WO1998009284A1 - Flying optical head with dynamic mirror - Google Patents

Flying optical head with dynamic mirror Download PDF

Info

Publication number
WO1998009284A1
WO1998009284A1 PCT/US1997/015094 US9715094W WO9809284A1 WO 1998009284 A1 WO1998009284 A1 WO 1998009284A1 US 9715094 W US9715094 W US 9715094W WO 9809284 A1 WO9809284 A1 WO 9809284A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
head
optical
micro
energy
Prior art date
Application number
PCT/US1997/015094
Other languages
French (fr)
Inventor
Jeffery P. Wilde
Joseph E. Davis
Jerry E. Hurst, Jr.
John F. Heanue
Kurt Petersen
Terry Mcdaniel
Jeff Drazan
Original Assignee
Seagate Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology, Inc. filed Critical Seagate Technology, Inc.
Priority to EP97938648A priority Critical patent/EP0939955B1/en
Priority to DE69726598T priority patent/DE69726598D1/en
Priority to JP51188598A priority patent/JP4642162B2/en
Publication of WO1998009284A1 publication Critical patent/WO1998009284A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0866Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by thermal means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/1058Flying heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10595Control of operating function
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/122Flying-type heads, e.g. analogous to Winchester type in magnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1384Fibre optics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • H02N1/008Laterally driven motors, e.g. of the comb-drive type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2572Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to forms of polarisation-dependent distortion other than PMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10502Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing characterised by the transducing operation to be executed
    • G11B11/10515Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10552Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base
    • G11B11/10554Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base the transducers being disposed on the same side of the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10556Disposition or mounting of transducers relative to record carriers with provision for moving or switching or masking the transducers in or out of their operative position
    • G11B11/10563Access of indexed parts
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10556Disposition or mounting of transducers relative to record carriers with provision for moving or switching or masking the transducers in or out of their operative position
    • G11B11/10567Mechanically moving the transducers
    • G11B11/10569Swing arm positioners
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/0857Arrangements for mechanically moving the whole head
    • G11B7/08576Swinging-arm positioners
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/14Heads, e.g. forming of the optical beam spot or modulation of the optical beam specially adapted to record on, or to reproduce from, more than one track simultaneously

Definitions

  • the present invention relates generally to optical data storage systems and more particularly to flying optical heads for use in optical data storage systems.
  • a magneto-optical storage system using a Magneto-Optical (MO) recording material deposited on a rotating disk, information may be recorded on the disk as spatial variations of magnetic domains.
  • the magnetic domain pattern modulates an optical polarization, and a detection system converts a resulting signal from optical to electronic format.
  • a magneto-optical head assembly is located on a linear actuator that moves the head along a radial direction of the disk to position the optical head assembly over data tracks during recording and readout.
  • a magnetic coil is placed on a separate assembly on the head assembly to create a magnetic field that has a magnetic component in a direction perpendicular to the disk surface.
  • a vertical magnetization of polarity, opposite to the surrounding material of the medium, is recorded as a mark indicating zero or a one by first focusing a beam of laser light to form an optical spot on the disk.
  • the optical spot functions to heat the magneto-optical material to a temperature near or above a Curie point (i.e., a temperature at which the magnetization may be readily altered with an applied magnetic field).
  • a current passed through the magnetic coil orients the spontaneous magnetization either up or down. This orientation process occurs only in the region of the optical spot where the temperature is suitably high.
  • the orientation of the magnetization mark is preserved after the laser beam is removed. The mark is erased or overwritten if it is locally reheated to the Curie point by the laser beam while the magnetic coil creates a magnetic field in the opposite direction.
  • Information is read back from a particular mark on the disk by taking advantage of the magnetic Kerr effect to detect a Kerr rotation of the optical polarization that is imposed on a reflected beam by the magnetization at the mark of interest, the magnitude of the Kerr rotation being determined by the material's properties (embodied in the Kerr coefficient).
  • the sense of the rotation is measured by established differential detection schemes as being clockwise or counter-clockwise depending on the direction of the spontaneous magnetization at the mark of interest.
  • Gigabit/ in-2 tend to be based on relatively large optical assemblies which make the physical size of the head rather bulky (3 - 15 mm in a linear dimension). Consequently the speed at which conventional magneto-optical heads are mechanically moved to access new data tracks on a magneto-optical storage disk is slow.
  • most commercially available magneto-optical disk drives use only one magneto- optical head to enable reads and writes to one side of a magneto-optical disk at a time.
  • Yamada discloses a low-profile flying optical head for accessing an upper and lower surface of a plurality of optical disks.
  • the flying optical head disclosed by Yamada uses a static mirror or prism for delivering light to and receiving light from a phase-change optical disk.
  • a method for moving a folding prism or mirror with a miniature galvanometer actuator for fine tracking has been disclosed by C. Wang in US Patent 5,243,241.
  • the galvanometer consists of bulky wire coils and a rotatable magnet mounted on a linear actuator arm attached to a flying magneto-optical head, but not mounted on the slider body itself. This design limits the tracking servo bandwidth and achievable track density due to its size and weight. Its complexity also increases the cost and difficulty of manufacture.
  • the improved flying optical head should preferably provide a high numerical aperture, a reduced head mass, a very high resonance frequency fine track servoing device thus producing a very fine track servo bandwidth, and be relatively easy to manufacture. Additionally, the flying magneto-optical head should improve upon magneto-optical disk drive access times, data transfer rates, and usable magneto-optical disk track densities.
  • the present invention functions to improve data storage and retrieval in a system based on a Flying Magneto-Optical (FMO) head that preferably provides a high numerical aperture, reduced head mass, high fine track servo bandwidth, increased magneto-optical disk track density, reduced data access time, increased data transfer rates, an increase in the number of magneto-optical disks accessible in a given volume, and the ability to read and write to both sides of each disk to be used.
  • FMO Flying Magneto-Optical
  • the mechanical architecture of a magneto-optical storage device incorporates a low profile head into a magneto-optical data system which uses a Winchester type rotary actuator arm, suspension, and air bearing technology.
  • the laser optics assembly couples an optical light source to one or more head arms which each support an optical head for writing and reading data for disk storage media.
  • lighting is delivered through an individual Single Mode Polarization Maintaining (SMPM) optical fiber to a respective magneto- optical head for the purpose of locally heating the surface of a rotating magneto-optical (MO) storage media, thereby producing a "hot spot.”
  • SMPM Single Mode Polarization Maintaining
  • MO rotating magneto-optical
  • a magnetic coil embedded in the optical head is used to produce a magnetic field that in turn spontaneously magnetizes the region within the hot spot with a vertical orientation either up or down.
  • the applied magnetic field is modulated so as to encode digital data as a pattern of "up or down" magnetic domain orientations.
  • the readout is programmed in such a way that the magnetization direction of the medium at the location of the focused optical spot alters an optical polarization of the light via the magneto-optic KERR effect.
  • the pattern of up or down magnetization orientations representative of the stored digital data modulates the polarization of the light reflected from the MO storage media.
  • the reflected light signal from the storage media then couples back through the FMO head to a differential amplifier for decoding.
  • the beam of laser light transmitted from the optical fiber to the optical head is reflected onto a steerable micro-machined folding mirror.
  • the reflected light from the folding mirror is directed through an embedded micro-objective lens such as a GRIN lens.
  • fine tracking and short seeks to adjacent tracks are performed by rotating the micro-machined mirror about an axis of rotation. In this way a focused optical spot is scanned back and forth in a direction which is approximately parallel to the radial direction of a storage disk.
  • Use of a micro-machined steerable mirror makes possible a light weight, cost-efficient, FMO head with MO storage media having extremely high data densities.
  • FIG. 1 is a pictorial view of a preferred magneto- optical storage device
  • FIG. 2 is a schematic view showing the laser/ optics assembly of the magneto-optical storage device of FIG. 1;
  • FIG. 3 shows a top view of the flying magneto-optical head of FIG. l ;
  • FIG. 4 is a side view of the flying magneto-optical head of FIG. 3;
  • FIG. 5 is a front view of the flying magneto-optical head of FIG. 3;
  • FIG. 6 is side view showing the light path through the magneto- optical head of FIG. 4;
  • FIG. 7 is a side view schematic diagram showing details of the magneto-optical head of FIG. 4;
  • FIG. 8 is a perspective view showing a preferred micro-machined mirror of the assembly of FIG. 1;
  • FIG. 9 is a perspective view showing the magneto-optical head of the preferred embodiment.
  • FIG. 10 is a perspective view showing the magneto-optical head of the preferred embodiment.
  • magneto-optical storage device 100 incorporates Flying Magneto-Optical (FMO) head technology with Winchester-type rotary actuator arm, suspension, and air bearing technology in a Magneto- Optical (MO) data storage system.
  • FMO Flying Magneto-Optical
  • MO Magneto- Optical
  • magneto-optical storage device 100 includes laser-optics assembly 110, a Single-Mode Polarization Maintaining (SMPM) optical fiber 130, a phase compensator 120, a fiber optic switch 150, an actuator magnet and coil 145, a plurality of SMPM optical fibers 140, a plurality of head arms 160, a plurality of suspensions 165, a plurality of MO storage media 180, and a plurality of FMO heads 170.
  • SMPM Single-Mode Polarization Maintaining
  • Each of the plurality of MO storage media 180 are preferably mounted on a spindle 185 for continuous rotation at a constant angular velocity and each of the plurality of FMO heads 170 are preferably attached via a respective flexible suspension 165 and head arms 160 to the electromagnetic actuator magnet and coil 145 Those skilled in the art will recognize that MO storage device 100 may comprise as few as one FMO head 170 and one MO storage medium 180 or an upper and lower FMO head 180 per a plurality of MO storage media 180.
  • laser/optics assembly 1 10 includes a laser optical source, a differential photodiode detector system and associated optical components, preferably as a separate subassembly 1 10 or alternatively as a hybrid integrated circuit component.
  • laser-optics assembly 1 10 further includes a laser diode 255 polarized optical light source that is a 30-40 mw laser diode or diode-pumped micro-chip laser operating in the visible or near ultraviolet region (preferably in the vicinity of 635 nm), a leaky beam splitter 245, collimating optics 250 that are used before passing the laser light from the laser diode 255 to a leaky beam splitter 245, and a coupling lens 240 that is preferably a Gradient Refractive Index (GRIN) lens that focuses outgoing light from leaky beam splitter 245 into a Single-Mode Polarization-Maintaining (SMPM) optical fiber 130 feed.
  • GRIN Gradient Refractive Index
  • phase compensator 120 is used to compensate for relative phase fluctuations that occur between inherent dual polarization modes of each of polarization-maintaining optical fibers 130 and 140.
  • Each of the polarization modes of optical fibers 130 and 140 experience different refractive indices because of an inherent birefringence of the fibers.
  • relative phase fluctuations may arise because of a slight variation in a difference between the two refractive indices caused by changes in temperature, pressure, and mechanical motion of each of optical fibers 130 and 140.
  • These fluctuations may be sensed by laser-optics assembly 1 10, and before significant changes occur, a feedback servo (not shown) adjusts the phase compensator to cancel the fluctuation.
  • an optical path formed by optical fibers 130 and 140, to and from the flying magneto-optical head 155 may be treated similar to a free-space optical path in terms of its polarization properties.
  • phase compensator 120 includes a piezoelectric cylindrical shell, preferably made of a piezoelectric material such as lead zirconate titanate, to form a phase modulator and that has a height preferably less than its diameter to provide a low- profile shape suitable for use in a compact magneto-optical storage system with reduced electrical capacitance for faster operation.
  • Optical fiber 130 may be attached to the circumference of phase compensator 203 with an ultraviolet-curing epoxy or similar adhesive.
  • metal electrodes are deposited on flat ends of the cylinder to reduce capacitance so that a voltage applied across the electrodes acts to induce an expansion of the shell in a radial direction, thereby stretching optical fiber 130. The stretching action serves to provide phase modulation.
  • the diameter of the phase compensator 120 is preferably greater than a few hundred times the fiber cladding diameter of the optical fiber 130.
  • a fiber cladding diameter of approximately 80 ⁇ m corresponds to a phase compensator 120 diameter in the vicinity of 10 to 40 mm.
  • fiber optic switch 150 accepts single-mode PM optical fiber 130 at an input port and routes the light emanating from this fiber to one of the single-mode PM optical fibers 140 at an output port.
  • the switching properties of fiber optic switch 150 are bi-directional so that light propagating back to the switch 150 along any one of the SMPM optical fibers 140 at the output port may also be routed to the optical fiber 130 at the input port.
  • the SMPM optical fibers 140 from the fiber optic switch 150 are preferably routed along respective head arms 160 and suspensions 165 to respective flying magneto-optical heads 170.
  • SMPM optical fiber 140 there is one SMPM optical fiber 140 per FMO head 170, and the fiber optic switch 150 is used to select which magneto-optical head 170 is active for reading or writing a respective surface of MO storage media 180.
  • light is delivered through an individual optical fiber 140 to a respective FMO head 170 for the purpose of locally heating a respective surface of a rotating magneto-optical storage media 180, thereby producing a "hot spot.”
  • a magnetic coil embedded on FMO head 170 (subsequently discussed in more detail) is used to produce a magnetic field that in turn spontaneously magnetizes the region within the hot spot with a vertical orientation either up or down.
  • the applied magnetic field is modulated so as to encode digital data as a pattern of "up or down" magnetic domain orientations.
  • polarized light at a lower intensity is delivered through an SMPM optical fiber 140 to a respective FMO head 170 for the purpose of probing rotating storage medium 180 with a focused optical spot.
  • the readout is performed in such a way that the magnetization direction of MO storage medium 180 at the location of the focused spot alters an optical polarization of the light via the magneto-optic Kerr effect.
  • the pattern of up or down magnetization orientations representative of the stored digital data modulates the polarization of the light reflected from the MO storage medium 180.
  • the reflected light signal from the MO storage medium 180 then couples back through the FMO head 170, one of the plurality of SMPM optical fibers 140, and the fiber optic switch 150, finally reaching two photodiode detectors 215 for conversion into electronic format by differential amplifier 210.
  • each flying magneto-optical head 170 includes a small slider body 330.
  • the FMO head 170 further includes a v-groove 360 for holding a SMPM fiber 350, a steerable micro-machined folding mirror 340, and a magnetic coil 310.
  • FIG. 5 shows a front view of the same FMO head 170.
  • head 170 utilizes an air bearing surface 510 flying above or below a coated upper surface of an MO storage medium 180.
  • a polarized beam of laser light is transmitted through the SMPM optical fiber 350 to the steerable micro- machined folding mirror 340.
  • the axis of the v-groove, and hence the axis of the fiber 350 lying in the v-groove, is approximately parallel to the medium 180 surface.
  • Light exiting the fiber 350 is reflected by the micro-machined folding mirror 340 at an average angle of approximately ninety degrees to the axis of optical fiber 350.
  • the reflected light is directed through an embedded micro-objective lens such as a GRIN lens 420.
  • fine tracking and short seeks to adjacent tracks are performed by rotating the mirror 340 about a rotation axis 410 (shown in Fig. 4). In this way a focused optical spot 440 is scanned back and forth in a direction 520 which is approximately parallel to the radial direction of the medium 180.
  • the actuator arm 160 moves the slider body 330 back and forth across the surface of the medium 180, the position of the slider body may become skewed slightly such that the direction 520 is not precisely parallel to the radial direction of the MO storage medium 180.
  • the skew angle is sufficiently small that a substantial component of scanning direction 520 lies along the radial direction of the storage medium 180.
  • FIG. 6 a side view is shown of the preferred lens 420 of the present invention.
  • the light reflected from folding mirror 340 is collected by a focusing optic comprising an objective GRIN lens 420 that functions to focus the reflected light onto a surface of the MO storage medium 180.
  • the position of optical fiber 350 within v-groove 360 may be adjusted, thereby changing the distance from the end of the SMPM optical fiber 350 to mirror 340. Relocating the position of the SMPM optical fiber 350 within v-groove 360 effectively adjusts the location of the focal point of light 630 exiting lens 420.
  • the fiber Once fiber 350 is positioned for proper focus on the surface of medium 180, the fiber may be secured in place by means of ultraviolet (UV) curing epoxy or similar adhesive.
  • UV ultraviolet
  • a GRIN lens 420 provides a simple compact cylindrical shape, allowing the lens to be inserted into a hole in the slider body 330 easily.
  • the lens 420 is polished to assume a plano-convex shape with the convex surface 650 being a simple spherical shape.
  • the thickness 640 and radius of curvature of the lens 420 depends on a number of factors including the magnitude of the refractive index gradient, the wavelength of light, the numerical aperture of the SMPM fiber 350, and the desired focused optical spot 440 size as determined by the effective numerical aperture of the lens 420.
  • the lens 420 thickness 640 is approximately 170 - 500 ⁇ m
  • the radius of curvature is approximately 150 - 400 ⁇ m
  • the lens diameter 620 is approximately 200 - 500 ⁇ m.
  • the focusing objective optics may include either an aplanatic lens or a solid immersion lens in conjunction with the GRIN lens 420.
  • Use of such an additional lens element achieves a larger numerical aperture and hence a smaller focused optical spot 440 size.
  • a smaller spot 440 size permits higher areal data densities to be written to and read from the MO storage medium 180.
  • Micro-optic lenses made by molding glass or plastic may also be used in place of the GRIN lens 420.
  • two molded planoconvex aspherical lens may be combined by placing the two convex surfaces toward one another to provide a miniature lens system with high numerical aperture and good off-axis performance as the mirror 340 is rotated.
  • light would be approximately collimated between the two optical elements thus, a quarter wave plate could be placed between the two elements without requiring additional lenses.
  • a single molded spherical lens with low numerical aperture (0.2 - 0.4) may be used in conjunction with an aplanatic or solid immersion lens to yield an optical focusing system with relatively high numerical aperture (greater than 0.6).
  • molded lenses are attractive because they can be produced in high volume at low cost.
  • One method disclosed here for mass production involves molding a lens array and subsequently sectioning of the array by diamond saw cutting or laser cutting to obtain individual lenses.
  • two molded plano-convex lens arrays may be mated by means of tapered fittings before sectioning to ensure accurate lens alignment.
  • magnetic coil 310 is embedded below the GRIN lens 420 as part of FMO head 170.
  • Magnetic coil 310 creates a magnetic field with a large component in a direction normal (i.e., perpendicular) to the MO storage medium 180.
  • An etch hole 740 or groove, into which the lens 420 is be inserted, is etched from the top and stopped at a predetermined depth.
  • a small diameter light passage 720 opening is formed on the bottom of the slider body 330. During fabrication, the depth and diameter of light passage 720 is made to provide a clear optical path for a focused light beam.
  • Light passage 720 is preferably conical in shape with a cone angle approximately equal to that of the focused cone of polarized light (approximately 37 degrees in half-angle for a numerical aperture of 0.6). In this way, a shelf 730 region is formed for supporting the lens 420 while also allowing a planar magnetic coil 310 to be deposited within a recessed area which is etched on the bottom side of the shelf. In the preferred embodiment, the diameter of light passage 720 is sufficiently large to accommodate off-axis steering of the polarized light.
  • the planar coil 310 delivers a magnetic field perpendicular to a MO storage medium 180 with a magnitude of approximately 170 Oe of either polarity at the magnetic storage layer of the MO storage medium 180, and comprises 2-3 layers with 5- 10 plated conductor turns per layer.
  • the number of layers and turns per layer is a function of the spacing between the coil 310 and the magnetic recording layer (typically in the range from 5 - 20 ⁇ m).
  • the layer separation is approximately 6 ⁇ m
  • the plated conductor coil 310 loops have a radial pitch of about 5 ⁇ m
  • the coil current required to generate a magnetic field of approximately 170 Oe is approximately 50-70 mA (zero-to-peak).
  • the coil switching time is on the order of 10 nsec or less as dictated by the coil inductance (approximately 200 nH or less) and the driving electronics, and the coil 310 diameter ranges from about 10 ⁇ m in the innermost region to about 80 ⁇ m at the periphery, depending on the aforementioned gap between the coil and magnetic recording layer.
  • Electrical coil leads 710 are preferably routed along the wall of hole 740 or through a separate hole in the slider body (not shown).
  • mirror 340 is a torsional mirror comprising a silicon substrate 810, drive electrodes 825 and 830, bonding pads 815 and 820, a bonded silicon plate 850, and a thin film flexure layer 845 made from a material such as silicon dioxide, silicon nitride, or silicon.
  • the mirror 340 may be fabricated using micromachining techniques to yield a reflective inner torsional reflective area 835, comprising flexure layer 845 on top and silicon plate layer 855 on bottom for mechanical rigidity, and supported by flexure layer hinges 840.
  • Reflective area 835 may be metalized with gold or a similar substance to increase the optical reflectivity and to improve the electrostatic actuation of the mirror.
  • mirror 340 has a resonant frequency approximately in the range from 50 to 200 kHz, as determined by the particular geometry and material properties of the mirror.
  • mirror 340 is approximately square with an approximate outer linear dimension in the range from 100 - 170 ⁇ m and a thickness of approximately 2 - 50 ⁇ m.
  • inner reflective area 835 has an approximate outer linear dimension in the range from 25 - 200 ⁇ m and a thickness of approximately 1 - 20 ⁇ m.
  • mirror 340 may be driven torsionally without any excessive transverse motion.
  • the reflective area 835 is preferably on the order of 100 ⁇ m on a side, the resonant frequency is preferably greater than 100 kHz, and the maximum physical angular deflection is preferably 2 degrees.
  • the mirror 340 should preferably not warp either statistically or dynamically upon actuation and the maximum stress upon electrostatic deflection should preferably be well below the expected yield stress of the material used to construct the mirror (for example: silicon, silicon dioxide, silicon nitride, and aluminum).
  • the mirror 340 is operated by applying a differential voltage to the drive electrodes 825 and 830.
  • the differential voltage on electrodes 825 and 830 results in an electrostatic force on reflective area 835.
  • the reflective area 835 rotates about the hinges 840 enabling reflected light to be directed and scanned back and forth about the surface of medium 180. Operation of the mirror 340 is discussed further with reference to FIG. 10 below.
  • FIG. 9 a perspective view is shown of the flying magneto-optical head 170 comprising a slider body 330 and mirror support 910.
  • a mirror support 910 includes electrode pads 915 and 920 that provide an electrical contact point for application of a differential voltage to the corresponding bonding pads 815 and 820 located on mirror 340.
  • Mirror support 10 additionally includes access holes 925 and 930 that function to provide a clear optical path from SMPM optical fiber 350, to mirror reflective area 835, and subsequently to lens 420, as previously discussed above.
  • mirror support 910 provides mirror 340 a 45 degree support surface.
  • mirror support 910 may be attached to slider body 330 and manufactured using any number of techniques such as micromachining the slider body 330 and mirror support 910 separately, then adhesively bonding the two pieces together.
  • a 45 degree angle may be created using other techniques such as leaning the mirror assembly against a suitably dimensioned slider having suitably dimensioned steps 940 and 945.
  • a steerable mirror 340 is shown mounted to a mirror support 910.
  • An application of a differential voltage to electrode pads 915 and 920 functions to steer a beam of laser light supplied by SMPM optical fiber 350.
  • the steerable micro- machined mirror 400 is used to change the propagation angle of the beam of polarized laser light before transmission to an objective lens 420. Movement of a resultant focal point of light 630 along a radial direction 520 of the storage medium 180 is used for track following and as well as for short seeks from one data track to another. In the preferred embodiment, track following may be accomplished by using combined coarse and fine tracking servo techniques.
  • a sampled sector servo format may be used to define tracks.
  • servo marks may include either embossed pits stamped into the medium or magnetic marks read similar to data marks.
  • embossed pits those skilled in the art will recognize that the differential amplifier 210 output of the laser optics assembly 110 should be supplemented with an adder circuit.
  • Coarse tracking may be maintained by continuously adjusting a current to an actuator coil (part of actuator magnet and coil 145 shown in Figure 1) for controlling the position of a head arm suspension 165 while fine tracking may be accomplished by continuously adjusting an angular deflection of the steerable mirror 340.
  • the use of a steerable micro-machined mirror is advantageous because it offers a method for very fast manipulation of an optical beam. This approach facilitates high-speed track following and short seeks for much improved data access times. Such improvements over conventional head technology make possible high areal densities by enabling the use of very narrow track pitches.
  • the FMO head 170 design is intrinsically confocal in nature. During readout, the reflected light from the MO storage medium 180 is coupled back into the SMPM optical fiber 140 which acts as the aperture in a confocal system.
  • One of the benefits arising from the use of confocal optics include very high depth resolution along the optical axis as well as improved transverse resolution.
  • Another advantage of the confocal system is that light reflected from objective optics surfaces is not collected so that anti- reflection coating may not be necessary. This is particularly advantageous in a design that uses an aplanatic lens and some nonzero working distance.
  • the high depth resolution allows for very close spacing of the layers in a multi-layer media (not shown) with low crosstalk between layers, while the improved transverse resolution functions to provide detection of smaller storage media marks and sharper storage medium mark edges than would otherwise be the case in a non-confocal system.
  • the storage device 100 architecture and FMO head design illustrated in Figures 1- 10 are representative of one approach to storing information on high-density MO storage media. It will be appreciated by those skilled in the art that various permutations of the present invention may also be implemented to achieve substantially the same goals. For example, various types of fiber optic switches (e.g., micro- mechanical, electro-optical, thermo-optical) may be utilized.
  • the flying magneto-optical head design may be modified for use with a free space optical input beam, thereby eliminating optical fibers 140.
  • the focusing objective lens need not be limited to a GRIN lens because other micro-objective lenses (such as molded aspheres, holographic lenses, binary or other diffractive optical lenses) can also be utilized.
  • the present invention may also be used as a read only or a write once flying optical head, or alternatively a flying optical head.
  • Aspects of the present invention will be recognized by those skilled in the art as applicable to compact disk (CD) and digital video disks (DVD). Thus, those skilled in the art will also recognize that the present invention has aspects which are applicable to all optical storage systems.

Abstract

A magneto-optical flying head utilizes a steerable mirror (340) in combination with a light source and a lens to write and read data onto a magneto-optical storage disk (180). A beam of laser light transmitted from the light source to the optical head is reflected onto a steerable micro-machined folding mirror (340). The reflected light from the folding mirror (340) is directed through an embedded micro-objective GRIN lens (420). Fine tracking and short seeks to adjacent tracks are performed by rotating the mirror about an axis of rotation. In this way a focus spot is scanned back and forth in a direction which is approximately parallel to the radial direction of the storage disk.

Description

FLYING OPTICAL HEAD WITH DYNAMIC MIRROR Cross Reference to Related Applications This application claims benefit of: Provisional Application Serial No 60/022,775, entitled "A Data Storage And Retrieval System Based on Flying Magneto-Optical Head," filed on July 30, 1996; Provisional Application Serial No 60/023,476, entitled "A Data Storage And Retrieval System Based on A Flying Magneto-Optical Head," filed on August 6, 1996; and Provisional Application Serial No. 60/025,801 , entitled "A Data Storage And Retrieval System Based on A Flying Magneto-Optical Head," filed on August 27, 1996. The subject matter of each of these related applications is incorporated herein by reference. All related applications are commonly assigned.
Background Of The Invention 1. Field of the Invention
The present invention relates generally to optical data storage systems and more particularly to flying optical heads for use in optical data storage systems.
2. Background Art
In a magneto-optical storage system, using a Magneto-Optical (MO) recording material deposited on a rotating disk, information may be recorded on the disk as spatial variations of magnetic domains. During readout, the magnetic domain pattern modulates an optical polarization, and a detection system converts a resulting signal from optical to electronic format.
In one type of magneto-optical storage system, a magneto-optical head assembly is located on a linear actuator that moves the head along a radial direction of the disk to position the optical head assembly over data tracks during recording and readout. A magnetic coil is placed on a separate assembly on the head assembly to create a magnetic field that has a magnetic component in a direction perpendicular to the disk surface. A vertical magnetization of polarity, opposite to the surrounding material of the medium, is recorded as a mark indicating zero or a one by first focusing a beam of laser light to form an optical spot on the disk. The optical spot functions to heat the magneto-optical material to a temperature near or above a Curie point (i.e., a temperature at which the magnetization may be readily altered with an applied magnetic field). A current passed through the magnetic coil orients the spontaneous magnetization either up or down. This orientation process occurs only in the region of the optical spot where the temperature is suitably high. The orientation of the magnetization mark is preserved after the laser beam is removed. The mark is erased or overwritten if it is locally reheated to the Curie point by the laser beam while the magnetic coil creates a magnetic field in the opposite direction.
Information is read back from a particular mark on the disk by taking advantage of the magnetic Kerr effect to detect a Kerr rotation of the optical polarization that is imposed on a reflected beam by the magnetization at the mark of interest, the magnitude of the Kerr rotation being determined by the material's properties (embodied in the Kerr coefficient). The sense of the rotation is measured by established differential detection schemes as being clockwise or counter-clockwise depending on the direction of the spontaneous magnetization at the mark of interest.
Conventional magneto-optical heads, while presently providing access to magneto-optical disks with areal densities on the order of 1
Gigabit/ in-2, tend to be based on relatively large optical assemblies which make the physical size of the head rather bulky (3 - 15 mm in a linear dimension). Consequently the speed at which conventional magneto-optical heads are mechanically moved to access new data tracks on a magneto-optical storage disk is slow. In addition, due to the large size of these optical assemblies, most commercially available magneto-optical disk drives use only one magneto- optical head to enable reads and writes to one side of a magneto-optical disk at a time. For example, a commercial magneto-optical storage device presently available provides access to one side of a 130 mm double sided 2.6 ISO gigabyte magneto-optical disk, a 40 ms disk access time, and a data transfer rate of 4.6 MB/Sec. N. Yamada (US Patent No. 5,255,260) discloses a low-profile flying optical head for accessing an upper and lower surface of a plurality of optical disks. The flying optical head disclosed by Yamada uses a static mirror or prism for delivering light to and receiving light from a phase-change optical disk. While the static optics described by Yamada provides access to both surfaces of a plurality of phase-change optical disks contained within a fixed volume, use of the optics disclosed by Yamada is inherently limited by how small the optics can be made. Consequently, the number of optical disks that can be manufactured to function within a given volume is also limited. Another shortcoming relates to the use of static folding mirrors. This approach imposes a limit on track servo bandwidth by requiring the entire optical head assembly to move in order to change the location of a focused optical spot. This same limitation applies to the flying magneto-optical head disclosed by Murakami et al. in US Patent No. 5, 197,050. In general, the larger the mass of the element used to perform fine track servoing, the lower the servo bandwidth becomes and the lower the track density that can be read or written.
A method for moving a folding prism or mirror with a miniature galvanometer actuator for fine tracking has been disclosed by C. Wang in US Patent 5,243,241. The galvanometer consists of bulky wire coils and a rotatable magnet mounted on a linear actuator arm attached to a flying magneto-optical head, but not mounted on the slider body itself. This design limits the tracking servo bandwidth and achievable track density due to its size and weight. Its complexity also increases the cost and difficulty of manufacture.
What is needed is an improved magneto-optical flying head that is compact, thus allowing an increase in the number of magneto-optical disks that can be placed within a given volume as compared to the prior art. The improved flying optical head should preferably provide a high numerical aperture, a reduced head mass, a very high resonance frequency fine track servoing device thus producing a very fine track servo bandwidth, and be relatively easy to manufacture. Additionally, the flying magneto-optical head should improve upon magneto-optical disk drive access times, data transfer rates, and usable magneto-optical disk track densities.
Summary of the Invention The present invention functions to improve data storage and retrieval in a system based on a Flying Magneto-Optical (FMO) head that preferably provides a high numerical aperture, reduced head mass, high fine track servo bandwidth, increased magneto-optical disk track density, reduced data access time, increased data transfer rates, an increase in the number of magneto-optical disks accessible in a given volume, and the ability to read and write to both sides of each disk to be used. In the preferred embodiment, the mechanical architecture of a magneto-optical storage device incorporates a low profile head into a magneto-optical data system which uses a Winchester type rotary actuator arm, suspension, and air bearing technology. In the preferred embodiment the laser optics assembly couples an optical light source to one or more head arms which each support an optical head for writing and reading data for disk storage media. In the preferred embodiment during writing, lighting is delivered through an individual Single Mode Polarization Maintaining (SMPM) optical fiber to a respective magneto- optical head for the purpose of locally heating the surface of a rotating magneto-optical (MO) storage media, thereby producing a "hot spot." A magnetic coil embedded in the optical head is used to produce a magnetic field that in turn spontaneously magnetizes the region within the hot spot with a vertical orientation either up or down. Thus, as the MO storage medium rotates, the applied magnetic field is modulated so as to encode digital data as a pattern of "up or down" magnetic domain orientations. During read out, light at a lower intensity is delivered from the individual SMPM optical fibers to an FMO head for the purpose of probing the rotating storage media with a focused optical spot. The readout is programmed in such a way that the magnetization direction of the medium at the location of the focused optical spot alters an optical polarization of the light via the magneto-optic KERR effect. In this way, the pattern of up or down magnetization orientations representative of the stored digital data modulates the polarization of the light reflected from the MO storage media. The reflected light signal from the storage media then couples back through the FMO head to a differential amplifier for decoding.
The beam of laser light transmitted from the optical fiber to the optical head is reflected onto a steerable micro-machined folding mirror. The reflected light from the folding mirror is directed through an embedded micro-objective lens such as a GRIN lens. In the preferred embodiment, fine tracking and short seeks to adjacent tracks are performed by rotating the micro-machined mirror about an axis of rotation. In this way a focused optical spot is scanned back and forth in a direction which is approximately parallel to the radial direction of a storage disk. Use of a micro-machined steerable mirror makes possible a light weight, cost-efficient, FMO head with MO storage media having extremely high data densities.
Brief Description of the Drawings FIG. 1 is a pictorial view of a preferred magneto- optical storage device;
FIG. 2 is a schematic view showing the laser/ optics assembly of the magneto-optical storage device of FIG. 1;
FIG. 3 shows a top view of the flying magneto-optical head of FIG. l ;
FIG. 4 is a side view of the flying magneto-optical head of FIG. 3;
FIG. 5 is a front view of the flying magneto-optical head of FIG. 3; FIG. 6 is side view showing the light path through the magneto- optical head of FIG. 4;
FIG. 7 is a side view schematic diagram showing details of the magneto-optical head of FIG. 4;
FIG. 8 is a perspective view showing a preferred micro-machined mirror of the assembly of FIG. 1;
FIG. 9 is a perspective view showing the magneto-optical head of the preferred embodiment; and
FIG. 10 is a perspective view showing the magneto-optical head of the preferred embodiment.
Detailed Description Of the Preferred Embodiments Referring now to FIG. 1 , an embodiment of a magneto-optical storage device is shown. In the present invention, the mechanical architecture of magneto-optical storage device 100 incorporates Flying Magneto-Optical (FMO) head technology with Winchester-type rotary actuator arm, suspension, and air bearing technology in a Magneto- Optical (MO) data storage system. In the preferred embodiment, magneto-optical storage device 100 includes laser-optics assembly 110, a Single-Mode Polarization Maintaining (SMPM) optical fiber 130, a phase compensator 120, a fiber optic switch 150, an actuator magnet and coil 145, a plurality of SMPM optical fibers 140, a plurality of head arms 160, a plurality of suspensions 165, a plurality of MO storage media 180, and a plurality of FMO heads 170. Each of the plurality of MO storage media 180 are preferably mounted on a spindle 185 for continuous rotation at a constant angular velocity and each of the plurality of FMO heads 170 are preferably attached via a respective flexible suspension 165 and head arms 160 to the electromagnetic actuator magnet and coil 145 Those skilled in the art will recognize that MO storage device 100 may comprise as few as one FMO head 170 and one MO storage medium 180 or an upper and lower FMO head 180 per a plurality of MO storage media 180.
Referring now also to FIG. 2, laser/optics assembly 1 10 includes a laser optical source, a differential photodiode detector system and associated optical components, preferably as a separate subassembly 1 10 or alternatively as a hybrid integrated circuit component. In the preferred embodiment, laser-optics assembly 1 10 further includes a laser diode 255 polarized optical light source that is a 30-40 mw laser diode or diode-pumped micro-chip laser operating in the visible or near ultraviolet region (preferably in the vicinity of 635 nm), a leaky beam splitter 245, collimating optics 250 that are used before passing the laser light from the laser diode 255 to a leaky beam splitter 245, and a coupling lens 240 that is preferably a Gradient Refractive Index (GRIN) lens that focuses outgoing light from leaky beam splitter 245 into a Single-Mode Polarization-Maintaining (SMPM) optical fiber 130 feed.
In the preferred embodiment, phase compensator 120 is used to compensate for relative phase fluctuations that occur between inherent dual polarization modes of each of polarization-maintaining optical fibers 130 and 140. Each of the polarization modes of optical fibers 130 and 140 experience different refractive indices because of an inherent birefringence of the fibers. For example, relative phase fluctuations may arise because of a slight variation in a difference between the two refractive indices caused by changes in temperature, pressure, and mechanical motion of each of optical fibers 130 and 140. These fluctuations may be sensed by laser-optics assembly 1 10, and before significant changes occur, a feedback servo (not shown) adjusts the phase compensator to cancel the fluctuation. In this way, an optical path formed by optical fibers 130 and 140, to and from the flying magneto-optical head 155, may be treated similar to a free-space optical path in terms of its polarization properties.
In the preferred embodiment, phase compensator 120 includes a piezoelectric cylindrical shell, preferably made of a piezoelectric material such as lead zirconate titanate, to form a phase modulator and that has a height preferably less than its diameter to provide a low- profile shape suitable for use in a compact magneto-optical storage system with reduced electrical capacitance for faster operation. Optical fiber 130 may be attached to the circumference of phase compensator 203 with an ultraviolet-curing epoxy or similar adhesive. In the preferred embodiment, metal electrodes are deposited on flat ends of the cylinder to reduce capacitance so that a voltage applied across the electrodes acts to induce an expansion of the shell in a radial direction, thereby stretching optical fiber 130. The stretching action serves to provide phase modulation. To minimize mechanical stress on the optical fiber 130, the diameter of the phase compensator 120 is preferably greater than a few hundred times the fiber cladding diameter of the optical fiber 130. For example, a fiber cladding diameter of approximately 80 μm corresponds to a phase compensator 120 diameter in the vicinity of 10 to 40 mm.
In the preferred embodiment, fiber optic switch 150 accepts single-mode PM optical fiber 130 at an input port and routes the light emanating from this fiber to one of the single-mode PM optical fibers 140 at an output port. The switching properties of fiber optic switch 150 are bi-directional so that light propagating back to the switch 150 along any one of the SMPM optical fibers 140 at the output port may also be routed to the optical fiber 130 at the input port. The SMPM optical fibers 140 from the fiber optic switch 150 are preferably routed along respective head arms 160 and suspensions 165 to respective flying magneto-optical heads 170. In the preferred embodiment, there is one SMPM optical fiber 140 per FMO head 170, and the fiber optic switch 150 is used to select which magneto-optical head 170 is active for reading or writing a respective surface of MO storage media 180. In the preferred embodiment, during writing, light is delivered through an individual optical fiber 140 to a respective FMO head 170 for the purpose of locally heating a respective surface of a rotating magneto-optical storage media 180, thereby producing a "hot spot." A magnetic coil embedded on FMO head 170 (subsequently discussed in more detail) is used to produce a magnetic field that in turn spontaneously magnetizes the region within the hot spot with a vertical orientation either up or down. Thus, as the MO storage medium 180 rotates, the applied magnetic field is modulated so as to encode digital data as a pattern of "up or down" magnetic domain orientations. During readout, polarized light at a lower intensity is delivered through an SMPM optical fiber 140 to a respective FMO head 170 for the purpose of probing rotating storage medium 180 with a focused optical spot. The readout is performed in such a way that the magnetization direction of MO storage medium 180 at the location of the focused spot alters an optical polarization of the light via the magneto-optic Kerr effect. In this way, the pattern of up or down magnetization orientations representative of the stored digital data modulates the polarization of the light reflected from the MO storage medium 180. The reflected light signal from the MO storage medium 180 then couples back through the FMO head 170, one of the plurality of SMPM optical fibers 140, and the fiber optic switch 150, finally reaching two photodiode detectors 215 for conversion into electronic format by differential amplifier 210.
Referring now to FIG. 3 a diagram is shown illustrating top view details of a flying magneto-optical head 170. In the preferred embodiment, each flying magneto-optical head 170 includes a small slider body 330. The FMO head 170 further includes a v-groove 360 for holding a SMPM fiber 350, a steerable micro-machined folding mirror 340, and a magnetic coil 310.
Referring also now to FIG. 4, a side view of the flying magneto optical head 170 of FIG. 3 is shown. FIG. 5 shows a front view of the same FMO head 170. In the preferred embodiment, head 170 utilizes an air bearing surface 510 flying above or below a coated upper surface of an MO storage medium 180. A polarized beam of laser light is transmitted through the SMPM optical fiber 350 to the steerable micro- machined folding mirror 340. The axis of the v-groove, and hence the axis of the fiber 350 lying in the v-groove, is approximately parallel to the medium 180 surface. Light exiting the fiber 350 is reflected by the micro-machined folding mirror 340 at an average angle of approximately ninety degrees to the axis of optical fiber 350. The reflected light is directed through an embedded micro-objective lens such as a GRIN lens 420. In the preferred embodiment, fine tracking and short seeks to adjacent tracks are performed by rotating the mirror 340 about a rotation axis 410 (shown in Fig. 4). In this way a focused optical spot 440 is scanned back and forth in a direction 520 which is approximately parallel to the radial direction of the medium 180. As the actuator arm 160 moves the slider body 330 back and forth across the surface of the medium 180, the position of the slider body may become skewed slightly such that the direction 520 is not precisely parallel to the radial direction of the MO storage medium 180. Although not precisely parallel, the skew angle is sufficiently small that a substantial component of scanning direction 520 lies along the radial direction of the storage medium 180.
Referring now also to FIG. 6, a side view is shown of the preferred lens 420 of the present invention. The light reflected from folding mirror 340 is collected by a focusing optic comprising an objective GRIN lens 420 that functions to focus the reflected light onto a surface of the MO storage medium 180. The position of optical fiber 350 within v-groove 360 may be adjusted, thereby changing the distance from the end of the SMPM optical fiber 350 to mirror 340. Relocating the position of the SMPM optical fiber 350 within v-groove 360 effectively adjusts the location of the focal point of light 630 exiting lens 420. Once fiber 350 is positioned for proper focus on the surface of medium 180, the fiber may be secured in place by means of ultraviolet (UV) curing epoxy or similar adhesive. Use of a GRIN lens 420 provides a simple compact cylindrical shape, allowing the lens to be inserted into a hole in the slider body 330 easily. To minimize spherical aberration and achieve diffraction- limited focusing, the lens 420 is polished to assume a plano-convex shape with the convex surface 650 being a simple spherical shape. The thickness 640 and radius of curvature of the lens 420 depends on a number of factors including the magnitude of the refractive index gradient, the wavelength of light, the numerical aperture of the SMPM fiber 350, and the desired focused optical spot 440 size as determined by the effective numerical aperture of the lens 420. In the preferred embodiment, the lens 420 thickness 640 is approximately 170 - 500 μm, the radius of curvature is approximately 150 - 400 μm, and the lens diameter 620 is approximately 200 - 500 μm.
While the preferred embodiment illustrated in Figs. 3-6 discloses a single element objective lens comprising a GRIN lens, it will be appreciated by those skilled in the art that additional objective optics may also be used to enhance the properties of the lens 420. For example, the focusing objective optics may include either an aplanatic lens or a solid immersion lens in conjunction with the GRIN lens 420. Use of such an additional lens element achieves a larger numerical aperture and hence a smaller focused optical spot 440 size. A smaller spot 440 size permits higher areal data densities to be written to and read from the MO storage medium 180.
Micro-optic lenses made by molding glass or plastic may also be used in place of the GRIN lens 420. For example, two molded planoconvex aspherical lens may be combined by placing the two convex surfaces toward one another to provide a miniature lens system with high numerical aperture and good off-axis performance as the mirror 340 is rotated. In a dual aspherical optical design, light would be approximately collimated between the two optical elements thus, a quarter wave plate could be placed between the two elements without requiring additional lenses. In another embodiment, a single molded spherical lens with low numerical aperture (0.2 - 0.4) may be used in conjunction with an aplanatic or solid immersion lens to yield an optical focusing system with relatively high numerical aperture (greater than 0.6). From a manufacturing perspective, molded lenses are attractive because they can be produced in high volume at low cost. One method disclosed here for mass production involves molding a lens array and subsequently sectioning of the array by diamond saw cutting or laser cutting to obtain individual lenses. Regarding the aforementioned two-lens design, two molded plano-convex lens arrays may be mated by means of tapered fittings before sectioning to ensure accurate lens alignment.
Referring now also to FIG. 7, a side view schematic diagram is shown of the head 170 details of FIG. 4. In the preferred embodiment, magnetic coil 310 is embedded below the GRIN lens 420 as part of FMO head 170. Magnetic coil 310 creates a magnetic field with a large component in a direction normal (i.e., perpendicular) to the MO storage medium 180. An etch hole 740 or groove, into which the lens 420 is be inserted, is etched from the top and stopped at a predetermined depth. Before etch hole 740 is fabricated, a small diameter light passage 720 opening is formed on the bottom of the slider body 330. During fabrication, the depth and diameter of light passage 720 is made to provide a clear optical path for a focused light beam. Light passage 720 is preferably conical in shape with a cone angle approximately equal to that of the focused cone of polarized light (approximately 37 degrees in half-angle for a numerical aperture of 0.6). In this way, a shelf 730 region is formed for supporting the lens 420 while also allowing a planar magnetic coil 310 to be deposited within a recessed area which is etched on the bottom side of the shelf. In the preferred embodiment, the diameter of light passage 720 is sufficiently large to accommodate off-axis steering of the polarized light.
In the preferred embodiment, the planar coil 310 delivers a magnetic field perpendicular to a MO storage medium 180 with a magnitude of approximately 170 Oe of either polarity at the magnetic storage layer of the MO storage medium 180, and comprises 2-3 layers with 5- 10 plated conductor turns per layer. The number of layers and turns per layer is a function of the spacing between the coil 310 and the magnetic recording layer (typically in the range from 5 - 20 μm). In the preferred embodiment, the layer separation is approximately 6 μm, the plated conductor coil 310 loops have a radial pitch of about 5 μm, and the coil current required to generate a magnetic field of approximately 170 Oe is approximately 50-70 mA (zero-to-peak). The coil switching time is on the order of 10 nsec or less as dictated by the coil inductance (approximately 200 nH or less) and the driving electronics, and the coil 310 diameter ranges from about 10 μm in the innermost region to about 80 μm at the periphery, depending on the aforementioned gap between the coil and magnetic recording layer. Electrical coil leads 710 are preferably routed along the wall of hole 740 or through a separate hole in the slider body (not shown).
Referring now to FIG. 8, a perspective view of a preferred embodiment of the micro-machined mirror 340 is shown. In a preferred embodiment, mirror 340 is a torsional mirror comprising a silicon substrate 810, drive electrodes 825 and 830, bonding pads 815 and 820, a bonded silicon plate 850, and a thin film flexure layer 845 made from a material such as silicon dioxide, silicon nitride, or silicon. The mirror 340 may be fabricated using micromachining techniques to yield a reflective inner torsional reflective area 835, comprising flexure layer 845 on top and silicon plate layer 855 on bottom for mechanical rigidity, and supported by flexure layer hinges 840. Reflective area 835 may be metalized with gold or a similar substance to increase the optical reflectivity and to improve the electrostatic actuation of the mirror. In the preferred embodiment, mirror 340 has a resonant frequency approximately in the range from 50 to 200 kHz, as determined by the particular geometry and material properties of the mirror. In the preferred embodiment, mirror 340 is approximately square with an approximate outer linear dimension in the range from 100 - 170 μm and a thickness of approximately 2 - 50 μm. In the preferred embodiment, inner reflective area 835 has an approximate outer linear dimension in the range from 25 - 200 μm and a thickness of approximately 1 - 20 μm. Preferably, mirror 340 may be driven torsionally without any excessive transverse motion. In an exemplary embodiment, the reflective area 835 is preferably on the order of 100 μm on a side, the resonant frequency is preferably greater than 100 kHz, and the maximum physical angular deflection is preferably 2 degrees. In addition, the mirror 340 should preferably not warp either statistically or dynamically upon actuation and the maximum stress upon electrostatic deflection should preferably be well below the expected yield stress of the material used to construct the mirror (for example: silicon, silicon dioxide, silicon nitride, and aluminum).
The mirror 340 is operated by applying a differential voltage to the drive electrodes 825 and 830. The differential voltage on electrodes 825 and 830 results in an electrostatic force on reflective area 835. The reflective area 835 rotates about the hinges 840 enabling reflected light to be directed and scanned back and forth about the surface of medium 180. Operation of the mirror 340 is discussed further with reference to FIG. 10 below. Referring now to FIG. 9, a perspective view is shown of the flying magneto-optical head 170 comprising a slider body 330 and mirror support 910. In the preferred embodiment, a mirror support 910 includes electrode pads 915 and 920 that provide an electrical contact point for application of a differential voltage to the corresponding bonding pads 815 and 820 located on mirror 340. Mirror support 10 additionally includes access holes 925 and 930 that function to provide a clear optical path from SMPM optical fiber 350, to mirror reflective area 835, and subsequently to lens 420, as previously discussed above. In the preferred embodiment, mirror support 910 provides mirror 340 a 45 degree support surface. Those skilled in the art will understand that mirror support 910 may be attached to slider body 330 and manufactured using any number of techniques such as micromachining the slider body 330 and mirror support 910 separately, then adhesively bonding the two pieces together. In another embodiment, a 45 degree angle may be created using other techniques such as leaning the mirror assembly against a suitably dimensioned slider having suitably dimensioned steps 940 and 945.
Referring now to FIG. 10 a steerable mirror 340 is shown mounted to a mirror support 910. An application of a differential voltage to electrode pads 915 and 920 functions to steer a beam of laser light supplied by SMPM optical fiber 350. The steerable micro- machined mirror 400 is used to change the propagation angle of the beam of polarized laser light before transmission to an objective lens 420. Movement of a resultant focal point of light 630 along a radial direction 520 of the storage medium 180 is used for track following and as well as for short seeks from one data track to another. In the preferred embodiment, track following may be accomplished by using combined coarse and fine tracking servo techniques. A sampled sector servo format may be used to define tracks. These servo marks may include either embossed pits stamped into the medium or magnetic marks read similar to data marks. In the case of embossed pits, those skilled in the art will recognize that the differential amplifier 210 output of the laser optics assembly 110 should be supplemented with an adder circuit. Coarse tracking may be maintained by continuously adjusting a current to an actuator coil (part of actuator magnet and coil 145 shown in Figure 1) for controlling the position of a head arm suspension 165 while fine tracking may be accomplished by continuously adjusting an angular deflection of the steerable mirror 340.
The use of a steerable micro-machined mirror is advantageous because it offers a method for very fast manipulation of an optical beam. This approach facilitates high-speed track following and short seeks for much improved data access times. Such improvements over conventional head technology make possible high areal densities by enabling the use of very narrow track pitches. The FMO head 170 design is intrinsically confocal in nature. During readout, the reflected light from the MO storage medium 180 is coupled back into the SMPM optical fiber 140 which acts as the aperture in a confocal system. One of the benefits arising from the use of confocal optics include very high depth resolution along the optical axis as well as improved transverse resolution. Another advantage of the confocal system is that light reflected from objective optics surfaces is not collected so that anti- reflection coating may not be necessary. This is particularly advantageous in a design that uses an aplanatic lens and some nonzero working distance. The high depth resolution allows for very close spacing of the layers in a multi-layer media (not shown) with low crosstalk between layers, while the improved transverse resolution functions to provide detection of smaller storage media marks and sharper storage medium mark edges than would otherwise be the case in a non-confocal system.
The storage device 100 architecture and FMO head design illustrated in Figures 1- 10 are representative of one approach to storing information on high-density MO storage media. It will be appreciated by those skilled in the art that various permutations of the present invention may also be implemented to achieve substantially the same goals. For example, various types of fiber optic switches (e.g., micro- mechanical, electro-optical, thermo-optical) may be utilized. In addition, the flying magneto-optical head design may be modified for use with a free space optical input beam, thereby eliminating optical fibers 140. Also, the focusing objective lens need not be limited to a GRIN lens because other micro-objective lenses (such as molded aspheres, holographic lenses, binary or other diffractive optical lenses) can also be utilized. The present invention may also be used as a read only or a write once flying optical head, or alternatively a flying optical head. Aspects of the present invention will be recognized by those skilled in the art as applicable to compact disk (CD) and digital video disks (DVD). Thus, those skilled in the art will also recognize that the present invention has aspects which are applicable to all optical storage systems.
Whereas many other alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after reading the foregoing description, it is understood that the particular embodiment shown and described by way of illustration is in no way to be considered limiting.

Claims

What is Claimed is:
1. An assembly containing storage media, the assembly further comprising: an energy source; and at least one head, the head further comprising a steerable micro- machined actuator for coupling energy between the energy source and the storage media.
2. The assembly of Claim 1 , wherein the energy source is a laser diode.
3. The assembly of Claim 1 , wherein the energy source is a diode- pumped micro-chip laser.
4. The assembly of Claim 1, wherein the assembly comprises a plurality of heads and a corresponding plurality of storage media.
5. The assembly of Claim 1, wherein the energy source is coupled to the steerable micro-machined actuator by an optical coupler.
6. The assembly of Claim 1 , wherein the assembly is a magneto- optical disk drive.
7. The assembly of Claim 1 , wherein the energy source is a single- mode polarization-maintaining fiber optic cable.
8. The assembly of Claim 1 , wherein the coupling distance between the energy source and the storage media can be adjusted.
9. The assembly of Claim 1 , further comprising a support arm wherein the support arm further comprises a v-groove for holding a fiber optic cable.
10. The assembly of Claim 1, further comprising a support arm wherein the support arm further comprises a slider rail mechanism for enabling the head to move about the support arm.
1 1. The assembly of Claim 1 , wherein the head further comprises a lens for coupling the energy between the steerable micro-machined actuator and the storage media.
12. The assembly of Claim 11 , wherein the lens is disposed along an optical axis between the steerable micro-machined actuator and the storage media.
13. The assembly of Claim 1 1 , wherein the lens is a GRIN lens.
14. The assembly of Claim 1 1 , wherein the lens is used in a confocal optical system.
15. The assembly of Claim 1 1 , wherein the lens is a plano-convex GRIN lens.
16. The assembly of Claim 1, wherein the head is disposed parallel to a surface of the storage media.
17. The assembly of Claim 1 , wherein the storage media is disk media.
18. The assembly of Claim 1, further comprising a magnetic coil element which coordinates with the energy source to enable the storage of data in the storage media.
19. The assembly of Claim 18, wherein the coil is contained within the head.
20. A head device comprising: a light source; and a steerable micro-miniature actuator for directing light received from the light source.
21. The head of Claim 20, wherein the light source is a laser diode.
22. The head of Claim 20, wherein the light source is a fiber optic cable.
23. The head of Claim 22, further comprising a support arm wherein the support arm comprises a v-groove for holding the fiber optic cable.
24. The head of Claim 20, further comprising a support arm wherein the support arm further comprises a slider rail mechanism for enabling the head to move about the support arm.
25. The head of Claim 24, wherein the head is a flying magneto- optical head and the support arm is a rotary Winchester- type actuator arm.
26. The head of Claim 20, wherein the micro-miniature actuator is scanned in a direction approximately parallel to the radial direction of a storage disk.
27. A method for transferring data on a storage medium comprising: transmitting an energy from an energy source; providing the energy to a micro-machined actuator; and directing the energy to a specific location on the storage medium by steering the micro-machined actuator.
28. The method according to Claim 27, wherein the energy is directed through a GRIN lens.
29. The method of Claim 27, wherein the lens is disposed along an optical axis between the micro-machined actuator and the storage media.
30. The method of Claim 27, wherein the lens is used in a confocal optical system.
31. The method of Claim 27, wherein the micro-machined actuator is disposed parallel to a surface of the storage medium.
32. The method of Claim 27, wherein the storage medium is a disk medium.
33. The method of Claim 32, wherein the disk medium is double- sided.
34. A system for transferring data on storage medium comprising: means for transmitting an energy from an energy source; means for providing the energy to a micro-machined actuator; and means for directing the energy to a specific location on the storage medium by steering the micro-machined actuator.
35. The system according to Claim 34, wherein the means for directing the energy is a micro-machined steerable mirror.
36. The system according to Claim 34, wherein in the system is a confocal optical system.
37. The system according to Claim 34, wherein the micro-machined actuator is steered to scan in a direction approximately parallel to the radial direction of the storage medium.
38. An assembly containing storage media, the assembly further comprising: an energy source; a coupler for receiving energy from the energy source; and at least one head, the head further comprising a steerable micro- machined actuator for receiving the energy from the coupler and directing the energy to the storage media.
PCT/US1997/015094 1996-08-27 1997-08-27 Flying optical head with dynamic mirror WO1998009284A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97938648A EP0939955B1 (en) 1996-08-27 1997-08-27 Flying optical head with dynamic mirror
DE69726598T DE69726598D1 (en) 1996-08-27 1997-08-27 FLYING OPTICAL HEAD WITH DYNAMIC MIRROR
JP51188598A JP4642162B2 (en) 1996-08-27 1997-08-27 Optical flying head using a movable mirror

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US2580196P 1996-08-27 1996-08-27
US60/025,801 1996-08-27
US08/731,214 US6044056A (en) 1996-07-30 1996-10-10 Flying optical head with dynamic mirror
US08/731,214 1996-10-10

Publications (1)

Publication Number Publication Date
WO1998009284A1 true WO1998009284A1 (en) 1998-03-05

Family

ID=26700170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/015094 WO1998009284A1 (en) 1996-08-27 1997-08-27 Flying optical head with dynamic mirror

Country Status (7)

Country Link
US (2) US6044056A (en)
EP (1) EP0939955B1 (en)
JP (1) JP4642162B2 (en)
KR (1) KR100530244B1 (en)
CN (1) CN1230278A (en)
DE (1) DE69726598D1 (en)
WO (1) WO1998009284A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0951015A2 (en) * 1998-04-13 1999-10-20 Aerial Imaging Corporation An optical or magneto-optic head and method of making the same
EP0953975A2 (en) * 1998-04-27 1999-11-03 Samsung Electronics Co., Ltd. Optical pickup device
US6075673A (en) * 1997-05-05 2000-06-13 Read-Rite Corporation Composite slider design
US6392220B1 (en) 1998-09-02 2002-05-21 Xros, Inc. Micromachined members coupled for relative rotation by hinges
JP2002525691A (en) * 1998-09-18 2002-08-13 シーゲイト テクノロジー エルエルシー Micromachined mirror with extensible resilient member
KR100429841B1 (en) * 2001-07-19 2004-05-04 삼성전자주식회사 Optical head providing GRIN lens
KR100746571B1 (en) * 2000-02-18 2007-08-06 소니 가부시끼 가이샤 Slider for optical head, method for preparation thereof and recording and/or reproducing apparatus
US7804655B2 (en) 2006-08-21 2010-09-28 Tdk Corporation Thermally assisted magnetic head
US7876646B2 (en) 2006-12-28 2011-01-25 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US7940486B2 (en) 2006-08-31 2011-05-10 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US7957085B2 (en) 2006-08-31 2011-06-07 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US7974043B2 (en) 2006-08-31 2011-07-05 Tdk Corporation Thermally assisted magnetic head
US8077556B2 (en) 2007-02-26 2011-12-13 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US8179747B1 (en) 2011-02-28 2012-05-15 Rohm Co., Ltd. Thermally assisted magnetic head
US10614841B1 (en) 2018-11-30 2020-04-07 Sae Magnetics (H.K.) Ltd. Thermally assisted magnetic head, method for reducing reflected light, head gimbal assembly, and hard disk drive

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243350B1 (en) * 1996-05-01 2001-06-05 Terastor Corporation Optical storage systems with flying optical heads for near-field recording and reading
US6034938A (en) * 1996-07-30 2000-03-07 Seagate Technology, Inc. Data storage system having an optical processing flying head
US6775100B1 (en) * 1997-05-05 2004-08-10 Seagate Technology Llc Laser assisted track width definition and radial control with magnetic recording
US6324149B1 (en) * 1997-05-27 2001-11-27 Ricoh Company, Ltd. Optical-pick-up device achieving accurate positioning of objective lens and solid-immersion lens and method of forming same
US6473383B1 (en) * 1999-03-09 2002-10-29 Seagate Technology, Inc. Single source optical disc data storage system
US6535473B1 (en) * 1999-04-13 2003-03-18 Seagate Technology Llc Optical heads manufacturable in wafer form
KR100317283B1 (en) * 1999-04-15 2001-12-22 구자홍 apparatus for optical recording/reading using near field
JP2000357335A (en) * 1999-06-14 2000-12-26 Olympus Optical Co Ltd Optical pickup
US6104048A (en) * 1999-06-30 2000-08-15 Iomega Corporation Electrostatic discharge protection for magneto-resistive heads
US6963530B1 (en) * 2000-02-01 2005-11-08 Research Investment Network, Inc. Near-field optical head system with integrated slider and laser
KR100370016B1 (en) * 2000-06-02 2003-01-29 엘지전자 주식회사 optical information record micro mirror and method for fabricating the same and method for optical pick up apparatus using the same
US6438290B1 (en) * 2000-06-22 2002-08-20 Eastman Kodak Company Micro-aspheric collimator lens
US6647164B1 (en) 2000-10-31 2003-11-11 3M Innovative Properties Company Gimbaled micro-mirror positionable by thermal actuators
US6711318B2 (en) 2001-01-29 2004-03-23 3M Innovative Properties Company Optical switch based on rotating vertical micro-mirror
US6943980B2 (en) * 2001-02-08 2005-09-13 Seagate Technology Llc Electrostatic track following using patterned media
US7136547B2 (en) * 2001-03-30 2006-11-14 Gsi Group Corporation Method and apparatus for beam deflection
US7129601B2 (en) 2001-03-30 2006-10-31 Gsi Group Corporation Apparatus for controlled movement of an element
US20020181069A1 (en) * 2001-03-30 2002-12-05 Gsi Lumonics Corporation Free space optical switch
US7054851B2 (en) * 2001-06-25 2006-05-30 Siemens Medical Solutions Health Services Corporation Communication data format for use in data storage and retrieval
WO2003001512A2 (en) * 2001-06-25 2003-01-03 Trid Store Ip, Llc Optical reading device for writing/reading on/from multi-layer optical disks
JP2003132567A (en) * 2001-10-23 2003-05-09 Funai Electric Co Ltd Optical disk device
KR100446729B1 (en) * 2001-11-30 2004-09-01 엘지전자 주식회사 Apparatus for near field optical recorder
US6975580B2 (en) * 2001-12-18 2005-12-13 Interntional Business Machines Corporation Optical aperture for data recording having transmission enhanced by waveguide mode resonance
US6982844B2 (en) * 2001-12-18 2006-01-03 International Business Machines Corporation Optical aperture for data recording having transmission enhanced by surface plasmon resonance
US6717227B2 (en) * 2002-02-21 2004-04-06 Advanced Microsensors MEMS devices and methods of manufacture
US6858911B2 (en) * 2002-02-21 2005-02-22 Advanced Micriosensors MEMS actuators
US6904197B2 (en) * 2002-03-04 2005-06-07 Corning Incorporated Beam bending apparatus and method of manufacture
WO2004008441A2 (en) * 2002-07-10 2004-01-22 Koninklijke Philips Electronics N.V. Optical recording and reading system, optical data storage medium and use of such medium
US7027700B2 (en) * 2002-09-30 2006-04-11 Seagate Technology Llc Planar waveguide for heat assisted magnetic recording
US7483229B2 (en) * 2004-12-08 2009-01-27 Seagate Technology Llc Optical coupling to data recording transducer
US7626894B2 (en) * 2005-04-13 2009-12-01 Seagate Technology Llc Heat assisted magnetic recording light delivery with fixed laser and rotating mirror
US7796487B2 (en) * 2005-05-10 2010-09-14 Seagate Technology Llc Optical system for data storage devices
US7773342B2 (en) * 2006-01-30 2010-08-10 Tdk Corporation Thin-film magnetic head having near-field-light-generating portion with trapezoidal end
JP4738267B2 (en) * 2006-06-29 2011-08-03 東芝ストレージデバイス株式会社 Information recording device
JP4093285B2 (en) * 2006-08-23 2008-06-04 コニカミノルタオプト株式会社 Optical element and optical head
KR100842898B1 (en) * 2007-01-29 2008-07-03 삼성전자주식회사 Structure for light coupling in heat assisted magnetic recording
JP5184065B2 (en) * 2007-12-04 2013-04-17 セイコーインスツル株式会社 Recording head and information recording / reproducing apparatus
US9129634B1 (en) 2014-06-17 2015-09-08 HGST Netherlands B.V. Integrated compound DBR laser for HAMR applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460890A2 (en) * 1990-06-06 1991-12-11 Texas Instruments Incorporated Optical tracking system
EP0460889A2 (en) * 1990-06-06 1991-12-11 Texas Instruments Incorporated Optical tracking system
EP0588344A2 (en) * 1992-09-18 1994-03-23 Texas Instruments Incorporated Device for writing to and reading from optical storage media
WO1995007184A1 (en) * 1993-09-10 1995-03-16 Imperial Chemical Industries Plc Optical data recordal
WO1996007950A1 (en) * 1994-09-09 1996-03-14 Deacon Research Optical power splitter with electrically-controlled switching structures
EP0715302A1 (en) * 1994-12-02 1996-06-05 Deutsche Thomson-Brandt Gmbh Device for contactless optical playback of information during recording on or reproduction from a record carrier with recording tracks

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737236A (en) * 1972-01-03 1973-06-05 Corning Glass Works Magnetooptic readout system utilizing optical waveguide fibers
US4003059A (en) * 1974-02-07 1977-01-11 Canon Kabushiki Kaisha Optical recorder having focus controlling means
JPS53108403A (en) * 1977-03-04 1978-09-21 Sony Corp Mirror supporting device for video disc
NL187413C (en) * 1978-03-16 1991-09-16 Philips Nv REGISTRATION CARRIER, REGISTRATION CARRIER, METHOD FOR REGISTRATION CARRIER BODY AND DEVICE FOR CARRYING OUT A METHOD AND READING A REGISTRATED CARRIER.
JPS59117180A (en) * 1982-12-23 1984-07-06 Toshiba Corp Semiconductor light-emitting element
US4581529A (en) * 1983-08-15 1986-04-08 At&T Bell Laboratories Read/write system for optical disc apparatus with fiber optics
EP0180767B1 (en) * 1984-10-11 1990-01-31 Hitachi, Ltd. Optical lens device
FR2579044B1 (en) * 1985-03-13 1988-02-26 Commissariat Energie Atomique DEVICE FOR MULTIPLEXING MULTIPLE LIGHT SIGNALS IN INTEGRATED OPTICS
US4799210A (en) * 1986-11-05 1989-01-17 Unisys Corporation Fiber optic read/write head for an optical disk memory system
US4897711A (en) * 1988-03-03 1990-01-30 American Telephone And Telegraph Company Subassembly for optoelectronic devices
US4945400A (en) * 1988-03-03 1990-07-31 At&T Bell Laboratories Subassembly for optoelectronic devices
US5105408A (en) * 1988-05-12 1992-04-14 Digital Equipment Corporation Optical head with flying lens
US5396477A (en) * 1988-09-21 1995-03-07 Hitachi, Ltd. Light spot positioning method and optical disc memory apparatus employing the same
JP2591099B2 (en) * 1988-09-29 1997-03-19 旭硝子株式会社 Laser resonance type optical pickup
JPH02278533A (en) * 1989-04-19 1990-11-14 Eastman Kodatsuku Japan Kk Optical head device for optical disk
JPH07118105B2 (en) * 1989-06-02 1995-12-18 日立電線株式会社 Optical fiber type magneto-optical head
US5153870A (en) * 1989-06-29 1992-10-06 Digital Equipment Corporation Rotary head actuator for optical disk
US5161134A (en) * 1989-06-29 1992-11-03 Digital Equipment Corporation Method for increasing linear bit density in magneto-optical storage media
US5255260A (en) * 1989-07-28 1993-10-19 Matsushita Electric Industrial Co., Ltd. Optical recording apparatus employing stacked recording media with spiral grooves and floating optical heads
US4954789A (en) * 1989-09-28 1990-09-04 Texas Instruments Incorporated Spatial light modulator
JPH03122855A (en) * 1989-10-06 1991-05-24 Fuji Xerox Co Ltd Floating head for magneto-optical recording type recorder
US5243241A (en) * 1990-03-15 1993-09-07 Digital Equipment Corporation Totally magnetic fine tracking miniature galvanometer actuator
US5625483A (en) * 1990-05-29 1997-04-29 Symbol Technologies, Inc. Integrated light source and scanning element implemented on a semiconductor or electro-optical substrate
US5083857A (en) * 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5233587A (en) * 1990-06-29 1993-08-03 Kabushiki Kaisha Toshiba Rotary-type optical head
US5202863A (en) * 1990-09-11 1993-04-13 Matsushita Electric Industrial Co., Ltd. Magneto-optical disk unit compatible with different two types of magneto-optical disks and a magnetic-field generator suitable thereof
US5331454A (en) * 1990-11-13 1994-07-19 Texas Instruments Incorporated Low reset voltage process for DMD
US5152597A (en) * 1990-12-03 1992-10-06 Eastman Kodak Company Magneto-optic readout using a polarization-preserving optical fiber
US5218582A (en) * 1990-12-03 1993-06-08 Eastman Kodak Company Magneto-optic readout using a polarization-preserving optical guide
JPH04341932A (en) * 1991-05-20 1992-11-27 Canon Inc Optical head
JPH0520723A (en) * 1991-07-09 1993-01-29 Fuji Xerox Co Ltd Floating head of magneto-optical recording type recorder
EP0539889A3 (en) * 1991-10-30 1993-07-28 Steinbichler, Hans, Dr. Micromechanical actuator
US5233456A (en) * 1991-12-20 1993-08-03 Texas Instruments Incorporated Resonant mirror and method of manufacture
US5351229A (en) * 1991-12-24 1994-09-27 International Business Machines Corporation Tribo-attractive contact slider for an optical read/write system
US5253245A (en) * 1992-01-21 1993-10-12 International Business Machines Corporation Optical data storage tracking system
JP2617057B2 (en) * 1992-02-27 1997-06-04 富士通株式会社 Optical disk drive
US5212582A (en) * 1992-03-04 1993-05-18 Texas Instruments Incorporated Electrostatically controlled beam steering device and method
US5199090A (en) * 1992-03-06 1993-03-30 Hewlett-Packard Company Flying magnetooptical read/write head employing an optical integrated circuit waveguide
US5504731A (en) * 1992-03-06 1996-04-02 Quantum Corporation Remote fine positioning mechanism
KR100230225B1 (en) * 1992-11-30 1999-11-15 윤종용 Optical pickup using light emittion lamp
EP0614101A3 (en) * 1993-02-03 1994-10-19 Canon Kk Optical deflector and method of manufacturing the same.
DE4404635C2 (en) * 1993-02-17 1998-06-18 Hitachi Ltd Floating optical pickup head integrally formed with a light source and a photodetector and optical disc device with such
US5327416A (en) * 1993-02-22 1994-07-05 Lee Neville K Surface selection mechanism for optical storage system
US5422872A (en) * 1993-03-08 1995-06-06 Maxoptix Corporation Telecentric rotary actuator in an optical recording system
US5432763A (en) * 1993-03-15 1995-07-11 Hewlett-Packard Company Subminiature rotary actuator optical head
US5519677A (en) * 1993-03-22 1996-05-21 Sony Corporation Biaxial actuator for driving an objective lens in both focusing and tracking directions
CA2132646A1 (en) * 1993-10-25 1995-04-26 Jerome Swartz Integrated scanner on a common substrate
WO1995013638A1 (en) * 1993-11-08 1995-05-18 International Business Machines Corporation Hybrid external coupled cavity semiconductor laser device
US5563871A (en) * 1993-11-09 1996-10-08 International Business Machines Corporation. Rotary actuator with a magnetic bias bearing configuration for rotating an optical element in an optical data storage system
US5583688A (en) * 1993-12-21 1996-12-10 Texas Instruments Incorporated Multi-level digital micromirror device
JP3636742B2 (en) * 1993-12-22 2005-04-06 オムロン株式会社 Optical scanner, optical scanning device, code information reading device using the optical scanning device, and POS system
US5444566A (en) * 1994-03-07 1995-08-22 Texas Instruments Incorporated Optimized electronic operation of digital micromirror devices
JPH07296410A (en) * 1994-04-26 1995-11-10 Nec Corp Optical head device on which laser beam is incident through optical fiber
US5737302A (en) * 1994-11-10 1998-04-07 Kabushiki Kaisha Toshiba Galvanomirror and optical disk drive using the same
US5742419A (en) * 1995-11-07 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior Universtiy Miniature scanning confocal microscope

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460890A2 (en) * 1990-06-06 1991-12-11 Texas Instruments Incorporated Optical tracking system
EP0460889A2 (en) * 1990-06-06 1991-12-11 Texas Instruments Incorporated Optical tracking system
EP0588344A2 (en) * 1992-09-18 1994-03-23 Texas Instruments Incorporated Device for writing to and reading from optical storage media
WO1995007184A1 (en) * 1993-09-10 1995-03-16 Imperial Chemical Industries Plc Optical data recordal
WO1996007950A1 (en) * 1994-09-09 1996-03-14 Deacon Research Optical power splitter with electrically-controlled switching structures
EP0715302A1 (en) * 1994-12-02 1996-06-05 Deutsche Thomson-Brandt Gmbh Device for contactless optical playback of information during recording on or reproduction from a record carrier with recording tracks

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075673A (en) * 1997-05-05 2000-06-13 Read-Rite Corporation Composite slider design
EP0951015A2 (en) * 1998-04-13 1999-10-20 Aerial Imaging Corporation An optical or magneto-optic head and method of making the same
EP0951015A3 (en) * 1998-04-13 2002-01-02 Aerial Imaging Corporation An optical or magneto-optic head and method of making the same
EP0953975A2 (en) * 1998-04-27 1999-11-03 Samsung Electronics Co., Ltd. Optical pickup device
EP0953975A3 (en) * 1998-04-27 1999-11-17 Samsung Electronics Co., Ltd. Optical pickup device
US6114689A (en) * 1998-04-27 2000-09-05 Samsung Electronics Co., Ltd. Optical pickup device
SG87028A1 (en) * 1998-04-27 2002-03-19 Samsung Electronics Co Ltd Optical pickup device
US6392220B1 (en) 1998-09-02 2002-05-21 Xros, Inc. Micromachined members coupled for relative rotation by hinges
JP2002525691A (en) * 1998-09-18 2002-08-13 シーゲイト テクノロジー エルエルシー Micromachined mirror with extensible resilient member
KR100746571B1 (en) * 2000-02-18 2007-08-06 소니 가부시끼 가이샤 Slider for optical head, method for preparation thereof and recording and/or reproducing apparatus
US6958968B2 (en) 2001-07-19 2005-10-25 Samsung Electronics Co., Ltd. Optical head with GRIN lens
KR100429841B1 (en) * 2001-07-19 2004-05-04 삼성전자주식회사 Optical head providing GRIN lens
US7804655B2 (en) 2006-08-21 2010-09-28 Tdk Corporation Thermally assisted magnetic head
US7940486B2 (en) 2006-08-31 2011-05-10 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US7957085B2 (en) 2006-08-31 2011-06-07 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US7974043B2 (en) 2006-08-31 2011-07-05 Tdk Corporation Thermally assisted magnetic head
US7876646B2 (en) 2006-12-28 2011-01-25 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US8077556B2 (en) 2007-02-26 2011-12-13 Tdk Corporation Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US8179747B1 (en) 2011-02-28 2012-05-15 Rohm Co., Ltd. Thermally assisted magnetic head
US10614841B1 (en) 2018-11-30 2020-04-07 Sae Magnetics (H.K.) Ltd. Thermally assisted magnetic head, method for reducing reflected light, head gimbal assembly, and hard disk drive

Also Published As

Publication number Publication date
KR100530244B1 (en) 2005-11-22
KR20000035877A (en) 2000-06-26
EP0939955B1 (en) 2003-12-03
JP4642162B2 (en) 2011-03-02
DE69726598D1 (en) 2004-01-15
EP0939955A1 (en) 1999-09-08
CN1230278A (en) 1999-09-29
US6414911B1 (en) 2002-07-02
JP2002511176A (en) 2002-04-09
US6044056A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
EP0939955B1 (en) Flying optical head with dynamic mirror
US6181673B1 (en) Slider design
US6058094A (en) Flying magneto-optical head with a steerable mirror
US6178150B1 (en) Offset optics for use with optical heads
US6781927B1 (en) Data storage system having an optical processing flying head
US5999303A (en) Micro-machined mirror using tethered elements
US6081499A (en) Magneto-optical data storage system having an optical-processing flying head
US6850475B1 (en) Single frequency laser source for optical data storage system
US5850375A (en) System and method using optical fibers in a data storage and retrieval system
US6226233B1 (en) Magneto-optical system utilizing MSR media
JP2001525972A (en) Optical head using micromachining
KR100388540B1 (en) Low-birefringence optical fiber for use in an optical data storage system
KR100441894B1 (en) Micro-integrated near-field optical recording head and optical recording system using the same
US5903525A (en) Coil for use with magneto-optical head
US5940549A (en) Optical system and method using optical fibers for storage and retrieval of information
WO1999024858A1 (en) A dual actuator optical positioning system
KR20010042356A (en) Optical data storage system with means for reducing noise from spurious reflections
KR100381936B1 (en) Optical data storage system utilizing polarization maintaining optical fiber
WO1998009280A1 (en) Single-frequency laser source for optical data storage system
US6154438A (en) Storage disk having surface variations that vary minimally in height relative to a datum
TW432370B (en) Assembly containing storage media, compact flying head device, and method and system for transferring data on a storage medium
Heanue Micro-optical requirements for optically assisted Winchester recording heads

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197574.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997938648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997001585

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997938648

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997001585

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997938648

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997001585

Country of ref document: KR