WO1998038660A1 - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
WO1998038660A1
WO1998038660A1 PCT/JP1998/000823 JP9800823W WO9838660A1 WO 1998038660 A1 WO1998038660 A1 WO 1998038660A1 JP 9800823 W JP9800823 W JP 9800823W WO 9838660 A1 WO9838660 A1 WO 9838660A1
Authority
WO
WIPO (PCT)
Prior art keywords
niobium
capacitor
electrode
dielectric
niobium nitride
Prior art date
Application number
PCT/JP1998/000823
Other languages
English (en)
French (fr)
Inventor
Kazumi Naito
Original Assignee
Showa Denko Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12725261&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1998038660(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Showa Denko Kabushiki Kaisha filed Critical Showa Denko Kabushiki Kaisha
Priority to US09/171,902 priority Critical patent/US6115235A/en
Priority to EP98966979A priority patent/EP0953847B1/en
Priority to CNB988005042A priority patent/CN1192404C/zh
Priority to DE69829945T priority patent/DE69829945T2/de
Publication of WO1998038660A1 publication Critical patent/WO1998038660A1/ja
Priority to HK00101866A priority patent/HK1022948A1/xx
Priority to US10/012,285 priority patent/US6452777B1/en
Priority to US10/834,050 priority patent/US7006343B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material

Definitions

  • the present invention relates to a novel capacitor, in particular, a capacitor that is inexpensive and has good leakage current characteristics, and a capacitor that has high capacitance, particularly high capacitance at high frequency per unit weight and has good leakage current characteristics.
  • an electrode of a condenser one using aluminum, tantalum, or an alloy thereof is known as one using a sintered metal body.
  • These capacitors are used for various purposes.One of them is a capacitor used in a so-called smoothing circuit to obtain direct current from alternating current. It is said that it is desirable that As an example, the above two characteristics are required to suppress the "whisker-like voltage" that occurs when converting to DC, and to make it closer to DC.
  • tantalum oxide is used as a dielectric for a capacitor using a tantalum sintered body.However, by using a material having a dielectric constant higher than that of the tantalum oxide, an ultra-small capacitor can be obtained. sell. Such materials include titanium oxide, : Niobium oxide, etc. is considered, but in reality it has not reached the level of practical use due to poor leakage current (hereinafter abbreviated as LC) characteristics.
  • the present inventor has found that the sintered body of niobium nitride has a small amount of oxygen adhering to the surface and has good leakage current characteristics, and the LC failure force of a capacitor using niobium oxide as a dielectric ⁇
  • the inventor has found that oxygen contributed to the dielectric has a negative effect, which has led to the completion of the present invention.
  • at least one kind of compound selected from organic semiconductors and inorganic semiconductors having no excessive oxygen supply capability is used as the other electrode, it is possible to manufacture a capacitor having a large capacitance at a high frequency. I found it.
  • an organic semiconductor and an inorganic semiconductor having an electric conductivity of 10 12 S cm ⁇ 1 to 10 3 S cm ⁇ 1 are used as the organic semiconductor and the inorganic semiconductor, further low impedance characteristics can be obtained. Can be manufactured.
  • a capacitor composed of a pair of electrodes and a dielectric material interposed between the electrodes, a capacitor characterized in that one electrode is formed of a sintered body of niobium nitride is provided.
  • the dielectric of the capacitor is preferably made of niobium oxide, more preferably niobium oxide formed by electrolytic oxidation of a niobium nitride sintered body.
  • the other electrode is electrolyte above Kiko Ndenza, also made one compound with at least selected from organic semiconductors and inorganic semiconductors, more preferred properly the electric conductivity of 1 0- 2 S cm one 1-1 0 It is composed of at least one kind of compound selected from organic semiconductors and inorganic semiconductors that have 3 Scm- 1 .
  • Figure 1 is a best mode for carrying out the c invention 'is a partially cutaway perspective view showing an example of a specific structure of Kondenza of the present invention
  • the niobium nitride constituting one electrode of the condenser of the present invention is obtained by partially nitriding metal niobium.
  • Niobium nitride for example, is obtained by displaying niobium powder in a nitrogen atmosphere. It is obtained as a powder by nitriding two sides.
  • the amount of nitrogen bonded to niobium is 100 to 200,000 ppm by weight, preferably 100 to 500,000 ppm by weight.
  • Nitrogenation is performed at a temperature of 2000 ° C. or less, and the time is several 10 hours. The desired amount of nitrogen can be obtained.
  • Niobium nitride can be obtained. If the niobium powder is allowed to flow under nitrogen for several 10 hours even at room temperature, a niobium nitride powder having a nitrogen amount of several 10 Opm can be obtained.
  • the shape of the niobium nitride powder thus obtained is not much different from the shape of the raw material niobium powder.
  • the niobium powder is obtained by pulverizing a niobium lump, the obtained niobium nitride powder also has various shapes peculiar to the pulverized material.
  • the niobium powder is formed into secondary particles obtained by granulating fine powder obtained by, for example, reducing niobium hydrofluoride, the obtained niobium nitride powder is also similar to the secondary particles. become.
  • the particle size of the niobium nitride powder is such that if the average particle size of the niobium powder as a raw material is, for example, 0.5 zm to 100 ⁇ m,
  • the sintered body of niobium nitride c having the same average particle size can be obtained, for example, by sintering niobium nitride powder at a high temperature under vacuum.
  • the niobium nitride sintered body of the present invention can be obtained. If the degree of vacuum is insufficient, air is entrained during sintering and oxidation proceeds at the same time as nitridation, so that the performance of the capacitor using the target sintered body of niobium nitride as an electrode deteriorates. Generally, the sintering temperature varies depending on the particle size of the niobium nitride powder, but the smaller the particle size, the lower the temperature.
  • tantalum oxide for example, tantalum oxide, niobium oxide, a polymer substance, a ceramic compound, or the like can be used.
  • tantalum oxide is obtained by attaching a tantalum-containing complex, for example, an alkoxy complex, an acetyl-acetonate complex, or the like to an electrode, followed by hydrolysis and / or thermal decomposition. It can also be made.
  • niobium oxide is used as the dielectric
  • niobium oxide is used to form niobium nitride, which is one of the electrodes, in an electrolytic solution, or a complex containing niobium, such as an alkoxy complex or an acetyl acetate complex.
  • a complex containing niobium such as an alkoxy complex or an acetyl acetate complex.
  • the niobium nitride electrode is formed in an electrolytic solution, or : Others by the This hydrolysis and / or pyrolyzing niobium-containing complex on NbN electrodes, chemical conversion can be formed of niobium oxide dielectric on the surface of niobium nitride electrode (niobium in an electrolytic solution).
  • the reaction is usually carried out using an aqueous solution of protonic acid, for example, 0.1% aqueous solution of phosphoric acid, or using an aqueous solution of sulfuric acid.
  • This capacitor becomes an electrolytic capacitor.
  • the niobium nitride side becomes the anode
  • niobium nitride has no theoretical polarity and can be used either as an anode or a cathode.
  • a monomer is introduced in a gaseous or liquid state into pores or voids of a metal to carry out polymerization.
  • the polymer substance include fluorine resin, alkyd resin, acrylic resin, polyester resin such as polyethylene terephthalate, vinyl resin, xylylene resin, and phenol resin. are used.
  • a ceramic compound as a dielectric, for example, as described in Japanese Patent Application Laid-Open No.
  • a perovskite compound is added to the surface of a metal having pores or voids. Can be adopted.
  • B a T i 0 3 S r T i 0, M g T i 0 3, etc.
  • B a S n 0 3 is like et be.
  • the other electrode of the capacitor of the present invention is not particularly limited.
  • Compounds As a specific example of the electrolytic solution, a mixed solution of dimethylformamide and ethylene glycol in which 5% by weight of isobutyltripropylammoniumborofluoride electrolyte is dissolved, tetraethylammonium boronate trafluoride is used.
  • a mixed solution of propylene-based water and ethylen glycol dissolved at 7% by weight is exemplified.
  • organic semiconductor examples include an organic semiconductor composed of benzopyrroline tetramer and kulanilanil, an organic semiconductor composed mainly of tetrathiotetracene, and an organic semiconductor composed mainly of tetra (tetraquino) dimethane.
  • Semiconductors organic semiconductors based on conductive polymers obtained by doping dopants into polymers represented by the following general formula (1) or (2), lead monoxide or manganese dioxide And inorganic semiconductors composed of triiron tetroxide. These semiconductors may be used alone or in combination of two or more.
  • R 1 to R 4 represent hydrogen, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms.
  • X may represent an oxygen, zeo or nitrogen atom, R 5 may be present only when X is a nitrogen atom and represents hydrogen or an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 May be bonded to each other to form a ring.
  • Examples of the polymer represented by the formulas (1) and (2) include poly (aniline), polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, and polypyrrolene. And polymethylpyrrol.
  • the capacitor of the present invention is composed of a pair of electrodes and a dielectric material interposed between the electrodes, and the structure itself may be the same as that conventionally used.
  • FIG. 1 shows a specific example of the condenser of the present invention.
  • the core part of the condenser shown in Fig. 1 is formed by forming niobium nitride sintered body 1 in an electrolytic solution or hydrolyzing diobium-containing complex and Z Of niobium oxide An electric body layer is formed, a plurality of niobium nitride sintered bodies each having the dielectric layer formed as described above are combined, and the other electrode is formed on the dielectric layer.
  • a carbon paste 2 and a silver paste 3 are sequentially laminated on the other electrode, and sealed with a material such as epoxy resin to form a capacitor.
  • This capacitor has a niobium lead 4 which is sintered and formed integrally with a niobium nitride sintered body or later welded.
  • This capacitor is combined with an anode lead 5 and a cathode lead 6 and is surrounded by an outer resin 7 such as an epoxy resin.
  • the capacitor to which the niobium lead 4 exemplified above is coupled has a rectangular parallelepiped shape, but the shape of the capacitor is not particularly limited, and may be, for example, a circular shape.
  • Niobium powder having a particle size of 10 to 40 m was reacted at 400 ° C. in a nitrogen atmosphere to obtain niobium nitride powder.
  • the amount of nitrogen was about 2000 weight ppm.
  • the powder was sintered at 150 ° C. in a vacuum to obtain a niobium nitride sintered body (1 Om m0, thickness about lmm, porosity 45%, average pore size 3 u rn). Then, a dielectric of niobium oxide was formed on the sintered body by forming 20 V in a phosphoric acid aqueous solution.
  • a plurality of niobium nitride sintered bodies formed up to the dielectric thus obtained were prepared, and the other electrode shown in Table 1 was formed on the dielectric. Further, a carbon paste and a silver paste were sequentially laminated on the other electrode, and sealed with an epoxy resin to produce a capacitor.
  • Table 2 shows the capacitance (measured 100 kHz) of the fabricated capacitor and the LC value at 4 V.
  • Niobium nitride powder having a particle size of 40 to 80 m was sintered in vacuum at 160 ° C to obtain a niobium nitride sintered body (1 Omm0, thickness: lmm, porosity 55%, average pore 7m).
  • the sintered body of niobium nitride is immersed in a pentaethyl niobate solution, pulled up, reacted in steam at 85 ° C, and further dried at 350 ° C to be oxidized on the sintered body.
  • a niobium dielectric film was formed.
  • Example 8 A plurality of niobium nitride sintered bodies formed up to the dielectric material obtained in this manner were prepared, and the chloranil complex of tetrathotetracene was used as the other electrode in the same manner as in Examples 1 and 6.
  • Example 8 A mixture of lead acetate and lead sulfate (Example 9) was formed on a dielectric. Subsequently, a silver paste and a silver paste were sequentially laminated on the other electrode, and sealed with an epoxy resin to produce a capacitor. Table 2 shows the performance values of the manufactured capacitors. Comparative Examples 1 and 2
  • a tantalum powder having a particle size of 10 to 40 m was prepared and sintered in vacuum at 150,000 to obtain a tantalum sintered body (10 mm ⁇ , thickness of about 1 mm, pores). Rate 45%, average pore size 3 m). Then, a tanned oxide dielectric was formed on the sintered body by forming a 20 V chemical solution in a phosphoric acid aqueous solution.
  • a plurality of tantalum sintered bodies formed up to the dielectric material thus obtained were prepared, and chloranil complexes of tetrathoteotetracene were used as the other electrodes in the same manner as in Example 1 and Example 6 (Comparative Example).
  • a mixture of lead acetate and lead sulfate (Comparative Example 2) was formed on a dielectric. Thereafter, a carbon paste and a silver paste were sequentially laminated in the same manner as in the example, and sealed with an epoxy resin to produce a capacitor.
  • Table 2 shows the performance values of the manufactured capacitors.
  • Examples 1 and 6 capacitors were produced in the same manner as in Examples i and 6, except that a niobium sintered body was used without performing the nitrogen treatment.
  • Table 2 shows the performance values of the produced condenser.
  • a capacitor was manufactured in the same manner as in Example 10 except that a niobium sintered body was used instead of the niobium nitride sintered body in Example 10.
  • Table 3 shows the characteristic values of the produced condenser.
  • a capacitor was manufactured in the same manner as in Example 11 except that a niobium sintered body was used instead of the niobium nitride sintered body in Example 11.
  • Table 3 shows the performance values of the manufactured capacitors.
  • a capacitor was manufactured in the same manner as in Example 12, except that a niobium sintered body was used instead of the niobium nitride sintered body used in Example 12.
  • Table 4 shows the performance values of the manufactured capacitors.
  • a capacitor using a niobium nitride sintered body as an electrode according to the present invention is excellent in environmental stability and has little leakage current (LC) characteristic failure.
  • a sintered body of niobium nitride is used as one electrode, the other electrode is at least one compound selected from organic semiconductors and inorganic semiconductors, and a dielectric between the electrodes is niobium oxide.

Description

: 明 細 書 コ ンデンサ 技術分野
本発明は新規なコンデンサ、 と りわけ、 廉価で漏れ電流特性の良好なコ ンデン サ、 および高容量、 特に単位重量あたりの高周波での容量が大き く 、 漏れ電流特 性の良好なコ ンデンサに関する。 背景技術
コンデンザの電極で金属の焼結体を利用したものと してアルミ ニウム、 タ ンタ ルおよびそれらの合金を使用したものが知られている。 これらのコ ンデンサは、 さまざまな用途に用いられているが、 その一つと して交流から直流を得るための- いわゆる平滑回路に使用されるコンデンサは、 低ィ ンピ一ダンスでかつ高周波で の容量が大きいことが望ま しいと言われている。 一例と して、 直流化する場合に 生じる 「ひげ状電圧」 を押さえ、 かつ、 より直流に近づけるために上記二特性が 要求されている。
上述した金属の焼結体のうち、 アルミ二ゥムは耐湿特性や化学特性という環境 性に劣り、 タ ンタルは高価であるという欠点がある。 この 2つの欠点を克服する ものと して、 ニオブの焼結体も公知であるが、 表面に付着した酸素が高温で後述 する誘電体に悪影響を及ぼすため、 実際には漏れ電流特性に劣り、 実用に耐えな い。 また、 平滑回路に使用されるコ ンデンサに要求される特性のうち高周波での 容量を大き く するには、 基本的にアルミニウム、 タンタルなどの基材を増大させ ればよい。 これは、 コ ンデンサの小型化と反することになるが、 前記の基材の中 では、 夕 ンタルが高周波での容量と小型化においてとりわけバラ ンスのよい素材 である。 しかしながら、 より小型でかつ高周波での容量を必要とする場合には限 界があった。 一般にタ ンタル焼結体を利用したコ ンデンサには、 誘電体と して酸 化タンタルが使用されるが、 該酸化夕ンタル以上の誘電率を持つ材料を使用する ことにより、 超小型のコンデンサとなり う る。 このような材料と して酸化チタ ン、 : 酸化ニオブなどが考えられているが、 実際は漏れ電流 (以下、 L Cと略す) 特性 が不良のため実用の域には達していない。
- 発明の開示
本発明者は、 窒化ニオブの焼結体が、 表面付着酸素量が少なく漏れ電流特性が 良好なこと、 および酸化ニオブを誘電体とするコンデンサにおける前記 L C不良 力 <、 焼結体の表面に付着した酸素が誘電体に悪影響を及ぼすことに一因があるこ とを見い出し、 本発明を完成させるに至った。 また、 他方の電極と して過度な酸 素供給能力のない有機半導体および無機半導体から選ばれた少く と も一種の化合 物を使用すると高周波での容量が大きなコ ンデンサを作製することができること を見い出した。 さ らに、 該有機半導体および無機半導体と して電導度が 1 0 一2 S c m— 1乃至 1 0 3 S c m—1である有機半導体および無機半導体を用いると、 一層 の低イ ンピーダンス特性を有するコンデンサを作製できる。
かく して本発明によれば、 一対の電極と該電極間に介在する誘電体とから構成 されるコンデンサにおいて、 一方の電極が窒化ニオブの焼結体からなることを特 徴とするコ ンデンサが提供される。
上記コ ンデンザの誘電体は、 好ま しく は酸化ニオブからなり、 より好ま し く は 窒化ニオブ焼結体の電解酸化によって形成された酸化ニオブからなる。 また、 上 記コ ンデンザの他方の電極は電解液、 有機半導体および無機半導体から選ばれた 少く と も一種の化合物からなり、 より好ま しく は電導度が 1 0— 2 S c m一1〜 1 0 3 S c m—1である有機半導体および無機半導体から選ばれた少く と も一種の化合 物からなる。 図面の簡単な説明
図 1 は、 本発明のコンデンザの具体的構造の一例を示す部分切欠斜視図である c 発明を実施する'ための最良の形態
本発明のコンデンザの一方の電極を構成する窒化ニオブは、 金属ニオブの一部 を窒素化したものである。 窒化ニオブは、 例えばニオブ粉末を窒素雰囲気下で表 二 面を窒素化することによって粉末と して得られる。 この場合、 ニオブに結合した 窒素量は 1 0〜2 0 0 , 0 0 0重量 p p m、 好ま しく は 1 0 0 ~ 5 0 , 0 0 0重 量 p p mである。 窒素化する温度は 2 0 0 0 °C以下、 時間は数 1 0時間で目的と する窒素量 窒化ニオブが得られるが、 一般に高温程短時間で表面が窒素化され る。 また、 室温でも窒素下で数 1 0時間ニオブ粉を流動させておく と数 1 0 O p mの窒素量の窒化ニオブ粉が得られる。
このようにして得られる窒化ニオブ粉の形状は、 原料のニオブ粉の形状と大差 ない。 例えばニオブ粉がニオブ塊を粉砕して得られたものであれば、 得られる窒 化ニオブ粉も粉砕物特有の多様な形状を示す。 また、 ニオブ粉が、 例えばフ ッ化 ニオブ酸力 リを還元して得た微粉を造粒して得られるような二次粒子になつてい れば、 得られた窒化ニオブ粉も二次粒子様になる。 また、 窒化ニオブ粉の粒径は 原料であるニオブ粉の粒径が、 平均粒径と して、 例えば 0 . 5 z m乃至 1 0 0 β mのものを使用すれば、 得られる窒化ニオブ粉の平均粒径も同様な大きさとなる c 窒化ニオブの焼結体は、 例えば窒化ニオブ粉末を真空下高温で焼結することに よって得られる。 一例をあげると、 窒化ニオブ粉を加圧成型した後、 1 0―1〜 1 0一6 T 0 r rで 1 0 0 0 〜 2 0 0 0 °C、 数分〜数時間放置することで本発明の 窒化ニオブの焼結体を得ることができる。 真空度が不十分であると焼結時に空気 を巻き込み窒化と同時に酸化が進むので目的とする窒化ニオブの焼結体を電極と するコ ンデンサの性能が悪く なる。 一般に焼結温度は、 窒化ニオブ粉の粒径によ つて変化するが粒径が小さい程低温で良い。
前記コンデンサの誘電体と しては、 例えば、 酸化タンタル、 酸化ニオブ、 高分 子物質、 セラ ミ ッ ク化合物などを使用することができる。 酸化タ ンタルを誘電体 と して用いる場合、 酸化タンタルは、 タンタルを含有する錯体、 例えば、 アルコ キシ錯体、 ァセチルァセ トナー 卜錯体などを電極に付着後、 加水分解および ま たは熱分解することによって作製すること もできる。 酸化ニオブを誘電体と して 用いる場合、 酸化ニオブは、 一方の電極である窒化ニオブを電解液中で化成する 力、、 またはニオブを含有する錯体、 例えば、 アルコキシ錯体、 ァセチルァセ トナ 一卜錯体などを電極に付着後、 加水分解および または熱分解することによって 作製すること もできる。 このように窒化ニオブ電極を電解液中で化成するか、 ま : たはニオブ含有錯体を窒化ニオブ電極上で加水分解および/または熱分解するこ とによって、 窒化ニオブ電極表面上に酸化ニオブ誘電体を形成することができる ( 窒化ニオブを電解液中で化成するには、 通常プロ ト ン酸水溶液、 例えば 0 . 1 % リ ン酸水溶" ί夜または硫酸水溶液を用いて行われる。 窒化ニォブを電解液中で化成 して酸化ニオブ誘導体を得る場合、 本発明のコンデンサは電解コンデンサとなり . 窒化ニオブ側が陽極となる。 錯体を分解して得る場合、 窒化ニオブは、 理論的に 極性は無く 、 陽極と しても、 陰極と しても使用可能である。
高分子物質を誘電体とするには、 例えば特開平 7— 6 3 0 4 5号公報に記載さ れるように、 金属の細孔または空隙部にモノマ一をガス状または液状で導入して 重合する方法、 高分子物質を適当な溶媒に溶解して導入する方法、 高分子物質を 融解して導入する方法が採られる。 高分子物質と しては、 例えば、 フ ッ素樹脂、 アルキッ ド樹脂、 ァク リ ル樹脂、 ポ リ エチ レンテレフ夕 レー トなどのポ リ エステ ル樹脂、 ビニル系樹脂、 キシリ レン樹脂、 フヱノール樹脂などが用いられる。 セラ ミ ッ ク化合物を誘電体とするには、 例えば特開平 7 _ 8 5 4 6 1号公報に 記載されるように、 細孔または空隙部を有する金属の表面にぺロプスカイ 卜型化 合物を生成させる方法を採ることができる。 ぺロプスカイ ト型化合物の具体例と しては B a T i 0 3 、 S r T i 0 、 M g T i 0 3 、 B a S n 0 3 などが挙げら れる。
一方、 本発明のコンデンサの他方の電極は格別限定されるものではなく 、 例え ば、 アルミ電解コ ンデンサ業界で公知である電解液、 有機半導体および無機半導 体から選ばれた少く と も一種の化合物が挙げられる。 電解液の具体例と してはィ ソブチル 卜 リ プロピルァンモニゥムボロテ 卜ラフルオラィ ド電解質を 5重量%溶 解したジメチルホルムアミ ドとエチレングリ コールの混合溶液、 テ 卜ラエチルァ ンモニゥムボロテ トラフルォライ ドを 7重量%溶解したプロピレン力一ボネ一 ト とェチレングリ コールの混合溶液などが挙げられる。 有機半導体の具体例と して は、 ベンゾピロ リ ン四量体とク口ラニルからなる有機半導体、 テ トラチォテ トラ センを主成分とする有機半導体、 テ ト'ラシァノキノ ジメ タ ンを主成分とする有機 半導体、 下記一般式 ( 1 ) または ( 2 ) で表わされる高分子に ドーパン 卜を ドー プした電導性高分子を主成分と した有機半導体、 一酸化鉛または二酸化マンガン を主成分とする無機半導体、 四三酸化鉄からなる無機半導体などが挙げられる このような半導体は単独でも、 または二種以上組合せて使用してもよい。
Figure imgf000007_0001
Figure imgf000007_0002
式 ( 1 ) および ( 2 ) において、 R 1 〜R 4 は水素、 炭素数 1〜 6のアルキル 基または炭素数 1 ~ 6のアルコキシ基を表わし、 これらは互に同一であっても相 違してもよく 、 Xは酸素、 ィォゥまたは窒素原子を表わし、 R 5 は Xが窒素原子 のときのみ存在して水素または炭素数 1〜 6のアルキル基を表わし、 R 1 と R 2 および R 3 と は互いに結合して環状になっていてもよい。
式 ( 1 ) および ( 2 ) で表わされる高分子と しては、 例えば、 ポリ ア二リ ン、 ポリオキシフエ二レン、 ポリ フヱニレンサルファイ ド、 ポリチォフェ ン、 ポリ フ ラ ン、 ポリ ピロ一ル、 ポリ メチルピロ一ルなどが挙げられる。
上記有機半導体および無機半導体と して、 電導度が 1 0一2 S c m〜l 0 3 S c m一1の範囲のものを使用すると、 作製したコンデンザのイ ンピ一ダンス値がより 小さ く なり、 高周波での容量をさ らに一層大き くすることができる。
本発明のコンデンサは、 一対の電極と該電極間に介在する誘電体とから構成さ れるものであって、 その構造自体は従来から常用されるものと同様でよい。 図 1 は本発明のコンデンザの具体的一例を示す。 図 1 に示すコンデンザの中核部分は、 窒化ニオブ焼結体 1 を電解液中で化成するか、 または窒化ニオブ焼結体 1上で二 ォブ含有錯体を加水分解および Zまたは熱分解することによつて酸化ニオブの誘 電体層を形成し、 このように誘電体層を形成した窒化ニオブ焼結体を複数個合体 したうえ、 他方の電極を誘電体層上に形成したものである。
さ らに、 他方の電極上にカーボンペース 卜 2、 銀ペース ト 3を順次積層し、 ェ ポキシ樹脂のような材料で封口してコンデンサが嵇成される。 このコ ンデンサは. 窒化ニオブ焼結体と一体に焼結成形された、 または後で溶接されたニオブリ ー ド 4を有している。 このコンデンサは、 陽極リ一ド 5および陰極リ一 ド 6 と組合わ されて、 エポキシ樹脂のような外装樹脂 7で包囲される。
なお、 上記に例示したニオブリー ド 4が結合しているコンデンサは直方体形状 のものであるが、 コンデンサの形状は格別限定されるものではなく、 例えば、 円 拄形状とすることができる。
以下、 本発明のコンデンサを実施例についてさ らに詳細に説明する。
実施例 1〜 7
粒径 1 0〜 4 0 mのニオブ粉末を 4 0 0 °Cで窒素雰囲気中で反応させ、 窒化 ニオブ粉末と した。 窒素量約 2 0 0 0重量 p p mであった。 該粉末を真空中 1 5 0 0 °Cで焼結させ窒化ニオブ焼結体を得た ( 1 O m m 0、 厚さ約 l m m、 空孔率 4 5 %、 平均細孔 3 u rn ) 。 次いでりん酸水溶液中で 2 0 V化成することにより 焼結体上に酸化ニオブの誘電体を形成した。
このようにして得た誘電体まで形成した窒化ニオブ焼結体を複数個用意し、 表 1 に示した他方の電極を誘電体上に形成した。 さらに他方の電極上にカーボンぺ 一ス ト、 銀ペース トを順次積層し、 エポキシ樹脂で封口 してコ ンデンサを作製し た。 表 2 に作製したコンデンサの容量 (则定 1 0 0 k H z ) 、 4 Vでの L C値を 示した。
他方の電極および電導度 電極形成方法
( S c m"1)
実施例 1 テ トラチォテ トラセンのクロラ 左記化合物溶液中への浸漬乾燥 二ル錯体 の繰り返し
2 X 1 00
" 2 テ トラシァノキノ ジメ タ ンのィ 左記化合物溶液中への浸漬乾燥 ソキノ リ ン錯体 の繰り返し
3 X 1 00
" 3 ポリアニリ ンの トルエンスルホ ァニリ ン液中での酸化反応繰り ン酸ドープ 返し
3 X 1 0 1
" 4 ポリ ピロ一ルの トルエンスルホ ピロール液中での酸化反応繰り ン酸 ドープ 返し
5 X 1 0 1
" 5 ポ リ チオフ ヱ ンの トルエンスル チォフ ン液中での酸化反応繰 ホン酸 ド一プ り返し
4 X 1 0 1
" 6 二酸化鉛と硫酸鉛の混合物 酢酸鉛溶液での酸化反応繰り返
(二酸化鉛 9 7 w t し
5 X 1 0 '
" 7 二酸化マンガンと二酸化鉛 硝酸マンガンの熱分解 ( 2 5 0
(二酸化鉛 9 5 w t °C、 2回繰り返し) 後、 酢酸鉛
5 X 1 0 1 溶液での酸化反応繰り返し 実施例 8、 9
粒径 4 0〜 8 0 mの窒化ニオブ粉末 (窒素量約 1万重量 p p m) を真空中 1 6 0 0 °Cで焼結させ窒化ニオブ焼結体を得た ( 1 O mm 0、 厚さ l mm、 空孔率 5 5 %、 平均細孔 7 m) 。 ついでペンタエチルニオベ一 ト液中に窒化ニオブ焼 結体を浸潰し引き上げた後、 8 5 °C蒸気中で反応させ、 さらに 3 5 0 °Cで乾燥す るこ とにより焼結体上に酸化ニオブの誘電体膜を形成した。
このよう にして得た誘電体まで形成した窒化ニオブ焼結体を複数個用意し、 実 施例 1 および実施例 6 と同様な方法で他方の電極と して各々テ トラチォテ 卜ラセ ンのクロラニル錯体 (実施例 8 ) 、 酢酸鉛と硫酸鉛の混合物 (実施例 9 ) を誘電 体上に形成した。 ひきつづき、 他方の電極上に力一ボンペース 卜、 銀ペース 卜を 順次積層し、 エポキシ樹脂で封口してコンデンサを作製した。 作製したコンデン サの性能値を表 2 に示した。 比較例 1、 2
粒径 1 0〜 4 0 mの夕 ンタル粉末を用意し、 真空中 1 5 0 0てで焼結してタ ンタル焼結体を得た ( 1 0 m m ø、 厚さ約 1 m m、 空孔率 4 5 %、 平均細孔 3 m ) 。 次いでりん酸水溶液中で 2 0 V化成することにより焼結体上に酸化タ ン夕 ルの誘電体を形成した。
このようにして得た誘電体まで形成したタ ンタル焼結体を複数個用意し、 実施 例 1 および実施例 6 と同様な方法で他方の電極と して各々テ トラチォテ トラセン のクロラニル錯体 (比較例 1 ) 、 酢酸鉛と硫酸鉛の混合物 (比較例 2 ) を誘電体 上に形成した。 その後実施例と同様にカーボンペース 卜、 銀ペース トを順次積層 し、 エポキシ樹脂で封口してコ ンデンサを作製した。 作製したコ ンデンサの性能 値を表 2 に示した。
比較例 3、 4
実施例 1 および 6で窒素処理を行わずに、 ニオブ焼結体と した以外は実施例 i および 6 と同様にしてコンデンサを作製した。 作製したコンデンザの性能値を表 2 に示した。
表 2
容量 ( 1 0 0 k Η ζ ) し C ( 4 V )
β F A
実施例 1 5 5 0 . 9
" 2 5 0 0 . 8
" 3 6 0 1 . 2
" 4 6 0 1 . 0
" 5 5 5 1 . 2
" 6 6 2 0 . 8
" 7 6 0 1 . 0
" 8 4 0 0 . 3
" 9 4 0 0 . 3
比铰例 1 2 4 0 . 0 2
" 2 2 6 0 . 0 4
" 3 5 4 1 4
" 5 7 1 8 実施例 1 と同様な窒化ニオブ焼結体をペンタエチルタ ンタ レー ト液中に浸漬し 引き上げた後、 8 5て蒸気中で反応させ、 さらに 4 5 0 °Cで乾燥することにより 焼結体上に酸化夕 ンタルの誘電体層を形成した。 次にィ ソブチル ト リ プロピルァ ンモニゥムテ トラボ口フルオラィ ド電解質を 5 %溶解したジメ チルホルムァ ミ ド とエチレングリ コールの混合溶液からなる電解液を焼結体に付着させ缶に入れて 封口し、 コ ンデンサを作製した。 作製したコ ンデンサの特性値を表 3 に示した。 比拿交例 5
実施例 1 0で窒化ニオブ焼結体のかわりにニオブ焼結体と した以外は、 実施例 1 0 と同様にしてコンデンサを作製した。 作製したコンデンザの特性値を表 3 に 示した。
実施例 1 1
実施例 1 と同様に窒化ニオブ焼結体と酸化ニオブの誘電体を形成した後、 実施 例 1 0 と同様に電解液を付着させ缶に入れて封口し、 コ ンデンサを作製した。 作 製したコ ンデンザの特性値を表 3 に示した。
比較例 6
実施例 1 1 で窒化ニオブ焼結体のかわりにニオブ焼結体を使用した以外は実施 例 1 1 と同様にしてコ ンデンサを作製した。 作製したコ ンデンサの性能値を表 3 に示した。
表 3
Figure imgf000011_0001
実施例 1 2
実施例 1 と同様に窒化ニオブ焼結体と酸化ニオブの誘電体を形成した後、 この 焼結体を 2価と 3価の硫酸鉄の等モル溶液 ( 0 . 0 1 モル/ ^ ) に浸漬した後、 過剰の水酸化ナ ト リ ゥム水溶液を加え、 焼結体表面に他方の電極である四三酸化 鉄を形成した。 その後、 力一ボンペース ト、 銀ペース トを順次積層し、 エポキシ 樹脂で封口 してコンデンサを作製した。 なお、 本実施例で形成した四三酸化鉄の 電導度は 1- 0 - S c m 'であった。 作製したコンデンザの性能値を表 4 に示した ( 比較例 Ί
実施例 1 2で用いた窒化ニオブ焼結体のかわりにニオブ焼結体を使用した以外 は、 実施例 1 2 と同様にしてコンデンサを作製した。 作製したコンデンサの性能 値を表 4 に示した。
表 4
Figure imgf000012_0001
産業上の利用可能性
本発明による窒化ニオブの焼結体を電極と したコンデンサは、 環境安定性に優 れ、 漏れ電流 ( L C ) 特性不良が少ない。
特に、 窒化ニオブの焼結体を一方の電極と し、 他方の電極を有機半導体および 無機半導体から選ばれた少なく と も一種の化合物と し、 電極間の誘電体を酸化二 ォブと したことを特徴とするコンデンサは、 単位重量あたりの高周波での容量が 大き く 、 漏れ電流特性も良好である。 このため電源の平滑回路に使用すると好適 である。

Claims

請 求 の 範 囲
1 . 一対の電極と該一対の電極間に介在する誘電体とから構成されるコンデン ザにおいて、 一方の電極が窒化ニオブの焼結体からなることを特徴とするコンデ ンサ。
2 . 窒化ニオブに結合した窒素量が 1 0 ~ 2 0 0 , O O O p p mである請求の 範囲第 1項記載のコンデンサ。
3 . 誘電体が酸化ニオブからなる請求の範囲第 1項または第 2項記載のコ ンデ ンサ。
4 . 窒化ニオブ電極を電解液中で化成するか、 または窒化ニオブ電極上でニォ ブ含有錯体を加水分解および Zまたは熱分解することによって、 酸化ニオブから なる誘電体が窒化ニオブからなる電極上に形成されている請求の範囲第 3項記載 のコンデンサ。
5 . 他方の電極が電解液、 有機半導体および無機半導体から選ばれた少く と も 一種の化合物である請求の範囲第 1項〜第 4項のいずれかに記載のコンデンサ。
6 . 他方の電極が電導度 1 0— 2 S c m―1〜 1 0 3 S c m 1を有する有機半導体 および無機半導体から選ばれた少く と も一種の化合物である請求の範囲第 1項〜 第 4項のいずれかに記載のコンデンサ。
PCT/JP1998/000823 1997-02-28 1998-02-27 Capacitor WO1998038660A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/171,902 US6115235A (en) 1997-02-28 1998-02-27 Capacitor
EP98966979A EP0953847B1 (en) 1997-02-28 1998-02-27 Capacitor with an electrode composed of a sintered body of partially nitrided niobium powder
CNB988005042A CN1192404C (zh) 1997-02-28 1998-02-27 部分氮化的铌粉,制备该铌粉的方法、该铌粉的烧结体,制备该烧结体的方法及电容器
DE69829945T DE69829945T2 (de) 1997-02-28 1998-02-27 KONDENSATOR MIT EINER ELEKTRODE AUS EINEM SINTERKöRPER AUS TEILWEISE NITRIDIERTEM NIOBPULVER
HK00101866A HK1022948A1 (en) 1997-02-28 2000-03-27 Capacitor with an electrode composed of a sinteredbody of partially nitrided niobium powder.
US10/012,285 US6452777B1 (en) 1997-02-28 2001-12-12 Capacitor
US10/834,050 US7006343B2 (en) 1997-02-28 2004-04-29 Capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/45650 1997-02-28
JP04565097A JP3254163B2 (ja) 1997-02-28 1997-02-28 コンデンサ

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/171,902 A-371-Of-International US6115235A (en) 1997-02-28 1998-02-27 Capacitor
US62089800A Division 1997-02-28 2000-07-20

Publications (1)

Publication Number Publication Date
WO1998038660A1 true WO1998038660A1 (en) 1998-09-03

Family

ID=12725261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000823 WO1998038660A1 (en) 1997-02-28 1998-02-27 Capacitor

Country Status (7)

Country Link
US (5) US6115235A (ja)
EP (1) EP0953847B1 (ja)
JP (1) JP3254163B2 (ja)
CN (1) CN1192404C (ja)
DE (1) DE69829945T2 (ja)
HK (1) HK1022948A1 (ja)
WO (1) WO1998038660A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215652B1 (en) * 1998-05-15 2001-04-10 Nec Corporation Solid electrolytic capacitor and manufacturing method thereof
US6600646B1 (en) * 1999-08-11 2003-07-29 Showa Denko Kabushiki Kaisha Niobium powder, sintered body thereof and capacitor using same
WO2003091466A1 (en) * 2002-04-26 2003-11-06 Showa Denko K.K. Niobium powder, sintered body thereof and capacitor using the same
US6671164B2 (en) * 2000-04-24 2003-12-30 Showa Denko Kabushiki Kaisha Niobium powder, sintered body using the powder, and capacitor using the same
US6960237B2 (en) 1999-07-15 2005-11-01 Showa Denko Kabushiki Kaisha Niobium powder, sintered body thereof and capacitor using the same
US7099143B1 (en) 2005-05-24 2006-08-29 Avx Corporation Wet electrolytic capacitors
KR100799634B1 (ko) 1999-07-15 2008-01-30 쇼와 덴코 가부시키가이샤 니오브분, 니오브분 소결체 및 그것을 사용한 콘덴서
EP1374262A4 (en) * 1999-02-08 2008-04-09 Starck H C Inc CAPACITOR SUBSTRATES MADE FROM REFRACTORY METAL NITRIDE
US7760487B2 (en) 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7760488B2 (en) 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7768773B2 (en) 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US7852615B2 (en) 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US8114340B2 (en) 2005-09-02 2012-02-14 Avx Corporation Method of forming anode bodies for solid state capacitors
US8203827B2 (en) 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
US8264819B2 (en) 2005-08-19 2012-09-11 Avx Corporation Polymer based solid state capacitors and a method of manufacturing them

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6165623A (en) 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
JP3254163B2 (ja) * 1997-02-28 2002-02-04 昭和電工株式会社 コンデンサ
US6051044A (en) 1998-05-04 2000-04-18 Cabot Corporation Nitrided niobium powders and niobium electrolytic capacitors
EP1137021B1 (en) * 1998-08-05 2008-01-23 Showa Denko Kabushiki Kaisha Sinter of niobium for capacitor, and method of manufacture thereof
EP1158552B2 (en) * 1998-12-15 2011-05-18 Showa Denko K.K. Niobium capacitor and method of manufacture thereof
US6387150B1 (en) * 1999-02-16 2002-05-14 Showa Denko K.K. Powdered niobium, sintered body thereof, capacitor using the sintered body and production method of the capacitor
TW460883B (en) * 1999-02-16 2001-10-21 Showa Denko Kk Niobium powder, niobium sintered body, capacitor comprised of the sintered body, and method for manufacturing the capacitor
CA2367907A1 (en) 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US6660057B1 (en) 1999-10-01 2003-12-09 Showa Denko K.K. Powder composition for capacitor, sintered body using the composition and capacitor using the sintered body
AU7448900A (en) * 1999-10-01 2001-05-10 Showa Denko Kabushiki Kaisha Capacitor powder composition, sintered body made of the composition, and capacitor made of the sintered body
DE19953946A1 (de) * 1999-11-09 2001-05-10 Starck H C Gmbh Co Kg Kondensatorpulver
US6423110B1 (en) 1999-12-08 2002-07-23 Showa Denko K.K. Powder composition for capacitor and sintered body using the composition, and capacitor using the sintered body
RU2246376C2 (ru) 2000-03-01 2005-02-20 Кабот Корпорейшн Азотированные вентильные металлы и способы их получения
US6540810B2 (en) * 2000-04-21 2003-04-01 Showa Denko Kabushiki Kaisha Niobium powder for capacitor, sintered body using the powder and capacitor using the same
JP4647744B2 (ja) * 2000-04-21 2011-03-09 昭和電工株式会社 コンデンサ用ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
CN100339917C (zh) * 2000-04-21 2007-09-26 昭和电工株式会社 铌烧结体及其生产方法以及使用这种铌烧结体的电容器
KR100804652B1 (ko) * 2000-04-24 2008-02-20 쇼와 덴코 가부시키가이샤 니오브가루, 그 소결체 및 콘덴서
US6643120B2 (en) * 2000-04-28 2003-11-04 Showa Denko Kabushiki Kaisha Niobium powder for capacitor, sintered body using the powder and capacitor using the same
JP2002030301A (ja) * 2000-07-12 2002-01-31 Showa Kyabotto Super Metal Kk 窒素含有金属粉末およびその製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサ
US6652619B2 (en) 2000-08-10 2003-11-25 Showa Denko K.K. Niobium powder, sintered body thereof, and capacitor using the same
EP1324359B2 (en) 2000-08-10 2017-10-04 Showa Denko K.K. Niobium powder, sinter thereof, and capacitor employing the same
DE10041901A1 (de) * 2000-08-25 2002-03-07 Starck H C Gmbh Kondensatoranode auf Basis Niob
US6554884B1 (en) 2000-10-24 2003-04-29 H.C. Starck, Inc. Tantalum and tantalum nitride powder mixtures for electrolytic capacitors substrates
JP2002134368A (ja) * 2000-10-26 2002-05-10 Showa Denko Kk コンデンサ用粉体、焼結体及びその焼結体を用いたコンデンサ
KR100812687B1 (ko) * 2000-11-30 2008-03-13 쇼와 덴코 가부시키가이샤 커패시터용 니오브 분말, 그 소결체 및 소결체를 이용한커패시터
EP1340235B1 (en) * 2000-11-30 2006-08-09 Showa Denko K.K. Powder for capacitor, sintered body thereof and capacitor using the sintered body
JP4683512B2 (ja) * 2000-11-30 2011-05-18 昭和電工株式会社 コンデンサ用粉体、それを用いた焼結体及びそれを用いたコンデンサ
EP1275124B1 (en) * 2000-12-01 2005-05-04 Showa Denko K.K. Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
JP2002217070A (ja) 2001-01-22 2002-08-02 Kawatetsu Mining Co Ltd ニオブ粉末及び固体電解コンデンサ用アノード
US7119047B1 (en) * 2001-02-26 2006-10-10 C And T Company, Inc. Modified activated carbon for capacitor electrodes and method of fabrication thereof
US7274552B2 (en) * 2001-03-16 2007-09-25 Showa Denko K.K. Niobium for capacitor and capacitor using sintered body of the niobium
CA2442229A1 (en) * 2001-04-12 2002-10-24 Showa Denko K.K. Production process for niobium capacitor
US6628504B2 (en) * 2001-05-03 2003-09-30 C And T Company, Inc. Electric double layer capacitor
US6466429B1 (en) * 2001-05-03 2002-10-15 C And T Co., Inc. Electric double layer capacitor
US7737066B2 (en) 2001-05-15 2010-06-15 Showa Denko K.K. Niobium monoxide powder, niobium monoxide sintered body and capacitor using the sintered body
CN101866754B (zh) * 2001-05-15 2014-02-26 昭和电工株式会社 电容器电极、电容器及其生产方法、电子电路及电子仪器
EP1402079B1 (en) 2001-05-15 2014-12-03 Showa Denko K.K. Niobium sintered body and capacitor using the sintered body
JP4187953B2 (ja) 2001-08-15 2008-11-26 キャボットスーパーメタル株式会社 窒素含有金属粉末の製造方法
ATE456852T1 (de) * 2001-10-02 2010-02-15 Showa Denko Kk Niobpulver, dessen sintermasse, dessen chemisch modifiziertes produkt und dieselben verwendender kondensator
US6865069B2 (en) 2001-10-02 2005-03-08 Showa Denko K.K. Niobium powder, sintered body thereof, chemically modified product thereof and capacitor using them
US20030112577A1 (en) * 2001-10-02 2003-06-19 Showa Denko K.K. Niobium particle, niobium sintered body, niobium formed body and niobium capacitor
US6754431B2 (en) * 2001-10-24 2004-06-22 Intel Corporation Variable optical attenuator
US6898341B2 (en) * 2001-10-24 2005-05-24 Intel Corporation Optical system for calibration and control of an optical fiber switch
EP1454330B2 (en) 2001-12-10 2017-10-04 Showa Denko K.K. Niobium alloy, sintered body thereof, and capacitor using the same
US6706079B1 (en) 2002-05-03 2004-03-16 C And T Company, Inc. Method of formation and charge of the negative polarizable carbon electrode in an electric double layer capacitor
JP2004143477A (ja) * 2002-10-22 2004-05-20 Cabot Supermetal Kk ニオブ粉末およびその製造方法、並びにそれを用いた固体電解コンデンサ
JP4131709B2 (ja) * 2003-03-28 2008-08-13 三洋電機株式会社 固体電解コンデンサの製造方法
US7006346B2 (en) * 2003-04-09 2006-02-28 C And T Company, Inc. Positive electrode of an electric double layer capacitor
CN1813323B (zh) 2003-04-28 2011-09-14 昭和电工株式会社 起阀作用的金属的烧结体、其制造方法和固体电解电容器
EP1683167B1 (en) 2003-11-10 2012-04-18 Showa Denko K.K. Niobium powder for capacitor, niobium sintered body and capacitor
WO2006057455A1 (en) 2004-11-29 2006-06-01 Showa Denko K.K. Porous anode body for solid electrolytic capacitor, production mehtod thereof and solid electrolytic capacitor
EP2022759A1 (en) 2005-06-03 2009-02-11 H.C. Starck GmbH Niobium suboxides
EP1897104A1 (en) * 2005-06-24 2008-03-12 Universal Supercapacitors Llc. Heterogeneous electrochemical supercapacitor and method of manufacture
US8112158B2 (en) 2005-12-30 2012-02-07 Medtronic, Inc. Method of maintaining wet-tantalum electrolytic capacitors
US8257463B2 (en) * 2006-01-23 2012-09-04 Avx Corporation Capacitor anode formed from flake powder
US7511943B2 (en) 2006-03-09 2009-03-31 Avx Corporation Wet electrolytic capacitor containing a cathode coating
US7480130B2 (en) 2006-03-09 2009-01-20 Avx Corporation Wet electrolytic capacitor
WO2007130483A2 (en) * 2006-05-05 2007-11-15 Cabot Corporation Tantalum powder with smooth surface and methods of manufacturing same
AU2007325245A1 (en) 2006-11-27 2008-06-05 Universal Supercapacitors Llc Electrode for use with double electric layer electrochemical capacitors having high specific parameters
US7856265B2 (en) * 2007-02-22 2010-12-21 Cardiac Pacemakers, Inc. High voltage capacitor route with integrated failure point
US7460356B2 (en) 2007-03-20 2008-12-02 Avx Corporation Neutral electrolyte for a wet electrolytic capacitor
US7554792B2 (en) 2007-03-20 2009-06-30 Avx Corporation Cathode coating for a wet electrolytic capacitor
US7649730B2 (en) 2007-03-20 2010-01-19 Avx Corporation Wet electrolytic capacitor containing a plurality of thin powder-formed anodes
US20080272421A1 (en) * 2007-05-02 2008-11-06 Micron Technology, Inc. Methods, constructions, and devices including tantalum oxide layers
CN101932653B (zh) * 2008-04-21 2013-02-27 帝化株式会社 导电性组合物的分散液、导电性组合物以及固体电解电容器
US20100085685A1 (en) * 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
GB0902486D0 (en) 2009-02-13 2009-04-01 Metalysis Ltd A method for producing metal powders
US9123470B2 (en) 2009-12-18 2015-09-01 Cardiac Pacemakers, Inc. Implantable energy storage device including a connection post to connect multiple electrodes
WO2011075511A2 (en) 2009-12-18 2011-06-23 Cardiac Pacemakers, Inc. Sintered capacitor electrode including multiple thicknesses
WO2011075508A2 (en) 2009-12-18 2011-06-23 Cardiac Pacemakers, Inc. Sintered capacitor electrode including a folded connection
EP2513930B1 (en) 2009-12-18 2020-10-07 Cardiac Pacemakers, Inc. Sintered electrodes to store energy in an implantable medical device
US8873220B2 (en) 2009-12-18 2014-10-28 Cardiac Pacemakers, Inc. Systems and methods to connect sintered aluminum electrodes of an energy storage device
US8725252B2 (en) 2009-12-18 2014-05-13 Cardiac Pacemakers, Inc. Electric energy storage device electrode including an overcurrent protector
JP4694642B2 (ja) * 2010-01-05 2011-06-08 昭和電工株式会社 コンデンサおよびその製造方法
JP2010261106A (ja) * 2010-06-11 2010-11-18 Showa Denko Kk コンデンサ用ニオブ焼結体の製造方法
US8848341B2 (en) 2010-06-24 2014-09-30 Cardiac Pacemakers, Inc. Electronic component mounted on a capacitor electrode
US20160254100A1 (en) 2013-10-08 2016-09-01 Showa Denko K.K. Niobium granulated powder production method
EP3112442B1 (en) 2015-06-29 2019-04-10 Indian Oil Corporation Limited Bio-assisted treatment of spent caustic
EP3466894B1 (en) 2017-10-05 2020-05-13 INDIAN OIL CORPORATION Ltd. Treatment and recovery of caustic from spent caustic through bioelectrochemical process
CN107857240B (zh) * 2017-11-30 2021-03-30 株洲硬质合金集团有限公司 氮化铌粉末的生产方法
BR102020016774A2 (pt) 2020-08-17 2022-02-22 Fras-Le S.A. Preparado de nanopartículas de nióbio, uso e processo para sua obtenção

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150822A (ja) * 1989-11-07 1991-06-27 Nippon Chemicon Corp 電解コンデンサ用アルミニウム電極
JPH059790A (ja) * 1991-07-05 1993-01-19 Nippon Chemicon Corp 表面に金属酸化物を有する基材の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1219748A (en) * 1969-06-13 1971-01-20 Standard Telephones Cables Ltd Producing niobium or tantalum powder
US4084965A (en) * 1977-01-05 1978-04-18 Fansteel Inc. Columbium powder and method of making the same
US4190854A (en) * 1978-02-15 1980-02-26 National Semiconductor Corporation Trim structure for integrated capacitors
US4536414A (en) * 1983-01-17 1985-08-20 Sperry Corporation Superconductive tunnel junction device with enhanced characteristics and method of manufacture
JPS60121207A (ja) * 1983-12-01 1985-06-28 Toyo Soda Mfg Co Ltd 超微粒子の製造方法
JPH01167206A (ja) * 1987-12-22 1989-06-30 Kobe Steel Ltd ニオブ窒化物の製造方法
DE3820960A1 (de) * 1988-06-22 1989-12-28 Starck Hermann C Fa Feinkoernige hochreine erdsaeuremetallpulver, verfahren zu ihrer herstellung sowie deren verwendung
JPH0477304A (ja) * 1990-07-16 1992-03-11 Mitsue Koizumi NbN超電導材料の作製方法
US5448447A (en) 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
JP3150822B2 (ja) 1993-04-30 2001-03-26 オークマ株式会社 リニアモータ
WO1997016245A1 (en) * 1995-10-31 1997-05-09 Tjt Technologies, Inc. High surface area mesoporous desigel materials and methods for their fabrication
JP3146962B2 (ja) * 1995-12-14 2001-03-19 日本電気株式会社 半導体記憶装置およびその製造方法
US6165623A (en) * 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
JP3254163B2 (ja) * 1997-02-28 2002-02-04 昭和電工株式会社 コンデンサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150822A (ja) * 1989-11-07 1991-06-27 Nippon Chemicon Corp 電解コンデンサ用アルミニウム電極
JPH059790A (ja) * 1991-07-05 1993-01-19 Nippon Chemicon Corp 表面に金属酸化物を有する基材の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215652B1 (en) * 1998-05-15 2001-04-10 Nec Corporation Solid electrolytic capacitor and manufacturing method thereof
EP1374262A4 (en) * 1999-02-08 2008-04-09 Starck H C Inc CAPACITOR SUBSTRATES MADE FROM REFRACTORY METAL NITRIDE
KR100799634B1 (ko) 1999-07-15 2008-01-30 쇼와 덴코 가부시키가이샤 니오브분, 니오브분 소결체 및 그것을 사용한 콘덴서
US6960237B2 (en) 1999-07-15 2005-11-01 Showa Denko Kabushiki Kaisha Niobium powder, sintered body thereof and capacitor using the same
US6600646B1 (en) * 1999-08-11 2003-07-29 Showa Denko Kabushiki Kaisha Niobium powder, sintered body thereof and capacitor using same
US6671164B2 (en) * 2000-04-24 2003-12-30 Showa Denko Kabushiki Kaisha Niobium powder, sintered body using the powder, and capacitor using the same
US6855184B2 (en) 2002-04-26 2005-02-15 Showa Denko K.K. Niobium powder, sintered body thereof and capacitor using the same
WO2003091466A1 (en) * 2002-04-26 2003-11-06 Showa Denko K.K. Niobium powder, sintered body thereof and capacitor using the same
US7099143B1 (en) 2005-05-24 2006-08-29 Avx Corporation Wet electrolytic capacitors
US8264819B2 (en) 2005-08-19 2012-09-11 Avx Corporation Polymer based solid state capacitors and a method of manufacturing them
US8114340B2 (en) 2005-09-02 2012-02-14 Avx Corporation Method of forming anode bodies for solid state capacitors
US7760487B2 (en) 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7760488B2 (en) 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7768773B2 (en) 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US7852615B2 (en) 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US8203827B2 (en) 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment

Also Published As

Publication number Publication date
CN1192404C (zh) 2005-03-09
US20020067586A1 (en) 2002-06-06
US20030026061A1 (en) 2003-02-06
EP0953847B1 (en) 2005-04-27
US7006343B2 (en) 2006-02-28
US20040202600A1 (en) 2004-10-14
US6347032B2 (en) 2002-02-12
US6856500B2 (en) 2005-02-15
EP0953847A4 (en) 2001-02-07
US6115235A (en) 2000-09-05
DE69829945T2 (de) 2006-03-23
JPH10242004A (ja) 1998-09-11
EP0953847A1 (en) 1999-11-03
JP3254163B2 (ja) 2002-02-04
HK1022948A1 (en) 2000-08-25
US20010024351A1 (en) 2001-09-27
DE69829945D1 (de) 2005-06-02
US6452777B1 (en) 2002-09-17
CN1224529A (zh) 1999-07-28

Similar Documents

Publication Publication Date Title
WO1998038660A1 (en) Capacitor
JP4420568B2 (ja) ニオブ粉、ニオブ焼結体、該焼結体を用いたコンデンサおよびそのコンデンサの製造方法
KR20060013645A (ko) 밸브 작용 금속 소결체, 그 제조방법 및 고체 전해 콘덴서
JP3296727B2 (ja) 固体電解コンデンサの製造方法
CA2360789C (en) Niobium capacitor and method of manufacture thereof
US7423863B2 (en) Sintered body electrode and solid electrolytic capacitor using the electrode
KR101132267B1 (ko) 콘덴서용 니오브 분말, 니오브 소결체 및 콘덴서
JP4527332B2 (ja) ニオブ粉、その焼結体およびそれを使用したコンデンサ
KR100603864B1 (ko) 토산금속의 합금으로 이루어진 금속박 및 이것을 구비한콘덴서
JP3624898B2 (ja) ニオブ粉、それを用いた焼結体及びそれを用いたコンデンサ
JP4263795B2 (ja) コンデンサ
JP4521849B2 (ja) コンデンサ用ニオブ粉と該ニオブ粉を用いた焼結体および該焼結体を用いたコンデンサ
RU2269835C2 (ru) Ниобий для изготовления конденсатора и конденсатор, изготовленный с использованием спеченного ниобиевого продукта
JP2000182899A (ja) コンデンサの製造方法
JP5020433B2 (ja) コンデンサ用ニオブ粉、焼結体及びその焼結体を用いたコンデンサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800504.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09171902

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1998966979

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998966979

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998966979

Country of ref document: EP