WO1998030506A1 - Procede de traitement et valorisation energetique optimisee des boues d'epuration urbaine et industrielle - Google Patents

Procede de traitement et valorisation energetique optimisee des boues d'epuration urbaine et industrielle Download PDF

Info

Publication number
WO1998030506A1
WO1998030506A1 PCT/FR1997/001819 FR9701819W WO9830506A1 WO 1998030506 A1 WO1998030506 A1 WO 1998030506A1 FR 9701819 W FR9701819 W FR 9701819W WO 9830506 A1 WO9830506 A1 WO 9830506A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
dryer
energy
treatment
thin
Prior art date
Application number
PCT/FR1997/001819
Other languages
English (en)
Inventor
Youssef Bouchalat
Original Assignee
Youssef Bouchalat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9502387&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998030506(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Youssef Bouchalat filed Critical Youssef Bouchalat
Priority to DE1997603975 priority Critical patent/DE69703975T3/de
Priority to AT97909392T priority patent/ATE198873T1/de
Priority to US09/142,195 priority patent/US6171499B1/en
Priority to CA 2254724 priority patent/CA2254724C/fr
Priority to EP19970909392 priority patent/EP0906248B2/fr
Publication of WO1998030506A1 publication Critical patent/WO1998030506A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/14Drying
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating
    • F26B23/022Heating arrangements using combustion heating incinerating volatiles in the dryer exhaust gases, the produced hot gases being wholly, partly or not recycled into the drying enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B7/00Drying solid materials or objects by processes using a combination of processes not covered by a single one of groups F26B3/00 and F26B5/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/20Dewatering by mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50007Co-combustion of two or more kinds of waste, separately fed into the furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/50208Biologic treatment before burning, e.g. biogas generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/919Miscellaneous specific techniques using combined systems by merging parallel diverse waste systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/92Miscellaneous specific techniques using combined systems of sequential local and regional or municipal sewage systems

Definitions

  • the present invention relates to a process for the treatment and energy recovery of sludge produced in wastewater treatment plants of urban and industrial origin.
  • the process which is the subject of claim 1 is characterized by an unprecedented combination of means known and experienced separately, making it possible to "release" the energy contained in the sewage sludge and to obtain a positive energy balance, equal to ⁇ 5.7 tonnes of oil equivalent / year / 1000 population equivalent.
  • the process which is the subject of claim 1 completely addresses the problem posed by the elimination of sewage sludge without transfer of nuisance, by protecting the soil, groundwater and the environment against bacteriological and olfactory pollution and that of heavy metals; it is characterized in that:
  • the landfill of sewage sludge is expected to disappear due to its ban announced for 2002.
  • the agricultural spreading of sewage sludge which is increasingly practiced today, is characterized by the fact that the high content of P205 sludge and the relatively low need of plants for phosphorous fertilizers include phosphorus as a limiting element and identify the sludge at a "delay" fertilizer slowly releasing the nutrients.
  • the process which is the subject of the present invention makes it possible to remedy these drawbacks; it provides for the "energy recovery” of sludges previously thermally dried up to 92% of dry matter, as "supplementary fuel” easily storable and automatically dosable in the ovens of incineration plants for household waste, equipped with recovery of energy and smoke purification installation separating the heavy metals, which undergo a treatment in accordance with the protection of soil and groundwater.
  • the tonnage of this dried sludge represents, on average, in France, "4.5%" of that of household waste for the same number of equivalent inhabitants.
  • Their use as an additional fuel will fill the "hollow” thermal load of furnaces-boilers due to the variability of the humidity rate of household waste and their composition, therefore their PCI (lower calorific value), and d '' ensure a “constant” steam production and equal as far as possible to their nominal capacity, thanks to the adequate storage and automatic dosing equipment for the dried sludge which is part of the process of the invention, and which will be installed on the site of the household waste incineration plant closest to that of the wastewater treatment plant.
  • Figure 1 shows the equipment relating to the first five functions of the process.
  • FIG. 3 represents a "variant" of the realization of functions 1 and 2 of the method.
  • Figure 4 shows the application of the process to the complete treatment of slurry and its transformation into granulated fertilizer.
  • Anaerobic digestion (1) of fresh liquid sludge which "releases" part of the energy of the sludge in the form of biogas. After treatment with drying and filtration, it is stored for use.
  • the biogas PCI is around 5500 Kcal / Nm3 or 6.395 kwh / Nm3.
  • the anaerobic digestion is carried out at the temperature of 35 ° C sheltered from air for approximately 20 days in a single conventional reactor. Heating of the fresh liquid sludge is carried out through the heat exchanger (1a) using the hot water produced by the heat of condensation of the drying mist.
  • a small electric boiler (1b) will use the heat exchanger (1a) to heat the sludge for the first time.
  • the conventional anaerobic digestion can be replaced in the method according to the invention, by anaerobic digestion with separation of the two phases of acidogenesis hydrolysis and methanization, or by aerobic stabilization ther ophile followed by a anaerobic digestion.
  • the first device (4a) is a "rotary thin-film dryer" of the indirect type, with a double jacket heated by circulation of thermal oil itself heated in the above-mentioned recovery boiler (3a) thanks to the circulation pump (4d).
  • the recovery boiler (3a) can produce, in the process according to the invention, saturated steam under pressure, which will be used as heating fluid in the jacket of the thin-layer dryer instead thermal oil.
  • the heat exchange takes place through the internal envelope on which the sludge to be dried is spread in a thin layer.
  • the heat transfer coefficient is high due to the thinness of the thin layer of mud, the renewal of which in contact with the wall is intense thanks to the strong turbulence of the thin layer created by a linear speed of the ends of the neighboring blades. 8 m / s.
  • the mmce layer dryer is a proven dryer which allows sewage sludge to be dried with variable dryness at the inlet, without recycling of dried sludge, providing the sludge at the outlet with the desired dryness without fear of the extremely viscous phase and sticky, called the plastic phase, which the sewage sludge crosses during thermal drying beyond a dryness close to 50% DM (% of dry matter), which limit is variable depending on the nature of the sludge.
  • the rotor of the dryer is equipped with adjustable and removable blades which are at the origin of the great flexibility of the dryer, and ensure the spreading of the sludge in a thin layer and its continuous advancement until the outlet of the dryer at around 64% of dry matter, that is to say beyond the plastic phase of the sludge, in granulated form thanks to the internal device for granulating the dryer.
  • the incoming sludge is first heated to a temperature of around 100 ° C., then the water evaporates at this temperature. contained in sludge; due to the elevation of their temperature to 100 ° C during drying, the sludge is hygienized and its bacteriological pollution is almost entirely eliminated. Evaporation of the water contained in the sludge continues in the second drying apparatus (see below) until a dryness of approximately 92% DM with the production of stable granules free of dust; due to the reduction in the humidity of the sludge at the end of drying, to a value well below 15% of water, the risk of resumption of fermentation of the dried sludge with the formation of bad odors is eliminated.
  • the thin layer dryer can be replaced in the process according to the invention, by any other type of dryer.
  • the second device (4b) is a vibrated fluidized bed dryer / cooler which ensures the end of the drying of the sludge from 64% DM to around 92% DM by convection by means of hot gases through recovery boiler outlet (3a) a fixed perforated sole.
  • the same vibrated dryer (4b) comprises at its end a partitioned zone through which circulates fresh air, by means of fans (4e) and (4f) serving to cool the dried sludge to 92% DM to a temperature below 50 ° C, compatible with its subsequent storage.
  • the vibrated dryer / cooler (4b) does not have rotating blades which grind the sludge producing fine dust of dried sludge; the sludge granules previously formed in the thin-layer dryer are therefore not destroyed in the vibrated dryer / cooler, only their size is slightly reduced due to the reduction in their water content. This results in the absence of dust in the final dry product and in the hot exhaust gases; a cyclone (4g) is however installed on the hot gas outlet circuit for safety.
  • the cooled dried sludge is brought by a conveyor belt (4h) with a translucent cover, and a bucket elevator (4i) in a storage silo (4j) equipped with a telescopic chute (4k), before being transported by truck equipped with a pneumatic system for discharging dried sludge on the site of the nearest household waste incineration plant.
  • the vibrated fluidized bed dryer can be replaced in the process according to the invention, by any other type of dryer, likewise the safety cyclone can be either removed or replaced by any other device such as a filter sleeve .
  • This energy recovery from steam in the form of hot water is used to heat fresh liquid sludge before their anaerobic digestion, and to heat the premises of the treatment plant.
  • the condenser by mixture (5b) is used by injection of purified water, to condense any excess of mist and is dimensioned to condense if applicable, all of the mist from the thin-layer dryer.
  • the volatile compounds contained in the sludge such as: mercaptans, formaldehyde and hydrogen sulfide, are found entrained in the fumes from the indirect thin-layer dryer where the sludge is pre-dried up to about 64% DM; at this stage, all the smelly volatile compounds are evaporated and entrained by the fumes towards the condensers; the noncondensable gases leaving the condensers represent a low flow rate and are sucked through a droplet separator (5c), by a fan (5d) and discharged towards the hearth of the gas turbine to be burned and thus thermally deodorized; thus, the 64% DM pre-dried sludge is freed from foul-smelling volatile compounds and can be dried in the vibrated fluidized bed dryer using hot gases without the risk of transmitting significant olfactory pollution to them, so that the deodorization of the hot gases leaving the vibrated dryer / cooler is not necessary, which considerably simplifies the method according to the invention.
  • the deodorization of the incondensable gases leaving the condensers can be carried out chemically or biologically, and the vibrated dryer / cooler can be equipped in the process according to the invention, 'an installation for the deodorization of hot exhaust gases.
  • the dried sludge representing a small volume is transported by truck to the site of the nearest household waste incineration plant where it will be installed, as part of the method of the invention, a suitable storage silo (6a) of the dried sludge as well as automatic metering equipment (6b) of the flow of the dried sludge.
  • a household waste incineration plant is declared capable of burning dry sludge, if it is equipped, in addition to energy recovery, with a smoke purification installation (8) in accordance with the regulations in force with a view to the protection of soil, groundwater and the environment, in particular concerning the elimination of heavy metals from household waste and dried sludge.
  • the elimination of heavy metals from the dried sludge will entail a “marginal” additional cost, to be determined and compared to case by case with the benefit of the recovery of the energy contained in the dried sludge.
  • the destination of the dried sludge can be in the process according to the invention, different from that set out above such as any other incineration plant.
  • connection, measurement and regulation equipment, handling and storage of sludge, etc. is characterized in that it will be chosen at the cutting edge of technology on the date of each implementation of the process according to the invention; the schematic representations of this material appearing on the attached process diagram are not limiting.
  • the process according to the invention reduces the tonnage of sewage sludge, during the treatment stages, as indicated in the table below:
  • the “variant”, object of claim 4, of the method object of the invention is characterized in that the functions 3, 4 and 6 of the method are unchanged, and that the anointings 1, 2 and 5 can be produced, in an unprecedented manner within the framework of the process, as follows: the fresh liquid sludges are heated to the temperature of 55-60 ° C. in the condenser (5e) of the vapors from the thin-layer dryer, then dehydrated continuously by centrifugation (2a) with prior addition of polymers; the quantity of polymers used is lower and the dryness of the fresh dehydrated sludge is higher, due to the elevation of the temperature of the sludge to 55-60 ° C.
  • the electric boiler (1b) and the heat exchanger (1a) which, if necessary, would serve as a backup.
  • the dehydrated sludge with 28-30% dry matter feed directly by gravity through a chute (1c), the horizontal thermophilic anaerobic digester (1), equipped with an agitator ensuring the mixing of the sludge during its digestion and a optimal degassing; the volume of the digester is much reduced due to the increase in the dryness of the incoming fresh sludge to 28-30% DM instead of 4-5% DM, resulting in a reduction of the volume of the digester by approximately 6 times for a unchanged length of stay.
  • the digested sludge is continuously extracted at the end of the horizontal reactor, and is dosed using a special pump (2d) directly, without an intermediate storage silo, to the thermal drying of the digested sludge.
  • the horizontal digester is dimensioned with a reserve of sufficient volume to compensate for an untimely stoppage of the thermal drying of the sludge.
  • the duration of the sludge stay in the reactor is close to 20 days.
  • Functions 3, 4 and 6 of the process are then carried out without change.
  • the “application”, object of claim 5, of the method object of the invention, to the treatment of “slurry”, is characterized in that the functions 1, 2, 3 and 4 of the method are unchanged, and that functions 5 and 6 can be performed, in an unprecedented way within the framework of the process, as follows:
  • the condensation of the fumes from the indirect thin-layer dryer takes place on the one hand in the tubular condenser (5a), producing hot water for heating the anaerobic digester, and on the other hand in an evaporator.
  • the incondensable gases leaving the condensers represent a low flow rate and are sucked through a droplet separator (5c), by a fan (5d) and discharged towards the hearth of the gas turbine to be burned and thus thermally
  • Dried slurry is valued as a granulated “farm” fertilizer, bagged using the bagging machine (6a); it is rich in nutritive elements and will be in priority used according to the needs of the plants, without overdose, in the same way as a commercial fertilizer.

Abstract

Procédé de traitement et valorisation énergétique optimisée des boues de stations d'épuration urbaine et industrielle. Il est constitué par une combinaison 'nouvelle' d'équipements connus et éprouvés, formant un ensemble compact de six fonctions qui sont: une digestion anaérobie des boues (1) et production de biogaz, une déshydratation mécanique (2) jusqu'à 22-24 % MS, une installation de turbine à gaz (3) brûlant le biogaz en 'énergie totale', un séchage thermique (4) des boues jusqu'à 92 % MS constitué d'un sécheur à couche mince et d'un sécheur/refroidisseur vibré à lit fluidisé (4b), une condensation des buées (5) permettant le chauffage du digesteur et des locaux et une valorisation énergétique optimisée (6) des boues séchées comme combustible d'appoint stockable et dosable dans les fours-chaudières d'incinération des ordures ménagères. Le procédé selon l'invention s'applique également au traitement et à la transformation en engrais granulé ensaché du lisier.

Description

PROCEDE DE TRAITEMENT ET VALORISATION ENERGETIQUE OPTIMISEE DES BOUES D'EPURATION URBAINE ET INDUSTRIELLE.
La présente invention concerne un procédé de traitement et de valorisation énergétique des boues produites dans les stations d'épuration des eaux usées d' origine urbaine et industrielle . Le procédé objet de la revendication 1 est caractérisé par une combinaison inédite de moyens connus et expérimentés séparément, permettant de « libérer » l'énergie contenue dans les boues d'épuration et d'obtenir un bilan énergétique positif, égal à ≡ 5,7 tonnes équivalent pétrole / an / 1000 équivalents habitants. Le procédé objet de la revendication 1 traite complètement le problème posé par l'élimination des boues d' épuration sans transfert de nuisances , en protégeant les sols, les nappes et l'environnement contre la pollution bactériologique et olfactive et celle des métaux lourds ; il est caractérisé en ce que :
1 ) Son coût d'investissement est compétitif et s'élève à environ 10 % de celui , pour le même nombre d' équivalents habitants , d' une usine d' incinération d' ordures ménagères avec récupération de chaleur et épuration conforme des fumées .
2 ) Son automatisme est suffisamment poussé avec toutes les sécurités pour permettre de l'exploiter en automatique sans présence de personnel, sachant qu'il n'utilise pas de vapeur sous pression.
3 ) Son entretien est simple et peu coûteux ; il nécessite l'intervention soit du personnel d'entretien de la station d'épuration, soit d'une société extérieure de maintenance . 4 ) Son coût global de traitement complet de la tonne de boue est tout à fait compétitif en comparaison au coût d'une élimination conforme des boues d'épuration.
Il en résulte une incitation économique à créer des nouveaux investissements liés au procédé objet de l'invention, qui sont ainsi rentables et créateurs d'un nombre important d' emplois stables induits par la construction des équipements chez les fournisseurs .
Le problème posé par les boues d' épuration préoccupe aujourd'hui sérieusement les Collectivités locales et l'Etat, étant donné leur tonnage considérable qui ne cesse d'augmenter, et les risques de pollution toxique, bactériologique et olfactive qu' elles induisent pour les sols, les nappes et l'environnement. Il est donc urgent de disposer d'une technique optimale de traitement et de valorisation de ces boues qui soit sûre, durable, écologique, économique et applicable à tous les cas ; c'est ce que propose le procédé objet de l'invention, qui s'applique à toutes les stations d'épuration de capacité supérieure ou égale à 30.000 équivalents habitants.
La destination actuelle des boues d'épuration est, après leur déshydratation mécanique, soit l'épandage agricole, soit la mise en décharge, et parfois leur incinération conjointe, avec ou sans séchage thermique préalable , avec les ordures ménagères . Cette dernière destination est onéreuse en investissement et n' est pas optimisée en valorisation énergétique des boues .
La mise en décharge des boues d' épuration est appelée à disparaître du fait de son interdiction annoncée pour 2002.
L'épandage agricole des boues d'épuration, de plus en plus pratiqué actuellement, est caractérisé par le fait que la forte teneur des boues en P205 et le relativement faible besoin des plantes en engrais phosphoπque inscrivent le phosphore comme élément limitant et identifient les boues à un engrais « retard » libérant lentement les éléments fertilisants .
Il y a un risque de transmission des maladies pour l'homme et l'animal par les boues d'épuration epandues sur les champs ou en décharge ; en Suisse par exemple le risque de maladie est réduit car les boues epandues sur des terres agricoles doivent toujours être « hygiénisées » et ne doivent pas contenir plus de 100 entérobactériacées par gramme et aucun oeuf de ver contagieux. Une telle obligation n'existe pas en France.
Même après une hygiénisation, l'utilisation des boues comme engrais phosphorique retard doit être effectuée avec « parcimonie » à cause de leur apport en métaux lourds , pour éviter à très long terme (voir tableau ci-après) d'entraîner une saturation des sols en métaux lourds ; en effet le délai en années de saturation des sols en métaux lourds provenant d' un épandage de boues à raison de 2,5 t MS / ha / an, selon les normes fixées par l'ordonnance suisse sur la protection des sols, publié dans les « Nouvelles de l'EAWAG n° 28 de septembre 1989 », s'établit comme suit pour deux qualités de boues :
Métal Teneur Délai en : Faible Délai en moyenne années teneur années g / kg MS mg / kg MS
1 1
Zinc 1500 150 100 240
Cuivre 800 80 250 240
Cadmium 5 180 1 900
Mercure 5 160 1 800
La pratique du « remplissage » du sol jusqu' aux normes du fait de la généralisation progressive de l'épandage agricole des boues d'épuration, n'est pas conforme à une bonne gestion du patrimoine naturel de l'humanité ; la prudence doit donc être de mise car il faut admettre que l'assainissement des sols pollués serait une tâche fastidieuse et très coûteuse pour les générations futures. Par ailleurs l'interdiction de la mise en décharge des boues d'épuration à brève échéance ( 2002 ) , est à cet égard très sécurisante .
Concernant les toxiques organiques présents également dans les boues d'épuration, à savoir : LAS (alkylbenzène sulfonate linéaire) , NP (nonylphénol) , PAK (hydrocarbures aromatiques polycycliques) , Sn-OC (composés organo-étains) , PCB (polychlorobiphényles) , HCB (héxachlorobenzène) et LI (lindane) , il manque selon l'information des « Nouvelles de l'EAWAG, septembre 89 » une meilleure évaluation des risques encourus dans l'utilisation agricole des boues d' épuration.
Le procédé objet de la présente invention, permet de remédier à ces inconvénients ; il prévoit la « valorisation énergétique » des boues préalablement séchées thermiquement jusqu'à 92 % de matières sèches, comme « combustible d' appoint » aisément stockable et dosable automatiquement dans les fours d' usines d' incinération des ordures ménagères , équipées de récupération d' énergie et d' installation d' épuration des fumées séparant les métaux lourds , qui subissent un traitement conforme à la protection des sols et des nappes .
Le tonnage de ces boues séchées représente en moyenne, en France, « 4,5% » de celui des ordures ménagères pour un même nombre d' équivalents habitants . Leur emploi comme combustible d' appoint permettra de combler les « creux » de charge thermique des fours-chaudières dus à la variabilité du taux d' humidité des ordures ménagères et de leur composition, donc de leur PCI (pouvoir calorifique inférieur) , et d' assurer une production de vapeur « constante » et égale dans la mesure du possible, à leur capacité nominale, grâce aux équipements de stockage adéquat et de dosage automatique des boues séchées qui font partie du procédé de l'invention, et qui seront installés sur le site de l'usine d'incinération des ordures ménagères le plus proche de celui de la station d'épuration.
Les dessins annexés illustrent le « procédé » objet de l'invention :
La figure 1 représente les équipements relati s aux cinq premières fonctions du procédé.
La figure 2 représente la sixième fonction du procédé. La figure 3 représente une « variante » de réalisation des fonctions 1 et 2 du procédé .
La figure 4 représente l'application du procédé au traitement complet du lisier et sa transformation en engrais granulé.
En référence aux figures 1 et 2 représentant le schéma de procédé, les fonctions 1 à 5 groupées pour la première fois sur le site d'une station d'épuration, et la fonction 6 installée pour la première fois sur le site d'une usine d'incinération, sont décrites ci-après :
1 ) La digestion anaérobie (1) des boues fraîches liquides qui « libère » une partie de l'énergie des boues sous forme de biogaz. Celui-ci après traitement par dessication et filtration, est stocké en vue de son utilisation. Le PCI du biogaz s'élève a environ 5500 Kcal/Nm3 soit 6,395 kwh/Nm3. Dans le procédé selon l'invention, la digestion anaérobie s'effectue à la température de 35 °C à l'abri de l'air pendant environ 20 jours dans un reacteur conventionnel unique. Le chauffage des boues fraîches liquides est réalisé à travers l'échangeur de chaleur (1a) utilisant l'eau chaude produite grâce a la chaleur de condensation des buées de séchage . Pour le premier démarrage de la digestion anaérobie une petite chaudière électrique (1b) assurera à l' aide de l'échangeur de chaleur (1a) le premier chauffage des boues. Selon des modes particuliers de réalisation, la digestion anaérobie conventionnelle peut être remplacée dans le procédé selon l'invention, par une digestion anaérobie avec séparation des deux phases d' hydrolyse acidogénèse et de méthanisation, ou par une stabilisation aérobie ther ophile suivie d'une digestion anaérobie.
2 ) La déshydratation mécanique (2) des boues digérées jusqu'à 22 à 24 % de matières sèches à l'aide d'une centrifugeuse (2a), d'un filtre à bande pressante (2b) ou tout autre dispositif de déshydratation mécanique sans limitation du degré de siccité obtenue. La déshydratation mécanique des boues nécessite généralement l'adjonction de polymères pour la floculation préalable des boues liquides , permettant d' obtenir pour une siccité optimale des boues déshydratées , une meilleure qualité du filtrat qui retourne en tête de la station d'épuration. Les boues déshydratées sont amenées dans un silo de stockage tampon (2c) , d' où elles sont dosées à l'aide d'une pompe spéciale (2d) vers le séchage thermique. Le rôle du silo tampon est de pouvoir faire fonctionner le séchage thermique en « continu » alors que la déshydratation mécanique peut fonctionner en discontinu .
3 ) La combustion du biogaz enrichi avec un faible appoint de gaz naturel, dans une « turbine à gaz (3) » dont l'application, objet de la revendication 2, est caractérisée en ce que l'installation de cogénération fonctionne « en énergie totale », entraînant un accroissement de son rendement global supérieur à 16 % par rapport à celui d'une cogénération classique, grâce à sa combinaison « judicieuse » avec un système de séchage thermique des boues à deux appareils , dont le premier utilise (circuit 3b) « les 100 % » de l'énergie récupérée sur les gaz chauds dans la chaudière de récupération (3a) , et le deuxième emploie (circuit 3c) comme fluide de chauffe « les 100 % » du débit des gaz chauds à la température de sortie de la chaudière de récupération (3a) , directement sans aucune adaptation ni équipement spécial complémentaire . Selon des modes particuliers de réalisation, la turbine à gaz peut être remplacée dans le procédé selon l'invention, par un moteur à gaz ou tout autre système de cogénération, et le combustible peut être remplace dans le procédé selon l'invention, par du biogaz seul ou du gaz naturel seul .
4 ) Le séchage thermique (4) des boues déshydratées mécaniquement usqu' à 92 % de matières sèches et en même temps le refroidissement des boues séchées, à l'aide d'un système comprenant deux appareils en série, directement reliés entre eux par une goulotte (4c) , « sans » équipement de mélange en amont de boues séchées recyclées et de boues humides , donc « sans » recyclage de boues séchées et « sans » équipement de mélange et granulation intermédiaire ; entraînant ainsi une simplification considérable de l'installation de « séchage et refroidissement » des boues .
La description de ces deux appareils, performants, qui sont retenus dans le procédé selon l'invention, pour le séchage et le refroidissement des boues est comme suit :
Le premier appareil (4a) est un « sécheur rotatif à couche mince » du type indirect, à double enveloppe chauffée par circulation d' huile thermique elle-même réchauffée dans la chaudière de récupération (3a) susvisée grâce à la pompe de circulation (4d) .
Selon des modes particuliers de réalisation, la chaudière de récupération (3a) peut produire dans le procédé selon l'invention, de la vapeur saturée sous pression, qui sera utilisée comme fluide de chauffe dans la double enveloppe du sécheur à couche mince à la place de 1' huile thermique .
L'échange de chaleur s'effectue à travers l'enveloppe interne sur laquelle sont étalées en couche mince les boues à sécher . Le coefficient de transfert de chaleur est élevé du fait de la faible épaisseur de la couche mince de boue, dont le renouvellement en contact avec la paroi est intense grâce à la forte turbulence de la couche mince créée par une vitesse linéaire des extrémités des pales voisine de 8 m/s .
Le sécheur à couche mmce est un sécheur éprouvé qui permet de sécher des boues d' épuration avec des siccités variables à l'entrée, sans recyclage de boues séchées, en fournissant à la sortie des boues à la siccité voulue sans craindre la phase extrêmement visqueuse et collante, dite phase plastique, que traversent les boues d'épuration lors du séchage thermique au-delà d'une siccité voisine de 50 % MS (% de matières sèches) , laquelle limite est variable en fonction de la nature des boues .
Le rotor du sécheur est équipé de pales réglables et amovibles qui sont à l'origine de la grande flexibilité du sécheur, et assurent l'étalement des boues en couche mince et son avancement continu jusqu' à la sortie du sécheur à environ 64 % de matières sèches, c'est-à-dire au-delà de la phase plastique des boues , sous forme granulée grâce au dispositif interne de granulation du sécheur.
Au cours du séchage s'effectue d'abord le chauffage des boues entrantes jusqu'à la température de 100 °C environ, puis s'effectue à cette température l' évaporation de l'eau contenue dans les boues ; du fait de l'élévation de leur température à 100 °C au cours du séchage, les boues sont hygiénisées et leur pollution bactériologique est supprimée en quasi totalité. L' évaporation de l'eau contenue dans les boues se poursuit dans le deuxième appareil de séchage (voir ci- après) jusqu'à une siccité de 92 % MS environ avec obtention de granulés stables exempts de poussières ; du fait de la réduction de l'humidité des boues à la fin du séchage, à une valeur bien en-dessous des 15 % d'eau, le risque de reprise de la fermentation des boues séchées avec formation de mauvaises odeurs est éliminé.
Selon des modes particuliers de réalisation, le sécheur à couche mince peut être remplacé dans le procédé selon l'invention, par tout autre type de sécheur.
Le deuxième appareil (4b) est un sécheur/ refroidisseur vibré à lit fluidisé qui assure la fin du séchage des boues de 64 % MS jusqu' à 92 % MS environ par convection au moyen des gaz chauds sortie chaudière de récupération (3a) traversant une sole fixe perforée. Les boues préséchées a environ 64 % MS et à la température d'environ 100 °C tombent directement par gravité dans la goulotte d'alimentation (4c) du sécheur vibré (4b) ; en effet la granulation interne au sécheur à couche mince et la siccité des boues préséchées , au-delà de la phase plastique des boues , confèrent à celles-ci une structure optimale pour leur séchage final dans un sécheur vibré à lit fluidisé, sans la nécessité d'avoir un mélangeur granulateur des boues préséchées avec des boues séchées recyclées , entre les deux appareils .
Le même sécheur vibré (4b) comprend à son extrémité une zone cloisonnée à travers laquelle circule de l'air frais, au moyen des ventilateurs (4e) et (4f) servant au refroidissement des boues séchées à 92 % MS jusqu' à une température inférieure à 50 °C, compatible avec son stockage ultérieur.
Le sécheur/refroidisseur vibré (4b) ne comporte pas de pales rotatives qui meulent les boues produisant des poussières fines de boues séchées ; les granulés de boue précédemment formés dans le sécheur à couche mince ne sont donc pas détruits dans le sécheur/refroidisseur vibré, seule leur grosseur est légèrement réduite du fait de la réduction de leur teneur en eau. Il en résulte l'absence de poussières dans le produit sec final et dans les gaz chauds d'échappement ; un cyclone (4g) est toutefois installé sur le circuit de sortie des gaz chauds à titre de sécurité.
Les boues séchées refroidies sont amenées par un transporteur à bande (4h) avec une couverture translucide, et un élévateur à godets (4i) dans un silo de stockage (4j) équipé d'une goulotte télescopique (4k), avant leur transport par camion muni d' un système pneumatique de déchargement des boues séchées sur le site de l'usine d' incinération des ordures ménagères la plus proche . Selon des modes particuliers de réalisation, le sécheur vibré à lit fluidisé peut être remplacé dans le procédé selon l'invention, par tout autre type de sécheur, de même le cyclone de sécurité peut être soit supprimé soit remplacé par tout autre dispositif tel que filtre à manches .
5 ) La condensation des buées issues du sécheur indirect à couche mince, (5) , avec récupération de la chaleur de condensation à l'aide du condenseur tubulaire (5a) . Cette récupération d'énergie des buées sous forme d'eau chaude, sert au chauffage des boues fraîches liquides avant leur digestion anaérobie, et au chauffage des locaux de la station d'épuration. Le condenseur par mélange (5b) sert par injection d'eau épurée, à condenser un excédent éventuel de buées et est dimensionné pour condenser, le cas échéant, la totalité des buées issues du sécheur à couche mince .
Les composés volatils contenus dans les boues, tels que : mercaptans , formaldéhyde et hydrogène sul uré , se retrouvent entraînés dans les buées issues du sécheur indirect à couche mince où les boues sont préséchées jusqu' à environ 64 % MS ; à ce stade tous les composés volatils malodorants se trouvent évaporés et entraînés par les buées vers les condenseurs ; les gaz incondensables sortie condenseurs représentent un faible débit et sont aspirés à travers un séparateur de gouttelettes (5c) , par un ventilateur (5d) et refoulés vers le foyer de la turbine à gaz pour y être brûlés et ainsi désodorisés thermiquement ; ainsi les boues préséchées à 64 % MS se trouvent débarrassées des composés volatils malodorants et peuvent être séchées dans le sécheur vibré à lit fluidisé à l'aide des gaz chauds sans le risque de transmettre à ces derniers une pollution olfactive importante, de telle sorte que la désodorisation des gaz chauds sortie sécheur/ refroidisseur vibré n'est pas nécessaire, ce qui simplifie considérablement le procédé selon l'invention.
Selon des modes particuliers de réalisation, dans le procédé selon l'invention, la désodorisation des gaz incondensables sortie condenseurs , peut être réalisée par voie chimique ou biologique, et le sécheur/refroidisseur vibré peut être équipé dans le procédé selon l'invention, d'une installation pour la désodorisation des gaz chauds d' échappement .
6 ) La valorisation énergétique « optimisée » des boues séchées à 92 % MS environ, objet de la revendication 3, est caractérisée en ce que :
- Les boues séchées représentant un faible volume, sont transportées par camion sur le site de l'usine d' incinération des ordures ménagères la plus proche où il sera installé, dans le cadre du procédé de l'invention, un silo de stockage adéquat (6a) des boues séchées ainsi qu'un équipement de dosage (6b) automatique du débit des boues séchées . - Les boues sechees dont le PCI est égal à environ 2270 kcal/kg ou 2,64 k h/kg, sont dosées automatiquement dans chaque four-chaudière (7) en fonction du débit vapeur de consigne, et compenseront les creux des oscillations de la charge thermique des ordures ménagères , jusqu'à la ligne horizontale correspondant à la charge thermique nominale du four-chaudière, sans que cela nécessite un surdimensionnement des équipements existants de l'usine d'incinération des ordures ménagères. Ce mode de valorisation énergétique des boues séchées présente l'avantage pour l'usine d' incinération des ordures ménagères , de disposer d' un combustible d' appoint aisément stockable et dosable, pour produire un débit vapeur « constant » et pouvoir assurer une livraison « garantie » d' énergie à un tiers . Une usine d' incinération des ordures ménagères , est déclarée apte a brûler les boues sechees, si elle est équipée en plus de la récupération d' énergie , d'installation d'épuration des fumées (8) conforme aux règlements en vigueur en vue de la protection des sols , des nappes et de l'environnement, en particulier concernant l'élimination des métaux lourds des ordures ménagères et des boues séchées . Sachant la relative faible proportion du tonnage des boues séchées par rapport a celui des ordures ménagères, généralement égale a 4,5%, l'élimination des métaux lourds en provenance des boues séchées entraînera un surcoût « marginal » , à déterminer et à comparer au cas par cas avec le bénéfice de la valorisation de l'énergie contenue dans les boues séchées .
Selon des modes particuliers de réalisation, la destination des boues séchées peut être dans le procédé selon l'invention, différente de celle exposée ci-dessus telle que toute autre installation d'incinération.
Tout le matériel de liaison, de mesures et régulations , de manutention et stockage des boues etc ... , est caractérisé en ce qu' il sera choisi à la pointe de la technique à la date de chaque réalisation du procédé selon l'invention ; les représentations schématiques de ce matériel figurant sur le schéma de procédé annexé ne sont pas limitatives .
Le procédé selon l' invention réduit le tonnage des boues d'épuration, au fur et à mesure des étapes de traitement, comme l'indique le tableau ci-dessous :
Boues d'épuration en T/1000 EH/an
B.fraîchesi B. digérées. B.déshydratées; B. séchées! B . incinérées (4-5 %MS) (4-5 %MS) (22-24 %MS) (92 %MS) (100% M.min.)
511 350,5 104,5 17,14 7,82
En référence à la figure 3, la « variante », objet de la revendication 4, du procédé objet de l'invention, est caractérisée en ce que les fonctions 3 , 4 et 6 du procédé sont inchangées , et que les onctions 1 , 2 et 5 peuvent être réalisées, de façon inédite dans le cadre du procédé, comme suit : les boues fraîches liquides sont chauffées à la température de 55-60 °C dans le condenseur (5e) des buées issues du sécheur à couche mince, puis déshydratées en continu par centrifugation (2a) avec adjonction préalable de polymères ; la quantité de polymères utilisée est plus faible et la siccité des boues fraîches déshydratées est plus élevée, du fait de l'élévation de la température des boues à 55-60 °C. Pour le premier démarrage du chauffage des boues fraîches seront utilisés la chaudière électrique (1b) et l'échangeur de chaleur (1a) qui, en cas de besoin, serviraient d'appoint.
Les boues déshydratées à 28-30 % de matières sèches, alimentent directement par gravité à travers une goulotte (1c) , le digesteur anaérobie thermophile horizontal (1) , muni d' un agitateur assurant le mélange des boues au cours de leur digestion et un dégazage optimal ; le volume du digesteur est beaucoup plus réduit du fait de l'élévation de la siccité des boues fraîches entrantes à 28-30 % MS au lieu de 4-5 % MS , entraînant une réduction du volume du digesteur d'environ 6 fois pour une durée de séjour inchangée .
Les boues digérées sont extraites, en continu, à l'extrémité du réacteur horizontal, et sont dosées à l'aide d'une pompe spéciale (2d) directement, sans silo de stockage intermédiaire, vers le séchage thermique des boues digérées .
Le digesteur horizontal est di ensionné avec une réserve de volume suffisante pour pallier à un arrêt intempestif du séchage thermique des boues . La durée du séjour des boues dans le réacteur est voisine de 20 jours. Les fonctions 3 , 4 et 6 du procédé sont ensuite réalisées sans changemen . En référence à la figure 4, l'« application », objet de la revendication 5, du procédé objet de l'invention, au traitement du « lisier » , est caractérisée en ce que les fonctions 1 , 2 , 3 et 4 du procédé sont inchangées , et que les fonctions 5 et 6 peuvent être réalisées , de façon inédite dans le cadre du procédé, comme suit :
La condensation des buées issues du sécheur indirect à couche mince s' effectue d' une part dans le condenseur tubulaire (5a), produisant l'eau chaude pour le chauffage du digesteur anaérobie , et d' autre part dans un evaporateur à couche mince (5g) avec un rotor muni de palettes mobiles qui, en cours de marche, s'appliquent sur la paroi chauffée en vue de finir la concentration à environ 20% de matières sèches , du « filtrat » provenant de la déshydratation mécanique du lisier ; la préconcentration du filtrat du lisier est réalisée dans une installation à multiple effet (5f) d' evaporateurs à film tombant ; le concentrât à environ 20% MS est amené dans le silo de stockage tampon (2c) ; le distillât, constitué d'eau épurée, est utilisée pour l'irrigation ou rejetée dans le milieu naturel. Les gaz incondensables sortie condenseurs représentent un faible débit et sont aspirés à travers un séparateur de gouttelettes (5c) , par un ventilateur (5d) et refoulés vers le foyer de la turbine à gaz pour y être brûlés et ainsi désodorisés thermiquement.
Le lisier séché est valorisé comme un engrais « de ferme » granulé, ensaché à l'aide de l'ensacheuse (6a) ; il est riche en éléments nutritifs et sera en priorité utilisé en fonction des besoins des plantes, sans surdosage, au même titre qu'un engrais du commerce.

Claims

REVENDICATIONS
1) Procédé de traitement et de valorisation énergétique des boues d'épuration d'origine urbaine et industrielle, permettant par la juxtaposition inédite d' équipements connus et éprouvés, l'obtention d'un bilan énergétique positif égal à ≤ 5,7 tonnes équivalent pétrole par an et par 1000 équivalents habitants ; il est caractérisé en ce qu'il comporte les étapes suivantes au nombre de six :
* la digestion anaérobie des boues (1) , à une phase, à deux phases ou précédée d' une stabilisation aérobie thermophile , et production de biogaz , la déshydratation mécanique (2) des boues digérées, la combustion du biogaz, enrichi avec un faible appoint de gaz naturel, dans une turbine à gaz (3) fonctionnant « en énergie totale » ,
* le séchage thermique des boues déshydratées avec deux appareils en série : le premier appareil est un sécheur à couche mince (4a) à double enveloppe, chauffée par l'huile thermique en circulation (3b) dans la chaudière de récupération (3a) de la chaleur des gaz de combustion du biogaz , le deuxième appareil est un sécheur/ refroidisseur (4b) vibré à lit fluidisé, chauffé par les gaz chauds (3c) sortie chaudière de récupération et muni à sa sortie gaz d'un cyclone (4g) , à titre de sécurité, + la condensation des buées issues du sécheur indirect à couche mince, avec désodorisation thermique des gaz incondensables dans le foyer de la turbine à gaz , dans un condenseur tubulaire (5a) assurant l'eau chaude nécessaire au chauffage du digesteur et des locaux, et en secours dans un condenseur par mélange (5b) par injection d'eau épurée, * le transport des boues séchées sur le site d' une usine d' incinération des ordures ménagères la plus proche , et leur « valorisation » énergétique comme combustible d'appoint stockable (6a) et automatiquement dosé (6b) en fonction de la demande des ours-chaudières existants (7) de manière à compenser les creux de la charge thermique et à utiliser au mieux la capacité des équipements existants de l'usine d'incinération, y compris ceux relatifs à l'élimination des métaux lourds (8) , « sans » nécessiter leur surdimensionnement, imputable au traitement des boues .
2) Procédé selon la revendication 1 caractérisé en ce que l'énergie générée par la combustion du biogaz dans l'installation de cogénération, étape 3 du procédé objet de l'invention, est « totalement » utilisée, aux pertes par déperditions près , pour les besoins du séchage thermique des boues d'épuration ou du lisier, avec un rendement global énergétique supérieur de 16 % a celui d'une installation classique de cogénération ; et ce grâce à l'emploi judicieux de deux sécheurs appropriés : le premier sécheur (4a), du type a couche mince, chauffé indirectement par l'huile thermique (3b) réchauffée dans la chaudière de récupération (3a) , et le deuxième sécheur (4b) , du type vibré à lit fluidisé, chauffé directement par les gaz de combustion du biogaz sortie chaudière (3c) .
3) Procédé selon la revendication 1 caractérisé en ce que les boues séchées dont le pouvoir calorifique inférieur (PCI) est égal à environ 2270 Kcal/Kg, sont utilisées comme combustible pauvre par l'usine, la plus proche, d' incinération des ordures ménagères avec récupération d' énergie et élimination des métaux lourds ; ce qui lui permet grâce a cet apport de combustible d' appoint aisément stockable et « dosable », d'assurer une livraison constante et garantie de l' énergie récupérée .
4) Procédé selon la revendication 1 caractérisée en ce que les boues fraîches liquides sont d' abord déshydratées mécaniquement, par centrifugation continue (2a) , puis digérées en anaérobie thermophile dans un réacteur horizontal (1) ; le chauffage des boues fraîches à la température de 55-60 °C utilisant la chaleur des buées issues du sécheur à couche mince (4a) , est réalisé avec des boues liquides dans un condenseur par mélange (5e) muni de cascades , ce qui améliore les performances de la centrifugation qui fournit des boues déshydratées à 28-30 % de matières sèches . Celles-ci alimentent directement le digesteur à la température voulue, et progressent à l'intérieur par un effet de « piston » jusqu'à l'extrémité, puis sont dosées par une pompe (2d) vers le sécheur à couche mince (4a) . Les fonctions 3, 4 et 6 du procédé objet de la revendication 1, sont alors utilisées sans changement.
5) Procédé selon la revendication 1 caractérisé en ce que, pour le traitement et transformation en engrais granulé du « lisier », sont apportées les adaptations suivantes :
- le filtrat de la déshydratation mécanique est préconcentré dans uns installation à multiple effet (5f) d' evaporateurs à film tombant, puis concentré jusqu'à environ 20 % de matières sèches dans un evaporateur à couche mince (5g) avec un rotor muni de palettes mobiles, au moyen de l'énergie fournie par les buées excédentaires par rapport au besoin de chauffage du digesteur .
- le lisier séché est ici valorisé comme un engrais « de ferme » granulé ; après séchage/ refroidissement, il est stocké puis ensaché à l'aide de l'ensacheuse (6a).
6) Procédé selon la revendication 1 caractérisé en ce que la turbine à gaz (3) est remplacée par un moteur à gaz ou tout autre système de cogénération.
7) Procédé selon la revendication 1 caractérisé en ce que le sécheur à couche mince (4a) ou le sécheur vibré à lit fluidisé (4b) sont remplacés, ensemble ou séparément, par tout autre type de sécheur .
8) Procédé selon la revendication 1 caractérisé en ce que le cyclone (4g) est soit supprimé, soit remplacé par tout autre dispositif tel que filtre à manches.
9) Procédé selon la revendication 1 caractérisé en ce que la désodorisation des gaz incondensables ou des gaz d'échappement est réalisée par voie chimique ou biologique.
10) Procédé selon la revendication 1 caractérisé en ce que les boues séchées ne sont pas employées comme combustible d' appoint dans une usine d' incinération d'ordures ménagères, mais dans toute autre installation d' incinération .
PCT/FR1997/001819 1997-01-06 1997-10-13 Procede de traitement et valorisation energetique optimisee des boues d'epuration urbaine et industrielle WO1998030506A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE1997603975 DE69703975T3 (de) 1997-01-06 1997-10-13 Optimierte methode zur behandlung und energielieferten verwertung von kommunalem und industriellem klärschlamm
AT97909392T ATE198873T1 (de) 1997-01-06 1997-10-13 Optimierte methode zur behandlung und energielieferten verwertung von kommunalem und industriellem klärschlamm
US09/142,195 US6171499B1 (en) 1997-01-06 1997-10-13 Optimised method for the treatment and energetic upgrading of urban and industrial sludge purifying plants
CA 2254724 CA2254724C (fr) 1997-01-06 1997-10-13 Procede de traitement et valorisation energetique optimisee des boues d'epuration urbaine et industrielle
EP19970909392 EP0906248B2 (fr) 1997-01-06 1997-10-13 Procede de traitement et valorisation energetique optimisee des boues d'epuration urbaine et industrielle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9700050A FR2758100B1 (fr) 1997-01-06 1997-01-06 Procede de traitement et valorisation energetique optimisee des boues de stations d'epuration urbaine et industrielle
FR97/00050 1997-01-06

Publications (1)

Publication Number Publication Date
WO1998030506A1 true WO1998030506A1 (fr) 1998-07-16

Family

ID=9502387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/001819 WO1998030506A1 (fr) 1997-01-06 1997-10-13 Procede de traitement et valorisation energetique optimisee des boues d'epuration urbaine et industrielle

Country Status (7)

Country Link
US (1) US6171499B1 (fr)
EP (1) EP0906248B2 (fr)
AT (1) ATE198873T1 (fr)
CA (1) CA2254724C (fr)
DE (1) DE69703975T3 (fr)
FR (1) FR2758100B1 (fr)
WO (1) WO1998030506A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056715A1 (fr) * 2000-02-07 2001-08-09 Daniel Friedli Procede de traitement
DE10152751A1 (de) * 2001-10-29 2003-05-15 Hans-Joachim Auerbach Verfahren zur Aufbereitung von Biofiltraten aus biotechnologisch behandelten Substraten und Anordnung zur Durchführung des Verfahrens

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406672B (de) * 1998-02-26 2000-07-25 Andritz Patentverwaltung Verfahren und anlage zur mechanischen und thermischen entwässerung von schlämmen
DE19813100A1 (de) * 1998-03-25 1999-10-07 Hepke Hans Joerg Anlage zum Trocknen von Schlämmen
AUPP274998A0 (en) * 1998-04-03 1998-04-30 Isentropic Systems Ltd Improvements in the generation of electricity and the treatment and disposal of sewage
DE19940994B4 (de) * 1999-08-28 2004-02-26 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Verfahren zum Abbau von Klärschlamm
AU3778901A (en) * 2000-02-02 2001-08-20 Cooperatief Advies En Onderzoeksburo U.A. Ecofys System of apparatus and process for generating energy from biomass
CN1471409B (zh) 2000-08-22 2013-08-07 Gfe专利股份公司 淤浆分离和沼气生产的方案
US20060086660A1 (en) * 2002-07-19 2006-04-27 Bio-Terre Systems Inc. Integrated technology for treatment and valorization of organic waste
US20050011828A1 (en) * 2003-07-18 2005-01-20 Bio-Terre Systems Integrated technology for treatment and valorization of organic waste
MY143253A (en) * 2002-08-01 2011-04-15 Gfe Patent As Method and device for stripping ammonia from liquids
US6887382B2 (en) * 2003-02-10 2005-05-03 Abi Alfalfa Inc. System for treatment of manure
US7021197B2 (en) * 2003-07-18 2006-04-04 Electrical & Electronics Ltd. Hot beverage machine
FI119475B (fi) * 2004-06-14 2008-11-28 Fractivator Oy Menetelmä hyötytuotteen valmistamiseksi lietteestä
US7024796B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US20070084077A1 (en) * 2004-07-19 2007-04-19 Gorbell Brian N Control system for gas turbine in material treatment unit
US7694523B2 (en) * 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7685737B2 (en) * 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US20060101881A1 (en) * 2004-07-19 2006-05-18 Christianne Carin Process and apparatus for manufacture of fertilizer products from manure and sewage
US7024800B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
DE102004036081B4 (de) 2004-07-24 2007-12-27 Cakir, Ugur, Dipl.-Ing. Neues Trocknungskonzept (Trocknungsanlage) für Klärschlamm
WO2006017991A1 (fr) * 2004-08-18 2006-02-23 Yiran Li Procede de traitement sequentiel par etapes de dechets domestiques urbains
DE102004044645B3 (de) * 2004-09-13 2006-06-08 RÜTGERS Carbo Tech Engineering GmbH Umweltschonendes Verfahren zur Gewinnung von Bioerdgas
US8124401B2 (en) * 2005-06-02 2012-02-28 Institut de Recherche et de Développment en Agroenvironnement Inc. Method and system for the production of biofertilisers
US7610692B2 (en) * 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US20070163316A1 (en) * 2006-01-18 2007-07-19 Earthrenew Organics Ltd. High organic matter products and related systems for restoring organic matter and nutrients in soil
WO2007140445A2 (fr) * 2006-05-31 2007-12-06 Filtration Dynamics, Inc. Dispositifs, systèmes et procédés de filtration centrifuges de fluide
US7736508B2 (en) * 2006-09-18 2010-06-15 Christopher A. Limcaco System and method for biological wastewater treatment and for using the byproduct thereof
FR2908404B1 (fr) * 2006-11-13 2011-07-01 Valorga Internat Procede et installation de traitement anaerobie d'effluents a concentration de matiere seche elevee
FR2933988B1 (fr) * 2008-07-18 2011-09-09 Saint Gobain Dispositif industriel fabriquant son propre combustible
ITMC20080135A1 (it) * 2008-07-22 2010-01-23 Nuova Maip Macchine Agric Sistema di trattamento dei fanghi provenienti da acque reflue e suo sfruttamento energetico per cogenerazione.
IT1393315B1 (it) * 2008-10-30 2012-04-20 Pianese Processo per la trasformazione dei rifiuti solidi urbani in materiali e/o conglomerati dalla quota inerte, in energia ottenuta dal biogas derivante da trattamento a freddo di bioconversione anaerobica della frazione organica ed in eventuale ammendante
KR100936540B1 (ko) * 2009-02-16 2010-01-13 이상범 바이오가스 생산용 아파트형 혐기소화장치
DE102009010118B4 (de) * 2009-02-24 2011-03-31 Michael Kaden Verfahren zur selbstgängigen Verbrennung von Klärschlamm
SE533563C2 (sv) * 2009-03-10 2010-10-26 Arne Lindahl Förfarande för utvinning av energi från organiskt avfall
BRPI0904780B1 (pt) * 2009-09-17 2017-05-30 Petrocoque S/A Indústria e Comércio aperfeiçoamentos nos meios de alimentação de um forno rotativo utilizado para calcinação de coque verde de petróleo
DE102010017027B3 (de) * 2009-10-23 2011-06-22 Erdgas Südwest GmbH, 76275 Verfahren zum Betrieb von Anlagen zur Erzeugung von anthropogenen und/oder biogenen, methanhaltigen Gasen am Erdgasnetz
DE102010007305B4 (de) * 2010-02-08 2013-12-24 Rewi Energy Gmbh Biogasanlage und Verfahren zum Erzeugen eines Festbrennstoffs
US8408840B2 (en) 2010-08-31 2013-04-02 Dennis Dillard Aerobic irrigation controller
ITFR20100022A1 (it) * 2010-10-28 2012-04-29 Comeca Sa Impianto di disidratazione fanghi da impianto di depurazione
US8329455B2 (en) 2011-07-08 2012-12-11 Aikan North America, Inc. Systems and methods for digestion of solid waste
KR20130079457A (ko) * 2012-04-17 2013-07-10 한민섭 물질분자에 함유되어 있는 물질분자와 물질분자를 충격시켜서 물질분자의 성분을 변화시키는 물질충격작용과 물질을 마찰시켜서 마찰시키는 마찰작용과 물질끼리 폭발하는 물질폭발작용을 이용하여 유체,유체성물질,유체성 식품,유동성식품,유동성 물질,음식에 함유되어 있는 독성 성분들과 깨끗한 성분들을 분리 시켜주는 1유입 2배출 공법이용하여 이들물질들을 정화시키는 친환경 공법과 여기에 적용되는 정화기
FR2994249B1 (fr) * 2012-08-06 2018-09-07 Degremont Procede et installation de production d'electricite a partir de dechets fermentescibles, en particuler de boues de station d'epuration
GB2509312B (en) * 2012-12-26 2017-09-06 Richard Walsh Andrew Apparatus for achieving pathogen reduction in solid state anaerobic digestate utilising process heat
DE202013105737U1 (de) * 2013-12-17 2014-02-12 mecoplan GmbH Trocknungsanlage
CN104668270B (zh) * 2015-01-15 2018-07-13 首钢环境产业有限公司 协同处置城市固体废弃物的方法
CN108298788A (zh) * 2018-03-29 2018-07-20 天津大学 一种低浓度污泥消化干化过程中沼气梯级利用系统
FR3086940B1 (fr) * 2018-10-08 2020-09-25 Bee And Co Procede de traitement in situ de dechets biodegradables par methanisation et unite de traitement pour la mise en oeuvre dudit procede
EP3800413B1 (fr) 2019-10-03 2023-06-07 OSD System S.r.l. Appareil et procédé de séchage des boues
CN111408604B (zh) * 2020-03-03 2022-03-25 扬州大学 一种生物两段式无害化处理生活污泥改良盐碱地的方法
CN113770156A (zh) * 2021-08-20 2021-12-10 同济大学 一种碳中和式的城市小区能源循环系统集群
CN116105150B (zh) * 2023-02-28 2023-10-24 鹏鹞环保股份有限公司 一种小型污泥干化焚烧装置及其焚烧方法
CN116854319B (zh) * 2023-05-29 2023-11-24 山东驰盛新能源设备有限公司 一种污泥处理方法及其处理装置
CN116789265B (zh) * 2023-08-28 2023-11-17 福建英辉新材料科技有限公司 一种节能型厌氧塔

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2240890A1 (en) * 1973-08-17 1975-03-14 Anstett Alfred Desiccation and pasteurisation of liq. and solid farm manure - using combustion heat of fermentation gas
EP0564298A1 (fr) * 1992-04-01 1993-10-06 Ngk Insulators, Ltd. Procédé pour le traitement des boues organiques
DE19502856A1 (de) * 1995-01-30 1996-08-01 Vit Robert Vorrichtung und Verfahren zur Verminderung der Schlammproduktion in Kläranlagen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH476949A (de) * 1968-07-08 1969-08-15 Von Roll Ag Verfahren zur gemeinsamen Verbrennung von festen Abfallstoffen, insbesondere Stadtmüll, und wässrigem Klärschlamm, insbesondere aus kommunalen Kläranlagen, sowie Einrichtung zur Ausführung des Verfahrens
US3702596A (en) * 1971-02-24 1972-11-14 John L Winther Incinerator sludge concentrator combination
US3954069A (en) * 1975-03-10 1976-05-04 Myrens Verksted A/S Process and apparatus for the incineration of aqueous sewage sludge
US4753181A (en) * 1984-07-20 1988-06-28 Leon Sosnowski Incineration process
DE3842446C1 (fr) * 1988-12-16 1990-10-04 Still Otto Gmbh, 4630 Bochum, De
MC2073A1 (fr) * 1989-09-21 1990-10-03 Baria Guy Injecteur de boues baria
DE4121968A1 (de) * 1991-06-28 1993-01-14 Noell K & K Abfalltech Verfahren zur kombinierten klaerschlamm- und muellverbrennung
DE4138036C2 (de) * 1991-11-19 1999-07-08 Rothemuehle Brandt Kritzler Verfahren und Vorrichtung zur Behandlung eines zu einem Dickschlamm entwässerten Klärschlammes
FR2724008B1 (fr) * 1994-08-29 1997-05-09 Degremont Procede d'incineration auto-thermique de boues et eventuellement en outre d'ordures menageres

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2240890A1 (en) * 1973-08-17 1975-03-14 Anstett Alfred Desiccation and pasteurisation of liq. and solid farm manure - using combustion heat of fermentation gas
EP0564298A1 (fr) * 1992-04-01 1993-10-06 Ngk Insulators, Ltd. Procédé pour le traitement des boues organiques
DE19502856A1 (de) * 1995-01-30 1996-08-01 Vit Robert Vorrichtung und Verfahren zur Verminderung der Schlammproduktion in Kläranlagen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056715A1 (fr) * 2000-02-07 2001-08-09 Daniel Friedli Procede de traitement
DE10152751A1 (de) * 2001-10-29 2003-05-15 Hans-Joachim Auerbach Verfahren zur Aufbereitung von Biofiltraten aus biotechnologisch behandelten Substraten und Anordnung zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
DE69703975D1 (de) 2001-03-01
DE69703975T3 (de) 2004-06-03
CA2254724C (fr) 2002-10-29
FR2758100A1 (fr) 1998-07-10
EP0906248B2 (fr) 2003-11-12
DE69703975T2 (de) 2001-11-15
ATE198873T1 (de) 2001-02-15
US6171499B1 (en) 2001-01-09
FR2758100B1 (fr) 1999-02-12
CA2254724A1 (fr) 1998-07-16
EP0906248A1 (fr) 1999-04-07
EP0906248B1 (fr) 2001-01-24

Similar Documents

Publication Publication Date Title
EP0906248B2 (fr) Procede de traitement et valorisation energetique optimisee des boues d'epuration urbaine et industrielle
USRE45869E1 (en) Slurry dewatering and conversion of biosolids to a renewable fuel
CN101844859B (zh) 一种污泥的蒸汽低温热调质干化成套处理装置及方法
US20140283717A1 (en) Method for converting organic material into a renewable fuel
CN103398383A (zh) 一种固体垃圾焚烧系统
JP5846728B2 (ja) 有機廃棄物の炭化方法及び炭化プラント
CN101580336B (zh) 一种含油含甲醇污泥处理方法
CN111023114A (zh) 一种协同处理市政污泥和餐厨垃圾的方法
CN101056968B (zh) 淤浆脱水和将生物固体转化成可再生燃料的方法
CN108692317A (zh) 一种污泥焚烧处理方法与装置
JP2007038057A (ja) 乾式メタン発酵法
CN201753303U (zh) 一种污泥的蒸汽低温热调质干化成套处理装置
CN108413411A (zh) 生活垃圾焚烧发电协同污泥干化处理方法和系统
KR101051093B1 (ko) 상압에서 유중증발기술을 이용한 고함수 유기성 슬러지 건조장치
JP4994414B2 (ja) 有機性スラッジ油中蒸発乾燥装置{dryingequipmentoforganicsludgeusingimmerseddryingmethod}
CN208869480U (zh) 一种工业污泥裂解的工艺系统
CN102021061B (zh) 有机污泥制备燃料的方法
CN108675613A (zh) 一种工业污泥裂解的工艺系统及方法
CN105149323B (zh) 一种生活垃圾快速综合处理的工艺及装置
JP7268647B2 (ja) 汚泥燃料化装置、汚泥燃料化システム、汚泥燃料活用型工場および汚泥燃料化方法
JP2019147881A (ja) 汚泥燃料化装置、汚泥燃料化システム、汚泥燃料活用型工場および固形燃料の製造方法
JP5547371B2 (ja) 高含水率有機廃棄物の燃料化方法及びバイオマス燃料
CN208108126U (zh) 一种生活垃圾焚烧发电协同污泥干化处理系统
CN206689184U (zh) 一种分散生活垃圾资源化利用设备
KR100542489B1 (ko) 슬러지의 다단 밀폐식 탄화방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09142195

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2254724

Country of ref document: CA

Ref country code: CA

Ref document number: 2254724

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997909392

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997909392

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997909392

Country of ref document: EP