WO1998043689A1 - Intrakardiale pumpvorrichtung - Google Patents

Intrakardiale pumpvorrichtung Download PDF

Info

Publication number
WO1998043689A1
WO1998043689A1 PCT/EP1998/001868 EP9801868W WO9843689A1 WO 1998043689 A1 WO1998043689 A1 WO 1998043689A1 EP 9801868 W EP9801868 W EP 9801868W WO 9843689 A1 WO9843689 A1 WO 9843689A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
heart
pumps
pressure
volume flow
Prior art date
Application number
PCT/EP1998/001868
Other languages
English (en)
French (fr)
Inventor
Thorsten Siess
Original Assignee
Impella Cardiotechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/832,040 external-priority patent/US5911685A/en
Application filed by Impella Cardiotechnik Gmbh filed Critical Impella Cardiotechnik Gmbh
Priority to US09/194,725 priority Critical patent/US6139487A/en
Priority to CA002256432A priority patent/CA2256432A1/en
Priority to JP54115898A priority patent/JP4179635B2/ja
Priority to AT98921408T priority patent/ATE255430T1/de
Priority to EP98921408A priority patent/EP0925081B1/de
Priority to AU74280/98A priority patent/AU7428098A/en
Priority to BR9804832A priority patent/BR9804832A/pt
Priority to DE59810330T priority patent/DE59810330D1/de
Publication of WO1998043689A1 publication Critical patent/WO1998043689A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/13Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/414Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted by a rotating cable, e.g. for blood pumps mounted on a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/408Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable
    • A61M60/411Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor
    • A61M60/416Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being mechanical, e.g. transmitted by a shaft or cable generated by an electromotor transmitted directly by the motor rotor drive shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/531Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/585User interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/825Contact bearings, e.g. ball-and-cup or pivot bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/827Sealings between moving parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/827Sealings between moving parts
    • A61M60/829Sealings between moving parts having a purge fluid supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/833Occluders for preventing backflow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/861Connections or anchorings for connecting or anchoring pumps or pumping devices to parts of the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/88Percutaneous cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/08Insulating casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/124Sealing of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • H02K5/1285Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs of the submersible type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • H02K7/145Hand-held machine tool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/90Rotary blood pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49696Mounting

Definitions

  • the invention relates to an intracardiac pumping device with two pumps that can be inserted into the heart to support the natural pumping function of the heart or to replace it by continuous pumping.
  • a pump device for cardiac support is described in WO94 / 09835 (Jarvik).
  • This pump device has two independent pumps, each consisting of a pump part and a drive part rigidly connected to it.
  • the pump part of one pump is inserted into the left ventricle through an apecal surgical opening in such a way that it delivers from the left ventricle into the aorta.
  • the other pump part is inserted through a further surgical opening into the right ventricle in such a way that it delivers from the right ventricle into the pulmonary artery.
  • the system also includes a control and display module that is small enough to be sterilized and used in the sterile operating area.
  • the pumps referred to as cannula pumps can be equipped with built-in pressure sensors or volume flow measuring devices in order to carry out local measurements of these parameters as part of the patient management.
  • the present invention has for its object to provide an intracardiac pumping device with at least two pumps, in which effective cardiac support can be achieved with suitable measurement of the operating conditions of both pumps.
  • the intracardiac pumping device contains two pumps to be placed in the heart, each of which has a drive unit and a pump unit rigidly connected to it. Both pumps are operated in mutual dependency by a common control unit. According to the invention, the two pumps are not operated independently of one another, but in such a way that the parameters important for pump operation are matched to one another in both pumps. This avoids interfering operation of both pumps and also prevents unnatural pressure or suction conditions from occurring in the heart and peripheral organs.
  • Intracardially in the sense of the present invention includes the heart chambers (ventricles), the atria and the adjacent stumps.
  • An essential parameter of an intracardiac blood pump is the volume flow delivered per unit of time.
  • the controls of both pumps are coordinated so that the volume flows are in a predetermined relationship to each other. If one pump is used as a right-hand heart pump and the other as a left-hand heart pump, both pumps deliver in fluid systems which are arranged in series in the direction of flow, first flowing through the system for supplying the lungs which is in direct fluid communication with the right ventricle. After oxygenation of the blood in the lungs, the blood returns to the heart, namely in the left ventricle. Blood is pumped into the aorta from the left ventricle.
  • the amount of blood is reduced by about 10% due to branching and "leakage losses".
  • the volume flow of the right heart pump is smaller by a certain percentage, preferably about 10%, than that of the left heart pump. This fixed percentage is retained when the volume flow changes, ie the volume flows of both pumps change by the same percentage.
  • the common control unit for controlling both pumps can also consist of different control devices which communicate with one another, so that a change in the volume flow of one pump automatically leads to a corresponding change in the volume flow of the other pump.
  • Both pumps are preferably operated in master-slave control, with the left-hand heart pump normally functioning as the master.
  • the left heart pump is the one that has to cope with the greatest flow rate against the highest back pressure and is therefore the most stressed.
  • Both pumps can be designed identically to one another and thus have the same designs and performance characteristics.
  • the pumps are preferably designed as intravascular pumps, as are described in (not previously published) WO97 / 37696.
  • Such an intravascular blood pump is connected to a catheter. It has such small dimensions that it can be pushed through a blood vessel to the place of use or can also be operated in the blood vessel.
  • the pump part and the drive part have essentially the same diameter, which is not larger than about 5-7 mm, since the vessel width in the regions of the body edge is at most slightly more than 7 mm.
  • the rigid length of such a pump must not be more than about 35 mm for the pump to pass through the bends of blood vessels.
  • the pump can also be extended with a flexible hose that increases the effective length of the pump.
  • the pumps are so small that they can fit into the heart, including the atria and the adjacent stumps, and can be operated in the heart without parts of the pump protruding from the heart.
  • the catheters are connected, which are connected to the pumps. These catheters contain not only the lines for supplying electrical energy to the pumps, but also the signal lines that lead from the sensors provided on the pumps to the extra-corporeal control unit.
  • FIG. 1 shows a schematic longitudinal section through an embodiment of an intracardiac blood pump
  • FIG 3 shows an exemplary embodiment of the use of two pumps which are surgically introduced into the heart through the blood vessel walls
  • FIG. 5 shows a diagram to illustrate the dependence of the volume flow on the pressure difference between the suction side and the pressure side of a pump
  • Fig. 6 is a block diagram of the control of the two pumps and Fig. 7 is a diagram of the time course of various pressures in the heart.
  • FIG. 1 shows an intravascular blood pump 10, that is to say a blood pump which can be pushed through a patient's blood vessel system in order to penetrate into the heart.
  • the outside diameter of such a blood pump is nowhere larger than 7 mm.
  • the pump 10 has a drive part 11 and a pump part 12 rigidly connected thereto.
  • the drive part 11 has an elongated cylindrical housing 20 in which an electric motor 21 is housed. At the rear end, the housing 20 is closed with an end wall 22, to which a flexible catheter 14 connects in a sealing manner.
  • the electrical cables 23 for power supply and for controlling the electric motor 21 run through the catheter 14, as well as further cables 23 a, which are connected to sensors of the pump 10.
  • the stator 24 of the motor has in the usual way numerous windings arranged circumferentially distributed and a magnetic yoke in the longitudinal direction. It is firmly connected to the motor housing 20.
  • the stator 24 surrounds the rotor 26 connected to the motor shaft 25, which consists of permanent magnets magnetized in the effective direction.
  • the motor shaft is supported at the rear end with a bearing 27 in the motor housing or in the end wall 22.
  • the motor shaft extends through the entire length of the motor housing 20 and protrudes forwardly out of it.
  • the front end of the motor housing is formed by a tubular stationary hub part 30, which sits with its rear end in a projection 20 a of reduced diameter of the housing 20.
  • the outer diameter of the hub part tapers towards the front end, where there is a bearing 33 for mounting the motor shaft 25.
  • This bearing is also designed as a shaft seal.
  • the motor shaft 25 projects forward from the hub part 30 and there carries an impeller 34 with a hub 35 seated on the shaft end and projecting vanes 36 or pump blades, which are inclined with respect to the axis of the impeller 34.
  • the impeller 34 is contained in a cylindrical pump housing 32, which is connected to the motor housing 20 by three circumferentially distributed webs 38.
  • the motor housing 20 and the pump housing 32 are rigidly connected to one another by a ring 39 and have the same outside diameter. At no point is the diameter of the pump 10 greater than this outside diameter.
  • FIG. 2 shows an embodiment of the use of two generally identical pumps 10a, 10b, which are designed according to FIG. 1, in a heart, for heart support or as a replacement for the heart pump function when the heart is stopped.
  • Both pumps 10a, 10b are each connected to a catheter 14a, 14b. They have been laid percutaneously, the catheter 14a of the left-heart pump 10a running through the aorta 40 and a tube 13 extending the pump 10a being advanced through the aortic valve 41 into the left ventricle 42.
  • the pump part 12 is extended with the flexible hose 13 connected to the pump housing 32, which has openings for the blood access to the pump 10a at its end and / or in its side wall.
  • the pump 10a draws in through the tube 13 and conveys the blood into the aorta 40, while the aortic valve 41 lies against the pump housing 32 or the tube 13 from the outside. In the left ventricle 42, the pump 10a is thus operated as a left-heart pump with axial suction.
  • the other pump 10b is operated as a right heart pump in fluid communication with the right ventricle 43.
  • the catheter 14b leads through the upper or the lower vena cava 44 into the right atrium 45.
  • the tube 13 of the pump 10b projects through the tricuspid valve 43a and the pulmonary valve 46 into the pulmonary artery 47, from which the blood for oxygenation to lung 48 flows.
  • the oxygenated blood then flows into the left atrium 49 and from there into the left ventricle 42.
  • the pump 10b sucks through the radial inlet 50 and conveys the blood axially through the tube 13 into the pulmonary artery 47.
  • the pump 10b is therefore operated inversely to the pump 10a.
  • Both pumps 10a, 10b are inserted into the heart without one of the ventricles having to be opened surgically.
  • FIG. 3 shows another possibility of placing two pumps in the heart, with the ability to support the heart or also to replace the entire pumping function of the heart.
  • both pumps 10a, 10b have been surgically implanted into the heart by incisions of the vascular system, the catheter 14a of the left-heart pump 10a passing through the aortic wall 52, while the catheter 14b of the right-heart pump 10b at 53 the wall of the pulmonary artery 47 passes through.
  • the tube 13 of the left-heart pump 10 a is arranged in the left ventricle 42 and is enclosed distally by the outlet opening 51 by the aortic valve 41.
  • the tube 13 of the right heart pump 10b is arranged in the right ventricle 43 and enclosed by the pulmonary valve 46.
  • Both pumps 10a, 10b are operated in such a way that they suck through their hoses 13 and discharge through the outlet openings 50 and 51.
  • a first pressure sensor 60 is provided on the outer surface of the drive unit 11, which is arranged near the radial opening 51, while a second pressure sensor 61 is arranged near the inlet of the pump housing.
  • the lines 23a of the sensors are integrated in the components of the pump and run together with the supply lines 23 through the catheter 14.
  • the pressure sensor 60 has its sensor surface on the outside of the motor housing.
  • the sensor surface of the pressure sensor 61 is located on the inside of the hose 13.
  • a temperature sensor can be attached to the drive part, which monitors the engine temperature.
  • a first pressure sensor 62 is also arranged on the outside of the motor housing and a further pressure sensor 63 on the inside of the hose 13. The lines of these sensors also lead through the catheter 14.
  • An oxygen sensor 64 is attached to the catheter 14 and provides information about the oxygen saturation of the blood.
  • the supply lines 23 and the lines 23a are connected to an extracorporeal interface 65.
  • This supplies the signals from the sensors to a control unit 66, which evaluates these signals and controls the pumps 10a, 10b as a function thereof.
  • a keyboard and display device 67 is connected to the control unit 66 in order to be able to enter and display information.
  • the position of a pump in relation to a external enclosure such as a heart valve
  • a pressure difference occurs on the pressure sensors because of the different pressure conditions.
  • the heart beats this pressure difference also varies over time.
  • the same pressure readings are an indication of incorrect pump placement, since both pressure sensors then measure the same pressure.
  • the evaluation of the data supplied by the two pressure sensors taking into account the motor current, provides important information about the arrangement and operation of a pump. By comparing the pressure difference with the current motor current, it is also possible to determine blockages or cavitation.
  • the information about the inlet and outlet pressure of the pump together with the energy consumption of the electric motor provides important information about the function of the pump device. It also provides real-time information on the volume flow and enables the pump to be placed without X-ray or ultrasound control. In addition, real-time monitoring of disabled inlet flow can take place, such as is caused, for example, by collapse of the ventricle, thrombus formation, occlusion of the tube or suction of cardiac tissue. The sensors also provide the ability to monitor bearing wear or engine failure, or to predict such events. Furthermore, the operation of the pump with acceptable total hemolysis rates over the required period of use and with the required volume flow of 3.5 to 5 1 / min. be maintained.
  • the control unit 66 controls the two pumps 10a, 10b in such a way that each of the two pumps delivers a specific volume flow (blood volume per unit of time).
  • the right-heart pump 10b pumps a certain percentage of the volume flow of the left-heart pump 10a, for example 90%.
  • the volume flow of the right heart pump is always smaller than that of the left heart pump.
  • the pump output of the left-heart pump 10a is controlled in such a way that a certain desired volume flow is maintained.
  • the pump output of the right-heart pump 10b is then determined. This is a master-slave operation, in which the left-heart pump 10a is usually the master and the right-heart pump 10b is the slave.
  • the pumps are driven by synchronous motors, the control unit 66 supplying the required drive frequency or speed n.
  • the volume flow of each pump depends on the speed n.
  • Fig. 5 shows the volume flow V of a pump as a function of the pressure difference ⁇ P between the suction side and the pressure side of the pump in each case for different speeds n.
  • Each of the parallel straight lines relates to a specific speed n. It can be seen that from the pressure difference ⁇ P the Volume flow V can be determined if the speed n is known.
  • the motor 21 is an electronically commutated synchronous motor. Since the speed is specified by the control unit, the speed is known.
  • the pressure difference ⁇ P is determined with the sensors 60 and 61 or 62 and 63. In addition, of course, the absolute values of the pressures are measured and evaluated.
  • the pressure at the hose-side pressure sensor 61 or 63 is greater than at the suction-side pressure sensor 60 or 62.
  • the pump pumps in the opposite direction, ie if it sucks through the hose 13, the pressure at the pressure sensor 60 or 62 is higher than that at the pressure sensor 61 or 63.
  • the diagram shown in FIG. 6 illustrates the determination of the volume flows VI and V2.
  • the pressure difference ⁇ P1 on the first pump and the pressure difference ⁇ P2 on the second pump are measured.
  • the speed n1 of the pump 10a and also the pressure difference ⁇ P1 are fed to a first evaluation device 70.
  • the speed n2 of the second pump 10b and the pressure difference ⁇ P2 on this second pump are fed to a second evaluation device 71.
  • the evaluation devices 70, 71 then deliver on the basis of the 5 the volume flows VI and V2 of the first and second pumps to the control device 72, which then fixes the speeds nl and n2 in such a way that the volume flows VI and V2 assume predetermined values.
  • the volumetric flows for the two pumps are mutually dependent so that the volumetric flow V2 is 90% of the volumetric flow of VI.
  • the compliance and regulation of the volume flows is independent for both pumps.
  • the pressure sensors deliver abnormal values. Then the pump in question is reduced in speed for a time so that the heart tissue can loosen, and then increased again to the desired speed. If the measured absolute pressure becomes too high, the control unit 66 limits - and possibly reduces - the volume flow so as not to damage subsequent organs (lungs).
  • a pressure monitor function also takes place through the pressure measurement.
  • the pressure in the right ventricle or in the pulmonary artery must not exceed a certain value and the pressure in the left ventricle or in the aorta must not fall below a certain pressure. If corresponding pressure deviations are found, an alarm is given or readjusted.
  • Fig. 7 the pressure course pl in the left ventricle of the beating heart with the systoles S and the dia- stolen D shown.
  • a strongly pulsating pressure can be seen which drops sharply between the systoles S.
  • the pressure curve p2 in the aorta is also shown.
  • Aortic pressure also pulsates, but in a much narrower pressure range.
  • the pressure difference ⁇ P is determined as p2 - pl. This pressure difference can be determined using the pressure sensors provided on the pumps.
  • the sensors 61-63 described so far are absolute pressure sensors.
  • a differential pressure sensor in the form of a membrane on the pump housing 32 which is acted upon by a different pressure on its inside than on its outside. In this way, the pressure difference can be determined with a single sensor.
  • Measuring the pressures and pressure differences is particularly important for inserting the pump into the correct position in the heart.
  • the insertion can be done in such a way that the pump is stopped or running at a low speed while the heart is beating. If one pressure sensor detects the strongly pulsating pressure curve pl and the other detects the less pulsating pressure curve p2, the pump is placed correctly.
  • a pressure measurement is not required for placement. Rather, the placement can also be monitored based on the current profile of the pump. As long as the inlet and outlet of a pump are in the same room, both are exposed to the same pressure. If the pump is driven at a certain speed, so the time course of the pump current is constant. If, on the other hand, the outlet and inlet of the pump are located in different rooms with varying pressure curves over time, the pump flow is not smooth and pulsates. The pump current can thus be used to determine whether the heart valve properly encloses the pump housing or the hose, so that the inlet of the pump is in the ventricle or atrium and the outlet is in the aorta or pulmonary artery.

Abstract

Die Pumpvorrichtung weist eine erste Pumpe (10a) auf, die mit ihrer Saugseite in den linken Ventrikel (42) des Herzens eingeführt werden kann, während sie mit ihrer Druckseite in der Aorta (40) liegt, und eine zweite Pumpe (10b), die mit ihrer Saugseite im rechten Vorhof (43) angeordnet wird, während sie mit ihrer Druckseite in der Pulmonalarterie (47) liegt. Beide Pumpen (10a, 10b) sind von einer gemeinsamen Steuereinheit in gegenseitiger Abhängigkeit betrieben, wobei die erste Pumpe (10a) die Führungsfunktion übernimmt, während die zweite Pumpe (10b) nur etwa 90 % des Volumenstroms der ersten Pumpe (10a) pumpt. Drucksensoren an den Pumpen dienen zur Ermittlung der Druckdifferenz zwischen der Saugseite und der Druckseite einer Pumpe und zur Bestimmung des Volumenstromes. Beide Pumpen werden in das Herz eingeführt, ohne daß die Ventrikel geöffnet werden müssen.

Description

Intrakardiale Pumpyorrichtung
Die Erfindung betrifft eine intrakardiale Pumpvorrichtung mit zwei Pumpen, die in das Herz eingeführt werden können, um die natürliche Pumpfunktion des Herzens zu unterstützen oder durch kontinuierlichen Pumpbetrieb zu ersetzen.
Eine Pumpvorrichtung für die Herzunterstützung ist beschrieben in WO94/09835 (Jarvik) . Diese Pumpvorrichtung weist zwei voneinandner unabhängige Pumpen auf, die jeweils aus einem Pumpenteil und einem damit starr verbundenen Antriebsteil bestehen. Der Pumpenteil der einen Pumpe wird durch eine apekale Operationsöffnung hindurch derart in den linken Ventrikel eingeführt, daß er aus dem linken Ventrikel heraus in die Aorta fördert. Der andere Pumpenteil wird durch eine weitere Operationsöffnung hindurch in den rechten Ventrikel so eingeführt, daß er aus dem rechten Ventrikel in die Pulmonalarterie hineinfördert. Das System enthält weiterhin einen Kontroll- und Anzeigemodul, der klein genug ist, um sterilisiert und im sterilen Operationsbereich benutzt zu werden. Dieser kann einen Mikroprozessor mit Kontroll- und Überwachungsalgorithmen enthal- ten, um den Volumenstrom und Druck zu regulieren, oder um den Volumenstrom und Druck, die durch Sensoren gemessen oder durch Vergleich der Messungen von Geschwindigkeit und Energieaufnahme berechnet wurden, einer Datenbasis zuzuführen. Die als Kanülenpumpen bezeichneten Pumpen können mit eingebauten Drucksensoren oder Volumenstrommeßvorrichtungen ausgestattet sein, um örtliche Messungen dieser Parameter im Rahmen des Patientenmanagement durchzuführen.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine intrakardiale Pumpvorrichtung mit mindestens zwei Pumpen zu schaffen, bei der eine wirksame Herzunterstützung unter geeigneter Bemessung der Betriebsbedingungen beider Pumpen erzielbar ist.
Die erfindungsgemäße intrakardiale Pumpvorrichtung enthält zwei im Herzen zu plazierende Pumpen, von denen jede eine Antriebseinheit und eine damit starr verbundene Pumpeneinheit aufweist. Beide Pumpen sind von einer gemeinsamen Steuereinheit in gegenseitiger Abhängigkeit betrieben. Erfindungsgemäß werden die beiden Pumpen nicht unabhängig voneinander betrieben, sondern in der Weise, daß bei beiden Pumpen die für den Pumpenbetrieb wichtigen Parameter aufeinander abgestimmt sind. Dadurch wird ein interferierender Betrieb beider Pumpen vermieden und es wird auch verhindert, daß unnatürliche Druck- oder Saugverhältnisse im Herzen und den peripheren Organen auftreten können.
Intrakardial im Sinne der vorliegenden Erfindung umfaßt die Herzkammern (Ventrikel), die Vorhöfe und die angrenzenden Gefäßstümpfe . Ein wesentlicher Parameter einer intrakardialen Blutpumpe ist der pro Zeiteinheit geförderte Volumenstrom. Die Steuerungen beider Pumpen sind so aufeinander abgestimmt, daß die Volumenströme in einem vorbestimmten Verhältnis zueinander stehen. Wenn die eine Pumpe als Rechtsherzpumpe und die andere als Linksherz-Pumpe eingesetzt wird, fördern beide Pumpen in Fluidsysteme, die in Strömungsrichtung in Reihe hintereinander angeordnet sind, wobei zuerst das mit dem rechten Ventrikel in direkter Fluidkommunikation stehende System zur Versorgung der Lunge durchströmt wird. Nach Oxigenierung des Blutes in der Lunge kehrt das Blut zum Herzen zurück, und zwar in den linken Ventrikel. Vom linken Ventrikel wird das Blut in die Aorta gepumpt. Im peripheren Gefäßsystem reduziert sich die Blutmenge jedoch durch Verzweigungen und "Leckverluste" um etwa 10 %. Der Volumenstrom der Rechtsherzpumpe ist um einen bestimmten Prozentsatz, vorzugsweise etwa 10 %, kleiner als derjenige der Linksherz-Pumpe . Dieser festgelegte Prozentsatz bleibt bei einer Änderung des Volumenstromes erhalten, d.h. die Volumenströme beider Pumpen ändern sich in gleichen prozentualen Ausmaßen.
Die gemeinsame Steuereinheit zur Steuerung beider Pumpen kann auch aus unterschiedlichen Steuereinrichtungen bestehen, die miteinander kommunizieren, so daß eine Änderung des Volumenstroms einer Pumpe automatisch zu einer entsprechenden Änderung des Volumenstromes der anderen Pumpe führt .
Vorzugsweise sind beide Pumpen in Master-Slave-Steue- rung betrieben, wobei normalerweise die Linksherz -Pumpe die Funktion des Masters hat. Die Linksherz -Pumpe ist diejenige, die die größte Fördermenge gegen den höchsten Gegendruck zu bewältigen hat und die daher am höchsten beansprucht wird.
Beide Pumpen können einander gleich ausgebildet sein und somit gleiche Bauformen und Leistungscharakteristiken haben .
Die Pumpen sind vorzugsweise als intravasale Pumpen ausgebildet, wie sie in der (nicht vorveröffentlichten) W097/37696 beschrieben sind. Eine solche intravasale Blutpumpe ist mit einem Katheter verbunden. Sie hat so geringe Abmessungen, daß sie durch ein Blutgefäß hindurch an den Einsatzort geschoben werden kann, oder auch im Blutgefäß betrieben werden kann. Bei einer solchen intravasalen Blutpumpe haben der Pumpenteil und der Antriebsteil im wesentlichen gleichen Durchmesser, der nicht größer ist als etwa 5 - 7 mm, da die Gefäßweite in den Körperrandbereichen maximal etwas mehr als 7 mm beträgt. Die rigide Länge einer solchen Pumpe darf nicht mehr als etwa 35 mm betragen, damit die Pumpe durch die Krümmungen von Blutgefäßen hindurchgeht. Allerdings kann die Pumpe zusätzlich mit einem flexiblen Schlauch verlängert sein, der die effektive Länge der Pumpe vergrößert .
Andererseits besteht die Möglichkeit, die Pumpe operativ über das herznahe Gefäßsystem in das Herz einzuführen. In jedem Fall sind die Pumpen so klein, daß sie in das Herz, einschließlich der Vorhöfe und der angrenzenden Gefäßstümpfe, hineinpassen und im Herzen betrieben werden können, ohne daß Teile der Pumpe aus dem Herzen herausragen. Aus dem Herzen oder den Blutgefäßen herausgeführt sind allenfalls die Katheter, die mit den Pumpen verbunden sind. Diese Katheter enthalten nicht nur die Leitungen zum Zuführen elektrischer Energie zu den Pumpen, sondern auch die Signalleitungen, die von den an den Pumpen vorgesehenen Sensoren zu der extra- korporalen Steuereinheit führen.
Im folgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die Zeichnungen näher erläutert .
Es zeigen:
Fig. 1 einen schematischen Längsschnitt durch eine Ausführungsform einer intrakardialen Blutpumpe,
Fig. 2 ein Ausführungsbeispiel der intrakardialen Anwendung zweier intravasaler Pumpen,
Fig. 3 ein Ausführungsbeispiel der Anwendung zweier durch die Blutgefäßwandungen hindurch operativ in das Herz eingeführter Pumpen,
Fig. 4 ein schematisches Diagramm zur Erläuterung des Betriebes der beiden Pumpen,
Fig. 5 ein Diagramm zur Verdeutlichung der Abhängigkeit des Volumenstromes von der Druckdifferenz zwischen der Saugseite und der Druckseite einer Pumpe ,
Fig. 6 ein Blockschaltbild der Steuerung der beiden Pumpen und Fig. 7 ein Diagramm des zeitlichen Verlaufs verschiedener Drücke im Herzen.
In Fig. 1 ist eine intravasale Blutpumpe 10 dargestellt, also eine Blutpumpe, die durch das Blutgefäßsystem eines Patienten geschoben werden kann, um bis in das Herz hinein vorzudringen. Der Außendurchmesser einer solchen Blutpumpe ist an keiner Stelle größer als 7 mm.
Die Pumpe 10 weist einen Antriebsteil 11 und einen damit starr verbundenen Pumpenteil 12 auf. Der Antriebsteil 11 weist ein langgestrecktes zylindrisches Gehäuse 20 auf, in dem ein Elektromotor 21 untergebracht ist. An dem rückwärtigen Ende ist das Gehäuse 20 mit einer Stirnwand 22 verschlossen, an die sich ein flexibler Katheter 14 abdichtend anschließt . Durch den Katheter 14 verlaufen die elektrischen Kabel 23 zur Stromversorgung und zur Steuerung des Elektromotors 21, und außerdem weitere Kabel 23a, die mit Sensoren der Pumpe 10 verbunden sind.
Der Stator 24 des Motors weist in üblicher Weise zahlreiche umfangsmäßig verteilt angeordnete Wicklungen sowie einen magnetischen Rückschluß in Längsrichtung auf. Er ist mit dem Motorgehäuse 20 fest verbunden. Der Stator 24 umgibt den mit der Motorwelle 25 verbundenen Rotor 26, der aus in Wirkrichtung magnetisierten Permanentmagneten besteht. Die Motorwelle ist am rückwärtigen Ende mit einem Lager 27 im Motorgehäuse bzw. in der Stirnwand 22 gelagert. Die Motorwelle erstreckt sich durch die gesamte Länge des Motorgehäuses 20 und ragt nach vorne aus diesem heraus . Den vorderen Abschluß des Motorgehäuses bildet ein rohrförmiges stationäres Nabenteil 30, das mit seinem rückwärtigen Ende in einem Ansatz 20a von verringertem Durchmesser des Gehäuses 20 sitzt. Der Außendurchmesser des Nabenteils verjüngt sich zum vorderen Ende hin, wo sich ein Lager 33 zur Lagerung der Motorwelle 25 befindet. Dieses Lager ist zugleich als Wellendichtung ausgebildet .
Die Motorwelle 25 steht aus dem Nabenteil 30 nach vorne vor und trägt dort ein Flügelrad 34 mit einer auf dem Wellenende sitzenden Nabe 35 und davon abstehenden Flügeln 36 oder Pumpenschaufeln, die in bezug auf die Achse des Flügelrades 34 schräggestellt sind. Das Flügelrad 34 ist in einem zylindrischen Pumpengehäuse 32 enthalten, das durch drei umfangsmäßig verteilte Stege 38 mit dem Motorgehäuse 20 verbunden ist. Das Motorgehäuse 20 und das Pumpengehäuse 32 sind durch einen Ring 39 starr miteinander verbunden und haben gleiche Außendurchmesser. Der Durchmesser der Pumpe 10 ist an keiner Stelle größer ist als dieser Außendurchmesser.
Bei einer Rotation des Flügelrades 34 wird Blut durch die Ansaugöffnung 37 des Pumpengehäuses 32 angesaugt und in axialer Richtung im Pumpengehäuse 32 nach hinten getrieben. Durch den ringförmigen Spalt zwischen dem Pumpengehäuse 32 und dem Motorgehäuse 20 strömt das Blut am Nabenteil 30 entlang nach außen, um weiter an dem Motorgehäuse 20 entlangzuströmen. Hierdurch wird der Abtransport der im Antrieb erzeugten Wärme sichergestellt, ohne daß es zur Blutschädigung durch zu hohe Oberflächentemperaturen (über 41 °C) auf dem Motorgehäuse 20 kommt. Es ist auch möglich, den Pumpenteil 12 für die umgekehrte Förderrichtung auszulegen, wobei das Blut an dem Motorgehäuse entlang angesaugt wird und aus der stirnseitigen Öffnung 37 axial austritt.
Fig. 2 zeigt ein Ausführungsbeispiel der Verwendung zweier generell einander gleicher Pumpen 10a, 10b, die gemäß Fig. 1 ausgebildet sind, in einem Herzen, zur Herzunterstützung oder als Ersatz für die Herzpumpfunktion bei stillgesetztem Herzen. Beide Pumpen 10a, 10b sind jeweils mit einem Katheter 14a, 14b verbunden. Sie sind percutan verlegt worden, wobei der Katheter 14a der Linksherz-Pumpe 10a durch die Aorta 40 verläuft und ein die Pumpe 10a verlängernder Schlauch 13 durch die Aortenklappe 41 in den linken Ventrikel 42 hinein vorgeschoben ist. Dabei ist der Pumpenteil 12 mit dem mit dem Pumpengehäuse 32 verbundenen flexiblen Schlauch 13 verlängert, der an seinem Ende und/oder in seiner Seitenwand Öffnungen für den Blutzutritt zur Pumpe 10a aufweist. Die Pumpe 10a saugt durch den Schlauch 13 an und fördert das Blut in die Aorta 40, während die Aortenklappe 41 sich von außen gegen das Pumpengehäuse 32 bzw. den Schlauch 13 legt. Im linken Ventrikel 42 wird somit die Pumpe 10a als Linksherz-Pumpe mit axialer Ansaugung betrieben.
Die andere Pumpe 10b wird als Rechtsherzpumpe in Fluid- kommunikation mit dem rechten Ventrikel 43 betrieben. Der Katheter 14b führt durch die obere oder die untere Hohlvene 44 hindurch in das rechte Atrium 45. Der Schlauch 13 der Pumpe 10b ragt durch die Tricuspidal- klappe 43a und die Pulmonalklappe 46 in die Pulmonalar- terie 47, von der das Blut zur Oxigenierung zur Lunge 48 fließt. Das oxigenierte Blut fließt dann in den linken Vorhof 49 und von dort in den linken Ventrikel 42.
Die Pumpe 10b saugt durch den radialen Einlaß 50 an und fördert das Blut durch den Schlauch 13 axial in die Pulmonalarterie 47 hinein. Die Pumpe 10b wird also in- vers zu der Pumpe 10a betrieben.
Beide Pumpen 10a, 10b werden in das Herz eingeführt, ohne daß einer der Ventrikel operativ geöffnet werden müßte .
Fig. 3 zeigt eine andere Möglichkeit der Plazierung zweier Pumpen im Herzen, mit der Fähigkeit einer Herz- unterstützung oder auch eines Ersatzes der gesamten Pumpfunktion des Herzens. Beide Pumpen 10a, 10b sind im Gegensatz zu Fig. 2 operativ durch Incisionen des Gefäßsystems in das Herz implantiert worden, wobei der Katheter 14a der Linksherz-Pumpe 10a durch die Aortenwand 52 hindurchgeht, während der Katheter 14b der Rechtsherz-Pumpe 10b bei 53 durch die Wand der Pulmonalarterie 47 hindurchgeht. Der Schlauch 13 der Linksherz-Pumpe 10a ist in dem linken Ventrikel 42 angeordnet und distal von der Auslaßöffnung 51 von der Aortenklappe 41 umschlossen. Der Schlauch 13 der Rechtsherz - Pumpe 10b ist im rechten Ventrikel 43 angeordnet und von der Pulmonalklappe 46 umschlossen. Beide Pumpen 10a, 10b werden so betrieben, daß sie durch ihre Schläuche 13 ansaugen und durch die Auslaßöffnungen 50 und 51 ausstoßen.
Fig. 4 zeigt eine schematische Darstellung der beiden Pumpen 10a, 10b der vorherigen Ausführungsbeispiele mit verschiedenen Sensoren. Im einzelnen ist an der Außenfläche der Antriebseinheit 11 ein erster Drucksensor 60 vorgesehen, der nahe der radialen Öffnung 51 angeordnet ist, während ein zweiter Drucksensor 61 in der Nähe des Einlasses des Pumpengehäuses angeordnet ist. Die Leitungen 23a der Sensoren sind in die Komponenten der Pumpe integriert und verlaufen gemeinsam mit den Versorgungsleitungen 23 durch den Katheter 14. Der Drucksensor 60 hat seine Sensorfläche an der Außenseite des Motorgehäuses . Dagegen befindet sich die Sensorfläche des Drucksensors 61 an der Innenseite des Schlauchs 13. Ferner kann an dem Antriebsteil ein Temperatursensor angebracht sein, der die Motortemperatur überwacht.
Bei der Pumpe 10b ist ebenfalls ein erster Drucksensor 62 an der Außenseite des Motorgehäuses und ein weiterer Drucksensor 63 an der Innenseite des Schlauchs 13 angeordnet. Die Leitungen dieser Sensoren führen ebenfalls durch den Katheter 14 hindurch. Am Katheter 14 ist ein Sauerstoffsensor 64 angebracht, der Informationen über die SauerstoffSättigung des Blutes liefert.
Die Versorgungsleitungen 23 und die Leitungen 23a stehen mit einem extrakorporalen Interface 65 in Verbindung. Dieses liefert die Signale der Sensoren an eine Steuereinheit 66, die diese Signale auswertet und in Abhängigkeit davon die Pumpen 10a, 10b steuert. Eine Tastatur- und Anzeigevorrichtung 67 ist an die Steuereinheit 66 angeschlossen, um Informationen einzugeben und anzeigen zu können.
Mit den von den Sensoren gelieferten Informationen ist es möglich, die Position einer Pumpe in bezug auf ein externes Umschließungsteil, z.B. eine Herzklappe, festzustellen. Wenn sich Pumpeneinlaß und Pumpenauslaß auf unterschiedlichen Seiten des Umschließungsteils befinden, tritt an den Drucksensoren wegen der unterschiedlichen Druckzustände eine Druckdifferenz auf. Wenn das Herz schlägt, variiert diese Druckdifferenz auch zeitlich. Andererseits sind gleiche Druckmeßwerte ein Anzeichen für eine falsche Pumpenplazierung, da dann beide Drucksensoren denselben Druck messen. Die Auswertung der durch die beiden Drucksensoren gelieferten Daten unter Berücksichtigung des Motorstromes liefert wichtige Informationen über die Anordnung und Operation einer Pumpe. Durch Vergleichen der Druckdifferenz mit dem aktuellen Motorstrom ist es auch möglich, Blockadezustände oder Kavitation festzustellen.
Die Information über den Einlaß- und Auslaßdruck der Pumpe zusammen mit dem Energieverbrauch des Elektromotors liefert wichtige Aussagen über die Funktion der Pumpvorrichtung. Sie liefert auch eine Realzeitangabe über den Volumenstrom und ermöglicht eine Plazierung der Pumpe ohne Röntgenkontrolle oder Ultraschallkontrolle. Ferner kann eine Realzeitüberwachung behinderter Einlaßströmung erfolgen, wie sie z.B. durch Kollabieren des Ventrikels, Thrombenbildung, Okklusion des Schlauchs oder Ansaugen von Herzgewebe hervorgerufen wird. Die Sensoren bieten auch die Möglichkeit, Lagerverschleiß oder Versagen des Motors zu überwachen oder solche Ereignisse vorauszusagen. Ferner kann der Betrieb der Pumpe mit akzeptablen Gesamthämolyseraten über den erforderlichen Benutzungszeitraum und mit dem erforderlichen Volumenstrom von 3,5 bis 5 1/min. aufrechterhalten werden. Die Leistungstrends verschiedener Parameter können über mehrere Betriebsstunden hinweg angezeigt und analysiert werden, wobei Alarmzustände, die ein unverzügliches Eingreifen erfordern, erkannt werden, ohne daß eine permanente Überwachung durch Personen erforderlich ist. Ferner kann das Herz eines Patienten überwacht werden, ohne daß die Pumpe entfernt wird. Mit der Plazierung zweier instrumentierter Pumpen ist es möglich, der Steuereinheit die von einer Pumpe gelieferten örtlichen Informationen zu liefern, um den Betrieb der anderen Pumpe zu steuern und dabei die Leistungsfähigkeit des Systems als Ganzes zu optimieren.
Die Steuereinheit 66 steuert die beiden Pumpen 10a, 10b in der Weise, daß jede der beiden Pumpen einen bestimmten Volumenstrom (Blutvolumen pro Zeiteinheit) liefert. Dabei pumpt die Rechtsherz-Pumpe 10b einen bestimmten prozentualen Anteil des Volumenstroms der Linksherz - Pumpe 10a, beispielsweise 90 %. Der Volumenstrom der Rechtsherz-Pumpe ist immer kleiner als derjenige der Linksherz-Pumpe . Primär wird die Pumpenleistung der Linksherz-Pumpe 10a derart geregelt, daß ein bestimmter gewünschter Volumenstrom aufrechterhalten wird. In Abhängigkeit hiervon wird anschließend die Pumpenleistung der Rechtsherz-Pumpe 10b bestimmt. Hierbei handelt es sich um einen Master-Slave-Betrieb, bei dem in der Regel die Linksherz-Pumpe 10a der Master und die Rechtsherz-Pumpe 10b der Slave ist.
Die Pumpen werden von Synchronmotoren angetrieben, wobei die Steuereinheit 66 die erforderliche Antriebsfrequenz oder Drehzahl n liefert. Der Volumenstrom jeder Pumpe hängt von der Drehzahl n ab. Fig. 5 zeigt den Volumenstrom V einer Pumpe in Abhängigkeit von der Druckdifferenz ΔP zwischen der Saugseite und der Druckseite der Pumpe jeweils für unterschiedliche Drehzahlen n. Jede der parallelen Geraden bezieht sich auf eine bestimmte Drehzahl n. Man erkennt, daß aus der Druckdifferenz ΔP der Volumenstrom V ermittelt werden kann, wenn die Drehzahl n bekannt ist. Der Motor 21 ist ein elektronisch kommutierter Synchronmotor. Da die Drehzahl von der Steuereinheit vorgegeben wird, ist die Drehzahl bekannt. Die Druckdifferenz ΔP wird mit den Sensoren 60 und 61 bzw. 62 und 63 ermittelt. Außerdem werden natürlich auch die Absolutwerte der Drücke gemessen und ausgewertet .
Wenn eine Pumpe durch die radiale Ansaugöffnung 50 bzw. 51 ansaugt und in den Schlauch 13 hinein fördert, ist der Druck an dem schlauchseitigen Drucksensor 61 bzw. 63 größer als an dem saugseitigen Drucksensor 60 bzw. 62. Fördert die Pumpe dagegen in umgekehrter Richtung, d.h. saugt sie durch den Schlauch 13 an, so ist der Druck an dem Drucksensor 60 bzw. 62 höher als derjenige an dem Drucksensor 61 bzw. 63.
Das in Fig. 6 dargestellte Diagramm verdeutlicht die Ermittlung der Volumenströme VI und V2. Es wird die Druckdifferenz ΔP1 an der ersten Pumpe und die Druckdifferenz ΔP2 an der zweiten Pumpe gemessen. Einer ersten Auswerteeinrichtung 70 wird die Drehzahl nl der Pumpe 10a und außerdem die Druckdifferenz ΔP1 zugeführt. Einer zweiten Auswerteeinrichtung 71 wird die Drehzahl n2 der zweiten Pumpe 10b und die Druckdifferenz ΔP2 an dieser zweiten Pumpe zugeführt. Die Aus- werteeinrichtungen 70,71 liefern daraufhin anhand des Diagramms von Fig. 5 die Volumenströme VI und V2 der ersten und der zweiten Pumpe an die Steuereinrichtung 72, die daraufhin die Drehzahlen nl und n2 derart festsetzt, daß die Volumenströme VI und V2 vorbestimmte Werte annehmen. Bei dem beschriebenen Beispiel werden die Volumenströme für die beiden Pumpen in gegenseitiger Abhängigkeit so festgelegt, daß der Volumenstrom V2 90 % des Volumenstroms von VI beträgt. Die Einhaltung bzw. Regelung der Volumenströme erfolgt für beide Pumpen jeweils unabhängig.
Es kann vorkommen, daß eine der Pumpen durch Ansaugen am Herzgewebe oder am Klappenapparat ganz oder teilweise okkludiert wird. In diesem Fall liefern die Drucksensoren abnormale Werte. Dann wird die betreffende Pumpe für eine Zeit in der Drehzahl reduziert, so daß sich das Herzgewebe lösen kann, und anschließend wieder auf die gewünschte Drehzahl erhöht . Wenn der gemessene Absolutdruck zu groß wird, führt die Steuereinheit 66 eine Begrenzung - und ggf. eine Herabsetzung - des Volumenstromes durch, um nachfolgende Organe (Lunge) nicht zu schädigen.
Durch die Druckmessung erfolgt auch eine Wächterfunktion. Der Druck im rechten Ventrikel bzw. in der Pulmo- nalarterie darf einen bestimmten Wert nicht überschreiten und der Druck im linken Ventrikel bzw. in der Aorta darf einen bestimmten Druck nicht unterschreiten. Werden entsprechende Druckabweichungen festgestellt, wird Alarm gegeben oder nachgeregelt.
In Fig. 7 ist der Druckverlauf pl im linken Ventrikel des schlagenden Herzens mit den Systolen S und den Dia- stolen D dargestellt. Man erkennt einen stark pulsierenden Druck, der zwischen den Systolen S stark abfällt. Außerdem ist der Druckverlauf p2 in der Aorta dargestellt. Der Aortendruck pulsiert zwar auch, jedoch in einem viel engeren Druckbereich. Die Druckdifferenz ΔP bestimmt sich zu p2 - pl . Diese Druckdifferenz kann mit den an den Pumpen vorgesehenen Drucksensoren bestimmt werden.
Die bisher beschriebenen Sensoren 61-63 sind Absolutdrucksensoren. Es besteht auch die Möglichkeit, an dem Pumpengehäuse 32 einen Differenzdrucksensor in Form einer Membran vorzusehen, die an ihrer Innenseite mit einem anderen Druck beaufschlagt wird als an ihrer Außenseite. Auf diese Art kann die Druckdifferenz jeweils mit einem einzigen Sensor ermittelt werden.
Die Messung der Drücke und Druckdifferenzen ist insbesondere auch für das Einführen der Pumpe in die richtige Position im Herzen wichtig. Das Einführen kann in der Weise geschehen, daß die Pumpe stillgesetzt ist oder mit einer geringen Drehzahl läuft, während das Herz schlägt. Wenn der eine Drucksensor den stark pulsierenden Druckverlauf pl und der andere den weniger stark pulsierenden Druckverlauf p2 feststellt, ist die Pumpe korrekt plaziert.
Zur Plazierung ist eine Druckmessung jedoch nicht erforderlich. Vielmehr kann die Plazierung auch anhand des Stromverlaufs der Pumpe überwacht werden. Solange sich Einlaß und Auslaß einer Pumpe in demselben Raum befinden, sind beide demselben Druck ausgesetzt. Wird die Pumpe mit einer bestimmten Drehzahl angetrieben, so ist der zeitliche Verlauf des Pumpenstromes konstan . Befinden sich dagegen Auslaß und Einlaß der Pumpe in unterschiedlichen Räumen mit variierenden zeitlichen Druckverläufen, ergibt sich ein nicht glatter pulsierender Pumpenstrom. Anhand des Pumpenstroms kann somit festgestellt werden, ob die Herzklappe das Pumpengehäuse bzw. den Schlauch ordnungsgemäß umschließt, so daß der Einlaß der Pumpe sich in dem Ventrikel bzw. Vorhof und der Auslaß in der Aorta bzw. der Pulmonalarterie befindet .

Claims

PATENTANSPRUCHE
1. Intrakardiale Pumpvorrichtung mit zwei im Herzen zu plazierenden Pumpen (10a, 10b), von denen jede eine Antriebseinheit (11) und eine starr damit verbundene Pumpeneinheit (12) aufweist,
d a d u r c h g e k e n n z e i c h n e t ,
daß beide Pumpen (10a, 10b) von einer gemeinsamen Steuereinheit (66) in gegenseitiger Abhängigkeit betrieben sind.
2. Pumpvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß eine Pumpe (10a) eine für den rechten Ventrikel (43) bestimmte Rechtsherz-Pumpe und die andere Pumpe (10b) eine für den linken Ventrikel (42) bestimmte Linksherz-Pumpe ist, und daß die Volumenströme beider Pumpen von der gemeinsamen Steuereinheit derart gesteuert sind, daß der Volumenstrom der Linksherz-Pumpe (10b) größer ist als derjenige der Rechtsherz-Pumpe (10a) .
3. Pumpvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der Volumenstrom der Linksherz -Pumpe (10b) um einen bestimmten Prozentsatz, vorzugsweise etwa 10 %, größer ist als derjenige der Rechtsherz-Pumpe (10a) .
4. Pumpvorrichtung nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß für jede Pumpe (10a, 10b) eine Volumenstrom-Meßeinrichtung zur Ermittlung des Volumenstromes (V) dieser Pumpe vorgesehen ist, die mit der Steuereinheit (66) kommuniziert.
5. Pumpvorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Volumenstrom-Meßeinrichtung mindestens eine Differenzdruck-Meßeinrichtung aufweist, die die Druckdifferenz (ΔP1,ΔP2) zwischen der Saugseite der Pumpe und der Druckseite ermittelt, und daß eine Einrichtung vorgesehen ist, die aus der Druckdifferenz (ΔP1,ΔP2) und der Drehzahl der Pumpe den Volumenstrom (V) bestimmt .
6. Pumpvorrichtung nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß die Pumpen (10a, 10b) jeweils einen mit Wechselstrom von steuerbarer Frequenz betriebenen Elektromotor enthalten.
7. Pumpvorrichtung nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß an jeder Pumpe (10a, 10b) mindestens ein Absolutdrucksensor (60 , 61 ; 62 , 63 ) vorgesehen ist, der im Falle eines zu großen oder zu niedrigen Druckes eine Verminderung bzw. Erhöhung des Volumenstromes veranlaßt .
8. Pumpvorrichtung nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß die Pumpen (10a, 10b) in Master-Slave-Steuerung betrieben sind, wobei die Linksherz -Pumpe (10a) die Funktion des Masters hat und die Rechtsherz-Pumpe (10b) nachgeführt ist.
9. Pumpvorrichtung nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß eine Einrichtung vorge- sehen ist, die von beiden Pumpen (10a, 10b) diejenige ermittelt, die bei dem jeweiligen Betrieb die förderschwächere ist, und dieser die Master-Funktion zuweist.
10. Pumpvorrichtung nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß mindestens ein Parameter mindestens einer Pumpe (10a, 10b) gemessen und auf einen Sollwert geregelt wird.
11. Pumpvorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß der Parameter die Druckdifferenz zwischen der Saugseite und der Druckseite der Pumpe ist.
PCT/EP1998/001868 1997-04-02 1998-03-31 Intrakardiale pumpvorrichtung WO1998043689A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US09/194,725 US6139487A (en) 1997-04-02 1998-03-31 Intracardiac pump device
CA002256432A CA2256432A1 (en) 1997-04-02 1998-03-31 Intracardiac pump device
JP54115898A JP4179635B2 (ja) 1997-04-02 1998-03-31 心臓内ポンプ装置
AT98921408T ATE255430T1 (de) 1997-04-02 1998-03-31 Intrakardiale pumpvorrichtung
EP98921408A EP0925081B1 (de) 1997-04-02 1998-03-31 Intrakardiale pumpvorrichtung
AU74280/98A AU7428098A (en) 1997-04-02 1998-03-31 Intracardiac pump device
BR9804832A BR9804832A (pt) 1997-04-02 1998-03-31 Dispositivo de bombeamento intracard¡aco
DE59810330T DE59810330D1 (de) 1997-04-02 1998-03-31 Intrakardiale pumpvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/832,040 US5911685A (en) 1996-04-03 1997-04-02 Method and apparatus for cardiac blood flow assistance
US08/832,040 1997-04-02

Publications (1)

Publication Number Publication Date
WO1998043689A1 true WO1998043689A1 (de) 1998-10-08

Family

ID=25260507

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP1998/001867 WO1998044619A1 (de) 1997-04-02 1998-03-31 Verfahren zur herstellung eines mikromotors
PCT/EP1998/001866 WO1998043688A1 (de) 1997-04-02 1998-03-31 Intrakardiale blutpumpe
PCT/EP1998/001868 WO1998043689A1 (de) 1997-04-02 1998-03-31 Intrakardiale pumpvorrichtung

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/EP1998/001867 WO1998044619A1 (de) 1997-04-02 1998-03-31 Verfahren zur herstellung eines mikromotors
PCT/EP1998/001866 WO1998043688A1 (de) 1997-04-02 1998-03-31 Intrakardiale blutpumpe

Country Status (11)

Country Link
US (3) US5964694A (de)
EP (3) EP0925081B1 (de)
JP (3) JP4179634B2 (de)
CN (1) CN1222863A (de)
AT (2) ATE400917T1 (de)
AU (3) AU7428098A (de)
BR (2) BR9804832A (de)
CA (3) CA2256423A1 (de)
DE (3) DE59810330D1 (de)
IL (1) IL127248A0 (de)
WO (3) WO1998044619A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011388A2 (de) 2001-07-27 2003-02-13 Impella Cardiotechnik Ag Neurostimulationseinheit zur immobilisation des herzens während kardiochirurgischer operationen
JP2003508161A (ja) * 1999-09-03 2003-03-04 エイ−メド システムズ, インコーポレイテッド ガイド可能血管内血液ポンプおよび関連する方法

Families Citing this family (249)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810836A (en) * 1996-03-04 1998-09-22 Myocardial Stents, Inc. Device and method for trans myocardial revascularization (TMR)
DE19613564C1 (de) 1996-04-04 1998-01-08 Guenter Prof Dr Rau Intravasale Blutpumpe
US5964694A (en) * 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US6610004B2 (en) 1997-10-09 2003-08-26 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6889082B2 (en) 1997-10-09 2005-05-03 Orqis Medical Corporation Implantable heart assist system and method of applying same
US6176822B1 (en) 1998-03-31 2001-01-23 Impella Cardiotechnik Gmbh Intracardiac blood pump
US6135943A (en) * 1998-08-07 2000-10-24 Cardiac Assist Technologies, Inc. Non-invasive flow indicator for a rotary blood pump
DE29821564U1 (de) * 1998-12-02 2000-07-13 Impella Cardiotech Ag Fluidgekühlter Elektromotor mit hoher Leistungsdichte
EP1416163B1 (de) * 1999-04-20 2014-04-09 Berlin Heart GmbH Kreiselpumpe mit Auswaschung der Fugenspalte
US20050119599A1 (en) * 1999-05-18 2005-06-02 A-Med Systems, Inc. Supplemental port for catheter perfusion of surgical site and methods of use
US6346071B1 (en) * 1999-07-16 2002-02-12 World Heart Corporation Inflow conduit assembly for a ventricular assist device
US6344022B1 (en) 1999-07-19 2002-02-05 Robert Jarvik Right ventricular bypass devices and methods of their use during heart surgery
US7022100B1 (en) 1999-09-03 2006-04-04 A-Med Systems, Inc. Guidable intravascular blood pump and related methods
DE29921352U1 (de) 1999-12-04 2001-04-12 Impella Cardiotech Ag Intravasale Blutpumpe
US6471979B2 (en) 1999-12-29 2002-10-29 Estrogen Vascular Technology, Llc Apparatus and method for delivering compounds to a living organism
DE10016422B4 (de) * 2000-04-01 2013-10-31 Impella Cardiosystems Ag Parakardiale Blutpumpe
US6435832B1 (en) 2000-04-27 2002-08-20 Chemineer, Inc. Hub assembly
DE10040403A1 (de) * 2000-08-18 2002-02-28 Impella Cardiotech Ag Intrakardiale Blutpumpe
DE10058669B4 (de) 2000-11-25 2004-05-06 Impella Cardiotechnik Ag Mikromotor
DE10060275A1 (de) 2000-12-05 2002-06-13 Impella Cardiotech Ag Verfahren zum Kalibrieren eines Drucksensors oder eines Flussensors an einer Rotationspumpe
US7814641B2 (en) 2001-01-09 2010-10-19 Black & Decker Inc. Method of forming a power tool
US20020089240A1 (en) 2001-01-09 2002-07-11 Du Hung T. Electric motor having armature coated with a thermally conductive plastic
US7096566B2 (en) 2001-01-09 2006-08-29 Black & Decker Inc. Method for making an encapsulated coil structure
US20040054364A1 (en) * 2002-02-08 2004-03-18 Ernest Aranyi Ultrasonic surgical instrument
DE10108813A1 (de) * 2001-02-16 2002-09-05 Berlin Heart Ag Kanülenverbinder zur Kopplung eines Blutpumpenausganges mit einer Auslaßkanüle
DE10119691A1 (de) * 2001-04-20 2002-11-21 Deutsch Zentr Luft & Raumfahrt System zum Unterstützen des linken Herzventrikels
US20020173695A1 (en) * 2001-05-16 2002-11-21 Mikhail Skliar Physiologically-based control system and method for using the same
AU2002331563A1 (en) * 2001-08-16 2003-03-03 Apex Medical, Inc. Physiological heart pump control
US6746416B2 (en) 2001-12-05 2004-06-08 Spin Corporation Duplex blood pump for heart surgery
WO2003105669A2 (en) * 2002-06-14 2003-12-24 Michael Vollkron Method and system for detecting ventricular suction
US7396327B2 (en) * 2002-01-07 2008-07-08 Micromed Technology, Inc. Blood pump system and method of operation
US6756713B2 (en) 2002-02-07 2004-06-29 Ametek, Inc. Insulated stator core with attachment features
JP4373792B2 (ja) * 2002-02-11 2009-11-25 ゴールド−ティー テック インコーポレイテッド 血栓形成を予防する方法
US20050209687A1 (en) * 2002-02-19 2005-09-22 Bioartis, Inc. Artificial vessel scaffold and artifical organs therefrom
CA2374989A1 (en) * 2002-03-08 2003-09-08 Andre Garon Ventricular assist device comprising a dual inlet hybrid flow blood pump
US20050159639A1 (en) * 2002-05-15 2005-07-21 Mikhail Skliar Physiologically based control system and method for using the same
IL154531A (en) * 2003-02-19 2006-04-10 Yair Tal Method and system for regulating blood flow
DE20304533U1 (de) * 2003-03-21 2004-08-05 Impella Cardiosystems Ag Einführvorrichtung zum Einführen eines Gegenstandes in ein Körpergefäß
DE10336902C5 (de) * 2003-08-08 2019-04-25 Abiomed Europe Gmbh Intrakardiale Pumpvorrichtung
US7146706B2 (en) * 2003-09-05 2006-12-12 Black & Decker Inc. Method of making an electric motor
US20050189844A1 (en) * 2003-09-05 2005-09-01 Du Hung T. Field assemblies having pole pieces with dovetail features for attaching to a back iron piece(s) and methods of making same
US7205696B2 (en) * 2003-09-05 2007-04-17 Black & Decker Inc. Field assemblies having pole pieces with ends that decrease in width, and methods of making same
US7078843B2 (en) * 2003-09-05 2006-07-18 Black & Decker Inc. Field assemblies and methods of making same
US7211920B2 (en) * 2003-09-05 2007-05-01 Black & Decker Inc. Field assemblies having pole pieces with axial lengths less than an axial length of a back iron portion and methods of making same
US20060226729A1 (en) * 2003-09-05 2006-10-12 Du Hung T Field assemblies and methods of making same with field coils having multiple coils
WO2005028872A2 (en) 2003-09-18 2005-03-31 Myrakelle, Llc Rotary blood pump
US20050187425A1 (en) * 2004-01-14 2005-08-25 Scout Medical Technologies, Llc Left ventricular function assist system and method
ES2421526T3 (es) * 2004-08-13 2013-09-03 Delgado Reynolds M Iii Aparato para asistencia a largo plazo de un ventrículo izquierdo para bombear sangre
US7393181B2 (en) 2004-09-17 2008-07-01 The Penn State Research Foundation Expandable impeller pump
DE102004049986A1 (de) * 2004-10-14 2006-04-20 Impella Cardiosystems Gmbh Intrakardiale Blutpumpe
US20090226328A1 (en) * 2004-11-16 2009-09-10 Micromed Technology, Inc. Remote Data Monitor For Heart Pump System
US8419609B2 (en) 2005-10-05 2013-04-16 Heartware Inc. Impeller for a rotary ventricular assist device
US7699586B2 (en) * 2004-12-03 2010-04-20 Heartware, Inc. Wide blade, axial flow pump
US7972122B2 (en) * 2005-04-29 2011-07-05 Heartware, Inc. Multiple rotor, wide blade, axial flow pump
US7479102B2 (en) * 2005-02-28 2009-01-20 Robert Jarvik Minimally invasive transvalvular ventricular assist device
EP1856787B1 (de) * 2005-03-07 2017-06-14 Black & Decker Inc. Elektrowerkzeug mit einem motor mit mehrteiligem ständer
DE102005017546A1 (de) * 2005-04-16 2006-10-19 Impella Cardiosystems Gmbh Verfahren zur Steuerung einer Blutpumpe
DE102005022793B3 (de) * 2005-05-12 2006-06-29 Aktiebolaget Skf Lagerung eines Rotors und Verfahren zur Herstellung der Lagerung
US8177703B2 (en) 2005-06-06 2012-05-15 The Cleveland Clinic Foundation Blood pump
US9861729B2 (en) * 2005-06-08 2018-01-09 Reliant Heart Inc. Artificial heart system
US8672611B2 (en) 2006-01-13 2014-03-18 Heartware, Inc. Stabilizing drive for contactless rotary blood pump impeller
JP5155186B2 (ja) 2006-01-13 2013-02-27 ハートウェア、インコーポレイテッド 回転式血液ポンプ
CA2646277C (en) 2006-03-23 2016-01-12 The Penn State Research Foundation Heart assist device with expandable impeller pump
US20070231135A1 (en) 2006-03-31 2007-10-04 Orqis Medical Corporation Rotary Blood Pump
US7914436B1 (en) 2006-06-12 2011-03-29 Abiomed, Inc. Method and apparatus for pumping blood
US9028392B2 (en) * 2006-12-01 2015-05-12 NuCardia, Inc. Medical device
WO2008106103A2 (en) 2007-02-26 2008-09-04 Heartware, Inc. Intravascular ventricular assist device
AT504990B1 (de) 2007-02-27 2008-12-15 Miracor Medizintechnik Handels Katheter zur unterstützung der leistung eines herzens
DE102007014224A1 (de) 2007-03-24 2008-09-25 Abiomed Europe Gmbh Blutpumpe mit Mikromotor
DE102007014691A1 (de) * 2007-03-27 2008-10-02 Kaltenbach & Voigt Gmbh Elektromotor zur Verwendung in einem zahnärztlichen, zahnmedizinischen oder dentaltechnischen Handstück sowie Stator hierfür
US7828710B2 (en) * 2007-06-05 2010-11-09 Medical Value Partners, Llc Apparatus comprising a drive cable for a medical device
US20090021859A1 (en) * 2007-07-19 2009-01-22 Seagate Technology Llc Overmolded motor hub
US8079948B2 (en) * 2007-08-29 2011-12-20 NuCardia, Inc. Article comprising an impeller
US8439859B2 (en) 2007-10-08 2013-05-14 Ais Gmbh Aachen Innovative Solutions Catheter device
US8489190B2 (en) * 2007-10-08 2013-07-16 Ais Gmbh Aachen Innovative Solutions Catheter device
US9199020B2 (en) 2007-11-01 2015-12-01 Abiomed, Inc. Purge-free miniature rotary pump
US7849747B2 (en) * 2008-03-07 2010-12-14 Umicore Ag & Co. Kg Flaw detection in exhaust system ceramic monoliths
WO2009157408A1 (ja) 2008-06-23 2009-12-30 テルモ株式会社 血液ポンプ装置
EP3050537A1 (de) 2008-10-06 2016-08-03 Indiana University Research and Technology Corporation Verfahren und vorrichtung für aktive oder passive unterstützung in einem kreislaufsystem
EP3906963A1 (de) * 2008-10-10 2021-11-10 Medical Tree Patent Ltd Herzunterstützungspumpe
EP2372160B1 (de) 2008-12-08 2014-07-30 Thoratec Corporation Zentrifugalpumpenvorrichtung
US8562507B2 (en) * 2009-02-27 2013-10-22 Thoratec Corporation Prevention of aortic valve fusion
US20100222633A1 (en) * 2009-02-27 2010-09-02 Victor Poirier Blood pump system with controlled weaning
JP5378010B2 (ja) 2009-03-05 2013-12-25 ソラテック コーポレーション 遠心式ポンプ装置
US8770945B2 (en) 2009-03-06 2014-07-08 Thoratec Corporation Centrifugal pump apparatus
US8535211B2 (en) 2009-07-01 2013-09-17 Thoratec Corporation Blood pump with expandable cannula
US8821365B2 (en) 2009-07-29 2014-09-02 Thoratec Corporation Rotation drive device and centrifugal pump apparatus using the same
AU2010292247B2 (en) * 2009-09-09 2015-05-14 Abiomed, Inc. Method for simultaneously delivering fluid to a dual lumen catheter with a single fluid source
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
EP2338539A1 (de) * 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Pumpeneinrichtung mit einer Detektionseinrichtung
EP2338540A1 (de) * 2009-12-23 2011-06-29 ECP Entwicklungsgesellschaft mbH Förderschaufel für einen komprimierbaren Rotor
JP5443197B2 (ja) 2010-02-16 2014-03-19 ソラテック コーポレーション 遠心式ポンプ装置
JP5572832B2 (ja) 2010-03-26 2014-08-20 ソーラテック コーポレイション 遠心式血液ポンプ装置
EP2388029A1 (de) * 2010-05-17 2011-11-23 ECP Entwicklungsgesellschaft mbH Pumpenanordnung
NO331710B1 (no) * 2010-07-09 2012-03-05 Smartmotor As Elektrisk maskin for undervannsanvendelser og system for energiomforming.
JP5681403B2 (ja) 2010-07-12 2015-03-11 ソーラテック コーポレイション 遠心式ポンプ装置
JP5577506B2 (ja) 2010-09-14 2014-08-27 ソーラテック コーポレイション 遠心式ポンプ装置
AU2011305243A1 (en) * 2010-09-24 2013-04-04 Thoratec Corporation Control of circulatory assist systems
EP3020426B1 (de) 2010-09-24 2017-12-27 Tc1 Llc Erzeugung eines künstlichen pulses
US8597170B2 (en) 2011-01-05 2013-12-03 Thoratec Corporation Catheter pump
US8485961B2 (en) 2011-01-05 2013-07-16 Thoratec Corporation Impeller housing for percutaneous heart pump
US9138518B2 (en) * 2011-01-06 2015-09-22 Thoratec Corporation Percutaneous heart pump
US8591393B2 (en) 2011-01-06 2013-11-26 Thoratec Corporation Catheter pump
JP5475703B2 (ja) * 2011-02-15 2014-04-16 奇▲こう▼科技股▲ふん▼有限公司 モータ防水構造製造方法
EP2693609B1 (de) 2011-03-28 2017-05-03 Thoratec Corporation Dreh- und antriebsvorrichtung und zentrifugalpumpvorrichtung damit
DE102011106142A1 (de) * 2011-06-10 2012-12-27 Rheinisch-Westfälische Technische Hochschule Aachen Blutentnahmekanüle einer die Herzfunktion ersetzenden oder unterstützenden Pumpe
EP2564771A1 (de) * 2011-09-05 2013-03-06 ECP Entwicklungsgesellschaft mbH Medizinprodukt mit einem Funktionselement zum invasiven Einsatz im Körper eines Patienten
US20140341759A1 (en) 2011-09-30 2014-11-20 Moog Inc. Motorized blower assemblies, and methods of making same
US8923973B2 (en) 2011-11-10 2014-12-30 Rainbow Medical Ltd. Blood flow control element
KR102025959B1 (ko) 2011-11-28 2019-09-26 미-바드, 아이엔씨. 심실 보조 장치 및 방법
JP6083929B2 (ja) 2012-01-18 2017-02-22 ソーラテック コーポレイション 遠心式ポンプ装置
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
KR20140128399A (ko) 2012-02-07 2014-11-05 흐리다야 인코포레이티드 혈류 역학적 보조 장치
US11389638B2 (en) * 2012-02-07 2022-07-19 Hridaya, Inc. Hemodynamic assist device
DE102012202411B4 (de) * 2012-02-16 2018-07-05 Abiomed Europe Gmbh Intravasale blutpumpe
WO2013148697A1 (en) 2012-03-26 2013-10-03 Procyrion, Inc. Systems and methods for fluid flows and/or pressures for circulation and perfusion enhancement
DE102012207049A1 (de) * 2012-04-27 2015-08-13 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
DE102012207053A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
GB2504176A (en) 2012-05-14 2014-01-22 Thoratec Corp Collapsible impeller for catheter pump
US8721517B2 (en) 2012-05-14 2014-05-13 Thoratec Corporation Impeller for catheter pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
GB2504177B (en) 2012-05-14 2014-12-10 Thoratec Corp Sheath system for catheter pump
DE102013008158A1 (de) 2012-05-14 2013-11-14 Thoratec Corporation Distaler Lagerträger
WO2013183060A2 (en) 2012-06-06 2013-12-12 Magenta Medical Ltd. Prosthetic renal valve
US9421311B2 (en) 2012-07-03 2016-08-23 Thoratec Corporation Motor assembly for catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
EP4186557A1 (de) 2012-07-03 2023-05-31 Tc1 Llc Motoranordnung für katheterpumpe
JP5570558B2 (ja) * 2012-07-27 2014-08-13 ファナック株式会社 工作機械の割出装置及びその製造方法
EP2692369B1 (de) * 2012-07-31 2015-04-15 Rheinisch-Westfälische Technische Hochschule Aachen Blutpumpenvorrichtung mit axialem Durchfluss
US9636441B2 (en) 2012-11-05 2017-05-02 Robert Jarvik Support stent for transvalvular conduit
AU2014207334B2 (en) * 2013-01-18 2016-09-08 Chunyuan Qiu Anchoring nerve block catheter
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9356493B2 (en) * 2013-02-26 2016-05-31 GM Global Technology Operations LLC Method of making a motor housing assembly
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US9687385B2 (en) 2013-03-11 2017-06-27 Avacen, Inc. Methods and apparatus for therapeutic application of thermal energy including blood viscosity adjustment
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
EP4233702A3 (de) 2013-03-13 2023-12-20 Magenta Medical Ltd. Herstellung eines laufrads
EP4122520A1 (de) 2013-03-13 2023-01-25 Tc1 Llc Flüssigkeitsbehandlungssystem
US10583231B2 (en) 2013-03-13 2020-03-10 Magenta Medical Ltd. Blood pump
US8777832B1 (en) 2013-03-14 2014-07-15 The University Of Kentucky Research Foundation Axial-centrifugal flow catheter pump for cavopulmonary assistance
EP3797810A1 (de) 2013-03-15 2021-03-31 Tc1 Llc Katheterpumpenanordnung mit einem stator
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
DE102013006562A1 (de) 2013-04-16 2014-10-16 Fresenius Medical Care Deutschland Gmbh Verfahren zur Ermittlung des Druckes in einem extrakorporalen Kreislauf
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
US9713663B2 (en) 2013-04-30 2017-07-25 Tc1 Llc Cardiac pump with speed adapted for ventricle unloading
JP5681232B2 (ja) * 2013-05-10 2015-03-04 ファナック株式会社 射出成形により樹脂注入する電動機のステータ
DE102013211848A1 (de) 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus mindestens zwei unterschiedlichen versinterbaren Materialien
DE102013211844A1 (de) 2013-06-21 2014-12-24 Heraeus Precious Metals Gmbh & Co. Kg Pumpengehäuse aus einem magnetischen und einem nichtmagnetischen Material
CN103401369B (zh) * 2013-07-19 2015-12-23 永济铁路电机电器修配有限责任公司 直流电动机主极及其装配方法
EP2860849B1 (de) * 2013-10-11 2016-09-14 ECP Entwicklungsgesellschaft mbH Komprimierbarer Motor, Implantieranordnung sowie Verfahren zum Positionieren des Motors
US9764113B2 (en) 2013-12-11 2017-09-19 Magenta Medical Ltd Curved catheter
WO2015130768A2 (en) 2014-02-25 2015-09-03 KUSHWAHA, Sudhir Ventricular assist device and method
CN103830783B (zh) * 2014-03-10 2016-01-13 北京工业大学 一种体外循环灌注决策系统
DE102014004121A1 (de) * 2014-03-24 2015-09-24 Heraeus Deutschland GmbH & Co. KG Pumpengehäuse aus mindestens drei unterschiedlichen versinterbaren Materialien
EP3131615B1 (de) 2014-04-15 2021-06-09 Tc1 Llc Sensoren für katheterpumpen
EP3131599B1 (de) 2014-04-15 2019-02-20 Tc1 Llc Katheterpumpe mit zugangsports
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
EP3131597B1 (de) 2014-04-15 2020-12-02 Tc1 Llc Katheterpumpeneinführersysteme
US10293090B2 (en) 2014-04-25 2019-05-21 Yale University Percutaneous device and method for promoting movement of a bodily fluid
CN103977464B (zh) * 2014-06-06 2016-08-17 清华大学 一种出口处渐变流动区域的可植入微型轴流血泵
DE102014211216A1 (de) * 2014-06-12 2015-12-17 Universität Duisburg-Essen Pumpe zur Implantierung in ein Gefäß
US10449279B2 (en) 2014-08-18 2019-10-22 Tc1 Llc Guide features for percutaneous catheter pump
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
EP3804797A1 (de) 2015-01-22 2021-04-14 Tc1 Llc Motoranordnung mit wärmetauscher für katheterpumpe
US9675738B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Attachment mechanisms for motor of catheter pump
US9770543B2 (en) 2015-01-22 2017-09-26 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
DE102015101382B4 (de) * 2015-01-30 2017-03-09 Infineon Technologies Ag Implantierbarer Gefäßfluidsensor
EP3256183A4 (de) 2015-02-11 2018-09-19 Tc1 Llc Herzschlagidentifizierung und pumpengeschwindigkeitssynchronisierung
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
US11291824B2 (en) 2015-05-18 2022-04-05 Magenta Medical Ltd. Blood pump
EP3106187A1 (de) 2015-06-16 2016-12-21 Berlin Heart GmbH Implantierbare herzpumpe
EP3108809A1 (de) * 2015-06-22 2016-12-28 Berlin Heart GmbH Vorrichtung und verfahren zur druckmessung am herzen eines patienten
EP3108909B1 (de) * 2015-06-23 2018-09-26 Abiomed Europe GmbH Blutpumpe
US20170047832A1 (en) * 2015-08-13 2017-02-16 Caterpillar Inc. Electric Motor and Process for Making an Electric Motor
EP3331596A4 (de) 2015-09-14 2019-04-03 Thoratec Corporation Flüssigkeitsbehandlungssystem
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
EP3205359B1 (de) * 2016-02-11 2018-08-29 Abiomed Europe GmbH Blutpumpensystem
EP3222301B1 (de) * 2016-03-23 2018-05-09 Abiomed Europe GmbH Blutpumpe
US10166319B2 (en) 2016-04-11 2019-01-01 CorWave SA Implantable pump system having a coaxial ventricular cannula
US9968720B2 (en) 2016-04-11 2018-05-15 CorWave SA Implantable pump system having an undulating membrane
EP3448487A4 (de) * 2016-04-29 2020-04-29 Flow Forward Medical, Inc. Leitungsspitzen und systeme und verfahren zur verwendung
EP3950043A1 (de) 2016-06-06 2022-02-09 Abiomed, Inc. Blutpumpenanordnung mit einem sensor und einer sensorabdeckung
US11324942B2 (en) * 2016-06-28 2022-05-10 Albert Rather, Jay K. Brama, Md, Gurjap Singh Medical devices including rotary valve
EP3487549B1 (de) 2016-07-21 2021-02-24 Tc1 Llc Fluiddichtungen für katheterpumpenmotoranordnung
WO2018017683A1 (en) * 2016-07-21 2018-01-25 Thoratec Corporation Gas-filled chamber for catheter pump motor assembly
JP6998942B2 (ja) * 2016-09-19 2022-01-18 アビオメド インコーポレイテッド 心機能を定量化し、心臓の回復を促進する心血管補助システム
EP3518825B1 (de) 2016-09-29 2020-05-27 Magenta Medical Ltd. Blutgefässtubus
EP3532120A1 (de) 2016-10-25 2019-09-04 Magenta Medical Ltd. Ventrikelunterstützungsvorrichtung
US11088587B2 (en) 2016-10-26 2021-08-10 Nidec Sankyo Corporation Motor
EP3538173B1 (de) 2016-11-14 2023-03-08 Tc1 Llc Hülsenanordnung für katheterpumpe
WO2018096531A1 (en) 2016-11-23 2018-05-31 Magenta Medical Ltd. Blood pumps
TW201823052A (zh) * 2016-12-30 2018-07-01 虹光精密工業股份有限公司 紙盤抽屜及應用其之多功能事務機
EP3357523B1 (de) * 2017-02-07 2021-01-20 Abiomed Europe GmbH Blutpumpe
KR102545791B1 (ko) * 2017-03-21 2023-06-21 아비오메드, 인크. 임베디드 서미스터를 갖는 카테터 장착 혈관 내 혈액 펌프로 심장을 연속적으로 지원하는동안 자연 심장 출력을 결정하는 시스템 및 방법
US10933181B2 (en) 2017-03-31 2021-03-02 CorWave SA Implantable pump system having a rectangular membrane
EP3634528B1 (de) 2017-06-07 2023-06-07 Shifamed Holdings, LLC Intravaskuläre fluidbewegungsvorrichtungen, systeme und verwendungsverfahren
CN110913923B (zh) 2017-06-09 2022-11-18 阿比奥梅德公司 用于调节血液泵支持的对心脏参数的确定
FR3073578B1 (fr) 2017-11-10 2019-12-13 Corwave Circulateur de fluide a membrane ondulante
CN111556763B (zh) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 血管内流体运动装置、系统
US10188779B1 (en) 2017-11-29 2019-01-29 CorWave SA Implantable pump system having an undulating membrane with improved hydraulic performance
US11338125B2 (en) * 2017-12-21 2022-05-24 Abiomed, Inc. Systems and methods for predicting patient health status
WO2019138350A2 (en) 2018-01-10 2019-07-18 Magenta Medical Ltd Ventricular assist device
US10905808B2 (en) 2018-01-10 2021-02-02 Magenta Medical Ltd. Drive cable for use with a blood pump
DE102018201030A1 (de) 2018-01-24 2019-07-25 Kardion Gmbh Magnetkuppelelement mit magnetischer Lagerungsfunktion
JP7410034B2 (ja) 2018-02-01 2024-01-09 シファメド・ホールディングス・エルエルシー 血管内血液ポンプならびに使用および製造の方法
CN112088022A (zh) * 2018-03-16 2020-12-15 阿比奥梅德公司 用于估计心脏泵的位置的系统和方法
KR20200138297A (ko) 2018-03-23 2020-12-09 아비오메드 유럽 게엠베하 혈액 펌프를 제조하는 방법
EP3542836A1 (de) 2018-03-23 2019-09-25 Abiomed Europe GmbH Intravaskuläre blutpumpe mit keramischer innenhülse
EP3542837B1 (de) * 2018-03-23 2020-09-02 Abiomed Europe GmbH Intravaskuläre blutpumpe
EP3542835A1 (de) 2018-03-23 2019-09-25 Abiomed Europe GmbH Verfahren zur herstellung einer blutpumpe
US10893927B2 (en) 2018-03-29 2021-01-19 Magenta Medical Ltd. Inferior vena cava blood-flow implant
WO2019194976A1 (en) * 2018-04-06 2019-10-10 Heartware, Inc. Multi-input speed response algorithm for a blood pump
CN111971247B (zh) 2018-04-19 2022-12-06 Bd科斯特公司 加盖器/去盖器系统和方法
DE102018208879A1 (de) * 2018-06-06 2020-01-30 Kardion Gmbh Verfahren zur Bestimmung eines Fluid-Gesamtvolumenstroms im Bereich eines implantierten, vaskuläres Unterstützungssystems
EP3809960A1 (de) 2018-06-19 2021-04-28 Abiomed, Inc. Systeme und verfahren zur systemidentifizierung
DE102018211327A1 (de) 2018-07-10 2020-01-16 Kardion Gmbh Laufrad für ein implantierbares, vaskuläres Unterstützungssystem
US10960118B2 (en) 2018-07-31 2021-03-30 Abiomed, Inc. Systems and methods for controlling a heart pump to minimize myocardial oxygen consumption
US20200171225A1 (en) * 2018-11-29 2020-06-04 Heartware, Inc. Thrombus clearing manifold for ventricular assist devices
EP3782666B1 (de) 2019-01-24 2021-08-11 Magenta Medical Ltd. Herstellung eines laufrads
JPWO2020179410A1 (de) * 2019-03-07 2020-09-10
EP3938006A1 (de) 2019-03-15 2022-01-19 Corwave SA Systeme und verfahren zur steuerung einer implantierbaren blutpumpe
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
EP4034192A4 (de) 2019-09-25 2023-11-29 Shifamed Holdings, LLC Intravaskuläre blutpumpensysteme und verfahren zur verwendung und steuerung davon
JP7316172B2 (ja) * 2019-09-27 2023-07-27 ファナック株式会社 成形物、電動機、成形物を製造するための装置及び方法
CN115279448A (zh) 2019-12-03 2022-11-01 普罗西里翁公司 血泵
WO2021119413A1 (en) 2019-12-13 2021-06-17 Procyrion, Inc. Support structures for intravascular blood pumps
DE102020102474A1 (de) * 2020-01-31 2021-08-05 Kardion Gmbh Pumpe zum Fördern eines Fluids und Verfahren zum Herstellen einer Pumpe
EP3862034A1 (de) * 2020-02-06 2021-08-11 Abiomed Europe GmbH Platzierung einer blutpumpe und intravaskuläre blutpumpe
EP4114504A1 (de) 2020-03-06 2023-01-11 CorWave SA Implantierbare blutpumpe, die ein linearlager umfasst
CN112472999A (zh) * 2020-12-22 2021-03-12 余顺周 血泵
CN112791305A (zh) * 2021-01-22 2021-05-14 苏州心擎医疗技术有限公司 血泵及其动力传递组件
EP4259266A1 (de) * 2021-02-10 2023-10-18 Boston Scientific Scimed Inc. Magnetischer antrieb und lager für eine hämodynamische unterstützungspumpe
CN113476739B (zh) * 2021-06-07 2022-11-08 浙江迪远医疗器械有限公司 具有检测装置的血液泵
CN113476738B (zh) * 2021-06-07 2022-11-08 浙江迪远医疗器械有限公司 具有检测装置的血液泵
CN115474950A (zh) * 2021-06-15 2022-12-16 浙江迪远医疗器械有限公司 能够防凝血的血液泵
WO2023022923A1 (en) * 2021-08-19 2023-02-23 Cardiovol, Llc Method and apparatus for assisting a heart
WO2023059713A2 (en) * 2021-10-07 2023-04-13 W. L. Gore & Associates, Inc. Inflow / outflow cannula anchors
CN114870241A (zh) * 2021-12-03 2022-08-09 深圳核心医疗科技有限公司 驱动装置和血泵
CN117138222A (zh) * 2022-05-24 2023-12-01 上海微创心力医疗科技有限公司 导管泵的放置位置的判断方法、系统、电子设备及介质
CN115845248B (zh) * 2023-02-28 2023-05-12 安徽通灵仿生科技有限公司 一种心室导管泵的定位方法及装置
CN116726378B (zh) * 2023-06-13 2024-03-22 心擎医疗(苏州)股份有限公司 流量确定方法、流量检测模型的训练方法、设备及介质
CN116492588B (zh) * 2023-06-26 2023-09-22 安徽通灵仿生科技有限公司 一种心室导管泵的位置检测方法及装置
CN117137471B (zh) * 2023-10-30 2024-01-30 深圳核心医疗科技股份有限公司 心室辅助装置的位置识别方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2113986A1 (de) * 1971-03-23 1972-09-28 Svu Textilni Kuenstliches Blutkreislauforgan
US4662355A (en) * 1983-08-08 1987-05-05 Alain Pieronne Pump regulation device
WO1994009835A1 (en) 1992-10-30 1994-05-11 Robert Jarvik Cannula pumps for temporary cardiac support
WO1997037696A1 (de) 1996-04-04 1997-10-16 Rau Guenter Intravasale blutpumpe

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568659A (en) * 1968-09-24 1971-03-09 James N Karnegis Disposable percutaneous intracardiac pump and method of pumping blood
US3995617A (en) * 1972-05-31 1976-12-07 Watkins David H Heart assist method and catheter
JPS5399401A (en) * 1977-02-10 1978-08-30 Hitachi Ltd Preparing small motor of synthetic resin
US4382199A (en) * 1980-11-06 1983-05-03 Nu-Tech Industries, Inc. Hydrodynamic bearing system for a brushless DC motor
US4688998A (en) * 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
FR2514582A1 (fr) * 1981-10-08 1983-04-15 Artus Micromoteur electrique sans balais
DE3142682C2 (de) * 1981-10-28 1986-06-19 Black & Decker, Inc. (Eine Gesellschaft N.D.Ges.D. Staates Delaware), Newark, Del. Elektrowerkzeug, insbesondere Handwerkzeug
DE3204317C1 (de) * 1982-02-09 1983-06-09 Sartorius GmbH, 3400 Göttingen Kardioplegisches Steuer- und Regelgeraet
US5078741A (en) * 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US4704121A (en) * 1983-09-28 1987-11-03 Nimbus, Inc. Anti-thrombogenic blood pump
US4625712A (en) * 1983-09-28 1986-12-02 Nimbus, Inc. High-capacity intravascular blood pump utilizing percutaneous access
JPS60152256A (ja) * 1984-01-18 1985-08-10 Atsugi Motor Parts Co Ltd モ−タの製造方法
US4862582A (en) * 1986-05-12 1989-09-05 Henck Ronald W Method for manufacturing an electric motor
KR930005345B1 (ko) * 1986-10-23 1993-06-17 후지덴기 가부시기가이샤 소형모터의 고정자 하우징과 회전자
US4779614A (en) * 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
US4817586A (en) * 1987-11-24 1989-04-04 Nimbus Medical, Inc. Percutaneous bloom pump with mixed-flow output
US4846152A (en) * 1987-11-24 1989-07-11 Nimbus Medical, Inc. Single-stage axial flow blood pump
US5061256A (en) * 1987-12-07 1991-10-29 Johnson & Johnson Inflow cannula for intravascular blood pumps
US4895557A (en) * 1987-12-07 1990-01-23 Nimbus Medical, Inc. Drive mechanism for powering intravascular blood pumps
US5092879A (en) * 1988-02-17 1992-03-03 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US4906229A (en) * 1988-05-03 1990-03-06 Nimbus Medical, Inc. High-frequency transvalvular axisymmetric blood pump
US4908012A (en) * 1988-08-08 1990-03-13 Nimbus Medical, Inc. Chronic ventricular assist system
NZ247033A (en) * 1988-09-28 1994-10-26 Fisher & Paykel Drive for spin washer: agitator shaft bearings are motor rotor bearings
US4919647A (en) * 1988-10-13 1990-04-24 Kensey Nash Corporation Aortically located blood pumping catheter and method of use
US5112292A (en) * 1989-01-09 1992-05-12 American Biomed, Inc. Helifoil pump
US4944722A (en) * 1989-02-23 1990-07-31 Nimbus Medical, Inc. Percutaneous axial flow blood pump
US5121021A (en) * 1989-12-06 1992-06-09 General Motors Corporation Frame and magnet assembly for a dynamoelectric machine
JPH0636821B2 (ja) * 1990-03-08 1994-05-18 健二 山崎 体内埋設形の補助人工心臓
US5199171A (en) * 1990-05-31 1993-04-06 Mitsuba Electric Manufacturing Co., Ltd. Method of manufacturing a motor casing made of resin
JPH04156856A (ja) * 1990-10-22 1992-05-29 American Biomed Inc 循環補助ポンプ
DE9114254U1 (de) * 1991-11-15 1992-01-23 Moeller, Frank, Dipl.-Ing., 3300 Braunschweig, De
US5490319A (en) * 1992-01-29 1996-02-13 Ebara Corporation Thermotropic liquid crystal polymer composition and insulator
ES2104991T3 (es) * 1992-04-14 1997-10-16 Ebara Corp Dispositivo de cojinete para uso en un motor de tipo hermetico.
JPH05328655A (ja) * 1992-05-22 1993-12-10 Mitsubishi Electric Corp モールドモータ及びその製造方法
US5268607A (en) * 1992-09-09 1993-12-07 Webster Plastics Molded resin motor housing
US5393207A (en) * 1993-01-21 1995-02-28 Nimbus, Inc. Blood pump with disposable rotor assembly
JPH06346917A (ja) * 1993-06-03 1994-12-20 Shicoh Eng Co Ltd 一方向性動圧軸受を用いた耐圧防水シ−ル機構
JP2571666B2 (ja) * 1993-10-26 1997-01-16 大研医器株式会社 吸引集液装置
US5527159A (en) * 1993-11-10 1996-06-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotary blood pump
DE59309615D1 (de) * 1993-12-20 1999-07-01 Stoeckert Instr Gmbh Vorrichtung zum Pumpen von Blut
US5513956A (en) * 1994-01-14 1996-05-07 Arrow International Investment Corp. Circulatory assisted device with motor driven gas pump
US5507629A (en) * 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
JPH0833706A (ja) * 1994-07-26 1996-02-06 Otsuka Pharmaceut Factory Inc 体液体外循環装置の詰まり検出方法
US5725357A (en) * 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
JP3546092B2 (ja) * 1995-04-03 2004-07-21 Ntn株式会社 磁気浮上型ポンプ
JPH0946983A (ja) * 1995-05-23 1997-02-14 Fanuc Ltd 電動機の枠体の仕上加工方法及びこの方法により加工される電動機
JPH0956812A (ja) * 1995-08-23 1997-03-04 Ntn Corp 血液ポンプの制御方法
US5695471A (en) * 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
JPH09236123A (ja) * 1996-02-29 1997-09-09 Matsushita Electric Ind Co Ltd 磁気軸受装置
US5911685A (en) * 1996-04-03 1999-06-15 Guidant Corporation Method and apparatus for cardiac blood flow assistance
US5964694A (en) * 1997-04-02 1999-10-12 Guidant Corporation Method and apparatus for cardiac blood flow assistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2113986A1 (de) * 1971-03-23 1972-09-28 Svu Textilni Kuenstliches Blutkreislauforgan
US4662355A (en) * 1983-08-08 1987-05-05 Alain Pieronne Pump regulation device
WO1994009835A1 (en) 1992-10-30 1994-05-11 Robert Jarvik Cannula pumps for temporary cardiac support
WO1997037696A1 (de) 1996-04-04 1997-10-16 Rau Guenter Intravasale blutpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAMAZAKI K ET AL: "DEVELOPMENT OF A MINIATURE INTRAVENTRICULAR AXIAL FLOW BLOOD PUMP", ASAIO JOURNAL, vol. 39, no. 3, 1 July 1993 (1993-07-01), pages M224 - M230, XP000412587 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508161A (ja) * 1999-09-03 2003-03-04 エイ−メド システムズ, インコーポレイテッド ガイド可能血管内血液ポンプおよび関連する方法
WO2003011388A2 (de) 2001-07-27 2003-02-13 Impella Cardiotechnik Ag Neurostimulationseinheit zur immobilisation des herzens während kardiochirurgischer operationen

Also Published As

Publication number Publication date
JP2000512191A (ja) 2000-09-19
DE59814250D1 (de) 2008-08-21
AU7427998A (en) 1998-10-22
US5964694A (en) 1999-10-12
JP4179634B2 (ja) 2008-11-12
EP0925080B1 (de) 2004-03-03
CA2256423A1 (en) 1998-10-08
EP0925081B1 (de) 2003-12-03
EP0904630A1 (de) 1999-03-31
ATE400917T1 (de) 2008-07-15
AU7213298A (en) 1998-10-22
JP3982840B2 (ja) 2007-09-26
CN1222863A (zh) 1999-07-14
CA2256432A1 (en) 1998-10-08
DE59810330D1 (de) 2004-01-15
EP0925081A1 (de) 1999-06-30
WO1998043688A1 (de) 1998-10-08
WO1998044619A1 (de) 1998-10-08
EP0925080A1 (de) 1999-06-30
US6058593A (en) 2000-05-09
JP2000511759A (ja) 2000-09-05
DE59810906D1 (de) 2004-04-08
IL127248A0 (en) 1999-09-22
JP4179635B2 (ja) 2008-11-12
AU7428098A (en) 1998-10-22
ATE255430T1 (de) 2003-12-15
JP2000511455A (ja) 2000-09-05
EP0904630B1 (de) 2008-07-09
US6139487A (en) 2000-10-31
CA2256427A1 (en) 1998-10-08
BR9804832A (pt) 1999-08-24
BR9804804A (pt) 1999-08-17

Similar Documents

Publication Publication Date Title
EP0925081B1 (de) Intrakardiale pumpvorrichtung
DE10016422B4 (de) Parakardiale Blutpumpe
EP2835141B1 (de) Steuerung einer Blutpumpe
EP1339443B1 (de) Verfahren zum Kalibrieren eines Drucksensors oder eines Flusssensors an einer Rotationspumpe
DE69629255T2 (de) Herzunterstützungsvorrichtung
EP1317295B1 (de) Intrakardiale blutpumpe
EP3060805B1 (de) Verfahren zum betrieb einer versorgungseinrichtung, die einen kanal mit einer flüssigkeit beaufschlagt, sowie versorgungseinrichtung, hohlkatheter und katheterpumpe
EP0961621B1 (de) Intravasale blutpumpe
DE19535781C2 (de) Vorrichtung zur aktiven Strömungsunterstützung von Körperflüssigkeiten
DE60120922T2 (de) Vorrichtung zur überwachung und steuerung von peritonealdialysebehandlungen
WO2017102164A1 (de) Blutpumpe zur herzunterstützung und verfahren zu ihrem betrieb
EP3284490B1 (de) Extrakorporale blutbehandlungsvorrichtung
EP3554578A1 (de) Blutbehandlungsvorrichtung zur durchführung einer extrakorporalen blutbehandlung, blutführungsvorrichtung, blutbehandlungssystem
WO2016207066A1 (de) Vorrichtung und verfahren zur druckmessung am herzen eines patienten
EP3996772A2 (de) Steuerung für nicht-okklusive blutpumpen
DE102010012050B4 (de) Hämodialysemaschine
EP1374928B1 (de) Blutpumpe mit einem Impeller
DE112022003337T5 (de) Systeme und verfahren zur ableitung von drücken extern einer intrakardialen blutpumpe unter verwendung interner drucksensoren
WO2017064035A1 (de) Herzunterstützungssystem mit zwei pumpen
WO2020208076A1 (de) Rollenpumpe mit halteabschnitten zum festlegen eines pumpenschlauchsegments
DE10231479A1 (de) Blutpumpe mit einem Impeller
WO2018141323A1 (de) Anordnung mit einer blutpumpe, einer steuereinheit und einem gerät zur übermittlung der messwerte
DD213836A1 (de) Verfahren und vorrichtung zur fluessigkeitssubstitution bei der blutreinigung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800422.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2256432

Country of ref document: CA

Ref document number: 2256432

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1998921408

Country of ref document: EP

Ref document number: 09194725

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998921408

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1998921408

Country of ref document: EP