WO1998029590A2 - Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same - Google Patents

Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same Download PDF

Info

Publication number
WO1998029590A2
WO1998029590A2 PCT/US1997/023724 US9723724W WO9829590A2 WO 1998029590 A2 WO1998029590 A2 WO 1998029590A2 US 9723724 W US9723724 W US 9723724W WO 9829590 A2 WO9829590 A2 WO 9829590A2
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing material
fibers
primary
softening point
secondary reinforcing
Prior art date
Application number
PCT/US1997/023724
Other languages
French (fr)
Other versions
WO1998029590A3 (en
Inventor
David Martin Jackson
Audrie Tomoko Ono
Pavneet Singh Mumick
William Seal Pomplun
Kenneth Y. Wang
Original Assignee
Kimberly-Clark Worldwide, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly-Clark Worldwide, Inc. filed Critical Kimberly-Clark Worldwide, Inc.
Priority to DE69739313T priority Critical patent/DE69739313D1/en
Priority to KR10-1999-7005905A priority patent/KR100493841B1/en
Priority to EP97954972A priority patent/EP0950134B1/en
Priority to CA 2275418 priority patent/CA2275418A1/en
Priority to BR9713793A priority patent/BR9713793A/en
Priority to AU61302/98A priority patent/AU730627B2/en
Publication of WO1998029590A2 publication Critical patent/WO1998029590A2/en
Publication of WO1998029590A3 publication Critical patent/WO1998029590A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/555Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving by ultrasonic heating
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/407Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties containing absorbing substances, e.g. activated carbon
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • D04H5/03Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/06Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/08Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of fibres or yarns
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/4383Composite fibres sea-island
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43832Composite fibres side-by-side
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/615Strand or fiber material is blended with another chemically different microfiber in the same layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/615Strand or fiber material is blended with another chemically different microfiber in the same layer
    • Y10T442/616Blend of synthetic polymeric and inorganic microfibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]
    • Y10T442/625Autogenously bonded

Definitions

  • the present invention is a continuation-in-part of copending application entitled "WATER-DISPERSIBLE FIBROUS NONWOVEN COFORM COMPOSITES, by Jackson et al., serial number 08/497,629, filed June 30, 1995, and commonly assigned to the assignee of the present invention.
  • the present invention relates to water-dispersible coformed fibrous nonwoven composite structures comprising a primary reinforcing meltspun polymer fiber, a secondary reinforcing staple polymer fiber, and an absorbent material.
  • wet wipes are sheets of fabric stored in a solution prior to use and normally used to wipe the skin.
  • the most common types of wet wipes are baby wipes, typically used to clean the seat area during a diaper change, and adult wipes, used to clean hands, face and bottom.
  • Wet wipes are often made from bonded nonwoven fabrics that have sufficient tensile strength that they will not fall apart during manufacturing or in use, yet have desirable softness characteristics for use on skin in tender areas.
  • Such nonwoven fabrics are commonly manufactured by meltspun processes, such as meltblown and spunbond processes, known to those skilled in the art, because meltspun fabrics can be produced that have the requisite tensile strength and softness.
  • Bonding of nonwoven materials generally builds strength and integrity in nonwoven fabrics.
  • Many conventional bonding systems are used to make nonwoven fabrics, such as, but not limited to, thermal bonding, resin bonding (aqueous or melt), hydroentanglement, and mechanical bonding. These broad classifications can be subdivided into overall treatment or zone treatment such as dots, lines or small areas of patterns. Further, the degree of bonding can be controlled. A high degree of bonding by higher percentage add on or higher energy input usually builds higher strengths and vice versa. However, bonding normally negates the ability for post-use disposal by disintegration and dispersion during toilet flushing.
  • flushable means that the material must not only be able to pass through a commode without clogging it, but the material must also be able to pass through the sewer laterals between a house (or other structure housing the commode) the main sewer system without getting caught in the piping, and to disperse into small pieces that will not create a nuisance to the consumer or in the sewer transport and treatment process.
  • U.S. Patent No. 4,309,469 and 4,419,403 both issued to Varona describe a dispersible binder of several parts.
  • Reissue Patent no. 31,825 describes a two-stage heating process (preheat by infrared) to calendar bond a nonwoven consisting of thermoplastic fibers. Although offering some flexibility, this is still a single thermal bonding system.
  • U.S. Patent No. 4,207,367 issued to Baker describes a nonwoven which is densified at individual areas by cold embossing. The chemical binders are sprayed on and the binders preferentially migrate to the densified areas by capillary action. The non- densified areas have higher loft and remain highly absorbent.
  • Fibrous nonwoven materials and fibrous nonwoven composite materials are widely used as products or as components of products because they can be manufactured inexpensively and can be made to have specific characteristics.
  • One approach has been to mix thermoplastic polymer fibers with one or more types of fibrous material and/or particulates. The mixtures are collected in the form of fibrous nonwoven web composites which may be further bonded or treated to provide coherent nonwoven composites that take advantage of at least some of the properties of each component.
  • U.S. Patent Number 4,100,324 issued July 11, 1978, to Anderson et al. discloses a nonwoven fabric which is generally a uniform admixture of wood pulp and meltblown thermoplastic polymer fibers.
  • Patent Number 3,971,373 issued July 7, 1976, to Braun discloses a nonwoven material which contains meltblown thermoplastic polymer fibers and discrete solid particles. According to this patent, the particles are uniformly dispersed and intermixed with the meltblown fibers in the nonwoven material.
  • U.S. Patent Number 4,429,001 issued January 31, 1984, to Kolpin et al. discloses an absorbent sheet material which is a combination of meltblown thermoplastic polymer fibers and solid superabsorbent particles. The superabsorbent particles are disclosed as being uniformly dispersed and physically held within a web of the meltblown thermoplastic polymer fibers.
  • European Patent Number 0080382 to Minto et al. published June 1, 1983, and European Patent Number 0156160 to Minto et al. published October 25, 1985 also disclose combinations of particles such as superabsorbents and meltblown thermoplastic polymer fibers.
  • an abrasion-resistant fibrous nonwoven structure composed of a matrix of meltblown fibers having a first exterior surface, a second exterior surface and an interior portion with at least one other fibrous material integrated into the meltblown fiber matrix.
  • the concentration of meltblown fibers adjacent to each exterior surface of the nonwoven structure is at least about 60 percent by weight and the concentration of meltblown fibers in the interior portion is less than about 40 percent by weight.
  • Many of the aforementioned admixtures are referred to as "coform" materials because they are formed by combining two or more materials in the forming step into a single structure. Coform materials can also be produced by a spunbond process, such as is disclosed in U.S. Patent No. 4,902,559 to Eschwey et al. issued February 20, 1990.
  • meltblown formation of coform nonwoven material involves injecting an amount of cellulose fibers or blends of cellulose fibers and staple fibers into a molten stream of meltblown fibers.
  • Coform material injected into the fiber stream becomes entrapped or stuck to the molten fibers, which are subsequently cooled or set.
  • the fabric can be bonded by thermally or ultrasonically melting the meltblown fibers to cross-bond the fibers together, imparting desired tensile strength.
  • Such bonding treatment also reduces softness because it reduces freedom of movement between the meltblown fibers in the web structure.
  • the imparting of strength has, heretofore resulted in a diminution of softness (absent additional steps of softening, which affect material properties and add to production costs).
  • the meltblown fibers are preferentially used in water dispersible fabrics because of the low denier fiber produced, fiber strength is compromised. It would be desirable to produce a fabric having desirable strength and softness characteristics, yet be water dispersible.
  • Coform engineered composites can be used in a wide variety of applications including absorbent media for aqueous and organic fluids, filtration media for wet and dry applications, insulating materials, protective cushioning materials, containment and delivery systems and wiping media for both wet and dry applications.
  • Many of the foregoing applications can be met, to varying degrees, through the use of more simplified structures such as absorbent structures wherein only wood pulp fibers are used. This has commonly been the case with, for example, the absorbent cores of personal care absorbent products such as diapers. Wood pulp fibers when formed by themselves tend to yield nonwoven web structures which have very little mechanical integrity and a high degree of collapse when wetted.
  • thermoplastic meltblown fibers greatly enhanced the properties of such structures including both wet and dry tensile strength.
  • coform wiping sheets The very reason why many coform materials provide increased benefits over conventional materials, i.e., the meltblown thermoplastic fiber matrix, is the same reason why such materials are more difficult to recycle or flush.
  • Many wood pulp fiber-based products can be recycled by hydrating and repulping the reclaimed wood pulp fibers.
  • the thermoplastic meltblown fibers do not readily breakup. The meltblown fibers are hard to separate from the wood pulp fibers, and they remain substantially continuous thereby giving rise to the possibility of clogging or otherwise damaging recycling equipment such as repulpers.
  • the present invention provides a water-dispersible fibrous nonwoven composite structure comprising a primary reinforcing polymer material capable of being meltspun into fibers; a secondary reinforcing material comprising staple polymer fibers having an average fiber length less than or equal to about 15 mm; and, an absorbent material, such as pulp.
  • secondary reinforcing material has a softening point about 50°C below to about 50°C above, more preferably equal to or at least about 30°C lower than the softening point of the primary reinforcing material.
  • the primary reinforcing material is present in a concentration of from about 30% to about 35%
  • the secondary reinforcing material is present in a concentration of from about 5% to about 8%
  • the absorbent material is present in a concentration of from about 50% to about 55%.
  • a method of forming a water- dispersible fibrous nonwoven composite structure comprises providing a primary reinforcing material comprising polymer fibers; providing a secondary reinforcing material comprising polymer fibers, the secondary reinforcing material polymer fibers having an average fiber length less than or equal to about 15 mm; providing an absorbent material; mixing the secondary reinforcing material with the absorbent material; forming a fiber stream composed of meltspun primary reinforcing material; adding an effective amount of the mixture of step d) to the fiber stream; attenuating the fiber stream of step f); forming a fibrous nonwoven structure from the fiber stream of step g); and, exposing the nonwoven structure of step h) to a source of energy selected from the group consisting of thermal energy and ultrasonic energy such that the secondary reinforcing fibers soften while the primary reinforcing material remains substantially unsoftened.
  • the limited secondary reinforcing material fiber length reduces the tendency of the final fabric produced to twist or "rope" when flushed down a commode. Also, the limited fiber length promotes dispersion in water into small pieces.
  • the softening point differential between the primary and secondary reinforcing fibers allows for only one or the other material to soften during the thermal or ultrasonic bonding step of fabric formation. This selective softening point control produces a fabric having only one of the components bonding, while the other component fibers maintain freedom of movement, thus producing a fabric having desirable tensile strength yet softness properties.
  • Fig. 1 is a schematic side elevation, partially in section, of a possible method and apparatus for producing water-dispersible fibrous nonwoven composite structures according to the present invention.
  • Fig. 2 is a perspective view of a fragment of a fibrous nonwoven composite structure produced by the method and apparatus of Figure 1.
  • Fig. 3 is a partial schematic side elevation of another possible method and apparatus for producing water-dispersible fibrous nonwoven composite structures according to the present invention.
  • nonwoven fabric or web means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted fabric.
  • Nonwoven fabrics or webs have been formed from many processes such as for example, meltblowing processes, spunbonding processes, and bonded carded web processes.
  • the basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters useful are usually expressed in microns or micrometers. (Note that to convert from osy to gsm, multiply osy by 33.91).
  • microfibers means small diameter fibers having an average diameter not greater than about 75 micrometers, for example, having an average diameter of from about 0.5 micrometers to about 50 micrometers, or more particularly, microfibers may have an average diameter of from about 2 micrometers to about 40 micrometers.
  • denier is defined as grams per 9000 meters of a fiber and may be calculated as fiber diameter in micrometers squared, multiplied by the density in grams/cc, multiplied by 0.00707.
  • a lower denier indicates a finer fiber and a higher denier indicates a thicker or heavier fiber.
  • the diameter of a polypropylene fiber given as 15 micrometers may be converted to denier by squaring, multiplying the result by .89 g/cc and multiplying by
  • meltblown fibers means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly disbursed meltblown fibers.
  • high velocity gas e.g. air
  • Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 micrometers in average diameter, and are generally tacky when deposited onto a collecting surface.
  • polymer generally includes but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible geometrical configuration of the material. These configurations include, but are not limited to isotactic, syndiotactic and random symmetries.
  • the term "monocomponent" fiber refers to a fiber formed from one or more extruders using only one polymer. This is not meant to exclude fibers formed from one polymer to which small amounts of additives have been added for coloration, anti-static properties, lubrication, hydrophilicity, etc. These additives, e.g. titanium dioxide for coloration, are generally present in an amount less than 5 weight percent and more typically about 2 weight percent.
  • conjugate fibers refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber. Conjugate fibers are also sometimes referred to as multicomponent or bicomponent fibers.
  • the polymers are usually different from each other though conjugate fibers may be monocomponent fibers.
  • the polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the conjugate fibers and extend continuously along the length of the conjugate fibers.
  • the configuration of such a conjugate fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side by side arrangement or an "islands-in-the-sea" arrangement.
  • Conjugate fibers are taught in U.S. Patent 5,108,820 to Kaneko et al., U.S. Patent 5,336,552 to Strack et al., and U.S. Patent 5,382,400 to Pike et al.
  • the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios.
  • biconstituent fibers refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend.
  • Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross- sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers. Fibers of this general type are discussed in, for example, U.S. Patent 5,108,827 to Gessner. Bicomponent and biconstituent fibers are also discussed in the textbook Polymer Blends and Composites by John A. Manson and Leslie H. Sperling, copyright
  • blend means a mixture of two or more polymers while the term “alloy” means a sub-class of blends wherein the components are immiscible but have been compatibilized.
  • miscibility and miscibility are defined as blends having negative and positive values, respectively, for the free energy of mixing.
  • compatibilization is defined as the process of modifying the interfacial properties of an immiscible polymer blend in order to make an alloy.
  • ultrasonic bonding means a process performed, for example, by passing the fabric between a sonic horn and anvil roll as illustrated in U.S. Patent
  • thermal point bonding involves passing a fabric or web of fibers to be bonded between a heated calendar roll and an anvil roll.
  • the calendar roll is usually, though not always, patterned in some way so that the entire fabric is not bonded across its entire surface.
  • various patterns for calendar rolls have been developed for functional as well as aesthetic reasons.
  • One example of a pattern has points and is the Hansen Pennings or "H&P" pattern with about a 30% bond area with about 200 bonds/square inch as taught in U.S. Patent 3,855,046 to Hansen and Pennings.
  • the H&P pattern has square point or pin bonding areas wherein each pin has a side dimension of 0.038 inches (0.965 mm), a spacing of 0.070 inches (1.778 mm) between pins, and a depth of bonding of 0.023 inches (0.584 mm).
  • the resulting pattern has a bonded area of about 29.5%.
  • Another typical point bonding pattern is the expanded Hansen and Pennings or "EHP" bond pattern which produces a 15% bond area with a square pin having a side dimension of 0.037 inches (0.94 mm), a pin spacing of 0.097 inches (2.464 mm) and a depth of 0.039 inches (0.991 mm).
  • Another typical point bonding pattern designated “714" has square pin bonding areas wherein each pin has a side dimension of 0.023 inches (0.584 mm), a spacing of 0.062 inches (1.575 mm) between pins, and a depth of bonding of 0.033 inches (0.838 mm). The resulting pattern has a bonded area of about 15%.
  • Yet another common pattern is the C-Star pattern which has a bond area of about 16.9%.
  • the C-Star pattern has a cross-directional bar or "corduroy" design interrupted by shooting stars.
  • Other common patterns include a diamond pattern with repeating and slightly offset diamonds and a wire weave pattern looking as the name suggests, e.g. like a window screen.
  • the percent bonding area varies from around 10% to around 30% of the area of the fabric laminate web.
  • the spot bonding further holds the composite together as well as imparts integrity to the composite nonwoven by bonding filaments and/or fibers within the composite structure.
  • flushable means that an article, when flushed down a conventional commode containing approximately room temperature water, will pass through the commode plumbing, the sewer laterals (i.e., the piping between the house or building and the main sewer line) without clogging, and disperse into pieces no larger than about 25 mm in diameter.
  • the term "dispersible” means that the fibers of a material are capable of debonding, resulting in the material breaking down into smaller pieces than the original sheet.
  • Debonding is generally a physical change of scattering or separation, as compared to a state change, such as dissolving, wherein the material goes into solution, e.g., a water soluble polymer dissolving in water.
  • coform means continuous melt-spun reinforcing fibers intermixed with shorter absorbent fibers such as staple length fibers and wood pulp fiber particulates, such as superabsorbents.
  • fibrous nonwoven composite structure refers to a structure of individual fibers or filaments with or without particulates which are interlaid, but not in an identifiable repeating manner.
  • Nonwoven structures such as, for example, fibrous nonwoven webs have been formed in the past, by a variety of processes known to those skilled in the art including, for example, meltblowing and meltspinning processes, spunbonding processes, bonded carded web processes and the like.
  • the term “water dispersible” or “water disintegratable” refers to a fibrous nonwoven composite structure which when placed in an aqueous environment will, with sufficient time, break apart into smaller pieces. As a result, the structure once dispersed may be more advantageously processable in recycling processes, for example, septic and municipal sewage treatment systems. If desired, such fibrous nonwoven structures may be made more water-dispersible or the dispersion may be hastened by the use of agitation and/or certain triggering means further described below. The actual amount of time will depend at least in part upon the particular end-use design criteria. For example, in the sanitary napkin embodiments described below, the fibers break apart in less than a minute. In other applications, longer times may be desirable. As used herein the term “fibrous nonwoven composite structure” refers to a structure of individual fibers or filaments with or without particulates which are interlaid, but not in an identifiable repeating manner.
  • softening point or “softening temperature” is defined according to the ASTM (Vicat) Test Method D-1525, which is known to those skilled in the art.
  • the present invention is directed to a water dispersible fibrous coformed nonwoven composite structure comprising a primary reinforcing polymer; a secondary reinforcing polymer fiber having a length no longer than about 15 mm, and which preferably (although not mandatorily) has a softening point at least about 30°C less than the primary reinforcing polymer; and, an absorbent material.
  • the primary reinforcing polymer is preferably a meltspun fiber.
  • meltspun it is meant a fiber which is formed by a fiber-forming process which yields longer, more continuous fibers (generally in excess of 7.5 centimeters) such as are made by the meltblown and spunbond processes.
  • meltblown fibers and spunbond fibers are two such water-dispersible reinforcing fibers.
  • Meltblown fibers are formed by extruding molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into a heated high velocity gas stream such as air, which attenuates the filaments of molten thermoplastic material to reduce their diameters.
  • meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers.
  • the meltblown process is well-known and is described in various patents and publications, including NRL Report 4364, "Manufacture of Super-Fine Organic Fibers" by B. A. Wendt, E. L. Boone and C. D. Fluharty; NRL Report 5265, "An Improved
  • meltblown fibers can be made in a wide variety of diameters. Typically, such fibers will have an average diameter of not greater than about 100 micrometers and usually not more than 15 micrometers.
  • Spunbond fibers are formed by extruding a molten thermoplastic material as filaments from a plurality of fine, usually circular, capillaries in a spinneret with the diameter of the extruded filaments then being rapidly reduced, for example, by non- eductive or eductive fluid-drawing or other well-known spunbonding mechanisms.
  • the production of spunbond nonwoven webs is illustrated in patents such as Appel et al., U.S. Patent Number 4,340,563; Matsuki et al., U.S. Patent Number 3,802,817; Dorschner et al., U.S. Patent Number 3,692,618; Kinney, U.S.
  • Patent Numbers 3,338,992 and 3,341,394 Levy, U.S. Patent Number 3,276,944; Peterson, U.S. Patent Number 3,502,538; Hartman, U.S. Patent Number 3,502,763; Dobo et al., U.S. Patent Number
  • the primary reinforcing material may be made of a polymer such as, but not limited to, polyesters, copolyesters, polyamides, copolyamides, polyethylene terephthalates, vinyl alcohols, co-poly(vinyl alcohol), acrylates, methacrylates, cellulose esters, a blend of at least two of these materials, and copolymers of acrylic acid and methacrylic acid, and the like.
  • a polymer such as, but not limited to, polyesters, copolyesters, polyamides, copolyamides, polyethylene terephthalates, vinyl alcohols, co-poly(vinyl alcohol), acrylates, methacrylates, cellulose esters, a blend of at least two of these materials, and copolymers of acrylic acid and methacrylic acid, and the like.
  • the main requirement of the material is that it be meltable and water dispersible.
  • a preferred polymer is a proprietary blend of a polyamide provided as code number NP 2068 by H.B. Fuller Company of St. Paul, Minnesota.
  • Code number NP 2074 is also a preferred material that is similar to NP 2068.
  • the viscosity of the NP 2068 polymer was 95 Pascal-seconds at a temperature of 204°C.
  • the softening temperature range of the NP 2068 polymer was 128°C-145°C but it processed best at 210°C to make meltblown microfibers.
  • the NP 2068 polymer is described in greater detail in the Examples set forth below.
  • the polymer fibers are preferably less than about 5 denier.
  • Another usable material is a proprietary copolyester blend provided as code number NS-70-4395, available from National Starch and Chemical Company, Bridgewater, New Jersey.
  • a blend of polymers can be utilized, which may provide different composite composition control features depending on the polymers used.
  • the secondary reinforcing material of the present invention is made of a thermoplastic polymer and formed by any of a number of known processes, such as, but not limited to meltspun techniques. After continuous fibers are drawn they are cut to form shorter lengths of fibers, commonly called staple fibers.
  • thermoplastic short cut staple fibers which can be made from a variety of polymers including, but not limited to, polyolefins, polyesters, polyether block amides, nylons, poly(ethylene-co-vinyl acetate), polyurethanes, co- poly(ether/ester), and bicomponent and multicomponent materials made therefrom, and the like.
  • polymers including, but not limited to, polyolefins, polyesters, polyether block amides, nylons, poly(ethylene-co-vinyl acetate), polyurethanes, co- poly(ether/ester), and bicomponent and multicomponent materials made therefrom, and the like.
  • a preferred polymer is a polyester available from Minifibers Ltd., Johnson City, Tennessee, which is a 5 denier by 6 mm fiber having a softening point of 88°C (190°F).
  • the secondary reinforcing material can be a bicomponent or multi-component material, a conjugate material or a blend of these.
  • a possible bicomponent material is the Minifibers polyester as the sheath and a polypropylene, polyethylene or polyethylene terephthalate as a core.
  • the secondary reinforcing polymer fibers are less than about 15 mm long (about 0.6 inches), and more preferably less than about 6.35 mm (about 0.25 inches). This short fiber length minimizes the possibility of tangling and twisting (also known as roping) of the final fabric product in plumbing and piping. Secondary reinforcing fiber material length in excess of about 15 mm produces water-dispersible pieces of fabric larger than is desirable and can tangle and twist in plumbing.
  • the secondary reinforcing material has a softening point at least approximately 30°C less than the primary reinforcing polymer.
  • the secondary reinforcing material has a softening point about 50°C above to about 50°C below the softening point of the primary reinforcing material.
  • the secondary reinforcing material preferably has a softening point of from about 50° C to about 200°C, as measured by the ASTM (Vicat) Test Method D-1525.
  • the primary reinforcing material may have a softening point about 50°C above to about 50° C below the softening point of the secondary reinforcing material.
  • the primary reinforcing material has a softening point of about 57°C and the secondary material has a softening point of about 88°C.
  • the important feature is that the primary and secondary materials have softening points that are markedly different so that during a softening process (e.g., by application of thermal or ultrasonic energy) only one of the polymers softens and bonds, while the other material does not materially soften. This is important during the overbond step in the fabric formation process as will be discussed in greater detail below.
  • Pulp fibers are generally obtained from natural sources such as woody and non-woody plants. Woody plants include, for example, deciduous and coniferous trees. Non-woody plants include, for example, cotton, flax, esparto grass, milkweed, straw, jute, and bagasse. In addition, synthetic wood pulp fibers are also available and may be used with the present invention. Wood pulp fibers typically have lengths of about 0.5 to 10 millimeters and a length-to-maximum width ratio of about 10:1 to 400:1. A typical cross-section has an irregular width of about 30 micrometers and a thickness of about 5 micrometers.
  • One wood pulp suitable for use with the present invention is Kimberly-
  • the fibrous nonwoven structure according to the present invention may employ superabsorbent materials.
  • Superabsorbent materials are absorbent materials capable of absorbing at least 10 grams of aqueous liquid (e.g., distilled water) per gram of absorbent material while immersed in a liquid for four hours and which will hold substantially all of the absorbed liquid while under a compression force of up to about 10 kiloPascals (kPa).
  • kPa kiloPascals
  • Superabsorbent materials are produced in a wide variety of forms including, but not limited to, particles, fibers and flakes.
  • Such superabsorbent materials may be used in the present invention in combination with the water-dispersible reinforcing fibers and shorter absorbent fibers or in lieu of the staple fibers.
  • the particulates may be, for example, charcoal, clay, starches, and/or hydrocolloid (hydrogel) particulates.
  • the fibrous nonwoven composite structures according to the present invention use a water dispersible reinforcing fiber which may be made, for example, by the aforementioned and described meltblowing and spunbonding processes.
  • Coform materials can have subsequent end uses which involve exposure of the structures to aqueous liquids including, but not limited to, normal tap water, waste water and body fluids such as blood and urine.
  • aqueous liquids including, but not limited to, normal tap water, waste water and body fluids such as blood and urine.
  • Conventional coform fibrous nonwoven structures are used as absorbent products either alone, as in the form of wipers, or as components of other absorptive devices such as personal care absorbent articles including, but not limited to, diapers, training pants, incontinence garments, sanitary napkins, tampons, wound dressings, bandages and the like. It is desirable therefore, that the fibrous nonwoven composite structures of the present invention be able to withstand the rigors of their intended uses, and then, upon completion of the particular uses, the fibrous nonwoven web composite structures must become water-dispersible.
  • water-dispersible polymers employing a number of triggering mechanisms can be used as the polymers to form the water-dispersible reinforcing fibers of the fibrous nonwoven composite structure of the present invention.
  • Certain polymers are only water-dispersible when exposed to sufficient quantities of an aqueous liquid within a certain pH range. Outside this range, they will not degrade.
  • a pH-sensitive water-dispersible polymer which will not degrade in an aqueous liquid or liquids in one pH range, for example a pH of 3 to 5, but which will become dispersible in excess tap water. See for example, U.S. Patent Number
  • AtoFindley Adhesives Inc., of Milwaukee, Wisconsin. These materials are stable at body pH conditions (or when buffered against body fluids), but will break up in toilet water during the flushing process (excess water).
  • Polymers that are stable in solutions with high cation concentrations could be sulfonated polyesters such as are supplied by the Eastman Chemical Company of Kingsport, Tennessee under the codes AQ29, AQ38, or AQ55.
  • the Eastman Chemical Company of Kingsport, Tennessee under the codes AQ29, AQ38, or AQ55.
  • AQ38 polymer is composed of 89 mole percent isophthalic acid, 11 mole percent sodium sulfoisophthalic acid, 78 mole percent diethylene glycol and 22 mole percent 1,4- cyclohexanedimethanol. It has a nominal molecular weight of 14,000 Daltons, an acid number less than 2, a hydroxyl number less than 10 and a glass transition temperature of 38°C. Other examples could be blends of copolymers of poly(vinyl alcohol) blended with polyacrylic or methylacrylic acid or polyvinylmethyl ether blended with polyacrylic or methylacrylic acid.
  • the Eastman polymers are stable in solutions with high cation concentrations, but will break-up rapidly if placed in sufficient excess water such as tap water to dilute the cation concentration.
  • Other polymers that are usable as this type of ion trigger include proprietary copolyester blends, such as, but not limited to, NS-70-4395 and NS-70-4442, having different molecular weights and melt viscosities, available from National Starch and Chemical Company, which are materials defined by a narrow molecular weight blend.
  • Yet another means for rendering a polymer dispersible in water is through the use of temperature change.
  • Certain polymers exhibit a cloud point temperature. As a result, these polymers will precipitate out of a solution at a particular temperature which is the cloud point.
  • These polymers can be used to form fibers which are insoluble in water above a certain temperature but which become soluble and thus dispersible in water at a lower temperature.
  • An example of such a polymer is poiyvinylmethylether which has a cloud point of 34°C.
  • this polymer When this polymer is exposed to body fluids such as urine at 37°C, it will not degrade as this temperature is above its cloud point (34°C). However, if the polymer is placed in water at room temperature (23 °C), the polymer will, with time, go back into solution as it is not exposed to water at a temperature below its cloud point. Consequently, the polymer will begin to degrade.
  • cold water soluble polymers include poly(vinyl alcohol) graft copolymers supplied by the Nippon Synthetic Chemical Company, Ltd. of Osaka, Japan which are coded Ecomaty AX2000, AX10000 and AX300G.
  • polymers are water-dispersible only when exposed to sufficient quantities of water.
  • these types of polymers may be suitable for use in low water volume solution environments such as, but not limited, pantiliners, light incontinence products, baby or adult wipes, and the like.
  • Examples of such materials could include NP2068, NP2074 or NP2120 aliphatic polyamides as supplied by the H. B. Fuller Company of Vadnais Heights, Minnesota, as discussed above.
  • FIG. 1 One process for forming water-dispersible fibrous nonwoven web structures according to the present invention is shown in Figure 1 of the drawings.
  • a primary reinforcing polymer is extruded through a die head 10 into a primary gas stream 11 of high velocity, heated gas (usually air) supplied from nozzles 12 and 13 to attenuate the molten polymer into long, somewhat continuous fibers.
  • heated gas usually air
  • the primary gas stream 11 is merged with a secondary gas stream 14 containing staple fibers and individualized wood pulp fibers or other materials including particulates so as to integrate the different fibrous materials into a single fibrous nonwoven composite structure.
  • the apparatus for forming and delivering the secondary gas stream 14 including the wood pulp fibers can be an apparatus of the type described and claimed in U.S. Patent Number 3,793,678 to Appel.
  • This apparatus comprises a conventional picker roll 20 having picking teeth for divellicating pulp sheets 21 into individual fibers.
  • the pulp sheets 21 are fed radially, i.e., along a picker roll radius, to the picker roll 20 by means of rolls 22.
  • a housing 24 encloses the picker roll 20 and provides a passage 25 between the housing 24 and the picker roll surface.
  • Process air is supplied to the picker roll in the passage 25 via duct 26 in sufficient quantity to serve as a medium for conveying the fibers through the forming duct 23 at a velocity approaching that of the picker teeth.
  • the air may be supplied by a conventional means as, for example, a blower.
  • the secondary reinforcing polymer fibers and the pulp fibers of the present invention may be mixed prior to merging with the primary gas stream 11 to form a coform blend. Alternatively, the secondary reinforcing fibers and pulp fibers can be added as two streams intersecting with the primary gas stream 11.
  • the secondary reinforcing (staple) fibers and the pulp fibers can be achieved by any of several processes known to those skilled in the art. Such processes are used where two types of pulp material or a pulp and superabsorbent material are mixed prior to addition to the meltspun material. For example, in one mixing process a bale of staple fibers is picked and the staple fibers are blown into the pulp fiber airstream, mixing prior to addition to the meltspun airstream. In a different process the staple fibers are combined in the pulpboard formation in a conventional paper formation process. In any of the mixing processes, the ratio of staple to pulp can vary according to the material properties of the final fabric desired. Preferably, about 30% or less staple fiber is used in the staple/pulp blend.
  • the primary and secondary gas streams 11 and 14 are preferably moving perpendicularly to each other at the point of merger, although other merging angles may be employed if desired to vary the degree of mixing and/or to form concentration gradients through the structure.
  • the velocity of the secondary stream 14 is substantially lower than that of the primary stream 11 so that the integrated stream 15 resulting from the merger continues to flow in the same direction as the primary stream 11.
  • the merger of the two streams is somewhat like an aspirating effect whereby the coform fiber blend (i.e., staple fiber and pulp blend) in the secondary stream 14 are drawn into the primary stream 11 as it passes the outlet of the duct 23.
  • the velocity difference between the two gas streams be such that the secondary stream is integrated with the primary stream in a turbulent manner so that the coform blend fibers in the secondary stream become thoroughly mixed with the meltblown fibers in the primary stream.
  • increasing velocity differences between the primary and secondary streams produce more homogenous integration of the two materials while lower velocities and smaller velocity differences will produce concentration gradients of components in the fibrous nonwoven composite structure.
  • the primary air stream have an initial sonic velocity within the nozzles 12 and 13 and that the secondary air stream have a subsonic velocity. As the primary air stream exits the nozzles 12 and 13, it immediately expands with a resulting decrease in velocity.
  • Deceleration of the high velocity gas stream carrying the meltblown water- dispersible meltblown fibers frees the fibers from the drawing forces which initially form them from the water-dispersible polymer mass.
  • the water-dispersible reinforcing fibers relax, they are better able to follow the minute eddies and to entangle and capture the relatively short coform blend fibers while both fibers are dispersed and suspended in the gaseous medium.
  • the resultant combination is an intimate mixture of coform blend fibers and water-dispersible primary reinforcing fibers integrated by physical entrapment and mechanical entanglement.
  • the stream 15 can be passed into the nip of a pair of vacuum rolls 30 and 31 having foraminous surfaces that rotate continuously over a pair of fixed vacuum nozzles 32 and 33.
  • the carrying gas is sucked into the two vacuum nozzles 32 and 33 while the fiber blend is supported and slightly compressed by the opposed surfaces of the two rolls 30 and 31.
  • the containment of the coform blend fibers in the integrated primary reinforcing fiber matrix is obtained without any further processing or treatment of the air laid composite structure. However, if it is desired to improve the strength of the fibrous nonwoven composite structure 34, the composite web or structure 34 may be embossed or bonded using heat and/or pressure.
  • the embossing may be accomplished using, for example, ultrasonic bonding and/or mechanical bonding as through the use of smooth and/or patterned bonding rolls which may or may not be heated.
  • ultrasonic bonding and/or mechanical bonding as through the use of smooth and/or patterned bonding rolls which may or may not be heated.
  • Such bonding techniques are well-known to those skilled in the art.
  • the composite structure 34 is passed through an ultrasonic bonding station comprising an ultrasonic calendering head 40 vibrating against a patterned anvil roll 41.
  • the bonding conditions e.g., pressure, speed, power, and the like
  • the bonding pattern may be appropriately selected to provide the desired characteristics in the final product. See Figure 2.
  • the relative weight percentages of the water-dispersible reinforcing fibers and coform blend fibers may be varied according to the particular end use. Generally speaking, increasing the weight percent of the water-dispersible primary reinforcing fibers will increase the overall tensile strength and integrity of the resultant fibrous composite nonwoven structure.
  • FIG. 3 A preferred formation process which can be used for forming water-dispersible fibrous nonwoven composites according to the present invention is shown in Figure 3 of the drawings.
  • an exemplary apparatus for forming an abrasion- resistant fibrous nonwoven composite structure which is generally represented by reference numeral 110.
  • pellets or chips, or the like (not shown) of a thermoplastic polymer are introduced into a pellet hoppers 112 of one or more extruders 114.
  • the extruders 114 have extrusion screws (not shown) which are driven by a conventional drive motor (not shown). As the polymer advances through the extruders 114, due to rotation of the extrusion screw by the drive motor, the polymer is progressively heated to a molten state. Heating the thermoplastic polymer to the molten state may be accomplished in a plurality of discrete steps with its temperature being gradually elevated as it advances through discrete heating zones of the extruder 114 toward two meltblowing dies 116 and 118, respectively. The meltblowing dies 116 and 118 may be yet another heating zone wherein the temperature of the thermoplastic resin is maintained at an elevated level for extrusion.
  • Each meltblowing die is configured so that two streams of usually heated attenuating gas per die converge to form a single stream of gas which entrains and attenuates the molten threads of primary reinforcing polymer, as the threads exit small holes or orifices 124 in the meltblowing die.
  • the molten threads are attenuated into fibers 120, or depending upon the degree of attenuation, microfibers, of a small diameter which is usually less than the diameter of the orifices 124.
  • each meltblowing die 116 and 118 has a corresponding single stream of gas 126 and 128 containing entrained and attenuated polymer fibers.
  • the gas streams 126 and 128 containing polymer fibers are aligned to converge at an impingement zone 130.
  • coform blend fibers 132 and/or particulates are added to the two streams 126 and 128 of primary reinforcing polymer fibers or microfibers 120 at the impingement zone 130.
  • Introduction of the coform blend fibers 132 into the two streams 126 and 128 of the primary reinforcing polymer fibers 120 is designed to produce a graduated distribution of coform blend fibers 132 within the combined streams 126 and 128 of primary reinforcing fibers. This may be accomplished by merging a secondary gas stream 134 containing the coform blend fibers 132 between the two streams 126 and 128 of primary reinforcing polymer fibers 120 so that all three gas streams converge in a controlled manner.
  • Apparatus for accomplishing this merger may include a conventional picker roll 136 arrangement which has a plurality of teeth 138 that are adapted to separate a mat or batt 140 of coform blend fibers into the individual coform blend fibers 132.
  • the mat or bait of coform blend fibers 140 which is fed to the picker roll 136 may be a sheet of pulp fibers (if a two-component mixture of secondary reinforcing fibers and pulp fibers is desired).
  • the coform blend fibers 132 are absorbent fibers and the polymer material as described above.
  • the staple fibers of the coform blend fibers 132 may be as described above.
  • the sheets or mats 140 of coform blend fibers 132 may be fed to the picker roll 136 by a roller arrangement 142. After the teeth 136 of the picker roll 136 have separated the mat of coform blend fibers 140 into separate coform blend fibers 132 the individual coform blend fibers 132 are conveyed toward the stream of thermoplastic polymer fibers or microfibers 120 through a nozzle 144.
  • a housing 146 encloses the picker roll 136 and provides a passageway or gap 148 between the housing 146 and the surface of the teeth 138 of the picker roll 136.
  • a gas such as air is supplied to the passageway or gap 148 between the surface of the picker roll 136 and the housing 146 by way of a gas duct 150.
  • the gas duct 150 may enter the passageway or gap 148 generally at the junction 152 of the nozzle 144 and the gap 148.
  • the gas is supplied in sufficient quantity to serve as a medium for conveying the coform blend fibers 132 through the nozzle 144.
  • the gas supplied from the duct 150 also serves as an aid in removing the coform blend fibers 132 from the teeth 138 of the picker roll 136.
  • the gas may be supplied by any conventional arrangement such as, for example, an air blower (not shown). It is contemplated that additives and/or other materials may be added to or entrained in the gas stream to treat the coform blend fibers 132 or to provide desired properties in the resultant web.
  • the individual coform blend fibers 132 are conveyed through the nozzle 144 at about the velocity at which the coform blend fibers 132 leave the teeth 138 of the picker roll 136.
  • the coform blend fibers 132 upon leaving the teeth 138 of the picker roll 136 and entering the nozzle 144 generally maintain their velocity in both magnitude and direction from the point where they left the teeth 138 of the picker roll 136.
  • Such an arrangement which is discussed in more detail in U.S. Patent No. 4,100,324 to Anderson, et al. aids in substantially reducing fiber floccing.
  • the width of the nozzle 144 should be aligned in a direction generally parallel to the width of the meltblowing dies 116 and 118. Desirably, the width of the nozzle 144 should be about the same as the width of the meltblowing dies 116 and 118. Usually, the width of the nozzle 144 should not exceed the width of the sheets or mats 140 that are being fed to the picker roll 136. Generally speaking, it is desirable for the length of the nozzle 144 separating the picker from the impingement zone 130 to be as short as equipment design will allow.
  • the picker roll 136 may be replaced by a conventional particulate injection system to form a fibrous nonwoven composite structure 154 containing various secondary particulates (for example, superabsorbents, as described above).
  • various secondary particulates for example, superabsorbents, as described above.
  • a combination of both secondary particulates and coform blend fibers could be added to the primary reinforcing polymer fibers 120 prior to formation of the fibrous nonwoven composite structure 154 if a conventional particulate injection system was added to the system illustrated in Figure 3.
  • the water-dispersible thermoplastic polymer fibers in the fiber streams 126 and 128 are usually still semi-molten and tacky at the time of incorporation of the coform blend fibers 132 into the fiber streams 126 and 128, the coform blend fibers
  • the 132 are usually not only mechanically entangled within the matrix formed by the water- dispersible fibers 120 but are also thermally bonded or joined to the primary reinforcing fibers.
  • a collecting device is located in the path of the composite stream 156.
  • the collecting device may be an endless foraminous belt 158 conventionally driven by rollers 160 and which is rotating as indicated by the arrow 162 in Figure 3.
  • Other collecting devices are well known to those of skill in the art and may be utilized in place of the endless belt 158. For example, a porous rotating drum arrangement could be utilized.
  • the merged streams of primary reinforcing fibers and coform blend fibers are collected as a coherent matrix of fibers on the surface of the endless belt 158 to form the fibrous nonwoven composite structure or web 154.
  • Vacuum boxes 164 assist in retention of the matrix on the surface of the belt 158.
  • the vacuum may be set at about 2.5 to about
  • the fibrous nonwoven composite structure 154 is coherent and may be removed from the belt 158 as a self-supporting nonwoven material. Generally speaking, the fibrous nonwoven composite structure 154 has adequate strength and integrity to be used without any post-treatments such as pattern bonding and the like. If desired, a pair of pinch rollers or pattern bonding rollers (not shown) may be used to bond portions of the material. Although such treatment may improve the integrity of the fibrous nonwoven composite structure 154 it also tends to compress and density the structure.
  • U.S. Patent Number 4,604,313 issued August 5, 1986 is directed to a process for forming a multi-layered coform material including meltblown fibers and wood pulp fibers in one layer and a second layer which contains meltblown fibers, wood pulp fibers and superabsorbent particles.
  • Another process is disclosed in Eschwey et al., U.S. Patent 4,902,559 issued February 20, 1990.
  • This patent discloses a process wherein endless filaments are spun through a long spinneret into a passage to form what are more commonly referred to as spunbond fibers.
  • smaller hydrophilic or oleophilic fibers are fed into the stream of spunbond fibers.
  • superabsorbent particles may also be introduced into the foregoing fiber mixture.
  • An important aspect of the present invention is the novel use of a hybrid bonding system to balance tensile strength, softness and water dispersibility.
  • a hybrid bonding system to balance tensile strength, softness and water dispersibility.
  • Single or crude double bonding systems were used to impart tensile strength.
  • the present invention presents a process whereby a first bonding occurs during the addition of secondary reinforcing fibers into the airstream of primary reinforcing fibers, whereby the secondary reinforcing fibers become entangled, entrapped and otherwise stuck to the primary reinforcing fibers.
  • the second bonding occurs when the composite fiber fabric is softened using thermal or ultrasonic energy above the softening point of only one of the primary or secondary reinforcing polymers and below that of the softening point of the other reinforcing polymer, whereupon the fibers which soften bond to the other fiber.
  • the secondary reinforcing material polymer has a softening point of not less than about 30°C lower than the softening point of the primary reinforcing polymer material. In such case, the primary reinforcing fibers remain unsoftened and unmelted, resulting in a bonding producing increased tensile strength, yet freedom of movement of the primary reinforcing fibers.
  • the softening point of the secondary reinforcing material polymer is at least about 30° C above that over the primary reinforcing, the primary reinforcing material softens and bonds, creating the tensile strength, while the secondary reinforcing material maintains freedom of movement. It is the balance of tensile strength, softness and water-dispersibility that is struck by the composition of the materials and the bonding system of the present invention.
  • Conventional meltblown materials used in wet wipes are weaker because they are composed of a finer denier and of material that allows for dispersion in water.
  • the fabric of the present invention is stronger because of the addition of the secondary reinforcing material.
  • the use of secondary reinforcing fibers of having a length of about 15 mm or less reduces the possibility of tangling and twisting of fabric formed therefrom in a plumbing/sewer system. Additionally, such sized fibers produce a water-dispersible fabric pieces of a desirable size.
  • the material of the present invention can be used in a number of articles, including, but not limited to baby wipes, adult wipes, feminine protection articles, industrial cleaning wipes, dressings, absorbent gauzes, and the like.
  • Strip Tensile test is a measure of breaking strength and elongation or strain of a fabric when subjected to unidirectional stress. This test is known in the art. The results are expressed in grams to break and percent elongation before breakage. Higher numbers indicate a stronger fabric.
  • load means the maximum load or force, expressed in units of weight, required to break or rupture the specimen in a tensile test.
  • strain or “total energy” means the total energy under a load versus elongation curve as expressed in weight-length units.
  • elongation means the increase in length of a specimen during a tensile test.
  • Values for strip tensile strength and strip elongation are obtained using a specified width of fabric, usually 2 inches (50 mm), the same clamp width and a constant rate of extension.
  • the sample is the same width as the clamp to give results representative of effective strength of fibers in the clamped width.
  • the specimen is clamped in, for example, a constant-rate- of-extension tensile tester, designated as Sintech 2, Model 3397-139, available from Sintech Corporation, Cary, NC, which has 2 inch (51 mm) long parallel clamps. This closely simulates fabric stress conditions in actual use.
  • Sample 1 was made of 50% National Starch and Chemical Company code number NS 70-4395 primary reinforcing polymer and 50% of secondary reinforcing polymer/pulp mix.
  • the secondary reinforcing polymer/pulp mix was composed of 80% CR 54 pulp, available from Kimberly-Clark Corporation, Neenah, Wisconsin and 20% of a 5 denier, 6 mm polyester provided by Minifibers Ltd. Also included was 1.5 kg/ton BerocelTM debonder (available from Akzo Nobel Chemical), which enhances fiberization by the picker.
  • Sample 2 was made of 40% NS 70-4395 primary reinforcing polymer and 60% of secondary reinforcing polymer/pulp mix.
  • the secondary reinforcing polymer/pulp mix was composed of 80% CR 54 pulp and 20% of a 5 denier, 6 mm polyester provided by Minifibers, Ltd. Also included was 1.5 kg/ton BerocelTM debonder.
  • the absorbent structure was produced utilizing a twin extruder and a pulp fiberizer system such as shown in Figure 3.
  • the coformed composites were formed on either a porous tissue carrier sheet or a spunbonded polypropylene nonwoven web carrier sheet.
  • the coform composites can be formed directly onto a forming wire.
  • Basis weights of the coformed absorbent structures were 70 grams per square meter (gsm).
  • the absorbent structures were then pattern bonded in a separate process using a heated calendar nip with a total bond area of approximately 20 percent.
  • the pattern roll was set at 91.6°C (205°F)
  • the anvil roll was set at 79.4°C - 90.5°C (175-195 )
  • the pressure was 10 psig (703 g/cm 2 ) (18 lb/lineal inch).
  • a range of 15-30 lbs/lineal inch appeared to be usable. See, for example, U.S. Pat. No. D315,990, issued April 9. 1991, to Blenke et al.
  • Table 1 shows the summary of aging data. Tensile was measured in grams/25 mm- width.
  • the storage solution was Natural CareTM solution available from Kimberly-Clark Corporation, Neenah, Wisconsin, with 1% sodium sulfate added (as a trigger preservative).
  • Tensile tests performed on a Sintech Tensile Tester used a 501b (22,680 grams) load-cell, with jaw separation speed of 12 inches/minute (30.48 cm/min.), and a jaw span of 2 inches (4.508 cm.).
  • Sample 1 had an average dry tensile after embossing of 1386 g/2.54 cm in the machine direction and 574 g/2.54 cm in the cross direction.
  • Sample 2 had an average dry tensile after embossing of 955 g/2.54 cm in the machine direction and 255 g/inch in the cross direction.

Abstract

A water-dispersible coformed fibrous nonwoven fabric structure comprising a primary reinforcing polymer material, preferably capable of being meltspun; a secondary reinforcing polymer material having an average fiber length less than or equal to about 15 mm and preferably having a softening point at least about 30 °C lower than the softening point of the primary reinforcing polymer; and, an absorbent material, such as pulp or a superabsorbent. The fabric structure maintains desired tensile strength and softness while being water-dispersible and flushable. The fabric produced can be incorporated into an article and can be flushed down a commode. The fabric is flushable when placed in water, with agitation, if necessary, and will disperse into unrecognizable pieces without clogging conventional plumbing or piping. A method of producing the fabric structure comprises mixing the secondary reinforcing material and absorbent material and injecting this coform blend into a stream of meltspun primary reinforcing fibers. After a web structure has been established, the structure is exposed to thermal or ultrasonic energy sufficient to soften and bond the secondary reinforcing material fibers, but not to soften the primary reinforcing material fibers. An embossed pattern can be printed on the structure.

Description

COFORMED DISPERSIBLE NONWOVEN FABRIC BONDED WITH A HYBRID SYSTEM AND METHOD OF MAKING SAME
CROSS-REFERENCE TO RELATED APPLICATION
The present invention is a continuation-in-part of copending application entitled "WATER-DISPERSIBLE FIBROUS NONWOVEN COFORM COMPOSITES, by Jackson et al., serial number 08/497,629, filed June 30, 1995, and commonly assigned to the assignee of the present invention.
FIELD OF THE INVENTION
The present invention relates to water-dispersible coformed fibrous nonwoven composite structures comprising a primary reinforcing meltspun polymer fiber, a secondary reinforcing staple polymer fiber, and an absorbent material.
BACKGROUND OF THE INVENTION
Wet wipes are sheets of fabric stored in a solution prior to use and normally used to wipe the skin. The most common types of wet wipes are baby wipes, typically used to clean the seat area during a diaper change, and adult wipes, used to clean hands, face and bottom. Wet wipes are often made from bonded nonwoven fabrics that have sufficient tensile strength that they will not fall apart during manufacturing or in use, yet have desirable softness characteristics for use on skin in tender areas. Such nonwoven fabrics are commonly manufactured by meltspun processes, such as meltblown and spunbond processes, known to those skilled in the art, because meltspun fabrics can be produced that have the requisite tensile strength and softness.
Bonding of nonwoven materials generally builds strength and integrity in nonwoven fabrics. Many conventional bonding systems are used to make nonwoven fabrics, such as, but not limited to, thermal bonding, resin bonding (aqueous or melt), hydroentanglement, and mechanical bonding. These broad classifications can be subdivided into overall treatment or zone treatment such as dots, lines or small areas of patterns. Further, the degree of bonding can be controlled. A high degree of bonding by higher percentage add on or higher energy input usually builds higher strengths and vice versa. However, bonding normally negates the ability for post-use disposal by disintegration and dispersion during toilet flushing.
Many of the items or products into which bonded meltspun materials are incorporated are generally regarded as being limited use disposable products. By this it is meant that the product or products are used only a limited number of times and in some cases only once before being discarded. With increasing concerns over solid waste disposal, there is now an increasing need for materials that are, for example, either recyclable or disposable through other mechanisms besides incorporation into landfills. One possible alternative means of disposal for many products, especially in the area of personal care absorbent products and wipers, is by flushing them into sewage disposal systems. As will be discussed in greater detail below, flushable means that the material must not only be able to pass through a commode without clogging it, but the material must also be able to pass through the sewer laterals between a house (or other structure housing the commode) the main sewer system without getting caught in the piping, and to disperse into small pieces that will not create a nuisance to the consumer or in the sewer transport and treatment process.
In recent years, more sophisticated approaches have been devised to impart dispersability. Chemical binders that are either melt processable or aqueous and emulsion processable have been developed. The material can have high strength in their original storage environment, but quickly lose strength by debonding or dispersing when placed in a different chemical (e.g., pH or ion concentration) environment, such as by flushing down a commode with fresh water. It would be desirable to have a bonding system that would produce a fabric having desirable strength characteristics, yet be able to disperse or degrade after use into small pieces. As machines for producing such bonded nonwoven fabrics are usually designed to work with one bonding system, hybrid bonding systems are generally unknown in the industry.
U.S. Patent No. 4,309,469 and 4,419,403, both issued to Varona describe a dispersible binder of several parts. Reissue Patent no. 31,825 describes a two-stage heating process (preheat by infrared) to calendar bond a nonwoven consisting of thermoplastic fibers. Although offering some flexibility, this is still a single thermal bonding system. U.S. Patent No. 4,207,367 issued to Baker, describes a nonwoven which is densified at individual areas by cold embossing. The chemical binders are sprayed on and the binders preferentially migrate to the densified areas by capillary action. The non- densified areas have higher loft and remain highly absorbent. However, it is not a hybrid bonding system because the densification step is not strictly a bonding process. U.S. Patent No. 4,749,423, issued to Vaalburg et al, describes a two stage thermal bonding system. In the first stage, up to 7% of polyethylene fibers in a web is fused to provided temporary strength to support transfer to the next stage. In the second stage the primary fibers are thermally bonded to give the web its overall integrity. This process in two distinct stages does not make the web have built in areas of strength and weakness. It is not suitable as a dispersible material.
Several patents describe hybrid bonding systems, but are for sanitary napkin covers. For example, see U.S. Patent No. 3,654,924, to Duchane, U.S. Patent No.
3,616,797, issued to Champagne et al., and U.S. Patent No. 3,913,574, issued to Srinvasan et al. The important difference is that these products are designed to be stored dry and to have very limited wet strength for a short duration during use. In a wet wipe there remains a need for prolonged wet strength in a storage solution.
Fibrous nonwoven materials and fibrous nonwoven composite materials are widely used as products or as components of products because they can be manufactured inexpensively and can be made to have specific characteristics. One approach has been to mix thermoplastic polymer fibers with one or more types of fibrous material and/or particulates. The mixtures are collected in the form of fibrous nonwoven web composites which may be further bonded or treated to provide coherent nonwoven composites that take advantage of at least some of the properties of each component. For example, U.S. Patent Number 4,100,324 issued July 11, 1978, to Anderson et al. discloses a nonwoven fabric which is generally a uniform admixture of wood pulp and meltblown thermoplastic polymer fibers. U.S. Patent Number 3,971,373 issued July 7, 1976, to Braun discloses a nonwoven material which contains meltblown thermoplastic polymer fibers and discrete solid particles. According to this patent, the particles are uniformly dispersed and intermixed with the meltblown fibers in the nonwoven material. U.S. Patent Number 4,429,001 issued January 31, 1984, to Kolpin et al. discloses an absorbent sheet material which is a combination of meltblown thermoplastic polymer fibers and solid superabsorbent particles. The superabsorbent particles are disclosed as being uniformly dispersed and physically held within a web of the meltblown thermoplastic polymer fibers. European Patent Number 0080382 to Minto et al. published June 1, 1983, and European Patent Number 0156160 to Minto et al. published October 25, 1985, also disclose combinations of particles such as superabsorbents and meltblown thermoplastic polymer fibers. U.S. Patent Number 5,350,624 to Georger et al. issued September 27,
1994, discloses an abrasion-resistant fibrous nonwoven structure composed of a matrix of meltblown fibers having a first exterior surface, a second exterior surface and an interior portion with at least one other fibrous material integrated into the meltblown fiber matrix. The concentration of meltblown fibers adjacent to each exterior surface of the nonwoven structure is at least about 60 percent by weight and the concentration of meltblown fibers in the interior portion is less than about 40 percent by weight. Many of the aforementioned admixtures are referred to as "coform" materials because they are formed by combining two or more materials in the forming step into a single structure. Coform materials can also be produced by a spunbond process, such as is disclosed in U.S. Patent No. 4,902,559 to Eschwey et al. issued February 20, 1990.
Currently, one common method of meltblown formation of coform nonwoven material involves injecting an amount of cellulose fibers or blends of cellulose fibers and staple fibers into a molten stream of meltblown fibers. Coform material injected into the fiber stream becomes entrapped or stuck to the molten fibers, which are subsequently cooled or set. In a further step the fabric can be bonded by thermally or ultrasonically melting the meltblown fibers to cross-bond the fibers together, imparting desired tensile strength. Such bonding treatment also reduces softness because it reduces freedom of movement between the meltblown fibers in the web structure. Thus, the imparting of strength has, heretofore resulted in a diminution of softness (absent additional steps of softening, which affect material properties and add to production costs). Moreover, because the meltblown fibers are preferentially used in water dispersible fabrics because of the low denier fiber produced, fiber strength is compromised. It would be desirable to produce a fabric having desirable strength and softness characteristics, yet be water dispersible.
Coform engineered composites can be used in a wide variety of applications including absorbent media for aqueous and organic fluids, filtration media for wet and dry applications, insulating materials, protective cushioning materials, containment and delivery systems and wiping media for both wet and dry applications. Many of the foregoing applications can be met, to varying degrees, through the use of more simplified structures such as absorbent structures wherein only wood pulp fibers are used. This has commonly been the case with, for example, the absorbent cores of personal care absorbent products such as diapers. Wood pulp fibers when formed by themselves tend to yield nonwoven web structures which have very little mechanical integrity and a high degree of collapse when wetted. The advent of coform structures which incorporated thermoplastic meltblown fibers, even in small quantities, greatly enhanced the properties of such structures including both wet and dry tensile strength. The same enhancements were also seen with the advent of coform wiping sheets. The very reason why many coform materials provide increased benefits over conventional materials, i.e., the meltblown thermoplastic fiber matrix, is the same reason why such materials are more difficult to recycle or flush. Many wood pulp fiber-based products can be recycled by hydrating and repulping the reclaimed wood pulp fibers. However, in coform structures the thermoplastic meltblown fibers do not readily breakup. The meltblown fibers are hard to separate from the wood pulp fibers, and they remain substantially continuous thereby giving rise to the possibility of clogging or otherwise damaging recycling equipment such as repulpers. From the standpoint of flushability, the current belief is that to be flushable, a product must be made from very small and/or very weak fibers so that the material will readily break-up into smaller pieces when placed in quantities of water such as are found in toilets and, again due to the nature of the fibers, when flushed will not be entrained or trapped within the piping of conventional private and public sewage disposal systems. Many of these systems, especially sewer laterals, may have many protrusions within the pipes such as tree roots which will snag any type of material which is still relatively intact. Such would be the case with conventional non- water-dispersible meltblown thermoplastic fibers in coform materials. As a result, for at least the foregoing reasons, there is a need for a coform material which has the potential for being more user friendly with respect to recycling processes and disposal through alternative means to landfills such as, for example, flushing. Accordingly, it is an object of the present invention to provide such a material.
SUMMARY OF THE INVENTION
The present invention provides a water-dispersible fibrous nonwoven composite structure comprising a primary reinforcing polymer material capable of being meltspun into fibers; a secondary reinforcing material comprising staple polymer fibers having an average fiber length less than or equal to about 15 mm; and, an absorbent material, such as pulp. Preferably, secondary reinforcing material has a softening point about 50°C below to about 50°C above, more preferably equal to or at least about 30°C lower than the softening point of the primary reinforcing material.
In a preferred embodiment, the primary reinforcing material is present in a concentration of from about 30% to about 35% the secondary reinforcing material is present in a concentration of from about 5% to about 8%, and the absorbent material is present in a concentration of from about 50% to about 55%. A method of forming a water- dispersible fibrous nonwoven composite structure comprises providing a primary reinforcing material comprising polymer fibers; providing a secondary reinforcing material comprising polymer fibers, the secondary reinforcing material polymer fibers having an average fiber length less than or equal to about 15 mm; providing an absorbent material; mixing the secondary reinforcing material with the absorbent material; forming a fiber stream composed of meltspun primary reinforcing material; adding an effective amount of the mixture of step d) to the fiber stream; attenuating the fiber stream of step f); forming a fibrous nonwoven structure from the fiber stream of step g); and, exposing the nonwoven structure of step h) to a source of energy selected from the group consisting of thermal energy and ultrasonic energy such that the secondary reinforcing fibers soften while the primary reinforcing material remains substantially unsoftened.
The limited secondary reinforcing material fiber length reduces the tendency of the final fabric produced to twist or "rope" when flushed down a commode. Also, the limited fiber length promotes dispersion in water into small pieces. The softening point differential between the primary and secondary reinforcing fibers allows for only one or the other material to soften during the thermal or ultrasonic bonding step of fabric formation. This selective softening point control produces a fabric having only one of the components bonding, while the other component fibers maintain freedom of movement, thus producing a fabric having desirable tensile strength yet softness properties.
Accordingly, it is an object of the present invention to provide a nonwoven fabric structure having desirable wet tensile strength characteristics, while being water dispersible.
It is another object of the present invention to provide a wet wipe material capable of maintaining strength during use and being flushable in an ordinary commode.
It is a further object of the present invention to provide a wet wipe material capable of dispersing in water to form pieces that are less than about 25 millimeters in diameter and are small enough to prevent problems in a sewage transport system.
Other objects, features, and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the accompanying drawings and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention is illustrated in the drawings in which like reference characters designate the same or similar parts throughout the figures of which:
Fig. 1 is a schematic side elevation, partially in section, of a possible method and apparatus for producing water-dispersible fibrous nonwoven composite structures according to the present invention. Fig. 2 is a perspective view of a fragment of a fibrous nonwoven composite structure produced by the method and apparatus of Figure 1.
Fig. 3 is a partial schematic side elevation of another possible method and apparatus for producing water-dispersible fibrous nonwoven composite structures according to the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
DEFINITIONS
As used herein the term "nonwoven fabric or web" means a web having a structure of individual fibers or threads which are interlaid, but not in an identifiable manner as in a knitted fabric. Nonwoven fabrics or webs have been formed from many processes such as for example, meltblowing processes, spunbonding processes, and bonded carded web processes. The basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters useful are usually expressed in microns or micrometers. (Note that to convert from osy to gsm, multiply osy by 33.91).
As used herein the term "microfibers" means small diameter fibers having an average diameter not greater than about 75 micrometers, for example, having an average diameter of from about 0.5 micrometers to about 50 micrometers, or more particularly, microfibers may have an average diameter of from about 2 micrometers to about 40 micrometers. Another frequently used expression of fiber diameter is denier, which is defined as grams per 9000 meters of a fiber and may be calculated as fiber diameter in micrometers squared, multiplied by the density in grams/cc, multiplied by 0.00707. A lower denier indicates a finer fiber and a higher denier indicates a thicker or heavier fiber. For example, the diameter of a polypropylene fiber given as 15 micrometers may be converted to denier by squaring, multiplying the result by .89 g/cc and multiplying by
.00707. Thus, a 15 micrometer polypropylene fiber has a denier of about 1.42 (152 x 0.89 x .00707 = 1.415). Outside the United States the unit of measurement is more commonly the "tex", which is defined as the grams per kilometer of fiber. Tex may be calculated as denier/9.
As used herein the term "meltblown fibers" means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity gas (e.g. air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly disbursed meltblown fibers. Such a process is disclosed, for example, in U.S. Patent no. 3,849,241 to Buntin. Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than 10 micrometers in average diameter, and are generally tacky when deposited onto a collecting surface.
As used herein the term "polymer" generally includes but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term "polymer" shall include all possible geometrical configuration of the material. These configurations include, but are not limited to isotactic, syndiotactic and random symmetries.
As used herein the term "monocomponent" fiber refers to a fiber formed from one or more extruders using only one polymer. This is not meant to exclude fibers formed from one polymer to which small amounts of additives have been added for coloration, anti-static properties, lubrication, hydrophilicity, etc. These additives, e.g. titanium dioxide for coloration, are generally present in an amount less than 5 weight percent and more typically about 2 weight percent.
As used herein the term "conjugate fibers" refers to fibers which have been formed from at least two polymers extruded from separate extruders but spun together to form one fiber. Conjugate fibers are also sometimes referred to as multicomponent or bicomponent fibers. The polymers are usually different from each other though conjugate fibers may be monocomponent fibers. The polymers are arranged in substantially constantly positioned distinct zones across the cross-section of the conjugate fibers and extend continuously along the length of the conjugate fibers. The configuration of such a conjugate fiber may be, for example, a sheath/core arrangement wherein one polymer is surrounded by another or may be a side by side arrangement or an "islands-in-the-sea" arrangement. Conjugate fibers are taught in U.S. Patent 5,108,820 to Kaneko et al., U.S. Patent 5,336,552 to Strack et al., and U.S. Patent 5,382,400 to Pike et al. For two component fibers, the polymers may be present in ratios of 75/25, 50/50, 25/75 or any other desired ratios.
As used herein the term "biconstituent fibers" refers to fibers which have been formed from at least two polymers extruded from the same extruder as a blend. The term
"blend" is defined below. Biconstituent fibers do not have the various polymer components arranged in relatively constantly positioned distinct zones across the cross- sectional area of the fiber and the various polymers are usually not continuous along the entire length of the fiber, instead usually forming fibrils or protofibrils which start and end at random. Biconstituent fibers are sometimes also referred to as multiconstituent fibers. Fibers of this general type are discussed in, for example, U.S. Patent 5,108,827 to Gessner. Bicomponent and biconstituent fibers are also discussed in the textbook Polymer Blends and Composites by John A. Manson and Leslie H. Sperling, copyright
1976 by Plenum Press, a division of Plenum Publishing Corporation of New York, IBSN 0-306-30831-2, at pages 273 through 277.
As used herein the term "blend" means a mixture of two or more polymers while the term "alloy" means a sub-class of blends wherein the components are immiscible but have been compatibilized. "Miscibility" and "immiscibility" are defined as blends having negative and positive values, respectively, for the free energy of mixing. Further, "compatibilization" is defined as the process of modifying the interfacial properties of an immiscible polymer blend in order to make an alloy.
As used herein, "ultrasonic bonding" means a process performed, for example, by passing the fabric between a sonic horn and anvil roll as illustrated in U.S. Patent
4,374,888 to Bornslaeger.
As used herein "thermal point bonding" involves passing a fabric or web of fibers to be bonded between a heated calendar roll and an anvil roll. The calendar roll is usually, though not always, patterned in some way so that the entire fabric is not bonded across its entire surface. As a result, various patterns for calendar rolls have been developed for functional as well as aesthetic reasons. One example of a pattern has points and is the Hansen Pennings or "H&P" pattern with about a 30% bond area with about 200 bonds/square inch as taught in U.S. Patent 3,855,046 to Hansen and Pennings. The H&P pattern has square point or pin bonding areas wherein each pin has a side dimension of 0.038 inches (0.965 mm), a spacing of 0.070 inches (1.778 mm) between pins, and a depth of bonding of 0.023 inches (0.584 mm). The resulting pattern has a bonded area of about 29.5%. Another typical point bonding pattern is the expanded Hansen and Pennings or "EHP" bond pattern which produces a 15% bond area with a square pin having a side dimension of 0.037 inches (0.94 mm), a pin spacing of 0.097 inches (2.464 mm) and a depth of 0.039 inches (0.991 mm). Another typical point bonding pattern designated "714" has square pin bonding areas wherein each pin has a side dimension of 0.023 inches (0.584 mm), a spacing of 0.062 inches (1.575 mm) between pins, and a depth of bonding of 0.033 inches (0.838 mm). The resulting pattern has a bonded area of about 15%. Yet another common pattern is the C-Star pattern which has a bond area of about 16.9%. The C-Star pattern has a cross-directional bar or "corduroy" design interrupted by shooting stars. Other common patterns include a diamond pattern with repeating and slightly offset diamonds and a wire weave pattern looking as the name suggests, e.g. like a window screen. Typically, the percent bonding area varies from around 10% to around 30% of the area of the fabric laminate web. As in well known in the art, the spot bonding further holds the composite together as well as imparts integrity to the composite nonwoven by bonding filaments and/or fibers within the composite structure.
As used herein the term "flushable" means that an article, when flushed down a conventional commode containing approximately room temperature water, will pass through the commode plumbing, the sewer laterals (i.e., the piping between the house or building and the main sewer line) without clogging, and disperse into pieces no larger than about 25 mm in diameter.
As used herein the term "dispersible" means that the fibers of a material are capable of debonding, resulting in the material breaking down into smaller pieces than the original sheet. Debonding is generally a physical change of scattering or separation, as compared to a state change, such as dissolving, wherein the material goes into solution, e.g., a water soluble polymer dissolving in water.
As used herein the term "coform" means continuous melt-spun reinforcing fibers intermixed with shorter absorbent fibers such as staple length fibers and wood pulp fiber particulates, such as superabsorbents.
As used herein the term "fibrous nonwoven composite structure" refers to a structure of individual fibers or filaments with or without particulates which are interlaid, but not in an identifiable repeating manner. Nonwoven structures such as, for example, fibrous nonwoven webs have been formed in the past, by a variety of processes known to those skilled in the art including, for example, meltblowing and meltspinning processes, spunbonding processes, bonded carded web processes and the like.
As used herein, the term "water dispersible" or "water disintegratable" refers to a fibrous nonwoven composite structure which when placed in an aqueous environment will, with sufficient time, break apart into smaller pieces. As a result, the structure once dispersed may be more advantageously processable in recycling processes, for example, septic and municipal sewage treatment systems. If desired, such fibrous nonwoven structures may be made more water-dispersible or the dispersion may be hastened by the use of agitation and/or certain triggering means further described below. The actual amount of time will depend at least in part upon the particular end-use design criteria. For example, in the sanitary napkin embodiments described below, the fibers break apart in less than a minute. In other applications, longer times may be desirable. As used herein the term "fibrous nonwoven composite structure" refers to a structure of individual fibers or filaments with or without particulates which are interlaid, but not in an identifiable repeating manner.
As used herein, the term "softening point" or "softening temperature" is defined according to the ASTM (Vicat) Test Method D-1525, which is known to those skilled in the art.
DETAILED DESCRIPTION
The present invention is directed to a water dispersible fibrous coformed nonwoven composite structure comprising a primary reinforcing polymer; a secondary reinforcing polymer fiber having a length no longer than about 15 mm, and which preferably (although not mandatorily) has a softening point at least about 30°C less than the primary reinforcing polymer; and, an absorbent material.
The primary reinforcing polymer is preferably a meltspun fiber. By "meltspun" it is meant a fiber which is formed by a fiber-forming process which yields longer, more continuous fibers (generally in excess of 7.5 centimeters) such as are made by the meltblown and spunbond processes. Examples of two such water-dispersible reinforcing fibers are meltblown fibers and spunbond fibers. Meltblown fibers are formed by extruding molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into a heated high velocity gas stream such as air, which attenuates the filaments of molten thermoplastic material to reduce their diameters. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. The meltblown process is well-known and is described in various patents and publications, including NRL Report 4364, "Manufacture of Super-Fine Organic Fibers" by B. A. Wendt, E. L. Boone and C. D. Fluharty; NRL Report 5265, "An Improved
Device For The Formation of Super-Fine Thermoplastic Fibers" by K. D. Lawrence, R. T. Lukas, J. A. Young; U.S. Patent Number 3,676,242, issued July 11, 1972, to Prentice; and U.S. Patent Number 3,849,241, issued November 19, 1974, to Buntin, et al. Such meltblown fibers can be made in a wide variety of diameters. Typically, such fibers will have an average diameter of not greater than about 100 micrometers and usually not more than 15 micrometers.
Spunbond fibers are formed by extruding a molten thermoplastic material as filaments from a plurality of fine, usually circular, capillaries in a spinneret with the diameter of the extruded filaments then being rapidly reduced, for example, by non- eductive or eductive fluid-drawing or other well-known spunbonding mechanisms. The production of spunbond nonwoven webs is illustrated in patents such as Appel et al., U.S. Patent Number 4,340,563; Matsuki et al., U.S. Patent Number 3,802,817; Dorschner et al., U.S. Patent Number 3,692,618; Kinney, U.S. Patent Numbers 3,338,992 and 3,341,394; Levy, U.S. Patent Number 3,276,944; Peterson, U.S. Patent Number 3,502,538; Hartman, U.S. Patent Number 3,502,763; Dobo et al., U.S. Patent Number
3,542,615; and Harmon, Canadian Patent Number 803,714.
The primary reinforcing material may be made of a polymer such as, but not limited to, polyesters, copolyesters, polyamides, copolyamides, polyethylene terephthalates, vinyl alcohols, co-poly(vinyl alcohol), acrylates, methacrylates, cellulose esters, a blend of at least two of these materials, and copolymers of acrylic acid and methacrylic acid, and the like. The main requirement of the material is that it be meltable and water dispersible.
A preferred polymer is a proprietary blend of a polyamide provided as code number NP 2068 by H.B. Fuller Company of St. Paul, Minnesota. Code number NP 2074 is also a preferred material that is similar to NP 2068. The viscosity of the NP 2068 polymer was 95 Pascal-seconds at a temperature of 204°C. The softening temperature range of the NP 2068 polymer was 128°C-145°C but it processed best at 210°C to make meltblown microfibers. The NP 2068 polymer is described in greater detail in the Examples set forth below.
The polymer fibers are preferably less than about 5 denier. Another usable material is a proprietary copolyester blend provided as code number NS-70-4395, available from National Starch and Chemical Company, Bridgewater, New Jersey. Alternatively, a blend of polymers can be utilized, which may provide different composite composition control features depending on the polymers used.
The secondary reinforcing material of the present invention is made of a thermoplastic polymer and formed by any of a number of known processes, such as, but not limited to meltspun techniques. After continuous fibers are drawn they are cut to form shorter lengths of fibers, commonly called staple fibers.
There are many thermoplastic short cut staple fibers currently available which can be made from a variety of polymers including, but not limited to, polyolefins, polyesters, polyether block amides, nylons, poly(ethylene-co-vinyl acetate), polyurethanes, co- poly(ether/ester), and bicomponent and multicomponent materials made therefrom, and the like.. In addition, several different types and/or sizes of such fibers may be used in the coform structure. A preferred polymer is a polyester available from Minifibers Ltd., Johnson City, Tennessee, which is a 5 denier by 6 mm fiber having a softening point of 88°C (190°F). Alternatively, the secondary reinforcing material can be a bicomponent or multi-component material, a conjugate material or a blend of these. A possible bicomponent material is the Minifibers polyester as the sheath and a polypropylene, polyethylene or polyethylene terephthalate as a core.
It is critical that the secondary reinforcing polymer fibers are less than about 15 mm long (about 0.6 inches), and more preferably less than about 6.35 mm (about 0.25 inches). This short fiber length minimizes the possibility of tangling and twisting (also known as roping) of the final fabric product in plumbing and piping. Secondary reinforcing fiber material length in excess of about 15 mm produces water-dispersible pieces of fabric larger than is desirable and can tangle and twist in plumbing.
Additionally, it is preferable (though not mandatory) that at least one component of the secondary reinforcing polymer material have a softening point at least approximately 30°C less than the primary reinforcing polymer. In a preferred embodiment, the secondary reinforcing material has a softening point about 50°C above to about 50°C below the softening point of the primary reinforcing material. The secondary reinforcing material preferably has a softening point of from about 50° C to about 200°C, as measured by the ASTM (Vicat) Test Method D-1525. Alternatively, the primary reinforcing material may have a softening point about 50°C above to about 50° C below the softening point of the secondary reinforcing material. In a more narrow preferred embodiment the primary reinforcing material has a softening point of about 57°C and the secondary material has a softening point of about 88°C. The important feature is that the primary and secondary materials have softening points that are markedly different so that during a softening process (e.g., by application of thermal or ultrasonic energy) only one of the polymers softens and bonds, while the other material does not materially soften. This is important during the overbond step in the fabric formation process as will be discussed in greater detail below.
The absorbent material of the present invention is commonly referred to as pulp or pulp fibers. Pulp fibers are generally obtained from natural sources such as woody and non-woody plants. Woody plants include, for example, deciduous and coniferous trees. Non-woody plants include, for example, cotton, flax, esparto grass, milkweed, straw, jute, and bagasse. In addition, synthetic wood pulp fibers are also available and may be used with the present invention. Wood pulp fibers typically have lengths of about 0.5 to 10 millimeters and a length-to-maximum width ratio of about 10:1 to 400:1. A typical cross-section has an irregular width of about 30 micrometers and a thickness of about 5 micrometers. One wood pulp suitable for use with the present invention is Kimberly-
Clark CR-54 wood pulp from the Kimberly-Clark Corporation of Neenah, Wisconsin. In addition to the wood pulp fibers, the fibrous nonwoven structure according to the present invention may employ superabsorbent materials. Superabsorbent materials are absorbent materials capable of absorbing at least 10 grams of aqueous liquid (e.g., distilled water) per gram of absorbent material while immersed in a liquid for four hours and which will hold substantially all of the absorbed liquid while under a compression force of up to about 10 kiloPascals (kPa). Superabsorbent materials are produced in a wide variety of forms including, but not limited to, particles, fibers and flakes. Such superabsorbent materials may be used in the present invention in combination with the water-dispersible reinforcing fibers and shorter absorbent fibers or in lieu of the staple fibers. The particulates may be, for example, charcoal, clay, starches, and/or hydrocolloid (hydrogel) particulates.
Due to the longer, more continuous nature of the fibers formed by the foregoing meltblown and spunbonding processes, such fibers and resultant nonwoven webs including coform webs do not readily break apart due to the inherent tenacity of the meltblown and/or spunbond fibers. As a result, coform materials which are predominantly wood pulp fibers but which still contain longer fibers such as polyolefin meltblown fibers are difficult to reclaim in such apparatus as repulpers. In addition, these longer, more continuous fibers also tend to hang up in or on protuberances in sewer laterals thereby making such composite materials difficult to transfer through the sewage treatment system. The fibrous nonwoven composite structures according to the present invention use a water dispersible reinforcing fiber which may be made, for example, by the aforementioned and described meltblowing and spunbonding processes.
Coform materials can have subsequent end uses which involve exposure of the structures to aqueous liquids including, but not limited to, normal tap water, waste water and body fluids such as blood and urine. Conventional coform fibrous nonwoven structures are used as absorbent products either alone, as in the form of wipers, or as components of other absorptive devices such as personal care absorbent articles including, but not limited to, diapers, training pants, incontinence garments, sanitary napkins, tampons, wound dressings, bandages and the like. It is desirable therefore, that the fibrous nonwoven composite structures of the present invention be able to withstand the rigors of their intended uses, and then, upon completion of the particular uses, the fibrous nonwoven web composite structures must become water-dispersible. To accomplish this, water-dispersible polymers employing a number of triggering mechanisms can be used as the polymers to form the water-dispersible reinforcing fibers of the fibrous nonwoven composite structure of the present invention. Certain polymers are only water-dispersible when exposed to sufficient quantities of an aqueous liquid within a certain pH range. Outside this range, they will not degrade. Thus, it is possible to choose a pH-sensitive water-dispersible polymer which will not degrade in an aqueous liquid or liquids in one pH range, for example a pH of 3 to 5, but which will become dispersible in excess tap water. See for example, U.S. Patent Number
5,102,668 to Eichel et al. Thus, when fibrous nonwoven composites are exposed to body fluids such as urine, the water dispersible reinforcing fibers will not degrade. Subsequent to its use, such a fibrous nonwoven composite structure can be placed in excess quantities of higher pH liquids such as tap water which will cause the degradation of the water- dispersible polymer making up the reinforcing fibers. As a result, the longer, more continuous reinforcing fibers will begin to break apart either by themselves or with sufficient agitation so that the discrete fibrous components, such as wood pulp fibers, can be reclaimed, recycled or disposed of by flushing. Examples of polymers which could be used to form this type of fiber could include acrylate ester/acrylic or methylacrylic acid copolymers and blends such as those designated as N-10, H-10 or X-10 as supplied by
AtoFindley Adhesives, Inc., of Milwaukee, Wisconsin. These materials are stable at body pH conditions (or when buffered against body fluids), but will break up in toilet water during the flushing process (excess water).
Another mechanism which can be used to trigger water degradability is ion sensitivity. Certain polymers contain acid-based (R-COO" or R-SO3 ~) components which are held together by hydrogen bonding. In a dry state, these polymers remain solid. In an aqueous solution which has a relatively high cation concentration, such as urine, the polymers still will remain relatively intact. However, when the same polymers are later exposed to larger quantities of water with diluted ion content, such as can be found in a toilet bowl, the cation concentration will be diluted and the hydrogen bonding will begin to break apart. As this happens the polymers, themselves, will begin to break apart in the water. See for example, U.S. Patent Number 4,419,403 to Varona. Polymers that are stable in solutions with high cation concentrations (for example, baby or adult urine and menses) could be sulfonated polyesters such as are supplied by the Eastman Chemical Company of Kingsport, Tennessee under the codes AQ29, AQ38, or AQ55. The Eastman
AQ38 polymer is composed of 89 mole percent isophthalic acid, 11 mole percent sodium sulfoisophthalic acid, 78 mole percent diethylene glycol and 22 mole percent 1,4- cyclohexanedimethanol. It has a nominal molecular weight of 14,000 Daltons, an acid number less than 2, a hydroxyl number less than 10 and a glass transition temperature of 38°C. Other examples could be blends of copolymers of poly(vinyl alcohol) blended with polyacrylic or methylacrylic acid or polyvinylmethyl ether blended with polyacrylic or methylacrylic acid. The Eastman polymers are stable in solutions with high cation concentrations, but will break-up rapidly if placed in sufficient excess water such as tap water to dilute the cation concentration. Other polymers that are usable as this type of ion trigger include proprietary copolyester blends, such as, but not limited to, NS-70-4395 and NS-70-4442, having different molecular weights and melt viscosities, available from National Starch and Chemical Company, which are materials defined by a narrow molecular weight blend.
Yet another means for rendering a polymer dispersible in water is through the use of temperature change. Certain polymers exhibit a cloud point temperature. As a result, these polymers will precipitate out of a solution at a particular temperature which is the cloud point. These polymers can be used to form fibers which are insoluble in water above a certain temperature but which become soluble and thus dispersible in water at a lower temperature. As a result, it is possible to select or blend a polymer which will not degrade in body fluids, such as urine, at or near body temperature (37°C) but which will degrade when placed in water at temperatures below body temperature, for example at room temperature (23 °C). An example of such a polymer is poiyvinylmethylether which has a cloud point of 34°C. When this polymer is exposed to body fluids such as urine at 37°C, it will not degrade as this temperature is above its cloud point (34°C). However, if the polymer is placed in water at room temperature (23 °C), the polymer will, with time, go back into solution as it is not exposed to water at a temperature below its cloud point. Consequently, the polymer will begin to degrade.
Other cold water soluble polymers include poly(vinyl alcohol) graft copolymers supplied by the Nippon Synthetic Chemical Company, Ltd. of Osaka, Japan which are coded Ecomaty AX2000, AX10000 and AX300G.
Other polymers are water-dispersible only when exposed to sufficient quantities of water. Thus, these types of polymers may be suitable for use in low water volume solution environments such as, but not limited, pantiliners, light incontinence products, baby or adult wipes, and the like. Examples of such materials could include NP2068, NP2074 or NP2120 aliphatic polyamides as supplied by the H. B. Fuller Company of Vadnais Heights, Minnesota, as discussed above.
Having described the various components which can be used to form a water- dispersible fibrous nonwoven composite structure according to the present invention, examples of several processes which could be used to form such materials will be described. One process for forming water-dispersible fibrous nonwoven web structures according to the present invention is shown in Figure 1 of the drawings. In this drawing, a primary reinforcing polymer is extruded through a die head 10 into a primary gas stream 11 of high velocity, heated gas (usually air) supplied from nozzles 12 and 13 to attenuate the molten polymer into long, somewhat continuous fibers. As these water- dispersible primary reinforcing fibers are being formed, the primary gas stream 11 is merged with a secondary gas stream 14 containing staple fibers and individualized wood pulp fibers or other materials including particulates so as to integrate the different fibrous materials into a single fibrous nonwoven composite structure. The apparatus for forming and delivering the secondary gas stream 14 including the wood pulp fibers can be an apparatus of the type described and claimed in U.S. Patent Number 3,793,678 to Appel. This apparatus comprises a conventional picker roll 20 having picking teeth for divellicating pulp sheets 21 into individual fibers. The pulp sheets 21 are fed radially, i.e., along a picker roll radius, to the picker roll 20 by means of rolls 22. As the teeth on the picker roll 20 divellicate the pulp sheets 21 into individual fibers, the resulting separate fibers are conveyed downwardly toward the primary air stream through a forming nozzle or duct 23. A housing 24 encloses the picker roll 20 and provides a passage 25 between the housing 24 and the picker roll surface. Process air is supplied to the picker roll in the passage 25 via duct 26 in sufficient quantity to serve as a medium for conveying the fibers through the forming duct 23 at a velocity approaching that of the picker teeth. The air may be supplied by a conventional means as, for example, a blower. The secondary reinforcing polymer fibers and the pulp fibers of the present invention may be mixed prior to merging with the primary gas stream 11 to form a coform blend. Alternatively, the secondary reinforcing fibers and pulp fibers can be added as two streams intersecting with the primary gas stream 11.
Mixing of the secondary reinforcing (staple) fibers and the pulp fibers can be achieved by any of several processes known to those skilled in the art. Such processes are used where two types of pulp material or a pulp and superabsorbent material are mixed prior to addition to the meltspun material. For example, in one mixing process a bale of staple fibers is picked and the staple fibers are blown into the pulp fiber airstream, mixing prior to addition to the meltspun airstream. In a different process the staple fibers are combined in the pulpboard formation in a conventional paper formation process. In any of the mixing processes, the ratio of staple to pulp can vary according to the material properties of the final fabric desired. Preferably, about 30% or less staple fiber is used in the staple/pulp blend.
As illustrated in Figure 1, the primary and secondary gas streams 11 and 14 are preferably moving perpendicularly to each other at the point of merger, although other merging angles may be employed if desired to vary the degree of mixing and/or to form concentration gradients through the structure. The velocity of the secondary stream 14 is substantially lower than that of the primary stream 11 so that the integrated stream 15 resulting from the merger continues to flow in the same direction as the primary stream 11. The merger of the two streams is somewhat like an aspirating effect whereby the coform fiber blend (i.e., staple fiber and pulp blend) in the secondary stream 14 are drawn into the primary stream 11 as it passes the outlet of the duct 23. If a uniform structure is desired, it is important that the velocity difference between the two gas streams be such that the secondary stream is integrated with the primary stream in a turbulent manner so that the coform blend fibers in the secondary stream become thoroughly mixed with the meltblown fibers in the primary stream. In general, increasing velocity differences between the primary and secondary streams produce more homogenous integration of the two materials while lower velocities and smaller velocity differences will produce concentration gradients of components in the fibrous nonwoven composite structure. For maximum production rates, it is generally desirable that the primary air stream have an initial sonic velocity within the nozzles 12 and 13 and that the secondary air stream have a subsonic velocity. As the primary air stream exits the nozzles 12 and 13, it immediately expands with a resulting decrease in velocity.
Deceleration of the high velocity gas stream carrying the meltblown water- dispersible meltblown fibers frees the fibers from the drawing forces which initially form them from the water-dispersible polymer mass. As the water-dispersible reinforcing fibers relax, they are better able to follow the minute eddies and to entangle and capture the relatively short coform blend fibers while both fibers are dispersed and suspended in the gaseous medium. The resultant combination is an intimate mixture of coform blend fibers and water-dispersible primary reinforcing fibers integrated by physical entrapment and mechanical entanglement.
Attenuation of the water-dispersible primary reinforcing fibers occurs both before and after the entanglement of these fibers with the coform blend fibers. In order to convert the fiber blend in the integrated stream 15 into a fibrous nonwoven structure, the stream 15 can be passed into the nip of a pair of vacuum rolls 30 and 31 having foraminous surfaces that rotate continuously over a pair of fixed vacuum nozzles 32 and 33. As the integrated stream 15 enters the nip of the rolls 31 and 33, the carrying gas is sucked into the two vacuum nozzles 32 and 33 while the fiber blend is supported and slightly compressed by the opposed surfaces of the two rolls 30 and 31. This forms an integrated, self-supporting fibrous nonwoven composite structure 34 that has sufficient integrity to permit it to be withdrawn from the vacuum roll nip and conveyed to a wind- up roll 35. More preferably, rather than a pair of vacuum rolls 30 and 31, a foraminous collecting wire (not shown), known to those skilled in the art, is used. The containment of the coform blend fibers in the integrated primary reinforcing fiber matrix is obtained without any further processing or treatment of the air laid composite structure. However, if it is desired to improve the strength of the fibrous nonwoven composite structure 34, the composite web or structure 34 may be embossed or bonded using heat and/or pressure. The embossing may be accomplished using, for example, ultrasonic bonding and/or mechanical bonding as through the use of smooth and/or patterned bonding rolls which may or may not be heated. Such bonding techniques are well-known to those skilled in the art. In Figure 1 the composite structure 34 is passed through an ultrasonic bonding station comprising an ultrasonic calendering head 40 vibrating against a patterned anvil roll 41. The bonding conditions (e.g., pressure, speed, power, and the like) as well as the bonding pattern may be appropriately selected to provide the desired characteristics in the final product. See Figure 2.
The relative weight percentages of the water-dispersible reinforcing fibers and coform blend fibers may be varied according to the particular end use. Generally speaking, increasing the weight percent of the water-dispersible primary reinforcing fibers will increase the overall tensile strength and integrity of the resultant fibrous composite nonwoven structure.
A preferred formation process which can be used for forming water-dispersible fibrous nonwoven composites according to the present invention is shown in Figure 3 of the drawings. In Figure 3 there is shown an exemplary apparatus for forming an abrasion- resistant fibrous nonwoven composite structure which is generally represented by reference numeral 110. In forming the abrasion-resistant fibrous nonwoven composite structure of the present invention, pellets or chips, or the like (not shown) of a thermoplastic polymer are introduced into a pellet hoppers 112 of one or more extruders 114.
The extruders 114 have extrusion screws (not shown) which are driven by a conventional drive motor (not shown). As the polymer advances through the extruders 114, due to rotation of the extrusion screw by the drive motor, the polymer is progressively heated to a molten state. Heating the thermoplastic polymer to the molten state may be accomplished in a plurality of discrete steps with its temperature being gradually elevated as it advances through discrete heating zones of the extruder 114 toward two meltblowing dies 116 and 118, respectively. The meltblowing dies 116 and 118 may be yet another heating zone wherein the temperature of the thermoplastic resin is maintained at an elevated level for extrusion. Each meltblowing die is configured so that two streams of usually heated attenuating gas per die converge to form a single stream of gas which entrains and attenuates the molten threads of primary reinforcing polymer, as the threads exit small holes or orifices 124 in the meltblowing die. The molten threads are attenuated into fibers 120, or depending upon the degree of attenuation, microfibers, of a small diameter which is usually less than the diameter of the orifices 124. Thus, each meltblowing die 116 and 118 has a corresponding single stream of gas 126 and 128 containing entrained and attenuated polymer fibers. The gas streams 126 and 128 containing polymer fibers are aligned to converge at an impingement zone 130.
One or more types of coform blend (staple polymer and pulp) fibers 132 and/or particulates are added to the two streams 126 and 128 of primary reinforcing polymer fibers or microfibers 120 at the impingement zone 130. Introduction of the coform blend fibers 132 into the two streams 126 and 128 of the primary reinforcing polymer fibers 120 is designed to produce a graduated distribution of coform blend fibers 132 within the combined streams 126 and 128 of primary reinforcing fibers. This may be accomplished by merging a secondary gas stream 134 containing the coform blend fibers 132 between the two streams 126 and 128 of primary reinforcing polymer fibers 120 so that all three gas streams converge in a controlled manner.
Apparatus for accomplishing this merger may include a conventional picker roll 136 arrangement which has a plurality of teeth 138 that are adapted to separate a mat or batt 140 of coform blend fibers into the individual coform blend fibers 132. The mat or bait of coform blend fibers 140 which is fed to the picker roll 136 may be a sheet of pulp fibers (if a two-component mixture of secondary reinforcing fibers and pulp fibers is desired). In embodiments where, for example, an absorbent material is desired, the coform blend fibers 132 are absorbent fibers and the polymer material as described above. The staple fibers of the coform blend fibers 132 may be as described above.
The sheets or mats 140 of coform blend fibers 132 may be fed to the picker roll 136 by a roller arrangement 142. After the teeth 136 of the picker roll 136 have separated the mat of coform blend fibers 140 into separate coform blend fibers 132 the individual coform blend fibers 132 are conveyed toward the stream of thermoplastic polymer fibers or microfibers 120 through a nozzle 144. A housing 146 encloses the picker roll 136 and provides a passageway or gap 148 between the housing 146 and the surface of the teeth 138 of the picker roll 136. A gas such as air is supplied to the passageway or gap 148 between the surface of the picker roll 136 and the housing 146 by way of a gas duct 150. The gas duct 150 may enter the passageway or gap 148 generally at the junction 152 of the nozzle 144 and the gap 148. The gas is supplied in sufficient quantity to serve as a medium for conveying the coform blend fibers 132 through the nozzle 144. The gas supplied from the duct 150 also serves as an aid in removing the coform blend fibers 132 from the teeth 138 of the picker roll 136. The gas may be supplied by any conventional arrangement such as, for example, an air blower (not shown). It is contemplated that additives and/or other materials may be added to or entrained in the gas stream to treat the coform blend fibers 132 or to provide desired properties in the resultant web.
Generally speaking, the individual coform blend fibers 132 are conveyed through the nozzle 144 at about the velocity at which the coform blend fibers 132 leave the teeth 138 of the picker roll 136. In other words, the coform blend fibers 132, upon leaving the teeth 138 of the picker roll 136 and entering the nozzle 144 generally maintain their velocity in both magnitude and direction from the point where they left the teeth 138 of the picker roll 136. Such an arrangement, which is discussed in more detail in U.S. Patent No. 4,100,324 to Anderson, et al. aids in substantially reducing fiber floccing.
The width of the nozzle 144 should be aligned in a direction generally parallel to the width of the meltblowing dies 116 and 118. Desirably, the width of the nozzle 144 should be about the same as the width of the meltblowing dies 116 and 118. Usually, the width of the nozzle 144 should not exceed the width of the sheets or mats 140 that are being fed to the picker roll 136. Generally speaking, it is desirable for the length of the nozzle 144 separating the picker from the impingement zone 130 to be as short as equipment design will allow.
The picker roll 136 may be replaced by a conventional particulate injection system to form a fibrous nonwoven composite structure 154 containing various secondary particulates (for example, superabsorbents, as described above). A combination of both secondary particulates and coform blend fibers could be added to the primary reinforcing polymer fibers 120 prior to formation of the fibrous nonwoven composite structure 154 if a conventional particulate injection system was added to the system illustrated in Figure 3.
Due to the fact that the water-dispersible thermoplastic polymer fibers in the fiber streams 126 and 128 are usually still semi-molten and tacky at the time of incorporation of the coform blend fibers 132 into the fiber streams 126 and 128, the coform blend fibers
132 are usually not only mechanically entangled within the matrix formed by the water- dispersible fibers 120 but are also thermally bonded or joined to the primary reinforcing fibers.
In order to convert the composite stream 156 of primary reinforcing fibers 120 and coform blend fibers 132 into a fibrous nonwoven composite structure 154 composed of a coherent matrix of the primary reinforcing fibers 120 having the coform blend fibers 132 distributed therein, a collecting device is located in the path of the composite stream 156. The collecting device may be an endless foraminous belt 158 conventionally driven by rollers 160 and which is rotating as indicated by the arrow 162 in Figure 3. Other collecting devices are well known to those of skill in the art and may be utilized in place of the endless belt 158. For example, a porous rotating drum arrangement could be utilized. The merged streams of primary reinforcing fibers and coform blend fibers are collected as a coherent matrix of fibers on the surface of the endless belt 158 to form the fibrous nonwoven composite structure or web 154. Vacuum boxes 164 assist in retention of the matrix on the surface of the belt 158. The vacuum may be set at about 2.5 to about
10 centimeters of water column.
The fibrous nonwoven composite structure 154 is coherent and may be removed from the belt 158 as a self-supporting nonwoven material. Generally speaking, the fibrous nonwoven composite structure 154 has adequate strength and integrity to be used without any post-treatments such as pattern bonding and the like. If desired, a pair of pinch rollers or pattern bonding rollers (not shown) may be used to bond portions of the material. Although such treatment may improve the integrity of the fibrous nonwoven composite structure 154 it also tends to compress and density the structure.
Besides the foregoing processes, there are a number of other processes which are suitable for making various types of coform materials. For example, McFarland et al.,
U.S. Patent Number 4,604,313 issued August 5, 1986, is directed to a process for forming a multi-layered coform material including meltblown fibers and wood pulp fibers in one layer and a second layer which contains meltblown fibers, wood pulp fibers and superabsorbent particles. Another process is disclosed in Eschwey et al., U.S. Patent 4,902,559 issued February 20, 1990. This patent discloses a process wherein endless filaments are spun through a long spinneret into a passage to form what are more commonly referred to as spunbond fibers. At the same time, smaller hydrophilic or oleophilic fibers are fed into the stream of spunbond fibers. Optionally, superabsorbent particles may also be introduced into the foregoing fiber mixture.
An important aspect of the present invention is the novel use of a hybrid bonding system to balance tensile strength, softness and water dispersibility. Heretofore only single or crude double bonding systems were used to impart tensile strength. The present invention presents a process whereby a first bonding occurs during the addition of secondary reinforcing fibers into the airstream of primary reinforcing fibers, whereby the secondary reinforcing fibers become entangled, entrapped and otherwise stuck to the primary reinforcing fibers. The second bonding occurs when the composite fiber fabric is softened using thermal or ultrasonic energy above the softening point of only one of the primary or secondary reinforcing polymers and below that of the softening point of the other reinforcing polymer, whereupon the fibers which soften bond to the other fiber. In a preferred embodiment the secondary reinforcing material polymer has a softening point of not less than about 30°C lower than the softening point of the primary reinforcing polymer material. In such case, the primary reinforcing fibers remain unsoftened and unmelted, resulting in a bonding producing increased tensile strength, yet freedom of movement of the primary reinforcing fibers. Where the softening point of the secondary reinforcing material polymer is at least about 30° C above that over the primary reinforcing, the primary reinforcing material softens and bonds, creating the tensile strength, while the secondary reinforcing material maintains freedom of movement. It is the balance of tensile strength, softness and water-dispersibility that is struck by the composition of the materials and the bonding system of the present invention. Conventional meltblown materials used in wet wipes are weaker because they are composed of a finer denier and of material that allows for dispersion in water.
Unfortunately, such weak materials do not produce wet wipes having sufficient strength to withstand normal usage. The fabric of the present invention is stronger because of the addition of the secondary reinforcing material. The use of secondary reinforcing fibers of having a length of about 15 mm or less reduces the possibility of tangling and twisting of fabric formed therefrom in a plumbing/sewer system. Additionally, such sized fibers produce a water-dispersible fabric pieces of a desirable size.
The material of the present invention can be used in a number of articles, including, but not limited to baby wipes, adult wipes, feminine protection articles, industrial cleaning wipes, dressings, absorbent gauzes, and the like.
Having described various components and processes which can be used to form water-dispersible fibrous nonwoven composite structures according to the present invention, a series of Examples were prepared to demonstrate the present invention. Parts and percentages appearing in such examples are by weight unless otherwise stipulated.
EXAMPLES
Testing methods:
Strip Tensile test: The strip tensile test is a measure of breaking strength and elongation or strain of a fabric when subjected to unidirectional stress. This test is known in the art. The results are expressed in grams to break and percent elongation before breakage. Higher numbers indicate a stronger fabric. The term "load" means the maximum load or force, expressed in units of weight, required to break or rupture the specimen in a tensile test. The term "strain" or "total energy" means the total energy under a load versus elongation curve as expressed in weight-length units. The term "elongation" means the increase in length of a specimen during a tensile test. Values for strip tensile strength and strip elongation are obtained using a specified width of fabric, usually 2 inches (50 mm), the same clamp width and a constant rate of extension. The sample is the same width as the clamp to give results representative of effective strength of fibers in the clamped width. The specimen is clamped in, for example, a constant-rate- of-extension tensile tester, designated as Sintech 2, Model 3397-139, available from Sintech Corporation, Cary, NC, which has 2 inch (51 mm) long parallel clamps. This closely simulates fabric stress conditions in actual use.
EXAMPLE 1
Sample 1 was made of 50% National Starch and Chemical Company code number NS 70-4395 primary reinforcing polymer and 50% of secondary reinforcing polymer/pulp mix. The secondary reinforcing polymer/pulp mix was composed of 80% CR 54 pulp, available from Kimberly-Clark Corporation, Neenah, Wisconsin and 20% of a 5 denier, 6 mm polyester provided by Minifibers Ltd. Also included was 1.5 kg/ton Berocel™ debonder (available from Akzo Nobel Chemical), which enhances fiberization by the picker.
Sample 2 was made of 40% NS 70-4395 primary reinforcing polymer and 60% of secondary reinforcing polymer/pulp mix. The secondary reinforcing polymer/pulp mix was composed of 80% CR 54 pulp and 20% of a 5 denier, 6 mm polyester provided by Minifibers, Ltd. Also included was 1.5 kg/ton Berocel™ debonder.
The absorbent structure was produced utilizing a twin extruder and a pulp fiberizer system such as shown in Figure 3. The coformed composites were formed on either a porous tissue carrier sheet or a spunbonded polypropylene nonwoven web carrier sheet. Optionally, the coform composites can be formed directly onto a forming wire. Basis weights of the coformed absorbent structures were 70 grams per square meter (gsm). The absorbent structures were then pattern bonded in a separate process using a heated calendar nip with a total bond area of approximately 20 percent. The pattern roll was set at 91.6°C (205°F), the anvil roll was set at 79.4°C - 90.5°C (175-195 ), the pressure was 10 psig (703 g/cm2) (18 lb/lineal inch). A range of 15-30 lbs/lineal inch appeared to be usable. See, for example, U.S. Pat. No. D315,990, issued April 9. 1991, to Blenke et al.
Table 1 shows the summary of aging data. Tensile was measured in grams/25 mm- width.
Figure imgf000027_0001
The storage solution was Natural Care™ solution available from Kimberly-Clark Corporation, Neenah, Wisconsin, with 1% sodium sulfate added (as a trigger preservative). Tensile tests performed on a Sintech Tensile Tester used a 501b (22,680 grams) load-cell, with jaw separation speed of 12 inches/minute (30.48 cm/min.), and a jaw span of 2 inches (4.508 cm.).
Sample 1 had an average dry tensile after embossing of 1386 g/2.54 cm in the machine direction and 574 g/2.54 cm in the cross direction. Sample 2 had an average dry tensile after embossing of 955 g/2.54 cm in the machine direction and 255 g/inch in the cross direction.
Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the following claims. In the claims, means plus function claims are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw may be equivalent structures.
It should further be noted that any patents, applications or publications referred to herein are incorporated by reference in their entirety.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A water-dispersible fibrous nonwoven composite structure, comprising:
a) a primary reinforcing material comprising polymer fibers;
b) a secondary reinforcing material comprising polymer fibers, said secondary reinforcing material polymer fibers having an average fiber length less than or equal to about 15 mm; and,
c) an absorbent material.
2. The structure of Claim 1, wherein said primary reinforcing material is a material capable of being meltspun.
3. The structure of Claim 1, wherein said primary reinforcing material is meltable and water dispersible.
4. The structure of Claim 1, wherein said primary reinforcing material is a material selected from the group consisting of polyesters, copolyesters, polyamides, copolyamides, polyethylene terephthalates, vinyl alcohols, co-poly(vinyl alcohol), acrylates, methacrylates, cellulose esters, a blend of at least two of these materials, and copolymers of acrylic acid and methacrylic acid.
5. The structure of Claim 1, wherein fibers formed from said primary reinforcing material have an average diameter of less than about 100 micrometers.
6. The structure of Claim 1 , wherein fibers formed from said primary reinforcing material have an average diameter of less than about 15 micrometers.
7. The structure of Claim 1, wherein said secondary reinforcing material is a polymer selected from the group consisting of polyolefins, polyesters, polyether block amides, nylons, poly(ethylene-co-vinyl acetate), polyurethanes, co- poly(ether/ester), and bicomponent and multicomponent materials made therefrom.
8. The structure of Claim 1, wherein said secondary reinforcing material has a softening point about 50°C above to about 50°C below the softening point of said primary reinforcing material.
. The structure of Claim 1, wherein said secondary reinforcing material has a softening point equal to or at least about 30°C lower than the softening point of said primary reinforcing material.
10. The structure of Claim 1, wherein said primary reinforcing material has a softening point equal to or at least about 30°C lower than the softening point of said secondary reinforcing material.
11. The structure of Claim 1, wherein said secondary reinforcing material has a softening point of from about 50°C to about 200°C, as measured by the ASTM (Vicat) Test Method D-1525.
12. The structure of Claim 1, wherein said secondary reinforcing material has a softening point of about 88°C, as measured by the ASTM (Vicat) Test Method D- 1525.
13. The structure of Claim 1 , wherein said secondary reinforcing material comprises a plurality of different polymers.
14. The structure of Claim 1, wherein said secondary reinforcing material has an average fiber length of about 6 mm.
15. The structure of Claim 1, wherein said absorbent material is selected from the group consisting of a superabsorbent material, wood fiber, pulp, particulate matter, and an odor reducing agent.
16. The structure of Claim 1, wherein said absorbent material has an average length of about 0.5 to about 10 millimeters.
17. The structure of Claim 1, wherein said absorbent material has an average length- to-maximum width ratio of about 10: 1 to about 400: 1.
18. The structure of Claim 1, wherein said primary reinforcing material is present in a concentration of from about 30% to about 35% said secondary reinforcing material is present in a concentration of from about 5% to about 8%, and said absorbent material is present in a concentration of from about 20% to about 80%.
19. The structure of Claim 1, wherein said primary reinforcing material is present in a concentration of from about 30% to about 35% said secondary reinforcing material is present in a concentration of from about 5% to about 8%, and said absorbent material is present in a concentration of from about 40% to about 60%.
20. A personal care absorbent article which includes a water-dispersible fibrous nonwoven structure according to Claim 1.
21. The personal care absorbent article of Claim 20, wherein said article is selected from the group consisting of a wipe, a diaper, a training pant, a pantiliner, a sanitary napkin, an incontinence device, a wound dressing and a bandage.
2. A method of forming a water-dispersible fibrous nonwoven composite structure, comprising:
a) providing a primary reinforcing material;
b) providing a secondary reinforcing material comprising polymer fibers, said secondary reinforcing material polymer fibers having an average fiber length less than or equal to about 15 mm;
c) providing an absorbent material;
d) forming a mixture of said secondary reinforcing material and said absorbent material;
e) forming a fiber stream composed of meltspun primary reinforcing material;
f) adding an effective amount of the mixture of step d) to said fiber stream;
g) forming a fibrous nonwoven structure from the fiber stream of step f); and,
h) exposing said nonwoven structure of step h) to a source of energy selected from the group consisting of thermal energy and ultrasonic energy such that one of said primary and secondary reinforcing materials softens while the other reinforcing material remains substantially unsoftened.
23. The method of Claim 20, further comprising embossing a pattern on said nonwoven structure.
4. The structure of Claim 22, wherein said primary reinforcing material is a material selected from the group consisting of polyesters, copolyesters, polyamides, copolyamides, polyethylene terephthalates, vinyl alcohols, co-poly(vinyl alcohol), acrylates, methacrylates, cellulose esters, a blend of at least two of these materials, and copolymers of acrylic acid and methacrylic acid.
25. The structure of Claim 22, wherein said secondary reinforcing material is a polymer selected from the group consisting of polyolefins, polyesters, polyether block amides, nylons, poly(ethylene-co-vinyl acetate), polyurethanes, co- poly(ether/ester), and bicomponent and multicomponent materials made therefrom.
26. The structure of Claim 22, wherein said secondary reinforcing material has a softening point about 50°C above to about 50°C below the softening point of said primary reinforcing material.
27. The structure of Claim 22, wherein said secondary reinforcing material has a softening point equal to or at least about 30°C lower than the softening point of said primary reinforcing material.
28. The structure of Claim 22, wherein said primary reinforcing material has a softening point equal to or at least about 30°C lower than the softening point of said secondary reinforcing material.
29. The structure of Claim 22, wherein said secondary reinforcing material has an average fiber length of about 6 mm.
30. The structure of Claim 22, wherein said absorbent material is selected from the group consisting of a superabsorbent material, wood fiber, pulp, particulate matter, and an odor reducing agent.
31. A flushable article produced by the method of Claim 22.
32. A flushable article containing a fibrous nonwoven material, said nonwoven material comprising:
a) a primary reinforcing material comprising polymer fibers;
b) a secondary reinforcing material comprising polymer fibers, said secondary reinforcing material polymer fibers having an average fiber length less than or equal to about 15 mm; and, c) an absorbent material,
whereby said flushable article is capable of being flushed down a commode and associated plumbing and piping, entering a sewer system without clogging said plumbing and said piping, and dispersing into pieces no larger than about 25 mm in diameter.
PCT/US1997/023724 1996-12-31 1997-12-30 Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same WO1998029590A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE69739313T DE69739313D1 (en) 1996-12-31 1997-12-30 IN THE FORM OF THE SAME DISPERSIBLE, BY A HYBRID SYSTEM-BASED LUBRICANTS AND METHOD OF MANUFACTURING THEREOF
KR10-1999-7005905A KR100493841B1 (en) 1996-12-31 1997-12-30 Water-Dispersible Fibrous Nonwoven Composite Structure, Flushable Absorbent Article and Method of Forming the Same
EP97954972A EP0950134B1 (en) 1996-12-31 1997-12-30 Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same
CA 2275418 CA2275418A1 (en) 1996-12-31 1997-12-30 Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same
BR9713793A BR9713793A (en) 1996-12-31 1997-12-30 Co-formed non-dispersive cloth bonded with a hybrid system and method for manufacturing it
AU61302/98A AU730627B2 (en) 1996-12-31 1997-12-30 Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/774,417 US5952251A (en) 1995-06-30 1996-12-31 Coformed dispersible nonwoven fabric bonded with a hybrid system
US08/774,417 1996-12-31

Publications (2)

Publication Number Publication Date
WO1998029590A2 true WO1998029590A2 (en) 1998-07-09
WO1998029590A3 WO1998029590A3 (en) 1998-08-13

Family

ID=25101166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/023724 WO1998029590A2 (en) 1996-12-31 1997-12-30 Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same

Country Status (9)

Country Link
US (1) US5952251A (en)
EP (1) EP0950134B1 (en)
KR (1) KR100493841B1 (en)
CN (1) CN1113994C (en)
AU (1) AU730627B2 (en)
BR (1) BR9713793A (en)
CA (1) CA2275418A1 (en)
DE (1) DE69739313D1 (en)
WO (1) WO1998029590A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160200A (en) * 1998-06-29 2000-12-12 The Procter & Gamble Company Directionally preferential waste passage member for use with disposable absorbent article
WO2005068179A1 (en) * 2003-12-23 2005-07-28 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
WO2011046478A1 (en) * 2009-10-16 2011-04-21 Sca Hygiene Products Ab Flushable moist wipe or hygiene tissue
EP2540892A1 (en) * 2011-07-01 2013-01-02 Suominen Corporation Water dispersible nonwoven fabric material
US10280539B2 (en) 2014-04-07 2019-05-07 Boma Engineering S.P.A. Process and apparatus for producing a fibrous-containing and/or particle-containing nonwoven

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127593A (en) 1997-11-25 2000-10-03 The Procter & Gamble Company Flushable fibrous structures
FR2781819B1 (en) * 1998-08-03 2000-09-22 Vetrotex France Sa PROCESS FOR PRODUCING CONTINUOUS YARN MATS
US6579570B1 (en) 2000-05-04 2003-06-17 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6423804B1 (en) 1998-12-31 2002-07-23 Kimberly-Clark Worldwide, Inc. Ion-sensitive hard water dispersible polymers and applications therefor
US6713414B1 (en) 2000-05-04 2004-03-30 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6548592B1 (en) 2000-05-04 2003-04-15 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6683143B1 (en) 2000-05-04 2004-01-27 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6599848B1 (en) 2000-05-04 2003-07-29 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6815502B1 (en) 2000-05-04 2004-11-09 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6444214B1 (en) 2000-05-04 2002-09-03 Kimberly-Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6835678B2 (en) 2000-05-04 2004-12-28 Kimberly-Clark Worldwide, Inc. Ion sensitive, water-dispersible fabrics, a method of making same and items using same
US6653406B1 (en) 2000-05-04 2003-11-25 Kimberly Clark Worldwide, Inc. Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6576575B2 (en) 2000-05-15 2003-06-10 Kimberly-Clark Worldwide, Inc. Dispersible adherent article
ES2323164T5 (en) * 2000-09-15 2016-06-14 Suominen Corporation Disposable non-woven cleaning cloth and manufacturing procedure
US6797226B2 (en) 2000-10-10 2004-09-28 Kimberly-Clark Worldwide, Inc. Process of making microcreped wipers
US6528554B1 (en) 2001-02-15 2003-03-04 The University Of Akron Ultrasound assisted continuous process for making polymer blends and copolymers
US6828014B2 (en) 2001-03-22 2004-12-07 Kimberly-Clark Worldwide, Inc. Water-dispersible, cationic polymers, a method of making same and items using same
US20030114067A1 (en) * 2001-12-18 2003-06-19 Matela David Michael Coform nonwoven web and method of making same
US6890622B2 (en) 2001-12-20 2005-05-10 Kimberly-Clark Worldwide, Inc. Composite fluid distribution and fluid retention layer having selective material deposition zones for personal care products
US20030135176A1 (en) * 2002-01-16 2003-07-17 Troy Delzer System and method for depositing particulate matter in absorbent cores
US20030199219A1 (en) * 2002-04-19 2003-10-23 Hayes Heather J. Patterned nonwoven fabric
US20030211802A1 (en) * 2002-05-10 2003-11-13 Kimberly-Clark Worldwide, Inc. Three-dimensional coform nonwoven web
MXPA04012890A (en) * 2002-06-19 2005-03-31 Bayer Chemicals Corp Strong and dispersible paper products.
US8226622B2 (en) * 2002-12-20 2012-07-24 Kimberly-Clark Worldwide, Inc. Interlabial absorbent article with soluble adhesive and time-delayed dispersion
US7476631B2 (en) * 2003-04-03 2009-01-13 The Procter & Gamble Company Dispersible fibrous structure and method of making same
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US7432219B2 (en) * 2003-10-31 2008-10-07 Sca Hygiene Products Ab Hydroentangled nonwoven material
US7138560B2 (en) * 2003-12-10 2006-11-21 Kimberly-Clark Worldwide, Inc. Absorbent article with time-delayed absorbent binder composition
US7514591B2 (en) * 2003-12-10 2009-04-07 Kimberly-Clark Worldwide, Inc. Interlabial absorbent article with improved flushability characteristics
US7378360B2 (en) * 2003-12-17 2008-05-27 Kimberly-Clark Worldwide, Inc. Water dispersible, pre-saturated wiping products
US7629043B2 (en) * 2003-12-22 2009-12-08 Kimberly-Clark Worldwide, Inc. Multi purpose cleaning product including a foam and a web
US20050138749A1 (en) * 2003-12-29 2005-06-30 Keck Laura E. Combination dry and absorbent floor mop/wipe
CA2590697C (en) * 2004-12-17 2013-06-18 Albany International Corp. Patterning on sms product
US20060141891A1 (en) * 2004-12-23 2006-06-29 Kimberly-Clark Worldwide, Inc. Absorbent structure with aggregate clusters
US20060147689A1 (en) * 2004-12-30 2006-07-06 Raj Wallajapet Absorbent composites containing biodegradable reinforcing fibers
ES2394968T3 (en) * 2005-04-29 2013-02-07 Sca Hygiene Products Ab Integrated or non-woven nonwoven composite material
US7651290B2 (en) 2005-05-09 2010-01-26 Kimberly-Clark Worldwide, Inc. Device with pull tab activation
DE102005054726A1 (en) * 2005-08-02 2007-02-15 Carl Freudenberg Kg Nonwovens and process for their preparation
US8921244B2 (en) 2005-08-22 2014-12-30 The Procter & Gamble Company Hydroxyl polymer fiber fibrous structures and processes for making same
US7950864B2 (en) * 2005-12-13 2011-05-31 Kimberly-Clark Worldwide, Inc. Device with internal pull tab activation
US20070147942A1 (en) * 2005-12-14 2007-06-28 Sojka Marci E Water-dispersible device with pull tab activation
EP1991729B2 (en) 2006-02-21 2015-09-16 Fitesa Nonwoven, Inc. Extensible absorbent composites
US20090022983A1 (en) 2007-07-17 2009-01-22 David William Cabell Fibrous structures
US10024000B2 (en) * 2007-07-17 2018-07-17 The Procter & Gamble Company Fibrous structures and methods for making same
US7972986B2 (en) 2007-07-17 2011-07-05 The Procter & Gamble Company Fibrous structures and methods for making same
US8852474B2 (en) 2007-07-17 2014-10-07 The Procter & Gamble Company Process for making fibrous structures
US8287677B2 (en) * 2008-01-31 2012-10-16 Kimberly-Clark Worldwide, Inc. Printable elastic composite
US8357220B2 (en) * 2008-11-07 2013-01-22 Hollingsworth & Vose Company Multi-phase filter medium
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US20110100574A1 (en) * 2009-11-02 2011-05-05 Steven Lee Barnholtz Fibrous structures that exhibit consumer relevant property values
BR112012010366A2 (en) 2009-11-02 2019-09-24 Procter & Gamble fibrous structures and methods for their manufacture
MX338419B (en) 2009-11-02 2016-04-15 Procter & Gamble Fibrous elements and fibrous structures employing same.
US20110152808A1 (en) * 2009-12-21 2011-06-23 Jackson David M Resilient absorbent coform nonwoven web
GB2493292B (en) 2010-03-31 2014-02-26 Procter & Gamble Fibrous structures
CN102859058B (en) * 2010-04-22 2016-03-23 3M创新有限公司 The method of the nonwoven web containing chemism particle and manufacture and the described nonwoven web of use
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
US9273417B2 (en) 2010-10-21 2016-03-01 Eastman Chemical Company Wet-Laid process to produce a bound nonwoven article
CN103260563B (en) 2010-12-10 2015-09-09 H.B.富勒公司 Comprise the goods washed away and the using method thereof of polyurethane binder
RU2014106996A (en) * 2011-07-26 2015-09-10 Ска Хайджин Продактс Аб REMOVABLE WASTE WET TOWEL OR HYGIENIC WIPE AND METHOD FOR ITS MANUFACTURE
CN102433688A (en) * 2011-10-21 2012-05-02 成都彩虹环保科技有限公司 Non-woven fabric forming device
US8871052B2 (en) 2012-01-31 2014-10-28 Eastman Chemical Company Processes to produce short cut microfibers
TWI521112B (en) * 2012-05-25 2016-02-11 財團法人紡織產業綜合研究所 Nonwoven fabric and method and apparatus for manufacturing the same
US9394637B2 (en) 2012-12-13 2016-07-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
CN103276535B (en) * 2013-06-19 2015-08-26 天津泰达洁净材料有限公司 A kind of double-component melt-blown non-woven material and manufacture method thereof
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US10065379B2 (en) 2015-06-12 2018-09-04 Hangsterfer's Laboratories, Inc. Dispersible non-woven article and methods of making the same
ES2938880T3 (en) 2015-08-06 2023-04-17 Lia Diagnostics Inc Water Dispersible Assay Fabrication Methods
CN106732156A (en) * 2016-12-13 2017-05-31 成都聚智工业设计有限公司 A kind of power supply thread supplying apparatus for being applied to displacement mixing plant
WO2019104240A1 (en) 2017-11-22 2019-05-31 Extrusion Group, LLC Meltblown die tip assembly and method
CN109943980B (en) * 2017-12-20 2021-02-23 财团法人纺织产业综合研究所 Non-woven fabric structure and manufacturing method thereof
CA3143696A1 (en) 2019-07-18 2021-01-21 Essity Hygiene And Health Aktiebolag Composite nonwoven sheet material
IT202000006826A1 (en) * 2020-04-01 2021-10-01 Gdm Spa Composite tape
JP2023519748A (en) * 2020-04-01 2023-05-12 ジーディーエム エス.ピー.エー. composite web
IT202000006835A1 (en) * 2020-04-01 2021-10-01 Gdm Spa COMPOSITE TAPE
DE102021104974B3 (en) 2021-03-02 2022-06-09 Andritz Küsters Gmbh Assembly of a device, method and device for producing a composite nonwoven web
WO2022240763A1 (en) 2021-05-09 2022-11-17 Fitesa Simpsonville, Inc. System and process for preparing a fibrous nonwoven composite fabric
CN113445207B (en) * 2021-07-13 2023-12-15 安徽寿县银丰棉业有限责任公司 Production process of high-elasticity cotton quilt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676242A (en) 1969-08-13 1972-07-11 Exxon Research Engineering Co Method of making a nonwoven polymer laminate
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US4604313A (en) 1984-04-23 1986-08-05 Kimberly-Clark Corporation Selective layering of superabsorbents in meltblown substrates
US4902559A (en) 1987-06-16 1990-02-20 Firma Carl Freudenberg Absorbent body of nonwoven material and a method for the production thereof

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA803714A (en) * 1969-01-14 Harmon Carlyle Continuous filament fabric
US31825A (en) * 1861-03-26 Ean attachment foe
US3338992A (en) * 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3502763A (en) * 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
NL297313A (en) * 1962-08-30 1900-01-01
US3502538A (en) * 1964-08-17 1970-03-24 Du Pont Bonded nonwoven sheets with a defined distribution of bond strengths
CH523364A (en) * 1966-11-14 1972-05-31 Du Pont Absorbent non-woven fabric of textile fibres - fibres
US3341394A (en) * 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) * 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
DE2048006B2 (en) * 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Method and device for producing a wide nonwoven web
DE1950669C3 (en) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Process for the manufacture of nonwovens
US3616797A (en) * 1970-02-06 1971-11-02 Kimberly Clark Co Flushable wrapper for absorbent pads
US3654928A (en) * 1970-02-24 1972-04-11 Kimberly Clark Co Flushable wrapper for absorbent pads
CA948388A (en) * 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
US4207367A (en) * 1970-03-30 1980-06-10 Scott Paper Company Nonwoven fabric
US3793678A (en) * 1971-12-20 1974-02-26 D Appel Pulp picking apparatus with improved fiber forming duct
US3971373A (en) * 1974-01-21 1976-07-27 Minnesota Mining And Manufacturing Company Particle-loaded microfiber sheet product and respirators made therefrom
US4100324A (en) * 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US3913579A (en) * 1974-10-15 1975-10-21 Personal Products Co Flushable sanitary napkin
US4117187A (en) * 1976-12-29 1978-09-26 American Can Company Premoistened flushable wiper
US4164595A (en) * 1976-12-29 1979-08-14 American Can Company Premoistened flushable wiper
US4309469A (en) * 1977-08-22 1982-01-05 Scott Paper Company Flushable binder system for pre-moistened wipers wherein an adhesive for the fibers of the wipers interacts with ions contained in the lotion with which the wipers are impregnated
US4343133A (en) * 1978-01-18 1982-08-10 Air Products And Chemicals, Inc. Polyvinyl acetate latex impregnated towelette
US4343403A (en) * 1978-01-18 1982-08-10 Air Products And Chemicals, Inc. Polyvinyl acetate latex impregnated towelette
US4343134A (en) * 1978-01-18 1982-08-10 Air Products And Chemicals, Inc. Flushable towelette
EP0003186B1 (en) * 1978-01-18 1982-06-23 Air Products And Chemicals, Inc. Moist packaged towelette and method of making same
US4242408A (en) * 1979-06-25 1980-12-30 The Dow Chemical Company Easily disposable non-woven products having high wet strength at acid pH and low wet strength at base pH
US4340563A (en) * 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4610743A (en) * 1980-08-29 1986-09-09 James River-Norwalk, Inc. Pattern bonding and creping of fibrous substrates to form laminated products
US4374888A (en) * 1981-09-25 1983-02-22 Kimberly-Clark Corporation Nonwoven laminate for recreation fabric
ZA828635B (en) * 1981-11-24 1983-10-26 Kimberly Clark Ltd Microfibre web product
US4419403A (en) * 1981-12-07 1983-12-06 Scott Paper Company Water dispersible premoistened wiper
US4429001A (en) * 1982-03-04 1984-01-31 Minnesota Mining And Manufacturing Company Sheet product containing sorbent particulate material
EP0176316A3 (en) * 1984-09-18 1989-04-26 Toa Nenryo Kogyo Kabushiki Kaisha A process for the production of a non woven fabric of water soluble resin fibres
US4749423A (en) * 1986-05-14 1988-06-07 Scott Paper Company Method of making a bonded nonwoven web
JP2682130B2 (en) * 1989-04-25 1997-11-26 三井石油化学工業株式会社 Flexible long-fiber non-woven fabric
US5108827A (en) * 1989-04-28 1992-04-28 Fiberweb North America, Inc. Strong nonwoven fabrics from engineered multiconstituent fibers
US5009747A (en) * 1989-06-30 1991-04-23 The Dexter Corporation Water entanglement process and product
US5102668A (en) * 1990-10-05 1992-04-07 Kingaform Technology, Inc. Sustained release pharmaceutical preparation using diffusion barriers whose permeabilities change in response to changing pH
US5382400A (en) * 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
US5336552A (en) * 1992-08-26 1994-08-09 Kimberly-Clark Corporation Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
US5350624A (en) * 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5292581A (en) * 1992-12-15 1994-03-08 The Dexter Corporation Wet wipe
JP3097980B2 (en) * 1993-02-23 2000-10-10 株式会社クラレ Biodegradable nonwoven material
CA2128483C (en) * 1993-12-16 2006-12-12 Richard Swee-Chye Yeo Flushable compositions
US5500281A (en) * 1994-02-23 1996-03-19 International Paper Company Absorbent, flushable, bio-degradable, medically-safe nonwoven fabric with PVA binding fibers, and process for making the same
KR19990028530A (en) * 1995-06-30 1999-04-15 로날드 디. 맥크레이 Water Dispersible Fiber Nonwoven Coform Composite
US5663286A (en) * 1995-11-09 1997-09-02 H.B. Fuller Licensing And Financing, Inc. Nonwoven web comprising water soluble polyamides and articles constructed therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3676242A (en) 1969-08-13 1972-07-11 Exxon Research Engineering Co Method of making a nonwoven polymer laminate
US4604313A (en) 1984-04-23 1986-08-05 Kimberly-Clark Corporation Selective layering of superabsorbents in meltblown substrates
US4902559A (en) 1987-06-16 1990-02-20 Firma Carl Freudenberg Absorbent body of nonwoven material and a method for the production thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. A. WENDT; E. L. BOONE; C. D. FLUHARTY, MANUFACTURE OF SUPER-FINE ORGANIC FIBERS
K. D. LAWRENCE; R. T. LUKAS; J. A. YOUNG, AN IMPROVED DEVICE FOR THE FORMATION OF SUPER-FINE THERMOPLASTIC FIBERS

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160200A (en) * 1998-06-29 2000-12-12 The Procter & Gamble Company Directionally preferential waste passage member for use with disposable absorbent article
US6410821B1 (en) 1998-06-29 2002-06-25 The Procter & Gamble Company Directionally preferential waste passage member for use with disposable absorbent article
WO2005068179A1 (en) * 2003-12-23 2005-07-28 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
AU2004314114B2 (en) * 2003-12-23 2011-07-21 Kimberly-Clark Worldwide, Inc. Composite structures containing tissue webs and other nonwovens
WO2011046478A1 (en) * 2009-10-16 2011-04-21 Sca Hygiene Products Ab Flushable moist wipe or hygiene tissue
US8668808B2 (en) 2009-10-16 2014-03-11 Sca Hygiene Products Ab Flushable moist wipe or hygiene tissue
EP2540892A1 (en) * 2011-07-01 2013-01-02 Suominen Corporation Water dispersible nonwoven fabric material
US10280539B2 (en) 2014-04-07 2019-05-07 Boma Engineering S.P.A. Process and apparatus for producing a fibrous-containing and/or particle-containing nonwoven

Also Published As

Publication number Publication date
WO1998029590A3 (en) 1998-08-13
AU6130298A (en) 1998-07-31
CA2275418A1 (en) 1998-07-09
CN1113994C (en) 2003-07-09
EP0950134A2 (en) 1999-10-20
BR9713793A (en) 2001-09-18
KR100493841B1 (en) 2005-06-10
US5952251A (en) 1999-09-14
CN1251628A (en) 2000-04-26
AU730627B2 (en) 2001-03-08
KR20000069766A (en) 2000-11-25
DE69739313D1 (en) 2009-04-30
EP0950134B1 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
US5952251A (en) Coformed dispersible nonwoven fabric bonded with a hybrid system
EP0961847B1 (en) Water-dispersible fibrous nonwoven coform composites
US6495080B1 (en) Methods for making water-sensitive compositions for improved processability and fibers including same
EP1320458B1 (en) Disposable nonwoven wiping fabric and method of production
RU2143018C1 (en) Multicomponent fibers and nonwoven materials disintegrated by water
EP0835337B1 (en) Water-dispersible fibrous nonwoven coform composites
JP3129192B2 (en) Water disintegrable nonwoven fabric and method for producing the same
US20030114066A1 (en) Uniform distribution of absorbents in a thermoplastic web
EP3129535B1 (en) Process and apparatus for producing a fibrous- containing and/or particle-containing nonwoven
EA013062B1 (en) Fibre composite and articles thereof
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
US20030111758A1 (en) Fully activated bicomponent web with absorbents
JP2605105B2 (en) Water-disintegratable nonwoven fabric and absorbent article using the same
AU719186C (en) Water-dispersible fibrous nonwoven coform composites
MXPA99006085A (en) Coformed dispersible nonwoven fabric bonded with a hybrid system and method of making same
CA2093051A1 (en) Soluble medical fabrics
MXPA99006743A (en) Water-dispersible fibrous nonwoven coform composites
WO2003052190A1 (en) Fully activated bicomponent web with absorbents
CA2237953A1 (en) Nonwovens incorporating fiberized feathers
WO2021216067A1 (en) Nonwoven web containing a high strength spunblown layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97181899.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2275418

Country of ref document: CA

Ref document number: 2275418

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/1999/006085

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1997954972

Country of ref document: EP

Ref document number: 1019997005905

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 61302/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1997954972

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019997005905

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 61302/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1019997005905

Country of ref document: KR