WO1997045927A1 - Rotating electric machine for high voltage - Google Patents

Rotating electric machine for high voltage Download PDF

Info

Publication number
WO1997045927A1
WO1997045927A1 PCT/SE1997/000892 SE9700892W WO9745927A1 WO 1997045927 A1 WO1997045927 A1 WO 1997045927A1 SE 9700892 W SE9700892 W SE 9700892W WO 9745927 A1 WO9745927 A1 WO 9745927A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine according
rotating electric
rotor
electric machine
winding
Prior art date
Application number
PCT/SE1997/000892
Other languages
French (fr)
Inventor
Mats Leijon
Peter Templin
Mons HÖLLELAND
Claes Ivarson
Original Assignee
Asea Brown Boveri Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asea Brown Boveri Ab filed Critical Asea Brown Boveri Ab
Priority to AU30525/97A priority Critical patent/AU3052597A/en
Publication of WO1997045927A1 publication Critical patent/WO1997045927A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/288Shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/025Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/04Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for rectification
    • H02K11/049Rectifiers associated with stationary parts, e.g. stator cores
    • H02K11/05Rectifiers associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/14Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/40Windings characterised by the shape, form or construction of the insulation for high voltage, e.g. affording protection against corona discharges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F2027/2833Wires using coaxial cable as wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F2027/329Insulation with semiconducting layer, e.g. to reduce corona effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • H01F2029/143Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias with control winding for generating magnetic bias
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/15Machines characterised by cable windings, e.g. high-voltage cables, ribbon cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/15High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a power generation system, e.g. prime-mover dynamo, generator system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/17High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an electric power conversion, regulation, or protection system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/19High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/19High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
    • Y10S174/20Stator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/19High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in a dynamo-electric machine
    • Y10S174/22Winding per se
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/24High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/14High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding
    • Y10S174/24High voltage cable, e.g. above 10kv, corona prevention having a particular cable application, e.g. winding in an inductive device, e.g. reactor, electromagnet
    • Y10S174/25Transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/26High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/26High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system
    • Y10S174/27High voltage cable, e.g. above 10kv, corona prevention having a plural-layer insulation system including a semiconductive layer
    • Y10S174/28Plural semiconductive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S174/00Electricity: conductors and insulators
    • Y10S174/13High voltage cable, e.g. above 10kv, corona prevention
    • Y10S174/29High voltage cable, e.g. above 10kv, corona prevention having a semiconductive layer

Definitions

  • the present invention relates to a rotating electric machine in accordance with the introductory part of claim 1 and a rotating electric machine in accordance with the introductory part of claim 9.
  • the rotating electric machines which are referred to in this context comprise synchronous machines which are substantially used as generators for connection to distribution and trans ⁇ mission networks, commonly referred to below as power net ⁇ works. Synchronous machines are also used as motors and for phase compensation and voltage control, in that case as mechanically idling machines.
  • the technical field also com ⁇ prises asynchronous machines, double-fed machines, alternating current machines, asynchronous converter cascades, external pole machines and synchronous flux machines.
  • the magnetic circuit referred to in this context comprises a magnetic core of laminated, non-oriented or oriented, sheet or other material, for example amorphous or powder-based, or any other arrangement for the purpose of allowing an alternating magnetic flux, a winding, a cooling system, etc., and which may be arranged in the stator of the machine, in the rotor or in both.
  • stator slots In order to explain and describe the machine, a brief description of a rotating electric machine will first be given, exemplified on the basis of a synchronous machine The first part of the description substantially relates to the magnetic circuit of such a machine and how it is composed according to conventional technique. Since the magnetic circuit referred to in most cases is arranged in the stator, the magnetic circuit below will normally be described as a stator with a laminated core, the winding of which will be referred to as a stator winding, and the slots in the laminated core for the winding will be referred to as stator slots or simply slots.
  • Synchronous machines are normally of three-phase design and the invention substantially relates to such machines.
  • Synchronous machines are designed with salient poles.
  • cylindrical rotors are used for two- or four-pole tur ⁇ ogenerators and for ⁇ ouole-fed macnines. The latter have an A.C. winding in the rotor.
  • the stator body for large synchronous machines are often made of sheet steel with a welded construction.
  • the laminated core is normally made from lacquered 0.35 or 0.5 mm electrical steel sheet.
  • the laminated core is divided into stacks with radial and axial ventilation channels.
  • the sheet is punched into segments which are attached to the stator body by means of wedges/dovetan ⁇
  • the laminated core is retained by pressure fingers and pressure plates.
  • the stator winding is disposed in slots in the la ⁇ u- nated core where the slots normally have a cross section in the form of a rectangle or a trapezoid.
  • Polyphase A.C. windings are designed either as single-layer or two-layer windings.
  • single-layer windings there is only one coil side per slot, and in the case of two- layer windings there are two coil sides per slot.
  • coil side is meant one or more conductors brought together in height and/or width ana provided with a common coil insulation, i.e. an insulation intended to withstand the rated (test) voltage towards ground.
  • Two-layer windings are usually designed as diamond windings, whereas the single-layer windings wnicn are relevant in this connection may be designed as a diamond winding or as a concentric winding.
  • coil span is meant the distance in arc measure between two coil sides belonging to the same coil, either in relation to the relevant pole pitch or in the number of intermediate slot pitches.
  • cording for example fractional pitch
  • the type of winding substantially describes how the coils in the slots, i.e. the coil sides, are connected together outside the stator, i.e. at the coil ends.
  • a typical coil side is formed from so-called Roebel bars, wherein certain bars have been made hollow for a coolant.
  • a Roebel bar comprises a plurality of rectangular, parallel-connected copper conductors, which are transposed 360 degrees along the slot. Ringland bars with transpositions of 540 degrees and other transpositions also occur. The transposition is necessary to avoid circulating currents. Between eacn strand there is a thin insulation, for example epoxy/glass fibre.
  • the main insulation between the slots and the conductors is made, for example, of epoxy/glass fibre/mica and has at its outermost end a thin semiconducting ground-potential layer which is used to equalize the electric field.
  • an electric field control m the form of so-called corona protection varnish intended to convert a radial field into an axial field, which means that the insulation on the coil ends occurs at a high potential relative to ground.
  • the field control is a problem which sometimes gives rise to corona m the coil-end region, wnich may be destructive.
  • all large machines are designed with a two-layer winding and equally large coils. Each coil is placed with one side in one of the layers and the other side in the other layer. This means that all the coils cross each other in the coil end. If more than two layers are used, these crossings render the winding work difficult and deteriorate the coil end.
  • the water- and oil-cooled synchronous machine described m J. Elektrotechnika is intended for voltages up to 20 kV.
  • the article describes a new insulation system consisting of oil/paper insulation, which makes it possible to immerse the stator completely in oil. The oil can then be used as a coolant while at the same time using it as insulation.
  • a dielectric oil-separating ring is provided at the internal surface of the core.
  • the stator winding is made from con ⁇ ductors with an oval hollow shape provided with oil ana paper insulation. The coil sides with their insulation are secured to the slots, made with rectangular cross section, by means of wedges.
  • coolant oil is used both in the hollow conductors and m holes in the stator walls.
  • the above-mentioned US patent relates to the stator part of a synchronous machine which comprises a magnetic core of lami ⁇ nated sheet with tra ⁇ ezoidal slots for the stator winding.
  • the slots are tapered since the need for insulation of the stator winding is less towards the interior of the rotor where that part of the winding which is located nearest the neutral point is disposed.
  • the stator part comprises a dielectric oil-separating cylinder or ring nearest the inner surface of the core which may increase the magnetization requirement relative to a machine without this ring.
  • the stator winding is made of oil-immersed cables with the same diameter for each coil layer. The layers are separated from each other by means of spacers m the slots and secured by wedges.
  • the winding comprises two so-called half-windings connected in series.
  • One cf the two half-windings is disposed, centre ⁇ , inside an insulation sleeve.
  • the conductors of the stator winding are cooled by surrounding oil.
  • the disadvantages with such a large quantity of oil in the system are the risk of leakage and the considerable amount of cleaning work which may result from a fault condition.
  • Those parts of the insulation sleeve which are located outside the slots have a cylindrical part and a conical termination reinforced with current-carrying layers, the purpose of which is to control the electric field strength in the region wnere the cable enters the end winding.
  • the oil-cooled stator winding comprises a conventional high-voltage cable with the same dimension for all the layers.
  • the cable is placed in stator slots formed as circular, radially disposed openings corresponding to the cross-section area of the cable and with the necessary space for fixation and for coolant.
  • the different radially disposed layers of the winding are surrounded by and fixed in insulated tubes. Insulating spacers fix the tubes in the stator slot.
  • an internal dielectric ring is also needed here for sealing the coolant against the internal air gap.
  • the design shown shows no tapering of the insulation or of the stator slots. The design exhibits a very narrow radial waist between the different stator slots, which means a large slot leakage flux which significantly influences the magnetization requirement of the machine.
  • the electromagnetic material in the stator is not optimally utilized. From a magnetic point of view, the stator ends shall connect as closely as possible with the casing of the coil sides. It is most desirable to have a stator tooth with a maximum width at each level, since the width of the tooth significantly influences tne losses and the magnetization requirement of the machine. This is especially important for machines for higher voltage since the number of conductors per slot there becomes large.
  • the object of the present invention is to solve the above mentioned problems and to provide a rotating electric machine which permits direct connection to all types of high-voltage power networks. This object is achieved by providing the machine defined in the introductory part of claim 1 with the advantageous features of the characterizing part of said claim.
  • the winding comprises at least one current- carrying conductor and the machine is further characterized in that a first layer having semiconducting properties is provided around said conductor, that a solid insulating layer is provided around said first layer, and that a second layer having semiconducting properties is provided around said insulating layer.
  • a very important advantage of the present invention, as defined in claim 1, is that the use of the described insulated conductor for the winding makes it possible to obtain a rotating electric machine with a considerably higher voltage than machines according to tne state of the art.
  • a rotating electric machine as defined in claim 1 has the advantage that it is possible to have at least one winding system of conductors suitable for direct connection to distribution or transmission networks. Consequently, the voltage level in question is 36 kV - 800 kv, and preferably 72,5 kV - 800 kV.
  • a machine according to the invention may have a number of features which significantly distinguishes it from the state of the art both as regards conventional mechanical engineering and the mechanical engineering which has been published during the last few years. Some features will follow below.
  • the winding is manufactured from one or more insulated conductors with an inner and an outer semiconducting layer, preferably an extruded cable of some sort.
  • Some typical examples of such conductors are a cable of crosslinked polyethylene (XLPE) or a cable with ethylene propylene (EP) rubber insulation, which, however, for this purpose and according to the invention, has an improved design both as regards the strands of the conductor and as regards the outer layer.
  • an insulated conductor with an outer semiconducting layer has the advantage that it permits the outer layer of the winding, in its full length, to be maintained at ground potential. Consequently, the claimed invention may have the feature that the outer semiconducting layer is connected to ground potential.
  • the outer layer may be cut off, at suitable locations along the length of the conductor, and each cut-off part length may be directly connected to ground potential.
  • At least two, and preferably all three, of the layers have substantially equal thermal expansion coefficients.
  • each of tne tnree layers is solidly connected to the adjacent layer along substantially the whole connecting surface. This has the advantage that the layers are fixed and unable to move in relation to each other and serves to ensure that no play occurs between the layers. It is verv important that no air is allowed to enter in-between the lay- since that would lead to disturbances in the electric fiexJ
  • the present invention is characterized in that the current-carrying conductor comprises a number of strands, only a minority of said strands being uninsulated from each other.
  • the uninsulated strand or strands in the outer layer of the conductor defines the potential on the inner semiconducting layer and thereby ensures a uniform electric field within the insulation.
  • uninsulated stran ⁇ s instead of insulated strands a less expensive insulated conductor for a winding is obtained.
  • every second strand may be uninsulated, but for practical reasons the number of uninsulated strands is less than the insulated strands.
  • the object may be achieved by providing the machine defined in the introductory part of claim 9 with the advantageous features of the characterizing part of said claim.
  • the winding is formed of a cable comprising at least one current-carrying conductor and the machine is further characterized in that each conductor comprises a number of strands, that an inner semiconducting layer is provided around each conductor, that an insulating layer cf solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer is provided around said insulating layer.
  • the cable according to claim 9 may be provided with any one of the features of claims 2-8 re ⁇ ardmg the winding
  • cables with a circular cross section are used.
  • cables with a different cross section may be used.
  • an insulated conductor or cable according to the invention has the additional advantage that it permits the laminated core, both with respect to slots and teeth, to be designed in a new and optimal way.
  • the winding may be designed with tapered insulation to utilize the laminated core m the best way.
  • the shape of the slots may advantageously be adapted to the cross section of the cable of the winding in such a way that the slots are formed as a number of cylindrical openings, extending axially and radially outside one another, with a substantially circular cross section, and with an open waist extending between the layers of the stator winding.
  • the shape of the slots may also be adapted to the tapered insulation of the winding.
  • the substantially circular cross section may, counting from the ridge portion of the laminated core, be designed with a continuously decreasing radius, or, as an alternative, with a discontmuously decreasing radius.
  • a particular advantage with the tapered insulation is that a reasonably constant tooth width can be obtained, independently of the radial extension.
  • the winding is preferably designed as a multi- layer concentric cable winding to reduce the number of coil- end crossings.
  • the machine according to the invention may be characterized in that the cable also comprises a metal shield and a sheath.
  • the rotor of the rotating electric macnme according to the present invention may be designed in a number of different ways, known per se.
  • the rotor may be a rotor comprising salient poles and including a number of different features related to that configuration.
  • it may be designed with or without a damper winding, with or without an armature spider.
  • the rotor may be a turbo type rotor and include a number of different features relate ⁇ to that particular configuration.
  • it may be designed with or without grooves for a cooling medium, with or without ventilation ducts.
  • the rotor may be configured as a cylindric rotor and, naturally, include a number of different features related to such a configuration.
  • it may be designed with or without a damper winding, with or without an armature spider, with or without a shaft, with or without bearings.
  • the winding may be made of copper strips, it may be a single-phase or three-phase winding, it may be a diamond winding, a bar winding, a flat winding or a squirrel cage winding, etc.
  • the rotor may further be designed for horizontal or vertical mounting, it may be provided with slip rings, it may be provided with a brushless exciter etc.
  • the rotor may also be made of different materials. Other configurations and features are also possible.
  • a rotating electric machine according to the invention results in a considerable number of important advantages in relation to corresponding prior art machines.
  • ground potential may be consistently provided along the whole winding, which implies that the coil-end region can be made compact and that bracing means at the coil-end region can be applied at practically ground potential.
  • Still another important advantage is that oil-based insulation and cooling systems will disappear. This means that no sealing problems will arise and that the dielectric ring previously mentioned is not needed.
  • Anotner important feature is that all forced ventilation can be made at ground potential.
  • a considerable space and weight saving from the installation point of view is obtained with a rotating electric machine according to the invention, since it replaces a previous installation design with both a machine and a step-up transformer.
  • FIG. 1 is a detailed perspective view of an insulated conductor or cable according to the present invention
  • FIG. 2 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to one embodiment of the invention
  • FIG. 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention.
  • FIG. 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention.
  • An important condition for being able to manufacture a rotating electric machine in accordance with the disclosure of the invention is to use, for the winding, an insulated conductor or a conductor cable with an electrical insulation with a semiconducting layer both at the conductor and at the casing.
  • Such cables are available as standard cables for other power engineering fields of use.
  • an improved embodiment of such a standard cable is preferably used as a stator winding.
  • the internal current-carrying conductor comprises a number of uninsulated strands.
  • a semiconducting inner layer Around the strands there is a semiconducting inner layer.
  • an insulating layer of extruded insulation is XLPE or, alternatively, so-called EP rubber.
  • This insulating layer is surrounded by an external semiconducting layer which, m turn, is surrounded by a metal shield and a sheath.
  • a power cable will be referred to below as a power cable.
  • FIG. 1 A preferred embodiment of the improved cable or insulated conductor is shown in Figure 1.
  • the insulated conductor or cable 1 is represented in the figure as comprising a current- carrying conductor 2 which comprises a number of strands 18.
  • the strands are transposed both uninsulated and msulatea strands. Transposed, insulated strands are also possible.
  • Around the conductor there is an inner semiconducting layer 3 which, in turn, is surrounded by an extruded insulation layer 4. This layer is surrounded by an external semiconducting layer or layer 5.
  • the cable used as a winding m the preferred embodiment has no metal shield and no external sheath.
  • the external semiconducting layer has such a high resistivity that the induced voltage does not provoke any appreciable losses.
  • this is cut off, preferably in the coil end, i.e. in the transitions from the sheet stack to the end windings. Each cut-off part is then connected to ground, whereby the external semiconductor will be maintained at, or near, ground potential for the whole cable length. This means that, around the extruded insulated winding at the coil ends, the contactable surfaces, and the surfaces which are dirty after some time of use, only have negligible potentials to ground, and that they also cause negligible electric fields.
  • the conductor area is comprised in the approximate interval of 80 - 3000 mm 2 and the outer diameter is m the approximate interval of 20 - 250mm.
  • the design of the magnetic circuit as regards the slots and the teeth, respec ⁇ tively, are of decisive importance.
  • the slots should connect as closely as possible to the casing of the coil sides. It is also desirable that the teeth at each radial level are as wide as possible. This is important to minimize the losses, the magnetization requirement, etc., of the machine.
  • FIG. 2 shows an axial end view of a sector/pole pitch 6 of a magnetic circuit according to one embodiment of the invention, namely an embodiment including a rotor 7 with salient poles 20.
  • the stator is composed of a laminated core of electric sheets successively compose ⁇ of sector-shaped sheets. From a rear portion of the stator core 8, located at the radially outermost end, a number of teeth 9 extend radially inwards towards the rotor.
  • tne slot substantially consists of a circuit cross section 12 around each layer of the winding with narrower waist portions 13 between the layers.
  • a slot cross section may be referred to as a "bicycle chain slot”.
  • it need not be symmetric. In a high-voitage machine, a relatively large number of layers will be needed and, if a continuous tapering of the cable insulation and the stator slot, respectively, is desired, a large number of cable dimensions are required.
  • the rotor 7 represented in Figure 2, which is only partly shown, is as mentioned a rotor with salient poles 20. It comprises a rotor rim 21, a pole body 23 with a pole plate 24 and a field winding 26. The illustrated pole is also provided with a damper winding 27
  • Figure 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention, namely an embodiment including a turbo type rotor 37, only partly shown.
  • the different parts of the stator and the stator winding are essentially the same as in figure 2 and have accordingly been given the same reference numerals.
  • the rotor includes a body and a shaft 32 forged from solid steel. It is provided with milled slots 35 for the rotor winding 36.
  • the reDresented turoo rotor is also provide ⁇ with poles 30.
  • Figure 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention, namely an embodiment including a cylindric rotor 47, only partly shown.
  • the illustrated rotor is a laminated rotor with a regular field winding.
  • the rotor includes a shaft 42 and a rotor rim 41 provided with slots 45 for the rotor winding 46.
  • the rotor is also provided with poles 40.
  • the cable which is used as a winding may be a conventional power cable, like the one described above.
  • the grounding of the external semiconducting shield then takes place by stripping the cable of the metal shield and the sheath at suitable locations.
  • a winding is preferably used which may be described as a multilayer, concentric cable winding.
  • Such a winding implies that the number of crossings at the ceil ends has been minimized by placing all the coils within the same group radially outside one another. This also permits a simpler method for the manufacture and the threading of the stator winding in the different slots.

Abstract

The present invention relates to a rotating electric high voltage machine comprising a stator (8), a rotor (7; 37; 47) and at least one winding. The machine is characterized in that said winding comprises at least one current-carrying conductor (2), that a first layer (3) having semiconducting properties is provided around said conductor, that a solid insulating layer (4) is provided around said first layer, and that a second layer (5) having semiconducting properties is provided around said insulating layer. Alternatively, the rotating electric machine according to the invention is provided with a magnetic circuit for high voltage comprising a magnetic core and a winding, and is characterized in that said winding is formed of a cable (1; 11) comprising at least one current-carrying conductor (2), that each conductor comprises a number of strands (18), that an inner semiconducting layer (3) is provided around each conductor, that an insulating layer (4) of solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer (5) is provided around said insulating layer.

Description

Rotating electric machine for high voltage
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotating electric machine in accordance with the introductory part of claim 1 and a rotating electric machine in accordance with the introductory part of claim 9.
The rotating electric machines which are referred to in this context comprise synchronous machines which are substantially used as generators for connection to distribution and trans¬ mission networks, commonly referred to below as power net¬ works. Synchronous machines are also used as motors and for phase compensation and voltage control, in that case as mechanically idling machines. The technical field also com¬ prises asynchronous machines, double-fed machines, alternating current machines, asynchronous converter cascades, external pole machines and synchronous flux machines.
The magnetic circuit referred to in this context comprises a magnetic core of laminated, non-oriented or oriented, sheet or other material, for example amorphous or powder-based, or any other arrangement for the purpose of allowing an alternating magnetic flux, a winding, a cooling system, etc., and which may be arranged in the stator of the machine, in the rotor or in both.
BACKGROUND OF THE INVENTION
In order to explain and describe the machine, a brief description of a rotating electric machine will first be given, exemplified on the basis of a synchronous machine The first part of the description substantially relates to the magnetic circuit of such a machine and how it is composed according to conventional technique. Since the magnetic circuit referred to in most cases is arranged in the stator, the magnetic circuit below will normally be described as a stator with a laminated core, the winding of which will be referred to as a stator winding, and the slots in the laminated core for the winding will be referred to as stator slots or simply slots.
Most synchronous machines have a field winding in the rotor, where the main flux is generated by direct current, and an A.C. winding m the stator. Synchronous machines are normally of three-phase design and the invention substantially relates to such machines. Sometimes, synchronous machines are designed with salient poles. However, cylindrical rotors are used for two- or four-pole turυogenerators and for αouole-fed macnines. The latter have an A.C. winding in the rotor.
The stator body for large synchronous machines are often made of sheet steel with a welded construction. The laminated core is normally made from lacquered 0.35 or 0.5 mm electrical steel sheet. For radial ventilation and cooling, the laminated core, at least for medium-large and large machines, is divided into stacks with radial and axial ventilation channels. For larger machines, the sheet is punched into segments which are attached to the stator body by means of wedges/dovetanε The laminated core is retained by pressure fingers and pressure plates. The stator winding is disposed in slots in the laπu- nated core where the slots normally have a cross section in the form of a rectangle or a trapezoid.
Polyphase A.C. windings are designed either as single-layer or two-layer windings. In the case of single-layer windings, there is only one coil side per slot, and in the case of two- layer windings there are two coil sides per slot. By coil side is meant one or more conductors brought together in height and/or width ana provided with a common coil insulation, i.e. an insulation intended to withstand the rated (test) voltage towards ground. Two-layer windings are usually designed as diamond windings, whereas the single-layer windings wnicn are relevant in this connection may be designed as a diamond winding or as a concentric winding. In the case of a diamond winding, only one coil span (or possibly two coil spans) occurs, whereas flat windings are designed as concentric windings, i.e. with a greatly varying coil span. By coil span is meant the distance in arc measure between two coil sides belonging to the same coil, either in relation to the relevant pole pitch or in the number of intermediate slot pitches. Usually, different variants of cording are used, for example fractional pitch, to give the winding the desired properties.
The type of winding substantially describes how the coils in the slots, i.e. the coil sides, are connected together outside the stator, i.e. at the coil ends. A typical coil side is formed from so-called Roebel bars, wherein certain bars have been made hollow for a coolant. A Roebel bar comprises a plurality of rectangular, parallel-connected copper conductors, which are transposed 360 degrees along the slot. Ringland bars with transpositions of 540 degrees and other transpositions also occur. The transposition is necessary to avoid circulating currents. Between eacn strand there is a thin insulation, for example epoxy/glass fibre. The main insulation between the slots and the conductors is made, for example, of epoxy/glass fibre/mica and has at its outermost end a thin semiconducting ground-potential layer which is used to equalize the electric field. Outside the sheet stack of the stator, on the other hand, there is no external semiconducting ground-potential layer, but an electric field control m the form of so-called corona protection varnish intended to convert a radial field into an axial field, which means that the insulation on the coil ends occurs at a high potential relative to ground. The field control is a problem which sometimes gives rise to corona m the coil-end region, wnich may be destructive. Normally, all large machines are designed with a two-layer winding and equally large coils. Each coil is placed with one side in one of the layers and the other side in the other layer. This means that all the coils cross each other in the coil end. If more than two layers are used, these crossings render the winding work difficult and deteriorate the coil end.
What is mentioned above can be said to be part of conventional technique relating to current rotating electric machines.
During the last decades, there have been increasing demands for rotating electric machines with higher voltages than what has previously been possible to design. The maximum voltage level which, according to the state of the art, has been possible to achieve for synchronous machines with a good yield in the coil production is around 25-30 kv. It is also commonly known that the connection of a synchronous machine/generator to a power network must take place via a Δ/Y-connected so- called step-up transformer, since the voltage of the power network normally lies at a higher level than the voltage of the rotating electric machine. Thus, this transformer, and the synchronous machine, constitute integral parts of an installation. The transformer constitutes an extra cost and also has the disadvantage that the total efficiency of the system is reduced. If it were possible to manufacture machines with considerably higher voltages, the step-up transformer could thus be omitted.
Attempts to develop the generator with higher voltages have, however, been in progress for a long time. This is obvious, for instance from "Electrical World", October 15, 1932, pages 524-525. This describes how a generator designed by Parson 1929 was arranged for 33 kv. It also describes a generator in Langerbrugge, Belgium, which produced a voltage of 36 kV. Although the article also speculates on the possibilicy of increasing voltage levels still further, the development was curtailed by the concepts upon which these generators were based. This was primarily because of the shortcomings of the insulation system where varnish-impregnated layers of mica oil and paper were used in several separate layers.
Certain attempts at new approach as regards the design of synchronous machines are described, inter alia, in an article entitled "Water-and-oil-cooled Turbogenerator TVM-300" in J. Elektrotechnika, No. 1, 1970, pp. 6-8, in US 4,429,244 "Stator of Generator" and m Russian patent document CCCP Patent 955369.
The water- and oil-cooled synchronous machine described m J. Elektrotechnika is intended for voltages up to 20 kV. The article describes a new insulation system consisting of oil/paper insulation, which makes it possible to immerse the stator completely in oil. The oil can then be used as a coolant while at the same time using it as insulation. To prevent oil in the stator from leaking out towards the rotor, a dielectric oil-separating ring is provided at the internal surface of the core. The stator winding is made from con¬ ductors with an oval hollow shape provided with oil ana paper insulation. The coil sides with their insulation are secured to the slots, made with rectangular cross section, by means of wedges. As coolant, oil is used both in the hollow conductors and m holes in the stator walls. Such cooling systems, how¬ ever, entail a large number of connections for both oil and electricity at the coil ends. The thιcκ insulation also entails an increased radius of curvature of the conductors, which in turn results in an increased size of the winding overhang.
The above-mentioned US patent relates to the stator part of a synchronous machine which comprises a magnetic core of lami¬ nated sheet with traϋezoidal slots for the stator winding. The slots are tapered since the need for insulation of the stator winding is less towards the interior of the rotor where that part of the winding which is located nearest the neutral point is disposed. In addition, the stator part comprises a dielectric oil-separating cylinder or ring nearest the inner surface of the core which may increase the magnetization requirement relative to a machine without this ring. The stator winding is made of oil-immersed cables with the same diameter for each coil layer. The layers are separated from each other by means of spacers m the slots and secured by wedges. What is special for the winding is that it comprises two so-called half-windings connected in series. One cf the two half-windings is disposed, centreα, inside an insulation sleeve. The conductors of the stator winding are cooled by surrounding oil. The disadvantages with such a large quantity of oil in the system are the risk of leakage and the considerable amount of cleaning work which may result from a fault condition. Those parts of the insulation sleeve which are located outside the slots have a cylindrical part and a conical termination reinforced with current-carrying layers, the purpose of which is to control the electric field strength in the region wnere the cable enters the end winding.
From CCCP 955369 it is clear, in another attempt to raise the rated voltage of the synchronous machine, that the oil-cooled stator winding comprises a conventional high-voltage cable with the same dimension for all the layers. The cable is placed in stator slots formed as circular, radially disposed openings corresponding to the cross-section area of the cable and with the necessary space for fixation and for coolant. The different radially disposed layers of the winding are surrounded by and fixed in insulated tubes. Insulating spacers fix the tubes in the stator slot. Because of the oil cooling, an internal dielectric ring is also needed here for sealing the coolant against the internal air gap. The design shown shows no tapering of the insulation or of the stator slots. The design exhibits a very narrow radial waist between the different stator slots, which means a large slot leakage flux which significantly influences the magnetization requirement of the machine.
In machine designs according to the documents described above, the electromagnetic material in the stator is not optimally utilized. From a magnetic point of view, the stator ends shall connect as closely as possible with the casing of the coil sides. It is most desirable to have a stator tooth with a maximum width at each level, since the width of the tooth significantly influences tne losses and the magnetization requirement of the machine. This is especially important for machines for higher voltage since the number of conductors per slot there becomes large.
With reference to a report from the Electric Power Research Institute, EPRI, EL-3391 from April 1984, an account is given of generator concepts for achieving higher voltage in an electric generator with the object of being able to connect such a generator to a power network without intermediate transformers. Such a solution is assessed in the report as offering good gains m efficiency and considerable financial advantages. The main reason that it was deemed possible in 1984 to start developing generators for direct connection to power networks was that a supra-conducting rotor had been developed at that time. The considerable excitation capacity of the supra-conducting field enables the use of airgap- winding with sufficient thickness to withstand the electrical stresses.
By combining the concept deemed most promising according to the project, that cf designing a magnetic circuit with winding, known as "monolith cylinder armature", a concept in which two cylinders of conductors are enclosed in three cylinders of insulation and the whole structure is attached to an iron core without teeth, it was assessed that a rotating electric machine for high voltage could be directly connected to a power network. The solution entailed the main insulation having to be made sufficiently thick to withstand network-to- network and network-to-earth potentials. Obvious drawbacks with the proposed solution, besides its demand for a supra- conducting rotor, are that it also requires extremely thick insulation, which increases the machine size. The coil ends must be insulated and cooled with oil or freons in order to control the large electric fields at the ends. The whole machine must be hermetically enclosed in order to prevent the liquid dielectric medium from absorbing moisture from the atmosphere.
SUMMARY OF THE INVENTION
The object of the present invention is to solve the above mentioned problems and to provide a rotating electric machine which permits direct connection to all types of high-voltage power networks. This object is achieved by providing the machine defined in the introductory part of claim 1 with the advantageous features of the characterizing part of said claim.
Accordingly, the winding comprises at least one current- carrying conductor and the machine is further characterized in that a first layer having semiconducting properties is provided around said conductor, that a solid insulating layer is provided around said first layer, and that a second layer having semiconducting properties is provided around said insulating layer.
A very important advantage of the present invention, as defined in claim 1, is that the use of the described insulated conductor for the winding makes it possible to obtain a rotating electric machine with a considerably higher voltage than machines according to tne state of the art. In fact, a rotating electric machine as defined in claim 1 has the advantage that it is possible to have at least one winding system of conductors suitable for direct connection to distribution or transmission networks. Consequently, the voltage level in question is 36 kV - 800 kv, and preferably 72,5 kV - 800 kV.
This also entails the further important advantage that the Δ/Y-connected step-up transformer mentioned above can be omitted. Consequently, the solution according to the present invention represents manor savings both in economic terms and regarding space requirement and weight for generator plants and other installations comprising rotating electric macmnes.
In order to cope with the problems which arise in the case of direct connection of rotating electric machines to all types of high-voltage power networks, a machine according to the invention may have a number of features which significantly distinguishes it from the state of the art both as regards conventional mechanical engineering and the mechanical engineering which has been published during the last few years. Some features will follow below.
As mentioned, the winding is manufactured from one or more insulated conductors with an inner and an outer semiconducting layer, preferably an extruded cable of some sort. Some typical examples of such conductors are a cable of crosslinked polyethylene (XLPE) or a cable with ethylene propylene (EP) rubber insulation, which, however, for this purpose and according to the invention, has an improved design both as regards the strands of the conductor and as regards the outer layer.
The use of an insulated conductor with an outer semiconducting layer has the advantage that it permits the outer layer of the winding, in its full length, to be maintained at ground potential. Consequently, the claimed invention may have the feature that the outer semiconducting layer is connected to ground potential. As an alternative, the outer layer may be cut off, at suitable locations along the length of the conductor, and each cut-off part length may be directly connected to ground potential.
A considerable advantage with having the outer layer connected to ground potential is that the electric field will be near zero in the coil-end region outside the outer semiconductor and that the electric field need not be controlled. This implies that no field concentrations can oe ootained within the sheet, in the coil-end region, or m the transition therebetween.
As another advantageous feature at least two, and preferably all three, of the layers have substantially equal thermal expansion coefficients. Through this is achieved that thermal movement is prevented and the occurrence of cracks, fissures or other defects in the winding due to thermal movement is avoided.
According to another cnaracterizmg feature each of tne tnree layers is solidly connected to the adjacent layer along substantially the whole connecting surface. This has the advantage that the layers are fixed and unable to move in relation to each other and serves to ensure that no play occurs between the layers. It is verv important that no air is allowed to enter in-between the lay- since that would lead to disturbances in the electric fiexJ
As yet another advantageous feature the present invention is characterized in that the current-carrying conductor comprises a number of strands, only a minority of said strands being uninsulated from each other. The uninsulated strand or strands in the outer layer of the conductor defines the potential on the inner semiconducting layer and thereby ensures a uniform electric field within the insulation. By using uninsulated stranαs instead of insulated strands a less expensive insulated conductor for a winding is obtained. Theoretically, every second strand may be uninsulated, but for practical reasons the number of uninsulated strands is less than the insulated strands.
As an alternative, the object may be achieved by providing the machine defined in the introductory part of claim 9 with the advantageous features of the characterizing part of said claim. Accordingly, the winding is formed of a cable comprising at least one current-carrying conductor and the machine is further characterized in that each conductor comprises a number of strands, that an inner semiconducting layer is provided around each conductor, that an insulating layer cf solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer is provided around said insulating layer.
Naturally, the cable according to claim 9 may be provided with any one of the features of claims 2-8 reαardmg the winding
Preferably, cables with a circular cross section are used. However, in order to obtain, among other things, better packing density, cables with a different cross section may be used.
The use of an insulated conductor or cable according to the invention has the additional advantage that it permits the laminated core, both with respect to slots and teeth, to be designed in a new and optimal way.
As a further advantageous feature, the winding may be designed with tapered insulation to utilize the laminated core m the best way. To continue, the shape of the slots may advantageously be adapted to the cross section of the cable of the winding in such a way that the slots are formed as a number of cylindrical openings, extending axially and radially outside one another, with a substantially circular cross section, and with an open waist extending between the layers of the stator winding. The shape of the slots may also be adapted to the tapered insulation of the winding. As an additional feature, the substantially circular cross section may, counting from the ridge portion of the laminated core, be designed with a continuously decreasing radius, or, as an alternative, with a discontmuously decreasing radius.
A particular advantage with the tapered insulation is that a reasonably constant tooth width can be obtained, independently of the radial extension.
Furthermore, the winding is preferably designed as a multi- layer concentric cable winding to reduce the number of coil- end crossings.
As a further feature, the machine according to the invention may be characterized in that the cable also comprises a metal shield and a sheath.
The rotor of the rotating electric macnme according to the present invention may be designed in a number of different ways, known per se. In brief it may be mentioned that the rotor may be a rotor comprising salient poles and including a number of different features related to that configuration. For example, it may be designed with or without a damper winding, with or without an armature spider.
Alternatively, the rotor may be a turbo type rotor and include a number of different features relateα to that particular configuration. For example, it may be designed with or without grooves for a cooling medium, with or without ventilation ducts.
As yet an alternative, the rotor may be configured as a cylindric rotor and, naturally, include a number of different features related to such a configuration. For example, it may be designed with or without a damper winding, with or without an armature spider, with or without a shaft, with or without bearings. In general, as applicable, the winding may be made of copper strips, it may be a single-phase or three-phase winding, it may be a diamond winding, a bar winding, a flat winding or a squirrel cage winding, etc.
The rotor may further be designed for horizontal or vertical mounting, it may be provided with slip rings, it may be provided with a brushless exciter etc. The rotor may also be made of different materials. Other configurations and features are also possible.
Further features and advantages will be apparent from the remaining dependent claims.
As a summary, thus, a rotating electric machine according to the invention results in a considerable number of important advantages in relation to corresponding prior art machines. First of all, it can be connected directly to a power network at all types of high voltage. Another important advantage is that ground potential may be consistently provided along the whole winding, which implies that the coil-end region can be made compact and that bracing means at the coil-end region can be applied at practically ground potential. Still another important advantage is that oil-based insulation and cooling systems will disappear. This means that no sealing problems will arise and that the dielectric ring previously mentioned is not needed. Anotner important feature is that all forced ventilation can be made at ground potential. In addition, a considerable space and weight saving from the installation point of view is obtained with a rotating electric machine according to the invention, since it replaces a previous installation design with both a machine and a step-up transformer.
BRIEF DESCRIPTION OF THE DRAWINGS
- Figure 1 is a detailed perspective view of an insulated conductor or cable according to the present invention,
- Figure 2 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to one embodiment of the invention,
- Figure 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention, and
- Figure 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS An important condition for being able to manufacture a rotating electric machine in accordance with the disclosure of the invention is to use, for the winding, an insulated conductor or a conductor cable with an electrical insulation with a semiconducting layer both at the conductor and at the casing. Such cables are available as standard cables for other power engineering fields of use. As described under the summary of the invention, however, an improved embodiment of such a standard cable is preferably used as a stator winding.
In order to describe an embodiment, initially a short description of a standard cable will be made. The internal current-carrying conductor comprises a number of uninsulated strands. Around the strands there is a semiconducting inner layer. Around this semiconducting inner layer, there is an insulating layer of extruded insulation. An example of such an extruded insulation is XLPE or, alternatively, so-called EP rubber. This insulating layer is surrounded by an external semiconducting layer which, m turn, is surrounded by a metal shield and a sheath. Such a cable will be referred to below as a power cable.
A preferred embodiment of the improved cable or insulated conductor is shown in Figure 1. The insulated conductor or cable 1 is represented in the figure as comprising a current- carrying conductor 2 which comprises a number of strands 18. The strands are transposed both uninsulated and msulatea strands. Transposed, insulated strands are also possible. Around the conductor there is an inner semiconducting layer 3 which, in turn, is surrounded by an extruded insulation layer 4. This layer is surrounded by an external semiconducting layer or layer 5. The cable used as a winding m the preferred embodiment has no metal shield and no external sheath. In order to avoid induced currents and losses, the external semiconducting layer has such a high resistivity that the induced voltage does not provoke any appreciable losses. As an alternative to avoid induced currents and losses associated therewith in the outer semiconαuctor, this is cut off, preferably in the coil end, i.e. in the transitions from the sheet stack to the end windings. Each cut-off part is then connected to ground, whereby the external semiconductor will be maintained at, or near, ground potential for the whole cable length. This means that, around the extruded insulated winding at the coil ends, the contactable surfaces, and the surfaces which are dirty after some time of use, only have negligible potentials to ground, and that they also cause negligible electric fields.
As regards the geometric dimensions of tne insulated conductor or cable the conductor area is comprised in the approximate interval of 80 - 3000 mm2 and the outer diameter is m the approximate interval of 20 - 250mm.
To optimize a rotating electric machine, the design of the magnetic circuit as regards the slots and the teeth, respec¬ tively, are of decisive importance. As mentioned above, the slots should connect as closely as possible to the casing of the coil sides. It is also desirable that the teeth at each radial level are as wide as possible. This is important to minimize the losses, the magnetization requirement, etc., of the machine.
Witn access to the above described insulated conductor or cable for the winding, there are great possibilities of being able to optimize the laminated core from the above mentioned points of view. In the following, a magnetic circuit m the stator of the rotating electric machine is referred to. Figure 2 shows an axial end view of a sector/pole pitch 6 of a magnetic circuit according to one embodiment of the invention, namely an embodiment including a rotor 7 with salient poles 20. In a conventional manner, the stator is composed of a laminated core of electric sheets successively composeα of sector-shaped sheets. From a rear portion of the stator core 8, located at the radially outermost end, a number of teeth 9 extend radially inwards towards the rotor. Between the teeth there are a corresponding number of slots 10. The slots have a cross section tapering towards the rotor, since the need for caole insulation decreases for each winding layer in the direction towards the air gap. As is clear from the figure, tne slot substantially consists of a circuit cross section 12 around each layer of the winding with narrower waist portions 13 between the layers. With a certain justification, such a slot cross section may be referred to as a "bicycle chain slot". However, it need not be symmetric. In a high-voitage machine, a relatively large number of layers will be needed and, if a continuous tapering of the cable insulation and the stator slot, respectively, is desired, a large number of cable dimensions are required. However, it will neither be practical nor economic to use more than a certain number of cable dimensions. Therefore, as shown m the embodiment of Figure 2, cables 11 with three different dimensions of the cable insulation are used, arranged m three correspondingly dimensioned sections 14, 15 and 16, i.e. in practice a modified bicycle chain slot is obtained. The rotor 7 represented in Figure 2, which is only partly shown, is as mentioned a rotor with salient poles 20. It comprises a rotor rim 21, a pole body 23 with a pole plate 24 and a field winding 26. The illustrated pole is also provided with a damper winding 27
Figure 3 shows a schematic axial end view of a sector/pole pitch of a magnetic circuit according to another embodiment of the invention, namely an embodiment including a turbo type rotor 37, only partly shown. The different parts of the stator and the stator winding are essentially the same as in figure 2 and have accordingly been given the same reference numerals. The rotor includes a body and a shaft 32 forged from solid steel. It is provided with milled slots 35 for the rotor winding 36. The reDresented turoo rotor is also provideα with poles 30.
Figure 4 shows a schematic axial end view of a part of a sector/pole pitch of a magnetic circuit according to yet another embodiment of the invention, namely an embodiment including a cylindric rotor 47, only partly shown. The illustrated rotor is a laminated rotor with a regular field winding. The rotor includes a shaft 42 and a rotor rim 41 provided with slots 45 for the rotor winding 46. The rotor is also provided with poles 40.
As an alternative, the cable which is used as a winding may be a conventional power cable, like the one described above. The grounding of the external semiconducting shield then takes place by stripping the cable of the metal shield and the sheath at suitable locations.
It should be noted that the scope of the invention accommodates a large number of alternative embodiments of a modified cycle chain slot, depending on the available insulated conductor or cable dimensions as far as insulation and the external semiconductor layer etc. are concerned.
As winding, a winding is preferably used which may be described as a multilayer, concentric cable winding. Such a winding implies that the number of crossings at the ceil ends has been minimized by placing all the coils within the same group radially outside one another. This also permits a simpler method for the manufacture and the threading of the stator winding in the different slots.

Claims

Patent claims
1. A rotating electric high voltage machine comprising a stator (8), a rotor (7;37;47) and at least one winding, characterized in that said winding comprises at least one current-carrying conductor (2), that a first layer (3) having semiconducting properties is provided around said conductor, that a solid insulating layer (4) is provided around said first layer, and that a second layer (5) having semiconducting properties is provided around said insulating layer.
2. A rotating machine according to claim 1, characterized in that the potential of said first layer is substantially equal to the potential of the conductor.
3. A rotating machine according to claim 1 or 2, characterized in that said second layer is arranged to constitute a substantially equipotential surface surrounding said conductor.
4. A rotating machine according to claim 3, characterized in that said second layer is connected to a predetermined potential.
5. A rotating machine according to claim 4, characterized in that said predetermined potential is ground potential.
6. A rotating machine according to any one of the preceding claims, characterized in that at least two adjacent layers have substantially equal thermal expansion coefficients.
7. A rotating machine according to any one of the preceding claims, characterized m that said current-carrying conductor (2) comprises a number of strands (18), only a minority of said strands being uninsulated from each other.
8. A rotating machine according to any one of the preceding claims, characterized in that each of said three layers (3,4,5) is solidly connected to the adjacent layer along substantially the whole connecting surface.
9. A rotating electric machine having a magnetic circuit for high voltage comprising a magnetic core and a winding, characterized in that said winding is formed of a cable (1,-11) comprising at least one current-carrying conductor (2), that each conductor comprises a number of strands (18) , that an inner semiconducting layer (3) is provided around each conductor, that an insulating layer (4) of solid insulating material is provided around said inner semiconducting layer, and that an outer semiconducting layer (5) is provided around said insulating layer.
10. A rotating electric machine according to claim 9, characterized in that it comprises a stator (8) and a rotor (7,-37,-47) .
11. A rotating electric machine according to claim 10, characterized in that the stator comprises a laminated core (8) provided with winding slots (10) ana tnat said wmomg i: arranged in said slots.
12. A rotating electric machine according to any one of the preceding claims, characterized m that said cable also coimonses a metal shield and a sheath.
13. A rotating electric machine according to any one cf claims 1-8, 10-12, characterized in that the rotor (7) comprises salient poles (20) .
14. A rotating electric machine according to claim 13, characterized in that the rotor includes strip coils.
15. A rotating electric machine according to claim 13, characterized in that the rotor includes wire coils.
16. A rotating electric machine according to claim 13, characterized in that the rotor is provided with a damper winding (27) .
17. A rotating electric machine according to claim 13, characterized in that the poles are laminated poles.
18. A rotating electric machine according to claim 13, characterized in that the poles are solid poles.
19. A rotating electric machine according to claim 13, characterized m that the poles are mounted on the rotor by means of bolts.
20. A rotating electric machine according to claim 13, characterized m that the poles which are mounted on the rotor by means of a dovetail arrangement.
21. A rotating electric machine according to claim 13, characterized in that the rotor includes a rotor rim maαe of thin steel sheet.
22. A rotating electric machine according to claim 13, characterized in that the rotor includes a rotor rim made of thick steel plate.
23. A rotating electric machine according to claim 13, characterized in that the rotor includes a rotor rim made of solid steel.
24. A rotating electric machine according to claim 13, characterized in that the rotor includes an armature spider, and that the poles and said armature spider are made in one piece and with pole shoes bolted to the poles.
25. A rotating electric machine according to claim 13, characterized in that the rotor is provided with an armature spider, a shaft and bearings.
26. A rotating electric machine according to claim 13, characterized in that the rotor is provided with a shaft and that the poles are provided directly on said shaft.
27. A rotating electric machine according to any one of claims 1-8, 10-12, characterized in that the rotor is a turbo type rotor (37) .
28. A rotating electric machine according to claim 27, characterized in that the rotor includes a shaft (32) and a body and that said shaft and said body are forged.
29. A rotating electric machine according to claim 27, characterized in that the rotor includes a body and that said body is provided with winding slots (35) .
30. A rotating electric machine according to claim 27, characterized in that the rotor is provided with a winding made of copper strips.
31. A rotating electric machine according to claim 27, characterized in that the rotor is provided with a winding and that said rotor is designed with a direct ventilation of said winding.
32. A rotating electric machine according to claim 27, characterized in that the rotor is provided with a winding and that said rotor is designed with an indirect ventilation of said winding.
33. A rotating electric machine according to claim 27, characterized in that the rotor is provided with grooves for a cooling medium.
34. A rotating electric machine according to claim 27, characterized in that the rotor is provided with ventilation ducts.
35. A rotating electric machine according to claim 27, characterized in that the rotor is provided with bearings.
36. A rotating electric machine according to any one of claims 1-8, 10-12, characterized in that the rotor is a cylindric rotor (47) .
37. A rotating electric machine according to claim 36, characterized in that the rotor is made of laminated steel sheet compressed by means of steel rings.
38. A rotating electric machine according to claim 36, characterized in that the rotor is provided with a three-phase winding.
39. A rotating electric machine according to claim 38, characterized in that the winding is a diamond winding.
40. A rotating electric machine according to claim 38, characterized in that the winding is a bar winding.
41. A rotating electric machine according to claim 38, characterized in that the winding is a flat winding.
42. A rotating electric machine according to claim 36, characterized in that the rotor is provided with a single- phase winding.
43. A rotating electric machine according to claim 42, characterized in that the winding is a flat winding.
44. A rotating electric machine according to claim 42, characterized in that the winding is a diamond winding.
45. A rotating electric machine according to claim 36, characterized in that the rotor is provided with a damper winding.
46. A rotating electric machine according to claim 36, characterized in that the rotor is provided with a squirrel cage winding made of aluminium.
47. A rotating electric machine according to claim 36, characterized in that the rotor is provided with a squirrel cage winding made of copper.
48. A rotating electric machine according to claim 36, characterized m that the rotor is provided with a squirrel cage winding made of brass.
49. A rotating electric machine according to claim 36, characterized in that the rotor is provided with an armature spider.
50. A rotating electric machine according to claim 36, characterized in that the rotor is provided with a shaft (42).
51. A rotating electric machine according to claim 36, characterized m that the rotor is provided with bearings.
52. A rotating electric machine according to any one of claims 1-8, 10-51, characterized in that the rotor is designed for horizontal mounting.
53. A rotating electric machine according to any one of claims 1-8, 10-51, characterized m that the rotor is designed for vertical mounting.
54. A rotating electric machine according to any one of claims 1-8, 10-53, characterized in that the rotor is provided with slip rings.
55. A rotating electric machine according to any one of claims 1-8, 10-53, characterized m that the rotor is provided with a brushless exciter.
PCT/SE1997/000892 1996-05-29 1997-05-27 Rotating electric machine for high voltage WO1997045927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU30525/97A AU3052597A (en) 1996-05-29 1997-05-27 Rotating electric machine for high voltage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE9602079A SE9602079D0 (en) 1996-05-29 1996-05-29 Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
SE9602079-7 1996-05-29

Publications (1)

Publication Number Publication Date
WO1997045927A1 true WO1997045927A1 (en) 1997-12-04

Family

ID=20402760

Family Applications (8)

Application Number Title Priority Date Filing Date
PCT/SE1997/000888 WO1997045288A2 (en) 1996-05-29 1997-05-27 An electric drive system for vehicles
PCT/SE1997/000886 WO1997045924A1 (en) 1996-05-29 1997-05-27 A turbo-generator plant
PCT/SE1997/000884 WO1997045922A1 (en) 1996-05-29 1997-05-27 Synchronous compensator plant
PCT/SE1997/000885 WO1997045923A1 (en) 1996-05-29 1997-05-27 A hydro-generator plant
PCT/SE1997/000892 WO1997045927A1 (en) 1996-05-29 1997-05-27 Rotating electric machine for high voltage
PCT/SE1997/000874 WO1997045919A2 (en) 1996-05-29 1997-05-27 Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same
PCT/SE1997/000890 WO1997045912A1 (en) 1996-05-29 1997-05-27 A rotating asynchronous converter and a generator device
PCT/SE1997/000887 WO1997045925A1 (en) 1996-05-29 1997-05-27 High-voltage plants with electric motors

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/SE1997/000888 WO1997045288A2 (en) 1996-05-29 1997-05-27 An electric drive system for vehicles
PCT/SE1997/000886 WO1997045924A1 (en) 1996-05-29 1997-05-27 A turbo-generator plant
PCT/SE1997/000884 WO1997045922A1 (en) 1996-05-29 1997-05-27 Synchronous compensator plant
PCT/SE1997/000885 WO1997045923A1 (en) 1996-05-29 1997-05-27 A hydro-generator plant

Family Applications After (3)

Application Number Title Priority Date Filing Date
PCT/SE1997/000874 WO1997045919A2 (en) 1996-05-29 1997-05-27 Rotating electric machines with magnetic circuit for high voltage and method for manufacturing the same
PCT/SE1997/000890 WO1997045912A1 (en) 1996-05-29 1997-05-27 A rotating asynchronous converter and a generator device
PCT/SE1997/000887 WO1997045925A1 (en) 1996-05-29 1997-05-27 High-voltage plants with electric motors

Country Status (32)

Country Link
US (10) US6906447B2 (en)
EP (7) EP0901711B1 (en)
JP (5) JPH11514199A (en)
KR (3) KR20000016094A (en)
CN (9) CN100403626C (en)
AP (1) AP907A (en)
AR (7) AR007334A1 (en)
AT (6) ATE259996T1 (en)
AU (8) AU718766B2 (en)
BG (1) BG63444B1 (en)
BR (6) BR9709399A (en)
CA (7) CA2256473A1 (en)
CO (8) CO4600758A1 (en)
CZ (3) CZ388298A3 (en)
DE (7) DE69727669T2 (en)
EA (6) EA001441B1 (en)
EE (1) EE03361B1 (en)
ID (3) ID19777A (en)
IL (1) IL126943A (en)
IS (3) IS1818B (en)
NO (4) NO985524L (en)
NZ (1) NZ333601A (en)
PE (5) PE69998A1 (en)
PL (5) PL330200A1 (en)
SE (1) SE9602079D0 (en)
TR (2) TR199802473T2 (en)
TW (8) TW441154B (en)
UA (2) UA42867C2 (en)
UY (1) UY24794A1 (en)
WO (8) WO1997045288A2 (en)
YU (2) YU54398A (en)
ZA (20) ZA974747B (en)

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9602079D0 (en) * 1996-05-29 1996-05-29 Asea Brown Boveri Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
ATE250816T1 (en) * 1996-05-29 2003-10-15 Abb Ab INSULATED CONDUCTOR FOR A HIGH VOLTAGE WINDING
US7259491B2 (en) * 1997-05-27 2007-08-21 Abb Ab Rotating asynchronous converter
GB2331860A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri High voltage rotating electric machine
GB2331858A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri A wind power plant
GB2331861A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri Traction motor winding having a conductor with semi-conductor insulation layers
GB2339975A (en) * 1998-07-27 2000-02-09 Asea Brown Boveri Rotating electric machine stator
SE9802910L (en) * 1998-08-28 2000-02-29 Abb Ab generator device
DE19860412A1 (en) * 1998-12-28 2000-06-29 Abb Research Ltd Manufacturing of motor coils involves winding oval coils, applying internal discharge protective impregnated tape, spreading coils, and applying insulation and outer discharge protection
SE514818C2 (en) * 1999-04-30 2001-04-30 Abb Ab Constant frequency machine with varying / variable speed and procedure for such machine
SE513655C2 (en) * 1999-05-27 2000-10-16 Abb Ab Device for generating single-phase AC voltage
SE9903540D0 (en) * 1999-10-01 1999-10-01 Abb Ab Procedure, plant and apparatus in connection with transmission of electrical power
DK199901436A (en) * 1999-10-07 2001-04-08 Vestas Wind System As Wind turbine
US6278217B1 (en) 1999-12-09 2001-08-21 General Electric Company High voltage generator stator with radially inserted cable windings and assembly method
SE9904753L (en) * 1999-12-23 2001-06-24 Abb Ab Use of HVDC insulated conductors in magnetic flow carriers
SE516002C2 (en) * 2000-03-01 2001-11-05 Abb Ab Rotary electric machine and method of making a stator winding
EP1269494A1 (en) 2000-04-03 2003-01-02 Abb Ab A multiphase induction device
SE520332C2 (en) 2001-02-09 2003-06-24 Abb Ab Procedure for mounting stator winding
SE0101727D0 (en) * 2001-05-15 2001-05-15 Abb Ab Electric power generation system
US6670721B2 (en) 2001-07-10 2003-12-30 Abb Ab System, method, rotating machine and computer program product for enhancing electric power produced by renewable facilities
DE10153644C2 (en) * 2001-10-31 2003-11-20 Aloys Wobben Wind turbine with contactless energy transfer to the rotor
SE525387C2 (en) 2002-01-10 2005-02-08 Swedish Vertical Wind Ab Vertical axle wind turbine and its use
DE10247905A1 (en) * 2002-10-14 2004-05-06 Alstom (Switzerland) Ltd. Method for starting up a shaft train and device for carrying out the method
SE524541C2 (en) * 2002-11-18 2004-08-24 Uppsala Power Man Consultants Power storage systems and vehicles fitted with such
SE0301106L (en) * 2003-04-14 2004-04-20 Swedish Seabased Energy Ab wave power generator comprising an electric linear generator provided with electromechanical damping means
KR100568181B1 (en) 2003-10-17 2006-04-05 삼성전자주식회사 Display apparatus
DE10361731A1 (en) * 2003-12-29 2005-09-15 Voith Siemens Hydro Power Generation Gmbh & Co. Kg Machine component with an electrical winding of an electrical machine
DE102004003119A1 (en) * 2004-01-21 2005-08-11 BSH Bosch und Siemens Hausgeräte GmbH Device for heating food by means of inductive coupling and device for transmitting energy
US7282923B2 (en) * 2005-09-20 2007-10-16 General Electric Company Systems and methods for triggering a partial discharge acquisition
US7841728B2 (en) * 2005-10-20 2010-11-30 Seiko Epson Corporation Image display apparatus
US7572133B2 (en) 2005-11-14 2009-08-11 Cooper Technologies Company Separable loadbreak connector and system
KR100757439B1 (en) * 2005-12-30 2007-09-11 엘지전자 주식회사 Self-magnetizing motor and his magnetization method
ATE555536T1 (en) * 2006-01-24 2012-05-15 Alstom Technology Ltd CONNECTION ARRANGEMENT FOR THE STATOR WINDING OF A TURBO MACHINE WITH 2 OR MORE PARALLEL CIRCLES
FI122626B (en) * 2006-03-31 2012-04-30 Laennen Tutkimus Western Res Inc Oy Chemical pulp bleaching process
US8737775B2 (en) * 2006-04-07 2014-05-27 Waukesha Electric Systems, Inc. System and method for monitoring displacement within energized tap changer compartments
EP1878913B1 (en) * 2006-07-14 2013-03-13 OpenHydro Group Limited Bi-directional tidal flow hydroelectric turbine
EP1914872A1 (en) * 2006-10-17 2008-04-23 Siemens Aktiengesellschaft Wind farm
CN101432941B (en) 2006-10-18 2014-06-04 Abb技术有限公司 Load compensation in distance protection of three-phase electric power line
US7854620B2 (en) 2007-02-20 2010-12-21 Cooper Technologies Company Shield housing for a separable connector
US7950939B2 (en) 2007-02-22 2011-05-31 Cooper Technologies Company Medium voltage separable insulated energized break connector
US7666012B2 (en) 2007-03-20 2010-02-23 Cooper Technologies Company Separable loadbreak connector for making or breaking an energized connection in a power distribution network
CA2684836A1 (en) * 2007-04-23 2008-10-30 Cooper Technologies Company Method of making and repairing a modular push-on busbar system
WO2008145018A1 (en) * 2007-05-29 2008-12-04 Kwong Keung Leung Apparatus and method for keeping water stream energy utilized
US7661979B2 (en) 2007-06-01 2010-02-16 Cooper Technologies Company Jacket sleeve with grippable tabs for a cable connector
US7514806B2 (en) * 2007-06-05 2009-04-07 Honeywell International Inc. Engine start system with quadrature AC excitation
US7863868B2 (en) * 2007-06-05 2011-01-04 Honeywell International Inc. Generator with quadrature AC excitation
EP2025944B1 (en) 2007-08-09 2017-08-09 Askoll Holding S.r.l. Mono-phase syncronous electric motorfor household appliances
PL2026062T3 (en) 2007-08-17 2015-05-29 Omicron Electronics Gmbh Method and device for determining the humidity content in the insulator of a transformer
US7695291B2 (en) 2007-10-31 2010-04-13 Cooper Technologies Company Fully insulated fuse test and ground device
ATE480035T1 (en) * 2007-12-12 2010-09-15 Openhydro Group Ltd GENERATOR COMPONENT FOR A HYDROELECTRIC TURBINE
US7670162B2 (en) 2008-02-25 2010-03-02 Cooper Technologies Company Separable connector with interface undercut
US7905735B2 (en) 2008-02-25 2011-03-15 Cooper Technologies Company Push-then-pull operation of a separable connector system
US7950940B2 (en) 2008-02-25 2011-05-31 Cooper Technologies Company Separable connector with reduced surface contact
US8056226B2 (en) * 2008-02-25 2011-11-15 Cooper Technologies Company Method of manufacturing a dual interface separable insulated connector with overmolded faraday cage
US8109776B2 (en) 2008-02-27 2012-02-07 Cooper Technologies Company Two-material separable insulated connector
US7811113B2 (en) 2008-03-12 2010-10-12 Cooper Technologies Company Electrical connector with fault closure lockout
US7958631B2 (en) 2008-04-11 2011-06-14 Cooper Technologies Company Method of using an extender for a separable insulated connector
US7878849B2 (en) 2008-04-11 2011-02-01 Cooper Technologies Company Extender for a separable insulated connector
EP2112370B1 (en) * 2008-04-22 2016-08-31 OpenHydro Group Limited A hydro-electric turbine having a magnetic bearing
PT104078A (en) * 2008-05-28 2009-11-30 Envez Lda ELECTROMAGNETIC ROTOR
ES2436423T3 (en) 2008-06-09 2014-01-02 Abb Technology Ag An installation to transmit electrical energy
US20100148617A1 (en) * 2008-12-15 2010-06-17 Tai-Her Yang Asynchronous AC induction electrical machines in cross-interlockingly parallel connection
US20100148616A1 (en) * 2008-12-15 2010-06-17 Tai-Her Yang Asynchronous AC induction electrical machines in cross-interlockingly series connection
DE602008002602D1 (en) * 2008-12-19 2010-10-28 Openhydro Ip Ltd Method for installing a hydroelectric turbine generator
EP2241749B1 (en) 2009-04-17 2012-03-07 OpenHydro IP Limited An enhanced method of controlling the output of a hydroelectric turbine generator
US8395296B2 (en) * 2009-09-16 2013-03-12 Siemens Energy, Inc. Tape structure with conductive outer side and electrically insulating inner side
EP2302204A1 (en) * 2009-09-29 2011-03-30 OpenHydro IP Limited A hydroelectric turbine system
EP2302755B1 (en) 2009-09-29 2012-11-28 OpenHydro IP Limited An electrical power conversion system and method
EP2302766B1 (en) 2009-09-29 2013-03-13 OpenHydro IP Limited A hydroelectric turbine with coil cooling
FR2962251B1 (en) * 2010-06-30 2013-11-15 Cybernetix NON-CONTACT ELECTRONIC CONNECTION DEVICE FOR TRANSMITTING ELECTRICAL POWER
WO2012017302A1 (en) * 2010-08-04 2012-02-09 Stellenbosch University Split permanent magnet machine
DE102010041198A1 (en) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Method for producing an electrical insulation material, electrical insulation material and electrical machine
US9472990B2 (en) 2010-10-19 2016-10-18 Baker Hughes Incorporated Systems and methods for insulating Y-points of three phase electric motors
DE102010062060A1 (en) * 2010-11-26 2012-05-31 Airbus Operations Gmbh Three-phase asynchronous machine and method for operating a three-phase asynchronous machine in an aircraft or spacecraft
ITCO20110020A1 (en) 2011-05-25 2012-11-26 Nuovo Pignone Spa METHODS AND SYSTEMS FOR LOW VOLTAGE DUCTS FREE OF OIL
US9590159B2 (en) * 2011-07-25 2017-03-07 The Boeing Company Thermoelectric power generation from power feeder
GB2493711B (en) 2011-08-12 2018-04-25 Openhydro Ip Ltd Method and system for controlling hydroelectric turbines
US9051923B2 (en) * 2011-10-03 2015-06-09 Chang Kuo Dual energy solar thermal power plant
EP2587638A1 (en) 2011-10-26 2013-05-01 Siemens Aktiengesellschaft Corona protection for an electric machine
JP5942393B2 (en) * 2011-11-18 2016-06-29 株式会社日立製作所 Rotating electrical machine system or wind power generation system.
NO336604B1 (en) * 2011-11-22 2015-10-05 Aker Subsea As System and method for operating underwater loads with electric power provided through an underwater HVDC outfitting cable
US8901790B2 (en) 2012-01-03 2014-12-02 General Electric Company Cooling of stator core flange
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9995218B2 (en) 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
DE102013001717A1 (en) * 2013-02-01 2014-08-07 Voith Patent Gmbh Hydroelectric power station
US9657645B2 (en) 2013-02-25 2017-05-23 Pratt & Whitney Canada Corp. Engine architecture using electric machine
CN104442052A (en) * 2013-09-18 2015-03-25 白纱科技印刷股份有限公司 Gold blocking, dull polish simulation and ice flower printing stripe same line operation printing method and prints thereof
CN104670045B (en) * 2013-12-03 2017-02-15 中车大连电力牵引研发中心有限公司 Vehicle hauling system
FR3023996A1 (en) * 2014-07-16 2016-01-22 Muses MULTI-SECTOR STATOR ASSEMBLY FOR EXTERIOR ROTOR ENGINE.
BR112017002352A2 (en) 2014-08-07 2017-11-28 Henkel Ag & Co Kgaa electroceramic sheath of a wire for use in a beam power transmission cable
US10903766B2 (en) * 2014-12-16 2021-01-26 Coalmont Electrical Development Corporation Multi-polar DC machine
CN104682430B (en) * 2015-02-16 2016-08-17 东北大学 A kind of energy router apparatus being applied to energy the Internet
US10014751B2 (en) 2015-05-19 2018-07-03 General Electric Company Electrical machine cooling structure
RU2596807C1 (en) * 2015-07-06 2016-09-10 Общество с ограниченной ответственностью "Смартер" Vehicle electric power supply system
KR102485025B1 (en) * 2015-09-14 2023-01-05 엘지이노텍 주식회사 Integrated cable and motor assembly including the same
DE102016207425A1 (en) * 2016-04-29 2017-11-02 Siemens Aktiengesellschaft Arrangement of single-phase transformers
RU2642488C1 (en) * 2016-08-04 2018-01-25 Фонд поддержки научной, научно-технической и инновационной деятельности "Энергия без границ" Excitation system of asynchronized electric machine
DE102016123067A1 (en) * 2016-11-30 2018-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rod winding arrangement of a stator or a rotor of an electrical machine
CA2987665C (en) 2016-12-02 2021-10-19 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US11067481B2 (en) 2017-10-05 2021-07-20 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
CA3078879A1 (en) 2017-10-13 2019-04-18 U.S. Well Services, LLC Automated fracturing system and method
US10655435B2 (en) 2017-10-25 2020-05-19 U.S. Well Services, LLC Smart fracturing system and method
CN108128214A (en) * 2017-11-13 2018-06-08 中铁二院工程集团有限责任公司 A kind of method for reducing AT power supply mode single-core cable sheath induced voltages
US10644630B2 (en) * 2017-11-28 2020-05-05 General Electric Company Turbomachine with an electric machine assembly and method for operation
US10648311B2 (en) 2017-12-05 2020-05-12 U.S. Well Services, LLC High horsepower pumping configuration for an electric hydraulic fracturing system
AR113611A1 (en) 2017-12-05 2020-05-20 U S Well Services Inc MULTIPLE PLUNGER PUMPS AND ASSOCIATED DRIVE SYSTEMS
CN111656637B (en) * 2018-01-30 2021-07-16 Abb电网瑞士股份公司 Neutral device, converter station and direct current power transmission system
US11114857B2 (en) 2018-02-05 2021-09-07 U.S. Well Services, LLC Microgrid electrical load management
US10693338B2 (en) 2018-03-23 2020-06-23 General Electric Company System and method for suppressing surface discharges on conductive windings of an electric machine
WO2019204242A1 (en) 2018-04-16 2019-10-24 U.S. Well Services, Inc. Hybrid hydraulic fracturing fleet
TWI651917B (en) * 2018-05-09 2019-02-21 高力熱處理工業股份有限公司 A method for manufacturing a motor rotor and a motor rotor
WO2019241783A1 (en) 2018-06-15 2019-12-19 U.S. Well Services, Inc. Integrated mobile power unit for hydraulic fracturing
CN110648825B (en) * 2018-06-27 2022-05-13 台达电子工业股份有限公司 Transformer
US10648270B2 (en) 2018-09-14 2020-05-12 U.S. Well Services, LLC Riser assist for wellsites
US11208878B2 (en) * 2018-10-09 2021-12-28 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
KR102310629B1 (en) * 2019-01-24 2021-10-07 전북대학교산학협력단 A field excitation system and method for a wound rotor synchronous generator
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
CN109742652B (en) * 2019-03-22 2024-03-12 天津市天发重型水电设备制造有限公司 Improved structure of main outgoing line of through-flow hydropower station generator
CN110224560A (en) * 2019-04-28 2019-09-10 深圳市吉胜华力科技有限公司 A kind of Double-stator double-rotor permanent-magnet generator
US11728709B2 (en) 2019-05-13 2023-08-15 U.S. Well Services, LLC Encoderless vector control for VFD in hydraulic fracturing applications
WO2021022048A1 (en) 2019-08-01 2021-02-04 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
CN110842474B (en) * 2019-11-13 2020-12-01 北京石油化工学院 Machining and assembling method for right-angle spherical magnetic pole
CN110749810A (en) * 2019-12-05 2020-02-04 国网山东省电力公司电力科学研究院 Insulation fault prediction method and system for phase modulator
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
US11791684B2 (en) * 2020-07-02 2023-10-17 Ge Aviation Systems Llc Method and system for electrically insulating portions of an electric machine
CN112652470B (en) * 2020-12-07 2022-11-15 阳光电源股份有限公司 Transformer
RU204718U1 (en) * 2021-04-05 2021-06-08 Евгений Борисович Колесников SINGLE-PHASE VOLTAGE TO THREE-PHASE VOLTAGE CONVERTER
CN114268175B (en) * 2021-12-27 2023-03-28 西安交通大学 Ultrahigh-voltage multiphase permanent magnet wind driven generator and power generation system
US11862388B2 (en) * 2022-01-14 2024-01-02 Counterfog Corporation Intrinsically safe electromagnetic devices
CN114614644A (en) * 2022-03-24 2022-06-10 西安交通大学 Rotary triple-frequency electric energy conversion device and working method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091139A (en) * 1975-09-17 1978-05-23 Westinghouse Electric Corp. Semiconductor binding tape and an electrical member wrapped therewith
US4338537A (en) * 1977-09-12 1982-07-06 Siemens Aktiengesellschaft Synchronous turbine type electric motor
US4429244A (en) * 1979-12-06 1984-01-31 Vsesojuzny Proektnoizyskatelsky I Nauchno-Issledovatelsky Institut "Gidroproekt" Stator of generator
CH657482A5 (en) * 1981-01-30 1986-08-29 Elin Union Ag ARRANGEMENT FOR EQUALIZING THE POTENTIAL DISTRIBUTION ON A POLAR GLAZE PROTECTION COATING FOR AN ELECTRICAL MACHINE.
US5036165A (en) * 1984-08-23 1991-07-30 General Electric Co. Semi-conducting layer for insulated electrical conductors

Family Cites Families (549)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE425551C (en) 1926-02-20 Bbc Brown Boveri & Cie Device for the magnetic closure of open slots in electrical machines
DE406371C (en) 1924-11-21 Bergmann Elek Citaets Werke Ak Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies with fields of different number of poles, which are expediently combined on an inductor, and induced windings assigned to these fields, possibly combined into a common winding
DE386561C (en) 1923-12-13 Bergmann Elek Citaets Werke Ak Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies
DE572030C (en) 1933-03-09 Bbc Brown Boveri & Cie Cooling device for the winding heads of high-voltage machines
DE336418C (en) 1921-05-02 Stanislaus Berger Support for electrical lines to be led on walls
DE426793C (en) 1926-03-18 Bbc Brown Boveri & Cie Device for the magnetic closure of open slots in electrical machines
DE523047C (en) 1931-04-18 Brown Boveir & Cie Ag Process for the production of slot wedges with iron sheets layered transversely to the longitudinal direction of the wedge for electrical machines
DE568508C (en) 1933-01-20 Bbc Brown Boveri & Cie AC high-voltage generator with at least two electrically separate windings
US878165A (en) * 1908-02-04 Westinghouse Electric & Mfg Co Dynamo-electric machine.
US1304451A (en) 1919-05-20 Locke h
DE435608C (en) 1926-10-18 Bbc Brown Boveri & Cie Divided conductor for electrical machines
DE134022C (en) *
US681800A (en) 1901-06-18 1901-09-03 Oskar Lasche Stationary armature and inductor.
US847008A (en) 1904-06-10 1907-03-12 Isidor Kitsee Converter.
DE372390C (en) 1915-12-09 1923-03-27 Bergmann Elek Citaets Werke Ak Machine for the conversion or for the simultaneous generation of alternating currents of different frequencies with the same or different number of phases
GB123906A (en) 1918-05-31 1919-03-13 Brush Electrical Eng Improvements in or pertaining to Windings in Electrical Apparatus.
US1418856A (en) 1919-05-02 1922-06-06 Allischalmers Mfg Company Dynamo-electric machine
DE443011C (en) 1919-07-19 1927-04-13 Bbc Brown Boveri & Cie Installation on high-voltage windings in electrical machines
US1481585A (en) 1919-09-16 1924-01-22 Electrical Improvements Ltd Electric reactive winding
DE387973C (en) 1921-06-04 1924-01-09 Hellmuth Beyer Arrangement of the coils to reduce the leakage in transformers with a disc-like winding structure
DE482506C (en) 1921-07-09 1929-09-14 Bbc Brown Boveri & Cie Device for short-circuit-proof fastening of involute-shaped stator winding heads of air-cooled electrical machines
US1673673A (en) * 1922-05-31 1928-06-12 Gen Electric Electrical converter
DE460124C (en) 1922-10-10 1928-05-22 Bbc Brown Boveri & Cie Laminated magnetic wedge to close the winding grooves of electrical machines
US1756672A (en) 1922-10-12 1930-04-29 Allis Louis Co Dynamo-electric machine
DE433749C (en) 1923-11-25 1926-09-07 Bbc Brown Boveri & Cie Coil winding of alternating current machines, which carry very strong currents, with ring-shaped connecting conductors
US1508456A (en) 1924-01-04 1924-09-16 Perfection Mfg Co Ground clamp
DE432169C (en) 1924-01-15 1926-07-26 Bbc Brown Boveri & Cie Device for the magnetic closure of open slots in electrical machines
DE435609C (en) 1924-03-02 1926-10-18 Bbc Brown Boveri & Cie Divided conductor for electrical machines
DE441717C (en) 1924-03-02 1927-03-11 Bbc Brown Boveri & Cie Divided conductor for electrical machines
GB268271A (en) 1926-06-12 1927-03-31 Pirelli & C Improvements in or relating to joints for high tension electric cables
DE468827C (en) * 1926-08-07 1928-11-23 Friedrich Pfaffenberger Inhaler
DE501181C (en) 1927-02-19 1930-07-03 Felten & Guilleaume Carlswerk Process for the manufacture of cables for electrical overhead lines
GB292999A (en) 1927-06-29 1929-04-11 Siemens Ag Arrangement of core segments in the casings of dynamo electric machines, rotary transformers and the like
GB293861A (en) 1927-07-15 1928-11-08 Westinghouse Electric & Mfg Co Improvements in or relating to radio coupling devices and conductors therefor
US1728915A (en) 1928-05-05 1929-09-24 Earl P Blankenship Line saver and restrainer for drilling cables
US1781308A (en) 1928-05-30 1930-11-11 Ericsson Telefon Ab L M High-frequency differential transformer
US1762775A (en) 1928-09-19 1930-06-10 Bell Telephone Labor Inc Inductance device
GB319313A (en) 1928-09-20 1929-07-18 Siemens Ag The regulation of the electric potential of long lines
DE629301C (en) 1929-02-28 1936-04-27 Hartstoff Metall Akt Ges Hamet Iron core for electrical machines
US1747507A (en) 1929-05-10 1930-02-18 Westinghouse Electric & Mfg Co Reactor structure
US1742985A (en) 1929-05-20 1930-01-07 Gen Electric Transformer
DE584639C (en) 1929-12-28 1933-09-27 Aeg Corona protection for windings in electrical machines
US1861182A (en) 1930-01-31 1932-05-31 Okonite Co Electric conductor
US1891716A (en) * 1930-04-04 1932-12-20 Westinghouse Electric & Mfg Co Winding for dynamo electric machines
US1904885A (en) 1930-06-13 1933-04-18 Western Electric Co Capstan
US1974406A (en) 1930-12-13 1934-09-25 Herbert F Apple Dynamo electric machine core slot lining
DE604972C (en) 1931-02-27 1934-10-12 Otis Aufzugswerke Ges M B H Door drive for elevators
US1894084A (en) * 1931-04-01 1933-01-10 Gen Electric System of distribution
DE586121C (en) 1932-05-01 1933-10-18 Felix Kleiss Dipl Ing Process for the implementation of wires and tapes through baths
US2006170A (en) 1933-05-11 1935-06-25 Gen Electric Winding for the stationary members of alternating current dynamo-electric machines
DE719009C (en) * 1935-05-30 1942-03-26 Aeg Equipment for the operation of electrical rail feeders
GB468827A (en) * 1936-02-12 1937-07-13 Siemens Ag Improvements in or relating to stators for alternating current machines
FR805544A (en) 1936-04-29 1936-11-21 Travail Electr Des Metaux Soc Method and device for adjusting voltages in a static transformer
DE673545C (en) 1936-07-30 1939-03-24 Siemens Schuckertwerke Akt Ges Multiphase scatter transformer made up of single-phase transformers
NL54036C (en) 1937-09-15
FR847899A (en) 1937-12-23 1939-10-18 Lignes Telegraph Telephon Transformer
FR841351A (en) 1938-01-19 1939-05-17 Manufacturing process of laminated or divided magnetic circuits
US2217430A (en) 1938-02-26 1940-10-08 Westinghouse Electric & Mfg Co Water-cooled stator for dynamoelectric machines
US2206856A (en) 1938-05-31 1940-07-02 William E Shearer Transformer
US2305153A (en) 1938-11-26 1942-12-15 Fries Eduard Adjustable transformer with high reactance
DE719119C (en) * 1939-04-09 1942-03-30 Leonhard Jacobi Wide-span sawn roof made of reinforced concrete
FR864380A (en) 1939-12-01 1941-04-25 Entpr Chemin Improvements to steam winches for piling piling and the like
GB540456A (en) 1940-04-17 1941-10-17 Austin Walters & Son Ltd Improvements in or relating to self-regulating electric transformers
US2241832A (en) 1940-05-07 1941-05-13 Hugo W Wahlquist Method and apparatus for reducing harmonics in power systems
US2256897A (en) 1940-07-24 1941-09-23 Cons Edison Co New York Inc Insulating joint for electric cable sheaths and method of making same
US2295415A (en) 1940-08-02 1942-09-08 Westinghouse Electric & Mfg Co Air-cooled, air-insulated transformer
US2251291A (en) 1940-08-10 1941-08-05 Western Electric Co Strand handling apparatus
GB589071A (en) 1942-03-27 1947-06-11 Gen Electric Co Ltd Improvements in protective shields in high-voltage apparatus
US2415652A (en) 1942-06-03 1947-02-11 Kerite Company High-voltage cable
US2462651A (en) 1944-06-12 1949-02-22 Gen Electric Electric induction apparatus
DE975999C (en) * 1944-09-16 1963-01-10 Siemens Ag Method and device for the operation of single-phase railway contact lines that are fed from at least two feed points
US2424443A (en) 1944-12-06 1947-07-22 Gen Electric Dynamoelectric machine
US2459322A (en) 1945-03-16 1949-01-18 Allis Chalmers Mfg Co Stationary induction apparatus
US2409893A (en) 1945-04-30 1946-10-22 Westinghouse Electric Corp Semiconducting composition
US2436306A (en) 1945-06-16 1948-02-17 Westinghouse Electric Corp Corona elimination in generator end windings
FR916959A (en) 1945-07-03 1946-12-20 Improvements to transformers for electrical welding and similar applications
US2446999A (en) 1945-11-07 1948-08-17 Gen Electric Magnetic core
US2498238A (en) 1947-04-30 1950-02-21 Westinghouse Electric Corp Resistance compositions and products thereof
NL143510B (en) 1947-12-04 Wiese Hans Holger BUCKET TRANSPORTER.
CH266037A (en) 1948-02-13 1950-01-15 Sip Karel Collapsible ladder.
US2650350A (en) 1948-11-04 1953-08-25 Gen Electric Angular modulating system
DE875227C (en) 1948-12-31 1953-04-30 Siemens Ag Rotary field machine with concentrated windings and pronounced poles with pole pieces
DE846583C (en) 1949-02-18 1952-08-14 Siemens Ag Iron core for electrical devices, especially transformers, chokes or the like.
US2721905A (en) 1949-03-04 1955-10-25 Webster Electric Co Inc Transducer
FR1011924A (en) 1949-04-23 1952-07-01 Improvements to rotating electrical machines
GB685416A (en) 1950-04-08 1953-01-07 Westinghouse Electric Int Co Improvements in or relating to stationary electrical induction apparatus
DE1638176U (en) 1952-02-12 1952-05-15 Bosch & Speidel CUFF FOR BLOOD PRESSURE MEASUREMENT.
GB702892A (en) * 1952-02-14 1954-01-27 Asea Ab Electric railway system
GB715226A (en) 1952-04-07 1954-09-08 Dowty Equipment Ltd Improvements relating to electro-magnetic coils
US2749456A (en) 1952-06-23 1956-06-05 Us Electrical Motors Inc Waterproof stator construction for submersible dynamo-electric machine
GB723457A (en) 1952-07-07 1955-02-09 Standard Telephones Cables Ltd Joint for an electric cable
BE534972A (en) 1953-03-23
GB739962A (en) 1953-03-23 1955-11-02 Standard Telephones Cables Ltd Improvements in coaxial conductor electric cables
US2780771A (en) 1953-04-21 1957-02-05 Vickers Inc Magnetic amplifier
NL195374A (en) 1954-03-11
GB827600A (en) 1954-12-13 1960-02-10 Shiro Sasaki Electric transformers and the like
US2962679A (en) 1955-07-25 1960-11-29 Gen Electric Coaxial core inductive structures
GB805721A (en) 1955-10-29 1958-12-10 Comp Generale Electricite Improvements in or relating to three-phase magnetic circuits
US2846599A (en) 1956-01-23 1958-08-05 Wetomore Hodges Electric motor components and the like and method for making the same
GB853021A (en) * 1956-06-19 1960-11-02 English Electric Co Ltd Improvements in and relating to transformer on-load tap changing means
US2947957A (en) 1957-04-22 1960-08-02 Zenith Radio Corp Transformers
US2885581A (en) 1957-04-29 1959-05-05 Gen Electric Arrangement for preventing displacement of stator end turns
CA635218A (en) 1958-01-02 1962-01-23 W. Smith John Reinforced end turns in dynamoelectric machines
US2943242A (en) 1958-02-05 1960-06-28 Pure Oil Co Anti-static grounding device
US2975309A (en) 1958-07-18 1961-03-14 Komplex Nagyberendezesek Expor Oil-cooled stators for turboalternators
GB854728A (en) 1958-09-29 1960-11-23 British Thomson Houston Co Ltd Improvements relating to electrical transformers
GB870583A (en) 1958-12-01 1961-06-14 Okonite Co Method of making electric cables
FR1238795A (en) 1959-07-06 1960-08-19 Fournitures Pour L Electrolyse Improvements to electrical transformers
DE1807391U (en) 1959-08-29 1960-03-03 Heinrich Ungruhe BASE RING FOR FITING STRAP.
CH395369A (en) 1959-09-18 1965-07-15 Asea Ab Corona shield on an induction coil provided with insulation in a vacuum furnace and method for producing a corona shield
US3014139A (en) * 1959-10-27 1961-12-19 Gen Electric Direct-cooled cable winding for electro magnetic device
US3157806A (en) 1959-11-05 1964-11-17 Bbc Brown Boveri & Cie Synchronous machine with salient poles
US3158770A (en) 1960-12-14 1964-11-24 Gen Electric Armature bar vibration damping arrangement
DE1263065B (en) * 1961-02-16 1968-03-14 Licentia Gmbh Drive for locomotives or railcars fed from a single-phase AC network with three-phase short-circuit rotor motors as traction motors
US3098893A (en) 1961-03-30 1963-07-23 Gen Electric Low electrical resistance composition and cable made therefrom
US3130335A (en) 1961-04-17 1964-04-21 Epoxylite Corp Dynamo-electric machine
US3197723A (en) 1961-04-26 1965-07-27 Ite Circuit Breaker Ltd Cascaded coaxial cable transformer
GB992249A (en) 1961-08-23 1965-05-19 Urho Leander Wertanen Electrical impedance devices
GB1024583A (en) 1961-10-26 1966-03-30 Ass Elect Ind Improvements in and relating to electric transformers
US3143269A (en) 1961-11-29 1964-08-04 Crompton & Knowles Corp Tractor-type stock feed
CH391071A (en) 1962-03-01 1965-04-30 Bbc Brown Boveri & Cie Laminated stator bodies for electrical machines, in particular turbo generators
GB965741A (en) 1962-03-02 1964-08-06 Core Mfg Company Transformer core
GB1032194A (en) * 1962-04-03 1966-06-08 Asea Ab Equipment for regulating the power transmitted between interconnected alternating current networks
SE305899B (en) 1962-06-15 1968-11-11 O Andersson
NL297703A (en) 1962-09-25
DE1465719A1 (en) 1963-03-15 1969-05-22 Ibm Transformer cables with multiple coaxial conductors and their method of manufacture
US3268766A (en) 1964-02-04 1966-08-23 Du Pont Apparatus for removal of electric charges from dielectric film surfaces
US3372283A (en) 1965-02-15 1968-03-05 Ampex Attenuation control device
SE318939B (en) 1965-03-17 1969-12-22 Asea Ab
US3304599A (en) 1965-03-30 1967-02-21 Teletype Corp Method of manufacturing an electromagnet having a u-shaped core
US3333044A (en) 1965-04-23 1967-07-25 William A Toto Passageway structure for liquid coolant at gun and transformer ends of welding cable having novel internal surface bearing for alternate polarity strands
DE1488353A1 (en) 1965-07-15 1969-06-26 Siemens Ag Permanent magnet excited electrical machine
CA812934A (en) 1965-07-19 1969-05-13 Cuny Robert Rotary transformer for coupling multi-phase systems having a small frequency difference
GB1135242A (en) 1965-09-13 1968-12-04 Ass Elect Ind Improvements in or relating to packing means for conductors in stator slots of dynamo-electric machines
US3365657A (en) 1966-03-04 1968-01-23 Nasa Usa Power supply
GB1117433A (en) 1966-06-07 1968-06-19 English Electric Co Ltd Improvements in alternating current generators
GB1103098A (en) 1966-06-24 1968-02-14 Phelps Dodge Copper Prod Improvements in or relating to shielded electric cable
GB1103099A (en) 1966-06-24 1968-02-14 Phelps Dodge Copper Prod Improvements in or relating to shielded electric cable
US3444407A (en) 1966-07-20 1969-05-13 Gen Electric Rigid conductor bars in dynamoelectric machine slots
US3484690A (en) 1966-08-23 1969-12-16 Herman Wald Three current winding single stator network meter for 3-wire 120/208 volt service
US3418530A (en) 1966-09-07 1968-12-24 Army Usa Electronic crowbar
US3354331A (en) 1966-09-26 1967-11-21 Gen Electric High voltage grading for dynamoelectric machine
GB1147049A (en) 1966-09-28 1969-04-02 Parsons C A & Co Ltd Improvements in and relating to transformer windings
US3392779A (en) 1966-10-03 1968-07-16 Certain Teed Prod Corp Glass fiber cooling means
US3437858A (en) 1966-11-17 1969-04-08 Glastic Corp Slot wedge for electric motors or generators
AT272436B (en) 1967-04-10 1969-07-10 Peter Dipl Ing Dr Techn Klaudy Method of overload protection using superconductors
US3487455A (en) * 1967-04-18 1969-12-30 Asea Ab Insulated high voltage conductor with potential gradient equalization means
GB1174659A (en) 1967-04-21 1969-12-17 Elektromat Veb Mechanism for Inserting Coils into Grooves of the Stators of Electric Machines
SU469196A1 (en) 1967-10-30 1975-04-30 Engine-generator installation for power supply of passenger cars
FR1555807A (en) 1967-12-11 1969-01-31
GB1226451A (en) 1968-03-15 1971-03-31
CH479975A (en) 1968-08-19 1969-10-15 Oerlikon Maschf Head bandage for an electrical machine
GB1268770A (en) 1968-11-21 1972-03-29 Kenneth Grundy Electrical connector
US3651402A (en) 1969-01-27 1972-03-21 Honeywell Inc Supervisory apparatus
US3813764A (en) 1969-06-09 1974-06-04 Res Inst Iron Steel Method of producing laminated pancake type superconductive magnets
US3651244A (en) 1969-10-15 1972-03-21 Gen Cable Corp Power cable with corrugated or smooth longitudinally folded metallic shielding tape
SE326758B (en) 1969-10-29 1970-08-03 Asea Ab
US3614692A (en) 1970-06-02 1971-10-19 Magnetech Ind Inc Variable induction device
US3666876A (en) 1970-07-17 1972-05-30 Exxon Research Engineering Co Novel compositions with controlled electrical properties
FR2108171A1 (en) 1970-09-29 1972-05-19 Sumitomo Electric Industries Insulated electric cable - incorporating an insulating layer and an easily strippable semiconductor layer
DE2050312A1 (en) 1970-10-13 1972-04-20 Siemens Ag Multiple choke with damping of symmetrical interference currents
US3631519A (en) 1970-12-21 1971-12-28 Gen Electric Stress graded cable termination
US3675056A (en) 1971-01-04 1972-07-04 Gen Electric Hermetically sealed dynamoelectric machine
US3644662A (en) 1971-01-11 1972-02-22 Gen Electric Stress cascade-graded cable termination
US3660721A (en) 1971-02-01 1972-05-02 Gen Electric Protective equipment for an alternating current power distribution system
GB1395152A (en) 1971-02-01 1975-05-21 Int Research & Dev Co Ltd Altering current dynamo-electric machine windings
DE2111086A1 (en) 1971-03-09 1972-09-14 Siemens Ag Stand sheet metal cutting of electrical machines
GB1340983A (en) 1971-03-10 1973-12-19 Siemens Ag Superconductor cables
US3684906A (en) 1971-03-26 1972-08-15 Gen Electric Castable rotor having radially venting laminations
US3684821A (en) 1971-03-30 1972-08-15 Sumitomo Electric Industries High voltage insulated electric cable having outer semiconductive layer
US3716719A (en) 1971-06-07 1973-02-13 Aerco Corp Modulated output transformers
JPS4831403A (en) 1971-08-27 1973-04-25
US3746954A (en) 1971-09-17 1973-07-17 Sqare D Co Adjustable voltage thyristor-controlled hoist control for a dc motor
US3727085A (en) 1971-09-30 1973-04-10 Gen Dynamics Corp Electric motor with facility for liquid cooling
DE2155371C2 (en) 1971-11-08 1982-06-24 Appt, geb. Kirschmann, Emma, 7000 Stuttgart Device for shaping the winding heads of electrical machines
US3740600A (en) 1971-12-12 1973-06-19 Gen Electric Self-supporting coil brace
US3743867A (en) 1971-12-20 1973-07-03 Massachusetts Inst Technology High voltage oil insulated and cooled armature windings
DE2164078A1 (en) 1971-12-23 1973-06-28 Siemens Ag DRIVE ARRANGEMENT WITH A LINEAR MOTOR DESIGNED IN THE TYPE OF A SYNCHRONOUS MACHINE
BE793731A (en) 1972-01-05 1973-05-02 English Electric Co Ltd ELECTROGENERATORS
SU425268A1 (en) 1972-02-29 1974-04-25 желого электромашиностроени при Лысьвенском турбогенераторном ELECTRIC MACHINE STATOR
US3699238A (en) 1972-02-29 1972-10-17 Anaconda Wire & Cable Co Flexible power cable
FR2175579B1 (en) 1972-03-14 1974-08-02 Thomson Brandt
US3758699A (en) 1972-03-15 1973-09-11 G & W Electric Speciality Co Apparatus and method for dynamically cooling a cable termination
US3716652A (en) 1972-04-18 1973-02-13 G & W Electric Speciality Co System for dynamically cooling a high voltage cable termination
US3748555A (en) 1972-05-01 1973-07-24 Westinghouse Electric Corp Protective circuit for brushless synchronous motors
US3787607A (en) 1972-05-31 1974-01-22 Teleprompter Corp Coaxial cable splice
US3968388A (en) 1972-06-14 1976-07-06 Kraftwerk Union Aktiengesellschaft Electric machines, particularly turbogenerators, having liquid cooled rotors
US3801843A (en) 1972-06-16 1974-04-02 Gen Electric Rotating electrical machine having rotor and stator cooled by means of heat pipes
CH547028A (en) 1972-06-16 1974-03-15 Bbc Brown Boveri & Cie GLIME PROTECTION FILM, THE PROCESS FOR ITS MANUFACTURING AND THEIR USE IN HIGH VOLTAGE WINDINGS.
US3792399A (en) 1972-08-28 1974-02-12 Nasa Banded transformer cores
US3778891A (en) 1972-10-30 1973-12-18 Westinghouse Electric Corp Method of securing dynamoelectric machine coils by slot wedge and filler locking means
US3887860A (en) * 1972-11-15 1975-06-03 Eaton Corp Fuseless inverter
US3932791A (en) 1973-01-22 1976-01-13 Oswald Joseph V Multi-range, high-speed A.C. over-current protection means including a static switch
US3995785A (en) 1973-02-12 1976-12-07 Essex International, Inc. Apparatus and method for forming dynamoelectric machine field windings by pushing
CA1028440A (en) 1973-02-26 1978-03-21 Uop Inc. Polymer compositions with treated filler
FR2222738B1 (en) 1973-03-20 1976-05-21 Unelec
SE371348B (en) 1973-03-22 1974-11-11 Asea Ab
US3781739A (en) 1973-03-28 1973-12-25 Westinghouse Electric Corp Interleaved winding for electrical inductive apparatus
CH549467A (en) 1973-03-29 1974-05-31 Micafil Ag PROCESS FOR MANUFACTURING A COMPRESSED LAYERING MATERIAL.
US3881647A (en) 1973-04-30 1975-05-06 Lebus International Inc Anti-slack line handling device
CH560448A5 (en) 1973-07-06 1975-03-27 Bbc Brown Boveri & Cie
US4084307A (en) 1973-07-11 1978-04-18 Allmanna Svenska Elektriska Aktiebolaget Method of joining two cables with an insulation of cross-linked polyethylene or another cross linked linear polymer
US3828115A (en) 1973-07-27 1974-08-06 Kerite Co High voltage cable having high sic insulation layer between low sic insulation layers and terminal construction thereof
US4039922A (en) * 1973-09-10 1977-08-02 The Garrett Corporation Method of converting phase and frequency using a dynamo-electric machine
DE2351340A1 (en) 1973-10-12 1975-04-24 Siemens Ag TAPE REEL FOR TRANSFORMERS
GB1433158A (en) 1973-11-19 1976-04-22 Pirelli General Cable Works Electric cable installations
US3947278A (en) 1973-12-19 1976-03-30 Universal Oil Products Company Duplex resistor inks
US3912957A (en) 1973-12-27 1975-10-14 Gen Electric Dynamoelectric machine stator assembly with multi-barrel connection insulator
DE2400698A1 (en) 1974-01-08 1975-07-10 Krim Samhalov Izmail Self-excited machine with two separate stator windings - windings star-connected with second capacitively closed for excitation
US4109098A (en) * 1974-01-31 1978-08-22 Telefonaktiebolaget L M Ericsson High voltage cable
SE384420B (en) 1974-01-31 1976-05-03 Ericsson Telefon Ab L M ELECTRICAL CABLE WITH SYNTHETIC INSULATION AND AN OUTER SEMICONDUCTIVE LAYER
CA1016586A (en) 1974-02-18 1977-08-30 Hubert G. Panter Grounding of outer winding insulation to cores in dynamoelectric machines
US4039740A (en) 1974-06-19 1977-08-02 The Furukawa Electric Co., Ltd. Cryogenic power cable
DE2430792C3 (en) 1974-06-24 1980-04-10 Siemens Ag, 1000 Berlin Und 8000 Muenchen Power cable with plastic insulation and outer conductive layer
FR2285693A1 (en) 1974-09-19 1976-04-16 Matsushita Electric Ind Co Ltd ENCAPSULATED ELECTROMAGNETIC COIL WITH SYNTHETIC RESIN
GB1479904A (en) 1974-10-15 1977-07-13 Ass Elect Ind Alternating current power transmission systems
US3902000A (en) 1974-11-12 1975-08-26 Us Energy Termination for superconducting power transmission systems
US3943392A (en) 1974-11-27 1976-03-09 Allis-Chalmers Corporation Combination slot liner and retainer for dynamoelectric machine conductor bars
CH579844A5 (en) * 1974-12-04 1976-09-15 Bbc Brown Boveri & Cie
US3965408A (en) 1974-12-16 1976-06-22 International Business Machines Corporation Controlled ferroresonant transformer regulated power supply
DE2600206C2 (en) 1975-01-06 1986-01-09 The Reluxtrol Co., Seattle, Wash. Device for non-destructive material testing using the eddy current method
US3975646A (en) * 1975-01-13 1976-08-17 Westinghouse Electric Corporation Asynchronous tie
US4091138A (en) 1975-02-12 1978-05-23 Sumitomo Bakelite Company Limited Insulating film, sheet, or plate material with metallic coating and method for manufacturing same
AT338915B (en) 1975-02-18 1977-09-26 Dukshtau Alexandr Antonovich STAND FOR ELECTRIC MACHINERY
JPS51113110A (en) 1975-03-28 1976-10-06 Mitsubishi Electric Corp Drive system for inductor type synchronous motor
US4008409A (en) 1975-04-09 1977-02-15 General Electric Company Dynamoelectric machine core and coil assembly
US3971543A (en) 1975-04-17 1976-07-27 Shanahan William F Tool and kit for electrical fishing
US4132914A (en) 1975-04-22 1979-01-02 Khutoretsky Garri M Six-phase winding of electric machine stator
DE2520511C3 (en) 1975-05-07 1978-11-30 Siemens Ag, 1000 Berlin Und 8000 Muenchen Device for supporting the rotor winding of a salient pole rotor of a four-pole or higher-pole electrical machine
ZA753046B (en) 1975-05-12 1976-09-29 Gec South Africa Pty Transformer cooling
SE7605754L (en) 1975-05-22 1976-11-23 Reynolds Metals Co ELECTRICAL CABLE
US4031310A (en) 1975-06-13 1977-06-21 General Cable Corporation Shrinkable electrical cable core for cryogenic cable
US3993860A (en) 1975-08-18 1976-11-23 Samuel Moore And Company Electrical cable adapted for use on a tractor trailer
US4258280A (en) 1975-11-07 1981-03-24 Bbc Brown Boveri & Company Limited Supporting structure for slow speed large diameter electrical machines
US4085347A (en) 1976-01-16 1978-04-18 White-Westinghouse Corporation Laminated stator core
AT340523B (en) 1976-04-27 1977-12-27 Hitzinger & Co Dipl Ing BRUSHLESS SYNC GENERATOR
HU175494B (en) 1976-04-29 1980-08-28 Magyar Kabel Muevek Shielded power-current cable
US4047138A (en) 1976-05-19 1977-09-06 General Electric Company Power inductor and transformer with low acoustic noise air gap
DE2622309C3 (en) 1976-05-19 1979-05-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Protective device for a brushless synchronous machine
JPS5325886A (en) 1976-08-21 1978-03-10 Sumitomo Electric Ind Ltd Brid ged polyolefine insulating hightension cable having outer semiconductor layers which can be treated off easily
US4064419A (en) 1976-10-08 1977-12-20 Westinghouse Electric Corporation Synchronous motor KVAR regulation system
US4103075A (en) 1976-10-28 1978-07-25 Airco, Inc. Composite monolithic low-loss superconductor for power transmission line
US4041431A (en) 1976-11-22 1977-08-09 Ralph Ogden Input line voltage compensating transformer power regulator
SU625290A1 (en) 1976-11-30 1978-09-25 Специальное Конструкторское Бюро "Энергохиммаш" Electric motor
US4099227A (en) 1976-12-01 1978-07-04 Square D Company Sensor circuit
DE2656389C3 (en) 1976-12-13 1979-11-29 Siemens Ag, 1000 Berlin Und 8000 Muenchen Synchronous linear motor
FR2376542A1 (en) 1976-12-30 1978-07-28 Aroshidze Jury Spring mounted stator core of electrical machine - is attached to stator frame at points of maximum stiffness to form rigid structure
US4200817A (en) 1977-01-20 1980-04-29 Bbc Brown Boveri & Company Limited Δ-Connected, two-layer, three-phase winding for an electrical machine
IT1113513B (en) 1977-03-16 1986-01-20 Pirelli IMPROVEMENT CONCERNING THE CABLES FOR ENERGY
JPS53120117A (en) 1977-03-30 1978-10-20 Hitachi Ltd Excitation control system for generator
US4179729A (en) * 1977-04-15 1979-12-18 The Charles Stark Draper Laboratory, Inc. Rotary electric machine and power conversion system using same
US4149101A (en) 1977-05-12 1979-04-10 Lesokhin Albert Z Arrangement for locking slot wedges retaining electric windings
DE2721905C2 (en) 1977-05-14 1986-02-20 Thyssen Industrie Ag, 4300 Essen Method of manufacturing a three-phase alternating current winding for a linear motor
US4134036A (en) 1977-06-03 1979-01-09 Cooper Industries, Inc. Motor mounting device
US4152615A (en) 1977-06-14 1979-05-01 Westinghouse Electric Corp. End iron axial flux damper system
DE2729067A1 (en) 1977-06-28 1979-01-11 Kabel Metallwerke Ghh MEDIUM OR HIGH VOLTAGE ELECTRIC CABLE
US4177418A (en) 1977-08-04 1979-12-04 International Business Machines Corporation Flux controlled shunt regulated transformer
US4164672A (en) 1977-08-18 1979-08-14 Electric Power Research Institute, Inc. Cooling and insulating system for extra high voltage electrical machine with a spiral winding
US4184186A (en) 1977-09-06 1980-01-15 General Electric Company Current limiting device for an electric power system
US4160193A (en) 1977-11-17 1979-07-03 Richmond Abraham W Metal vapor electric discharge lamp system
PL123224B1 (en) 1977-11-30 1982-09-30 Inst Spawalnictwa Welding transformer of dropping external characteristic
US4134146A (en) * 1978-02-09 1979-01-09 General Electric Company Surge arrester gap assembly
US4177397A (en) 1978-03-17 1979-12-04 Amp Incorporated Electrical connections for windings of motor stators
SU792302A1 (en) 1978-04-04 1980-12-30 Предприятие П/Я В-8833 Transformer
US4228391A (en) * 1978-04-14 1980-10-14 The United States Of America As Represented By The United States Department Of Energy Induction machine
US4164772A (en) 1978-04-17 1979-08-14 Electric Power Research Institute, Inc. AC fault current limiting circuit
DE2824951A1 (en) 1978-06-07 1979-12-20 Kabel Metallwerke Ghh METHOD OF MANUFACTURING A STATOR FOR A LINEAR MOTOR
CH629344A5 (en) 1978-06-08 1982-04-15 Bbc Brown Boveri & Cie DEVICE FOR SUPPORTING THE FIELD DEVELOPMENT OF A POLE WHEEL WITH EXCELLENT POLES.
US4321426A (en) 1978-06-09 1982-03-23 General Electric Company Bonded transposed transformer winding cable strands having improved short circuit withstand
US4208597A (en) 1978-06-22 1980-06-17 Westinghouse Electric Corp. Stator core cooling for dynamoelectric machines
SU694939A1 (en) 1978-06-22 1982-01-07 Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука Generator stator
DE2925934A1 (en) 1978-07-06 1980-01-24 Vilanova Luis Montplet MAGNETIC DEVICE, IN PARTICULAR FOR DETECTING FAULTS OF UNDERGROUND ELECTRIC CABLES
US4200818A (en) 1978-08-01 1980-04-29 Westinghouse Electric Corp. Resin impregnated aromatic polyamide covered glass based slot wedge for large dynamoelectric machines
DE2835386A1 (en) 1978-08-12 1980-02-21 Kabel Metallwerke Ghh Three=phase AC winding for linear motor - is made by preforming cables which are wound on drum, fastened on supports and then placed in slots
DE2836229C2 (en) 1978-08-17 1983-12-15 Siemens AG, 1000 Berlin und 8000 München Stator winding of an electrical machine
CA1095601A (en) 1978-08-28 1981-02-10 Alfred M. Hase Regulating transformer with magnetic shunt
DE2839517C2 (en) 1978-09-11 1986-05-07 Thyssen Industrie Ag, 4300 Essen Process for the production of a prefabricated winding for linear motors
JPS6028226B2 (en) 1978-09-20 1985-07-03 株式会社日立製作所 salient pole rotor
JPS6044764B2 (en) * 1978-11-09 1985-10-05 株式会社フジクラ Cable conductor manufacturing method
US4207482A (en) 1978-11-14 1980-06-10 Westinghouse Electric Corp. Multilayered high voltage grading system for electrical conductors
US4238339A (en) 1978-11-27 1980-12-09 Fridman Vladimir M Arrangement for supporting stator end windings of an electric machine
JPS5579676A (en) 1978-12-13 1980-06-16 Toshiba Corp Harmonic filter for electric power
DE2854520A1 (en) 1978-12-16 1980-06-26 Bbc Brown Boveri & Cie ELECTRIC COIL
CH651975A5 (en) 1979-01-10 1985-10-15 Bbc Brown Boveri & Cie PROTECTIVE DEVICE ON A TURBO GROUP AGAINST SUBSYNCHRONOUS RESONANCES.
US4317001A (en) 1979-02-23 1982-02-23 Pirelli Cable Corp. Irradiation cross-linked polymeric insulated electric cable
US4262209A (en) 1979-02-26 1981-04-14 Berner Charles A Supplemental electrical power generating system
US4281264A (en) 1979-02-26 1981-07-28 General Electric Company Mounting of armature conductors in air-gap armatures
SE416693B (en) 1979-03-08 1981-01-26 Elmekano I Lulea Ab DEVICE FOR PHASE COMPENSATION AND MAGNETIZATION OF AN ASYNCHRONIC MACHINE FOR OPERATING AS GENERATOR
SU873370A1 (en) 1979-03-11 1981-10-15 Предприятие П/Я М-5113 Synchronous machine excitation system
FR2452167A1 (en) 1979-03-20 1980-10-17 Aerospatiale PROCESS FOR THE PRODUCTION OF A MAGNETIC FRAME WITH DIVIDED STRUCTURE AND REINFORCEMENT THUS OBTAINED
GB2045626B (en) 1979-03-22 1983-05-25 Oriental Metal Seizo Co Process and apparatus for the distillation of water
CH641599A5 (en) 1979-03-27 1984-02-29 Streiff Mathias Ag METHOD AND DEVICE FOR LAYING AND FASTENING HEAVY ELECTRIC CABLES IN A CABLE CHANNEL.
US4363612A (en) 1979-03-29 1982-12-14 Ulrich Walchhutter Flywheel and screw press for producing ceramic articles
DE2913697C2 (en) 1979-04-05 1986-05-22 kabelmetal electro GmbH, 3000 Hannover Prefabricated winding for a linear motor
DE2917717A1 (en) 1979-05-02 1980-11-27 Kraftwerk Union Ag Turbogenerator stator cooling segments - have parallel channels extending from to distributor to zone of stator teeth
DE2920477A1 (en) 1979-05-21 1980-12-04 Kabel Metallwerke Ghh Prefabricated three-phase alternating current winding for a linear motor
DE2920478C2 (en) 1979-05-21 1986-06-26 kabelmetal electro GmbH, 3000 Hannover Prefabricated three-phase alternating current winding for a linear motor
DE2921114A1 (en) 1979-05-25 1980-12-04 Bosch Gmbh Robert WINDING PROCESS FOR AN ELECTRIC GENERATOR AND THREE-PHASE GENERATOR PRODUCED AFTER THIS
US4357542A (en) 1979-07-12 1982-11-02 Westinghouse Electric Corp. Wind turbine generator system
US4255684A (en) 1979-08-03 1981-03-10 Mischler William R Laminated motor stator structure with molded composite pole pieces
US4292558A (en) 1979-08-15 1981-09-29 Westinghouse Electric Corp. Support structure for dynamoelectric machine stators spiral pancake winding
US4355255A (en) * 1979-08-28 1982-10-19 The Singer Company Brushless direct current motor and control therefor
DE2939004A1 (en) 1979-09-26 1981-04-09 Siemens AG, 1000 Berlin und 8000 München Synchronous linear motor for rail vehicle drive - has field winding divided into switched sections with inter-looped current lines
US4320645A (en) 1979-10-11 1982-03-23 Card-O-Matic Pty. Limited Apparatus for fabricating electrical equipment
FR2467502A1 (en) 1979-10-11 1981-04-17 Ducellier & Cie Electric starter motor rotor winding for vehicle - has minimal depth slots with offset conductors to minimise flux distortion
JPS5675411U (en) 1979-11-15 1981-06-19
DE3002945A1 (en) 1980-01-29 1981-07-30 Anton Piller Kg, 3360 Osterode TRANSFORMER SYSTEM
EP0033847B1 (en) 1980-02-11 1985-05-02 Siemens Aktiengesellschaft Turbine set with a generator providing a constant-frequency mains supply
DE3006382C2 (en) 1980-02-21 1985-10-31 Thyssen Industrie Ag, 4300 Essen Three-phase alternating current winding for a linear motor
DE3008212C2 (en) 1980-03-04 1985-06-27 Robert Bosch Gmbh, 7000 Stuttgart Process for the production of stator windings for three-phase alternators
DE3008818A1 (en) 1980-03-05 1981-09-10 Siemens AG, 1000 Berlin und 8000 München Jointing sleeve for HT cables - with plastic cylinder over metal tube and insulating tape wraps
US4411710A (en) 1980-04-03 1983-10-25 The Fujikawa Cable Works, Limited Method for manufacturing a stranded conductor constituted of insulated strands
FR2481531A1 (en) 1980-04-23 1981-10-30 Cables De Lyon Geoffroy Delore SPLICING METHOD AND SPLICE FOR COAXIAL CABLE WITH MASSIVE INSULATION
DE3016990A1 (en) 1980-05-02 1981-11-12 Kraftwerk Union AG, 4330 Mülheim DEVICE FOR FIXING WINDING RODS IN SLOTS OF ELECTRICAL MACHINES, IN PARTICULAR TURBOGENERATORS
CA1140198A (en) 1980-05-23 1983-01-25 National Research Council Of Canada Laser triggered high voltage rail gap switch
US4594630A (en) 1980-06-02 1986-06-10 Electric Power Research Institute, Inc. Emission controlled current limiter for use in electric power transmission and distribution
DE3031866A1 (en) 1980-08-23 1982-04-01 Brown, Boveri & Cie Ag, 6800 Mannheim LADDER BAR FOR ELECTRICAL MACHINE
US4384944A (en) 1980-09-18 1983-05-24 Pirelli Cable Corporation Carbon filled irradiation cross-linked polymeric insulation for electric cable
US4330726A (en) * 1980-12-04 1982-05-18 General Electric Company Air-gap winding stator construction for dynamoelectric machine
US4477690A (en) 1980-12-18 1984-10-16 Nikitin Pavel Z Coupling unit of two multilayer cables of high-voltage generator stator winding
US4365506A (en) * 1980-12-22 1982-12-28 Trw Inc. Remotely operated downhole test disconnect switching apparatus
US4404486A (en) 1980-12-24 1983-09-13 General Electric Company Star connected air gap polyphase armature having limited voltage gradients at phase boundaries
US4361723A (en) 1981-03-16 1982-11-30 Harvey Hubbell Incorporated Insulated high voltage cables
SU955369A1 (en) * 1981-03-26 1982-08-30 Научно-Исследовательский Сектор Всесоюзного Ордена Ленина Проектно-Изыскательского И Научно-Исследовательского Института "Гидропроект" Им.С.Я.Жука Electric machine stator
US4368418A (en) * 1981-04-21 1983-01-11 Power Technologies, Inc. Apparatus for controlling high voltage by absorption of capacitive vars
US4401920A (en) 1981-05-11 1983-08-30 Canadian Patents & Development Limited Laser triggered high voltage rail gap switch
GB2099635B (en) 1981-05-29 1985-07-03 Harmer & Simmons Ltd Ransformers for battery charging systems
US4367425A (en) 1981-06-01 1983-01-04 Westinghouse Electric Corp. Impregnated high voltage spacers for use with resin filled hose bracing systems
US4365178A (en) 1981-06-08 1982-12-21 General Electric Co. Laminated rotor for a dynamoelectric machine with coolant passageways therein
SE426895B (en) 1981-07-06 1983-02-14 Asea Ab PROTECTOR FOR A SERIES CONDENSOR IN A HIGH VOLTAGE NETWORK
US4449768A (en) 1981-07-23 1984-05-22 Preformed Line Products Company Shield connector
AU557924B2 (en) 1981-07-28 1987-01-15 Pirelli General Plc Heat shielding electric cables
DE3129928A1 (en) * 1981-07-29 1983-02-24 Anton Piller GmbH & Co KG, 3360 Osterode ROTATING TRANSFORMER
US4470884A (en) 1981-08-07 1984-09-11 National Ano-Wire, Inc. High speed aluminum wire anodizing machine and process
US4368399A (en) 1981-08-17 1983-01-11 Westinghouse Electric Corp. Rotor end turn winding and support structure
CA1164851A (en) 1981-08-17 1984-04-03 Ali Pan Reeling of cable
US4387316A (en) 1981-09-30 1983-06-07 General Electric Company Dynamoelectric machine stator wedges and method
US4475075A (en) 1981-10-14 1984-10-02 Munn Robert B Electric power generator and system
US4520287A (en) 1981-10-27 1985-05-28 Emerson Electric Co. Stator for a multiple-pole dynamoelectric machine and method of fabricating same
FI76633C (en) 1981-10-27 1988-11-10 Raychem Sa Nv Tube protection sleeve and method for protecting a tube with this sleeve
US4426771A (en) 1981-10-27 1984-01-24 Emerson Electric Co. Method of fabricating a stator for a multiple-pole dynamoelectric machine
US4431960A (en) 1981-11-06 1984-02-14 Fdx Patents Holding Company, N.V. Current amplifying apparatus
US4437464A (en) 1981-11-09 1984-03-20 C.R. Bard, Inc. Electrosurgical generator safety apparatus
US4469267A (en) 1982-01-15 1984-09-04 Western Gear Corporation Draw-off and hold-back cable tension machine
SU1019553A1 (en) 1982-02-23 1983-05-23 Харьковский Ордена Ленина Авиационный Институт Им.Н.Е.Жуковского Electric machine stator
CA1222788A (en) 1982-05-14 1987-06-09 Roderick S. Taylor Uv radiation triggered rail-gap switch
US4425521A (en) 1982-06-03 1984-01-10 General Electric Company Magnetic slot wedge with low average permeability and high mechanical strength
US4546210A (en) 1982-06-07 1985-10-08 Hitachi, Ltd. Litz wire
US4443725A (en) 1982-06-14 1984-04-17 General Electric Company Dynamoelectric machine stator wedge
JPS5928852A (en) 1982-08-06 1984-02-15 Hitachi Ltd Salient-pole type rotary electric machine
DE3229480A1 (en) 1982-08-06 1984-02-09 Transformatoren Union Ag, 7000 Stuttgart DRY TRANSFORMER WITH WINDINGS POOLED IN CAST RESIN
US4481438A (en) 1982-09-13 1984-11-06 Electric Power Research Institute, Inc. High voltage electrical generator and windings for use therein
JPS5956825A (en) 1982-09-21 1984-04-02 三菱電機株式会社 Ac current limiting device
US4473765A (en) 1982-09-30 1984-09-25 General Electric Company Electrostatic grading layer for the surface of an electrical insulation exposed to high electrical stress
US4508251A (en) 1982-10-26 1985-04-02 Nippon Telegraph And Telephone Public Corp. Cable pulling/feeding apparatus
JPS5986110A (en) 1982-11-09 1984-05-18 住友電気工業株式会社 Crosslinked polyethylene insulated cable
GB2140195B (en) 1982-12-03 1986-04-30 Electric Power Res Inst Cryogenic cable and method of making same
JPS59129558A (en) * 1983-01-14 1984-07-25 Hitachi Ltd Variable speed rotary electric machine
CH659910A5 (en) 1983-01-27 1987-02-27 Bbc Brown Boveri & Cie AIR THROTTLE COIL AND METHOD FOR THEIR PRODUCTION.
DE3305225A1 (en) 1983-02-16 1984-08-16 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau High-voltage DC-transmission power station in a block circuit
GB2136214B (en) 1983-03-11 1986-05-29 British Aerospace Pulse transformer
DE3309051C2 (en) 1983-03-14 1986-10-02 Thyssen Industrie Ag, 4300 Essen Three-phase alternating current winding for a linear motor
EP0120154A1 (en) 1983-03-25 1984-10-03 TRENCH ELECTRIC, a Division of Guthrie Canadian Investments Limited Continuously transposed conductor
US4619040A (en) 1983-05-23 1986-10-28 Emerson Electric Co. Method of fabricating stator for a multiple pole dynamoelectric machine
US4510476A (en) 1983-06-21 1985-04-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High voltage isolation transformer
DE3323696A1 (en) 1983-07-01 1985-01-10 Thyssen Industrie Ag, 4300 Essen METHOD AND DEVICE FOR LAYING A PRE-MANUFACTURED WINDING OF A LINEAR MOTOR
US4590416A (en) 1983-08-08 1986-05-20 Rig Efficiency, Inc. Closed loop power factor control for power supply systems
US4565929A (en) 1983-09-29 1986-01-21 The Boeing Company Wind powered system for generating electricity
US4510077A (en) 1983-11-03 1985-04-09 General Electric Company Semiconductive glass fibers and method
US4503284A (en) 1983-11-09 1985-03-05 Essex Group, Inc. RF Suppressing magnet wire
IT1195482B (en) 1983-11-18 1988-10-19 Meccanica Di Precisione Spa PROGRAMMABLE ROBOT ABLE TO MANAGE THE FEEDING AND UNLOADING OF EMPTY SPOOLS AND FULL SPOOLS INTO AND FROM MACHINES USED FOR WINDING METAL WIRES EOD OTHER MATERIAL AT TWENTY OPERATING CHARACTERISTICS U GUALES OR DIFFERENT THAN ONE LONG THE SAME ROBOT YOU ARE LOOKING AT
US4724345A (en) 1983-11-25 1988-02-09 General Electric Company Electrodepositing mica on coil connections
US4622116A (en) 1983-11-25 1986-11-11 General Electric Company Process for electrodepositing mica on coil or bar connections and resulting products
US4723083A (en) 1983-11-25 1988-02-02 General Electric Company Electrodeposited mica on coil bar connections and resulting products
GB2150153B (en) 1983-11-25 1986-09-10 Gen Electric Electrodeposition of mica on coil or bar connections
FR2556146B1 (en) * 1983-12-05 1988-01-15 Paris & Du Rhone DEVICE FOR MOUNTING AND INSULATING CONDUCTORS ON ROTORS OF ELECTRIC ROTATING MACHINES
SE452823B (en) 1984-03-07 1987-12-14 Asea Ab Series capacitor EQUIPMENT
DE3444189A1 (en) 1984-03-21 1985-09-26 Kraftwerk Union AG, 4330 Mülheim DEVICE FOR INDIRECT GAS COOLING OF THE STATE DEVELOPMENT AND / OR FOR DIRECT GAS COOLING OF THE STATE SHEET PACKAGE OF DYNAMOELECTRICAL MACHINES, PREFERRED FOR GAS COOLED TURBOGENERATORS
US4488079A (en) 1984-03-30 1984-12-11 Westinghouse Electric Corp. Dynamoelectric machine with stator coil end turn support system
US4650924A (en) 1984-07-24 1987-03-17 Phelps Dodge Industries, Inc. Ribbon cable, method and apparatus, and electromagnetic device
US4853565A (en) * 1984-08-23 1989-08-01 General Electric Company Semi-conducting layer for insulated electrical conductors
US5066881A (en) 1984-08-23 1991-11-19 General Electric Company Semi-conducting layer for insulated electrical conductors
US5067046A (en) 1984-08-23 1991-11-19 General Electric Company Electric charge bleed-off structure using pyrolyzed glass fiber
AU575681B2 (en) 1984-09-13 1988-08-04 Utdc Inc. Linear induction motor
US4560896A (en) 1984-10-01 1985-12-24 General Electric Company Composite slot insulation for dynamoelectric machine
DE3438747A1 (en) 1984-10-23 1986-04-24 Standard Elektrik Lorenz Ag, 7000 Stuttgart ELECTRONICALLY COMMUTED, COLLECTORLESS DC MOTOR
JPH0123900Y2 (en) 1984-11-08 1989-07-20
DE3441311A1 (en) 1984-11-12 1986-05-15 Siemens AG, 1000 Berlin und 8000 München SPLICE PROTECTOR INSERT FOR CABLE SLEEVES MADE OF SHRINKABLE MATERIAL
JPS61121729A (en) 1984-11-14 1986-06-09 Fanuc Ltd Liquid cooled motor
US4607183A (en) 1984-11-14 1986-08-19 General Electric Company Dynamoelectric machine slot wedges with abrasion resistant layer
EP0246377A1 (en) 1986-05-23 1987-11-25 Royal Melbourne Institute Of Technology Limited Electrically-variable inductor
EP0185788B1 (en) 1984-12-21 1988-08-24 Audi Ag Wire-feeding device for an insulated wire cutting and stripping apparatus
US4761602A (en) 1985-01-22 1988-08-02 Gregory Leibovich Compound short-circuit induction machine and method of its control
US4588916A (en) 1985-01-28 1986-05-13 General Motors Corporation End turn insulation for a dynamoelectric machine
US4868970A (en) 1985-03-08 1989-09-26 Kolimorgen Corporation Method of making an electric motor
EP0198535B1 (en) * 1985-04-04 1990-02-07 Koninklijke Philips Electronics N.V. Composite wire for hf applications, coil wound from such a wire, and deflection unit comprising such a coil
US4618795A (en) 1985-04-10 1986-10-21 Westinghouse Electric Corp. Turbine generator stator end winding support assembly with decoupling from the core
US4701691A (en) * 1985-05-14 1987-10-20 Nickoladze Leo G Synchronous generators
US4654551A (en) * 1985-05-20 1987-03-31 Tecumseh Products Company Permanent magnet excited alternator compressor with brushless DC control
US4723104A (en) 1985-10-02 1988-02-02 Frederick Rohatyn Energy saving system for larger three phase induction motors
FR2589017B1 (en) 1985-10-17 1990-07-27 Alsthom SYNCHRONOUS MACHINE WITH SUPERCONDUCTING WINDINGS
DE3543106A1 (en) 1985-12-06 1987-06-11 Kabelmetal Electro Gmbh ELECTRIC CABLE FOR USE AS WINDING STRING FOR LINEAR MOTORS
US4656379A (en) 1985-12-18 1987-04-07 The Garrett Corporation Hybrid excited generator with flux control of consequent-pole rotor
FR2594271A1 (en) 1986-02-13 1987-08-14 Paris & Du Rhone Rotor for electric rotating machine, with slots housing two overlying conductors
IT1190077B (en) 1986-02-28 1988-02-10 Pirelli Cavi Spa ELECTRIC CABLE WITH IMPROVED SCREEN AND PROCEDURE FOR THE CONSTRUCTION OF THIS SCREEN
US5244624B1 (en) 1986-03-31 1997-11-18 Nu Pipe Inc Method of installing a new pipe inside an existing conduit by progressive rounding
US5403120A (en) 1986-03-31 1995-04-04 Nupipe, Inc. Method of installing a substantially rigid thermoplastic pipe in existing main and lateral conduits
DE3612112A1 (en) 1986-04-10 1987-10-15 Siemens Ag Bracing for the teeth of the stator of a turbogenerator
US4687882A (en) 1986-04-28 1987-08-18 Stone Gregory C Surge attenuating cable
US4963695A (en) 1986-05-16 1990-10-16 Pirelli Cable Corporation Power cable with metallic shielding tape and water swellable powder
GB8617004D0 (en) 1986-07-11 1986-08-20 Bp Chem Int Ltd Polymer composition
JPS63110939A (en) 1986-10-25 1988-05-16 Hitachi Ltd Rotor of induction motor
JPH0687642B2 (en) 1986-12-15 1994-11-02 株式会社日立製作所 Rotor winding abnormality diagnosis device for rotating electric machine
US4924342A (en) 1987-01-27 1990-05-08 Teledyne Inet Low voltage transient current limiting circuit
EP0280759B1 (en) 1987-03-06 1993-10-13 Heinrich Dr. Groh Arrangement for electric energy cables for protection against explosions of gas and/or dust/air mixtures, especially for underground working
JPH07108074B2 (en) 1987-03-10 1995-11-15 株式会社三ツ葉電機製作所 Slot structure of rotor core in rotating electric machine
CA1258881A (en) 1987-04-15 1989-08-29 Leonard Bolduc Self-regulated transformer with gaps
US4771168A (en) 1987-05-04 1988-09-13 The University Of Southern California Light initiated high power electronic switch
SU1511810A1 (en) 1987-05-26 1989-09-30 Ленинградское Электромашиностроительное Объединение "Электросила" Им.С.М.Кирова Method of repairing laminated stator core of high-power electric machine
US4890040A (en) 1987-06-01 1989-12-26 Gundersen Martin A Optically triggered back-lighted thyratron network
US5012125A (en) 1987-06-03 1991-04-30 Norand Corporation Shielded electrical wire construction, and transformer utilizing the same for reduction of capacitive coupling
SE457792B (en) 1987-06-12 1989-01-30 Kabmatik Ab CABLE EXCHANGE DEVICE FOR APPLICATION FROM EXCHANGE FROM A FIRST ROTARY DRUM TO ANOTHER ROTARY DRUM
US4845308A (en) 1987-07-20 1989-07-04 The Babcock & Wilcox Company Superconducting electrical conductor
DE3726346A1 (en) 1987-08-07 1989-02-16 Vacuumschmelze Gmbh Annular core (ring core) for current sensors
US4800314A (en) 1987-08-24 1989-01-24 Westinghouse Electric Corp. Deep beam support arrangement for dynamoelectric machine stator coil end portions
JPH0633789B2 (en) * 1987-10-09 1994-05-02 株式会社日立製作所 Multistage pump
US4801832A (en) 1987-11-04 1989-01-31 General Electric Company Stator and rotor lamination construction for a dynamo-electric machine
DE3737719A1 (en) 1987-11-06 1989-05-24 Thyssen Industrie METHOD AND DEVICE FOR INSERTING A WINDING IN THE INDUCTOR OF A LINEAR MOTOR
US4810919A (en) 1987-11-16 1989-03-07 Westinghouse Electric Corp. Low-torque nuts for stator core through-bolts
CA1318948C (en) 1987-11-18 1993-06-08 Takayuki Nimiya Cable closure
US4859989A (en) 1987-12-01 1989-08-22 W. L. Gore & Associates, Inc. Security system and signal carrying member thereof
US4994952A (en) 1988-02-10 1991-02-19 Electronics Research Group, Inc. Low-noise switching power supply having variable reluctance transformer
NL8800832A (en) 1988-03-31 1989-10-16 Lovink Terborg Bv METHOD FOR PROTECTING PROTECTION AGAINST MOISTURE-ENCLOSED ELEMENTS AND FILLING MASS USED IN THAT METHOD
US4914386A (en) 1988-04-28 1990-04-03 Abb Power Distribution Inc. Method and apparatus for providing thermal protection for large motors based on accurate calculations of slip dependent rotor resistance
US4864266A (en) 1988-04-29 1989-09-05 Electric Power Research Institute, Inc. High-voltage winding for core-form power transformers
DE3816652A1 (en) 1988-05-16 1989-11-30 Magnet Motor Gmbh ELECTRIC MACHINE WITH LIQUID COOLING
JPH0721078Y2 (en) 1988-07-21 1995-05-15 多摩川精機株式会社 Electric motor
CH677549A5 (en) 1988-08-02 1991-05-31 Asea Brown Boveri
US4847747A (en) 1988-09-26 1989-07-11 Westinghouse Electric Corp. Commutation circuit for load-commutated inverter induction motor drives
US5083360A (en) 1988-09-28 1992-01-28 Abb Power T&D Company, Inc. Method of making a repairable amorphous metal transformer joint
GB2223877B (en) 1988-10-17 1993-05-19 Pirelli General Plc Extra-high-voltage power cable
US4926079A (en) 1988-10-17 1990-05-15 Ryobi Motor Products Corp. Motor field winding with intermediate tap
US5168662A (en) 1988-12-28 1992-12-08 Fanuc Ltd. Process of structuring stator of built-in motor
JPH02179246A (en) 1988-12-28 1990-07-12 Fanuc Ltd Stator construction of built-in motor
US4982147A (en) * 1989-01-30 1991-01-01 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Power factor motor control system
KR910700533A (en) 1989-02-14 1991-03-15 나까하라 쯔네오 Insulated wire
US5136459A (en) 1989-03-13 1992-08-04 Electric Power Research Institute, Inc. High speed current limiting system responsive to symmetrical & asymmetrical currents
US4942326A (en) 1989-04-19 1990-07-17 Westinghouse Electric Corp. Biased securement system for end winding conductor
US5124607A (en) 1989-05-19 1992-06-23 General Electric Company Dynamoelectric machines including metal filled glass cloth slot closure wedges, and methods of making the same
JPH0351968A (en) 1989-07-19 1991-03-06 Toshiba Corp Linearization decision system
US4949001A (en) 1989-07-21 1990-08-14 Campbell Steven R Partial discharge detection method and apparatus
DE3925337A1 (en) 1989-07-31 1991-02-07 Loher Ag Electric motor with housing accommodating stator surrounding rotor - has cooling ducts running axially so gaseous cooling medium under high pressure is fed in closed cooling circuit
US5355046A (en) 1989-12-15 1994-10-11 Klaus Weigelt Stator end-winding system and a retrofitting set for same
SE465240B (en) 1989-12-22 1991-08-12 Asea Brown Boveri OVERVOLTAGE PROTECTION FOR SERIAL CONDENSER EQUIPMENT
US5097241A (en) 1989-12-29 1992-03-17 Sundstrand Corporation Cooling apparatus for windings
YU48139B (en) 1990-01-25 1997-05-28 Branimir Jakovljević LAMINATED MAGNETIC core
EP0440865A1 (en) 1990-02-09 1991-08-14 Asea Brown Boveri Ab Electrical insulation
US5030813A (en) 1990-02-06 1991-07-09 Pulsair Anstalt Corporation Welding apparatus and transformer therefor
CA2010670C (en) 1990-02-22 1997-04-01 James H. Dymond Salient pole rotor for a dynamoelectric machine
TW215446B (en) 1990-02-23 1993-11-01 Furukawa Electric Co Ltd
US5171941A (en) 1990-03-30 1992-12-15 The Furukawa Electric Co., Ltd. Superconducting strand for alternating current
JP2814687B2 (en) 1990-04-24 1998-10-27 日立電線株式会社 Watertight rubber / plastic insulated cable
DE4022476A1 (en) * 1990-07-14 1992-01-16 Thyssen Industrie Electric cable for three=phase AC winding of linear motor - covers one phase by inner conducting layer surrounded by insulation and outer conducting layer
DE4023903C1 (en) 1990-07-27 1991-11-07 Micafil Ag, Zuerich, Ch Planar insulator for electrical machine or appts. - is laminated construction withstanding high mechanical loading and with curved edges for fitting into grooves
NL9002005A (en) 1990-09-12 1992-04-01 Philips Nv TRANSFORMER.
DE4030236C2 (en) 1990-09-25 1999-01-07 Thyssen Industrie Device for removing the winding of a linear motor
US5111095A (en) 1990-11-28 1992-05-05 Magna Physics Corporation Polyphase switched reluctance motor
US5175396A (en) 1990-12-14 1992-12-29 Westinghouse Electric Corp. Low-electric stress insulating wall for high voltage coils having roebeled strands
DE4100135C1 (en) 1991-01-04 1992-05-14 Loher Ag, 8399 Ruhstorf, De
US5187428A (en) 1991-02-26 1993-02-16 Miller Electric Mfg. Co. Shunt coil controlled transformer
ES2025518A6 (en) * 1991-03-08 1992-03-16 Huarte Frances Domingo Rotary electromechanical arrangements.
US5153460A (en) 1991-03-25 1992-10-06 The United States Of America As Represented By The Secretary Of The Army Triggering technique for multi-electrode spark gap switch
DE4112161C2 (en) 1991-04-13 1994-11-24 Fraunhofer Ges Forschung Gas discharge device
FR2677802B1 (en) 1991-06-14 1994-09-09 Alsthom Gec ELECTRIC WINDING AND ITS WINDING METHOD.
US5246783A (en) 1991-08-15 1993-09-21 Exxon Chemical Patents Inc. Electrical devices comprising polymeric insulating or semiconducting members
SE469361B (en) 1991-11-04 1993-06-21 Asea Brown Boveri PROCEDURE AND DEVICE FOR REDUCTION OF DIFFICULTIES IN THE POWER
US5499178A (en) 1991-12-16 1996-03-12 Regents Of The University Of Minnesota System for reducing harmonics by harmonic current injection
US5264778A (en) 1991-12-31 1993-11-23 Westinghouse Electric Corp. Apparatus protecting a synchronous machine from under excitation
CA2086897A1 (en) 1992-01-13 1993-07-14 Howard H. Bobry Toroidal transformer and method for making
US5343139A (en) 1992-01-31 1994-08-30 Westinghouse Electric Corporation Generalized fast, power flow controller
US5235488A (en) 1992-02-05 1993-08-10 Brett Products, Inc. Wire wound core
US5327637A (en) 1992-02-07 1994-07-12 Kabelmetal Electro Gmbh Process for repairing the winding of an electrical linear drive
JP3135338B2 (en) 1992-02-21 2001-02-13 株式会社日立製作所 Commutation type DC circuit breaker
US5598137A (en) 1992-03-05 1997-01-28 Siemens Aktiengesellschaft Coil for high-voltage transformer
JP3245748B2 (en) 1992-03-09 2002-01-15 久光製薬株式会社 P-menthane derivative and cooling sensate containing the same
JPH05328681A (en) 1992-05-18 1993-12-10 Mitsuba Electric Mfg Co Ltd Coating material for armature core in motor of electrical equipment
DE4218969A1 (en) 1992-06-10 1993-12-16 Asea Brown Boveri Process for fixing winding heads of electrical machines and means for carrying out the process
FR2692693A1 (en) * 1992-06-23 1993-12-24 Smh Management Services Ag Control device of an asynchronous motor
GB2268337B (en) 1992-07-01 1996-06-05 Gec Alsthom Ltd Electrical machine slot wedging system
US5304883A (en) 1992-09-03 1994-04-19 Alliedsignal Inc Ring wound stator having variable cross section conductors
DE4233558C2 (en) 1992-09-30 1995-07-20 Siemens Ag Electrical machine
EP0596791B1 (en) 1992-11-05 1997-03-12 Gec Alsthom T Et D Sa Superconducting winding, in particular for current limiter and current limiter with such a winding
US5325008A (en) 1992-12-09 1994-06-28 General Electric Company Constrained ripple spring assembly with debondable adhesive and methods of installation
GB9226925D0 (en) 1992-12-24 1993-02-17 Anglia Electronic Tech Ltd Transformer winding
US5449861A (en) 1993-02-24 1995-09-12 Vazaki Corporation Wire for press-connecting terminal and method of producing the conductive wire
EP0620570B1 (en) 1993-03-26 1997-02-12 Ngk Insulators, Ltd. Superconducting fault current limiter
EP0620630A1 (en) 1993-03-26 1994-10-19 Ngk Insulators, Ltd. Superconducting fault current limiter
US5399941A (en) 1993-05-03 1995-03-21 The United States Of America As Represented By The Secretary Of The Navy Optical pseudospark switch
US5341281A (en) 1993-05-14 1994-08-23 Allen-Bradley Company, Inc. Harmonic compensator using low leakage reactance transformer
US5365132A (en) 1993-05-27 1994-11-15 General Electric Company Lamination for a dynamoelectric machine with improved cooling capacity
JP3355700B2 (en) 1993-06-14 2002-12-09 松下電器産業株式会社 Rotating electric machine stator
FR2707448B1 (en) 1993-07-06 1995-09-15 Cableco Sa Power generator for an arc lamp.
US5321308A (en) 1993-07-14 1994-06-14 Tri-Sen Systems Inc. Control method and apparatus for a turbine generator
US5545853A (en) 1993-07-19 1996-08-13 Champlain Cable Corporation Surge-protected cable
FR2708157B1 (en) 1993-07-22 1995-09-08 Valeo Equip Electr Moteur Element of a rotating machine and motor vehicle starter comprising such an element.
DE4329382A1 (en) 1993-09-01 1995-03-02 Abb Management Ag Method and device for detecting earth faults on the conductors of an electrical machine
GB2283133B (en) 1993-10-20 1998-04-15 Gen Electric Dynamoelectric machine and method for manufacturing same
SE502417C2 (en) 1993-12-29 1995-10-16 Skaltek Ab Control device for unrolling or unrolling a string, eg a cable on or from a drum
DE4402184C2 (en) 1994-01-26 1995-11-23 Friedrich Prof Dr Ing Klinger Multi-pole synchronous generator for gearless horizontal-axis wind turbines with nominal powers of up to several megawatts
JP3468817B2 (en) 1994-02-25 2003-11-17 株式会社東芝 Field ground fault detector
DE4409794C1 (en) 1994-03-22 1995-08-24 Vem Elektroantriebe Gmbh Fastening for equalising connection lines of high-power DC machines
US5530307A (en) 1994-03-28 1996-06-25 Emerson Electric Co. Flux controlled permanent magnet dynamo-electric machine
DE4412412C2 (en) 1994-04-11 1996-03-28 Siemens Ag Locomotive transformer and winding arrangement for this
DE4412761C2 (en) 1994-04-13 1997-04-10 Siemens Ag Conductor feedthrough for an AC device with superconductivity
JP3623269B2 (en) 1994-04-15 2005-02-23 コールモージェン・コーポレーション Axial air gap motor
US5500632A (en) 1994-05-11 1996-03-19 Halser, Iii; Joseph G. Wide band audio transformer with multifilar winding
GB2289992B (en) 1994-05-24 1998-05-20 Gec Alsthom Ltd Improvements in or relating to cooling arrangements in rotating electrical machines
FI942447A0 (en) 1994-05-26 1994-05-26 Abb Stroemberg Kojeet Oy Foerfarande Foer eliminering av stoerningar i ett elkraftoeverfoeringsnaet samt koppling i ett elkraftoeverfoeringsnaet
BR9407326A (en) * 1994-06-08 1996-06-18 Precise Power Corp Versatile electrodynamic machine and UPS system capable of receiving AC from an AC source
DE4420322C2 (en) 1994-06-13 1997-02-27 Dresden Ev Inst Festkoerper YBa¶2¶Cu¶3¶O¶X¶ high-temperature superconductor and method for its production
IT1266896B1 (en) 1994-07-27 1997-01-21 Magneti Marelli Spa ROTOR OF AN ELECTRIC MACHINE, IN PARTICULAR OF AN ELECTRIC MOTOR FOR STARTING THE INTERNAL COMBUSTION ENGINE OF A MOTOR VEHICLE AND
US5550410A (en) * 1994-08-02 1996-08-27 Titus; Charles H. Gas turbine electrical power generation scheme utilizing remotely located fuel sites
US5612510A (en) 1994-10-11 1997-03-18 Champlain Cable Corporation High-voltage automobile and appliance cable
DE4438186A1 (en) 1994-10-26 1996-05-02 Abb Management Ag Operation of sync electrical machine mechanically coupled to gas-turbine
US5533658A (en) 1994-11-10 1996-07-09 Production Tube, Inc. Apparatus having replaceable shoes for positioning and gripping tubing
US5510942A (en) 1994-12-19 1996-04-23 General Electric Company Series-capacitor compensation equipment
CA2167479C (en) 1995-01-17 2006-04-11 Andrew J. O'neill Forced encapsulation cable splice enclosure including a container for existing encapsulant
EP0729217B1 (en) 1995-02-21 2000-01-12 Siemens Aktiengesellschaft Hybride excited synchronous machine
GB9507391D0 (en) 1995-04-10 1995-05-31 Switched Reluctance Drives Ltd Method and apparatus for reducing winding failures in switched reluctance machines
US5742515A (en) * 1995-04-21 1998-04-21 General Electric Co. Asynchronous conversion method and apparatus for use with variable speed turbine hydroelectric generation
CA2170686A1 (en) * 1995-04-21 1996-10-22 Mark A. Runkle Interconnection system for electrical systems having differing electrical characteristic
DE19515003C2 (en) 1995-04-24 1997-04-17 Asea Brown Boveri Superconducting coil
US5663605A (en) * 1995-05-03 1997-09-02 Ford Motor Company Rotating electrical machine with electromagnetic and permanent magnet excitation
JPH08340661A (en) 1995-06-13 1996-12-24 Matsushita Electric Ind Co Ltd Recycling method of resin-molded rotating electric machine and molding resin
US5691589A (en) 1995-06-30 1997-11-25 Kaman Electromagnetics Corporation Detachable magnet carrier for permanent magnet motor
US5607320A (en) 1995-09-28 1997-03-04 Osram Sylvania Inc. Cable clamp apparatus
GB2308490A (en) 1995-12-18 1997-06-25 Oxford Instr Ltd Superconductor and energy storage device
DE19547229A1 (en) 1995-12-18 1997-06-19 Asea Brown Boveri Packing strips for large rotary electrical machine stator winding
IT1281651B1 (en) 1995-12-21 1998-02-20 Pirelli Cavi S P A Ora Pirelli TERMINAL FOR CONNECTING A SUPERCONDUCTIVE POLYPHASE CABLE TO A ROOM TEMPERATURE ELECTRICAL SYSTEM
NO302850B1 (en) * 1995-12-22 1998-04-27 Elvelund As Electric motor
FR2745117B1 (en) 1996-02-21 2000-10-13 Whitaker Corp FLEXIBLE AND FLEXIBLE CABLE WITH SPACED PROPELLERS
ATE211578T1 (en) 1996-03-20 2002-01-15 Nkt Cables As HIGH VOLTAGE CABLE
US5654602A (en) * 1996-05-13 1997-08-05 Willyoung; David M. Generator winding
DE19620906C2 (en) 1996-05-24 2000-02-10 Siemens Ag Wind farm
SE9602079D0 (en) * 1996-05-29 1996-05-29 Asea Brown Boveri Rotating electric machines with magnetic circuit for high voltage and a method for manufacturing the same
US5807447A (en) 1996-10-16 1998-09-15 Hendrix Wire & Cable, Inc. Neutral conductor grounding system
DE19747968A1 (en) 1997-10-30 1999-05-06 Abb Patent Gmbh Process for repairing laminated cores of an electrical machine
GB2332557A (en) 1997-11-28 1999-06-23 Asea Brown Boveri Electrical power conducting means
US6456021B1 (en) * 2000-06-30 2002-09-24 General Electric Company Rotating variable frequency transformer with high voltage cables

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091139A (en) * 1975-09-17 1978-05-23 Westinghouse Electric Corp. Semiconductor binding tape and an electrical member wrapped therewith
US4338537A (en) * 1977-09-12 1982-07-06 Siemens Aktiengesellschaft Synchronous turbine type electric motor
US4429244A (en) * 1979-12-06 1984-01-31 Vsesojuzny Proektnoizyskatelsky I Nauchno-Issledovatelsky Institut "Gidroproekt" Stator of generator
CH657482A5 (en) * 1981-01-30 1986-08-29 Elin Union Ag ARRANGEMENT FOR EQUALIZING THE POTENTIAL DISTRIBUTION ON A POLAR GLAZE PROTECTION COATING FOR AN ELECTRICAL MACHINE.
US5036165A (en) * 1984-08-23 1991-07-30 General Electric Co. Semi-conducting layer for insulated electrical conductors

Also Published As

Publication number Publication date
EA199801052A1 (en) 1999-08-26
NO985554L (en) 1998-11-27
US6906447B2 (en) 2005-06-14
CA2255740C (en) 2005-02-22
PE73998A1 (en) 1998-11-25
AU2988197A (en) 1998-01-05
EA199801054A1 (en) 1999-08-26
PE69998A1 (en) 1998-11-18
AU2987397A (en) 1998-01-05
PE68798A1 (en) 1998-10-30
CN1220042A (en) 1999-06-16
WO1997045925A1 (en) 1997-12-04
DE69725306T2 (en) 2004-07-15
EP0901700A2 (en) 1999-03-17
ID19456A (en) 1998-07-16
EP0901702A1 (en) 1999-03-17
YU54398A (en) 2000-03-21
ID19777A (en) 1998-07-30
ZA974717B (en) 1998-09-04
DE69737446D1 (en) 2007-04-19
UA45453C2 (en) 2002-04-15
TW361005B (en) 1999-06-11
TW443023B (en) 2001-06-23
CN101242125B (en) 2010-12-22
EA199801053A1 (en) 1999-08-26
US6894416B1 (en) 2005-05-17
ZA974737B (en) 1997-12-01
DE69726139D1 (en) 2003-12-18
CN1103133C (en) 2003-03-12
JP2000511389A (en) 2000-08-29
KR20000016095A (en) 2000-03-25
EP0901703B1 (en) 2003-11-12
EA199801050A1 (en) 1999-08-26
EP0901711A1 (en) 1999-03-17
DE69726139T2 (en) 2004-08-12
CO4920189A1 (en) 2000-05-29
DE69727668D1 (en) 2004-03-25
CN1097335C (en) 2002-12-25
ATE254350T1 (en) 2003-11-15
BR9709618A (en) 1999-08-10
CN101242125A (en) 2008-08-13
ZA974708B (en) 1998-11-30
JP2000511391A (en) 2000-08-29
WO1997045923A1 (en) 1997-12-04
JP3970934B2 (en) 2007-09-05
ZA974707B (en) 1998-11-30
US20010019494A1 (en) 2001-09-06
CN1220044A (en) 1999-06-16
AR007338A1 (en) 1999-10-27
CZ385798A3 (en) 1999-05-12
AU3052597A (en) 1998-01-05
AR007332A1 (en) 1999-10-27
NO985580D0 (en) 1998-11-27
KR20000016094A (en) 2000-03-25
CZ388298A3 (en) 1999-02-17
CA2255768A1 (en) 1997-12-04
CA2255740A1 (en) 1997-12-04
ZA974721B (en) 1998-02-04
JP2000511390A (en) 2000-08-29
DE69725306D1 (en) 2003-11-06
AU718708B2 (en) 2000-04-20
CO4650251A1 (en) 1998-09-03
US20020047438A1 (en) 2002-04-25
PL330198A1 (en) 1999-04-26
CZ386098A3 (en) 1999-06-16
AU2988397A (en) 1998-01-05
ATE264017T1 (en) 2004-04-15
AR007336A1 (en) 1999-10-27
NO985524D0 (en) 1998-11-26
NZ333601A (en) 2000-09-29
CN1220041A (en) 1999-06-16
BR9709387A (en) 1999-08-10
ZA974725B (en) 1998-09-04
EA001441B1 (en) 2001-04-23
ID19708A (en) 1998-07-30
AU731064B2 (en) 2001-03-22
EP0901700B1 (en) 2007-03-07
PE81198A1 (en) 1998-11-21
CA2255769A1 (en) 1997-12-04
BG63444B1 (en) 2002-01-31
US20040084987A1 (en) 2004-05-06
WO1997045288A2 (en) 1997-12-04
CA2255744A1 (en) 1997-12-04
SE9602079D0 (en) 1996-05-29
ZA974727B (en) 1998-09-04
EA001487B1 (en) 2001-04-23
TW516746U (en) 2003-01-01
ZA974706B (en) 1998-11-30
CO4650250A1 (en) 1998-09-03
AR007335A1 (en) 1999-10-27
WO1997045919A3 (en) 1998-01-15
JP2000511388A (en) 2000-08-29
EP0889797A2 (en) 1999-01-13
CO4650252A1 (en) 1998-09-03
AP9801409A0 (en) 1998-12-31
JPH11514199A (en) 1999-11-30
AR007340A1 (en) 1999-10-27
ATE251358T1 (en) 2003-10-15
IS4894A (en) 1998-11-17
CN1220051A (en) 1999-06-16
EP0901704A1 (en) 1999-03-17
ZA974726B (en) 1997-12-30
EA001097B1 (en) 2000-10-30
EA199801051A1 (en) 1999-08-26
AU720311B2 (en) 2000-05-25
CA2256473A1 (en) 1997-12-04
EP0901704B1 (en) 2004-02-18
ZA974704B (en) 1998-11-30
WO1997045919A2 (en) 1997-12-04
NO985524L (en) 1998-11-26
ZA974723B (en) 1998-09-04
TW453010B (en) 2001-09-01
EP0901711B1 (en) 2004-04-07
IS4901A (en) 1998-11-20
US20020047413A1 (en) 2002-04-25
WO1997045922A1 (en) 1997-12-04
CZ288390B6 (en) 2001-06-13
EA199801058A1 (en) 1999-08-26
ZA974724B (en) 1998-09-04
AR007333A1 (en) 1999-10-27
CN1083356C (en) 2002-04-24
WO1997045288A3 (en) 1998-02-12
US20010055217A1 (en) 2001-12-27
CO4600758A1 (en) 1998-05-08
BG102926A (en) 1999-06-30
TR199802473T2 (en) 1999-03-22
PL330200A1 (en) 1999-04-26
TR199802472T2 (en) 1999-03-22
BR9709474A (en) 1999-08-10
US7088027B2 (en) 2006-08-08
ATE356460T1 (en) 2007-03-15
ZA974728B (en) 1998-09-04
US20020050758A1 (en) 2002-05-02
NO985552D0 (en) 1998-11-27
AU2988597A (en) 1998-01-05
TW355802B (en) 1999-04-11
CN101546932A (en) 2009-09-30
PL330289A1 (en) 1999-05-10
IS4900A (en) 1998-11-20
CO4650248A1 (en) 1998-09-03
YU54598A (en) 2000-03-21
AU2988097A (en) 1998-01-05
EA001439B1 (en) 2001-04-23
ZA974718B (en) 1998-09-04
IL126943A0 (en) 1999-09-22
CN1100377C (en) 2003-01-29
BR9709399A (en) 1999-08-10
ATE259997T1 (en) 2004-03-15
CN1219911A (en) 1999-06-16
AU2987997A (en) 1998-01-05
BR9709397A (en) 1999-08-10
IS1818B (en) 2002-07-08
UY24794A1 (en) 1997-12-04
TW360603B (en) 1999-06-11
TW441154B (en) 2001-06-16
US6936947B1 (en) 2005-08-30
NO985580L (en) 1999-01-28
EP0901701B1 (en) 2003-10-01
CN101546932B (en) 2011-07-06
ZA974747B (en) 1997-12-01
PE81298A1 (en) 1998-11-21
PL330199A1 (en) 1999-04-26
NO985552L (en) 1998-11-27
TW454371B (en) 2001-09-11
DE69728533D1 (en) 2004-05-13
CO4920190A1 (en) 2000-05-29
CA2255770A1 (en) 1997-12-04
PL330215A1 (en) 1999-05-10
KR20000016096A (en) 2000-03-25
CO4650247A1 (en) 1998-09-03
DE69727669D1 (en) 2004-03-25
UA42867C2 (en) 2001-11-15
EP0901702B1 (en) 2004-02-18
ZA974705B (en) 1998-11-30
DE69727669T2 (en) 2004-12-02
DE69727668T2 (en) 2004-12-09
EP0901703A1 (en) 1999-03-17
IL126943A (en) 2003-05-29
EA001440B1 (en) 2001-04-23
NO985554D0 (en) 1998-11-27
US20050127773A1 (en) 2005-06-16
WO1997045912A1 (en) 1997-12-04
EE03361B1 (en) 2001-02-15
AU2988297A (en) 1998-01-05
ZA974722B (en) 1998-09-04
CN1224542A (en) 1999-07-28
US6919664B2 (en) 2005-07-19
CA2255771A1 (en) 1997-12-04
CN1225755A (en) 1999-08-11
DE19781791T1 (en) 1999-05-27
ZA974734B (en) 1997-12-01
ZA974719B (en) 1998-02-04
BR9709617A (en) 2000-04-25
ZA974720B (en) 1998-02-04
US6831388B1 (en) 2004-12-14
US6798107B2 (en) 2004-09-28
ATE259996T1 (en) 2004-03-15
EP0901701A1 (en) 1999-03-17
AU718766B2 (en) 2000-04-20
AR007334A1 (en) 1999-10-27
WO1997045924A1 (en) 1997-12-04
DE69737446T2 (en) 2007-12-13
AP907A (en) 2000-11-30
CN100403626C (en) 2008-07-16
EA001465B1 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
US20020050758A1 (en) Rotating electric machine for high voltage
AU714564B2 (en) Rotating electrical machine plants
US6376775B1 (en) Conductor for high-voltage windings and a rotating electric machine comprising a winding including the conductor
US6417456B1 (en) Insulated conductor for high-voltage windings and a method of manufacturing the same
US20020125788A1 (en) Axial cooling tubes provided with clamping means
EP0910886A1 (en) Rotary electric machine with radial cooling
WO1997045929A2 (en) Earthing device and rotating electric machine including the device
AU737358B2 (en) Switch gear station
EP0901709B1 (en) Stator winding of a rotating electric machine and such a machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ CZ DE DE DK DK EE ES FI FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97542207

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 09194578

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase