WO1998035402A1 - Antenne a geometrie variable - Google Patents

Antenne a geometrie variable Download PDF

Info

Publication number
WO1998035402A1
WO1998035402A1 PCT/FR1998/000232 FR9800232W WO9835402A1 WO 1998035402 A1 WO1998035402 A1 WO 1998035402A1 FR 9800232 W FR9800232 W FR 9800232W WO 9835402 A1 WO9835402 A1 WO 9835402A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
modules
module
antenna according
sections
Prior art date
Application number
PCT/FR1998/000232
Other languages
English (en)
Inventor
Frédéric Ngo Bui Hung
William Rebernak
Sylvain Kretschmer
Original Assignee
Thomson-Csf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9701428A external-priority patent/FR2759497A1/fr
Application filed by Thomson-Csf filed Critical Thomson-Csf
Priority to DE69809392T priority Critical patent/DE69809392T2/de
Priority to US09/355,918 priority patent/US6195065B1/en
Priority to EP98910784A priority patent/EP0958635B1/fr
Priority to AU65038/98A priority patent/AU6503898A/en
Priority to CA002279987A priority patent/CA2279987A1/fr
Publication of WO1998035402A1 publication Critical patent/WO1998035402A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/14Length of element or elements adjustable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/18Vertical disposition of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element

Definitions

  • the present invention relates to antennas the dimensions of which can be modified in order to modify their radioelectric characteristics with the aim, generally, of making them work, as desired, in one of several frequency bands; these antennas are mainly used at frequencies below 1 GHz.
  • Antennas which comprise at least one radiating element of variable electrical length, produced from an alignment of n, with n integer greater than 1, conductive sections separated by switching modules designed to electrically connect all or part of them sections. From that of its two ends where it is supplied, the alignment constitutes a radiating element which is made, as desired, of 1, 2, ... n sections. This is how, in particular, unipolar antennas with variable geometry are produced.
  • the switching modules are simply constituted by fixing means, generally a screw and a nut respectively carried by the ends opposite the sections to be electrically connected.
  • connection When the connection must be controlled remotely for reasons of ease and / or speed of implementation, it is known to use a switching module of the electrical relay type and connecting means made of two electrical wires to control the relay ; the presence of these wires which are radio-electrically isolated from the conductive sections in a more or less effective manner, limits the performance of the antenna and this limitation is all the greater when the antenna supports high powers or high voltages, such as c 'is the case with antennas operating in HF.
  • the present invention aims to avoid the aforementioned drawbacks in antennas whose geometry is adjustable remotely. This is obtained by means of a remote control which implements connection means which do not disturb the radio operation of the antenna, associated with switching means which can be chosen to support high powers or high voltages.
  • an antenna with variable geometry comprising at least one alignment of n conductive sections, where n is an integer greater than 1, electrically separated by n-1 intervals, n-1 switching modules respectively assigned to n- 1 intervals with m, where m is a positive integer less than n, of these modules which include a relay with two states and m connecting means respectively associated with the m modules for ensuring their control, with each a first and a second end located at separate locations, the m second ends being connected respectively to the m modules, characterized in that the connection means are made of an electrically insulating material transparent to radio waves, in that at least one of the m switching modules comprises p devices photovoltaic, with p positive integer less than 3, to control its relay and in that the connection means associated with the mod ule with photovoltaic devices are light conductors and have p optical cables which lead respectively to the p devices.
  • an antenna with variable geometry comprising at least one alignment of n conductive sections, where n is an integer greater than 1, electrically separated by n-1 intervals, n-1 switching modules respectively assigned to the n -1 intervals with m, where m is a positive integer less than n, of these modules which comprise a relay with two states and m connecting means respectively associated with the m modules for ensuring their control, with each a first and a second end located in separate places, the m second ends being connected respectively to the m modules, characterized in that the connecting means are made of an electrically insulating material transparent to radio waves, in that at least one of the m switching modules has its relay which is a mechanical relay and in that the means of connection associated with the module with mechanical relay comprise an insulating rod, one end of which is connected to the mechanical relay of this module with mechanical relay.
  • FIG. 1 a schematic view of an antenna according to the invention
  • FIG. 2 a more detailed view of part of the antenna according to FIG. 1,
  • FIG. 1 is a schematic sectional view of an antenna according to the invention. It is a unipolar antenna, also called whip antenna.
  • This antenna is of variable geometry and comprises a radiating part 1 and a ground plane M.
  • the radiating part comprises two conductive sections, aligned, 1 1, 12, separated by an interval with, associated with this interval, a switching module, 2, which will be described in more detail with the aid of FIG. 2; this radiating part is arranged perpendicular to the ground plane M, at the level of a hole T drilled in the ground plane, and is entirely located above the ground plane M.
  • the conductive sections 1 1, 12 are cylinders hollow whose opposite ends are respectively electrically connected to two ports of the switching module 2.
  • Two optical fibers F1, F2 that is to say electrically insulating light conductors transparent to radio waves, respectively connect two optical connectors C1, C2 located under the ground plane M, at the switching module 2; these fibers pass through the hole T and then inside the section 1 1 taking advantage of the fact that this section is a hollow cylinder open at its two ends.
  • a control box, L comprising a laser power source, makes it possible to send, a light pulse, as desired, on the optical connector C1 or on the optical connector C2.
  • the transmission-reception access of the antenna is made between the ground plane M and a terminal A located on the conductive section 11 in the immediate vicinity of the ground plane.
  • each of the sections 1 1, 12 has been taken substantially equal to 5 meters and, thanks to the switching module 2, the conductive section 12 may or may not be connected to the section 1 1 which gives the antenna a radio height of 10 meters for the low band and 5 meters for the high band.
  • FIG. 2 is a schematic view of the switching module 2 of FIG. 1.
  • This module includes a relay R and two photovoltaic cells 21, 22.
  • Relay R is a bi-stable electromechanical relay whose two stable states are respectively controlled, by current pulses, from two inputs E1, E2.
  • the two stable states correspond respectively to the opening and closing of an internal contact in the relay.
  • the terminals S1, S2 of this contact constitute the access ports for using the relay; they are respectively connected to sections 1 1 and 12 shown in Figure 1 so as to allow, as indicated above, to ensure or not an electrical connection between these two sections.
  • Relay R can be made up of a REED SUPERDIL type relay sold by CELDUC under the reference G31 R3210.
  • the optical fibers F1, F2 lead respectively to the light inputs of the photovoltaic cells 21, 22 and the current outputs of these cells are respectively connected to the inputs E1, E2 of the relay R.
  • a light pulse originating, as indicated above, from the housing L is routed via the optical connector C1 and the optical fiber F1 to the photovoltaic cell 21; the current pulse which results therefrom at the output of the photovoltaic cell 21 causes the contact of relay R to pass or leave in the closed position, depending on whether this contact was in the open or closed position before the arrival of the pulse.
  • the conductive section 11 was hollow in order to pass the optical fibers inside and that, without any noticeable drawback on the plan during operation, the fibers can be placed outside the conductive section and in particular on the conductive section; in the case where the conductive section is full, this way of passing the fibers would also be the only possible.
  • FIG. 3 is the simplified diagram of another antenna according to the invention.
  • the antenna is here of the horizontal dipole type and each of the two arms of the dipole comprises three aligned conductive sections, separated from each other by switching modules 2a, 3a, 2b, 3b.
  • These switching modules represented schematically by a single contact, are, in the antenna which served as an example for the present description, of the same type as the switching module 2 of FIGS. 1 and 2.
  • optical fibers not shown, are used to control these modules; they run along the arms of the dipole, coming from the middle of the dipole, to reach the different modules.
  • the antenna used as an example for the drawing according to FIG. 3 is an antenna designed for radio links by ionospheric reflection in the band 1.5-12 MHz over a distance of 0 to 500 km.
  • the antenna has an electrical span of 15 meters, the sections 1 1 a, 11 b being alone in operation.
  • the antenna is then designed to operate between 6 and 12 MHz.
  • the electrical span is increased to 30 meters and the antenna is designed to operate between 3 and 6 MHz.
  • the electrical span is 60 meters and the antenna is designed to operate between 1, 5 and 3 MHz.
  • the switching modules can include a relay in a stable state and an unstable state; in this case a single optical fiber and a single photovoltaic cell are sufficient and the control of the unstable state is done by sending a continuous light flux through the optical fiber during the whole time that this unstable state must be maintained; the return to the stable state is done by stopping the sending of the luminous flux.
  • This way of proceeding certainly has the advantage of reducing the number of elements to ensure switching but has the disadvantage of requiring, for the maintenance in the unstable state, a continuous luminous flux, that is to say of continuous energy and possibly a more powerful light source than with a relay with two stable states controlled by pulses.
  • a third type of switching module can be used; it comprises a relay with two stable states but with a single input, and this relay, of the counter type, changes state with each pulse received on its input.
  • this relay of the counter type, changes state with each pulse received on its input.
  • this module has the drawback of requiring, for the operator, specific means of signaling the open or closed state of the relay; indeed with the two types of previous modules the remote controls of the open and closed states are distinct and either the last remote control can therefore be easily signaled, or the desired remote control can be carried out for all practical purposes, as a safety measure, in the case of '' a doubt about the state of the relay; it is different with a counter type relay since, in case of doubt about the state of the relay, a safety command cannot be carried out and it is therefore necessary, for example, to know the state of the relay at a given moment, have a modulo 2 counting means for the remote controls carried out from this given moment.
  • the relay of a switching module can be of the electronic type.
  • the antennas comprising several switching modules
  • these modules can be produced some of these modules according to the invention and others according to the known art, for example by connecting certain conductive sections by fixing means of the screw-nut type.
  • the photovoltaic cells mentioned above, they can be replaced by batteries of photovoltaic cells, while the optical fibers can be replaced by optical cables comprising several optical fibers in parallel.
  • the relays of the modules not ordinary "open-closed" relays but relays which in one of their two states, or even in their two states, switch an impedance, for example: infinite impedance in the open state and impedance Z in the closed state.
  • solid tubes for producing the radiating conductive sections, insofar as the optical fibers are routed from outside the antenna.
  • FIG. 4 is a schematic sectional view of an antenna which is distinguished from the antenna according to Figure 1 only by the switching module and the control device of this module.
  • FIG. 4 shows a unipolar antenna with variable geometry with: - the same radiating part 1 made of two conductive sections, aligned 1 1, 1 2 separated by an interval with, associated with this interval, a switching module, 2 ' , consisting of a two-state relay, open-closed, of the mechanical switch type, - a ground plane M arranged like that of FIG. 1 - and a transmission-reception access between the ground plane and a terminal A located at the bottom of the conductor section 1 1.
  • the control of the mechanical switch 2 ′ is ensured by an assembly consisting of a coil with a plunger core, 5, the movable part of which is extended by a rod 6 made of an insulating material, transparent to electromagnetic waves.
  • the coil is located under the ground plane M through which the rod 6 passes through a hole Tm.
  • the rod is bent at a right angle and comes into contact with the blade of the switch 2 '.
  • FIGS 5a, 5b are schematic sectional views which correspond to an alternative embodiment of the antenna according to Figure 4; in this embodiment, always with the same type of antenna, the switching of the conductive section 1 2 is done by means of a switching module constituted by a conductive sleeve 7 which can slide inside the hollow sections 1 1 and 1 2, against the part of these sections situated in the vicinity of the interval which separates them; this sleeve thus acts as a mechanical relay in two states, open-closed, between the hollow sections 1 1 and 12.
  • a coil with plunger, 5 is used; it is located under the ground plane M, plumb with the hole T drilled in the ground plane under the radiating part 1.
  • the movable part 51 of the coil 5 is extended by a rod 6 '.
  • This rod is a straight rod which penetrates, at its upper end, into the sleeve 7 in which it is blocked.
  • the movable part 51 is in the retracted or extended position as shown in Figures 5a and 5b respectively.
  • the conductive sleeve 7 makes contact only with the section 11, so that the antenna is designed to operate with only this section as a radiating element.
  • the conductive sleeve 7 makes contact with the two sections 1 1 and 1 2 and, this time, the antenna is designed to operate with the two sections 1 1 and 1 2 as radiating elements.
  • FIGS 6a, 6b are schematic sectional views which correspond to an alternative embodiment of the antenna according to the invention.
  • a switching module 7 ′ is used which, instead of ensuring a connection by conductive element between two radiating sections, ensures a connection by capacitive coupling.
  • this antenna is distinguished from the antenna according to FIGS. 5a, 5b only by the switching module 7 '; therefore it was considered preferable, to bring out the difference, to show, in Figures 6a, 6b that the part of the antenna located in the vicinity of the switching module.
  • the switching module 7 ′ has two sleeves: an inner sleeve 70 an outer sleeve 71.
  • the inner sleeve is a conductive sleeve; an insulating rod, 6 ′, identical to the rod 6 ′ according to FIGS. 5a, 5b penetrates into the sleeve 70, at its upper end and is locked inside the sleeve.
  • the sleeve outer of small thickness, is a dielectric sleeve, blocked, at its lower part, inside a conductive section, hollow 1 1 and, at its upper part, inside a hollow conductive section 12 .
  • the inner sleeve 70 slides in the outer section 71.
  • the rod 6 ' is shown in the lower position, with the entire sleeve 70 contained in the section 11; in this position, the module 7 'does not provide an electrical connection between the sections 11 and 12.
  • FIG. 6b the rod 6' is shown in the high position, with the sleeve 70, the bottom part of which is contained in the section 11 and the upper part in the section 12.
  • the facing portions of the section 11 and the sleeve 70 on the one hand and of the section 12 and the sleeve 70 on the other hand constitute the plates of two capacitors respectively.
  • the sections 1 1 and 12 are thus connected by these two capacitors arranged in series.
  • the dielectric sleeve 71 makes it possible to greatly reduce the wear due to sliding since it eliminates the metal-to-metal friction of the embodiment according to FIGS. 5a, 5b.
  • the section 12 of FIGS. 6a, 6b has a length greater than that of the section 12 of the antenna according to FIGS. 5a, 5b; this is due to the capacity supplied by the switching module, capacity which results in a decrease in the electrical length of the antenna.
  • the invention is not limited to the examples described, thus it can be applied in the case of more than two aligned radiating sections; the insulating rods for controlling the switching modules can then be placed next to each other or made concentrically.
  • the conductive sleeves of the modules must be pierced with eccentric holes to allow the passage of the insulating rods for controlling the modules placed at the above them.
  • the insulating rods will be curved so that they can be controlled in translation independently of each other, so as to pass the lower modules by the eccentric holes and so as to be centered when they penetrate into their respective modules.
  • rods In the case where the rods are concentric, they must, at least all except one, include an off-center part, at their lower end, to allow them to be controlled in translation independently of one another.
  • the translational commands of the insulating rods can be carried out in various ways and, in particular, manually.
  • the conductive sections can be full when the insulating rods are external as in the case of FIG. 4.
  • the switching modules can be made up of sleeves which, instead of penetrating into the conductive sections, surround these conductive sections; but here again the switching module is arranged at the interval between the two sections which it switches and the switching is ensured by sliding the conductive sleeve along the sections.

Abstract

La présente invention concerne les antennes dont les dimensions peuvent être modifiées afin de modifier leurs caractéristiques radioélectriques. L'antenne comporte des tronçons conducteurs (11, 12) alignés, couplés par des moyens de commutation (2) dont la commande se fait à distance par des moyens de liaison électriquement isolants et transparents aux ondes radioélectriques. Les moyens de commutation doivent pouvoir êtres choisis pour supporter de fortes puissances ou de fortes tensions. Une façon de procéder consiste à acheminer la commande par des fibres optiques (F1, F2) pour qu'elle aboutisse à un relais (R) via des cellules photovoltaïques (21, 22) situées auprès de ce relais. Application principalement aux antennes fonctionnant à des fréquences inférieures à 1 GHz.

Description

ANTENNE A GEOMETRIE VARIABLE.
La présente invention concerne les antennes dont les dimensions peuvent être modifiées afin de modifier leurs caractéristiques radioélectriques dans le but, généralement, de les faire travailler, au choix, dans une parmi plusieurs bandes de fréquences ; ces antennes sont principalement utilisées à des fréquences inférieures à 1 GHz.
Des antennes sont connues qui comportent au moins un élément rayonnant à longueur électrique variable, réalisé à partir d'un alignement de n, avec n entier supérieur à 1 , tronçons conducteurs séparés par des modules de commutation conçus pour relier électriquement entre eux tout ou partie des tronçons. A partir de celle de ses deux extrémités où il est alimenté, l'alignement constitue un élément rayonnant qui est fait, au choix, de 1 , 2, ... n tronçons. C'est ainsi que sont réalisées, en particulier, des antennes unipolaires à géométrie variable. Dans certains cas les modules de commutation sont simplement constitués par des moyens de fixation, généralement une vis et un écrou respectivement portés par les extrémités en regard des tronçons à raccorder électriquement. Quand le raccordement doit être commandé à distance pour des raisons de facilité et/ou de rapidité de mise en oeuvre, il est connu d'utiliser un module de commutation du type relais électrique et des moyens de liaison faits de deux fils électriques pour commander le relais ; la présence de ces fils qui sont isolés radioélectriquement des tronçons conducteurs de façon plus ou moins efficace, limite les performances de l'antenne et cette limitation est d'autant plus grande que l'antenne supporte de fortes puissances ou de fortes tensions, comme c'est le cas avec les antennes fonctionnant en ondes décamétriques.
Il est à noter également qu'il est connu, par le brevet US 4 728 805, de réaliser des antennes à partir d'une matrice tri-dimensionnelle dont les rangs sont faits de segments conducteurs avec, aux intersections des rangs, des éléments photoconducteurs qui assurent des connexions entre segments quand ils sont éclairés. Cette technique n'est utilisable, du fait des photoconducteurs disponibles dans le commerce, qu'avec des antennes de faible puissance et, de plus, ces photoconducteurs doivent être éclairés en permanence pour être maintenus dans l'état passant.
La présente invention a pour but d'éviter les inconvénients précités dans les antennes dont la géométrie est réglable à distance. Ceci est obtenu grâce à une commande à distance qui met en oeuvre des moyens de liaison qui ne perturbent pas le fonctionnement radioélectrique de l'antenne, associés à des moyens de commutation qui peuvent être choisis pour supporter de fortes puissances ou de fortes tensions. Selon l'invention il est proposé une antenne à géométrie variable comportant au moins un alignement de n tronçons conducteurs, où n est un entier supérieur à 1 , séparés électriquement par n-1 intervalles, n-1 modules de commutation respectivement affectés aux n-1 intervalles avec m, où m est un entier positif inférieur à n, de ces modules qui comportent un relais à deux états et m moyens de liaison associés respectivement aux m modules pour assurer leur commande, avec chacun une première et une seconde extrémité situées en des endroits distincts, les m secondes extrémités étant reliées respectivement aux m modules, caractérisée en ce que les moyens de liaison sont faits en un matériau électriquement isolant et transparent aux ondes radioélectriques, en ce que au moins un des m modules de commutation comporte p dispositifs photovoltaïques, avec p entier positif inférieur à 3, pour commander son relais et en ce que les moyens de liaison associés au module avec dispositifs photovoltaïques sont conducteurs de la lumière et comportent p câbles optiques qui aboutissent respectivement sur les p dispositifs.
Selon l'invention il est également proposé une antenne à géométrie variable comportant au moins un alignement de n tronçons conducteurs, où n est un entier supérieur à 1 , séparés électriquement par n-1 intervalles, n-1 modules de commutation respectivement affectés aux n-1 intervalles avec m, où m est un entier positif inférieur à n, de ces modules qui comportent un relais à deux états et m moyens de liaison associés respectivement aux m modules pour assurer leur commande, avec chacun une première et une seconde extrémité situées en des endroits distincts, les m secondes extrémités étant reliées respectivement aux m modules, caractérisée en ce que les moyens de liaison sont faits en un matériau électriquement isolant et transparent aux ondes radioélectriques, en ce que moins un des m modules de commutation a son relais qui est un relais mécanique et en ce que les moyens de liaison associés au module avec relais mécanique comportent une tige isolante dont une extrémité est reliée au relais mécanique de ce module avec relais mécanique.
La présente invention sera mieux comprise et d'autres caractéristiques apparaîtront à l'aide de la description ci-après et des figures s'y rapportant qui représentent :
- la figure 1 , une vue schématique d'une antenne selon l'invention,
- la figure 2, une vue plus détaillée d'une partie de l'antenne selon la figure 1 ,
- les figures 3, 4, 5a, 5b, 6a, 6b d'autres vues schématiques relatives à des antennes selon l'invention.
La figure 1 est une vue schématique, en coupe, d'une antenne selon l'invention. Il s'agit d'une antenne unipolaire, aussi dite antenne fouet. Cette antenne est à géométrie variable et comporte une partie rayonnante 1 et un plan de masse M. La partie rayonnante comporte deux tronçons conducteurs, alignés, 1 1 , 12, séparés par un intervalle avec, associé à cet intervalle, un module de commutation, 2, qui sera décrit plus en détail à l'aide de la figure 2 ; cette partie rayonnante est disposée perpendiculairement au plan de masse M, au niveau d'un trou T percé dans le plan de masse, et se situe toute entière au-dessus du plan de masse M. Les tronçons conducteurs 1 1 , 12 sont des cylindres creux dont les extrémités en regard sont respectivement reliées électriquement à deux accès du module de commutation 2. Deux fibres optiques F1 , F2, c'est-à-dire des conducteurs de lumière électriquement isolants et transparents aux ondes radioélectriques, relient respectivement deux connecteurs optiques C1 , C2 situés sous le plan de masse M, au module de commutation 2 ; ces fibres passent par le trou T puis à l'intérieur du tronçon 1 1 en profitant du fait que ce tronçon est un cylindre creux ouvert à ses deux extrémités. Un boîtier de commande, L, comportant une source laser de puissance, permet d'envoyer, une impulsion lumineuse, au choix, sur le connecteur optique C1 ou sur le connecteur optique C2.
L'accès émission-réception de l'antenne se fait entre le plan de masse M et une borne A située sur le tronçon conducteur 1 1 au voisinage immédiat du plan de masse.
Pour simplifier le dessin et parce qu'ils n'apportent rien à la compréhension de l'invention, les moyens de fixation qui relient mécaniquement entre elles toutes les pièces de la figure 1 n'ont pas été représentés ; il en est de même pour les autres figures de ce document. L'antenne selon la figure 1 est destinée à travailler entre 1 ,5 et
30 MHz, en une bande basse 1 ,5 - 7,5 MHz et une bande haute 7,5 - 30 MHz. Pour cela la longueur de chacun des tronçons 1 1 , 12 a été prise sensiblement égale à 5 mètres et, grâce au module de commutation 2, le tronçon conducteur 12 peut être ou ne pas être connecté au tronçon 1 1 ce qui donne à l'antenne une hauteur radioélectrique de 10 mètres pour la bande basse et de 5 mètres pour la bande haute.
La figure 2 est une vue schématique du module de commutation 2 de la figure 1 . Ce module comporte un relais R et deux cellules photovoltaïques 21 , 22.
Le relais R est un relais électromécanique bi-stable dont les deux états stables sont respectivement commandés, par impulsions de courant, à partir de deux entrées E1 , E2. Les deux états stables correspondent respectivement à l'ouverture et à la fermeture d'un contact interne au relais. Les bornes S1 , S2 de ce contact constituent les accès d'utilisation du relais ; elles sont respectivement connectées aux tronçons 1 1 et 12 représentés sur la figure 1 de manière à permettre, comme indiqué plus avant, d'assurer ou non une liaison électrique entre ces deux tronçons. Le relais R peut être constitué par un relais type REED SUPERDIL commercialisé par la société CELDUC sous la référence G31 R3210.
Les fibres optiques F1 , F2 aboutissent respectivement sur les entrées de lumière des cellules photovoltaïques 21 , 22 et les sorties de courant de ces cellules sont respectivement reliées aux entrées E1 , E2 du relais R. Pour connecter en série les deux tronçons 1 1 et 12 représentés sur la figure 1 , afin de constituer un aérien de 10 mètres, une impulsion lumineuse provenant, comme il a été indiqué précédemment, du boîtier L est acheminée via le connecteur optique C1 et la fibre optique F1 jusqu'à la cellule photovoltaïque 21 ; l'impulsion de courant qui en résulte à la sortie de la cellule photovoltaïque 21 fait passer ou laisse en position fermée le contact du relais R selon que ce contact était en position ouverte ou fermée avant l'arrivée de l'impulsion.
De la même façon, lorsqu'un fonctionnement avec un aérien de 5 mètres est désiré, c'est-à-dire avec seulement le tronçon 1 1 représenté sur la figure 1 , une impulsion lumineuse est envoyée du boîtier L vers la cellule photovoltaïque 22 ; l'impulsion de courant qui en résulte à la sortie de la cellule photovoltaïque 22 fait passer ou laisse en position ouverte le contact du relais R selon que ce contact était en position fermée ou ouverte avant l'arrivée de l'impulsion.
L'antenne qui vient d'être décrite à l'aide des figures 1 et 2, en utilisant des fibres optiques au lieu de conducteurs électriques pour la télécommande du module de commutation entre les tronçons conducteurs 1 1 , 12 évite le couplage qui se serait établi entre le tronçon et les conducteurs électriques.
Il est à noter que c'est par souci d'esthétique qu'il a été choisi de profiter de ce que le tronçon conducteur 1 1 était creux pour faire passer les fibres optiques à l'intérieur et que, sans inconvénient notoire sur le plan du fonctionnement, les fibres peuvent être placées à l'extérieur du tronçon conducteur et en particulier sur le tronçon conducteur ; dans le cas où le tronçon conducteur serait plein cette manière de faire passer les fibres serait d'ailleurs la seule possible.
La figure 3 est le schéma simplifié d'une autre antenne selon l'invention. L'antenne est ici du type dipôle horizontal et chacun des deux bras du dipôle comporte trois tronçons conducteurs alignés, séparés les uns des autres par des modules de commutation 2a, 3a, 2b, 3b. Ces modules de commutation représentés schématiquement par un simple contact, sont, dans l'antenne qui a servi d'exemple à la présente description, du même type que le module de commutation 2 des figures 1 et 2. Et, toujours dans l'antenne considérée, des fibres optiques, non représentées, servent à la commande de ces modules ; elles longent les bras du dipôle, en venant du milieu du dipôle, pour aboutir sur les différents modules.
L'antenne ayant servi d'exemple pour le dessin selon la figure 3 est une antenne conçue pour des liaisons hertziennes par réflexion ionosphérique dans la bande 1 ,5-12 MHz sur une distance de 0 à 500 km. Quand les quatre modules de commutation sont ouverts l'antenne a une envergure électrique de 15 mètres, les tronçons 1 1 a, 11 b étant seuls en fonctionnement. L'antenne est alors prévue pour fonctionner entre 6 et 12 MHz. Quand les modules 2a, 2b sont fermés et les modules 3a, 3b ouverts, l'envergure électrique est portée à 30 mètres et l'antenne est prévue pour fonctionner entre 3 et 6 MHz. Et, quand les quatre modules de commutation sont fermés, l'envergure électrique est de 60 mètres et l'antenne est prévue pour fonctionner entre 1 ,5 et 3 MHz.
L'invention, dans le cadre de l'utilisation de fibres optiques, n'est pas limitée aux exemples décrits ou mentionnés ; c'est ainsi que les modules de commutation peuvent comporter un relais à un état stable et un état instable ; dans ce cas une seule fibre optique et une seule cellule photovoltaïque suffisent et la commande de l'état instable se fait par l'envoi d'un flux lumineux continu à travers la fibre optique pendant tout le temps que doit être maintenu cet état instable ; le retour à l'état stable se fait par arrêt de l'envoi du flux lumineux. Cette façon de procéder a certes l'avantage de réduire le nombre d'éléments pour assurer la commutation mais a l'inconvénient de nécessiter, pour le maintien à l'état instable, un flux lumineux continu, c'est-à-dire de l'énergie en continu et éventuellement une source lumineuse plus puissante qu'avec un relais à deux états stables commandés par impulsions. Un troisième type de module de commutation est utilisable ; il comporte un relais à deux états stables mais à une seule entrée, et ce relais, de type compteur, change d'état à chaque impulsion reçue sur son entrée. Comme avec le module décrit dans le paragraphe précédent, une seule fibre optique et une seule cellule photovoltaïque sont nécessaires par module et, comme avec le module décrit à l'aide de la figure 2, la commande se fait par impulsions. Mais ce module présente l'inconvénient de nécessiter, pour l'opérateur, des moyens spécifiques de signalisation de l'état ouvert ou fermé du relais ; en effet avec les deux types de modules précédents les télécommandes des états ouvert et fermé sont distinctes et soit la dernière télécommande peut donc être facilement signalisée, soit la télécommande désirée peut être effectuée à toutes fins utiles, par mesure de sécurité, dans le cas d'un doute sur l'état du relais ; il en va différemment avec un relais de type compteur puisque, en cas de doute sur l'état du relais, il ne peut pas être procédé à une commande de sécurité et qu'il faut donc, par exemple, connaissant l'état du relais à un moment donné, disposer d'un moyen de comptage modulo 2 pour les télécommandes effectuées à partir de ce moment donné.
De même le relais d'un module de commutation peut être de type électronique.
Quant aux antennes comportant plusieurs modules de commutation, il est possible de réaliser certains de ces modules selon l'invention et d'autres selon l'art connu, par exemple en reliant certains tronçons conducteurs par des moyens de fixation du type vis-écrou. Pour ce qui est des cellules photovoltaïques dont il a été question ci-avant elles peuvent être remplacées par des batteries de cellules photovoltaïques tandis que les fibres optiques peuvent être remplacées par des câbles optiques comportant plusieurs fibres optiques en parallèle. II est même possible d'utiliser, pour les relais des modules, non pas des relais "ouvert-fermé" ordinaires mais des relais qui dans un de leurs deux états, voire dans leurs deux états, commutent une impédance, par exemple : impédance infinie dans l'état ouvert et impédance Z dans l'état fermé. II est possible d'utiliser des tubes pleins pour la réalisation des tronçons conducteurs rayonnants, dans la mesure où les fibres optiques sont acheminées par l'extérieur de l'antenne.
Dans ce qui suit d'autres variantes de l'invention vont être décrites mais ces variantes ne se situent plus dans le cadre de l'utilisation de fibres optiques pour agir, par des dispositifs photovoltaïques, sur le relais électrique d'un module. Elles se situent dans le cadre de l'utilisation de tiges en matériau isolant et transparent aux ondes radioélectriques, destinées à commander la commutation de relais mécaniques placés entre deux tronçons d'antenne ; par relais mécanique il faut, bien entendu, comprendre des relais à commande mécanique mais qui sont destinés à réaliser des liaisons électriques entre tronçons.
La figure 4 est une vue schématique, en coupe, d'une antenne qui ne se distingue de l'antenne selon la figure 1 que par le module de commutation et le dispositif de commande de ce module. En effet la figure 4 montre une antenne unipolaire à géométrie variable avec : - la même partie rayonnante 1 faite de deux tronçons conducteurs, alignés 1 1 , 1 2 séparés par un intervalle avec, associé à cet intervalle, un module de commutation, 2', constitué par un relais à deux états, ouvert- fermé, du type interrupteur mécanique, - un plan de masse M disposé comme celui de la figure 1 - et un accès émission-réception entre le plan de masse et une borne A située en bas du tronçon conducteur 1 1 .
Dans cette antenne la commande de l'interrupteur mécanique 2' est assurée par un ensemble constitué d'une bobine à noyau plongeur, 5, dont la partie mobile 51 est prolongée par une tige 6 en un matériau isolant, transparent aux ondes électromagnétiques. La bobine est située sous le plan de masse M que la tige 6 traverse par un trou Tm. Du côté opposé à la bobine 5 la tige est coudée à angle droit et vient en contact avec la lame de l'interrupteur 2' . Sur la figure 4 l'interrupteur 2' est en position ouverte et la partie mobile 51 en position rentrée ; quand, par une commande électrique appliquée aux accès 5a, 5b de la bobine 5, la partie mobile est sortie, la tige 6 subit une translation vers le haut, comme indiqué par la flèche F, et, en poussant la lame mobile de l'interrupteur 2', ferme cet interrupteur et, donc, connecte le tronçon 1 2.
Les figures 5a, 5b sont des vues schématiques en coupe qui correspondent à une variante de réalisation de l'antenne selon la figure 4 ; dans cette réalisation, toujours avec le même type d'antenne, la commutation du tronçon conducteur 1 2 se fait grâce à un module de commutation constitué par un manchon conducteur 7 qui peut coulisser à l'intérieur des tronçons creux 1 1 et 1 2, contre la partie de ces tronçons située au voisinage de l'intervalle qui les sépare ; ce manchon joue ainsi un rôle de relais mécanique à deux états, ouvert-fermé, entre les tronçons creux 1 1 et 12. Là encore une bobine à noyau plongeur, 5, est utilisée; elle est située sous le plan de masse M, à l'aplomb du trou T percé dans le plan de masse sous la partie rayonnante 1 . La partie mobile 51 de la bobine 5 est prolongée par une tige 6' . Cette tige est une tige droite qui pénètre, à son extrémité supérieure, dans le manchon 7 dans lequel elle est bloquée. Selon la commande appliquée aux bornes 5a, 5b de la bobine 5, la partie mobile 51 est en position rentrée ou sortie comme représenté respectivement sur les figures 5a et 5b. Dans la position représentée sur la figure 5a le manchon conducteur 7 ne fait contact qu'avec le tronçon 1 1 , si bien que l'antenne est prévue pour fonctionner avec seulement ce tronçon comme élément rayonnant. Dans la position représentée sur la figure 5b le manchon conducteur 7 fait contact avec les deux tronçons 1 1 et 1 2 et, cette fois, l'antenne est prévue pour fonctionner avec les deux tronçons 1 1 et 1 2 comme éléments rayonnants.
Les figures 6a, 6b sont des vues schématiques en coupe qui correspondent à une variante de réalisation de l'antenne selon l'invention.
Dans la réalisation selon les figures 6a, 6b un module de commutation 7' est utilisé qui, au lieu d'assurer une connexion par élément conducteur entre deux tronçons rayonnants, assure une connexion par couplage capacitif.
Dans son principe de réalisation cette antenne ne se distingue de l'antenne selon les figures 5a, 5b que par le module de commutation 7' ; de ce fait il a été jugé préférable, pour bien faire ressortir la différence, de ne montrer, sur les figures 6a, 6b que la partie de l'antenne située au voisinage du module de commutation.
Le module de commutation 7' comporte deux manchons : un manchon intérieur 70 un manchon extérieur 71 . Le manchon intérieur est un manchon conducteur ; une tige isolante, 6', identique à la tige 6' selon les figures 5a, 5b pénètre dans le manchon 70, à son extrémité supérieure et est bloquée à l'intérieur du manchon. Le manchon extérieur, de faible épaisseur, est un manchon en diélectrique, bloqué, à sa partie inférieure, à l'intérieur d'un tronçon conducteur, creux 1 1 et, à sa partie supérieure, à l'intérieur d'un tronçon conducteur creux 12.
Le manchon intérieur 70 coulisse dans le tronçon extérieur 71 . Sur la figue 6a la tige 6' est représentée en position basse, avec le manchon 70 tout entier contenu dans le tronçon 1 1 ; dans cette position le module 7' n'assure pas de connexion électrique entre les tronçons 1 1 et 12. Sur la figue 6b la tige 6' est représentée en position haute, avec le manchon 70 dont la partie basse est contenue dans le tronçon 11 et la partie haute dans le tronçon 12. Les portions en regard du tronçon 1 1 et du manchon 70 d'une part et du tronçon 12 et du manchon 70 d'autre part constituent respectivement les plaques de deux condensateurs. Les tronçons 1 1 et 12 se trouvent ainsi reliés par ces deux condensateurs disposés en série. Le manchon en diélectrique 71 permet de réduire fortement l'usure due au coulissement puisqu'il supprime le frottement métal sur métal de la réalisation selon les figures 5a, 5b.
Il est à noter que, pour les mêmes fréquences d'utilisation de l'antenne, le tronçon 12 des figures 6a, 6b a une longueur supérieure à celle du tronçon 12 de l'antenne selon les figures 5a, 5b ; ceci est dû à la capacité amenée par le module de commutation, capacité qui entraîne une diminution de la longueur électrique de l'antenne.
Pour ces antennes à commande par tige isolante l'invention n'est pas limitée aux exemples décrits, c'est ainsi qu'elle peut être appliquée au cas de plus de deux tronçons rayonnants alignés ; les tiges isolantes pour la commande des modules de commutation peuvent alors être disposées à côté les unes des autres ou réalisées de manière concentriques.
Dans le cas où les tiges isolantes sont côte à côte et où la commande de commutation se fait par l'intérieur des tronçons rayonnants les manchons conducteurs des modules devront être percés de trous excentrés pour permettre le passage des tiges isolantes de commande des modules placés au dessus d'eux. De plus les tiges isolantes seront courbées de manière à pouvoir être commandées en translation indépendamment les unes des autres, de manière à passer les modules inférieurs par les trous excentrés et de manière à être centrées lors de leur pénétration dans leurs modules respectifs.
Dans le cas où les tiges sont concentriques elles doivent, au moins toutes sauf une, comporter une pièce décentrée, à leur extrémité inférieure, pour permettre de les commander en translation indépendamment les unes des autres.
Les commandes en translation des tiges isolantes peuvent être réalisées de diverses façons et, en particulier, manuellement.
Les tronçons conducteurs peuvent être pleins quand les tiges isolantes sont extérieures comme dans le cas de la figure 4.
Les modules de commutation peuvent être constitués de manchons qui, au lieu de pénétrer dans les tronçons conducteurs, entourent ces tronçons conducteurs ; mais là encore le module de commutation est disposé au niveau de l'intervalle entre les deux tronçons qu'il commute et la commutation est assurée par coulissement du manchon conducteur le long des tronçons.

Claims

REVENDICATIONS 1 . Antenne à géométrie variable comportant au moins un alignement de n tronçons conducteurs (1 1 , 1 2 ; 1 1 a, 1 1 b, 1 2a, 1 2b, 1 3a, 1 3b), où n est un entier supérieur à 1 , séparés électriquement par n-1 intervalles, n-1 modules de commutation (2) respectivement affectés aux n-1 intervalles avec m, où m est un entier positif inférieur à n, de ces modules qui comportent un relais (R) à deux états et m moyens de liaison associés respectivement aux m modules pour assurer leur commande, avec chacun une première et une seconde extrémité situées en des endroits distincts, les m secondes extrémités étant reliées respectivement aux m modules, caractérisée en ce que les moyens de liaison (F1 , F2) sont faits en un matériau électriquement isolant et transparent aux ondes radioélectriques, en ce que au moins un des m modules de commutation comporte p dispositifs photovoltaïques (21 , 22), avec p entier positif inférieur à 3, pour commander son relais et en ce que les moyens de liaison associés au module avec dispositifs photovoltaïques sont conducteurs de la lumière et comportent p câbles optiques (F1 , F2) qui aboutissent respectivement sur les p dispositifs (21 , 22). 2. Antenne selon la revendication 1 , caractérisée en ce que les p dispositifs comportent chacun au moins une cellule photovoltaïque (21 , 22).3. Antenne selon la revendication 1 , caractérisée en ce que le relais est un relais électromagnétique (R). 4. Antenne selon la revendication 3, caractérisée en ce que le relais (R) est un relais à deux états stables et à deux entrées de commande pour commander respectivement les deux états stables, en ce que p est égal à 2, en ce que les deux dispositifs photovoltaïques sont respectivement couplés aux deux entrées de commande et en ce que les deux câbles comportent chacun au moins une fibre optique (F1 , F2).5. Antenne à géométrie variable comportant au moins un alignement de n tronçons conducteurs (1 1 , 1 2), où n est un entier supérieur à 1 , séparés électriquement par n-1 intervalles, n-1 modules de commutation (2' ; 7 ; 7') respectivement affectés aux n-1 intervalles avec m, où m est un entier positif inférieur à n, de ces modules qui comportent un relais (2' ; 7 ; 7') à deux états et m moyens de commande (5, 6 5, 6') associés respectivement aux m modules pour assurer leur commande, avec chacun une première et une seconde extrémité situées en des endroits distincts, les m secondes extrémités étant reliées respectivement aux m modules, caractérisée en ce que, au moins un des m modules de commutation a son relais qui est un relais mécanique (2' ; 7 ; 7') et en ce que les moyens de commande associés au module avec relais mécanique comportent une tige mobile (6 ; 6") dont une extrémité est reliée au relais mécanique de ce module avec relais mécanique et en ce que la tige est faite en un matériau électriquement isolant et transparent aux ondes radioélectriques.6. Antenne selon la revendication 5, caractérisée en ce que le relais comporte une pièce conductrice (7 ; 70) qui coulisse le long de la partie des deux tronçons (1 1 , 12) située au voisinage de l'intervalle auquel le module comportant ce relais est affecté.7. Antenne selon la revendication 6, caractérisée en ce que la pièce conductrice (7) coulisse directement sur la partie les deux tronçons située au voisinage de l'intervalle auquel le module comportant ce relais est affecté.8. Antenne selon la revendication 6, caractérisée en ce que le relais comporte une pièce en matériau diélectrique (71 ), solidaire des deux tronçons (1 1 , 12) situés au niveau de l'intervalle auquel le module comportant ce relais est affecté et en ce que la pièce conductrice (70) coulisse en s'appuyant sur la pièce en matériau diélectrique.9. Antenne selon les revendications 5 à 8, caractérisée en ce que les moyens de commande associés au module avec relais mécanique comportent une bobine à noyau plongeur (5) avec une partie mobile (51 ) solidaire de la tige (6 ; 6') du relais mécanique du module avec relais mécanique. REVENDICATIONS MODIFIEES[reçues par le Bureau International le 6 Juillet 1998 (06.07.98); revendications 1 et 5 modifiées; autres revendications inchangées (2 pages)]
1 . Antenne à géométrie variable comportant au moins un alignement de n tronçons conducteurs ( 1 1 , 1 2 ; 1 1 a, 1 1 b, 1 2a, 1 2b,
5 1 3a, 1 3b), où n est un entier supérieur à 1 , séparés électriquement par n-1 intervalles, n-1 modules de commutation (2) respectivement affectés aux n-1 intervalles avec m, où m est un entier positif inférieur à n, de ces modules qui comportent un relais (R) à deux états, et m moyens de liaison associés respectivement aux m modules pour assurer leur 0 commande, avec chacun une première et une seconde extrémité situées en des endroits distincts, les m secondes extrémités étant reliées respectivement aux m modules, caractérisée en ce que les moyens de liaison (F1 , F2) sont faits en un matériau électriquement isolant et transparent aux ondes radioélectriques, en ce que q, avec q au moins 5 égal à un, des m modules de commutation comportent chacun p dispositifs photovoltaïques (21 , 22), avec p entier positif inférieur à 3, pour commander leur relais et en ce que les moyens de liaison associés aux q modules avec dispositifs photovoltaïques sont conducteurs de la lumière et comportent p câbles optiques (F1 , F2) qui aboutissent 0 respectivement sur les p dispositifs (21 , 22).
2. Antenne selon la revendication 1 , caractérisée en ce que les p dispositifs comportent chacun au moins une cellule photovoltaïque (21 , 22).
3. Antenne selon la revendication 1 , caractérisée en ce que le 5 relais est un relais électromagnétique (R).
4. Antenne selon la revendication 3, caractérisée en ce que le relais (R) est un relais à deux états stables et à deux entrées de commande pour commander respectivement les deux états stables, en ce que p est égal à 2, en ce que les deux dispositifs photovoltaïques sont 0 respectivement couplés aux deux entrées de commande et en ce que les deux câbles comportent chacun au moins une fibre optique (F1 , F2) .
5. Antenne à géométrie variable comportant au moins un alignement de n tronçons conducteurs ( 1 1 , 1 2), où n est un entier supérieur à 1 , séparés électriquement par n-1 intervalles, n-1 modules de 5 commutation (2' ; 7 ; 7') respectivement affectés aux n-1 intervalles
FEUILLE MODIFIEE (ARTICLE 19} avec m, où m est un entier positif inférieur à n, de ces modules qui comportent un relais (2' ; 7 ; 7') à deux états, et m moyens de commande (5, 6 5, 6') associés respectivement aux m modules pour assurer leur commande, avec chacun une première et une seconde extrémité situées en des endroits distincts, les m secondes extrémités étant reliées respectivement aux m modules, caractérisée en ce que q, avec q au moins égal à un, des m modules de commutation ont leur relais qui est un relais mécanique (2' ; 7 ; 7') et en ce que les moyens de commande associés aux q modules comportent chacun une tige mobile (6 ; 6') dont une extrémité est reliée au relais mécanique du module auquel les moyens de commande qui comportent la tige considérée sont associés et en ce que la tige est faite en un matériau électriquement isolant et transparent aux ondes radioélectriques.
6. Antenne selon la revendication 5, caractérisée en ce que le relais comporte une pièce conductrice (7 ; 70) qui coulisse le long de la partie des deux tronçons (1 1 , 1 2) située au voisinage de l'intervalle auquel le module comportant ce relais est affecté.
7. Antenne selon la revendication 6, caractérisée en ce que la pièce conductrice (7) coulisse directement sur la partie les deux tronçons située au voisinage de l'intervalle auquel le module comportant ce relais est affecté.
8. Antenne selon la revendication 6, caractérisée en ce que le relais comporte une pièce en matériau diélectrique (71 ), solidaire des deux tronçons ( 1 1 , 1 2) situés au niveau de l'intervalle auquel le module comportant ce relais est affecté et en ce que la pièce conductrice (70) coulisse en s'appuyant sur la pièce en matériau diélectrique.
9. Antenne selon les revendications 5 à 8, caractérisée en ce que les moyens de commande associés au module avec relais mécanique comportent une bobine à noyau plongeur (5) avec une partie mobile (51 ) solidaire de la tige (6 ; 6') du relais mécanique du module avec relais mécanique.
PCT/FR1998/000232 1997-02-07 1998-02-06 Antenne a geometrie variable WO1998035402A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69809392T DE69809392T2 (de) 1997-02-07 1998-02-06 Antenne mit variabler geometrie
US09/355,918 US6195065B1 (en) 1997-02-07 1998-02-06 Antenna with variable geometry
EP98910784A EP0958635B1 (fr) 1997-02-07 1998-02-06 Antenne a geometrie variable
AU65038/98A AU6503898A (en) 1997-02-07 1998-02-06 Antenna with variable geometry
CA002279987A CA2279987A1 (fr) 1997-02-07 1998-02-06 Antenne a geometrie variable

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9701428A FR2759497A1 (fr) 1997-02-07 1997-02-07 Antenne a geometrie variable
FR97/01428 1997-02-07
FR9800245A FR2759498B1 (fr) 1997-02-07 1998-01-13 Antenne a geometrie variable
FR98/00245 1998-01-13

Publications (1)

Publication Number Publication Date
WO1998035402A1 true WO1998035402A1 (fr) 1998-08-13

Family

ID=26233304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/000232 WO1998035402A1 (fr) 1997-02-07 1998-02-06 Antenne a geometrie variable

Country Status (7)

Country Link
US (1) US6195065B1 (fr)
EP (1) EP0958635B1 (fr)
AU (1) AU6503898A (fr)
CA (1) CA2279987A1 (fr)
DE (1) DE69809392T2 (fr)
FR (1) FR2759498B1 (fr)
WO (1) WO1998035402A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790872B1 (fr) * 1999-03-12 2003-05-30 Thomson Csf Antenne demontable, a charge capacitive, de type fouet et procede de fabrication d'un segment rayonnant d'une telle antenne
FR2818018B1 (fr) 2000-12-12 2003-02-14 Thomson Csf Antenne rayonnante a isolation galvanique
FR2829622B1 (fr) * 2001-09-11 2004-04-09 Thales Sa Systeme antennaire a rendement elevee et a forte puissance
FR2837988B1 (fr) * 2002-03-26 2008-06-20 Thales Sa Systeme antennaire bi-bande vhf-uhf
US6686892B1 (en) * 2002-04-26 2004-02-03 Bae Systems-Information And Electronic Systems Integration Inc. Switchable length whip antenna
TWI279030B (en) * 2004-06-21 2007-04-11 Accton Technology Corp Antenna and antenna array
US7050018B2 (en) * 2004-09-07 2006-05-23 Machine Applications Corp. Multi-band antenna system
US7420516B2 (en) 2005-10-11 2008-09-02 Motorola, Inc. Antenna assembly and method of operation thereof
ITLI20090002A1 (it) * 2009-03-04 2010-09-05 Renzo Friani Mini antenna verticale, ricetrasmittente, multibanda, motorizzata. composta da elementi fissi e mobili assemblati in modo tale ottenere rendimenti pari ad antenne molto piu' lunghe.
JP2013528963A (ja) * 2010-03-24 2013-07-11 ダネッシュ ミナ 一体型光電池・無線周波数アンテナ
US10003131B2 (en) * 2013-11-19 2018-06-19 At&T Intellectual Property I, L.P. System and method of optical antenna tuning
US10868358B2 (en) * 2017-10-19 2020-12-15 Harris Solutions NY, Inc. Antenna for wearable radio system and associated method of making
CN112821047A (zh) * 2021-01-04 2021-05-18 中国人民解放军海军工程大学 一种短波宽带频率可重构的鞭状天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1949556A1 (de) * 1969-10-01 1971-04-15 Bechtold Wolfgang Dipl Ing Antenne mit elektromechanischen Abstimmelementen
US4564843A (en) * 1981-06-18 1986-01-14 Cooper Charles E Antenna with P.I.N. diode switched tuning inductors
US4751513A (en) * 1986-05-02 1988-06-14 Rca Corporation Light controlled antennas
US4924238A (en) * 1987-02-06 1990-05-08 George Ploussios Electronically tunable antenna
EP0428229A1 (fr) * 1989-11-14 1991-05-22 Hollandse Signaalapparaten B.V. Antenne à haute fréquence syntonisable
US5293172A (en) * 1992-09-28 1994-03-08 The Boeing Company Reconfiguration of passive elements in an array antenna for controlling antenna performance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1049556B (fr) *
US3129386A (en) * 1962-05-21 1964-04-14 Sunair Electronics Inc Automatic antenna impedance matching and loading unit
US4763126A (en) * 1986-11-04 1988-08-09 Ira Jawetz Mooring location system
US5093668A (en) * 1989-06-29 1992-03-03 Ball Corporation Multiple-beam array antenna
US5367310A (en) * 1991-10-11 1994-11-22 Southwest Research Institute Fiber optic antenna radiation efficiency tuner
US5656931A (en) * 1995-01-20 1997-08-12 Pacific Gas And Electric Company Fault current sensor device with radio transceiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1949556A1 (de) * 1969-10-01 1971-04-15 Bechtold Wolfgang Dipl Ing Antenne mit elektromechanischen Abstimmelementen
US4564843A (en) * 1981-06-18 1986-01-14 Cooper Charles E Antenna with P.I.N. diode switched tuning inductors
US4751513A (en) * 1986-05-02 1988-06-14 Rca Corporation Light controlled antennas
US4924238A (en) * 1987-02-06 1990-05-08 George Ploussios Electronically tunable antenna
EP0428229A1 (fr) * 1989-11-14 1991-05-22 Hollandse Signaalapparaten B.V. Antenne à haute fréquence syntonisable
US5293172A (en) * 1992-09-28 1994-03-08 The Boeing Company Reconfiguration of passive elements in an array antenna for controlling antenna performance

Also Published As

Publication number Publication date
EP0958635A1 (fr) 1999-11-24
DE69809392D1 (de) 2002-12-19
US6195065B1 (en) 2001-02-27
EP0958635B1 (fr) 2002-11-13
DE69809392T2 (de) 2003-08-21
CA2279987A1 (fr) 1998-08-13
FR2759498A1 (fr) 1998-08-14
FR2759498B1 (fr) 1999-08-27
AU6503898A (en) 1998-08-26

Similar Documents

Publication Publication Date Title
EP0958635B1 (fr) Antenne a geometrie variable
EP1723693B1 (fr) Antenne a depointage variable comprenant au moins un element dephaseur
EP0924797B1 (fr) Antenne multifréquence réalisée selon la technique des microrubans, et dispositif incluant cette antenne
CA2148796C (fr) Antenne fil-plaque monopolaire
FR2655204A1 (fr) Antenne-reseau d'alimentation de guides d'onde.
EP2656438A1 (fr) Cellule rayonnante a deux etats de phase pour reseau transmetteur
EP2936565A1 (fr) Dispositif d'interconnexion de cellules photovoltaiques a contacts en face arriere, et module comprenant un tel dispositif
WO2012045847A1 (fr) Antenne de grande dimension à ondes de surface et à large bande
FR3090220A1 (fr) Antenne fil-plaque monopolaire
EP1305846B1 (fr) Reflecteur hyperfrequence actif a bipolarisation, notamment pour antenne a balayage electronique
FR2801729A1 (fr) Reflecteur hyperfrequence actif a balayage electronique
EP0101369B1 (fr) Filtre passe-bande à résonateurs diélectriques, présentant un couplage négatif entre résonateurs
EP1551078A1 (fr) Antenne omnidirectionnelle configurable
FR2759497A1 (fr) Antenne a geometrie variable
FR2533777A1 (fr) Oscillateur hyperfrequence de puissance
FR2761823A1 (fr) Poste de distribution d'energie electrique
EP0286464B1 (fr) Dispositif hyperfréquence à diodes comportant une ligne triplaque
EP0352160B1 (fr) Antenne omnidirectionnelle, notamment pour l'émission de signaux de radiodiffusion ou de télévision dans la bande des ondes décimétriques, et système rayonnant formé d'un groupement de ces antennes
EP3334033B1 (fr) Module photovoltaïque et panneau de modules photovoltaïques interconnectes
EP1157444B1 (fr) Antenne a balayage electronique bi-bande, a reflecteur hyperfrequence actif
EP0654845B1 (fr) Elément rayonnant adaptable du type dipÔle réalisé en technologie imprimée, procédé d'ajustement de l'adaptation et réseau correspondants
FR2761825A1 (fr) Cellule electrique a caisson metallique etanche
FR2808128A1 (fr) Antenne monolithique a polarisation croisee
EP0088681B1 (fr) Antenne à double réflecteur à transformateur de polarisation incorporé
FR2649245A1 (fr) Disjoncteur a haute tension a dispositifs de detection de tension incorpores

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA IL NO PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2279987

Country of ref document: CA

Ref country code: CA

Ref document number: 2279987

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09355918

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998910784

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998910784

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998910784

Country of ref document: EP