WO1997045924A1 - A turbo-generator plant - Google Patents

A turbo-generator plant Download PDF

Info

Publication number
WO1997045924A1
WO1997045924A1 PCT/SE1997/000886 SE9700886W WO9745924A1 WO 1997045924 A1 WO1997045924 A1 WO 1997045924A1 SE 9700886 W SE9700886 W SE 9700886W WO 9745924 A1 WO9745924 A1 WO 9745924A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
zed
generator
winding
tha
Prior art date
Application number
PCT/SE1997/000886
Other languages
French (fr)
Inventor
Mats Leijon
Peter Templin
Claes Ivarson
Lars Gertmar
Peter Carstensen
Bertil Larsson
Sören Berggren
Erland Sörensen
Bertil Berggren
Gunnar Kylander
Mons HÖLLELAND
Original Assignee
Asea Brown Boveri Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri Ab filed Critical Asea Brown Boveri Ab
Priority to DE69726139T priority Critical patent/DE69726139T2/en
Priority to AU29881/97A priority patent/AU2988197A/en
Priority to EA199801051A priority patent/EA001097B1/en
Priority to EP97924468A priority patent/EP0901703B1/en
Priority to PL97330199A priority patent/PL330199A1/en
Priority to US08/952,996 priority patent/US6936947B1/en
Priority to BR9709387A priority patent/BR9709387A/en
Priority to IL12694397A priority patent/IL126943A/en
Priority to AT97924468T priority patent/ATE254350T1/en
Publication of WO1997045924A1 publication Critical patent/WO1997045924A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/025Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/14Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F2027/2833Wires using coaxial cable as wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F2027/329Insulation with semiconducting layer, e.g. to reduce corona effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/15Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/15High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a power generation system, e.g. prime-mover dynamo, generator system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/17High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an electric power conversion, regulation, or protection system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/19High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/19High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
    • Y10S174/20Stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/19High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
    • Y10S174/22Winding per se
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/24High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/24High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
    • Y10S174/25Transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/26High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/26High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system
    • Y10S174/27High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system including a semiconductive layer
    • Y10S174/28Plural semiconductive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/29High voltage cable, e.g. above 10kv, corona prevention having a semiconductive layer

Definitions

  • the present invention relates to equipment, primarily in thermal power plants, for generating active and reactive electric power for high-voltage distribution or transmission networks connected to it. More specifically the invention relates to rotating electro ⁇ mechanical equipment for generating electric power for high-voltage distribution or transmission networks without intermediate trans- formers.
  • the generator or generators included in the equipment have a magnetic circuit, normally comprising a core of iron and an air gap, a cooling system and at least one, usually two, windings disposed in the stator and rotor, respectively.
  • Thermal power plants are nowadays built in accordance with a number different principles.
  • Various types of fuel e.g. natural gas, oil, bio-fuel, coal, mixtures of the fuels just mentioned, or nuclear fuel, are used in order to achieve high temperature in a gas in either a combustion process or a nuclear process.
  • This gas may be either waste gases from the combustion or indirectly heated steam.
  • the heating is performed in a relatively small volume, which means that the pressure is extremely high.
  • the hot gas is then conveyed in gradually larger and larger volumes, the thermal energy then being converted to kinetic energy.
  • the fast-moving gas is allowed in a number of steps to influence the vanes in a turbine, thereby giving rise to a turning phase.
  • At least one generator mounted on the same shaft as the turbine, or via a gear converts the energy to electric power which, via a step-up trans ⁇ former, is emitted to distribution or transmission networks, hereinafter also termed power networks.
  • Vital parts of a gas turbine unit include at least one compressor step, a combustion chamber, at least one turbine step and a gene ⁇ rator.
  • the actual turbine step is in several steps in order to enable optimal utilization of the thermal energy.
  • Each step is dimensioned for the pressure the gas has in the relevant part of the turbine. Typically a high and a low pressure part are used, or a high, an intermediate and a low pressure part.
  • the compressor may also be designed in several steps, normally two. The pressure in the compressor step is adjusted in order to obtain optimal combustion. The air entering the combustion chamber is pre-heated.
  • Vital parts of a steam turbine unit include a combustion or reactor hearth, steam generator, steam turbine and an electric generator.
  • the steam generator consists typically of steel pipes with water circulating in them, which pipes are located in the hearth in order to obtain optimal heat transfer.
  • the steam, heated to high temperature and high pressure, is conveyed to the turbine.
  • the steam turbine can also advantageously be divided into various sections in the same way as described above, depending on pressure.
  • a combination of both these turbine types is advantageously used in two steps, i.e. a combined cycle power plant.
  • a gas turbine power plant which generates most of its power via a gas turbine, is supplemented by a steam generator which utilizes residual heat in the waste gases after the last turbine step, thus obtaining add- ltional energy yield.
  • a coal power plant of PFBC Pressure-driven coal power plant
  • Fluidized Bed Combustion which today represents the best that can be achieved as regards efficiency and environmentally friendly combustion of coal, generates the majority of its electric energy via a steam generator in the hearth.
  • the combustion gases somewhat cooled after the steam generation, are conveyed to a gas turbine after dust separation.
  • a gas turbine in these plants is fired with gas (preferably natural gas) , oil or a combination of gas and oil.
  • Gas turbine power plan t gas (preferably natural gas) , oil or a combination of gas and oil.
  • a plant consisting of one or more units, each comprising one gas turbine and associated generator.
  • Combined cycle mul ti-shaft gas turbine power plan t A plant consisting of one or more units, each comprising a gas turbine and associated electric generator, in which the hot gases from the gas turbines are conveyed to a heat exchanger for steam generation.
  • the steam drives a steam turbine and associated electric generator.
  • a plant consisting of one or more units, each comprising a gas turbine and associated electric generator, in which the hot gases from the gas turbines are conveyed to a heat exchanger for steam generation.
  • the steam drives a steam turbine connected to the "free end" of one of the gas turbines.
  • a combustion process such as oil, coal, PFBC, bio-fuel
  • a steam generator pipes conveying water which are located in the hearth
  • An intermediate unit is used to enable reliable connection of the generator to an out-going power network.
  • insulated busbar systems run from the output terminal of the generator 100 to a generator breaker with isolator 107.
  • the busbar systems continue to an auxiliary power transformer 109 and to a step-up transformer 106.
  • the two oil-filled transformers are normally placed outdoors because of the risk of explosion. Some form of explosion-proof wall is also often used to protect the plant.
  • Connection to the out-going network 110 is via another breaker and isolator 108 m a high-voltage switchgear outside the plant. This switchgear is preferably common to several units in the plant.
  • step-up transformer 106 of each generator 100 be connected directly to the out-going power network 110 is to use the step-up transformer to transform the generator voltage to an intermediate voltage level and then connect this intermediate voltage level via a system transformer to the out ⁇ going power network 110. In a limited area or a plant with several units, this may offer a cheaper total solution, particularly if the power in each unit is slight in relation to the voltage level of the out-going power network.
  • the drawbacks of the above solutions are related to the low voltage level (10-30 kV) of the generator.
  • the busbar systems must be dimensioned with a large copper area to keep down the losses.
  • the generator breaker 107 becomes large and expensive in order to break the high currents resulting from the low voltage.
  • the step-up transformer 106 is expensive and also constitutes a safety risk. It also causes deteriorated efficiency.
  • the magnetic circuit in individual electric generators usually comprises a laminated core, e.g. of sheet steel with a welded construction. To provide ventilation and cooling the core is often divided into stacks with radial and/or axial ventilation ducts.
  • the laminations are punched out in segments which are attached to the frame of the machine, the laminated core being held together by pressure fingers and pressure rings.
  • the winding of the magnetic circuit is disposed in slots in the core, the slots generally having a cross section in the shape of a rectangle or trapezium.
  • the windings are made as either single or double layer windings. With single layer windings there is only one coil side per slot, whereas with double layer windings there are two coil sides per slot.
  • coil side is meant one or more conductors combined vertically or horizontally and provided with a common coil insulation, i.e. an insulation designed to withstand the rated voltage of the generator to earth.
  • Double-layer windings are generally made as diamond windings whereas single layer windings in the present context can be made as diamond or flat windings. Only one (possibly two) coil width exists in diamond windings whereas flat windings are made as con- centric windings, i.e. with widely varying coil width. By coil width is meant the distance in arc dimension between two coil sides pertaining to the same coil.
  • coils for rotating generators can be manu- factured with good results within a voltage range of 10 - 20 kV.
  • the water-and-oil-cooled synchronous machine described in J. Elektrotechnika is intended for voltages of up to 20 kV.
  • the article describes a new insulation system consisting of oil/paper insulation, allowing the stator to be entirely immersed in oil. The oil can then be used as coolant while also serving as insulat ⁇ ion.
  • a dielectric oil-separating ring is provided at the internal surface of the core.
  • the stator winding is manufactured from conductors with an oval, hollow shape, provided with oil and paper insulation. The coil sides with their insulation are retained in the slots formed with rectangular cross section by means of wedges. Oil is used as coolant both in the hollow conductors and in apertures in the stator walls.
  • such cooling systems entail a large number of connections for both oil and electricity at the coil ends.
  • the thick insulation also causes increased radius of curvature on the conductors, which in turn results in increased size for the coil overhang.
  • the above-mentioned US patent relates to the stator part of a synchronous machine comprising a magnetic core of laminated plate with trapezium-shaped slots for the stator winding.
  • the slots are stepped since the need for insulation in the stator winding is less in towards the rotor where the part of the winding nearest the neutral point is located.
  • the stator part also includes a dielectric oil-separating cylinder nearest the inner surface of the core. This part may require more excitation than a machine without this ring.
  • the stator winding is manufactured from oil-saturated cables having the same diameter for each coil layer. The layers are separated from each other by means of spacer elements in the slots, and secured with wedges.
  • the winding consists of two so-called half-windings connected in series. One of these two half-windings is placed centrally inside an insulating sleeve. The conductors of the stator winding are cooled by the surrounding oil. A drawback with so much oil in the system is the risk of leakage and the major clean-up work necessary after a fault condition.
  • the parts of the insulation sheath located outside the slots have a cylindrical part and a conical screen electrode, the purpose of which is to control the electric field strength in the area where the cable leaves the laminations.
  • CCCP 955369 reveals in another attempt to increase the rated voltage of the synchronous machine, that the oil-cooled stator winding consists of a high-voltage cable having the same dimension for all layers.
  • the cable is placed in stator slots shaped as circular, radially located openings corresponding to the cross- sectional area of the cable and space required for fixing and coolant.
  • the various radially placed layers of the winding are surrounded by and secured in insulating tubes. Insulating spacer elements fix the tubes in the stator slot
  • an inner dielectric ring is required to seal the oil coolant from the inner air gap
  • the construction shows no stepping of the insulation or of the stator slots.
  • the object of the invention is to provide a plant comprising at least one generator for such a high voltage that the step-up transformer becomes superfluous.
  • the generator breaker then also becomes superfluous. Functionally this is replaced by the already existing high-voltage breaker.
  • the busbar system is replaced with screened high-voltage cable. It is thus an object of the invention to connect the electric generators in a power plant directly to the out-going power network
  • the decomposition of the insulation is avoided which tends to appear in the relatively thick-walled insulating layers used conventionally for high-voltage generators, e.g. impregnated layers of mica tape, which decomposition is in some part caused by partial discharges, PD.
  • Inner corona discharges occur in cavities, pores and the like which are present in these conventional insulations, and which arise during manufacture, when the insulation is subjected to excessive electrical field strengths These corona discharges gradually break down the material and may result in electrical disruptive discharge through the insulation Other defects, cracks or the like, occurring at thermal movement in the winding are avoided, thanks to the temperature coefficients of the layers being substantially equal.
  • the insulation system according to the invention can be achieved by using layers for the insulation which are manufactured in such a way that the risk of cavities and pores is minimal, e.g. extruded layers of suitable permanent insulating material, such as PEX, thermo-plastics, including cross-linked thermo-plastics, EP rubber, other types of rubber, etc.
  • suitable permanent insulating material such as PEX, thermo-plastics, including cross-linked thermo-plastics, EP rubber, other types of rubber, etc.
  • the insulating part with semiconducting layers will constitute a monolithic part and defects caused by different expansion due to temperature in the insulation and surrounding layers will not occur.
  • the electrical load on the material decreases as a result of the semiconducting parts around the insulation constituting equipotentia] surfaces and of the electrical field in the insulation part thus being distributed uniformly over the thickness of the insulation.
  • the outer semiconducting layer can be connected to earth potential. This means that, for such a cable, the outer sheath of the winding can be maintained at earth potential along its entire length.
  • busbars are required to connect generator and transformer.
  • the need for these is thus also eliminated which saves not only the expense and space they require - the power losses in these, which are considerable since the current is high, also disappear in busbar systems 2-phase and 3- phase faults can occur and the breakers and isolators required therefor demand a high level of maintenance.
  • the turbo-generator plant according to the invention also has the advantage that it can be arranged with several connections to different voltage levels.
  • the invention is also applicable and entails advantages for a turbo-generator for peak loads, used as synchronous compensator when necessary, so that the generator is disconnected from the turbine.
  • auxiliary power shall be generated by the generator by means of an auxiliary power winding inserted in its stator, which gives considerably lower voltage than is generated by the main winding of the generator.
  • the magnetic circuit in the generator or generators included in the turbo-generator plant is formed with threaded permanent insulating cable with included earth.
  • the major and essential difference between known technology and the embodiment according to the invention is thus that this is achieved with a magnetic circuit included in an electric generator which is arranged to be directly connected via possible breakers and isolators to a high supply voltage in the vicinity of between 20 and 800 kV, preferably higher than 36 kV.
  • the magnetic circuit thus comprises a laminated core having at least one winding consisting of a threaded cable with one or more permanently insulated conductors having a semiconducting layer both at the conductor and outside the insulation, the outer semiconducting layer being connected to earth potential.
  • the generator in the plant according to the invention has a number of features as mentioned above, which differ distinctly from known technology. Additional features and further embodiments are defined in the dependent claims and are discussed in the following.
  • the winding of the magnetic circuit is produced from a cable having one or more permanently insulated conductors with a semiconducting layer at both conductor and sheath.
  • Some typical conductors of this type are PEX cable or a cable with EP rubber insulation which, however, for the present purpose are further developed both as regards the strands in the conductor and the nature of the outer sheath.
  • PEX crosslinked polyethylene (XLPE) .
  • EP ethylene propylene.
  • Cables with circular cross section are preferred, but cables with some other cross section may be used in order to obtain better packing density, for instance.
  • Such a cable allows the laminated core to be designed according to the invention in a new and optimal way as regards slots and teeth. •
  • the winding is preferably manufactured with insulation in steps for best utilization of the laminated core.
  • the winding is preferably manufactured as a multi-layered, concentric cable winding, thus enabling the number of coil-end intersections to be reduced.
  • the slot design is suited to the cross section of the winding cable so that the slots are in the form of a number of cylindrical openings running axially and/or radially outside each other and having an open waist running between the layers of the stator winding
  • the design of the slots is adjusted to the relevant cable cross section and to the stepped insulation of the winding.
  • the stepped insulation allows the magnetic core to have substantially constant tooth width, irrespective of the radial extension.
  • a cable of the type described above allows the entire length of the outer sheath of the winding, as well as other parts of the plant, to be kept at earth potential.
  • An important advantage is that the electric field is close to zero within the coil-end region outside the outer semiconducting layer. With earth potential on the outer sheath the electric field need not be controlled This means that no field concentrations will occur either in the core, in the coil-end regions or in the transition between them.
  • the cable for high voltage used in the magnetic circuit winding is constructed of an inner core/conductor with a plurality of strands, at least two semiconducting layers, the innermost being surrounded by an insulating layer, which is in turn surrounded by an outer semiconducting layer having an outer diameter in the order of 20-200 mm and a conductor area in the order of 50-3000 mm ⁇ .
  • the generator in a plant according to the invention is manufactured with the special insulation system, the stator need not be completed at the factory but can instead be delivered divided axially into sections and the winding threaded on site. This naturally gives obvious financial advantages from the transport point of view.
  • the invention thus also relates to a procedure in which this possibility is exploited.
  • the insulation system suitably permanent, is designed so that from the thermal and electrical point of view it is dimensioned for over 36 kV, the plant can be connected to high- voltage power networks without any intermediate step-up transformer, thereby achieving the advantages referred to.
  • Such a plant is preferably, but not necessarily, constructed to include the features defined for the plant as claimed in any of claims 1-28. The above-mentioned and other advantageous embodiments of the invention are defined in the dependent claims.
  • Figure 1 shows a schematic axial end view of a sector of the statox in an electric generator in the turbo-generator plant according to the invention
  • Figure 2 shows an end view, step-stripped, of a cable used in the winding of the stator according to Figure 1,
  • Figure 3 shows a schematic diagram for a turbo-generator arrangement according to known technology
  • Figure 4 shows a schematic diagram for a turbo-generator arrangement utilizing the present invention
  • Figure 5 shows a schematic diagram for a modified embodiment of the turbo-generator arrangement according to the invention
  • Figure 6 is a diagram showing a generator according to the invention with build-in windings for generation of auxiliary power and frequency converter starting in a single shaft generator plant. Description of a preferred embodiment:
  • FIG. 1 In the schematic axial view through a sector of the stator 1 according to Figure 1, pertaining to the generator or generators included in the turbo-generator plant, the rotor 2 of the generator is also indicated.
  • the stator 1 is composed in conventional manner of a laminated core.
  • Figure 1 shows a sector of the generator corresponding to one pole pitch. From a yoke part 3 of the core situated radially outermost, a number of teeth 4 extend radially in towards the rotor 2 and are separated by slots 5 in which the stator winding is arranged. Cables 6 forming this stator winding, are high-voltage cables which may be of substantially the same type as those used for power distribution, i.e. PEX cables.
  • each slot 5 has varying cross section with alternating wide parts 7 and narrow parts 8.
  • the wide parts 7 are substantially circular and surround the cabling, the waist parts between these forming narrow parts 8.
  • the waist parts serve to radially fix the position of each cable.
  • the cross section of the slot 5 also narrows radially inwards.
  • FIG. 2 shows a step-wise stripped end view of a high-voltage cable for use in an electric machine according to the present invention.
  • the high-voltage cable 6 comprises one or more conductors 31, each of which comprises a number of strands 36 which together give a circular cross section of copper (Cu) , for instance
  • These conductors 31 are arranged in the middle of the high-voltage cable 6 and in the shown embodiment each is surrounded by a part insulation 35. However, it is feasible for the part insulation 35 to be omitted on one of the conductors 31.
  • the conductors 31 are together surrounded by a first semiconducting layer 32. Around this first semiconducting layer 32 is an insulating layer 33, e.g. PEX insulation, which is in turn surrounded by a second semiconducting layer 34.
  • the concept "high-voltage cable” in this application need not include any metallic screen or outer sheath of the type that normally surrounds such a cable for power distribution.
  • a turbo-generator plant constructed in accordance with known technology is shown in Figure 3 where a generator 100, as already described in the introduction, is driven by a gas turbine 102 via a common shaft 101.
  • the gas turbine is driven by gas from a combustion chamber 103 controlled by a control device 104 and supplied by a compressor 105.
  • the compressor 105 is arranged on the same shaft 101 as the generator 100 and gas turbine 102.
  • the generator 100 normally generates a voltage of maximally 25-30 kV.
  • a high- voltage distribution or transmission network 110 normally supplying voltages of up to 800 kV
  • the output voltage from the known generator 100 must be stepped up, as illustrated by the step- up transformer 106.
  • This also requires a generator breaker 107 to be connected between the generator 100 and the step-up transformer 106, which generator breaker comprises at least one set of isolators, power breakers and earth connectors. Connection to the distribution or transmission network 110 is via additional isolators, breakers and flashover protection, here jointly designated 108.
  • the output voltage of the generator lying at a medium voltage level of 25-30 kV, is usually also branched off to a step-down transformer 109.
  • the step-down transformer 109 supplies the generator 100 with excitation voltage via a rectifier circuit 111, and is also able to generate low voltage 112 for other requirements .
  • FIG 4 shows the same plant as in Figure 3 but utilizing a turbo- generator arrangement according to the present invention.
  • the generator 200 which generates the same high voltage (up to approximately 800 kV) as that for which the distribution or transmission network 110 is intended, is directly connected to this distribution or transmission network 110 via conduit 201.
  • the step-down transformer 109 shown in Figure 4 is supplied from a separate output on the stator winding of the generator 200 for supply of the excitation voltage via the conduit 202 and the rectifier circuit 111, as well as for any other requirement via conduit 112.
  • the step-down transformer 109 may also be omitted when using a generator 200 constructed in accordance with the invention.
  • the stator winding of the generator 200 (compare Figure 1) is thus provided with separate outputs for the excitation voltage via conduit 202 and the rectifier circuit 111, as well as for any other requirement via the conduit 203.

Abstract

In a plant containing a turbo-generator the magnetic circuit of the turbo-generator is included in an electric generator which directly supplies a high supply voltage of 20-800 kV, preferably higher than 36 kV. The insulation of the generator is built up of a cable (6) comprising one or more current-carrying conductors (31) with a number of strands (36) surrounded by outer and inner semiconducting layers (34, 32) and intermediate insulating layers (33). The outer semiconducting layer (34) is at earth potential. The phases of the winding are Y-connected. The Y-point may be insulated and protected from over-voltage by means of surge arresters, or else the Y-point may be earthed via a suppression filter.

Description

A TURBO-GENERATOR PLANT
Technical field:
The present invention relates to equipment, primarily in thermal power plants, for generating active and reactive electric power for high-voltage distribution or transmission networks connected to it. More specifically the invention relates to rotating electro¬ mechanical equipment for generating electric power for high-voltage distribution or transmission networks without intermediate trans- formers. The generator or generators included in the equipment have a magnetic circuit, normally comprising a core of iron and an air gap, a cooling system and at least one, usually two, windings disposed in the stator and rotor, respectively.
Background art: Thermal power plants are nowadays built in accordance with a number different principles. Various types of fuel, e.g. natural gas, oil, bio-fuel, coal, mixtures of the fuels just mentioned, or nuclear fuel, are used in order to achieve high temperature in a gas in either a combustion process or a nuclear process. This gas may be either waste gases from the combustion or indirectly heated steam. The heating is performed in a relatively small volume, which means that the pressure is extremely high. The hot gas is then conveyed in gradually larger and larger volumes, the thermal energy then being converted to kinetic energy. The fast-moving gas is allowed in a number of steps to influence the vanes in a turbine, thereby giving rise to a turning phase. At least one generator mounted on the same shaft as the turbine, or via a gear, converts the energy to electric power which, via a step-up trans¬ former, is emitted to distribution or transmission networks, hereinafter also termed power networks.
Power plants consisting of only one unit in accordance with one of the principles explained above can naturally be the best solution in certain cases However, a plant is often advantageously built up of more units This offers greater flexibility and robustness against interference in the equipment. Various units may also be designed for operation with different types of fuel so that the fuel that is currently cheapest can be used. Other combinations are possible to increase the total efficiency of the plant, where residual heat from one unit can be utilized by another. A distinction is normally made between two types of turbines: gas turbines and steam turbines. Gas turbines are operated directly by combustion gases (possibly after cleaning), whereas steam turbines, as the name implies, are operated by steam heated to high pressure. Vital parts of a gas turbine unit include at least one compressor step, a combustion chamber, at least one turbine step and a gene¬ rator. In many cases it is advantageous for the actual turbine step to be in several steps in order to enable optimal utilization of the thermal energy. Each step is dimensioned for the pressure the gas has in the relevant part of the turbine. Typically a high and a low pressure part are used, or a high, an intermediate and a low pressure part. The compressor may also be designed in several steps, normally two. The pressure in the compressor step is adjusted in order to obtain optimal combustion. The air entering the combustion chamber is pre-heated.
Vital parts of a steam turbine unit include a combustion or reactor hearth, steam generator, steam turbine and an electric generator. The steam generator consists typically of steel pipes with water circulating in them, which pipes are located in the hearth in order to obtain optimal heat transfer. The steam, heated to high temperature and high pressure, is conveyed to the turbine. The steam turbine can also advantageously be divided into various sections in the same way as described above, depending on pressure.
In order to achieve the highest possible efficiency, a combination of both these turbine types is advantageously used in two steps, i.e. a combined cycle power plant. For example, a gas turbine power plant which generates most of its power via a gas turbine, is supplemented by a steam generator which utilizes residual heat in the waste gases after the last turbine step, thus obtaining add- ltional energy yield. A coal power plant of PFBC (Pressurized
Fluidized Bed Combustion) type, which today represents the best that can be achieved as regards efficiency and environmentally friendly combustion of coal, generates the majority of its electric energy via a steam generator in the hearth. The combustion gases, somewhat cooled after the steam generation, are conveyed to a gas turbine after dust separation.
Many power plants are also used for district heating and in many cases an extremely high degree of total efficiency is attainable.
Examples of relevant plant types are described below. A gas turbine in these plants is fired with gas (preferably natural gas) , oil or a combination of gas and oil. Gas turbine power plan t
A plant consisting of one or more units, each comprising one gas turbine and associated generator.
Combined cycle mul ti-shaft gas turbine power plan t A plant consisting of one or more units, each comprising a gas turbine and associated electric generator, in which the hot gases from the gas turbines are conveyed to a heat exchanger for steam generation. The steam drives a steam turbine and associated electric generator.
Combined cycle single-shaft gas turbine power plant
A plant consisting of one or more units, each comprising a gas turbine and associated electric generator, in which the hot gases from the gas turbines are conveyed to a heat exchanger for steam generation. The steam drives a steam turbine connected to the "free end" of one of the gas turbines.
Steam power plant
A plant in which a combustion process (such as oil, coal, PFBC, bio-fuel) via a steam generator (pipes conveying water which are located in the hearth) generates a steam pressure which drives a steam turbine and associated electric generator.
Nuclear power plant
A plant similar to the steam power plant but with the steam generator located in a nuclear reactor hearth.
Common to all the power plants described above is the connection of an electric generator via a common shaft, or via a gear, to the turbine for conversion to electric power. An electric generator may also be connected to two turbines. The conversion usually takes place in a synchronous generator which can be used for generating reactive power as well as for converting active power. Usually these are 2-pole or 4-pole electric generators of turbo¬ generator type, but other pole numbers and embodiments exist. A typical voltage range for today's generators is 10-30 kV.
An intermediate unit is used to enable reliable connection of the generator to an out-going power network. As is clear from Figure 3, insulated busbar systems run from the output terminal of the generator 100 to a generator breaker with isolator 107. The busbar systems continue to an auxiliary power transformer 109 and to a step-up transformer 106. The two oil-filled transformers are normally placed outdoors because of the risk of explosion. Some form of explosion-proof wall is also often used to protect the plant. Connection to the out-going network 110 is via another breaker and isolator 108 m a high-voltage switchgear outside the plant. This switchgear is preferably common to several units in the plant.
An alternative to allowing the step-up transformer 106 of each generator 100 be connected directly to the out-going power network 110 is to use the step-up transformer to transform the generator voltage to an intermediate voltage level and then connect this intermediate voltage level via a system transformer to the out¬ going power network 110. In a limited area or a plant with several units, this may offer a cheaper total solution, particularly if the power in each unit is slight in relation to the voltage level of the out-going power network.
The drawbacks of the above solutions are related to the low voltage level (10-30 kV) of the generator. The busbar systems must be dimensioned with a large copper area to keep down the losses. The generator breaker 107 becomes large and expensive in order to break the high currents resulting from the low voltage. The step-up transformer 106 is expensive and also constitutes a safety risk. It also causes deteriorated efficiency. The magnetic circuit in individual electric generators usually comprises a laminated core, e.g. of sheet steel with a welded construction. To provide ventilation and cooling the core is often divided into stacks with radial and/or axial ventilation ducts. For larger machines the laminations are punched out in segments which are attached to the frame of the machine, the laminated core being held together by pressure fingers and pressure rings. The winding of the magnetic circuit is disposed in slots in the core, the slots generally having a cross section in the shape of a rectangle or trapezium. In multi-phase electric generators the windings are made as either single or double layer windings. With single layer windings there is only one coil side per slot, whereas with double layer windings there are two coil sides per slot. By coil side is meant one or more conductors combined vertically or horizontally and provided with a common coil insulation, i.e. an insulation designed to withstand the rated voltage of the generator to earth. Double-layer windings are generally made as diamond windings whereas single layer windings in the present context can be made as diamond or flat windings. Only one (possibly two) coil width exists in diamond windings whereas flat windings are made as con- centric windings, i.e. with widely varying coil width. By coil width is meant the distance in arc dimension between two coil sides pertaining to the same coil.
Normally all large machines are made with double-layer winding and coils of the same size. Each coil is placed with one side in one layer and the other side in the other layer. This means that all coils cross each other in the coil end. If there are more than two layers these crossings complicate the winding work and the coil end is less satisfactory.
It is considered that coils for rotating generators can be manu- factured with good results within a voltage range of 10 - 20 kV.
Attempts to develop the generator for higher voltages however, however, been in progress for a long time. This is obvious, for instance from "Electrical World", October 15, 1932, pages 524-525. This describes how a generator designed by Parson 1929 was arranged for 33 kV. It also describes a generator in Langerbrugge, Belgium, which produced a voltage of 36 kV. Although the article also speculates on the possibility of increasing voltage levels still further, the development was curtailed by the concepts upon which these generators were based. This was primarily because of the shortcomings of the insulation system where varnish-impregnated layers of mica oil and paper were used in several separate layers.
Some attempts at a new approach as regards the design of synchronous generators are described, for instance, in an article "Water-and-oil-cooled Turbo-generator TVM-300" in J. Elektro- techmka, No. 1, 1970, pages 6-8 in US 4,429,244 "Stator of generator" and in Russian patent specification CCCP Patent 955369.
The water-and-oil-cooled synchronous machine described in J. Elektrotechnika is intended for voltages of up to 20 kV. The article describes a new insulation system consisting of oil/paper insulation, allowing the stator to be entirely immersed in oil. The oil can then be used as coolant while also serving as insulat¬ ion. To prevent oil in the stator from leaking out to the rotor, a dielectric oil-separating ring is provided at the internal surface of the core. The stator winding is manufactured from conductors with an oval, hollow shape, provided with oil and paper insulation. The coil sides with their insulation are retained in the slots formed with rectangular cross section by means of wedges. Oil is used as coolant both in the hollow conductors and in apertures in the stator walls. However, such cooling systems entail a large number of connections for both oil and electricity at the coil ends. The thick insulation also causes increased radius of curvature on the conductors, which in turn results in increased size for the coil overhang.
The above-mentioned US patent relates to the stator part of a synchronous machine comprising a magnetic core of laminated plate with trapezium-shaped slots for the stator winding. The slots are stepped since the need for insulation in the stator winding is less in towards the rotor where the part of the winding nearest the neutral point is located. The stator part also includes a dielectric oil-separating cylinder nearest the inner surface of the core. This part may require more excitation than a machine without this ring. The stator winding is manufactured from oil-saturated cables having the same diameter for each coil layer. The layers are separated from each other by means of spacer elements in the slots, and secured with wedges. Specific to the winding is that it consists of two so-called half-windings connected in series. One of these two half-windings is placed centrally inside an insulating sleeve. The conductors of the stator winding are cooled by the surrounding oil. A drawback with so much oil in the system is the risk of leakage and the major clean-up work necessary after a fault condition. The parts of the insulation sheath located outside the slots have a cylindrical part and a conical screen electrode, the purpose of which is to control the electric field strength in the area where the cable leaves the laminations.
CCCP 955369 reveals in another attempt to increase the rated voltage of the synchronous machine, that the oil-cooled stator winding consists of a high-voltage cable having the same dimension for all layers. The cable is placed in stator slots shaped as circular, radially located openings corresponding to the cross- sectional area of the cable and space required for fixing and coolant. The various radially placed layers of the winding are surrounded by and secured in insulating tubes. Insulating spacer elements fix the tubes in the stator slot Here too, because of the oil cooling, an inner dielectric ring is required to seal the oil coolant from the inner air gap The construction shows no stepping of the insulation or of the stator slots. The design shows a very small radial waist between the various stator slots, entailing a large slot stray flux which strongly affects the excitation requirement of the machine In a report from the Electric Power Research Institute, EPRI, EL-3391 from April 1984, an account is given of generator concepts for achieving higher voltage in an electric generator with the object of being able to connect such a generator to a power network without intermediate transformers. Such a solution is assessed in the report to offer good gains in efficiency and considerable financial advantages. The main reason that it was deemed possible in 1984 to start developing generators for direct connection to power networks was that a supra-conducting rotor had been developed at that time. The considerable excitation capacity of the supra- conducting field enables the use of airgap-wmding with sufficient thickness to withstand the electrical stresses.
By combining the concept deemed most promising according to the project, that of designing a magnetic circuit with winding, known as "monolithe cylinder armature", a concept in which two cylinders of conductors are enclosed in three cylinders of insulation and the whole structure is attached to an iron core without teeth, it was assessed that a rotating electric machine for high voltage could be directly connected to a power network. The solution entailed the main insulation having to be made sufficiently thick to withstand network-to-network and network-to-earth potentials. Obvious draw¬ backs with the proposed solution, besides its demanding a supra- conducting rotor, are that it also requires extremely thick insulation, which increases the machine size. The coil ends must be insulated and cooled with oil or freones in order to control the large electric fields at the ends. The whole machine must be hermetically enclosed in order to prevent the liquid dielectric medium from absorbing moisture from the atmosphere.
Description of the invention:
Against this background the object of the invention is to provide a plant comprising at least one generator for such a high voltage that the step-up transformer becomes superfluous. The generator breaker then also becomes superfluous. Functionally this is replaced by the already existing high-voltage breaker. The busbar system is replaced with screened high-voltage cable. It is thus an object of the invention to connect the electric generators in a power plant directly to the out-going power network
This object has been achieved according to the invention from a first aspect in that a plant of the type described in the preamble to claim 1 comprises the special features defined in the character¬ izing part of this claim, from a second aspect in that a generator of the type described in the preamble to claim 29 comprises the special features defined in the characterizing part of this claim, and through the procedure described in claim 31
Thanks to this design of the insulation system for the winding, the decomposition of the insulation is avoided which tends to appear in the relatively thick-walled insulating layers used conventionally for high-voltage generators, e.g. impregnated layers of mica tape, which decomposition is in some part caused by partial discharges, PD. Inner corona discharges occur in cavities, pores and the like which are present in these conventional insulations, and which arise during manufacture, when the insulation is subjected to excessive electrical field strengths These corona discharges gradually break down the material and may result in electrical disruptive discharge through the insulation Other defects, cracks or the like, occurring at thermal movement in the winding are avoided, thanks to the temperature coefficients of the layers being substantially equal. These problems constitute an important reason for it having been impossible to design generators for the voltage range above 36 kV previously. This problem has been eliminated by the insulation system according to the invention. The insulation system according to the invention can be achieved by using layers for the insulation which are manufactured in such a way that the risk of cavities and pores is minimal, e.g. extruded layers of suitable permanent insulating material, such as PEX, thermo-plastics, including cross-linked thermo-plastics, EP rubber, other types of rubber, etc. By using only insulating layers which can be produced with a minimum of defects and also providing the insulation with an inner and an outer semiconducting part, it can be ensured that the thermal and electrical loading is reduced. In the event of temperature gradients, the insulating part with semiconducting layers will constitute a monolithic part and defects caused by different expansion due to temperature in the insulation and surrounding layers will not occur. The electrical load on the material decreases as a result of the semiconducting parts around the insulation constituting equipotentia] surfaces and of the electrical field in the insulation part thus being distributed uniformly over the thickness of the insulation. The outer semiconducting layer can be connected to earth potential. This means that, for such a cable, the outer sheath of the winding can be maintained at earth potential along its entire length. The special features of a plant according to the invention, particularly as relating to the insulation system for the winding in the generator stator, have thus eliminated the obstacles preventing an increase in voltage level, and enable elimination of the step-up transformer even for voltages above 36 kV, with the associated advantages.
In the first place the mere absence of a transformer entails great savings in weight, space and expense.
When the transformer, as is often the case, is arranged at a distance from the turbine hall, busbars are required to connect generator and transformer. The need for these is thus also eliminated which saves not only the expense and space they require - the power losses in these, which are considerable since the current is high, also disappear in busbar systems 2-phase and 3- phase faults can occur and the breakers and isolators required therefor demand a high level of maintenance. By the present invent¬ ion the risk for these faults has been greatly reduced.
The fire risk entailed with an oil-insulated transformer is also reduced, thereby reducing the necessity for safety precautions against fire.
The turbo-generator plant according to the invention also has the advantage that it can be arranged with several connections to different voltage levels.
In all, the advantages mentioned above constitute radically improved total economy for the plant. The costs of building the plant are dramatically reduced and operating economy is improved by less need of service and maintenance and by an increase in the efficiency of approximately 0.5-1.5 %.
The invention is also applicable and entails advantages for a turbo-generator for peak loads, used as synchronous compensator when necessary, so that the generator is disconnected from the turbine.
The purpose of the invention is also that auxiliary power shall be generated by the generator by means of an auxiliary power winding inserted in its stator, which gives considerably lower voltage than is generated by the main winding of the generator.
To accomplish this the magnetic circuit in the generator or generators included in the turbo-generator plant is formed with threaded permanent insulating cable with included earth. The major and essential difference between known technology and the embodiment according to the invention is thus that this is achieved with a magnetic circuit included in an electric generator which is arranged to be directly connected via possible breakers and isolators to a high supply voltage in the vicinity of between 20 and 800 kV, preferably higher than 36 kV. The magnetic circuit thus comprises a laminated core having at least one winding consisting of a threaded cable with one or more permanently insulated conductors having a semiconducting layer both at the conductor and outside the insulation, the outer semiconducting layer being connected to earth potential.
To solve the problems arising with direct connection of electric machines to all types of high-voltage power networks, the generator in the plant according to the invention has a number of features as mentioned above, which differ distinctly from known technology. Additional features and further embodiments are defined in the dependent claims and are discussed in the following.
Such features mentioned above and other essential characteristics of the generator and thus of the turbo-generator plant according to the invention include the following:
The winding of the magnetic circuit is produced from a cable having one or more permanently insulated conductors with a semiconducting layer at both conductor and sheath. Some typical conductors of this type are PEX cable or a cable with EP rubber insulation which, however, for the present purpose are further developed both as regards the strands in the conductor and the nature of the outer sheath. PEX = crosslinked polyethylene (XLPE) . EP = ethylene propylene.
Cables with circular cross section are preferred, but cables with some other cross section may be used in order to obtain better packing density, for instance.
Such a cable allows the laminated core to be designed according to the invention in a new and optimal way as regards slots and teeth. • The winding is preferably manufactured with insulation in steps for best utilization of the laminated core.
The winding is preferably manufactured as a multi-layered, concentric cable winding, thus enabling the number of coil-end intersections to be reduced. The slot design is suited to the cross section of the winding cable so that the slots are in the form of a number of cylindrical openings running axially and/or radially outside each other and having an open waist running between the layers of the stator winding
The design of the slots is adjusted to the relevant cable cross section and to the stepped insulation of the winding. The stepped insulation allows the magnetic core to have substantially constant tooth width, irrespective of the radial extension. • The above-mentioned further development as regards the strands entails the winding conductors consisting of a number of impacted strata/layers, i.e. insulated strands that from the point of view of an electric machine, are not necessarily correctly transposed, uninsulated and/or insulated from each other. • The above-mentioned further development as regards the outer sheath entails that at suitable points along the length of the conductor, the outer sheath is cut off, each cut partial length being connected directly to earth potential.
The use of a cable of the type described above allows the entire length of the outer sheath of the winding, as well as other parts of the plant, to be kept at earth potential. An important advantage is that the electric field is close to zero within the coil-end region outside the outer semiconducting layer. With earth potential on the outer sheath the electric field need not be controlled This means that no field concentrations will occur either in the core, in the coil-end regions or in the transition between them.
The mixture of insulated and/or uninsulated impacted strands, or transposed strands, results in low stray losses. The cable for high voltage used in the magnetic circuit winding is constructed of an inner core/conductor with a plurality of strands, at least two semiconducting layers, the innermost being surrounded by an insulating layer, which is in turn surrounded by an outer semiconducting layer having an outer diameter in the order of 20-200 mm and a conductor area in the order of 50-3000 mm^.
Since the generator in a plant according to the invention is manufactured with the special insulation system, the stator need not be completed at the factory but can instead be delivered divided axially into sections and the winding threaded on site. This naturally gives obvious financial advantages from the transport point of view. The invention thus also relates to a procedure in which this possibility is exploited.
From another aspect of the invention, the objectives listed have been achieved in that a plant of the type described in the preamble to claim 29 is given the special features defined in the characterizing part of this claim.
Since the insulation system, suitably permanent, is designed so that from the thermal and electrical point of view it is dimensioned for over 36 kV, the plant can be connected to high- voltage power networks without any intermediate step-up transformer, thereby achieving the advantages referred to. Such a plant is preferably, but not necessarily, constructed to include the features defined for the plant as claimed in any of claims 1-28. The above-mentioned and other advantageous embodiments of the invention are defined in the dependent claims.
Brief description of the drawings :
The invention will be described in more detail in the following detailed description of a preferred embodiment of the construction of the magnetic circuit of the electric generator in the turbo¬ generator plant, with reference to the accompanying drawings in which
Figure 1 shows a schematic axial end view of a sector of the statox in an electric generator in the turbo-generator plant according to the invention,
Figure 2 shows an end view, step-stripped, of a cable used in the winding of the stator according to Figure 1,
Figure 3 shows a schematic diagram for a turbo-generator arrangement according to known technology,
Figure 4 shows a schematic diagram for a turbo-generator arrangement utilizing the present invention, and
Figure 5 shows a schematic diagram for a modified embodiment of the turbo-generator arrangement according to the invention Figure 6 is a diagram showing a generator according to the invention with build-in windings for generation of auxiliary power and frequency converter starting in a single shaft generator plant. Description of a preferred embodiment:
In the schematic axial view through a sector of the stator 1 according to Figure 1, pertaining to the generator or generators included in the turbo-generator plant, the rotor 2 of the generator is also indicated. The stator 1 is composed in conventional manner of a laminated core. Figure 1 shows a sector of the generator corresponding to one pole pitch. From a yoke part 3 of the core situated radially outermost, a number of teeth 4 extend radially in towards the rotor 2 and are separated by slots 5 in which the stator winding is arranged. Cables 6 forming this stator winding, are high-voltage cables which may be of substantially the same type as those used for power distribution, i.e. PEX cables. One difference is that the outer, mechanically-protective sheath, and the metal screen normally surrounding such power distribution cables are eliminated so that the cable for the present application comprises only the conductor and at least one semiconducting layer on each side of an insulating layer. Thus, the semiconducting layer which is sensitive to mechanical damage lies naked on the surface of the cable. The cables 6 are illustrated schematically in Figure 1, only the conducting central part of each cable part or coil side being drawn in. As can be seen, each slot 5 has varying cross section with alternating wide parts 7 and narrow parts 8. The wide parts 7 are substantially circular and surround the cabling, the waist parts between these forming narrow parts 8. The waist parts serve to radially fix the position of each cable. The cross section of the slot 5 also narrows radially inwards. This is because the voltage on the cable parts is lower the closer to the radially inner part of the stator 1 they are situated Slimmer cabling can therefore be used there, whereas coarser cabling is necessary further out. In the example illustrated cables of three different dimensions are used, arranged in three correspondingly dimensioned sections 51, 52, 53 of slots 5
Figure 2 shows a step-wise stripped end view of a high-voltage cable for use in an electric machine according to the present invention. The high-voltage cable 6 comprises one or more conductors 31, each of which comprises a number of strands 36 which together give a circular cross section of copper (Cu) , for instance These conductors 31 are arranged in the middle of the high-voltage cable 6 and in the shown embodiment each is surrounded by a part insulation 35. However, it is feasible for the part insulation 35 to be omitted on one of the conductors 31. In the present embodiment of the invention the conductors 31 are together surrounded by a first semiconducting layer 32. Around this first semiconducting layer 32 is an insulating layer 33, e.g. PEX insulation, which is in turn surrounded by a second semiconducting layer 34. Thus the concept "high-voltage cable" in this application need not include any metallic screen or outer sheath of the type that normally surrounds such a cable for power distribution.
A turbo-generator plant constructed in accordance with known technology is shown in Figure 3 where a generator 100, as already described in the introduction, is driven by a gas turbine 102 via a common shaft 101. The gas turbine is driven by gas from a combustion chamber 103 controlled by a control device 104 and supplied by a compressor 105. The compressor 105 is arranged on the same shaft 101 as the generator 100 and gas turbine 102.
In the known turbo-generator plant the generator 100 normally generates a voltage of maximally 25-30 kV. To supply a high- voltage distribution or transmission network 110, normally supplying voltages of up to 800 kV, the output voltage from the known generator 100 must be stepped up, as illustrated by the step- up transformer 106. This also requires a generator breaker 107 to be connected between the generator 100 and the step-up transformer 106, which generator breaker comprises at least one set of isolators, power breakers and earth connectors. Connection to the distribution or transmission network 110 is via additional isolators, breakers and flashover protection, here jointly designated 108.
The output voltage of the generator, lying at a medium voltage level of 25-30 kV, is usually also branched off to a step-down transformer 109. The step-down transformer 109 supplies the generator 100 with excitation voltage via a rectifier circuit 111, and is also able to generate low voltage 112 for other requirements .
Figure 4 shows the same plant as in Figure 3 but utilizing a turbo- generator arrangement according to the present invention. With the invention, the generator 200 which generates the same high voltage (up to approximately 800 kV) as that for which the distribution or transmission network 110 is intended, is directly connected to this distribution or transmission network 110 via conduit 201. There is thus no need for any step-up transformer or generator breaker (106, 107 in Figure 3) . The step-down transformer 109 shown in Figure 4 is supplied from a separate output on the stator winding of the generator 200 for supply of the excitation voltage via the conduit 202 and the rectifier circuit 111, as well as for any other requirement via conduit 112.
As can be seen in Figure 5, the step-down transformer 109 may also be omitted when using a generator 200 constructed in accordance with the invention. The stator winding of the generator 200 (compare Figure 1) is thus provided with separate outputs for the excitation voltage via conduit 202 and the rectifier circuit 111, as well as for any other requirement via the conduit 203.
With the turbo-generator arrangement according to the present invention, therefore, several transformer and breaker units that were previously necessary are eliminated which is obviously advantageous - not least from the expense and operating reliability aspects .

Claims

1. A plant for generating active and reactive electric power for a high-voltage distribution or transmission network (110), comprising at least one electric generator (200) which is coupled to at least one gas and/or steam turbine (102) via a shaft means (101) and comprises at least one winding, cha racteri zed i n that the winding of at least one of the electric generators comprises a solid insulation system comprising at least two semiconducting layers, each layer constituting essentially an equipotential surface, and also intermediate solid insulation, wherein at least one of the layers has substantially the same coefficient of thermal expansion as the solid insulation.
2. A plant as claimed in claim 1, characteri zed i n that the generator comprises a magnetic circuit with a magnetic core.
3. A plant as claimed in claim 2, cha racte ri zed i n that the flux paths in the core of the magnetic circuit consist of laminated sheet and/or cast iron and/or powder-based iron and/or forged iron.
4 A plant as claimed in any of claims 1-3, character i zed in that the solid insulation is built up of a cable (6) intended for high voltage, comprising one or more current-carrying conductors (31) surrounded by at least two semiconducting layers (32, 34) and intermediate insulating layers (33) of solid insulation.
5. A plant as claimed in claim 4, characteri zed in that the innermost semiconducting layer (32) is at substantially the same potential as the conductor(s) (31) .
6. A plant as claimed in either claim 4 or claim 5, characteri zed in tha t one of the outer semiconducting layers (34) is arranged to form essentially an equipotential surface surrounding the conductor (s) (31) .
7. A plant as claimed in claim 6, characte ri zed in that said outer semiconducting layer (34) is connected to a selected potential
8. A plant as claimed m claim 7, cna racte r i zed i n that the selected potential is earth potential.
9. A plant as claimed in any of claims 4-8, cha racte r i zed i n that at least two of said layers have substantially the same coefficient of thermal expansion.
10. A plant as claimed in any of claims 4-6, cha racteri zed in tha t the current-carrying conductor comprises a plurality of strands, only a few of the strands not being insulated from each other.
11. A plant as claimed in any of claims 1-10, characte ri zed i n tha t the winding consists of a cable comprising one or more current-carrying conductors (2), each conductor consisting of a number of strands, an inner semiconducting layer (3) being arranged around each conductor, an insulating layer (4) of solid insulation being arranged around each inner semiconducting layer (3) and an outer semiconducting layer (5) being arranged around each insulating layer (4) .
12. A plant as claimed in claim 11, cha racte r i zed in that the cable also comprises a metal screen and a sheath.
13. A plant as claimed in any of the preceding claims, cha racte ri zed i n tha t at least one electric generator (200) is arranged to supply the out-going electric network (110) directly without any intermediate connection of a step-up transformer (unit transformer) .
14. A plant as claimed in any of the preceding claims, cha racte r i zed i n tha t at least one generator (200) is arranged to supply an out-going network consisting of at least two part-networks, at least one part-network being supplied via an intermediate system transformer.
15. A plant as claimed in any of the preceding claims, characte ri zed i n that it comprises several generators, each of which lacks an individual step-up transformer but which, via a system transformer common to the generators, is connected to the transmission or distribution network (110) .
16. A plant as claimed in any of the preceding claims, cha rac te r i zed i n t ha t the windings (9, 51-53) of the stator (1) in at least one generator (200) are arranged for connection to more than one voltage level.
17. A plant as claimed in claim 15, characte r i zed in tha t one of said voltage levels relates to generation of auxiliary power, this being generated from a separate winding (9) in the generator (200)
18. A plant as claimed in any of the preceding claims, cha ra c te r i zed i n t ha t at least one generator (200) is earthed via an impedance.
19. A plant as claimed in any of claims 1-17, 5 cha ra cte r i zed i n tha t at least one generator (200) is directly earthed.
20. A plant as claimed in any of the preceding claims, characteri zed in tha t the stator (1) of the generator (200) is cooled at earth potential by means of a flow of gas and/or
10 liquid.
21. A plant as claimed in any of the preceding claims, cha racte ri zed in tha t the cables (6) intended for high voltage have a conductor area of between 50 and 3000 mm^ and have an outer diameter of between 20 and 250 mm.
15 22. A plant as claimed m any of the preceding claims, cha racte r i zed i n that at least one winding (9, 51-52) of the stator (1) is carried out with integral slot winding.
23. A plant as claimed in any of the preceding claims, characteri zed in that at least one winding (9, 51-52) of 0 the stator (1) is carried out with fractional slot winding.
24. A plant as claimed in any of the preceding claims, cha ra cte r i zed in tha t the rotor (2) of at least one generator is arranged for two or four poles.
25. A plant as claimed in any of the preceding claims, 5 chara cte r i zed i n that the voltage level is controllable
+ 20% of the rated voltage.
26. A plant as claimed in any of the preceding claims, cha ra cter i zed in that the winding of the generator is arranged for self-regulating field control and lacks auxiliary 0 means for control of the field.
27. A plant as claimed in any of the preceding claims, characte r i zed i n tha t the stator of at least one generator is composed of axially combined, plate-shaped sections, preferably as whole sections in peripheral direction. 5
28. A plant for generating active and reactive electric power for a high-voltage distribution or transmission network (110), comprising at least one electric generator (200) which is coupled to at least one gas and/or steam turbine (102) via a shaft means ( 101) and comprises at least one winding, cha racte r i zed in 0 that the winding of at least one of the electric generators comprises an insulation system which, as regards its thermal and electrical properties, permits a voltage level in excess of 36 kV.
29. An electric generator (200) arranged to be coupled to at least one gas and/or steam turbine (102) via a shaft means (101) and comprising at least one winding, characteri zed in tha t the winding comprises a solid insulation system consisting of at least two semiconducting layers, each layer constituting essentially an equipotential surface, and also intermediate solid insulation, wherein at least one of the layers has substantially the same coefficient of thermal expansion as the solid insulation.
30. An electric generator as claimed in claim 29 that includes the features defining the generator claimed in any of claims 2-28.
31. A procedure for manufacturing an electric generator as claimed in claim 29 or claim 30, cha racte r i zed in tha t the stator is wound at the plant site where the generator is to be used.
32. A procedure as claimed in claim 31, cha racte r i zed i n tha t the stator is manufactured at the factory axially divided into a plurality of plate-shaped, separate sections, each section preferably being manufactured as a whole section in peripheral direction.
PCT/SE1997/000886 1996-05-29 1997-05-27 A turbo-generator plant WO1997045924A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE69726139T DE69726139T2 (en) 1996-05-29 1997-05-27 Turbo generator plant
AU29881/97A AU2988197A (en) 1996-05-29 1997-05-27 A turbo-generator plant
EA199801051A EA001097B1 (en) 1996-05-29 1997-05-27 A turbo-generator plant
EP97924468A EP0901703B1 (en) 1996-05-29 1997-05-27 A turbo-generator plant
PL97330199A PL330199A1 (en) 1996-05-29 1997-05-27 Turbogenerator power plant system
US08/952,996 US6936947B1 (en) 1996-05-29 1997-05-27 Turbo generator plant with a high voltage electric generator
BR9709387A BR9709387A (en) 1996-05-29 1997-05-27 Power plant with turbogenerator
IL12694397A IL126943A (en) 1996-05-29 1997-05-27 Turbo-generator plant
AT97924468T ATE254350T1 (en) 1996-05-29 1997-05-27 TURBO GENERATOR SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9602079A SE9602079D0 (en) 1996-05-29 1996-05-29 Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
SE9602079-7 1996-05-29

Publications (1)

Publication Number Publication Date
WO1997045924A1 true WO1997045924A1 (en) 1997-12-04

Family

ID=20402760

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/SE1997/000890 WO1997045912A1 (en) 1996-05-29 1997-05-27 A rotating asynchronous converter and a generator device
PCT/SE1997/000885 WO1997045923A1 (en) 1996-05-29 1997-05-27 A hydro-generator plant
PCT/SE1997/000886 WO1997045924A1 (en) 1996-05-29 1997-05-27 A turbo-generator plant
PCT/SE1997/000892 WO1997045927A1 (en) 1996-05-29 1997-05-27 Rotating electric machine for high voltage
PCT/SE1997/000884 WO1997045922A1 (en) 1996-05-29 1997-05-27 Synchronous compensator plant
PCT/SE1997/000887 WO1997045925A1 (en) 1996-05-29 1997-05-27 High-voltage plants with electric motors
PCT/SE1997/000888 WO1997045288A2 (en) 1996-05-29 1997-05-27 An electric drive system for vehicles
PCT/SE1997/000874 WO1997045919A2 (en) 1996-05-29 1997-05-27 Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/SE1997/000890 WO1997045912A1 (en) 1996-05-29 1997-05-27 A rotating asynchronous converter and a generator device
PCT/SE1997/000885 WO1997045923A1 (en) 1996-05-29 1997-05-27 A hydro-generator plant

Family Applications After (5)

Application Number Title Priority Date Filing Date
PCT/SE1997/000892 WO1997045927A1 (en) 1996-05-29 1997-05-27 Rotating electric machine for high voltage
PCT/SE1997/000884 WO1997045922A1 (en) 1996-05-29 1997-05-27 Synchronous compensator plant
PCT/SE1997/000887 WO1997045925A1 (en) 1996-05-29 1997-05-27 High-voltage plants with electric motors
PCT/SE1997/000888 WO1997045288A2 (en) 1996-05-29 1997-05-27 An electric drive system for vehicles
PCT/SE1997/000874 WO1997045919A2 (en) 1996-05-29 1997-05-27 Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same

Country Status (32)

Country Link
US (10) US20020047438A1 (en)
EP (7) EP0901700B1 (en)
JP (5) JP3970934B2 (en)
KR (3) KR20000016095A (en)
CN (9) CN1225755A (en)
AP (1) AP907A (en)
AR (7) AR007335A1 (en)
AT (6) ATE259996T1 (en)
AU (8) AU2988597A (en)
BG (1) BG63444B1 (en)
BR (6) BR9709474A (en)
CA (7) CA2255769A1 (en)
CO (8) CO4600758A1 (en)
CZ (3) CZ288390B6 (en)
DE (7) DE69725306T2 (en)
EA (6) EA001440B1 (en)
EE (1) EE03361B1 (en)
ID (3) ID19777A (en)
IL (1) IL126943A (en)
IS (3) IS1818B (en)
NO (4) NO985524L (en)
NZ (1) NZ333601A (en)
PE (5) PE81298A1 (en)
PL (5) PL330199A1 (en)
SE (1) SE9602079D0 (en)
TR (2) TR199802473T2 (en)
TW (8) TW443023B (en)
UA (2) UA45453C2 (en)
UY (1) UY24794A1 (en)
WO (8) WO1997045912A1 (en)
YU (2) YU54398A (en)
ZA (20) ZA974737B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331860A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri High voltage rotating electric machine
GB2331861A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri Traction motor winding having a conductor with semi-conductor insulation layers
WO2000007286A1 (en) * 1998-07-27 2000-02-10 Abb Ab Rotating electric machine with superconducting winding and a method for manufacturing the same
WO2003058059A1 (en) 2002-01-10 2003-07-17 Swedish Vertical Wind Ab Wind power plant with vertical axis turbine

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU718628B2 (en) * 1996-05-29 2000-04-20 Abb Ab Insulated conductor for high-voltage windings
SE9602079D0 (en) * 1996-05-29 1996-05-29 Asea Brown Boveri Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
US7259491B2 (en) * 1997-05-27 2007-08-21 Abb Ab Rotating asynchronous converter
GB2331858A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri A wind power plant
SE9802910L (en) * 1998-08-28 2000-02-29 Abb Ab generator device
DE19860412A1 (en) * 1998-12-28 2000-06-29 Abb Research Ltd Manufacturing of motor coils involves winding oval coils, applying internal discharge protective impregnated tape, spreading coils, and applying insulation and outer discharge protection
SE514818C2 (en) * 1999-04-30 2001-04-30 Abb Ab Constant frequency machine with varying / variable speed and procedure for such machine
SE9901938L (en) * 1999-05-27 2000-10-16 Abb Ab Device for generating single-phase AC voltage
SE9903540D0 (en) * 1999-10-01 1999-10-01 Abb Ab Procedure, plant and apparatus in connection with transmission of electrical power
DK199901436A (en) * 1999-10-07 2001-04-08 Vestas Wind System As Wind turbine
US6278217B1 (en) * 1999-12-09 2001-08-21 General Electric Company High voltage generator stator with radially inserted cable windings and assembly method
SE9904753L (en) * 1999-12-23 2001-06-24 Abb Ab Use of HVDC insulated conductors in magnetic flow carriers
SE516002C2 (en) * 2000-03-01 2001-11-05 Abb Ab Rotary electric machine and method of making a stator winding
EP1269494A1 (en) 2000-04-03 2003-01-02 Abb Ab A multiphase induction device
SE520332C2 (en) * 2001-02-09 2003-06-24 Abb Ab Procedure for mounting stator winding
SE0101727D0 (en) * 2001-05-15 2001-05-15 Abb Ab Electric power generation system
US6670721B2 (en) 2001-07-10 2003-12-30 Abb Ab System, method, rotating machine and computer program product for enhancing electric power produced by renewable facilities
DE10153644C2 (en) * 2001-10-31 2003-11-20 Aloys Wobben Wind turbine with contactless energy transfer to the rotor
DE10247905A1 (en) * 2002-10-14 2004-05-06 Alstom (Switzerland) Ltd. Method for starting up a shaft train and device for carrying out the method
SE524541C2 (en) * 2002-11-18 2004-08-24 Uppsala Power Man Consultants Power storage systems and vehicles fitted with such
SE0301106L (en) * 2003-04-14 2004-04-20 Swedish Seabased Energy Ab wave power generator comprising an electric linear generator provided with electromechanical damping means
KR100568181B1 (en) 2003-10-17 2006-04-05 삼성전자주식회사 Display apparatus
DE10361731A1 (en) * 2003-12-29 2005-09-15 Voith Siemens Hydro Power Generation Gmbh & Co. Kg Machine component with an electrical winding of an electrical machine
DE102004003119A1 (en) * 2004-01-21 2005-08-11 BSH Bosch und Siemens Hausgeräte GmbH Device for heating food by means of inductive coupling and device for transmitting energy
US7282923B2 (en) * 2005-09-20 2007-10-16 General Electric Company Systems and methods for triggering a partial discharge acquisition
US7841728B2 (en) * 2005-10-20 2010-11-30 Seiko Epson Corporation Image display apparatus
US7572133B2 (en) 2005-11-14 2009-08-11 Cooper Technologies Company Separable loadbreak connector and system
KR100757439B1 (en) * 2005-12-30 2007-09-11 엘지전자 주식회사 Self-magnetizing motor and his magnetization method
EP1811634B1 (en) * 2006-01-24 2012-04-25 Alstom Technology Ltd Connection arrangement for the stator winding of a turbo machine having two or more parallel circuits
FI122626B (en) * 2006-03-31 2012-04-30 Laennen Tutkimus Western Res Inc Oy Chemical pulp bleaching process
CN101438363A (en) * 2006-04-07 2009-05-20 瓦格厦电气系统公司 System and method for monitoring displacement within energized tap changer compartments
EP1878913B1 (en) * 2006-07-14 2013-03-13 OpenHydro Group Limited Bi-directional tidal flow hydroelectric turbine
EP1914872A1 (en) * 2006-10-17 2008-04-23 Siemens Aktiengesellschaft Wind farm
WO2008046451A1 (en) 2006-10-18 2008-04-24 Abb Technology Ltd Load compensation in distance protection of a three-phase power transmission line
US7854620B2 (en) 2007-02-20 2010-12-21 Cooper Technologies Company Shield housing for a separable connector
US7950939B2 (en) 2007-02-22 2011-05-31 Cooper Technologies Company Medium voltage separable insulated energized break connector
US7666012B2 (en) 2007-03-20 2010-02-23 Cooper Technologies Company Separable loadbreak connector for making or breaking an energized connection in a power distribution network
CN101682177A (en) * 2007-04-23 2010-03-24 库帕技术公司 Method of making and repairing a modular push-on busbar system
US20100207394A1 (en) * 2007-05-29 2010-08-19 Kwong-Keung Leung Device and method for utilizing water flow kinetic energy continuously
US7661979B2 (en) 2007-06-01 2010-02-16 Cooper Technologies Company Jacket sleeve with grippable tabs for a cable connector
US7863868B2 (en) * 2007-06-05 2011-01-04 Honeywell International Inc. Generator with quadrature AC excitation
US7514806B2 (en) * 2007-06-05 2009-04-07 Honeywell International Inc. Engine start system with quadrature AC excitation
EP2025944B1 (en) 2007-08-09 2017-08-09 Askoll Holding S.r.l. Mono-phase syncronous electric motorfor household appliances
EP2026062B1 (en) 2007-08-17 2014-12-17 Omicron electronics GmbH Method and device for determining the humidity content in the insulator of a transformer
US7695291B2 (en) 2007-10-31 2010-04-13 Cooper Technologies Company Fully insulated fuse test and ground device
ATE480035T1 (en) * 2007-12-12 2010-09-15 Openhydro Group Ltd GENERATOR COMPONENT FOR A HYDROELECTRIC TURBINE
US7670162B2 (en) 2008-02-25 2010-03-02 Cooper Technologies Company Separable connector with interface undercut
US7905735B2 (en) 2008-02-25 2011-03-15 Cooper Technologies Company Push-then-pull operation of a separable connector system
US7950940B2 (en) 2008-02-25 2011-05-31 Cooper Technologies Company Separable connector with reduced surface contact
US8056226B2 (en) * 2008-02-25 2011-11-15 Cooper Technologies Company Method of manufacturing a dual interface separable insulated connector with overmolded faraday cage
US8109776B2 (en) 2008-02-27 2012-02-07 Cooper Technologies Company Two-material separable insulated connector
US7811113B2 (en) 2008-03-12 2010-10-12 Cooper Technologies Company Electrical connector with fault closure lockout
US7878849B2 (en) 2008-04-11 2011-02-01 Cooper Technologies Company Extender for a separable insulated connector
US7958631B2 (en) 2008-04-11 2011-06-14 Cooper Technologies Company Method of using an extender for a separable insulated connector
EP2112370B1 (en) * 2008-04-22 2016-08-31 OpenHydro Group Limited A hydro-electric turbine having a magnetic bearing
PT104078A (en) * 2008-05-28 2009-11-30 Envez Lda ELECTROMAGNETIC ROTOR
ES2436423T3 (en) * 2008-06-09 2014-01-02 Abb Technology Ag An installation to transmit electrical energy
US20100148617A1 (en) * 2008-12-15 2010-06-17 Tai-Her Yang Asynchronous AC induction electrical machines in cross-interlockingly parallel connection
US20100148616A1 (en) * 2008-12-15 2010-06-17 Tai-Her Yang Asynchronous AC induction electrical machines in cross-interlockingly series connection
EP2209175B1 (en) * 2008-12-19 2010-09-15 OpenHydro IP Limited A method of installing a hydroelectric turbine generator
EP2241749B1 (en) 2009-04-17 2012-03-07 OpenHydro IP Limited An enhanced method of controlling the output of a hydroelectric turbine generator
US8395296B2 (en) * 2009-09-16 2013-03-12 Siemens Energy, Inc. Tape structure with conductive outer side and electrically insulating inner side
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
EP2302766B1 (en) 2009-09-29 2013-03-13 OpenHydro IP Limited A hydroelectric turbine with coil cooling
EP2302204A1 (en) * 2009-09-29 2011-03-30 OpenHydro IP Limited A hydroelectric turbine system
FR2962251B1 (en) * 2010-06-30 2013-11-15 Cybernetix NON-CONTACT ELECTRONIC CONNECTION DEVICE FOR TRANSMITTING ELECTRICAL POWER
CN103098356B (en) * 2010-08-04 2016-08-03 斯泰伦博斯大学 Split permanent magnet machine
DE102010041198A1 (en) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Method for producing an electrical insulation material, electrical insulation material and electrical machine
US9472990B2 (en) 2010-10-19 2016-10-18 Baker Hughes Incorporated Systems and methods for insulating Y-points of three phase electric motors
DE102010062060A1 (en) * 2010-11-26 2012-05-31 Airbus Operations Gmbh Three-phase asynchronous machine and method for operating a three-phase asynchronous machine in an aircraft or spacecraft
ITCO20110020A1 (en) * 2011-05-25 2012-11-26 Nuovo Pignone Spa METHODS AND SYSTEMS FOR LOW VOLTAGE DUCTS FREE OF OIL
US9590159B2 (en) * 2011-07-25 2017-03-07 The Boeing Company Thermoelectric power generation from power feeder
GB2493711B (en) 2011-08-12 2018-04-25 Openhydro Ip Ltd Method and system for controlling hydroelectric turbines
US9051923B2 (en) * 2011-10-03 2015-06-09 Chang Kuo Dual energy solar thermal power plant
EP2587638A1 (en) 2011-10-26 2013-05-01 Siemens Aktiengesellschaft Corona protection for an electric machine
JP5942393B2 (en) * 2011-11-18 2016-06-29 株式会社日立製作所 Rotating electrical machine system or wind power generation system.
NO336604B1 (en) * 2011-11-22 2015-10-05 Aker Subsea As System and method for operating underwater loads with electric power provided through an underwater HVDC outfitting cable
US8901790B2 (en) 2012-01-03 2014-12-02 General Electric Company Cooling of stator core flange
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
DE102013001717A1 (en) * 2013-02-01 2014-08-07 Voith Patent Gmbh Hydroelectric power station
US9657645B2 (en) * 2013-02-25 2017-05-23 Pratt & Whitney Canada Corp. Engine architecture using electric machine
CN104442052A (en) * 2013-09-18 2015-03-25 白纱科技印刷股份有限公司 Gold blocking, dull polish simulation and ice flower printing stripe same line operation printing method and prints thereof
CN104670045B (en) * 2013-12-03 2017-02-15 中车大连电力牵引研发中心有限公司 Vehicle hauling system
FR3023996A1 (en) * 2014-07-16 2016-01-22 Muses MULTI-SECTOR STATOR ASSEMBLY FOR EXTERIOR ROTOR ENGINE.
JP2017526127A (en) 2014-08-07 2017-09-07 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA High temperature insulated aluminum conductor
US10903766B2 (en) * 2014-12-16 2021-01-26 Coalmont Electrical Development Corporation Multi-polar DC machine
CN104682430B (en) * 2015-02-16 2016-08-17 东北大学 A kind of energy router apparatus being applied to energy the Internet
US10014751B2 (en) 2015-05-19 2018-07-03 General Electric Company Electrical machine cooling structure
RU2596807C1 (en) * 2015-07-06 2016-09-10 Общество с ограниченной ответственностью "Смартер" Vehicle electric power supply system
KR102485025B1 (en) * 2015-09-14 2023-01-05 엘지이노텍 주식회사 Integrated cable and motor assembly including the same
DE102016207425A1 (en) * 2016-04-29 2017-11-02 Siemens Aktiengesellschaft Arrangement of single-phase transformers
RU2642488C1 (en) * 2016-08-04 2018-01-25 Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" Excitation system of asynchronized electric machine
DE102016123067A1 (en) * 2016-11-30 2018-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rod winding arrangement of a stator or a rotor of an electrical machine
US11181107B2 (en) 2016-12-02 2021-11-23 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
WO2019071086A1 (en) 2017-10-05 2019-04-11 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
US10408031B2 (en) 2017-10-13 2019-09-10 U.S. Well Services, LLC Automated fracturing system and method
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
CN108128214A (en) * 2017-11-13 2018-06-08 中铁二院工程集团有限责任公司 A kind of method for reducing AT power supply mode single-core cable sheath induced voltages
US10644630B2 (en) 2017-11-28 2020-05-05 General Electric Company Turbomachine with an electric machine assembly and method for operation
CA3084607A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
CA3084596A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
CN111656637B (en) * 2018-01-30 2021-07-16 Abb电网瑞士股份公司 Neutral device, converter station and direct current power transmission system
CA3090408A1 (en) 2018-02-05 2019-08-08 U.S. Well Services, LLC Microgrid electrical load management
US10693338B2 (en) 2018-03-23 2020-06-23 General Electric Company System and method for suppressing surface discharges on conductive windings of an electric machine
AR115054A1 (en) 2018-04-16 2020-11-25 U S Well Services Inc HYBRID HYDRAULIC FRACTURING FLEET
TWI651917B (en) * 2018-05-09 2019-02-21 高力熱處理工業股份有限公司 A method for manufacturing a motor rotor and a motor rotor
WO2019241783A1 (en) 2018-06-15 2019-12-19 U.S. Well Services, Inc. Integrated mobile power unit for hydraulic fracturing
CN110648825B (en) * 2018-06-27 2022-05-13 台达电子工业股份有限公司 Transformer
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
WO2020076902A1 (en) * 2018-10-09 2020-04-16 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
KR102310629B1 (en) * 2019-01-24 2021-10-07 전북대학교산학협력단 A field excitation system and method for a wound rotor synchronous generator
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
CN109742652B (en) * 2019-03-22 2024-03-12 天津市天发重型水电设备制造有限公司 Improved structure of main outgoing line of through-flow hydropower station generator
CN110224560A (en) * 2019-04-28 2019-09-10 深圳市吉胜华力科技有限公司 A kind of Double-stator double-rotor permanent-magnet generator
CA3139970A1 (en) 2019-05-13 2020-11-19 U.S. Well Services, LLC Encoderless vector control for vfd in hydraulic fracturing applications
US11542786B2 (en) 2019-08-01 2023-01-03 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
CN110842474B (en) * 2019-11-13 2020-12-01 北京石油化工学院 Machining and assembling method for right-angle spherical magnetic pole
CN110749810A (en) * 2019-12-05 2020-02-04 国网山东省电力公司电力科学研究院 Insulation fault prediction method and system for phase modulator
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11791684B2 (en) * 2020-07-02 2023-10-17 Ge Aviation Systems Llc Method and system for electrically insulating portions of an electric machine
CN112652470B (en) * 2020-12-07 2022-11-15 阳光电源股份有限公司 Transformer
RU204718U1 (en) * 2021-04-05 2021-06-08 Евгений Борисович Колесников SINGLE-PHASE VOLTAGE TO THREE-PHASE VOLTAGE CONVERTER
CN114268175B (en) * 2021-12-27 2023-03-28 西安交通大学 Ultrahigh-voltage multiphase permanent magnet wind driven generator and power generation system
US11862388B2 (en) * 2022-01-14 2024-01-02 Counterfog Corporation Intrinsically safe electromagnetic devices
CN114614644A (en) * 2022-03-24 2022-06-10 西安交通大学 Rotary triple-frequency electric energy conversion device and working method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091139A (en) * 1975-09-17 1978-05-23 Westinghouse Electric Corp. Semiconductor binding tape and an electrical member wrapped therewith
US4429244A (en) * 1979-12-06 1984-01-31 Vsesojuzny Proektnoizyskatelsky I Nauchno-Issledovatelsky Institut "Gidroproekt" Stator of generator
SE453236B (en) * 1981-01-30 1988-01-18 Elin Union Ag HIGH VOLTAGE WINDING FOR ELECTRICAL MACHINES
US5036165A (en) * 1984-08-23 1991-07-30 General Electric Co. Semi-conducting layer for insulated electrical conductors

Family Cites Families (550)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE134022C (en) *
DE425551C (en) 1926-02-20 Bbc Brown Boveri & Cie Device for the magnetic closure of open slots in electrical machines
DE523047C (en) 1931-04-18 Brown Boveir & Cie Ag Process for the production of slot wedges with iron sheets layered transversely to the longitudinal direction of the wedge for electrical machines
DE572030C (en) 1933-03-09 Bbc Brown Boveri & Cie Cooling device for the winding heads of high-voltage machines
DE336418C (en) 1921-05-02 Stanislaus Berger Support for electrical lines to be led on walls
DE406371C (en) 1924-11-21 Bergmann Elek Citaets Werke Ak Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies with fields of different number of poles, which are expediently combined on an inductor, and induced windings assigned to these fields, possibly combined into a common winding
DE435608C (en) 1926-10-18 Bbc Brown Boveri & Cie Divided conductor for electrical machines
DE386561C (en) 1923-12-13 Bergmann Elek Citaets Werke Ak Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies
US878165A (en) * 1908-02-04 Westinghouse Electric & Mfg Co Dynamo-electric machine.
US1304451A (en) 1919-05-20 Locke h
DE426793C (en) 1926-03-18 Bbc Brown Boveri & Cie Device for the magnetic closure of open slots in electrical machines
DE568508C (en) 1933-01-20 Bbc Brown Boveri & Cie AC high-voltage generator with at least two electrically separate windings
US681800A (en) 1901-06-18 1901-09-03 Oskar Lasche Stationary armature and inductor.
US847008A (en) 1904-06-10 1907-03-12 Isidor Kitsee Converter.
DE372390C (en) 1915-12-09 1923-03-27 Bergmann Elek Citaets Werke Ak Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies with the same or different number of phases
GB123906A (en) 1918-05-31 1919-03-13 Brush Electrical Eng Improvements in or pertaining to Windings in Electrical Apparatus.
US1418856A (en) 1919-05-02 1922-06-06 Allischalmers Mfg Company Dynamo-electric machine
DE443011C (en) 1919-07-19 1927-04-13 Bbc Brown Boveri & Cie Installation on high-voltage windings in electrical machines
US1481585A (en) 1919-09-16 1924-01-22 Electrical Improvements Ltd Electric reactive winding
DE387973C (en) 1921-06-04 1924-01-09 Hellmuth Beyer Arrangement of the coils to reduce the leakage in transformers with a disc-like winding structure
DE482506C (en) 1921-07-09 1929-09-14 Bbc Brown Boveri & Cie Device for short-circuit-proof fastening of involute-shaped stator winding heads of air-cooled electrical machines
US1673673A (en) * 1922-05-31 1928-06-12 Gen Electric Electrical converter
DE460124C (en) 1922-10-10 1928-05-22 Bbc Brown Boveri & Cie Laminated magnetic wedge to close the winding grooves of electrical machines
US1756672A (en) 1922-10-12 1930-04-29 Allis Louis Co Dynamo-electric machine
DE433749C (en) 1923-11-25 1926-09-07 Bbc Brown Boveri & Cie Coil winding of alternating current machines, which carry very strong currents, with ring-shaped connecting conductors
US1508456A (en) 1924-01-04 1924-09-16 Perfection Mfg Co Ground clamp
DE432169C (en) 1924-01-15 1926-07-26 Bbc Brown Boveri & Cie Device for the magnetic closure of open slots in electrical machines
DE435609C (en) 1924-03-02 1926-10-18 Bbc Brown Boveri & Cie Divided conductor for electrical machines
DE441717C (en) 1924-03-02 1927-03-11 Bbc Brown Boveri & Cie Divided conductor for electrical machines
GB268271A (en) 1926-06-12 1927-03-31 Pirelli & C Improvements in or relating to joints for high tension electric cables
DE468827C (en) * 1926-08-07 1928-11-23 Friedrich Pfaffenberger Inhaler
DE501181C (en) 1927-02-19 1930-07-03 Felten & Guilleaume Carlswerk Process for the manufacture of cables for electrical overhead lines
GB292999A (en) 1927-06-29 1929-04-11 Siemens Ag Arrangement of core segments in the casings of dynamo electric machines, rotary transformers and the like
GB293861A (en) 1927-07-15 1928-11-08 Westinghouse Electric & Mfg Co Improvements in or relating to radio coupling devices and conductors therefor
US1728915A (en) 1928-05-05 1929-09-24 Earl P Blankenship Line saver and restrainer for drilling cables
US1781308A (en) 1928-05-30 1930-11-11 Ericsson Telefon Ab L M High-frequency differential transformer
US1762775A (en) 1928-09-19 1930-06-10 Bell Telephone Labor Inc Inductance device
GB319313A (en) 1928-09-20 1929-07-18 Siemens Ag The regulation of the electric potential of long lines
DE629301C (en) 1929-02-28 1936-04-27 Hartstoff Metall Akt Ges Hamet Iron core for electrical machines
US1747507A (en) 1929-05-10 1930-02-18 Westinghouse Electric & Mfg Co Reactor structure
US1742985A (en) 1929-05-20 1930-01-07 Gen Electric Transformer
DE584639C (en) 1929-12-28 1933-09-27 Aeg Corona protection for windings in electrical machines
US1861182A (en) 1930-01-31 1932-05-31 Okonite Co Electric conductor
US1891716A (en) * 1930-04-04 1932-12-20 Westinghouse Electric & Mfg Co Winding for dynamo electric machines
US1904885A (en) 1930-06-13 1933-04-18 Western Electric Co Capstan
US1974406A (en) 1930-12-13 1934-09-25 Herbert F Apple Dynamo electric machine core slot lining
DE604972C (en) 1931-02-27 1934-10-12 Otis Aufzugswerke Ges M B H Door drive for elevators
US1894084A (en) * 1931-04-01 1933-01-10 Gen Electric System of distribution
DE586121C (en) 1932-05-01 1933-10-18 Felix Kleiss Dipl Ing Process for the implementation of wires and tapes through baths
US2006170A (en) 1933-05-11 1935-06-25 Gen Electric Winding for the stationary members of alternating current dynamo-electric machines
DE719009C (en) * 1935-05-30 1942-03-26 Aeg Equipment for the operation of electrical rail feeders
GB468827A (en) * 1936-02-12 1937-07-13 Siemens Ag Improvements in or relating to stators for alternating current machines
FR805544A (en) 1936-04-29 1936-11-21 Travail Electr Des Metaux Soc Method and device for adjusting voltages in a static transformer
DE673545C (en) 1936-07-30 1939-03-24 Siemens Schuckertwerke Akt Ges Multiphase scatter transformer made up of single-phase transformers
NL54036C (en) 1937-09-15
FR847899A (en) 1937-12-23 1939-10-18 Lignes Telegraph Telephon Transformer
FR841351A (en) 1938-01-19 1939-05-17 Manufacturing process of laminated or divided magnetic circuits
US2217430A (en) 1938-02-26 1940-10-08 Westinghouse Electric & Mfg Co Water-cooled stator for dynamoelectric machines
US2206856A (en) 1938-05-31 1940-07-02 William E Shearer Transformer
US2305153A (en) 1938-11-26 1942-12-15 Fries Eduard Adjustable transformer with high reactance
DE719119C (en) * 1939-04-09 1942-03-30 Leonhard Jacobi Wide-span sawn roof made of reinforced concrete
FR864380A (en) 1939-12-01 1941-04-25 Entpr Chemin Improvements to steam winches for piling piling and the like
GB540456A (en) 1940-04-17 1941-10-17 Austin Walters & Son Ltd Improvements in or relating to self-regulating electric transformers
US2241832A (en) 1940-05-07 1941-05-13 Hugo W Wahlquist Method and apparatus for reducing harmonics in power systems
US2256897A (en) 1940-07-24 1941-09-23 Cons Edison Co New York Inc Insulating joint for electric cable sheaths and method of making same
US2295415A (en) 1940-08-02 1942-09-08 Westinghouse Electric & Mfg Co Air-cooled, air-insulated transformer
US2251291A (en) 1940-08-10 1941-08-05 Western Electric Co Strand handling apparatus
GB589071A (en) 1942-03-27 1947-06-11 Gen Electric Co Ltd Improvements in protective shields in high-voltage apparatus
US2415652A (en) 1942-06-03 1947-02-11 Kerite Company High-voltage cable
US2462651A (en) 1944-06-12 1949-02-22 Gen Electric Electric induction apparatus
DE975999C (en) * 1944-09-16 1963-01-10 Siemens Ag Method and device for the operation of single-phase railway contact lines that are fed from at least two feed points
US2424443A (en) 1944-12-06 1947-07-22 Gen Electric Dynamoelectric machine
US2459322A (en) 1945-03-16 1949-01-18 Allis Chalmers Mfg Co Stationary induction apparatus
US2409893A (en) 1945-04-30 1946-10-22 Westinghouse Electric Corp Semiconducting composition
US2436306A (en) 1945-06-16 1948-02-17 Westinghouse Electric Corp Corona elimination in generator end windings
FR916959A (en) 1945-07-03 1946-12-20 Improvements to transformers for electrical welding and similar applications
US2446999A (en) 1945-11-07 1948-08-17 Gen Electric Magnetic core
US2498238A (en) 1947-04-30 1950-02-21 Westinghouse Electric Corp Resistance compositions and products thereof
BE486144A (en) 1947-12-04
CH266037A (en) 1948-02-13 1950-01-15 Sip Karel Collapsible ladder.
US2650350A (en) 1948-11-04 1953-08-25 Gen Electric Angular modulating system
DE875227C (en) 1948-12-31 1953-04-30 Siemens Ag Rotary field machine with concentrated windings and pronounced poles with pole pieces
DE846583C (en) 1949-02-18 1952-08-14 Siemens Ag Iron core for electrical devices, especially transformers, chokes or the like.
US2721905A (en) 1949-03-04 1955-10-25 Webster Electric Co Inc Transducer
FR1011924A (en) 1949-04-23 1952-07-01 Improvements to rotating electrical machines
GB685416A (en) 1950-04-08 1953-01-07 Westinghouse Electric Int Co Improvements in or relating to stationary electrical induction apparatus
DE1638176U (en) 1952-02-12 1952-05-15 Bosch & Speidel CUFF FOR BLOOD PRESSURE MEASUREMENT.
GB702892A (en) * 1952-02-14 1954-01-27 Asea Ab Electric railway system
GB715226A (en) 1952-04-07 1954-09-08 Dowty Equipment Ltd Improvements relating to electro-magnetic coils
US2749456A (en) 1952-06-23 1956-06-05 Us Electrical Motors Inc Waterproof stator construction for submersible dynamo-electric machine
GB723457A (en) 1952-07-07 1955-02-09 Standard Telephones Cables Ltd Joint for an electric cable
GB739962A (en) 1953-03-23 1955-11-02 Standard Telephones Cables Ltd Improvements in coaxial conductor electric cables
BE534972A (en) 1953-03-23
US2780771A (en) 1953-04-21 1957-02-05 Vickers Inc Magnetic amplifier
NL99252C (en) 1954-03-11
GB827600A (en) 1954-12-13 1960-02-10 Shiro Sasaki Electric transformers and the like
US2962679A (en) 1955-07-25 1960-11-29 Gen Electric Coaxial core inductive structures
GB805721A (en) 1955-10-29 1958-12-10 Comp Generale Electricite Improvements in or relating to three-phase magnetic circuits
US2846599A (en) 1956-01-23 1958-08-05 Wetomore Hodges Electric motor components and the like and method for making the same
GB853021A (en) * 1956-06-19 1960-11-02 English Electric Co Ltd Improvements in and relating to transformer on-load tap changing means
US2947957A (en) 1957-04-22 1960-08-02 Zenith Radio Corp Transformers
US2885581A (en) 1957-04-29 1959-05-05 Gen Electric Arrangement for preventing displacement of stator end turns
CA635218A (en) 1958-01-02 1962-01-23 W. Smith John Reinforced end turns in dynamoelectric machines
US2943242A (en) 1958-02-05 1960-06-28 Pure Oil Co Anti-static grounding device
US2975309A (en) 1958-07-18 1961-03-14 Komplex Nagyberendezesek Expor Oil-cooled stators for turboalternators
GB854728A (en) 1958-09-29 1960-11-23 British Thomson Houston Co Ltd Improvements relating to electrical transformers
GB870583A (en) 1958-12-01 1961-06-14 Okonite Co Method of making electric cables
FR1238795A (en) 1959-07-06 1960-08-19 Fournitures Pour L Electrolyse Improvements to electrical transformers
DE1807391U (en) 1959-08-29 1960-03-03 Heinrich Ungruhe BASE RING FOR FITING STRAP.
CH395369A (en) 1959-09-18 1965-07-15 Asea Ab Corona shield on an induction coil provided with insulation in a vacuum furnace and method for producing a corona shield
US3014139A (en) * 1959-10-27 1961-12-19 Gen Electric Direct-cooled cable winding for electro magnetic device
US3157806A (en) 1959-11-05 1964-11-17 Bbc Brown Boveri & Cie Synchronous machine with salient poles
US3158770A (en) 1960-12-14 1964-11-24 Gen Electric Armature bar vibration damping arrangement
DE1263065B (en) * 1961-02-16 1968-03-14 Licentia Gmbh Drive for locomotives or railcars fed from a single-phase AC network with three-phase short-circuit rotor motors as traction motors
US3098893A (en) 1961-03-30 1963-07-23 Gen Electric Low electrical resistance composition and cable made therefrom
US3130335A (en) 1961-04-17 1964-04-21 Epoxylite Corp Dynamo-electric machine
US3197723A (en) 1961-04-26 1965-07-27 Ite Circuit Breaker Ltd Cascaded coaxial cable transformer
GB992249A (en) 1961-08-23 1965-05-19 Urho Leander Wertanen Electrical impedance devices
GB1024583A (en) 1961-10-26 1966-03-30 Ass Elect Ind Improvements in and relating to electric transformers
US3143269A (en) 1961-11-29 1964-08-04 Crompton & Knowles Corp Tractor-type stock feed
CH391071A (en) 1962-03-01 1965-04-30 Bbc Brown Boveri & Cie Laminated stator bodies for electrical machines, in particular turbo generators
GB965741A (en) 1962-03-02 1964-08-06 Core Mfg Company Transformer core
GB1032194A (en) * 1962-04-03 1966-06-08 Asea Ab Equipment for regulating the power transmitted between interconnected alternating current networks
SE305899B (en) 1962-06-15 1968-11-11 O Andersson
NL297703A (en) 1962-09-25
DE1465719A1 (en) 1963-03-15 1969-05-22 Ibm Transformer cables with multiple coaxial conductors and their method of manufacture
US3268766A (en) 1964-02-04 1966-08-23 Du Pont Apparatus for removal of electric charges from dielectric film surfaces
US3372283A (en) 1965-02-15 1968-03-05 Ampex Attenuation control device
SE318939B (en) 1965-03-17 1969-12-22 Asea Ab
US3304599A (en) 1965-03-30 1967-02-21 Teletype Corp Method of manufacturing an electromagnet having a u-shaped core
US3333044A (en) 1965-04-23 1967-07-25 William A Toto Passageway structure for liquid coolant at gun and transformer ends of welding cable having novel internal surface bearing for alternate polarity strands
DE1488353A1 (en) 1965-07-15 1969-06-26 Siemens Ag Permanent magnet excited electrical machine
CA812934A (en) 1965-07-19 1969-05-13 Cuny Robert Rotary transformer for coupling multi-phase systems having a small frequency difference
GB1135242A (en) 1965-09-13 1968-12-04 Ass Elect Ind Improvements in or relating to packing means for conductors in stator slots of dynamo-electric machines
US3365657A (en) 1966-03-04 1968-01-23 Nasa Usa Power supply
GB1117433A (en) 1966-06-07 1968-06-19 English Electric Co Ltd Improvements in alternating current generators
GB1103099A (en) 1966-06-24 1968-02-14 Phelps Dodge Copper Prod Improvements in or relating to shielded electric cable
GB1103098A (en) 1966-06-24 1968-02-14 Phelps Dodge Copper Prod Improvements in or relating to shielded electric cable
US3444407A (en) 1966-07-20 1969-05-13 Gen Electric Rigid conductor bars in dynamoelectric machine slots
US3484690A (en) 1966-08-23 1969-12-16 Herman Wald Three current winding single stator network meter for 3-wire 120/208 volt service
US3418530A (en) 1966-09-07 1968-12-24 Army Usa Electronic crowbar
US3354331A (en) 1966-09-26 1967-11-21 Gen Electric High voltage grading for dynamoelectric machine
GB1147049A (en) 1966-09-28 1969-04-02 Parsons C A & Co Ltd Improvements in and relating to transformer windings
US3392779A (en) 1966-10-03 1968-07-16 Certain Teed Prod Corp Glass fiber cooling means
US3437858A (en) 1966-11-17 1969-04-08 Glastic Corp Slot wedge for electric motors or generators
AT272436B (en) 1967-04-10 1969-07-10 Peter Dipl Ing Dr Techn Klaudy Method of overload protection using superconductors
US3487455A (en) * 1967-04-18 1969-12-30 Asea Ab Insulated high voltage conductor with potential gradient equalization means
GB1174659A (en) 1967-04-21 1969-12-17 Elektromat Veb Mechanism for Inserting Coils into Grooves of the Stators of Electric Machines
SU469196A1 (en) 1967-10-30 1975-04-30 Engine-generator installation for power supply of passenger cars
FR1555807A (en) 1967-12-11 1969-01-31
GB1226451A (en) 1968-03-15 1971-03-31
CH479975A (en) 1968-08-19 1969-10-15 Oerlikon Maschf Head bandage for an electrical machine
GB1268770A (en) 1968-11-21 1972-03-29 Kenneth Grundy Electrical connector
US3651402A (en) 1969-01-27 1972-03-21 Honeywell Inc Supervisory apparatus
US3813764A (en) 1969-06-09 1974-06-04 Res Inst Iron Steel Method of producing laminated pancake type superconductive magnets
US3651244A (en) 1969-10-15 1972-03-21 Gen Cable Corp Power cable with corrugated or smooth longitudinally folded metallic shielding tape
SE326758B (en) 1969-10-29 1970-08-03 Asea Ab
US3614692A (en) 1970-06-02 1971-10-19 Magnetech Ind Inc Variable induction device
US3666876A (en) 1970-07-17 1972-05-30 Exxon Research Engineering Co Novel compositions with controlled electrical properties
FR2108171A1 (en) 1970-09-29 1972-05-19 Sumitomo Electric Industries Insulated electric cable - incorporating an insulating layer and an easily strippable semiconductor layer
DE2050312A1 (en) 1970-10-13 1972-04-20 Siemens Ag Multiple choke with damping of symmetrical interference currents
US3631519A (en) 1970-12-21 1971-12-28 Gen Electric Stress graded cable termination
US3675056A (en) 1971-01-04 1972-07-04 Gen Electric Hermetically sealed dynamoelectric machine
US3644662A (en) 1971-01-11 1972-02-22 Gen Electric Stress cascade-graded cable termination
US3660721A (en) 1971-02-01 1972-05-02 Gen Electric Protective equipment for an alternating current power distribution system
GB1395152A (en) 1971-02-01 1975-05-21 Int Research & Dev Co Ltd Altering current dynamo-electric machine windings
DE2111086A1 (en) 1971-03-09 1972-09-14 Siemens Ag Stand sheet metal cutting of electrical machines
GB1340983A (en) 1971-03-10 1973-12-19 Siemens Ag Superconductor cables
US3684906A (en) 1971-03-26 1972-08-15 Gen Electric Castable rotor having radially venting laminations
US3684821A (en) 1971-03-30 1972-08-15 Sumitomo Electric Industries High voltage insulated electric cable having outer semiconductive layer
US3716719A (en) 1971-06-07 1973-02-13 Aerco Corp Modulated output transformers
JPS4831403A (en) 1971-08-27 1973-04-25
US3746954A (en) 1971-09-17 1973-07-17 Sqare D Co Adjustable voltage thyristor-controlled hoist control for a dc motor
US3727085A (en) 1971-09-30 1973-04-10 Gen Dynamics Corp Electric motor with facility for liquid cooling
DE2155371C2 (en) 1971-11-08 1982-06-24 Appt, geb. Kirschmann, Emma, 7000 Stuttgart Device for shaping the winding heads of electrical machines
US3740600A (en) 1971-12-12 1973-06-19 Gen Electric Self-supporting coil brace
US3743867A (en) 1971-12-20 1973-07-03 Massachusetts Inst Technology High voltage oil insulated and cooled armature windings
DE2164078A1 (en) 1971-12-23 1973-06-28 Siemens Ag DRIVE ARRANGEMENT WITH A LINEAR MOTOR DESIGNED IN THE TYPE OF A SYNCHRONOUS MACHINE
BE793731A (en) 1972-01-05 1973-05-02 English Electric Co Ltd ELECTROGENERATORS
SU425268A1 (en) 1972-02-29 1974-04-25 желого электромашиностроени при Лысьвенском турбогенераторном ELECTRIC MACHINE STATOR
US3699238A (en) 1972-02-29 1972-10-17 Anaconda Wire & Cable Co Flexible power cable
FR2175579B1 (en) 1972-03-14 1974-08-02 Thomson Brandt
US3758699A (en) 1972-03-15 1973-09-11 G & W Electric Speciality Co Apparatus and method for dynamically cooling a cable termination
US3716652A (en) 1972-04-18 1973-02-13 G & W Electric Speciality Co System for dynamically cooling a high voltage cable termination
US3748555A (en) 1972-05-01 1973-07-24 Westinghouse Electric Corp Protective circuit for brushless synchronous motors
US3787607A (en) 1972-05-31 1974-01-22 Teleprompter Corp Coaxial cable splice
US3968388A (en) 1972-06-14 1976-07-06 Kraftwerk Union Aktiengesellschaft Electric machines, particularly turbogenerators, having liquid cooled rotors
US3801843A (en) 1972-06-16 1974-04-02 Gen Electric Rotating electrical machine having rotor and stator cooled by means of heat pipes
CH547028A (en) 1972-06-16 1974-03-15 Bbc Brown Boveri & Cie GLIME PROTECTION FILM, THE PROCESS FOR ITS MANUFACTURING AND THEIR USE IN HIGH VOLTAGE WINDINGS.
US3792399A (en) 1972-08-28 1974-02-12 Nasa Banded transformer cores
US3778891A (en) 1972-10-30 1973-12-18 Westinghouse Electric Corp Method of securing dynamoelectric machine coils by slot wedge and filler locking means
US3887860A (en) * 1972-11-15 1975-06-03 Eaton Corp Fuseless inverter
US3932791A (en) 1973-01-22 1976-01-13 Oswald Joseph V Multi-range, high-speed A.C. over-current protection means including a static switch
US3995785A (en) 1973-02-12 1976-12-07 Essex International, Inc. Apparatus and method for forming dynamoelectric machine field windings by pushing
CA1028440A (en) 1973-02-26 1978-03-21 Uop Inc. Polymer compositions with treated filler
FR2222738B1 (en) 1973-03-20 1976-05-21 Unelec
SE371348B (en) 1973-03-22 1974-11-11 Asea Ab
US3781739A (en) 1973-03-28 1973-12-25 Westinghouse Electric Corp Interleaved winding for electrical inductive apparatus
CH549467A (en) 1973-03-29 1974-05-31 Micafil Ag PROCESS FOR MANUFACTURING A COMPRESSED LAYERING MATERIAL.
US3881647A (en) 1973-04-30 1975-05-06 Lebus International Inc Anti-slack line handling device
CH560448A5 (en) 1973-07-06 1975-03-27 Bbc Brown Boveri & Cie
US4084307A (en) 1973-07-11 1978-04-18 Allmanna Svenska Elektriska Aktiebolaget Method of joining two cables with an insulation of cross-linked polyethylene or another cross linked linear polymer
US3828115A (en) 1973-07-27 1974-08-06 Kerite Co High voltage cable having high sic insulation layer between low sic insulation layers and terminal construction thereof
US4039922A (en) * 1973-09-10 1977-08-02 The Garrett Corporation Method of converting phase and frequency using a dynamo-electric machine
DE2351340A1 (en) 1973-10-12 1975-04-24 Siemens Ag TAPE REEL FOR TRANSFORMERS
GB1433158A (en) 1973-11-19 1976-04-22 Pirelli General Cable Works Electric cable installations
US3947278A (en) 1973-12-19 1976-03-30 Universal Oil Products Company Duplex resistor inks
US3912957A (en) 1973-12-27 1975-10-14 Gen Electric Dynamoelectric machine stator assembly with multi-barrel connection insulator
DE2400698A1 (en) 1974-01-08 1975-07-10 Krim Samhalov Izmail Self-excited machine with two separate stator windings - windings star-connected with second capacitively closed for excitation
US4109098A (en) * 1974-01-31 1978-08-22 Telefonaktiebolaget L M Ericsson High voltage cable
SE384420B (en) 1974-01-31 1976-05-03 Ericsson Telefon Ab L M ELECTRICAL CABLE WITH SYNTHETIC INSULATION AND AN OUTER SEMICONDUCTIVE LAYER
CA1016586A (en) 1974-02-18 1977-08-30 Hubert G. Panter Grounding of outer winding insulation to cores in dynamoelectric machines
US4039740A (en) 1974-06-19 1977-08-02 The Furukawa Electric Co., Ltd. Cryogenic power cable
DE2430792C3 (en) 1974-06-24 1980-04-10 Siemens Ag, 1000 Berlin Und 8000 Muenchen Power cable with plastic insulation and outer conductive layer
FR2285693A1 (en) 1974-09-19 1976-04-16 Matsushita Electric Ind Co Ltd ENCAPSULATED ELECTROMAGNETIC COIL WITH SYNTHETIC RESIN
GB1479904A (en) 1974-10-15 1977-07-13 Ass Elect Ind Alternating current power transmission systems
US3902000A (en) 1974-11-12 1975-08-26 Us Energy Termination for superconducting power transmission systems
US3943392A (en) 1974-11-27 1976-03-09 Allis-Chalmers Corporation Combination slot liner and retainer for dynamoelectric machine conductor bars
CH579844A5 (en) * 1974-12-04 1976-09-15 Bbc Brown Boveri & Cie
US3965408A (en) 1974-12-16 1976-06-22 International Business Machines Corporation Controlled ferroresonant transformer regulated power supply
DE2600206C2 (en) 1975-01-06 1986-01-09 The Reluxtrol Co., Seattle, Wash. Device for non-destructive material testing using the eddy current method
US3975646A (en) * 1975-01-13 1976-08-17 Westinghouse Electric Corporation Asynchronous tie
US4091138A (en) 1975-02-12 1978-05-23 Sumitomo Bakelite Company Limited Insulating film, sheet, or plate material with metallic coating and method for manufacturing same
AT338915B (en) 1975-02-18 1977-09-26 Dukshtau Alexandr Antonovich STAND FOR ELECTRIC MACHINERY
JPS51113110A (en) 1975-03-28 1976-10-06 Mitsubishi Electric Corp Drive system for inductor type synchronous motor
US4008409A (en) 1975-04-09 1977-02-15 General Electric Company Dynamoelectric machine core and coil assembly
US3971543A (en) 1975-04-17 1976-07-27 Shanahan William F Tool and kit for electrical fishing
US4132914A (en) 1975-04-22 1979-01-02 Khutoretsky Garri M Six-phase winding of electric machine stator
DE2520511C3 (en) 1975-05-07 1978-11-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for supporting the rotor winding of a salient pole rotor of a four-pole or higher-pole electrical machine
ZA753046B (en) 1975-05-12 1976-09-29 Gec South Africa Pty Transformer cooling
SE7605754L (en) 1975-05-22 1976-11-23 Reynolds Metals Co ELECTRICAL CABLE
US4031310A (en) 1975-06-13 1977-06-21 General Cable Corporation Shrinkable electrical cable core for cryogenic cable
US3993860A (en) 1975-08-18 1976-11-23 Samuel Moore And Company Electrical cable adapted for use on a tractor trailer
US4258280A (en) 1975-11-07 1981-03-24 Bbc Brown Boveri & Company Limited Supporting structure for slow speed large diameter electrical machines
US4085347A (en) 1976-01-16 1978-04-18 White-Westinghouse Corporation Laminated stator core
AT340523B (en) 1976-04-27 1977-12-27 Hitzinger & Co Dipl Ing BRUSHLESS SYNC GENERATOR
HU175494B (en) 1976-04-29 1980-08-28 Magyar Kabel Muevek Shielded power-current cable
US4047138A (en) 1976-05-19 1977-09-06 General Electric Company Power inductor and transformer with low acoustic noise air gap
DE2622309C3 (en) 1976-05-19 1979-05-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Protective device for a brushless synchronous machine
JPS5325886A (en) 1976-08-21 1978-03-10 Sumitomo Electric Ind Ltd Brid ged polyolefine insulating hightension cable having outer semiconductor layers which can be treated off easily
US4064419A (en) 1976-10-08 1977-12-20 Westinghouse Electric Corporation Synchronous motor KVAR regulation system
US4103075A (en) 1976-10-28 1978-07-25 Airco, Inc. Composite monolithic low-loss superconductor for power transmission line
US4041431A (en) 1976-11-22 1977-08-09 Ralph Ogden Input line voltage compensating transformer power regulator
SU625290A1 (en) 1976-11-30 1978-09-25 Специальное Конструкторское Бюро "Энергохиммаш" Electric motor
US4099227A (en) 1976-12-01 1978-07-04 Square D Company Sensor circuit
DE2656389C3 (en) 1976-12-13 1979-11-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Synchronous linear motor
FR2376542A1 (en) 1976-12-30 1978-07-28 Aroshidze Jury Spring mounted stator core of electrical machine - is attached to stator frame at points of maximum stiffness to form rigid structure
US4200817A (en) 1977-01-20 1980-04-29 Bbc Brown Boveri & Company Limited Δ-Connected, two-layer, three-phase winding for an electrical machine
IT1113513B (en) 1977-03-16 1986-01-20 Pirelli IMPROVEMENT CONCERNING THE CABLES FOR ENERGY
JPS53120117A (en) 1977-03-30 1978-10-20 Hitachi Ltd Excitation control system for generator
US4179729A (en) * 1977-04-15 1979-12-18 The Charles Stark Draper Laboratory, Inc. Rotary electric machine and power conversion system using same
US4149101A (en) 1977-05-12 1979-04-10 Lesokhin Albert Z Arrangement for locking slot wedges retaining electric windings
DE2721905C2 (en) 1977-05-14 1986-02-20 Thyssen Industrie Ag, 4300 Essen Method of manufacturing a three-phase alternating current winding for a linear motor
US4134036A (en) 1977-06-03 1979-01-09 Cooper Industries, Inc. Motor mounting device
US4152615A (en) 1977-06-14 1979-05-01 Westinghouse Electric Corp. End iron axial flux damper system
DE2729067A1 (en) 1977-06-28 1979-01-11 Kabel Metallwerke Ghh MEDIUM OR HIGH VOLTAGE ELECTRIC CABLE
US4177418A (en) 1977-08-04 1979-12-04 International Business Machines Corporation Flux controlled shunt regulated transformer
US4164672A (en) 1977-08-18 1979-08-14 Electric Power Research Institute, Inc. Cooling and insulating system for extra high voltage electrical machine with a spiral winding
US4184186A (en) 1977-09-06 1980-01-15 General Electric Company Current limiting device for an electric power system
DE2741362C2 (en) * 1977-09-12 1979-08-16 Siemens Ag, 1000 Berlin Und 8000 Muenchen Electric synchronous motor in turbo design
US4160193A (en) 1977-11-17 1979-07-03 Richmond Abraham W Metal vapor electric discharge lamp system
PL123224B1 (en) 1977-11-30 1982-09-30 Inst Spawalnictwa Welding transformer of dropping external characteristic
US4134146A (en) * 1978-02-09 1979-01-09 General Electric Company Surge arrester gap assembly
US4177397A (en) 1978-03-17 1979-12-04 Amp Incorporated Electrical connections for windings of motor stators
SU792302A1 (en) 1978-04-04 1980-12-30 Предприятие П/Я В-8833 Transformer
US4228391A (en) * 1978-04-14 1980-10-14 The United States Of America As Represented By The United States Department Of Energy Induction machine
US4164772A (en) 1978-04-17 1979-08-14 Electric Power Research Institute, Inc. AC fault current limiting circuit
DE2824951A1 (en) 1978-06-07 1979-12-20 Kabel Metallwerke Ghh METHOD OF MANUFACTURING A STATOR FOR A LINEAR MOTOR
CH629344A5 (en) 1978-06-08 1982-04-15 Bbc Brown Boveri & Cie DEVICE FOR SUPPORTING THE FIELD DEVELOPMENT OF A POLE WHEEL WITH EXCELLENT POLES.
US4321426A (en) 1978-06-09 1982-03-23 General Electric Company Bonded transposed transformer winding cable strands having improved short circuit withstand
SU694939A1 (en) 1978-06-22 1982-01-07 Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука Generator stator
US4208597A (en) 1978-06-22 1980-06-17 Westinghouse Electric Corp. Stator core cooling for dynamoelectric machines
DE2925934A1 (en) 1978-07-06 1980-01-24 Vilanova Luis Montplet MAGNETIC DEVICE, IN PARTICULAR FOR DETECTING FAULTS OF UNDERGROUND ELECTRIC CABLES
US4200818A (en) 1978-08-01 1980-04-29 Westinghouse Electric Corp. Resin impregnated aromatic polyamide covered glass based slot wedge for large dynamoelectric machines
DE2835386A1 (en) 1978-08-12 1980-02-21 Kabel Metallwerke Ghh Three=phase AC winding for linear motor - is made by preforming cables which are wound on drum, fastened on supports and then placed in slots
DE2836229C2 (en) 1978-08-17 1983-12-15 Siemens AG, 1000 Berlin und 8000 München Stator winding of an electrical machine
CA1095601A (en) 1978-08-28 1981-02-10 Alfred M. Hase Regulating transformer with magnetic shunt
DE2839517C2 (en) 1978-09-11 1986-05-07 Thyssen Industrie Ag, 4300 Essen Process for the production of a prefabricated winding for linear motors
JPS6028226B2 (en) 1978-09-20 1985-07-03 株式会社日立製作所 salient pole rotor
JPS6044764B2 (en) 1978-11-09 1985-10-05 株式会社フジクラ Cable conductor manufacturing method
US4207482A (en) 1978-11-14 1980-06-10 Westinghouse Electric Corp. Multilayered high voltage grading system for electrical conductors
US4238339A (en) 1978-11-27 1980-12-09 Fridman Vladimir M Arrangement for supporting stator end windings of an electric machine
JPS5579676A (en) 1978-12-13 1980-06-16 Toshiba Corp Harmonic filter for electric power
DE2854520A1 (en) 1978-12-16 1980-06-26 Bbc Brown Boveri & Cie ELECTRIC COIL
CH651975A5 (en) 1979-01-10 1985-10-15 Bbc Brown Boveri & Cie PROTECTIVE DEVICE ON A TURBO GROUP AGAINST SUBSYNCHRONOUS RESONANCES.
US4317001A (en) 1979-02-23 1982-02-23 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
US4262209A (en) * 1979-02-26 1981-04-14 Berner Charles A Supplemental electrical power generating system
US4281264A (en) 1979-02-26 1981-07-28 General Electric Company Mounting of armature conductors in air-gap armatures
SE416693B (en) 1979-03-08 1981-01-26 Elmekano I Lulea Ab DEVICE FOR PHASE COMPENSATION AND MAGNETIZATION OF AN ASYNCHRONIC MACHINE FOR OPERATING AS GENERATOR
SU873370A1 (en) 1979-03-11 1981-10-15 Предприятие П/Я М-5113 Synchronous machine excitation system
FR2452167A1 (en) 1979-03-20 1980-10-17 Aerospatiale PROCESS FOR THE PRODUCTION OF A MAGNETIC FRAME WITH DIVIDED STRUCTURE AND REINFORCEMENT THUS OBTAINED
GB2100998B (en) 1979-03-22 1984-02-01 Oriental Metal Meg Co Ltd Process and apparatus for the distillation of water
CH641599A5 (en) 1979-03-27 1984-02-29 Streiff Mathias Ag METHOD AND DEVICE FOR LAYING AND FASTENING HEAVY ELECTRIC CABLES IN A CABLE CHANNEL.
US4363612A (en) 1979-03-29 1982-12-14 Ulrich Walchhutter Flywheel and screw press for producing ceramic articles
DE2913697C2 (en) 1979-04-05 1986-05-22 kabelmetal electro GmbH, 3000 Hannover Prefabricated winding for a linear motor
DE2917717A1 (en) 1979-05-02 1980-11-27 Kraftwerk Union Ag Turbogenerator stator cooling segments - have parallel channels extending from to distributor to zone of stator teeth
DE2920477A1 (en) 1979-05-21 1980-12-04 Kabel Metallwerke Ghh Prefabricated three-phase alternating current winding for a linear motor
DE2920478C2 (en) 1979-05-21 1986-06-26 kabelmetal electro GmbH, 3000 Hannover Prefabricated three-phase alternating current winding for a linear motor
DE2921114A1 (en) 1979-05-25 1980-12-04 Bosch Gmbh Robert WINDING PROCESS FOR AN ELECTRIC GENERATOR AND THREE-PHASE GENERATOR PRODUCED AFTER THIS
US4357542A (en) 1979-07-12 1982-11-02 Westinghouse Electric Corp. Wind turbine generator system
US4255684A (en) 1979-08-03 1981-03-10 Mischler William R Laminated motor stator structure with molded composite pole pieces
US4292558A (en) 1979-08-15 1981-09-29 Westinghouse Electric Corp. Support structure for dynamoelectric machine stators spiral pancake winding
US4355255A (en) * 1979-08-28 1982-10-19 The Singer Company Brushless direct current motor and control therefor
DE2939004A1 (en) 1979-09-26 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Synchronous linear motor for rail vehicle drive - has field winding divided into switched sections with inter-looped current lines
US4320645A (en) 1979-10-11 1982-03-23 Card-O-Matic Pty. Limited Apparatus for fabricating electrical equipment
FR2467502A1 (en) 1979-10-11 1981-04-17 Ducellier & Cie Electric starter motor rotor winding for vehicle - has minimal depth slots with offset conductors to minimise flux distortion
JPS5675411U (en) 1979-11-15 1981-06-19
DE3002945A1 (en) 1980-01-29 1981-07-30 Anton Piller Kg, 3360 Osterode TRANSFORMER SYSTEM
EP0033847B1 (en) 1980-02-11 1985-05-02 Siemens Aktiengesellschaft Turbine set with a generator providing a constant-frequency mains supply
DE3006382C2 (en) 1980-02-21 1985-10-31 Thyssen Industrie Ag, 4300 Essen Three-phase alternating current winding for a linear motor
DE3008212C2 (en) 1980-03-04 1985-06-27 Robert Bosch Gmbh, 7000 Stuttgart Process for the production of stator windings for three-phase alternators
DE3008818A1 (en) 1980-03-05 1981-09-10 Siemens AG, 1000 Berlin und 8000 München Jointing sleeve for HT cables - with plastic cylinder over metal tube and insulating tape wraps
US4411710A (en) 1980-04-03 1983-10-25 The Fujikawa Cable Works, Limited Method for manufacturing a stranded conductor constituted of insulated strands
FR2481531A1 (en) 1980-04-23 1981-10-30 Cables De Lyon Geoffroy Delore SPLICING METHOD AND SPLICE FOR COAXIAL CABLE WITH MASSIVE INSULATION
DE3016990A1 (en) 1980-05-02 1981-11-12 Kraftwerk Union AG, 4330 Mülheim DEVICE FOR FIXING WINDING RODS IN SLOTS OF ELECTRICAL MACHINES, IN PARTICULAR TURBOGENERATORS
CA1140198A (en) 1980-05-23 1983-01-25 National Research Council Of Canada Laser triggered high voltage rail gap switch
US4594630A (en) 1980-06-02 1986-06-10 Electric Power Research Institute, Inc. Emission controlled current limiter for use in electric power transmission and distribution
DE3031866A1 (en) 1980-08-23 1982-04-01 Brown, Boveri & Cie Ag, 6800 Mannheim LADDER BAR FOR ELECTRICAL MACHINE
US4384944A (en) 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
US4330726A (en) 1980-12-04 1982-05-18 General Electric Company Air-gap winding stator construction for dynamoelectric machine
DE3050661C2 (en) 1980-12-18 1985-07-18 Vsesojuznyj proektno-izyskatel'skij i naučno-issledovatel'skij institut Gidroproekt imeni S.Ja. Šuka, Moskau/Moskva Arrangement for connecting two conductor rod ends
US4365506A (en) * 1980-12-22 1982-12-28 Trw Inc. Remotely operated downhole test disconnect switching apparatus
US4404486A (en) 1980-12-24 1983-09-13 General Electric Company Star connected air gap polyphase armature having limited voltage gradients at phase boundaries
US4361723A (en) 1981-03-16 1982-11-30 Harvey Hubbell Incorporated Insulated high voltage cables
SU955369A1 (en) 1981-03-26 1982-08-30 Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука Electric machine stator
US4368418A (en) 1981-04-21 1983-01-11 Power Technologies, Inc. Apparatus for controlling high voltage by absorption of capacitive vars
US4401920A (en) 1981-05-11 1983-08-30 Canadian Patents & Development Limited Laser triggered high voltage rail gap switch
GB2099635B (en) 1981-05-29 1985-07-03 Harmer & Simmons Ltd Ransformers for battery charging systems
US4367425A (en) 1981-06-01 1983-01-04 Westinghouse Electric Corp. Impregnated high voltage spacers for use with resin filled hose bracing systems
US4365178A (en) 1981-06-08 1982-12-21 General Electric Co. Laminated rotor for a dynamoelectric machine with coolant passageways therein
SE426895B (en) 1981-07-06 1983-02-14 Asea Ab PROTECTOR FOR A SERIES CONDENSOR IN A HIGH VOLTAGE NETWORK
US4449768A (en) 1981-07-23 1984-05-22 Preformed Line Products Company Shield connector
AU557924B2 (en) 1981-07-28 1987-01-15 Pirelli General Plc Heat shielding electric cables
DE3129928A1 (en) * 1981-07-29 1983-02-24 Anton Piller GmbH & Co KG, 3360 Osterode ROTATING TRANSFORMER
US4470884A (en) 1981-08-07 1984-09-11 National Ano-Wire, Inc. High speed aluminum wire anodizing machine and process
US4368399A (en) 1981-08-17 1983-01-11 Westinghouse Electric Corp. Rotor end turn winding and support structure
CA1164851A (en) 1981-08-17 1984-04-03 Ali Pan Reeling of cable
US4387316A (en) 1981-09-30 1983-06-07 General Electric Company Dynamoelectric machine stator wedges and method
US4475075A (en) 1981-10-14 1984-10-02 Munn Robert B Electric power generator and system
NO161521C (en) 1981-10-27 1989-08-23 Raychem Sa Nv SHOULD BETWEEN INSULATED PIPE CABLES AND PROCEDURES AND ASSEMBLY KITS FOR CREATION.
US4520287A (en) 1981-10-27 1985-05-28 Emerson Electric Co. Stator for a multiple-pole dynamoelectric machine and method of fabricating same
US4426771A (en) 1981-10-27 1984-01-24 Emerson Electric Co. Method of fabricating a stator for a multiple-pole dynamoelectric machine
US4431960A (en) 1981-11-06 1984-02-14 Fdx Patents Holding Company, N.V. Current amplifying apparatus
US4437464A (en) 1981-11-09 1984-03-20 C.R. Bard, Inc. Electrosurgical generator safety apparatus
US4469267A (en) 1982-01-15 1984-09-04 Western Gear Corporation Draw-off and hold-back cable tension machine
SU1019553A1 (en) 1982-02-23 1983-05-23 Харьковский Ордена Ленина Авиационный Институт Им.Н.Е.Жуковского Electric machine stator
CA1222788A (en) 1982-05-14 1987-06-09 Roderick S. Taylor Uv radiation triggered rail-gap switch
US4425521A (en) 1982-06-03 1984-01-10 General Electric Company Magnetic slot wedge with low average permeability and high mechanical strength
US4546210A (en) 1982-06-07 1985-10-08 Hitachi, Ltd. Litz wire
US4443725A (en) 1982-06-14 1984-04-17 General Electric Company Dynamoelectric machine stator wedge
DE3229480A1 (en) 1982-08-06 1984-02-09 Transformatoren Union Ag, 7000 Stuttgart DRY TRANSFORMER WITH WINDINGS POOLED IN CAST RESIN
JPS5928852A (en) 1982-08-06 1984-02-15 Hitachi Ltd Salient-pole type rotary electric machine
US4481438A (en) 1982-09-13 1984-11-06 Electric Power Research Institute, Inc. High voltage electrical generator and windings for use therein
JPS5956825A (en) 1982-09-21 1984-04-02 三菱電機株式会社 Ac current limiting device
US4473765A (en) 1982-09-30 1984-09-25 General Electric Company Electrostatic grading layer for the surface of an electrical insulation exposed to high electrical stress
US4508251A (en) 1982-10-26 1985-04-02 Nippon Telegraph And Telephone Public Corp. Cable pulling/feeding apparatus
JPS5986110A (en) 1982-11-09 1984-05-18 住友電気工業株式会社 Crosslinked polyethylene insulated cable
GB2140195B (en) 1982-12-03 1986-04-30 Electric Power Res Inst Cryogenic cable and method of making same
JPS59129558A (en) * 1983-01-14 1984-07-25 Hitachi Ltd Variable speed rotary electric machine
CH659910A5 (en) 1983-01-27 1987-02-27 Bbc Brown Boveri & Cie AIR THROTTLE COIL AND METHOD FOR THEIR PRODUCTION.
DE3305225A1 (en) 1983-02-16 1984-08-16 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau High-voltage DC-transmission power station in a block circuit
GB2136214B (en) 1983-03-11 1986-05-29 British Aerospace Pulse transformer
DE3309051C2 (en) 1983-03-14 1986-10-02 Thyssen Industrie Ag, 4300 Essen Three-phase alternating current winding for a linear motor
EP0120154A1 (en) 1983-03-25 1984-10-03 TRENCH ELECTRIC, a Division of Guthrie Canadian Investments Limited Continuously transposed conductor
US4619040A (en) 1983-05-23 1986-10-28 Emerson Electric Co. Method of fabricating stator for a multiple pole dynamoelectric machine
US4510476A (en) 1983-06-21 1985-04-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High voltage isolation transformer
DE3323696A1 (en) 1983-07-01 1985-01-10 Thyssen Industrie Ag, 4300 Essen METHOD AND DEVICE FOR LAYING A PRE-MANUFACTURED WINDING OF A LINEAR MOTOR
US4590416A (en) 1983-08-08 1986-05-20 Rig Efficiency, Inc. Closed loop power factor control for power supply systems
US4565929A (en) 1983-09-29 1986-01-21 The Boeing Company Wind powered system for generating electricity
US4510077A (en) 1983-11-03 1985-04-09 General Electric Company Semiconductive glass fibers and method
US4503284A (en) 1983-11-09 1985-03-05 Essex Group, Inc. RF Suppressing magnet wire
IT1195482B (en) 1983-11-18 1988-10-19 Meccanica Di Precisione Spa PROGRAMMABLE ROBOT ABLE TO MANAGE THE FEEDING AND UNLOADING OF EMPTY SPOOLS AND FULL SPOOLS INTO AND FROM MACHINES USED FOR WINDING METAL WIRES EOD OTHER MATERIAL AT TWENTY OPERATING CHARACTERISTICS U GUALES OR DIFFERENT THAN ONE LONG THE SAME ROBOT YOU ARE LOOKING AT
GB2150153B (en) 1983-11-25 1986-09-10 Gen Electric Electrodeposition of mica on coil or bar connections
US4622116A (en) * 1983-11-25 1986-11-11 General Electric Company Process for electrodepositing mica on coil or bar connections and resulting products
US4724345A (en) 1983-11-25 1988-02-09 General Electric Company Electrodepositing mica on coil connections
US4723083A (en) 1983-11-25 1988-02-02 General Electric Company Electrodeposited mica on coil bar connections and resulting products
FR2556146B1 (en) * 1983-12-05 1988-01-15 Paris & Du Rhone DEVICE FOR MOUNTING AND INSULATING CONDUCTORS ON ROTORS OF ELECTRIC ROTATING MACHINES
SE452823B (en) 1984-03-07 1987-12-14 Asea Ab Series capacitor EQUIPMENT
DE3444189A1 (en) 1984-03-21 1985-09-26 Kraftwerk Union AG, 4330 Mülheim DEVICE FOR INDIRECT GAS COOLING OF THE STATE DEVELOPMENT AND / OR FOR DIRECT GAS COOLING OF THE STATE SHEET PACKAGE OF DYNAMOELECTRICAL MACHINES, PREFERRED FOR GAS COOLED TURBOGENERATORS
US4488079A (en) 1984-03-30 1984-12-11 Westinghouse Electric Corp. Dynamoelectric machine with stator coil end turn support system
US4650924A (en) 1984-07-24 1987-03-17 Phelps Dodge Industries, Inc. Ribbon cable, method and apparatus, and electromagnetic device
US4853565A (en) * 1984-08-23 1989-08-01 General Electric Company Semi-conducting layer for insulated electrical conductors
US5067046A (en) 1984-08-23 1991-11-19 General Electric Company Electric charge bleed-off structure using pyrolyzed glass fiber
US5066881A (en) 1984-08-23 1991-11-19 General Electric Company Semi-conducting layer for insulated electrical conductors
AU575681B2 (en) 1984-09-13 1988-08-04 Utdc Inc. Linear induction motor
US4560896A (en) 1984-10-01 1985-12-24 General Electric Company Composite slot insulation for dynamoelectric machine
DE3438747A1 (en) 1984-10-23 1986-04-24 Standard Elektrik Lorenz Ag, 7000 Stuttgart ELECTRONICALLY COMMUTED, COLLECTORLESS DC MOTOR
JPH0123900Y2 (en) 1984-11-08 1989-07-20
DE3441311A1 (en) 1984-11-12 1986-05-15 Siemens AG, 1000 Berlin und 8000 München SPLICE PROTECTOR INSERT FOR CABLE SLEEVES MADE OF SHRINKABLE MATERIAL
US4607183A (en) 1984-11-14 1986-08-19 General Electric Company Dynamoelectric machine slot wedges with abrasion resistant layer
JPS61121729A (en) 1984-11-14 1986-06-09 Fanuc Ltd Liquid cooled motor
EP0246377A1 (en) 1986-05-23 1987-11-25 Royal Melbourne Institute Of Technology Limited Electrically-variable inductor
EP0185788B1 (en) 1984-12-21 1988-08-24 Audi Ag Wire-feeding device for an insulated wire cutting and stripping apparatus
US4761602A (en) 1985-01-22 1988-08-02 Gregory Leibovich Compound short-circuit induction machine and method of its control
US4588916A (en) 1985-01-28 1986-05-13 General Motors Corporation End turn insulation for a dynamoelectric machine
US4868970A (en) 1985-03-08 1989-09-26 Kolimorgen Corporation Method of making an electric motor
EP0198535B1 (en) 1985-04-04 1990-02-07 Koninklijke Philips Electronics N.V. Composite wire for hf applications, coil wound from such a wire, and deflection unit comprising such a coil
US4618795A (en) 1985-04-10 1986-10-21 Westinghouse Electric Corp. Turbine generator stator end winding support assembly with decoupling from the core
US4701691A (en) * 1985-05-14 1987-10-20 Nickoladze Leo G Synchronous generators
US4654551A (en) * 1985-05-20 1987-03-31 Tecumseh Products Company Permanent magnet excited alternator compressor with brushless DC control
US4723104A (en) 1985-10-02 1988-02-02 Frederick Rohatyn Energy saving system for larger three phase induction motors
FR2589017B1 (en) 1985-10-17 1990-07-27 Alsthom SYNCHRONOUS MACHINE WITH SUPERCONDUCTING WINDINGS
DE3543106A1 (en) 1985-12-06 1987-06-11 Kabelmetal Electro Gmbh ELECTRIC CABLE FOR USE AS WINDING STRING FOR LINEAR MOTORS
US4656379A (en) 1985-12-18 1987-04-07 The Garrett Corporation Hybrid excited generator with flux control of consequent-pole rotor
FR2594271A1 (en) 1986-02-13 1987-08-14 Paris & Du Rhone Rotor for electric rotating machine, with slots housing two overlying conductors
IT1190077B (en) 1986-02-28 1988-02-10 Pirelli Cavi Spa ELECTRIC CABLE WITH IMPROVED SCREEN AND PROCEDURE FOR THE CONSTRUCTION OF THIS SCREEN
US5244624B1 (en) 1986-03-31 1997-11-18 Nu Pipe Inc Method of installing a new pipe inside an existing conduit by progressive rounding
US5403120A (en) 1986-03-31 1995-04-04 Nupipe, Inc. Method of installing a substantially rigid thermoplastic pipe in existing main and lateral conduits
DE3612112A1 (en) 1986-04-10 1987-10-15 Siemens Ag Bracing for the teeth of the stator of a turbogenerator
US4687882A (en) 1986-04-28 1987-08-18 Stone Gregory C Surge attenuating cable
US4963695A (en) 1986-05-16 1990-10-16 Pirelli Cable Corporation Power cable with metallic shielding tape and water swellable powder
GB8617004D0 (en) 1986-07-11 1986-08-20 Bp Chem Int Ltd Polymer composition
JPS63110939A (en) 1986-10-25 1988-05-16 Hitachi Ltd Rotor of induction motor
JPH0687642B2 (en) 1986-12-15 1994-11-02 株式会社日立製作所 Rotor winding abnormality diagnosis device for rotating electric machine
US4924342A (en) 1987-01-27 1990-05-08 Teledyne Inet Low voltage transient current limiting circuit
EP0280759B1 (en) 1987-03-06 1993-10-13 Heinrich Dr. Groh Arrangement for electric energy cables for protection against explosions of gas and/or dust/air mixtures, especially for underground working
JPH07108074B2 (en) 1987-03-10 1995-11-15 株式会社三ツ葉電機製作所 Slot structure of rotor core in rotating electric machine
CA1258881A (en) 1987-04-15 1989-08-29 Leonard Bolduc Self-regulated transformer with gaps
US4771168A (en) 1987-05-04 1988-09-13 The University Of Southern California Light initiated high power electronic switch
SU1511810A1 (en) 1987-05-26 1989-09-30 Ленинградское Электромашиностроительное Объединение "Электросила" Им.С.М.Кирова Method of repairing laminated stator core of high-power electric machine
US4890040A (en) 1987-06-01 1989-12-26 Gundersen Martin A Optically triggered back-lighted thyratron network
US5012125A (en) 1987-06-03 1991-04-30 Norand Corporation Shielded electrical wire construction, and transformer utilizing the same for reduction of capacitive coupling
SE457792B (en) 1987-06-12 1989-01-30 Kabmatik Ab CABLE EXCHANGE DEVICE FOR APPLICATION FROM EXCHANGE FROM A FIRST ROTARY DRUM TO ANOTHER ROTARY DRUM
US4845308A (en) 1987-07-20 1989-07-04 The Babcock & Wilcox Company Superconducting electrical conductor
DE3726346A1 (en) 1987-08-07 1989-02-16 Vacuumschmelze Gmbh Annular core (ring core) for current sensors
US4800314A (en) 1987-08-24 1989-01-24 Westinghouse Electric Corp. Deep beam support arrangement for dynamoelectric machine stator coil end portions
JPH0633789B2 (en) * 1987-10-09 1994-05-02 株式会社日立製作所 Multistage pump
US4801832A (en) 1987-11-04 1989-01-31 General Electric Company Stator and rotor lamination construction for a dynamo-electric machine
DE3737719A1 (en) 1987-11-06 1989-05-24 Thyssen Industrie METHOD AND DEVICE FOR INSERTING A WINDING IN THE INDUCTOR OF A LINEAR MOTOR
US4810919A (en) 1987-11-16 1989-03-07 Westinghouse Electric Corp. Low-torque nuts for stator core through-bolts
CA1318948C (en) 1987-11-18 1993-06-08 Takayuki Nimiya Cable closure
US4859989A (en) 1987-12-01 1989-08-22 W. L. Gore & Associates, Inc. Security system and signal carrying member thereof
US4994952A (en) 1988-02-10 1991-02-19 Electronics Research Group, Inc. Low-noise switching power supply having variable reluctance transformer
NL8800832A (en) 1988-03-31 1989-10-16 Lovink Terborg Bv METHOD FOR PROTECTING PROTECTION AGAINST MOISTURE-ENCLOSED ELEMENTS AND FILLING MASS USED IN THAT METHOD
US4914386A (en) 1988-04-28 1990-04-03 Abb Power Distribution Inc. Method and apparatus for providing thermal protection for large motors based on accurate calculations of slip dependent rotor resistance
US4864266A (en) 1988-04-29 1989-09-05 Electric Power Research Institute, Inc. High-voltage winding for core-form power transformers
DE3816652A1 (en) 1988-05-16 1989-11-30 Magnet Motor Gmbh ELECTRIC MACHINE WITH LIQUID COOLING
JPH0721078Y2 (en) 1988-07-21 1995-05-15 多摩川精機株式会社 Electric motor
CH677549A5 (en) 1988-08-02 1991-05-31 Asea Brown Boveri
US4847747A (en) 1988-09-26 1989-07-11 Westinghouse Electric Corp. Commutation circuit for load-commutated inverter induction motor drives
US5083360A (en) 1988-09-28 1992-01-28 Abb Power T&D Company, Inc. Method of making a repairable amorphous metal transformer joint
GB2223877B (en) 1988-10-17 1993-05-19 Pirelli General Plc Extra-high-voltage power cable
US4926079A (en) 1988-10-17 1990-05-15 Ryobi Motor Products Corp. Motor field winding with intermediate tap
JPH02179246A (en) 1988-12-28 1990-07-12 Fanuc Ltd Stator construction of built-in motor
US5168662A (en) 1988-12-28 1992-12-08 Fanuc Ltd. Process of structuring stator of built-in motor
US4982147A (en) * 1989-01-30 1991-01-01 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Power factor motor control system
US5091609A (en) 1989-02-14 1992-02-25 Sumitomo Electric Industries, Ltd. Insulated wire
US5136459A (en) 1989-03-13 1992-08-04 Electric Power Research Institute, Inc. High speed current limiting system responsive to symmetrical & asymmetrical currents
US4942326A (en) 1989-04-19 1990-07-17 Westinghouse Electric Corp. Biased securement system for end winding conductor
US5124607A (en) 1989-05-19 1992-06-23 General Electric Company Dynamoelectric machines including metal filled glass cloth slot closure wedges, and methods of making the same
JPH0351968A (en) 1989-07-19 1991-03-06 Toshiba Corp Linearization decision system
US4949001A (en) 1989-07-21 1990-08-14 Campbell Steven R Partial discharge detection method and apparatus
DE3925337A1 (en) 1989-07-31 1991-02-07 Loher Ag Electric motor with housing accommodating stator surrounding rotor - has cooling ducts running axially so gaseous cooling medium under high pressure is fed in closed cooling circuit
US5355046A (en) 1989-12-15 1994-10-11 Klaus Weigelt Stator end-winding system and a retrofitting set for same
SE465240B (en) 1989-12-22 1991-08-12 Asea Brown Boveri OVERVOLTAGE PROTECTION FOR SERIAL CONDENSER EQUIPMENT
US5097241A (en) 1989-12-29 1992-03-17 Sundstrand Corporation Cooling apparatus for windings
EP0439410A3 (en) 1990-01-25 1992-01-29 Branimir Jakovljevic Laminate for magnetic core
EP0440865A1 (en) 1990-02-09 1991-08-14 Asea Brown Boveri Ab Electrical insulation
US5030813A (en) 1990-02-06 1991-07-09 Pulsair Anstalt Corporation Welding apparatus and transformer therefor
CA2010670C (en) 1990-02-22 1997-04-01 James H. Dymond Salient pole rotor for a dynamoelectric machine
TW215446B (en) 1990-02-23 1993-11-01 Furukawa Electric Co Ltd
US5171941A (en) 1990-03-30 1992-12-15 The Furukawa Electric Co., Ltd. Superconducting strand for alternating current
JP2814687B2 (en) 1990-04-24 1998-10-27 日立電線株式会社 Watertight rubber / plastic insulated cable
DE4022476A1 (en) 1990-07-14 1992-01-16 Thyssen Industrie Electric cable for three=phase AC winding of linear motor - covers one phase by inner conducting layer surrounded by insulation and outer conducting layer
DE4023903C1 (en) 1990-07-27 1991-11-07 Micafil Ag, Zuerich, Ch Planar insulator for electrical machine or appts. - is laminated construction withstanding high mechanical loading and with curved edges for fitting into grooves
NL9002005A (en) 1990-09-12 1992-04-01 Philips Nv TRANSFORMER.
DE4030236C2 (en) 1990-09-25 1999-01-07 Thyssen Industrie Device for removing the winding of a linear motor
US5111095A (en) 1990-11-28 1992-05-05 Magna Physics Corporation Polyphase switched reluctance motor
US5175396A (en) 1990-12-14 1992-12-29 Westinghouse Electric Corp. Low-electric stress insulating wall for high voltage coils having roebeled strands
DE4100135C1 (en) 1991-01-04 1992-05-14 Loher Ag, 8399 Ruhstorf, De
US5187428A (en) 1991-02-26 1993-02-16 Miller Electric Mfg. Co. Shunt coil controlled transformer
ES2025518A6 (en) * 1991-03-08 1992-03-16 Huarte Frances Domingo Rotary electromechanical arrangements.
US5153460A (en) 1991-03-25 1992-10-06 The United States Of America As Represented By The Secretary Of The Army Triggering technique for multi-electrode spark gap switch
DE4112161C2 (en) 1991-04-13 1994-11-24 Fraunhofer Ges Forschung Gas discharge device
FR2677802B1 (en) 1991-06-14 1994-09-09 Alsthom Gec ELECTRIC WINDING AND ITS WINDING METHOD.
US5246783A (en) 1991-08-15 1993-09-21 Exxon Chemical Patents Inc. Electrical devices comprising polymeric insulating or semiconducting members
SE469361B (en) 1991-11-04 1993-06-21 Asea Brown Boveri PROCEDURE AND DEVICE FOR REDUCTION OF DIFFICULTIES IN THE POWER
US5499178A (en) 1991-12-16 1996-03-12 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
US5264778A (en) 1991-12-31 1993-11-23 Westinghouse Electric Corp. Apparatus protecting a synchronous machine from under excitation
CA2086897A1 (en) 1992-01-13 1993-07-14 Howard H. Bobry Toroidal transformer and method for making
US5343139A (en) 1992-01-31 1994-08-30 Westinghouse Electric Corporation Generalized fast, power flow controller
US5235488A (en) 1992-02-05 1993-08-10 Brett Products, Inc. Wire wound core
US5327637A (en) 1992-02-07 1994-07-12 Kabelmetal Electro Gmbh Process for repairing the winding of an electrical linear drive
JP3135338B2 (en) 1992-02-21 2001-02-13 株式会社日立製作所 Commutation type DC circuit breaker
EP0629311B1 (en) 1992-03-05 1996-06-19 Siemens Aktiengesellschaft Coil for high-voltage transformer
JP3245748B2 (en) 1992-03-09 2002-01-15 久光製薬株式会社 P-menthane derivative and cooling sensate containing the same
JPH05328681A (en) 1992-05-18 1993-12-10 Mitsuba Electric Mfg Co Ltd Coating material for armature core in motor of electrical equipment
DE4218969A1 (en) 1992-06-10 1993-12-16 Asea Brown Boveri Process for fixing winding heads of electrical machines and means for carrying out the process
FR2692693A1 (en) * 1992-06-23 1993-12-24 Smh Management Services Ag Control device of an asynchronous motor
GB2268337B (en) 1992-07-01 1996-06-05 Gec Alsthom Ltd Electrical machine slot wedging system
US5304883A (en) 1992-09-03 1994-04-19 Alliedsignal Inc Ring wound stator having variable cross section conductors
DE4233558C2 (en) 1992-09-30 1995-07-20 Siemens Ag Electrical machine
DE69308737T2 (en) 1992-11-05 1997-06-19 Gec Alsthom T & D Sa Superconducting winding, in particular for current limiters and current limiters with such a winding
US5325008A (en) 1992-12-09 1994-06-28 General Electric Company Constrained ripple spring assembly with debondable adhesive and methods of installation
GB9226925D0 (en) 1992-12-24 1993-02-17 Anglia Electronic Tech Ltd Transformer winding
US5449861A (en) 1993-02-24 1995-09-12 Vazaki Corporation Wire for press-connecting terminal and method of producing the conductive wire
EP0620630A1 (en) 1993-03-26 1994-10-19 Ngk Insulators, Ltd. Superconducting fault current limiter
DE69401722T2 (en) 1993-03-26 1997-07-03 Ngk Insulators Ltd Superconducting device for residual current limitation
US5399941A (en) 1993-05-03 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Optical pseudospark switch
US5341281A (en) 1993-05-14 1994-08-23 Allen-Bradley Company, Inc. Harmonic compensator using low leakage reactance transformer
US5365132A (en) 1993-05-27 1994-11-15 General Electric Company Lamination for a dynamoelectric machine with improved cooling capacity
JP3355700B2 (en) 1993-06-14 2002-12-09 松下電器産業株式会社 Rotating electric machine stator
FR2707448B1 (en) 1993-07-06 1995-09-15 Cableco Sa Power generator for an arc lamp.
US5321308A (en) 1993-07-14 1994-06-14 Tri-Sen Systems Inc. Control method and apparatus for a turbine generator
US5545853A (en) 1993-07-19 1996-08-13 Champlain Cable Corporation Surge-protected cable
FR2708157B1 (en) 1993-07-22 1995-09-08 Valeo Equip Electr Moteur Element of a rotating machine and motor vehicle starter comprising such an element.
DE4329382A1 (en) 1993-09-01 1995-03-02 Abb Management Ag Method and device for detecting earth faults on the conductors of an electrical machine
GB2283133B (en) 1993-10-20 1998-04-15 Gen Electric Dynamoelectric machine and method for manufacturing same
SE502417C2 (en) 1993-12-29 1995-10-16 Skaltek Ab Control device for unrolling or unrolling a string, eg a cable on or from a drum
DE4402184C2 (en) 1994-01-26 1995-11-23 Friedrich Prof Dr Ing Klinger Multi-pole synchronous generator for gearless horizontal-axis wind turbines with nominal powers of up to several megawatts
JP3468817B2 (en) 1994-02-25 2003-11-17 株式会社東芝 Field ground fault detector
DE4409794C1 (en) 1994-03-22 1995-08-24 Vem Elektroantriebe Gmbh Fastening for equalising connection lines of high-power DC machines
US5530307A (en) 1994-03-28 1996-06-25 Emerson Electric Co. Flux controlled permanent magnet dynamo-electric machine
DE4412412C2 (en) 1994-04-11 1996-03-28 Siemens Ag Locomotive transformer and winding arrangement for this
DE4412761C2 (en) 1994-04-13 1997-04-10 Siemens Ag Conductor feedthrough for an AC device with superconductivity
JP3623269B2 (en) 1994-04-15 2005-02-23 コールモージェン・コーポレーション Axial air gap motor
US5500632A (en) 1994-05-11 1996-03-19 Halser, Iii; Joseph G. Wide band audio transformer with multifilar winding
GB2289992B (en) 1994-05-24 1998-05-20 Gec Alsthom Ltd Improvements in or relating to cooling arrangements in rotating electrical machines
FI942447A0 (en) 1994-05-26 1994-05-26 Abb Stroemberg Kojeet Oy Foerfarande Foer eliminering av stoerningar i ett elkraftoeverfoeringsnaet samt koppling i ett elkraftoeverfoeringsnaet
BR9407326A (en) * 1994-06-08 1996-06-18 Precise Power Corp Versatile electrodynamic machine and UPS system capable of receiving AC from an AC source
DE4420322C2 (en) 1994-06-13 1997-02-27 Dresden Ev Inst Festkoerper YBa¶2¶Cu¶3¶O¶X¶ high-temperature superconductor and method for its production
IT1266896B1 (en) 1994-07-27 1997-01-21 Magneti Marelli Spa ROTOR OF AN ELECTRIC MACHINE, IN PARTICULAR OF AN ELECTRIC MOTOR FOR STARTING THE INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE AND
US5550410A (en) * 1994-08-02 1996-08-27 Titus; Charles H. Gas turbine electrical power generation scheme utilizing remotely located fuel sites
US5612510A (en) 1994-10-11 1997-03-18 Champlain Cable Corporation High-voltage automobile and appliance cable
DE4438186A1 (en) 1994-10-26 1996-05-02 Abb Management Ag Operation of sync electrical machine mechanically coupled to gas-turbine
US5533658A (en) 1994-11-10 1996-07-09 Production Tube, Inc. Apparatus having replaceable shoes for positioning and gripping tubing
US5510942A (en) 1994-12-19 1996-04-23 General Electric Company Series-capacitor compensation equipment
EP0732787B1 (en) 1995-01-17 2000-09-27 THOMAS & BETTS CORPORATION Forced encapsulation cable splice enclosure including a container for exiting encapsulant
EP0729217B1 (en) 1995-02-21 2000-01-12 Siemens Aktiengesellschaft Hybride excited synchronous machine
GB9507391D0 (en) 1995-04-10 1995-05-31 Switched Reluctance Drives Ltd Method and apparatus for reducing winding failures in switched reluctance machines
CA2170686A1 (en) 1995-04-21 1996-10-22 Mark A. Runkle Interconnection system for electrical systems having differing electrical characteristic
US5742515A (en) * 1995-04-21 1998-04-21 General Electric Co. Asynchronous conversion method and apparatus for use with variable speed turbine hydroelectric generation
DE19515003C2 (en) 1995-04-24 1997-04-17 Asea Brown Boveri Superconducting coil
US5663605A (en) 1995-05-03 1997-09-02 Ford Motor Company Rotating electrical machine with electromagnetic and permanent magnet excitation
JPH08340661A (en) 1995-06-13 1996-12-24 Matsushita Electric Ind Co Ltd Recycling method of resin-molded rotating electric machine and molding resin
US5691589A (en) 1995-06-30 1997-11-25 Kaman Electromagnetics Corporation Detachable magnet carrier for permanent magnet motor
US5607320A (en) 1995-09-28 1997-03-04 Osram Sylvania Inc. Cable clamp apparatus
GB2308490A (en) 1995-12-18 1997-06-25 Oxford Instr Ltd Superconductor and energy storage device
DE19547229A1 (en) 1995-12-18 1997-06-19 Asea Brown Boveri Packing strips for large rotary electrical machine stator winding
IT1281651B1 (en) 1995-12-21 1998-02-20 Pirelli Cavi S P A Ora Pirelli TERMINAL FOR CONNECTING A SUPERCONDUCTIVE POLYPHASE CABLE TO A ROOM TEMPERATURE ELECTRICAL SYSTEM
NO302850B1 (en) * 1995-12-22 1998-04-27 Elvelund As Electric motor
FR2745117B1 (en) 1996-02-21 2000-10-13 Whitaker Corp FLEXIBLE AND FLEXIBLE CABLE WITH SPACED PROPELLERS
DK0802542T3 (en) 1996-03-20 2002-04-22 Nkt Cables As High Voltage Cable
US5654602A (en) * 1996-05-13 1997-08-05 Willyoung; David M. Generator winding
DE19620906C2 (en) 1996-05-24 2000-02-10 Siemens Ag Wind farm
SE9602079D0 (en) * 1996-05-29 1996-05-29 Asea Brown Boveri Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
US5807447A (en) 1996-10-16 1998-09-15 Hendrix Wire & Cable, Inc. Neutral conductor grounding system
DE19747968A1 (en) 1997-10-30 1999-05-06 Abb Patent Gmbh Process for repairing laminated cores of an electrical machine
GB2332557A (en) 1997-11-28 1999-06-23 Asea Brown Boveri Electrical power conducting means
US6456021B1 (en) * 2000-06-30 2002-09-24 General Electric Company Rotating variable frequency transformer with high voltage cables

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091139A (en) * 1975-09-17 1978-05-23 Westinghouse Electric Corp. Semiconductor binding tape and an electrical member wrapped therewith
US4429244A (en) * 1979-12-06 1984-01-31 Vsesojuzny Proektnoizyskatelsky I Nauchno-Issledovatelsky Institut "Gidroproekt" Stator of generator
SE453236B (en) * 1981-01-30 1988-01-18 Elin Union Ag HIGH VOLTAGE WINDING FOR ELECTRICAL MACHINES
US5036165A (en) * 1984-08-23 1991-07-30 General Electric Co. Semi-conducting layer for insulated electrical conductors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2331860A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri High voltage rotating electric machine
GB2331861A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri Traction motor winding having a conductor with semi-conductor insulation layers
WO2000007286A1 (en) * 1998-07-27 2000-02-10 Abb Ab Rotating electric machine with superconducting winding and a method for manufacturing the same
WO2003058059A1 (en) 2002-01-10 2003-07-17 Swedish Vertical Wind Ab Wind power plant with vertical axis turbine
US7126235B2 (en) 2002-01-10 2006-10-24 Swedish Vertical Wind Ab Wind power electric device and method

Also Published As

Publication number Publication date
DE69727668D1 (en) 2004-03-25
ZA974734B (en) 1997-12-01
US7088027B2 (en) 2006-08-08
PE81198A1 (en) 1998-11-21
EP0901702B1 (en) 2004-02-18
CN1225755A (en) 1999-08-11
EP0901701B1 (en) 2003-10-01
AP907A (en) 2000-11-30
US20010019494A1 (en) 2001-09-06
PL330215A1 (en) 1999-05-10
AR007335A1 (en) 1999-10-27
ID19777A (en) 1998-07-30
ZA974721B (en) 1998-02-04
DE69725306D1 (en) 2003-11-06
WO1997045912A1 (en) 1997-12-04
ZA974723B (en) 1998-09-04
ATE259996T1 (en) 2004-03-15
WO1997045922A1 (en) 1997-12-04
EP0901704B1 (en) 2004-02-18
ID19456A (en) 1998-07-16
NO985524D0 (en) 1998-11-26
ATE264017T1 (en) 2004-04-15
KR20000016096A (en) 2000-03-25
ID19708A (en) 1998-07-30
ZA974708B (en) 1998-11-30
CO4650250A1 (en) 1998-09-03
PL330198A1 (en) 1999-04-26
BR9709399A (en) 1999-08-10
AU3052597A (en) 1998-01-05
ZA974705B (en) 1998-11-30
AU2987397A (en) 1998-01-05
ATE254350T1 (en) 2003-11-15
BR9709618A (en) 1999-08-10
AR007338A1 (en) 1999-10-27
IS4901A (en) 1998-11-20
DE69725306T2 (en) 2004-07-15
EP0901711A1 (en) 1999-03-17
DE69726139T2 (en) 2004-08-12
EA001441B1 (en) 2001-04-23
AU2988297A (en) 1998-01-05
AR007340A1 (en) 1999-10-27
PL330289A1 (en) 1999-05-10
CO4650248A1 (en) 1998-09-03
DE19781791T1 (en) 1999-05-27
US20020047413A1 (en) 2002-04-25
IL126943A0 (en) 1999-09-22
CN1103133C (en) 2003-03-12
US20040084987A1 (en) 2004-05-06
EP0901711B1 (en) 2004-04-07
ZA974718B (en) 1998-09-04
CN1220042A (en) 1999-06-16
KR20000016095A (en) 2000-03-25
JPH11514199A (en) 1999-11-30
WO1997045923A1 (en) 1997-12-04
WO1997045919A2 (en) 1997-12-04
JP3970934B2 (en) 2007-09-05
NO985552D0 (en) 1998-11-27
KR20000016094A (en) 2000-03-25
EA199801052A1 (en) 1999-08-26
WO1997045288A2 (en) 1997-12-04
EA199801051A1 (en) 1999-08-26
AU720311B2 (en) 2000-05-25
UA42867C2 (en) 2001-11-15
TW443023B (en) 2001-06-23
NO985580D0 (en) 1998-11-27
ZA974706B (en) 1998-11-30
ZA974737B (en) 1997-12-01
ZA974707B (en) 1998-11-30
CA2255740A1 (en) 1997-12-04
CN1220044A (en) 1999-06-16
EE03361B1 (en) 2001-02-15
EA199801050A1 (en) 1999-08-26
EA001439B1 (en) 2001-04-23
AR007336A1 (en) 1999-10-27
BG63444B1 (en) 2002-01-31
BR9709387A (en) 1999-08-10
EP0901702A1 (en) 1999-03-17
AU2987997A (en) 1998-01-05
BR9709397A (en) 1999-08-10
EP0901703A1 (en) 1999-03-17
CO4650251A1 (en) 1998-09-03
US6906447B2 (en) 2005-06-14
PE69998A1 (en) 1998-11-18
ZA974719B (en) 1998-02-04
CA2255768A1 (en) 1997-12-04
BG102926A (en) 1999-06-30
TR199802473T2 (en) 1999-03-22
CN1220041A (en) 1999-06-16
CZ385798A3 (en) 1999-05-12
CN101546932A (en) 2009-09-30
AU718766B2 (en) 2000-04-20
ZA974717B (en) 1998-09-04
IL126943A (en) 2003-05-29
NO985552L (en) 1998-11-27
CO4600758A1 (en) 1998-05-08
ZA974720B (en) 1998-02-04
CA2256473A1 (en) 1997-12-04
PE81298A1 (en) 1998-11-21
EA001440B1 (en) 2001-04-23
ZA974722B (en) 1998-09-04
CA2255740C (en) 2005-02-22
CA2255744A1 (en) 1997-12-04
CN100403626C (en) 2008-07-16
EA199801058A1 (en) 1999-08-26
EA001487B1 (en) 2001-04-23
WO1997045927A1 (en) 1997-12-04
NO985524L (en) 1998-11-26
AU2988197A (en) 1998-01-05
TW361005B (en) 1999-06-11
AU731064B2 (en) 2001-03-22
JP2000511388A (en) 2000-08-29
PE68798A1 (en) 1998-10-30
CN101242125A (en) 2008-08-13
WO1997045925A1 (en) 1997-12-04
CO4650247A1 (en) 1998-09-03
DE69727669D1 (en) 2004-03-25
CO4920189A1 (en) 2000-05-29
UA45453C2 (en) 2002-04-15
EA199801054A1 (en) 1999-08-26
TW454371B (en) 2001-09-11
PL330199A1 (en) 1999-04-26
TW355802B (en) 1999-04-11
SE9602079D0 (en) 1996-05-29
US20020047438A1 (en) 2002-04-25
PE73998A1 (en) 1998-11-25
EP0889797A2 (en) 1999-01-13
CO4920190A1 (en) 2000-05-29
JP2000511389A (en) 2000-08-29
BR9709474A (en) 1999-08-10
US6798107B2 (en) 2004-09-28
CN1219911A (en) 1999-06-16
DE69737446T2 (en) 2007-12-13
CN1100377C (en) 2003-01-29
CN101546932B (en) 2011-07-06
ATE259997T1 (en) 2004-03-15
ZA974724B (en) 1998-09-04
ZA974704B (en) 1998-11-30
US6894416B1 (en) 2005-05-17
ATE251358T1 (en) 2003-10-15
CO4650252A1 (en) 1998-09-03
WO1997045919A3 (en) 1998-01-15
CN1097335C (en) 2002-12-25
NO985554D0 (en) 1998-11-27
JP2000511391A (en) 2000-08-29
EP0901704A1 (en) 1999-03-17
IS4900A (en) 1998-11-20
CZ386098A3 (en) 1999-06-16
PL330200A1 (en) 1999-04-26
TW360603B (en) 1999-06-11
US20010055217A1 (en) 2001-12-27
US20050127773A1 (en) 2005-06-16
CN1224542A (en) 1999-07-28
AU2988397A (en) 1998-01-05
DE69727669T2 (en) 2004-12-02
TR199802472T2 (en) 1999-03-22
TW453010B (en) 2001-09-01
DE69737446D1 (en) 2007-04-19
EA001465B1 (en) 2001-04-23
AR007332A1 (en) 1999-10-27
ZA974728B (en) 1998-09-04
WO1997045288A3 (en) 1998-02-12
NZ333601A (en) 2000-09-29
TW441154B (en) 2001-06-16
YU54598A (en) 2000-03-21
AP9801409A0 (en) 1998-12-31
US20020050758A1 (en) 2002-05-02
CA2255769A1 (en) 1997-12-04
TW516746U (en) 2003-01-01
ZA974726B (en) 1997-12-30
NO985554L (en) 1998-11-27
YU54398A (en) 2000-03-21
AU718708B2 (en) 2000-04-20
DE69727668T2 (en) 2004-12-09
DE69728533D1 (en) 2004-05-13
AR007333A1 (en) 1999-10-27
US6936947B1 (en) 2005-08-30
ZA974727B (en) 1998-09-04
EA001097B1 (en) 2000-10-30
IS1818B (en) 2002-07-08
IS4894A (en) 1998-11-17
EP0901700B1 (en) 2007-03-07
DE69726139D1 (en) 2003-12-18
NO985580L (en) 1999-01-28
CN1220051A (en) 1999-06-16
US6919664B2 (en) 2005-07-19
US6831388B1 (en) 2004-12-14
EP0901700A2 (en) 1999-03-17
EP0901703B1 (en) 2003-11-12
CN1083356C (en) 2002-04-24
ATE356460T1 (en) 2007-03-15
JP2000511390A (en) 2000-08-29
AU2988597A (en) 1998-01-05
BR9709617A (en) 2000-04-25
CN101242125B (en) 2010-12-22
ZA974725B (en) 1998-09-04
AR007334A1 (en) 1999-10-27
EA199801053A1 (en) 1999-08-26
AU2988097A (en) 1998-01-05
CA2255770A1 (en) 1997-12-04
CA2255771A1 (en) 1997-12-04
CZ388298A3 (en) 1999-02-17
EP0901701A1 (en) 1999-03-17
CZ288390B6 (en) 2001-06-13
UY24794A1 (en) 1997-12-04
ZA974747B (en) 1997-12-01

Similar Documents

Publication Publication Date Title
EP0901703B1 (en) A turbo-generator plant
US6822363B2 (en) Electromagnetic device
AU718628B2 (en) Insulated conductor for high-voltage windings
AU738019B2 (en) High voltage rotating electric machines
US20020125788A1 (en) Axial cooling tubes provided with clamping means
EP0903002A1 (en) Rotating electrical machine comprising high-voltage winding and cast compound supporting the winding and method for manufacturing such machine
WO1997045929A2 (en) Earthing device and rotating electric machine including the device
AU737358B2 (en) Switch gear station
MXPA98009955A (en) Electromagnet device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97195012.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE ES FI FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC

WWE Wipo information: entry into national phase

Ref document number: 1997924468

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08952996

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2255769

Country of ref document: CA

Ref document number: 2255769

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998/02473

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 199801051

Country of ref document: EA

NENP Non-entry into the national phase

Ref document number: 97542201

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1997924468

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1997924468

Country of ref document: EP