12-05 Research And Development Institute, Inc. Simple, rapid method for the detection, identification and enumeration of specific viable microorganisms
AU3961495A (en) 1994-10-04 1996-04-26 Sotomayor, Tevic Emar Composition and treatment for hyperimmunization with non heat-killed bacteria
EP1089078B1 (de) * 1994-10-20 2007-02-28 Sysmex Corporation Reagenz und Verfahren zur Analyse fester Bestandteile im Harn
DE19621312A1 (de) 1996-05-28 1997-12-04 Bayer Ag Maskierung der Hintergrundfluoreszenz und Signalverstärkung bei der optischen Analyse biologisch medizinischer Assays
US5772999A (en) 1996-07-30 1998-06-30 Dcv Biologics, L.P. Method of preventing, countering, or reducing NSAID-induced gastrointestinal damage by administering milk or egg products from hyperimmunized animals
US6200762B1 (en) 1997-08-01 2001-03-13 Aurora Biosciences Corporation Photon reducing agents and compositions for fluorescence assays
US6221612B1 (en) 1997-08-01 2001-04-24 Aurora Biosciences Corporation Photon reducing agents for use in fluorescence assays
US6214563B1 (en) 1997-08-01 2001-04-10 Aurora Biosciences Corporation Photon reducing agents for reducing undesired light emission in assays
US6210910B1 (en) * 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994002642A1 (en) * 1992-07-17 1994-02-03 Aprogenex, Inc. Background-reducing compounds for probe-mediated in-situ fluorimetric assays

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420183B1 (en) 1996-05-28 2002-07-16 Bayer Aktiengesellschaft Masking background fluorescence and luminescence in optical analysis of biomedical assays
US7063952B2 (en) 1996-05-28 2006-06-20 Bayer Healthcare Ag Masking background flourescence and luminescence in optical analysis of biomedical assays
US7138280B2 (en) 1996-05-28 2006-11-21 Bayer Healthcare Ag Masking of the background fluorescence and luminescence in the optical analysis of biomedical assays
US7615376B2 (en) 1996-05-28 2009-11-10 Bayer Schering Pharma Aktiengesellschaft Masking background fluorescence and luminescence in the optical analysis of biomedical assays
US8178359B2 (en) 1996-05-28 2012-05-15 Bayer Healthcare Ag Masking of the background fluorescence and luminescence in the optical analysis of biomedical assays
US7067324B2 (en) 1997-08-01 2006-06-27 Invitrogen Corporation Photon reducing agents for fluorescence assays
US7785536B2 (en) 1997-08-01 2010-08-31 Life Technologies Corporation Photon reducing agents for fluorescence assays
US8163562B2 (en) 1997-08-01 2012-04-24 Life Technologies Corporation Photon reducing agents for fluorescence assays
US8518710B2 (en) 1997-08-01 2013-08-27 Life Technologies Corporation Photon reducing agents for fluorescence assays

Also Published As

Publication number Publication date
JP3452068B2 (ja) 2003-09-29
US7138280B2 (en) 2006-11-21
US20030092081A1 (en) 2003-05-15
US7063952B2 (en) 2006-06-20
DE59706875D1 (de) 2002-05-08
ATE215698T1 (de) 2002-04-15
EP0906572A1 (de) 1999-04-07
US6420183B1 (en) 2002-07-16
DE19621312A1 (de) 1997-12-04
DK0906572T3 (da) 2002-07-08
US20020022274A1 (en) 2002-02-21
US8178359B2 (en) 2012-05-15
ES2175416T3 (es) 2002-11-16
US20020015969A1 (en) 2002-02-07
US20020009754A1 (en) 2002-01-24
US7615376B2 (en) 2009-11-10
CA2256629C (en) 2003-07-22
JP2000512746A (ja) 2000-09-26
US20080318270A1 (en) 2008-12-25
EP0906572B1 (de) 2002-04-03
CA2256629A1 (en) 1997-12-04

Similar Documents

Publication Publication Date Title
EP0906572B1 (de) Maskierung der hintergrundfluoreszenz und -lumineszenz bei der optischen analyse biologisch medizinischer assays
EP1000345B1 (de) Verfahren und vorrichtung zur referenzierung von fluoreszenzintensitätssignalen
DE69819916T2 (de) Vorrichtung und verfahren zur abbildung von mit lichtstreuendem stoff markierten proben
DE69722800T2 (de) Probenanalyseverfahren mittels bestimmung einer funktion der spezifischen helligkeit
DE10223438B4 (de) Fluoreszenz-Mess-System
WO2006037472A1 (de) Referenzkörper für fluoreszenzmessungen und verfahren zur herstellung desselben
EP0126450A2 (de) Partikel sowie Verfahren zum Nachweis von Antigenen und/oder Antikörpern unter Verwendung der Partikel
EP0979402B1 (de) Verfahren zur optischen detektion von analytmolekülen in einem natürlichen biologischen medium
EP1506403A2 (de) Kit for the development of analysis in parallel
EP1461600B1 (de) Verfahren zur identifikation von fluoreszierenden, lumineszierenden und/oder absorbierenden substanzen auf und/oder in probenträgern
DE102005018170B4 (de) Verfahren und Messanordnung zur Bestimmung einer Druckverteilung an der Oberfläche eines Objekts
DE60130452T2 (de) Referenzvorrichtung zur Evaluierung der Funktion eines konfokalen Laserscanmikroskops, sowie Verfahren und System zur Durchführung der Evaluierung
DE19903576A1 (de) Quantitative Bestimmung von Analyten in einem heterogenen System
WO2004031747A1 (de) Verfahren und vorrichtung zum detektieren mindestens eines lumineszenz-stoffs
DE19822452A1 (de) Verfahren und Vorrichtung zur Konzentrationsbestimmung, Bestimmung von Adsorptions- und Bindungskinetiken und Gleichgewichts- und Bindungskonstanten von Molekülen durch Lumineszenzmessungen
EP1311829B1 (de) Verfahren und vorrichtung zum messen chemischer und/oder biologischer proben
DE102020134515A1 (de) Optisches Sensorelement, optischer Sauerstoff-Sensor sowie Verfahren zur Funktionsüberwachung eines optischen Sauerstoff-Sensors
DE3042535C2 (de) Vorrichtung zur Feststellung von Fluoreszenz
DE102007010860B4 (de) Verfahren zur Identifikation eines Partikels mit zwei oder mehr monodispers eingebetteten Fluorophoren
DE102004051830B4 (de) Multifunktionales Referenzsystem bei Analytbestimmungen durch Fluoreszenz
DE60317049T2 (de) Verfahren zum nachweis der auswirkungen von störeffekten auf messdaten
EP3299799A1 (de) Verfahren und messsystem zur messung molekularer interaktionen an einer dünnen schicht
WO2004008217A1 (de) Konfokale 3d-scanning absorption
CH609777A5 (en) Photometric appliance for studying fluorescent materials, and method for operating the appliance
DE10116610A1 (de) Verfahren zum Messen chemischer und/oder biologischer Proben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997927032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09194099

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2256629

Country of ref document: CA

Ref country code: CA

Ref document number: 2256629

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1997927032

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997927032

Country of ref document: EP