WO1998025110A1 - Mikromechanisch gefertigte flussrestriktionsvorrichtung - Google Patents

Mikromechanisch gefertigte flussrestriktionsvorrichtung Download PDF

Info

Publication number
WO1998025110A1
WO1998025110A1 PCT/EP1997/006342 EP9706342W WO9825110A1 WO 1998025110 A1 WO1998025110 A1 WO 1998025110A1 EP 9706342 W EP9706342 W EP 9706342W WO 9825110 A1 WO9825110 A1 WO 9825110A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
flow restriction
restriction device
membrane
main surface
Prior art date
Application number
PCT/EP1997/006342
Other languages
English (en)
French (fr)
Inventor
Peter Woias
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19650116A external-priority patent/DE19650116C1/de
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to DE59701675T priority Critical patent/DE59701675D1/de
Priority to EP97951190A priority patent/EP0943076B1/de
Priority to DK97951190T priority patent/DK0943076T3/da
Priority to US09/319,169 priority patent/US6263741B1/en
Publication of WO1998025110A1 publication Critical patent/WO1998025110A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/48Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by a capillary element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/38Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule
    • G01F1/383Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction the pressure or differential pressure being measured by means of a movable element, e.g. diaphragm, piston, Bourdon tube or flexible capsule with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices

Definitions

  • the present invention relates to a flow restriction device and, in particular, to a micromechanically manufactured flow restriction device.
  • Micromechanically manufactured fluid channels are known, for example, in the field of liquid metering.
  • a simple dosing system consists, for example, of a fluid reservoir, a pressure sensor and a fluid channel with a defined flow resistance.
  • Micromechanically manufactured multisensors for flow, temperature and pressure measurement are also known in the art. Such systems have a micromechanical capillary on the back of a substrate and piezoelectric pressure sensors arranged on the front of a substrate. Disadvantages of such known systems are the complex manufacture and furthermore the high cost of the piezoelectric pressure sensors.
  • a flow sensor having a capillary for the continuous measurement of gas volume flows is known.
  • a pressure drop across a capillary causes a differential pressure between an input storage space and an output storage space.
  • This differential pressure is detected by means of a membrane having a detunable resistance measuring bridge and used as a measure of a gas volume flow.
  • EP-A-0435237 describes an electronic microvalve which consists of a silicon substrate and a free-standing, flexible, dielectric closure plate, a space being arranged between the closure plate and the silicon substrate.
  • the silicon substrate has an inlet opening, while outlet openings are provided in the closure plate in such a way that the closure plate leaves the inlet opening open in a non-excited state and closes it in an excited state.
  • DE-A-3814150 also relates to a valve arrangement made of microstructured components. With this valve arrangement, an actuating element can be moved relative to a flow path distributor in order to thereby open or close fluid paths depending on the switching position.
  • the object of the present invention is to create an inexpensive and simple micromechanically manufactured flow restriction device with at least one integrated pressure sensor.
  • the present invention provides a micromechanically manufactured flow restriction device in which a passage opening or an inlet opening is formed in a first main surface of a substrate.
  • a channel is formed in the second main surface of the substrate and is fluidly connected to the inlet opening.
  • a membrane formed in the substrate is in fluid communication with the inlet opening, a membrane electrode being formed at least on the membrane.
  • a cover device is applied to the second major surface of the substrate such that the cover device defines, along with the channel, a flow resistance of the flow restriction device, the cover device having a counter electrode that is spaced apart from the membrane electrode such that the membrane electrode and the counter electrode are one define capacitive pressure transducer.
  • a second passage opening or outlet opening which is fluidly connected to the channel, is also formed in the first main surface of the substrate and is in fluid communication with a second membrane formed in the substrate and provided with a membrane electrode.
  • the covering device has a second counter electrode, which is opposite the second membrane electrode at a distance therefrom, such that the second membrane electrode and the second counter electrode define a capacitive pressure sensor.
  • the micromechanically manufactured structure thus has a flow restriction device and two pressure sensors, one of the pressure sensors being formed in the flow direction in front of the channel defining the flow resistance, while the other pressure sensor is formed in the flow direction behind the channel defining the flow resistance.
  • the covering device serves both to define the restriction of the flow restriction Striction device and as a counter electrode of the at least one pressure sensor, which is designed as a capacitive sensor.
  • the substrate and the cover device are required.
  • Both the covering device and the substrate are preferably formed from silicon, although it is also possible for the covering device to be made of pyrex glass, which has the same thermal expansion coefficient as silicon.
  • the capacitive sensors formed in the flow restriction device according to the invention are inexpensive to manufacture and have a low temperature response. Compensation electronics are therefore not required. No further electronics are preferably arranged on the flow measurement chip, which is formed by the micromechanically manufactured flow restriction device, since such a flow measurement chip is disinfected with gamma rays. Such gamma radiation would destroy electronics on the chip, for example MOS-FETs and the like.
  • the flow restriction device according to the invention can, for example, advantageously be used in a metering system which works on the overpressure principle.
  • a temperature sensor is also arranged in the region of the channel of the flow restriction device, so that by means of the flow restriction device according to the invention, together with a suitable control device, it is possible to compensate for temperature effects.
  • the metering rate can also be influenced externally.
  • Areas of application for the flow restriction device according to the invention include medical technology, for example drug dosing, chemical analysis and reaction technology, for example fine dosing of chemicals, mechanical engineering, for example in lubricating oil dosing, and biotechnology, for example dosing nutrient media in fermentation processes.
  • FIG. 1 is a cross-sectional view of a preferred embodiment of a flow restriction device according to the present invention.
  • Fig. 2 is a plan view of the flow restriction device shown in Fig. 1 without a cover device.
  • the micromechanically manufactured flow restriction device has a substrate 10, which in the preferred embodiment consists of silicon.
  • An inlet opening 12 and an outlet opening 14 are formed in the main surface of the substrate 10 directed downward in FIG. 1.
  • a recess 16 is formed in the second main surface of the substrate 10, as shown in FIG. 1 of the upper surface, which defines the channel of the flow restriction device.
  • the recess 16 is formed in the substrate such that it has a connection to the inlet opening 12 and the outlet opening 14, which serves as a fluid connection between the inlet opening 12 and the channel 16 and the channel 16 and the outlet opening 14 when the component is used later .
  • two recesses 18 and 19 are further defined in the second main surface of the substrate 10, which are at least partially arranged opposite the inlet opening 12 and the outlet opening 14.
  • a membrane 22 is formed by the part of the substrate 10 remaining between the recess 18 and the inlet opening 12.
  • a further membrane 24 is formed by the part of the substrate 10 remaining between the recess 20 and the outlet opening 14.
  • a membrane electrode 26 is formed on the membrane 22.
  • the membrane electrode 26 can be formed, for example, by applying a metallization layer.
  • a membrane electrode 28 is formed on the membrane 24.
  • the membrane electrode 28 can in turn be formed, for example, by means of a metallization layer.
  • An insulation layer may also be applied between the metallization that forms the electrodes 26 and 28 and the substrate.
  • the membrane electrodes 26 and 28 are preferably extended outwards in order to enable them to be electrically connected.
  • a covering device 30 is now applied to the second main surface of the substrate 10 and, together with the channel 16, defines the flow resistance of the flow restriction device in the region in which the channel 16 is formed in the substrate 10. This flow resistance is determined by the cross-sectional area of the channel 16, which is defined by the underside and the two side surfaces of the recesses and the underside of the covering device 30.
  • the cover device 30 also has on its underside two counter electrodes 32 and 34 which are arranged at a distance from the membrane electrodes 26 and 28.
  • the spacing of the membrane electrodes from the counter electrodes is ensured in the embodiment shown in FIG. 1 by the recesses 18 and 20 in the substrate 10.
  • the membrane electrodes could be formed on the second main surface of the substrate, the covering device 30 having recesses in the region in which the counter electrodes 32 and 34 are formed, so that there is again a defined distance between the respective membrane electrodes and counter electrodes.
  • both the covering device 30 and the substrate 10 it is possible for both the covering device 30 and the substrate 10 to have recesses in order to define the distance between the membrane electrodes and the counter electrodes.
  • the counter electrodes 32 and 34 are also preferably led out laterally in order to make an electrical connection of the to enable the same.
  • the membrane electrodes 26 and 28 and the counter electrodes 32 and 34 overlap at a defined distance from one another by a defined area, so that they define a predetermined capacitance. If there is now a pressurized fluid at the inlet opening 12, the membrane 22 and thus the elastic electrode 26 present thereon deforms, as a result of which the capacity of the electrode arrangement 26 and 32 is changed. The pressure at the inlet opening 12 can thus be determined. In the same way, it is possible to determine the pressure at the outlet opening 14.
  • FIG. 2 shows a top view of the flow restriction device shown in FIG. 1, in which the cover device is omitted.
  • FIG. 2 shows how the membrane electrodes 26 and 28 are provided with supply lines 40 and 42, which are used for the electrical connection of the electrodes to an evaluation circuit or control device.
  • the channel 16 has a triangular cross section.
  • the cross-section can alternatively also have a different cross-section, for example a trapezoidal cross-section. 2 also shows the fluid connection 44 between the inlet opening 12 and the channel 16 and the fluid connection 46 between the channel 16 and the outlet opening 14.
  • the micromechanically produced flow restriction device described above can be manufactured, for example, from silicon by means of conventional micromechanical method steps.
  • the recesses 12 and 14 are trapezoidally etched into the first main surface of the substrate 10, for example by means of KOH etching, as shown.
  • the channel 16 with a triangular or trapezoidal cross section and the recesses 18 and 20 are etched into the second main surface of the substrate, for example by means of KOH etching.
  • There- through both the channel 16 and the membranes for the pressure sensors are defined.
  • recesses 18 and 20 are etched in the second main surface of the substrate, recesses for the feed lines 40 and 42 are preferably etched simultaneously.
  • the membrane electrodes are subsequently formed in the recesses 18 and 20.
  • the membrane electrodes are preferably formed by applying a metallization to the surfaces of the recesses 18 and 20, it being possible for the metallization for the feed lines 40 and 42 to be applied at the same time.
  • the membrane electrodes on the top of the membranes 22 and 24 can be produced by a suitable doping.
  • the cover device is then attached to the top of the substrate 10 using conventional chip connection techniques.
  • the covering device 30 is attached in such a way that the counter electrodes 32 and 34 formed on or in the lower surface thereof are at least partially overlapping the membrane electrodes 22 and 24.
  • the covering device 30 likewise consists of silicon, although it is advantageously possible to use Pyrex glass for the upper cover 30, since Pyrex glass has the same thermal expansion coefficient as silicon. If the top cover is made of silicon, an insulation layer can be arranged between the counter electrodes 32 and 34 and the top cover.
  • micromechanical injection molding methods can also be used for producing the same.
  • the substrate and / or the covering device are made of plastic, wherein the substrate and the covering device could be connected to one another using suitable known techniques.
  • one of the two openings is not formed in the substrate but in the covering device. Then only one outlet opening would be provided in the substrate, such a flow restriction device also having only one pressure sensor, which is formed in the manner described above.
  • the microflow restriction can furthermore have a coating on all parts which come into contact with a fluid.
  • the coating protects the parts that come into contact with an aggressive fluid, for example, from this fluid.
  • the underside of the covering device in the region of the channel, the channel formed in the substrate, the inlet and outlet openings and the surface of the membrane that comes into contact with the fluid can be provided with such a protective layer.
  • the micromechanically manufactured flow restriction device according to the present invention can be connected to existing systems by means of known fluidic couplings.
  • a one-part or multi-part housing can be used, which has so-called Luer connecting elements and internal fluid channels that match the inlet and outlet geometry of the flow restriction device.
  • the flow restriction device is placed on these inlet and outlet openings by a sealing assembly process, e.g. Glue or an assembly with O-rings, put on.

Abstract

Bei einer mikromechanisch gefertigten Flußrestriktionsvorrichtung ist in einer ersten Hauptoberfläche eines Substrats (10) eine Durchlaßöffnung (12) gebildet. In einer zweiten Hauptoberfläche des Substrats (10) ist ein Kanal (16) gebildet, der mit der Durchlaßöffnung (12) fluidmäßig verbunden ist. Eine in dem Substrat (10) gebildete Membran (22) steht mit der Durchlaßöffnung (12) in Fluidverbindung und weist eine zumindest auf der Membran (22) gebildete Membranelektrode (26) auf. Eine Abdeckvorrichtung (30) ist derart auf die zweite Hauptoberfläche des Substrats (10) aufgebracht, daß die Abdeckvorrichtung (30) zusammen mit dem Kanal (16) einen Flußwiderstand der Flußrestriktionsvorrichtung definiert, wobei die Abdeckvorrichtung (30) eine Gegenelektrode (32) aufweist, die der Membranelektrode (26) beabstandet von derselben gegenüberliegt, derart, daß die Membranelektrode (26) und die Gegenelektrode (32) einen kapazitiven Druckaufnehmer definieren.

Description

Mikromechanisch gefertigte Flußrestriktionsvorrichtung
Beschreibung
Die vorliegende Erfindung bezieht sich auf eine Flußrestriktionsvorrichtung und insbesondere auf eine mikromechanisch gefertigte Flußrestriktionsvorrichtung.
Mikromechanisch gefertigte Fluidkanäle sind beispielsweise auf dem Gebiet der Flüssigkeitsdosierung bekannt. Ein einfaches Dosierungssystem besteht beispielsweise aus einem Fluidreservoir, einen Druckgeber und einem Fluidkanal mit einem definierten Flußwiderstand.
In der Technik sind ferner mikromechanisch gefertigte Multi- sensoren für eine Fluß-, Temperatur- und Druck-Messung bekannt. Derartige Systeme weisen eine mikromechanische Kapillare auf der Rückseite eines Substrats und auf der Vorderseite eines Substrats angeordnete piezoelektrische Drucksensoren auf. Nachteilig an derartigen bekannten Systemen sind die aufwendige Herstellung und ferner die hohen Kosten der piezoelektrischen Drucksensoren.
Aus der DD-A-285188 ist ein eine Kapillare aufweisender Durchflußsensor zur kontinuierlichen Messungen von Gasvolumenströmen bekannt. Bei diesem bekannten Durchflußsensor wird durch einen Druckabfall über eine Kapillare ein Differenzdruck zwischen einem Eingangsstauraum und einem Aus- gangsstauraum bewirkt. Dieser Differenzdruck wird mittels einer eine verstimmbare Widerstandsmeßbrücke aufweisenden Membran erfaßt und als Maß für einen Gasvolumenstrom verwendet.
In den Patent Abstracts of Japan, Sect. P, Vol. 17 (1993), Nr. 550 (P-1624) , ist ein Flußratenerfassungselement beschrieben, das einen kleinen Kanal aufweist, wobei innerhalb der Kanalwände desselben ein Druckerfassungselement angeordnet ist. Der erfaßte Druck dient zum Regeln der Flüssigkeitsflußrate, wobei eine feine Steuerung der Transportgeschwindigkeit der Flüssigkeit erreicht werden kann.
Die Druckschrift "Einsatz von Siliziumsensoren in Prozeßmeßgeräten zur Druckmessung - Stand und Tendenzen" , Technisches Messen 59 (1992) 9, S. 340 - 346, enthält eine Erläuterung von piezoresistiven und kapazitiven Siliziumsensoren und deren Anwendungsgebieten.
In der EP-A-0435237 ist ein elektronisches Mikroventil beschrieben, das aus einem Siliziumsubstrat und einer freistehenden, flexiblen, dielektrischen Verschlußplatte besteht, wobei zwischen der Verschlußplatte und dem Siliziumsubstrat ein Zwischenraum angeordnet ist. Das Siliziumsubstrat weist eine Einlaßöffnung auf, während in der Veschlußplatte Auslaßöffnungen derart vorgesehen sind, daß die Verschlußplatte die Einlaßöffnung in einem nicht-angeregten Zustand offen läßt und in einem angeregten Zustand verschließt.
Die DE-A-3814150 bezieht sich ebenfalls auf eine Ventilanordnung aus mikrostrukturierten Komponenten. Bei dieser Ventilanordnung ist ein Betätigungselement relativ zu einem Strömungswegverteiler bewegbar, um dadurch je nach Schaltposition Fluidwege freizugeben oder zu verschließen.
Ausgehend von dem genannten Stand der Technik besteht die Aufgabe der vorliegenden Erfindung darin, eine kostengünstige und einfache mikromechanisch gefertigte Flußrestriktionsvorrichtung mit zumindest einem integrierten Drucksensor zu schaffen.
Diese Aufgabe wird durch eine mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß Anspruch 1 gelöst. Die vorliegende Erfindung schafft eine mikromechanisch gefertigte Flußrestriktionsvorrichtung, bei der in einer ersten Hauptoberfläche eines Substrats eine Durchlaßöffnung bzw. eine Einlaßöffnung gebildet ist. In der zweiten Hauptoberfläche des Substrats ist ein Kanal gebildet, der mit der Einlaßöffnung fluidmäßig verbunden ist. Eine in dem Substrat gebildete Membran steht mit der Einlaßöffnung in Fluidverbindung, wobei zumindest auf der Membran eine Membranelektrode gebildet ist. Eine Abdeckvorrichtung ist auf die zweite Hauptoberfläche des Substrats aufgebracht, derart, daß die Abdeckvorrichtung zusammen mit dem Kanal einen Flußwiderstand der Flußrestriktionsvorrichtung definiert, wobei die Abdeckvorrichtung eine Gegenelektrode aufweist, die der Membranelektrode beabstandet von derselben gegenüberliegt, derart, daß die Membranelektrode und die Gegenelektrode einen kapazitiven Druckaufnehmer definieren.
Bei einem bevorzugten Ausführungsbeispiel der vorliegenden Erfindung ist in der ersten Hauptoberfläche des Substrats ferner eine mit dem Kanal fluidmäßig verbundene zweite Durchlaßöffnung bzw. Auslaßöffnung gebildet, die mit einer zweiten in dem Substrat gebildeten Membran, die mit einer Membranelektrode versehen ist, in fliudmäßiger Verbindung steht. Die Abdeckvorrichtung weist eine zweite Gegenelektrode auf, die der zweiten Membranelektrode beabstandet von derselben gegenüberliegt, derart, daß die zweite Membranelektrode und die zweite Gegenelektrode einen kapazitiven Druckaufnehmer definieren. Bei diesem Ausführungsbeispiel weist die mikromechanische gefertigte Struktur somit eine Flußrestriktionsvorrichtung und zwei Drucksensoren auf, wobei einer der Drucksensoren in Flußrichtung vor dem den Flußwiderstand definierenden Kanal gebildet ist, während der andere Drucksensor in Flußrichtung hinter dem den Flußwiderstand definierenden Kanal gebildet ist.
Bei der mikromechanisch gefertigten Flußrestriktionsvorrichtung gemäß der vorliegenden Erfindung dient die Abdeckvorrichtung sowohl zur Definition der Restriktion der Flußre- striktionsvorrichtung als auch als Gegenelektrode des zumindest einen Drucksensors , der als kapazitiver Sensor ausgebildet ist. Somit werden nur zwei Chipteile, das Substrat und die Abdeckvorrichtung, benötigt. Vorzugsweise ist sowohl die Abdeckvorrichtung als auch das Substrat aus Silizium gebildet, wobei es jedoch auch möglich ist, daß die Abdeckvorrichtung aus Pyrexglas besteht, das den gleichen thermischen Ausdehnungskoeffizienten wie Silizium aufweist.
Die bei der erfindungsgemäßen Flußrestriktionsvorrichtung gebildeten kapazitiven Sensoren sind kostengünstig herzustellen und weisen einen geringen Temperaturgang auf. Somit wird keine Kompensationselektronik benötigt. Auf dem Flußmeßchip, der durch die mikromechanisch gefertigte Flußrestriktionsvorrichtung gebildet ist, ist vorzugsweise keine weitere Elektronik angeordnet, da ein derartiger Flußmeßchip mit Gammastrahlen desinfiziert wird. Eine solche Gammastrahlung würde eine auf dem Chip befindliche Elektronik, beispielsweise MOS-FETs und dergleichen, zerstören.
Die erfindungsgemäße Flußrestriktionsvorrichtung kann beispielsweise vorteilhaft in einem Dosiersystem, das nach dem Überdruckprinzip arbeitet, eingesetzt werden. Bei einem weiteren Ausführungsbeispiel der vorliegenden Erfindung ist in dem Bereich des Kanals der Flußrestriktionsvorrichtung ferner ein Temperatursensor angeordnet, so daß mittels der erfindungsgemäßen Flußrestriktionsvorrichtung zusammen mit einer geeigneten Steuervorrichtung die Möglichkeit einer Kompensation von Temperatureffekten besteht. Ferner kann in diesem Fall eine externe Beeinflussung der Dosierrate bewirkt werden. Anwendungsgebiete für die erfindungsgemäße Flußrestriktionsvorrichtung umfassen die Medizintechnik, beispielsweise die Medikamentendosierung, die chemische Analytik und Reaktionstechnik, beispielsweise die Feindosierung von Chemikalien, den Maschinenbau, beispielsweise bei der Schmieröldosierung, sowie die Biotechnologie, beispielsweise die Dosierung von Nährmedien in Fermentationsprozessen. Ein bevorzugtes Ausführungsbeispiel der vorliegenden Erfindung wird nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine Querschnittansicht eines bevorzugten Ausfüh- rungsbeispiels einer Flußrestriktionsvorrichtung gemäß der vorliegenden Erfindung; und
Fig. 2 eine Draufsicht der in Fig. 1 dargestellten Flußrestriktionsvorrichtung ohne Abdeckvorrichtung.
Wie in Fig. 1 dargestellt ist, weist die erfindungsgemäße mikromechanisch gefertigte Flußrestriktionsvorrichtung ein Substrat 10 auf, das bei dem bevorzugten Ausführungsbeispiel aus Silizium besteht. In der in Fig. 1 nach unten gerichteten Hauptoberfläche des Substrats 10 sind eine Einlaßöffnung 12 und eine Auslaßöffnung 14 gebildet. In der zweiten Hauptoberfläche des Substrats 10, bei der Darstellung von Fig. 1 der oberen Oberfläche, ist eine Ausnehmung 16 gebildet, die den Kanal der Flußrestriktionsvorrichtung definiert. Die Ausnehmung 16 ist derart in dem Substrat gebildet, daß dieselbe eine Verbindung zu der Einlaßöffnung 12 und der Auslaßöffnung 14 aufweist, die bei der späteren Verwendung des Bauelementes als Fluidverbindung zwischen der Einlaßöffnung 12 und dem Kanal 16 sowie dem Kanal 16 und der Auslaßöffnung 14 dient.
Bei dem in Fig. 1 dargestellten Ausführungsbeispiel sind in der zweiten Hauptoberfläche des Substrats 10 ferner zwei Ausnehmungen 18 und 19 definiert, die zumindest teilweise der Einlaßöffnung 12 und der Auslaßöffnung 14 gegenüberliegend angeordnet sind. Durch den zwischen der Ausnehmung 18 und der Einlaßöffnung 12 verbleibenden Teil des Substrats 10 ist eine Membran 22 gebildet. Durch den zwischen der Ausnehmung 20 und der Auslaßöffnung 14 verbleibenden Teil des Substrats 10 ist eine weitere Membran 24 gebildet. Auf der Membran 22 ist eine Membranelektrode 26 gebildet. Die Membran- elektrode 26 kann beispielsweise durch das Aufbringen einer Metallisierungsschicht gebildet sein. Auf der Membran 24 ist eine Membranelektrode 28 gebildet. Die Membranelektrode 28 kann wiederum beispielsweise mittels einer Metallisierungsschicht gebildet sein. Zwischen der Metallisierung, die die Elektroden 26 und 28 bildet, und dem Substrat kann ferner eine Isolationsschicht angebracht sein. Die Membranelektroden 26 und 28 sind vorzugsweise nach außen hin verlängert, um einen elektrischen Anschluß derselben zu ermöglichen.
Auf die zweite Hauptoberfläche des Substrats 10 ist nun eine Abdeckvorrichtung 30 aufgebracht, die in dem Bereich, in dem der Kanal 16 in dem Substrat 10 gebildet ist, zusammen mit dem Kanal 16 den Flußwiderstand der Flußrestriktionsvorrichtung definiert. Dieser Flußwiderstand ist durch die Querschnittfläche des Kanals 16, die von der Unterseite und den zwei Seitenflächen der Ausnehmungen sowie der Unterseite der Abdeckvorrichtung 30 definiert ist, festgelegt. Die Abdeckvorrichtung 30 weist auf ihrer Unterseite ferner zwei Gegenelektroden 32 und 34 auf, die gegenüber den Membranelektroden 26 und 28 beabstandet von denselben angeordnet sind.
Die Beabstandung der Membranelektroden von den Gegenelektroden ist bei dem in Fig. 1 dargestellten Ausführungsbeispiel durch die Ausnehmungen 18 und 20 in dem Substrat 10 gewährleistet. Alternativ könnten die Membranelektroden jedoch auf der zweiten Hauptoberfläche des Substrats gebildet sein, wobei die Abdeckvorrichtung 30 in dem Bereich, in dem die Gegenelektroden 32 und 34 gebildet sind, Ausnehmungen aufweist, so daß wiederum ein definierter Abstand zwischen den jeweiligen Membranelektroden und Gegenelektroden vorliegt. Ferner ist es möglich, daß sowohl die Abdeckvorrichtung 30 als auch das Substrat 10 Ausnehmungen aufweisen, um den Abstand zwischen den Membranelektroden und den Gegenelektroden zu definieren.
Die Gegenelektroden 32 und 34 sind ebenfalls vorzugsweise seitlich herausgeführt, um einen elektrischen Anschluß der- selben zu ermöglichen. Im Bereich der Membranen 22 und 24 überlappen die Membranelektroden 26 und 28 und die Gegenelektroden 32 und 34 mit einem definierten Abstand zueinander um eine definierte Fläche, so daß dieselben eine vorbestimmte Kapazität festlegen. Liegt nun an der Einlaßöffnung 12 ein unter Druck gesetztes Fluid vor, so verformt sich die Membran 22 und somit die auf derselben vorliegende elastische Elektrode 26, wodurch die Kapazität der Elektrodenanordnung 26 und 32 verändert wird. Somit kann der Druck an der Einlaßöffnung 12 bestimmt werden. In gleicher Weise ist es möglich, den Druck an der Auslaßöffnung 14 zu bestimmen.
In Fig. 2 ist eine Draufsicht der in Fig. 1 dargestellten Flußrestriktionsvorrichtung gezeigt, bei der die Abdeckvorrichtung weggelassen ist. In Fig. 2 ist dargestellt, wie die Membranelektroden 26 und 28 mit Zuführungsleitungen 40 und 42 versehen sind, die zur elektrischen Verbindung der Elektroden mit einer Auswertungsschaltung oder Steuereinrichtung dienen. Wie in Fig. 2 zu sehen ist, weist bei dem dargestellten Ausführungsbeispiel der Kanal 16 einen dreieckigen Querschnitt auf. Der Querschnitt kann jedoch alternativ abhängig vom Herstellungsverfahren auch einen anderen Querschnitt aufweisen, beispielsweise einen trapezförmigen Querschnitt. In Fig. 2 ist ferner die Fluidverbindung 44 zwischen der Einlaßöffnung 12 und dem Kanal 16 sowie die Fluidverbindung 46 zwischen dem Kanal 16 und der Auslaßöffnung 14 zu erkennen.
Die oben beschriebene mikromechanisch gefertigte Flußrestriktionsvorrichtung kann beispielsweise aus Silizium mittels herkömmlicher mikromechanischer Verfahrensschritte gefertigt werden. Dabei werden zunächst die Ausnehmungen 12 und 14 beispielsweise mittels eines KOH-Ätzens wie dargestellt trapezförmig in die erste Hauptoberfläche des Substrats 10 geätzt. In gleicher Weise werden beispielsweise mittels eines KOH-Ätzens der Kanal 16 mit einem dreieckigen oder trapezförmigen Querschnitt und die Ausnehmungen 18 und 20 in die zweite Hauptoberfläche des Substrats geätzt. Da- durch sind sowohl der Kanal 16 als auch die Membranen für die Drucksensoren festgelegt. Beim Ätzen der Ausnehmungen 18 und 20 in der zweiten Hauptoberfläche des Substrats werden vorzugsweise gleichzeitig Ausnehmungen für die Zuführungsleitungen 40 und 42 geätzt.
Nachfolgend werden in den Ausnehmungen 18 und 20 die Membranelektroden gebildet. Die Membranelektroden werden vorzugsweise durch das Aufbringen einer Metallisierung auf den Oberflächen der Ausnehmungen 18 und 20 gebildet, wobei gleichzeitig die Metallisierung für die Zufuhrungsleitungen 40 und 42 aufgebracht werden kann. Alternativ können die Membranelektroden auf der Oberseite der Membranen 22 und 24 durch eine geeignete Dotierung erzeugt werden.
Im Anschluß wird die Abdeckvorrichtung mittels herkömmlicher Chipverbindungstechniken auf der Oberseite des Substrats 10 angebracht. Die Abdeckvorrichtung 30 wird dabei derart angebracht, daß die auf oder in der unteren Oberfläche derselben gebildeten Gegenelektroden 32 und 34 zumindest teilweise die Membranelektroden 22 und 24 überlappend angeordnet sind. Die Abdeckvorrichtung 30 besteht bei dem bevorzugten Ausführungsbeispiel ebenfalls aus Silizium, wobei es jedoch vorteilhaft möglich ist, Pyrex-Glas für die obere Abdeckung 30 zu verwenden, da Pyrex-Glas den gleichen thermischen Ausdehnungskoeffizienten wie Silizium aufweist. Besteht die obere Abdeckung aus Silizium, so kann zwischen den Gegenelektroden 32 und 34 und der oberen Abdeckung eine Isolationsschicht angeordnet sein.
Neben dem oben beschriebenen Verfahren zur Herstellung der erfindungsgemäßen, mikromechanisch gefertigten Flußrestriktionsvorrichtung, können auch mikromechanische Spritzgußverfahren zur Herstellung derselben verwendet werden. Bei derartigen Verfahren werden das Substrat und/oder die Abdeckvorrichtung aus Kunststoff bestehen, wobei das Substrat und die Abdeckvorrichtung mittels geeigneter bekannter Techniken miteinander verbunden sein könnten. In Abweichung von dem beschriebenen bevorzugten Ausführungsbeispiel der vorliegenden Erfindung ist es ferner möglich, daß eine der beiden Öffnungen nicht in dem Substrat sondern in der Abdeckvorrichtung gebildet ist. In dem Substrat wäre dann nur eine Auslaßöffnung vorgesehen, wobei eine derartige Flußrestriktionsvorrichtung auch nur einen Drucksensor, der auf die oben beschriebene Art und Weise gebildet ist, aufweisen würde.
Gemäß der vorliegenden Erfindung kann die Mikroflußrestrik- tion ferner an allen Teilen, die mit einem Fluid in Berührung kommen, eine Beschichtung aufweisen. Die Beschichtung schützt die Teile, die beispielsweise mit einem aggressiven Fluid in Berührung kommen, vor diesem Fluid. Beispielsweise können die Unterseite der Abdeckvorrichtung im Bereich des Kanals, der in dem Substrat gebildete Kanal, die Einlaß- und die Auslaß-Öffnung sowie die mit dem Fluid in Berührung kommende Oberfläche der Membran mit einer solchen Schutzschicht versehen sein.
Die mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß der vorliegenden Erfindung kann mittels bekannter fluidischer Ankopplungen an bestehende Systeme angeschlossen werden. Dazu kann ein ein- oder mehrteiliges Gehäuse verwendet werden, das sogenannte Luer-Verbindungselemente und interne Fluidkanäle passend zur Ein- und Auslaß-Geometrie der Flußrestriktionsvorrichtung aufweist. Die Flußrestriktionsvorrichtung wird auf diese Ein- und Auslaßöffnungen durch ein dichtendes Montageverfahren, z.B. Kleben oder eine Montage mit O-Ringen, aufgesetzt.

Claims

Patentansprüche
1. Mikromechanisch gefertigte Flußrestriktionsvorrichtung mit folgenden Merkmalen:
einer in einer ersten Hauptoberfläche eines Substrats (10) gebildeten Durchlaßöffnung (12);
einem in einer zweiten Hauptoberfläche des Substrats (10) gebildeten Kanal (16) , der mit der Durchlaßöffnung (12) fluidmäßig verbunden ist;
einer in Fluidverbindung mit der Durchlaßöffnung (12) stehenden Membran (22), die in dem Substrat (10) gebildet ist;
einer zumindest auf der Membran (22) gebildeten Membranelektrode (26) ;
einer Abdeckvorrichtung (30) , die auf die zweite Hauptoberfläche des Substrats (10) aufgebracht ist, derart, daß die Abdeckvorrichtung (30) zusammen mit dem Kanal (16) einen Flußwiderstand der Flußrestriktionsvorrichtung definiert, wobei die Abdeckvorrichtung (30) eine Gegenelektrode (32) aufweist, die der Membranelektrode (26) beabstandet von derselben gegenüberliegt, derart, daß die Membranelektrode (26) und die Gegenelektrode (32) einen kapazitiven Druckaufnehmer definieren.
2. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß Anspruch 1, bei der in der Abdeckvorrichtung (30) eine Durchlaßöffnung gebildet ist, die mit dem Kanal (16) fluidmäßig verbunden ist.
3. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß Anspruch 1, bei der in der ersten Hauptoberfläche des Substrats (10) ferner eine zweite Durchlaßöff- nung (14) gebildet ist, die mit dem Kanal (16) fluidmäßig verbunden ist.
4. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß Anspruch 3, bei der in dem Substrat (10) eine mit der zweiten Durchlaßöffnung (14) in fluidmäßiger Verbindung stehende zweite Membran (24) gebildet ist, wobei zumindest auf der zweiten Membran (24) eine zweite Membranelektrode (28) gebildet ist, und bei der die Abdeckvorrichtung (30) eine zweite Gegenelektrode (34) aufweist, die der zweiten Membranelektrode (28) beabstandet von derselben gegenüberliegt, derart, daß die zweite Membranelektrode (28) und die zweite Gegenelektrode (34) einen kapazitiven Druckaufnehmer definieren.
5. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß Anspruch 4, bei der Ausnehmungen (18, 20) zumindest teilweise den Durchlaßöffnungen (12, 14) gegenüberliegend in der zweiten Hauptoberfläche des Substrats gebildet sind, wobei die Membranen (22, 24) durch die Durchlaßöffnungen (12, 14) und die Ausnehmungen (18, 20) definiert sind.
6. Mikromechanisch gefertigte Flußresriktionsvorrichtung gemäß Anspruch 4, bei der die Durchlaßöffnungen (12, 14) derart in der ersten Hauptoberfläche des Substrats (10) gebildet sind, daß sie zusammen mit der zweiten Hauptoberfläche des Substrats (10) die Membranen definieren, wobei die Abdeckvorrichtung in den Bereichen, die den Membranen gegenüberliegen, Ausnehmungen aufweist, in denen die Gegenelektroden angeordnet sind.
7. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß einem der Ansprüche 1 bis 6, bei der das Substrat (10) aus Silizium besteht.
8. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß einem der Ansprüche 1 bis 7, bei der die Abdeck- Vorrichtung (30) aus Silizium besteht.
9. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß einem der Ansprüche 1 bis 7, bei der die Abdeckvorrichtung (30) aus Pyrexglas besteht.
10. Mikromechanisch gefertigte Flußrestriktionsvorrichtung gemäß einem der Ansprüche 1 bis 9 , bei der im Bereich des Kanals (16) ferner ein Temperatursensor vorgesehen ist.
PCT/EP1997/006342 1996-12-03 1997-11-13 Mikromechanisch gefertigte flussrestriktionsvorrichtung WO1998025110A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59701675T DE59701675D1 (de) 1996-12-03 1997-11-13 Mikromechanisch gefertigte flussrestriktionsvorrichtung
EP97951190A EP0943076B1 (de) 1996-12-03 1997-11-13 Mikromechanisch gefertigte flussrestriktionsvorrichtung
DK97951190T DK0943076T3 (da) 1997-11-13 1997-11-13 Mikromekanisk fremstillet strømningsrestriktionsindretning
US09/319,169 US6263741B1 (en) 1996-12-03 1997-11-13 Micromechanically produced flow-restriction device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19650116.4 1996-12-03
DE19650116A DE19650116C1 (de) 1996-12-03 1996-12-03 Mikromechanisch gefertigte Flußrestriktionsvorrichtung
DE29701418.8 1997-01-28
DE29701418U DE29701418U1 (de) 1996-12-03 1997-01-28 Mikromechanisch gefertigte Flußrestriktionsvorrichtung

Publications (1)

Publication Number Publication Date
WO1998025110A1 true WO1998025110A1 (de) 1998-06-11

Family

ID=26031841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006342 WO1998025110A1 (de) 1996-12-03 1997-11-13 Mikromechanisch gefertigte flussrestriktionsvorrichtung

Country Status (3)

Country Link
US (1) US6263741B1 (de)
EP (1) EP0943076B1 (de)
WO (1) WO1998025110A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7096738B2 (en) * 2004-03-18 2006-08-29 Rosemount Inc. In-line annular seal-based pressure device
DE102006002114A1 (de) * 2005-12-22 2007-06-28 Robert Bosch Gmbh Mikromechanisches Sensorelement
EP1970688A3 (de) * 2007-03-16 2010-06-23 CSEM Centre Suisse d'Electronique et de Microtechnique SA Recherche et Développement Druckmessvorrichtung, Herstellungsverfahren dazu und Verwendung davon
CH700906B1 (de) * 2008-04-09 2013-10-31 Suisse Electronique Microtech Durchflusssensor.
JP2010127763A (ja) * 2008-11-27 2010-06-10 Hitachi Ltd 半導体力学量検出センサ及びそれを用いた制御装置
US8677818B2 (en) 2009-03-10 2014-03-25 Sensortechnics GmbH Flow sensing device and packaging thereof
DE102010001537A1 (de) * 2010-02-03 2011-08-04 Robert Bosch GmbH, 70469 Mikromechanisches Sensorelement zur kapazitiven Druckerfassung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814150A1 (de) 1988-04-27 1989-11-09 Draegerwerk Ag Ventilanordnung aus mikrostrukturierten komponenten
DD285188A5 (de) 1989-06-23 1990-12-05 Veb Elektromat Dresden,Dd Durchflusssensor mit kapillare
EP0435237A1 (de) 1989-12-27 1991-07-03 Honeywell Inc. Elektrostatisches Miniaturventil und Verfahren zu seiner Herstellung
JPH05157599A (ja) * 1991-12-04 1993-06-22 Canon Inc 微小液体流量検出素子、及び同素子を用いた微小液体供給装置
US5377524A (en) * 1992-06-22 1995-01-03 The Regents Of The University Of Michigan Self-testing capacitive pressure transducer and method
US5515735A (en) * 1995-01-03 1996-05-14 Motorola, Inc. Micromachined flow sensor device using a pressure difference and method of manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479070A (en) * 1983-06-10 1984-10-23 Sperry Corporation Vibrating quartz diaphragm pressure sensor
US5316619A (en) * 1993-02-05 1994-05-31 Ford Motor Company Capacitive surface micromachine absolute pressure sensor and method for processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814150A1 (de) 1988-04-27 1989-11-09 Draegerwerk Ag Ventilanordnung aus mikrostrukturierten komponenten
DD285188A5 (de) 1989-06-23 1990-12-05 Veb Elektromat Dresden,Dd Durchflusssensor mit kapillare
EP0435237A1 (de) 1989-12-27 1991-07-03 Honeywell Inc. Elektrostatisches Miniaturventil und Verfahren zu seiner Herstellung
JPH05157599A (ja) * 1991-12-04 1993-06-22 Canon Inc 微小液体流量検出素子、及び同素子を用いた微小液体供給装置
US5377524A (en) * 1992-06-22 1995-01-03 The Regents Of The University Of Michigan Self-testing capacitive pressure transducer and method
US5515735A (en) * 1995-01-03 1996-05-14 Motorola, Inc. Micromachined flow sensor device using a pressure difference and method of manufacturing the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"EINSATZ VON SILIZIUMSENSOREN IN PROZESSMESSGERATEN ZUR DRUCKMESSUNG-STAND UND TENDENZEN", TECHNISCHES MESSEN 59, vol. 9, 1992, pages 340-346
BOILLAT, M.A. ET AL.: "A Differential Pressure Liquid Flow Sensor for Flow Regulation and Dosing Systems", PROC. IEEE MICRO ELECTRO MECHANICAL SYSTEMS 1995, 29 January 1995 (1995-01-29) - 2 February 1995 (1995-02-02), NL-AMSTERDAM, pages 350 - 352, XP002060312 *
OOSTERBROEK, R.E. ET AL.: "Designing, Realization and Characterization of a Novel Capacitive Pressure/Flow Sensor", TRANSDUCERS 97. DIGEST OF TECHNICAL PAPERS, vol. 1, 16 June 1997 (1997-06-16) - 19 June 1997 (1997-06-19), US-CHICAGO, pages 151 - 154, XP002060311 *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 550 (P - 1624) 4 October 1993 (1993-10-04) *
PATENT ABSTRACTS OF JAPAN vol. 17, no. 550 <P-1624> 1993
WERTHSCHUETZKY R: "EINSATZ VON SILIZIUMSENSOREN IN PROZESSMESSGERAETEN ZUR DRUCKMESSUNG - STAND UND TENDENZEN", TECHNISCHES MESSEN TM, vol. 59, no. 9, 1 September 1992 (1992-09-01), DE-MÜNCHEN, pages 340 - 346, XP000311729 *

Also Published As

Publication number Publication date
US6263741B1 (en) 2001-07-24
EP0943076B1 (de) 2000-05-10
EP0943076A1 (de) 1999-09-22

Similar Documents

Publication Publication Date Title
EP0951308B1 (de) Medikamenten-dosiersystem
EP1279008B1 (de) Flusssensor für flüssigkeiten
EP2751538B1 (de) Polymerschichtsystem-drucksensorvorrichtung und polymerschichtsystem-drucksensorverfahren
DE19961129B4 (de) Flusssensor eines thermischen Typs
DE102004041388A1 (de) Drucksensorzelle und diese verwendende Drucksensorvorrichtung
DE4405005A1 (de) Mikro-Fluiddiode
DE112010001128T5 (de) Durchflusserfassungsbauelement und dessen verkappung
EP0908703A1 (de) Vorrichtung zur Messung der Masse eines strömenden Mediums
EP1382952B1 (de) Mikromechanischer Druckgeber mit Sensor an Trennmembran des Gehäuses
DE19919398A1 (de) Wärmeempfindlicher Flußratensensor
WO2003027654A2 (de) Sensorbaustein mit einem sensorelement, das von einem heizelement umgeben ist
EP0943076B1 (de) Mikromechanisch gefertigte flussrestriktionsvorrichtung
EP2823274A1 (de) Mikromechanisches messelement
DE19819855A1 (de) Luftmassensensor
EP0956524B1 (de) Dosiervorrichtung
DE102016209150A1 (de) Sensor zur Bestimmung wenigstens eines Parameters eines durch einen Messkanal strömenden fluiden Mediums
DE19650116C1 (de) Mikromechanisch gefertigte Flußrestriktionsvorrichtung
EP0668500A2 (de) Chemischer Mikro-Analysator
DE112013006062T5 (de) Drucksensor und Verfahren zu dessen Fertigung
EP2589945B1 (de) Vorrichtung zur Erfassung eines Drucks eines fluiden Mediums
EP3161441B1 (de) Drucksensor zur erfassung eines drucks eines fluiden mediums in einem messraum
DE102008032309A1 (de) Sensoranordnung zur Messung des Zustands einer Flüssigkeit, insbesondere von Öl
DE10036495C2 (de) Kraftmessvorrichtung in Form eines Biegebalkensensors
DE19754365A1 (de) Integrierter Meßwertaufnehmer
DE102011076693A1 (de) Mikrofluidische Vorrichtung mit elektronischem Bauteil und Federelement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997951190

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09319169

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997951190

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997951190

Country of ref document: EP