WO1998058100A1 - Verfahren und einrichtung zum vakuumbeschichten eines substrates - Google Patents

Verfahren und einrichtung zum vakuumbeschichten eines substrates Download PDF

Info

Publication number
WO1998058100A1
WO1998058100A1 PCT/DE1998/001610 DE9801610W WO9858100A1 WO 1998058100 A1 WO1998058100 A1 WO 1998058100A1 DE 9801610 W DE9801610 W DE 9801610W WO 9858100 A1 WO9858100 A1 WO 9858100A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon
silicon
metal
layers
Prior art date
Application number
PCT/DE1998/001610
Other languages
English (en)
French (fr)
Inventor
Kurt Burger
Thomas Weber
Johannes Voigt
Susanne Lucas
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE59813331T priority Critical patent/DE59813331D1/de
Priority to EP98936157A priority patent/EP0990061B1/de
Priority to JP50355499A priority patent/JP2002504189A/ja
Priority to AU85315/98A priority patent/AU734809B2/en
Priority to US09/446,054 priority patent/US6372303B1/en
Publication of WO1998058100A1 publication Critical patent/WO1998058100A1/de
Priority to US11/008,413 priority patent/US7942111B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention is based on a method according to the type of the main claim.
  • a method of this type is known from DE-C 195 13 614.
  • the substrate is then coated with amorphous carbon layers by applying a bipolar voltage, the positive and negative pulse durations of which can be set separately from one another, to the substrate.
  • the positive pulse duration is smaller than the negative pulse duration, the pulse frequency is in the range from 5 to 100 kHz.
  • a modified, metal-containing carbon intermediate layer is provided in this known method.
  • plasma generation and ion bombardment of the growing layer are realized jointly by the applied bipolar voltage and cannot be controlled individually. For many layer qualities this is
  • German patent application AZ 196 09 804.1 discloses a method for plasma coating bulk material, in which a rotating basket slowly rotates around a plasma coating source moving around. A voltage can be applied to the rotating basket in order to bring the bulk material to be coated to an electrically negative potential. Inside the rotating basket there are means for generating a cleaning plasma, by means of which the bulk material can be used before the
  • Layer deposition is cleaned.
  • the cleaning plasma is generated regardless of the voltage applied to the rotating basket and the bulk material.
  • Negative electrical charging of the bulk material to be coated is generally also provided for the subsequent coating step. No further details are disclosed on how the negative charging should take place.
  • a process for the production of hard, amorphous carbon layers is described in R.S. Bonetti, M. Tobler, Surface and JOT, Issue 9, 1988, p.15.
  • a plasma-assisted CVD process plasma generation and negative substrate bias are realized together by a radio frequency (RF) power supply placed on the substrates.
  • the substrate potential ensures the ion bombardment necessary for the deposition of dense, hard and therefore wear-resistant layers.
  • the ratio between the surface of the parts to be coated and the inner wall surface of the recipient must preferably be less than 1, which undesirably limits the loading density and scalability of the process for industrial batch sizes.
  • Another disadvantage is the necessary, load-dependent adaptation of the RF coupling.
  • the object is achieved by a method with the features of the main claim.
  • Layers are often deposited at temperatures of 200 ° C and below.
  • a pulsed bipolar DC voltage is advantageously used as the substrate voltage, which can be changed with regard to the size and duration of the negative pulse, the size and duration of the positive pulse, and the voltage-free intermediate intervals or pause times.
  • the separation of plasma generation and substrate voltage generation means that a device suitable for carrying out the method is not restricted to the use of a specific plasma generation source. Rather, all plasma-generating sources such as, for example, microwave sources, high-frequency sources, hollow cathode or high-current arc are considered.
  • a bipolar pulsed is expediently used as the power supply unit for generating the substrate voltage
  • DC power supply unit with the option of storing a DC voltage and realizing voltage-free break times. Apertures are advantageously provided in the coating chamber, which shield a part of the coating chamber. By moving the parts to be coated through the resulting partial volumes Different plasma densities can easily influence the properties of the layers produced.
  • a multilayer structure made according to the invention and consisting of alternating hard material and hard carbon layers has considerable advantages, the latter optionally additionally containing hydrogen and / or silicon and / or metal.
  • the wear resistance of the hard material and in particular the excellent wear resistance and the friction-reducing, lubricating effect of the hard carbon produced according to the invention interact synergistically with the multilayer structure properties.
  • the multilayer structure has e.g. a higher hardness than the individual layers that make it up.
  • the multi-layer structure is also more ductile and elastic than a single layer of comparable hardness.
  • the multilayer structures produced according to the invention are due to the synergistic interaction of the above. Properties can be used advantageously in new fields of application. They are generally suitable as corrosion and wear protection for tribologically highly stressed components, and in particular as wear protection for components in the dry-running and inadequate lubrication areas.
  • the multi-layer structures are suitable, for example, as a lubricating wear and corrosion protection layer for cutting and forming tools, their
  • the carbon layer consists of amorphous hydrogen-containing carbon (aC: H in the following), amorphous hydrogen-free carbon (aC), silicon-containing (hydrogen-containing or hydrogen-free) carbon or metal-containing (hydrogen-containing or hydrogen-free) carbon (C- (MeC)), the metal being selected from the hard subgroup metals. This selection enables the user to react flexibly to the requirements regarding the lubricating effect and the hardness of the carbon layer and (see above) to any difficulties in adapting to the hard material layer.
  • silicon layers which may additionally contain hydrogen and / or carbon and / or metal, can also be built into the multilayer layer. Although these do not have a lubricating effect, they are also characterized by high hardness (although they tend to be somewhat softer than carbon layers) and low coefficients of friction. A particular advantage is the low dependence of the layer properties, especially the coefficient of friction, on the ambient humidity.
  • the silicon layer consists of amorphous hydrogen-containing silicon (a-Si: H in the following), amorphous hydrogen-free silicon (a-Si), carbon-containing
  • a multilayer structure of hard layers, lubricating layers and optionally oxidation-resistant layers, the properties of the structure being determined by the combination of the properties of the individual layers, is described in US Pat. No. 4,619,865, but hard carbon or silicon Liciu layers or hard carbon or silicon layers containing the metals mentioned are not described in the patent, in particular not as friction-reducing layers.
  • the individual layers preferably consist of one type or more types of the hard material layer and one type or more types of the carbon or silicon layer, the individual layers most preferably of one type of the hard material layer and of one type of the carbon or of the silicon layer.
  • the thicknesses of the individual layers are between approximately 1 and approximately 10 nm and preferably between approximately 2 and approximately 5 nm and if the total thickness of the structure is between approximately 1 and approximately 10 ⁇ m and preferred is between about 1 and 4 ⁇ m.
  • the hard material layer is made of a metal (Me in the following), a metal compound, carbon (C- (MeC) containing metal carbide, silicon-containing metal silicide (Si (MeSi)), with the latter two the desired Hardness is achieved, for example, by a suitable choice of the metal or mixtures of at least two of the materials mentioned, and this selection enables the user to flexibly adapt to the requirements relating to the hardness of the urea layer and to any difficulties in adapting to the carbon layer or react the silicon layer and - if advantageous - also provide the layer with a certain friction-reducing effect.
  • a metal Mo in the following
  • C- (MeC) containing metal carbide silicon-containing metal silicide (Si (MeSi)
  • the hard material layer consists of Me, a metal carbide (MeC), a metal nitride (MeN), a metal silicide (MeSi), a metal carbonitride (Me (CN)), a metal carbosilicide (Me (CSi)) or a metal silicon nitride (Me (SiN)) and the carbon layer consists of aC: H or aC if the hard material layer consists of C- (C) and the carbon layer consists of a- C: H, the hard material layer showing a great hardness due to the involvement of tungsten, but not because of the chemical Metal-bound carbon content also has a considerable lubricating effect, and if the hard material layer consists of MeC and the carbon layer consists of C- (MeC), the hardness being particularly pronounced, however at the expense of the lubricating effect.
  • hard material layer consists of Me, MeC, MeN, MeSi, Me (CN), Me (CSi) or Me (SiN) and the silicon layer consists of a-Si: H or a-Si.
  • FIG. 1 shows a device for plasma CVD coating of substrates in a side view
  • FIG. 2 shows the same device in a top view
  • FIGS. 3 to 5 variants of the device shown in FIG. 1
  • FIG. 6 shows a device designed as a continuous system
  • FIG. 7 shows a device Multi-chamber facility.
  • FIG. 1 shows a device for carrying out the proposed method. It includes a vacuum recipient
  • the substrates 10 are electrically coupled to a voltage supply 13 arranged outside the recipient 12.
  • the bearing device 11 is designed so that the substrates 10 can be rotated uniformly during the coating, for example as indicated in FIG. 1, in the form of a turntable. Provision can also be made for the substrates to be additionally rotated about further axes of rotation by means of appropriate devices.
  • a bipolar DC pulse source with the possibility of additionally superimposing a DC voltage potential serves as the voltage supply 13.
  • the vacuum recipient 12 has a gas inlet system 14, through which gases can be introduced into its interior. Furthermore, the recipient 12 has a pump system 23 for its evacuation. At the recipient 12 there is also a microwave source 15 for coupling microwaves into the recipient interior 21, where they generate a plasma 20. For example, it is designed as a quartz window with a waveguide radiator or with antenna configurations. In the interior of the recipient 21 there are magnets 16 which, as indicated in FIG. 1, can be designed as magnetic banks. They effect a uniform distribution of the plasma 20 generated with the aid of the microwave source 15 in the recipient interior 21 and are arranged accordingly.
  • the plasma source 15 is arranged in accordance with structural and process-related boundary conditions. For this purpose, as indicated in FIG. 1, it can take place centrally in relation to the bearing device 11, on a wall side or distributed over the recipient 12. With a central arrangement, an essentially centrally symmetrical plasma 20 results. which ensures a uniform coating of the inward-facing substrate surfaces, while the coating rate of the outward-facing surfaces is lower and leads to the deposition of layers of different quality. The reverse situation arises when the plasma source is arranged on a side wall of the recipient 12. Plasma sources can also be combined inside and outside to create layers with a different quality and properties. Apertures 22 can also be provided in the recipient 12, which form a
  • Prevent plasma in part of the recipient interior 21 Prevent plasma in part of the recipient interior 21.
  • different coating conditions can be created in the interior of the recipient 21 to bring about different individual layers.
  • the substrates 10 to be coated are moved, as indicated by arrows in FIG. 2, through the partial volumes of the recipient interior 21 with the different plasma conditions.
  • controllable properties of the growing overall layer consisting of individual or numerous individual layers as a multiple or multilayer layer, result.
  • the system shown in FIGS. 1 and 2 is operated by, in the interior of the recipient 21 after evacuation by means of the pump system 23 to a residual pressure of typically 10- ⁇ mbar.
  • the substrates 21 to be coated are then expediently preconditioned, for example by heating, cleaning by plasma etching and precoating to improve the adhesion of the subsequently applied layer.
  • a gas is then introduced into the recipient 21 via the gas inlet system 14 and a plasma 20 is generated with the aid of the microwave source 15. This creates special plasma conditions when the gases are introduced through the plasma source or near the plasma source into the recipient, for example there is a spatially increased plasma density and / or an increased one Gas turnover.
  • a number of gases and gas mixtures are suitable as gases.
  • Reactive gases for the application of carbon-containing layers are, for example, hydrocarbons C ⁇ H ⁇ , in particular C2H2 and CH4.
  • Silanes and siloxanes in particular SiH 4 and HMDS, HMDS (O), HMDS (N), TEO ⁇ , TMS, are suitable for the application of silicon-containing layers.
  • Noble gases such as argon, neon or helium, are used to generate and maintain the plasma 20. If argon is used, the bombardment with non-layer-forming ions during the layer deposition, and moreover the hardness and residual stress of the layer, can be adjusted by varying the argon partial pressure. If helium is used, it is possible to influence the proportion of hydrogen introduced into the layers by hydrogen-containing gases and to additionally compress the layers.
  • the layers can be compacted in a targeted manner.
  • organometallic compounds are used as the reactive gas, metals can be introduced into the coating via the reactive gas.
  • the H content of the layers can be influenced with H 2
  • the layer properties with regard to residual stresses and wetting behavior can be influenced with N 2 , NH 2 or boron-containing gases.
  • Si-containing gases influence the residual stresses and the wetting behavior of carbon layers
  • C-containing gases lead to lower friction, doping, electrical conductivity and the deposition of a-SiC: H in silicon layers.
  • a variable voltage potential the substrate voltage US
  • the substrate voltage US is applied to the substrates 10 to be coated during the coating with the aid of the voltage supply 13. It serves to control the ion bombardment of the substrates 10 during the coating.
  • the positive portion of the substrate voltage causes a discharge of the surface charged by the previous ion bombardment on electrically insulating substrate surfaces.
  • the duration of the positive pulses is To do this, keep it smaller or equal to the duration of the negative pulses. If the temperature load on the substrates is to be kept low, the voltage amplitude of the positive pulses should be selected to be significantly lower than that of the negative pulses.
  • layer systems can be built up on the substrates 10 with a multiplicity of layers, each with different layer properties.
  • hard, wear-resistant, corrosion-resistant and low-friction layers can be produced.
  • the adhesion of layers, in particular hard layers or of layers with high mechanical internal stresses can often be further improved by using suitable intermediate layers.
  • the formation of gradient layers has proven to be particularly advantageous, as they allow a smooth transition in terms of their mechanical properties, in particular hardness and elasticity, towards the functional layer.
  • an amorphous carbon layer to a steel substrate is improved by the use of an interlayer system consisting of metallic and modified metal-containing carbon layers which are gradually converted into one another by suitable process control.
  • Such metal-containing carbon layers can be applied in a simple manner by reactive sputtering of metal.
  • argon (Ar) should be added as a further gas.
  • adhesive layer systems based on amorphous silicon or silicon carbon layers can be used.
  • silanes and siloxanes are suitable as reactive gases for the deposition of such layers.
  • the following process parameters were set: reactive gas: acetylene with a flow rate of 300 standard cm / min, recipient pressure: 3xl0 "3 mbar, microwave power: 1 kW, electrical power: 1 kW, substrate voltage: bipolar pulsed, positive pulses: 10 ⁇ sec, negative pulses: 10 ⁇ sec.
  • the layer produced had a microhardness of 35 Gpa with an elastic modulus of 165 GPa.
  • the coefficient of friction against steel (100Cr6) was 0.12 in dry running under room conditions. Such a layer is particularly suitable By varying the electrical power between 200 W and 2 kW, the layer hardness could be varied in the range from 10 GPa to 42 GPa.
  • the layer adhesion could be further improved.
  • the Schichabscheidungsrate settled wavelength-by varying the micro 'erformance between 0.6 kW and 1.1 kW and the acetylene lengasles 100-450 standard cm ⁇ / min control.
  • Plasma purification by a known method after introducing the substrates 10 into the recipient 12 and evacuating also proved to be advantageous.
  • a silicon-containing reactive gas at the beginning of the coating process for the purpose of separating an adherent mediating layer, the layer adhesion could be further improved.
  • amorphous carbon layers can be adjusted, for example, by means of the hydrogen content or by doping with regard to their optical and electrical properties over a broad spectrum from absorption and black color to transparency or from conductivity to insulating effect.
  • the layers are therefore suitable for applications with optical and electrical requirements, for example as an electrically insulating layer, as a transparent scratch protection layer, as a decorative wear-resistant layer or as a black matrix layer in the display.
  • a metal-free amorphous carbon layer 2.5 ⁇ m thick could be applied to a steel (100Cr6) substrate as corrosion protection.
  • the system was cleaned in order to remove loose particles and to prevent flaking of layers from previous coating cycles and thus to ensure a pore-free layer build-up.
  • the process parameters were chosen as in the previous example, but a lower working pressure of l-2xl0 "3 mbar was set in order to reduce the effect of particle formation.
  • FIGS. 1 and 2 are suitable for generating from a
  • Such multilayer layers are characterized by particularly low residual stresses with great hardness.
  • This technique can be used for amorphous carbon and silicon layers.
  • the multi-layer construction from one Individual layers are realized by periodically varying the substrate tension. If the substrate tension is reduced, softer layers are produced, and if they are increased, harder layers.
  • the layer structure can be varied from graphitic layers, corresponding to a substrate voltage of 0 volt, to layers with hardnesses of over 50 GPa.
  • the duration of the individual pulses of the substrate voltage is adapted to the layer growth rate in such a way that individual layers between 1 nm and 2 ⁇ m, preferably 5 nm to 200 nm, are deposited.
  • the transition between the individual layers is brought about by an abrupt change in the substrate voltage.
  • the substrate tension can be varied slowly, so that there is a continuous transition between the individual layers.
  • Process parameter control can be provided in such a way that the resulting multilayer composite consists of a large number of different individual layers.
  • a variation of the microwave power coupled in via the microwave source 15 or the amount of the gas supplied can be provided. Both result in a variation of the plasma density and the working pressure and thus the ion energy distribution, which has to be set specifically for the desired layer properties.
  • a variation of the process parameters for producing a multilayer structure from many individual layers can also be brought about by dividing the recipient interior 21 into partial volumes with different plasma densities, by periodically moving the substrates 10 to be coated through the different partial volumes one after the other.
  • Such an interior arrangement of the recipient can be achieved, for example, as indicated in FIG. 2, by means of diaphragms
  • the thickness of the individual layers can be controlled by the partial volumes via the frequency of rotation of the substrates.
  • a division of the recipient interior 21 into partial volumes can alternatively also be achieved by simultaneous use of different plasma sources, such as microwave source (s) and hollow cathode (s) or different microwave sources placed at different locations of the recipient 12.
  • different plasma sources such as microwave source (s) and hollow cathode (s) or different microwave sources placed at different locations of the recipient 12.
  • a modified metal-containing carbon layer is chosen as the softer of two individual layers.
  • the partial layers are applied in a known manner by reactive magneton sputtering.
  • a suitable, modified arrangement is shown in FIG. 3. It differs from an arrangement according to FIGS. 1 and 2 by an additional magnetron sputtering source 17, which, as indicated in the figure, can be arranged laterally in the recipient wall.
  • silane or siloxane with 20 standard c ⁇ rVmin is supplied as an additional reactive gas.
  • the silane or Si-containing gas as an additional reactive gas leads to the incorporation of a few atomic percent silicon in the deposited layer. It reduces the internal layer stresses and influences the wetting behavior with regard to different liquids. In this way, especially control the behavior of a coated substrate in tribological contact.
  • the gas flow of the Si-containing gases is chosen to be larger than that of acetylene.
  • a hydrogen-containing silicon layer with carbon as an additional component is deposited.
  • the application of a modified silicon adhesive layer has proven itself.
  • the proportion of acetylene in the reactive gas is chosen to be zero, so that an amorphous, hydrogen-containing silicon layer (a-Si: H) is deposited.
  • a-Si: H amorphous, hydrogen-containing silicon layer
  • Such a layer is suitable as a wear protection layer. It can be modified further.
  • a stoichiometric connection can be separated by adding an appropriate component. An example of this is the deposition of hydrogen-containing silicon nitride (SiN) by adding nitrogen to the reactive gas.
  • the resulting layer is characterized by high wear resistance and electrical insulation.
  • layers can also be produced for other applications, for example layers for the construction of electrical semiconductor elements. The required electrical properties can be set via the process parameters, for example via the hydrogen content and doping. An insulating effect is achieved by depositing an insulating connection.
  • Such layers are suitable, for example, for the production of solar cells or Fiat panel displays, in which the possibility of large-scale deposition offers a great advantage.
  • the transparent, scratch-resistant or even electrically conductive coating of glass, solar cells and displays represents another area of application for these layers.
  • acetylene which has the advantage that it is often possible to achieve higher deposition rates than with other hydrocarbon-containing reactive gases
  • other carbon-containing reactive gases can also be used in the above-mentioned exemplary embodiments. To do this, the process parameters must be adapted to the changed conditions.
  • Figure 4 shows a modified arrangement for performing the proposed method. It differs from the arrangement shown in FIGS. 1 and 2 with regard to the means for generating the coating plasma 20.
  • a hollow cathode 18 now serves as the plasma source, which is arranged laterally on the recipient 12 and is shaped as a hollow cylinder. The gas is introduced into the recipient interior 21 through the cylindrical hollow cathode 18.
  • the advantage of the arrangement is the high degree of excitation and thus the high effectiveness of the plasma generation.
  • the hollow cathode 18 consists of two mutually parallel plates, the length of which is adapted to the size of the recipient 12.
  • acetylene is used as the reactive gas, such an arrangement can be used to deposit diamond-like carbon layers at rates significantly greater than 5 ⁇ m / h onto moving substrates 10 in batch sizes customary in industry.
  • the gas pressure is increased, the use of CH or mixtures of different hydrocarbon-containing reactive gases can be useful to avoid particle formation.
  • the layer properties are in turn adjusted by varying the substrate voltage via the voltage supply 13.
  • the substrates 10 can be put in place a DC voltage is applied to an AC voltage.
  • FIG. 5 A further modified arrangement for carrying out the method, which is particularly suitable for the deposition of carbon layers, is shown in FIG. 5. It differs from the arrangement shown in FIGS. 1 and 2 again in terms of the means for generating the plasma 20.
  • the plasma is generated here by a high-current arc, which is ignited between a carbon target 19 arranged in the side wall of the recipient 12 and an anode (not shown), and by a sputter cathode 17 arranged in the opposite side wall.
  • Advantage of the high-current arc is the high degree of ionization of the released carbon. Since no hydrogen-containing gases are required to introduce the carbon, the resulting layer deposited on the substrates 10 is hydrogen-free and therefore particularly temperature-resistant.
  • Such hydrogen-free carbon layers have a hardness of up to 80 GPa.
  • graphitic macroparicles formed during arc evaporation are also deposited on the substrates 10. The effect can be desirable since the macroparticles are suitable, for example, as lubricant deposits built into the layer.
  • the formation of macroparticles can be suppressed, a simultaneous increase in the arc current increasing the suppression.
  • An almost complete suppression of macroparticles can be achieved by magnetically redirecting the ions generated by the arc evaporation onto the substrates 10. The uncharged macroparticles hit a baffle plate and are kept away from the layer deposition.
  • the bearing device can alternatively be such that the substrates are stationary during the coating. This can be advantageous, for example, due to increased deposition rates or achievable layer properties.
  • the substrates can also be moved clocked, so that they are each immobile at different times in different spatial areas of the recipient.
  • the coating can also be carried out in a facility that is part of a larger network of facilities.
  • the substrates are moved from device to device with or without interrupting the vacuum, one or more treatment steps being carried out in each individual device.
  • Figure 6 shows an example of a linear arrangement of devices in the form of a continuous system.
  • the substrates 10a, 10b which are mounted in a rotating or fixed manner, are passed through the various devices by means of a suitable b linear translator indicated by an arrow, for example a magnetron sputter source 17 and three microwave sources 15 as shown in FIG. 6, and are experienced in each device 17 , 15 corresponding treatment or coating steps.
  • sequential sequencing can include: plasma etching, adhesive layer deposition and main layer deposition.
  • the substrates can be moved, unmoved, or clocked and moved.
  • treatment of lying or standing substrates can be carried out.
  • a horizontal arrangement of the substrates is possible for the treatment of foils or glass.
  • FIG. 7 shows, as a further example of a facility network, a multi-chamber system with two recipients 12 connected via vacuum-tight lock doors 24, between which substrates 10 to be coated back and forth can be transported.
  • a microwave source 15 in a drawing patient there is a microwave source 15 in a drawing patient, and a magnetron sputtering source 17 in the other.
  • the substrate holder can also be designed as a rotating basket which slowly moves around a plasma source.
  • the device according to the invention can advantageously be used to produce a multilayer structure from alternating individual layers. Compared to single layers of the same thickness, multilayer structures can be deposited with a lower internal stress. This reduces the tendency towards shift detachment.
  • Multi-layer structures which consist of alternating hard material and carbon individual layers, are particularly advantageous.
  • a combination of one type of hard material layer and one type of carbon layer are preferably combined with respect to the composition, each of which is selected from a large number of representatives of the two layer types.
  • the production of the layers of the multilayer structure mentioned is carried out in the same way as for the production of individual layers.
  • a difference in the method results from the fact that alternately alternating layers have to be applied.
  • the samples are pre-cleaned and placed in a recipient, as shown in simplified form in FIG. 3. This is evacuated to a pressure of less than about 10 ⁇ 4 mbar.
  • the samples are then cleaned in the plasma, for example by plasma glow. Then the layers are applied. So that alternating
  • the devices illustrated with reference to FIGS. 1 to 7 can be used to carry out the method.
  • the sources can be arranged in any way, for example - like the sputter cathode in FIG. 3 - on the recipient wall or inside the recipient. If necessary, the devices shown in FIGS. 3 and 5 can be modified, for example by installing an additional sputtering cathode (see below).
  • a first layer is deposited on the sample.
  • the layer thickness depends on the coating rate of the source and the speed of the sample.
  • the sample is then guided past a second source and a second layer is applied in the process. Then the sample is again guided past the first source and coated, etc. This movement relative to different sources and the cyclic coating carried out thereby, with a suitable choice of the coating rate and the speed of the sample, deposit the desired multilayer structure.
  • the operating parameters depend on the sources used.
  • Sputter cathodes are operated in particular in a pressure range of 1-3x10 mbar, which is set by inlet of Ar or another noble gas.
  • the hard material layers are preferably produced by sputtering of sputtering targets composed like the desired layer or by reactive sputtering.
  • evaporation in the arc (Are) can be used for the deposition.
  • carbon-containing gases such as acetylene or methane, but also graphite targets made of metal carbon, are used as carbon donors for the hard material layer as well as for the carbon layers.
  • the power with which the cathodes are operated is preferably between 2 kW and 20 kW per cathode.
  • the coating rate can be set by power control, which is important because the sources consist of different materials and a multilayer structure is sought in which the individual layers have approximately the same layer thicknesses.
  • the multilayer structure can also be constructed from alternating hard material and silicon individual layers.
  • the structure in which the silicon layer can have the above-mentioned compositions has the advantages also mentioned above.
  • the same methods and devices can be used in the manufacture - with regard to the targets and the reactive gases - as for the structures consisting of alternating hard material and carbon single layers.
  • the multilayer structure consists of metal carbide (MeC) and metal-containing carbon (C- (MeC)).
  • Advantageous metals include tungsten (W), chromium (Cr) and titanium (Ti).
  • the thicknesses of the individual layers are between approximately 3 and approximately 5 nm and the total layer thickness is between approximately 2 and 3 ⁇ m.
  • the multilayer system is applied to a steel or hard metal substrate, such as a component or a tool.
  • the structure is produced by reactive sputtering of targets on the one hand from metals (Me) and on the other hand from metal carbides (MeC) in an atmosphere consisting of a mixture of noble gas, such as argon, as sputtering gas and a carbon-containing gas, such as acetylene and methane , exists as a reactive gas.
  • the layers can be deposited using a device which differs from that shown in FIG. 3 by an additional sputter cathode.
  • the gas flow is adjusted in a known manner so that in one process step the metal target MeC and in the next step the MeC target C- (MeC) is sputtered, and in the next but one step again from the metal target MeC etc. until the required total layer thickness is reached.
  • the multilayer system consists of C- (MeC) as hard material, the metal is preferably tungsten, and of metal-free amorphous hydrogen-containing carbon (a-C: H).
  • the layer thicknesses are in the same ranges as in the first embodiment.
  • the C (MeC) layer is produced by means of reactive sputtering - for example - of a WC target, the additional carbon being supplied by acetylene or methane.
  • the a-C: H layer is obtained by means of one of the plasma sources described above, such as an RF source, an MW source (see FIG. 3) or a hollow cathode source (see FIG. 4) in the atmosphere containing acetylene or methane.
  • the deposition of the multilayer structure can be carried out with the device shown in FIG. 3 or with a device which differs from that shown in FIG. 4 by an additional sputter cathode.
  • Example 3 The multilayer system consists of a metal (Me) as hard material and aC: H.
  • the metal is preferably selected from those mentioned in Example 1.
  • the layer thicknesses are in the same ranges as in the first embodiment.
  • Two separate gas spaces are required to apply the layers, so that the metal can be applied by sputtering or vapor deposition of metal in a non-carbon-containing atmosphere and aC: H in an atmosphere containing methane or acetylene.
  • the production of the multilayer structure can be carried out with devices which work similarly to those shown in FIGS. 6 and 7, wherein a separation of the gas spaces is also possible with the device shown in FIG. 6, although not shown. So that a plurality of sources are not required for each layer, configurations of the devices are advantageous in which the samples are returned to the beginning of the device after the application of the first two layers and the application of another two layers is then repeated, etc.
  • the alternating layers consist of a metal carbide (MeC) as hard material and aC: H.
  • the metals are preferably selected from those mentioned in Example 1.
  • the layer thicknesses are in the same ranges as in the first embodiment.
  • the MeC layer is deposited by reactive sputtering from a target consisting of the Me in an atmosphere containing acetylene.
  • the aC: H layer. is obtained by means of one of the plasma sources described above, such as an RF source, an MW source (see FIG. 3) or a hollow cathode source (see FIG. 4) in the atmosphere containing acetylene.
  • the deposition of the multilayer structure can be produced with the device shown in FIG. 3 or with a device which differs from that shown in the figure by an additional sputter cathode.
  • the multilayer system consists of a metal nitride (MeN) as hard material, the metals being preferably titanium or chromium, and of a-C: H.
  • the layer thicknesses are in the same ranges as in the first embodiment.
  • the deposition of the MeN layer is achieved either by sputtering from a MeN target or by reactive sputtering from a Me target, a nitrogen-containing gas being used as the reactive gas and the atmosphere being separated from the carbon-containing atmosphere in which the aC: H layer is deposited.
  • the production of the multilayer structure can be carried out with devices which work similarly to those shown in FIGS. 6 and 7. Reference is made to Example 3 for the details.
  • the multilayer system consists of a metal carbonitride (MeCN) as hard material, the metals preferably being titanium or chromium, and of aC: H.
  • a metal carbonitride MeCN
  • a carbon-containing gas is used to deposit the aC: H layer.
  • the reactive gas used in reactive sputtering in the second alternative can also be used, while in the first alternative the aC: H layer is deposited in a gas space that is separate from the sputtering atmosphere and contains a carbon-containing but nitrogen-free reactive gas.
  • the deposition corresponding to the first alternative can - as in example 3 - be carried out with devices which operate similarly to those shown in FIGS. 6 and 7, reference being made to example 3 for the details.
  • the Deposition according to the second alternative can be carried out with the device shown in FIG.
  • the carbon layer consists of a-C instead of a-C: H.
  • the hard material layer is preferably sputtered from a target which, depending on the desired composition of the hard material layer, consists of Me, MeC, MeN or MeCN, and the a-C layer is sputtered from a graphite target or generated by means of a carbon arc.
  • the multilayer structure can be deposited by means of the device shown in FIG. 5 or by a device which differs from that shown in FIG. 5 in that a graphite target is used instead of the carbon target 19 is provided.
  • the above-mentioned examples can be modified such that appropriate silicon layers are produced instead of the carbon layers and the carbon in the hard material layer is optionally replaced by silicon.
  • silicon layers are produced instead of the carbon layers and the carbon in the hard material layer is optionally replaced by silicon.
  • Si H- create existing multilayer structures, as described in Examples 3 and 4.
  • hard material layers and also the carbon or silicon layers do not all consist of the same material and / or in which a carbon layer, with a hard material layer containing silicon or silicon and carbon, or one Silicon layer is combined with a hard material layer containing carbon or carbon and silicon.

Abstract

Vorgeschlagen wird ein Verfahren zum Vakuumbeschichten eines Substrates mit einem Plasma-CVD-Verfahren. An das Substrat ist zur Steuerung des Ionenbeschusses während der Beschichtung eine unabhängig vom Beschichtungsplasma (20) erzeugte Substratspannung (US) angelegt, die während der Beschichtung verändert wird. Bei der Substratspannung (US) handelt es sich zweckmäßig um eine bipolar gepulste Gleichspannung mit einer Frequenz von 0,1 kHz bis 10 Mhz. Vorgeschlagen wird außerdem eine verschleißfeste und reibmindernde Multilagenstruktur aus alternierenden Hartstoff- und Kohlenstoff- oder Siliciumeinzelschichten.

Description

Verfahren und Einrichtung zum Vakuumbeschichten eines Substrates
Stand der Technik
Die Erfindung geht aus von einem Verfahren nach der Gattung des Hauptanspruchs . Ein Verfahren dieser Art ist bekannt aus der DE-C 195 13 614. Danach erfolgt die Beschichtung eines Substrates mit amorphen Kohlenstoffschichten durch Anlegen einer bipolaren Spannung, deren positive und nega- tive Pulsdauern getrennt voneinander einstellbar sind, an das Substrat. Während der Abscheidung ist die positive Pulsdauer kleiner als die negative Pulsdauer, die Pulsfrequenz liegt im Bereich von 5 bis 100 kHz. Zur Verbesserung der Haftung der erzeugten amorphen KohlenstoffSchicht auf dem Substrat ist vorgesehen, eine modifizierte, metallhaltige KohlenstoffZwischenschicht aufzubringen. Bei diesem bekannten Verfahren werden Plasmaerzeugung und lonenbeschuß der aufwachsenden Schicht gemeinsam durch die angelegte bipolare Spannung realisiert und sind nicht einzeln kontrol- lierbar. Für viele Schichtqualitäten ist die
Schichtabscheidung mit diesem Verfahren deshalb auf ein vergleichsweise enges Prozeßfenster beschränkt.
Aus der Deutschen Patentanmeldung AZ 196 09 804.1 ist ein Verfahren zum Plasmabeschichten von Schüttgut bekannt, bei dem sich ein Drehkorb langsam um eine Plasmabeschichtungs- quelle herumbewegt . An den Drehkorb ist eine Spannung anlegbar, um das zu beschichtende Schüttgut auf ein elektrisch negatives Potential zu bringen. Innerhalb des Drehkorbes befinden sich Mittel zur Erzeugung eines Reinigungs- plasmas, mittels dessen das Schüttgut vor Beginn der
Schichtabscheidung gereinigt wird. Das Reinigungsplasma wird dabei unabhängig von der an den Drehkorb und das Schüttgut angelegten Spannung erzeugt. Eine negative elektrische Aufladung des zu beschichtenden Schüttgutes ist allgemein auch für den nachfolgenden Beschichtungsschritt vorgesehen. Weitere Angaben zur Art und Weise, wie die negative Aufladung erfolgen soll, sind nicht offenbart.
Ein Verfahren zur Herstellung von harten, amorphen Kohlen- stoffschichten ist in R.S. Bonetti, M. Tobler, Oberfläche und JOT, Heft 9, 1988, S.15, beschrieben. In einem plasmaunterstützten CVD-Verfahren werden Plasmaerzeugung und negative Substratvorspannung gemeinsam durch eine an die Substrate gelegte Radiofrequenz (RF) -Leistungsversorgung realisiert. Das Substratpotential gewährleistet den zur Abscheidung von dichten, harten und damit verschleißfesten Schichten notwendigen lonenbeschuß. Hierzu muß das Verhältnis zwischen der Oberfläche der zu beschichtenden Teile und der Innenwandfläche des Rezipienten vorzugsweise kleiner als 1 sein, was die Beladungsdichte und Hochskalierbarkeit des Verfahrens für industielle Chargengrößen in unerwünschter Weise limitiert. Einen weiteren Nachteil stellt die notwendige, beladungsabhängige Anpassung der RF-Einkopplung dar.
Es ist Aufgabe der vorliegenden Erfindung, ein für industrielle Chargengrößen einsetzbares, hochskalierbares Verfahren sowie eine Einrichtung zu seiner Durchführung anzugeben, das es gestattet, Substrate gleichmäßig und mit ho- hen Raten zu beschichten und eine verschleißfeste und reibmindernde Multilagenstruktur anzugeben. Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Hauptanspruchs . Durch die Trennung der Substratspannungserzeugung von der Plasmaerzeugung erlaubt das er- findungsgemäße Verfahren eine gezielte Einflußnahme auf die physikalischen Eigenschaften der erzeugten Schichten. Beeinflussen lassen sich unter anderem die Schichthärte, die Abrasionsbeständigkeit, die Elastizität der Schicht und die Schichteigenspannung. Beschichtbar sind insbesondere auch Substrate mit komplexen Geometrien. Die Trennung von Plasmaerzeugung und Substratspannungerzeugung erlaubt dabei eine Regelung der Substrattemperatur. Dadurch kann die
Schichtabscheidung vielfach bei Temperaturen von 200 °C und darunter erfolgen. Als Substratspannung wird vorteilhaft eine gepulste bipolare Gleichspannung eingesetzt, die hinsichtlich Größe und Dauer des Negativenimpulses, Größe und Dauer des Positivimpulses, sowie der spannungsfreien Zwischenintervalle bzw. Pausenzeiten änderbar ist. Zur Erweiterung der möglichen erzielbaren Schichten ist zweckmäßig der Zusatz von verschiedenen Prozeßgasen in jeweils geeigneter Mischung und Abfolge vorgesehen.
Durch die Trennung von Plasmaerzeugung und Substratspannungserzeugung ist eine zur Durchführung des Verfahrens ge- eignete Einrichtung nicht auf die Verwendung einer bestimmten Plasmaerzeugungsquelle eingeschränkt. In Betracht kommen vielmehr alle plasmaerzeugenden Quellen wie beispielsweise Mikrowellenquellen, Hochfrequenzquellen, Hohlkathode oder Hochstro bogen. Als Netzteil zur Erzeugung der Sub- stratspannung dient zweckmäßig ein bipolar gepulstes
Gleichspannungsnetzteil mit der Möglichkeit zur Unterlagerung einer Gleichspannung und zur Realisierung spannungsfreier Pausenzeiten. Vorteilhaft sind in der Beschichtungs- kammer Blenden vorgesehen, die einen Teil der Beschich- tungskammer abschirmen. Durch Bewegung der zu beschichtenden Teile durch die damit entstehenden Teilvolumina unter- schiedlicher Plasmadichten lassen sich die Eigenschaften der erzeugten Schichten auf einfache Weise beeinflussen.
Beachtliche Vorteile hat eine erfindungsgemäß hergestellte Mul- tilagenstruktur bestehend aus alternierenden Hartstoff- und harten Kohlenstoffschichten, wobei die letzteren gegebenenfalls zusätzlich Wasserstoff und/oder Silicium und/oder Metall enthalten. Bei der Struktur wirken die Verschleißfestigkeit des Hartstoffs und insbesondere die hervorragende Verschleißfestig- keit und reibmindernde, schmierende Wirkung des erfindungsgemäß hergestellten harten Kohlenstoffs mit den Multilagenstrukturei- genschaften synergistisch zusammen. Die Multilagenstruktur hat z.B. eine höhere Härte als die Einzelschichten, aus denen sie besteht. Die Multilagenstruktur ist außerdem duktiler und ela- stischer als eine Einzelschicht vergleichbarer Härte.
Die erfindungsgemäß hergestellten Multilagenstrukturen sind aufgrund des synergistischen Zusammenwirkens der o.g. Eigenschaften bei neuartigen Anwendungsfeldern vorteilhaft einsetz- bar. So sind sie generell geeignet als Korrosions- und Verschleißschutz für tribologisch hochbelastete Bauteile und dabei insbesondere als Verschleißschutz von Bauteilen im Trockenlaufund Mangelschmierungsbereich. Die Multilagenstrukturen eignen sich beispielsweise als schmierende Verschleiß- und Korrosions- Schutzschicht für zerspanende und umformende Werkzeuge, deren
Lebensdauer dadurch beachtlich erhöht wird, sie ermöglichen die Trockenbearbeitung oder die Bearbeitung bei Minimalschmierung durch mit ihnen beschichtete Werkzeuge, so daß man auf Kühlschmierstoffe ganz verzichten oder zum mindesten die erforder- liehe Menge stark vermindern kann. Darüber hinaus läßt sich durch die Beschichtung mit den genannten Multilagenstrukturen der Korrosionsschutz von Bauteilen in aggressiven Medien verbessern, und, wenn beschichtete Werkzeuge eingesetzt werden, die Bearbeitungsgeschwindigkeit und die Bearbeitungsqualität von Bauteilen erhöhen. Es ist vorteilhaft, wenn die KohlenstoffSchicht aus amorphem wasserstoffhaltigem Kohlenstoff (a-C:H im folgenden), amorphem wasserstoffreiem Kohlenstoff (a-C) , siliciumhaltigem (wasserstoffhaltigem oder wasserstoffreiem) Kohlenstoff oder metallhaltigem (wasserstoffhaltigem oder wasserstoffreiem) Kohlenstoff (C-(MeC)) besteht, wobei das Metall aus den harten Nebengruppenmetallen ausgewählt ist. Diese Auswahl ermöglicht es dem Anwender, flexibel auf gestellte Anforderungen bezüglich der Schmierwirkung und der Härte der Kohlenstoffschicht und (s.o.) auf etwaige Anpassungsschwierigkeiten an die Hartstoffschicht zu reagieren.
Alternativ können in die Multilagenschicht statt der Kohlenstoffschicht auch Siliciumschichten, die gegebenenfalls zusätz- lieh Wasserstoff und/oder Kohlenstoff und/oder Metall enthalten, eingebaut werden. Diese haben zwar keine Schmierwirkung, sie sind jedoch auch durch hohe Härte (wenn sie auch in der Tendenz etwas weicher als Kohlenstoffschichten sind) und niedrige Reibwerte ausgezeichnet. Als besonderer Vorteil ist die geringe Abhängigkeit der Schichteigenschaften, insbesondere des Reibwerts, von der Umgebungsfeuchte zu nennen.
Es ist vorteilhaft, wenn die Siliciumschicht aus amorphem wasserstoffhaltigem Silicium (a-Si:H im folgenden), amorphem was- serstoffreiem Silicium (a-Si) , kohlenstoffhaltigem
(wasserstoffhaltigem oder wasserstoffreiem) Silicium oder metallhaltigem (wasserstoffhaltigem oder wasserstoffreiem) Silicium (Si-(MeSi)) besteht. Diese Auswahl ermöglicht es - wie beim Kohlenstoff - insbesondere flexibel auf gestellte Anforde- rungen zu reagieren.
Eine Multilagenstruktur aus harten Schichten, schmierenden Schichten und gegebenenfalls oxidationsresistenten Schichten, wobei die Eigenschaften der Struktur durch die Kombination der Eigenschaften der Einzelschichten bestimmt ist, ist in dem US- Patent 4,619,865 beschrieben, aber harte Kohlenstoff- bzw. Si- liciu schichten bzw. die genannten Metalle enthaltende harte Kohlenstoff- bzw. Siliciumschichten werden in dem Patent nicht, insbesondere nicht als reibmindernde Schichten beschrieben.
Bevorzugt bestehen die Einzelschichten bezüglich der Zusammensetzung aus einer Art oder mehr Arten der Hartstoffschicht und einer Art oder mehr Arten der Kohlenstoff- bzw. der Silicium- schicht, wobei am bevorzugtesten die Einzelschichten aus einer Art der HartstoffSchicht und aus einer Art der Kohlenstoff- bzw. der Siliciumschicht bestehen.
Um die Vorteile der Multilagen optimal auszunutzen, ist es günstig, wenn die Dicken der Einzelschichten zwischen etwa 1 und etwa 10 nm und bevorzugt zwischen etwa 2 und etwa 5 nm liegen und wenn die Gesamtdicke der Struktur zwischen etwa 1 und etwa 10 um, und bevorzugt zwischen etwa 1 und 4 μm liegt.
Es ist vorteilhaft, wenn die Hartstoffschicht aus einem Metall (Me im folgenden) , einer Metallverbindung, Metallcarbid enthal- tendem Kohlenstoff (C-(MeC), Metallsilicid enthaltendem Silicium (Si-(MeSi)), wobei bei den beiden letzteren Materialien die angestrebte Härte u.a. beispielsweise durch eine entsprechende Wahl des Metalls erreicht wird, oder Mischungen aus mindestens zwei der genannten Materialien besteht. Diese Auswahl ermög- licht es dem Anwender flexibel auf gestellte Anforderungen bezüglich der Härte der Harstoffschicht und auf etwaige Anpas- sungsschwierigkeiten an die Kohlenstoffschicht bzw. die Siliciumschicht zu reagieren und - wenn vorteilhaft - die Schicht auch noch mit einer gewissen reibmindernden Wirkung auszustat- ten.
Günstige Kombinationen von Hartstoffschicht und Kohlenstoff- schicht sind gegeben, wenn die Hartstoffschicht aus Me, einem Metallcarbid (MeC) , einem Metallnitrid (MeN) , einem Metallsili- cid (MeSi) , einem Metallcarbonitrid (Me(CN)), einem Metallcar- bosilicid (Me(CSi)) oder einem Metallsiliconitrid (Me(SiN)) und die Kohlenstoffschicht aus a-C:H oder a-C besteht, wenn die Hartstoffschicht aus C-( C) und die Kohlenstoffschicht aus a- C:H besteht, wobei die Hartstoffschicht wegen der Beteiligung von Wolfram eine große Härte zeigt, aber wegen des nicht chemisch an Metall gebundenen Kohlenstoffanteil auch über eine beachtliche Schmierwirkung verfügt, und wenn die Hartstoffschicht aus MeC und die Kohlenstoffschicht aus C-(MeC) besteht, wobei die Härte - allerdings auf Kosten der Schmierwirkung - besonders ausgeprägt ist.
Günstige Kombinationen von Hartstoffschicht und Siliciumschicht sind gegeben, wenn die Hartstoffschicht aus Me, MeC, MeN, MeSi, Me(CN), Me(CSi) oder Me(SiN) und die Siliciumschicht aus a-Si:H oder a-Si besteht.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens der erfindungsgemäßen Einrichtung und der erfindungsgemäßen Multilagenstruktur sind in Unteransprüchen offenbart.
Unter Bezugnahme auf die Zeichnung wird die Erfindung nachfolgend anhand von Ausführungsbeispielen näher beschrieben.
Zeichnung
Es zeigen Figur 1 eine Einrichtung zur Plasma-CVD-Beschich- tung von Substraten in Seitenansicht, Figur 2 dieselbe Einrichtung in Draufsicht, Figuren 3 bis 5 Varianten zu der in Figur 1 dargestellten Einrichtung, Figur 6 eine als Durchlaufanlage ausgeführte Einrichtung, Figur 7 eine Mehrkam- mereinrichtung.
Beschreibung
Figur 1 zeigt eine Einrichtung zur Durchführung des vorge- schlagenen Verfahrens. Sie umfaßt einen Vakuu rezipienten
12, in dem eine Lagereinrichtung 11 angeordnet ist, auf der sich zu beschichtende Substrate 10 befinden. Die Substrate 10 sind elektrisch an eine außerhalb des Rezipienten 12 angeordnete Spannungsversorgung 13 gekoppelt. Die Lagereinrichtung 11 ist so ausgeführt, daß die Substrate 10 während der Beschichtung gleichförmig rotiert werden können, beispielsweise wie in Figur 1 angedeutet, in Form einer Drehscheibe. Es kann vorgesehen sein, die Substrate über entsprechende Vorrichtungen zusätzlich um weitere Drehachsen zu drehen. Als Spannungsversorgung 13 dient eine bipolare Gleichpulsquelle mit der Möglichkeit der zusätzlichen Überlagerung eines Gleichspannungspotentiales . Sie gestattet das Anlegen gepulster uni- oder bipolarer Gleichspannungspotentiale von bis zu mehreren kV mit Frequenzen von 0,1 kHz bis 10 Mhz, wobei Länge und Höhe der positiven und ne- gativen Pulse getrennt voneinander einstellbar sind und spannungsfreie Pausenzeiten realisierbar sind. Der Vakuum- rezipient 12 verfügt über ein Gaseinlassystem 14, über das Gase in seinen Innenraum eingebracht werden können. Des weiteren besitzt der Rezipient 12 ein Pumpensystem 23 zu seiner Evakuierung. Am Rezipienten 12 befindet sich weiter eine Mikrowellenquelle 15 zur Einkopplung von Mikrowellen in den Rezipienteninnenraum 21, wo sie ein Plasma 20 erzeugen. Sie ist beispielsweise als Quarzfenster mit mit Hohlleiterstrahler oder mit Antennenkonfigurationen ausgebil- det. Im Rezipienteninnenraum 21 befinden sich Magnete 16, die wie in Figur 1 angedeutet als Magnetbänke ausgeführt sein können. Sie bewirken eine gleichmäßige Verteilung des mit Hilfe der Mikrowellenquelle 15 erzeugten Plasmas 20 im Rezipienteninnenraum 21 und sind entsprechend angeordnet.
Die Anordnung der Plasmaquelle 15 erfolgt entsprechend konstruktiven und prozeßtechnischen Randbedingungen. Sie kann hierzu, wie in Figur 1 angedeutet, mittig in Bezug auf die Lagereinrichtung 11, an einer Wandseite oder verteilt über den Rezipienten 12 erfolgen. Bei mittiger Anordnung ergibt sich ein im wesentlichen zentralsymmetrisches Plasma 20, das für eine gleichmäßige Beschichtung der nach innen weisenden Substratflächen sorgt, während die Beschichtungsrate der nach außen weisenden Flächen geringer ist und dort zur Abscheidung von Schichten anderer Qualität führt. Bei an einer Seitenwand des Rezipienten 12 angeordneter Plasmaquelle ergibt sich die umgekehrte Situation. Es können auch Plasmaquellen innen und außen kombiniert werden, um Schichten mit wieder anderer Qualität und anderen Eigenschaften zu erzeugen. Im Rezipienten 12 können weiterhin Blenden 22 vorgesehen sein, welche die Ausbildung eines
Plasmas in einem Teil des Rezipienteninnenraums 21 verhindern. Dadurch lassen sich im Rezipienteninnenraum 21 unterschiedliche Beschichtungsbedingungen zur Herbeiführung unterschiedlicher Einzelschichten erzeugen. Die zu beschich- tenden Substrate 10 werden dazu, wie in Figur 2 durch Pfeile angedeutet, durch die Teilvolumina des Rezipienteninnenraums 21 mit den unterschiedlichen Plasmabedingungen bewegt. In Folge ergeben sich damit steuerbare Eigenschaften der aufwachsenden, aus einzelnen oder zahlreichen Einzel- schichten als Mehrfach- oder Multilagenschicht bestehenden Gesamtschicht .
Der Betrieb der in den Figuren 1 und 2 wiedergegebenen Anlage erfolgt, indem im Rezipienteninnenraum 21 nach Evaku- ierung mittels des Pumpensystems 23 auf einen Restdruck von typischerweise 10-^ mbar . Zweckmäßig werden die zu beschichtenden Substrate 21 sodann zunächst vorkonditioniert, z.B. durch Erwärmen, Reinigen durch Plasmaätzen und Vorbeschichten zur Haftungsverbesserung der nachfolgend aufge- brachten Schicht. Anschließend wird über das Gaseinlaßsystem 14 ein Gas in den Rezipienten 21 eingeleitet und mit Hilfe der Mikrowellenquelle 15 ein Plasma 20 erzeugt. Dabei entstehen besondere Plasmabedingungen, wenn die Gase durch die Plasmaquelle hindurch oder nahe der Plasmaquelle in den Rezipienten eingeleitet werden, beispielsweise ergibt sich eine räumlich erhöhte Plasmadichten und/oder ein erhöhter Gasumsatz. Als Gase eignen sich eine Reihe von Gasen und Gasgemischen. Reaktive Gase zur Aufbringung kohlenstoffhaltiger Schichten sind beispielsweise Kohlenwasserstoffe CχHγ, insbesondere C2H2 und CH4 Zur Aufbringung silicium- haltiger Schichten eignen sich Silane und Siloxane, insbesondere SiH4 und HMDS, HMDS(O), HMDS(N), TEOΞ, TMS . Zur Erzeugung und Aufrechterhaltung des Plasmas 20 werden Edelgase, etwa Argon, Neon oder Helium eingesetzt. Bei Verwendung von Argon lassen sich durch Variation des Argon-Partial- druckes der Beschüß mit nichtschichtbildenden Ionen während der Schichtabscheidung, und darüber Härte und Eigenspannung der Schicht einstellen. Wird Helium verwendet, ist es möglich, den in die Schichten durch wasserstoffhaltige Gase eingebrachten Wasserstoffanteil zu beeinflussen und die Schichten zusätzlich zu verdichten. Wird Neon eingesetzt, kann eine gezielte Kompaktierung der Schichten erreicht werden. Werden metallorganische Verbindungen als reaktives Gas verwendet, kann über das reaktive Gas die Einbringung von Metallen in die Beschichtung erfolgen. Mit H2 läßt sich der H-Gehalt der Schichten beeinflussen, mit N2, NH2 oder borhaltigen Gasen die Schichteigenschaften hinsichtlich Eigenspannungen und Benetzungsverhalten. Si-haltige Gase beeinflussen die Eigenspannungen und das Benetzungsverhalten von Kohlenstoffschichten, C-haltige Gase führen bei Silici- umschichten zu geringerer Reibung, zu Dotierung, elektrischer Leitfähigkeit und zur Abscheidung von a-SiC:H.
Unabhängig von der Erzeugung des Plasmas 20 wird an die zu beschichtenden Substrate 10 während der Beschichtung mit Hilfe der Spannungsversorgung 13 ein veränderliches Spannungspotential, die Substratspannung US angelegt. Sie dient zur Steuerung des Ionenbeschusses der Substrate 10 während der Beschichtung . Der positive Anteil der Substratspannung bewirkt bei elektrisch isolierenden Substratoberflächen ei- ne Entladung der durch den vorangegangenen lonenbeschuß aufgeladenen Oberfläche. Die Dauer der positiven Pulse ist hierfür kleiner oder gleich zu halten wie die Dauer der negativen Pulse. Soll die Temperaturbelastung der Substrate gering gehalten werden, ist die Spannungsamplitude der positiven Pulse deutlich geringer als die der negativen Pulse zu wählen.
Durch Variation der Zusammensetzung des zugeführten Gases und der Beschaffenheit der durch die SpannungsVersorgung 13 erzeugten Substratspannung US lassen sich auf den Substra- ten 10 Schichtsysteme mit einer Vielzahl von Schichten mit jeweils unterschiedlichen Schichteigenschaften aufbauen. Herstellen lassen sich insbesondere harte, verschleißfeste, korrosionsbeständige und einen niedrigen Reibwert aufweisende Schichten. Die Haftung von Schichten, insbesondere harter Schichten oder von Schichten mit hohen mechanischen Eigenspannungen kann häufig durch Verwendung geeigneter Zwischenschichten weiter verbessert werden. Als besonders vorteilhaft hat sich die Ausbildung von Gradientenschichten erwiesen, die einen weichen Übergang bezüglich ihrer mecha- nischen Eigenschaften, insbesondere Härte und Elastizität zur Funktionsschicht hin ermöglichen. So wird die Haftung einer amorphen Kohlenstoffschicht auf einem Stahlsubstrat durch die Verwendung eines Zwischenschichtsystemes aus durch geeignete Prozeßführung gradiert ineinander überführ- ten metallischen und modifizierten metallhaltigen Kohlenstoffschichten verbessert. In einfacher Weise lassen sich solche metallhaltigen Kohlenstoffschichten durch reaktives Sputtern von Metall aufbringen. Zur Aufrechterhaltung des Sputterprozesses ist dabei Argon (Ar) als weiteres Gas zu- zuführen.
Alternativ können Haftschichtsysteme verwendet werden, die auf amorphen Silicium- oder Siliciumkohlenstoffschichten basieren. Als reaktive Gase zur Abscheidung solcher Schich- ten eignen sich Silane und Siloxane neben den entsprechenden kohlenstoffhaltigen Gasen. Mit der in den Figuren 1 und 2 wiedergegebenen Anordnung konnte in einer ersten Anwendung eine 2 μ dicke amorphe Kohlenstoffschicht (a-C:H bzw. DLC) auf Stahl (100Cr6) und Silicium abgeschieden werden mit haftungsvermittelnder Zwischenschicht. Dabei wurden folgende Prozeßparameter eingestellt: reaktives Gas: Acetylen mit einem Durchfluß von 300 Standard-cm^/Min, Rezipientendruck: 3xl0"3 mbar, Mikrowellenleistung: 1 kW, elektrische Leistung: 1 kW, Sub- stratspannung: bipolar gepulst, positive Pulse: 10 μsek, negative Pulse: 10 μsek. Die erzeugte Schicht besaß eine Mikrohärte von 35 Gpa bei einem E-Modul von 165 GPa. Der Reibwert gegen Stahl (100Cr6) lag bei Raumbedingungen bei 0,12 im Trockenlauf. Eine solche Schicht eignet sich beson- ders als Verschleißschutzschicht. Durch Variation der elektrischen Leistung zwischen 200 W und 2 kW ließ sich die Schichthärte im Bereich von 10 GPa bis 42 GPa variieren. Bei Verkürzung des negativen Pulses ergaben sich härtere Schichten und eine höhere Abscheiderate bei allerdings steigender Substrattemperatur. Durch Einstellung von spannungsfreien Pausenzeiten nach jedem Puls ist es, bei Reduktion der Beschichtungsrate und Schichthärte möglich, die Beschichtungstemperatur abzusenken. Vorteilhaft kann es sein, die Pausenzeit nach negativem Puls kleiner als nach positivem Puls zu wählen. Durch Vorreinigung der Substrate 10 außerhalb der Anlage nach einem üblichen Verfahren konnte die Schichthaftung weiter verbessert werden. Die Schichabscheidungsrate ließ sich durch Variation der Mikro- wellenl'eistung zwischen 0,6 kW und 1,1 kW sowie des Acety- lengasflusses zwischen 100 und 450 Standard-cm^/Min steuern. Als vorteilhaft erwies sich zudem eine Plasmafeinreinigung nach einem bekannten Verfahren nach Einbringen der Substrate 10 in den Rezipienten 12 und Evakuierung. Durch Einbringen eines siliciumhaltigen reaktiven Gases zu Beginn des Beschichtungsvorganges zwecks Abscheidung einer haft- vermittelnden Schicht ließ sich die Schichthaftung weiter verbessern.
Die Eigenschaften von amorphen Kohlenstoffschichten lassen sich etwa über den Wasserstoffgehalt oder über eine Dotierung bezüglich ihrer optischen und elektrischen Eigenschaften über ein breites Spektrum von Absortion und schwarzer Farbe bis zu Transparenz bzw. von Leitfähigkeit bis zu isolierender Wirkung einstellen. Die Schichten eignen sich da- durch für Anwendungen mit optischen und elektrischen Anforderungen, beispielsweise als elektrisch isolierende Schicht, als transparente Kratzschutzschicht, als dekorative verschleißfeste Schicht oder als Black-Matrix-Schicht im Display.
In einer weiteren Anwendung der in den Figuren 1 und 2 wiedergegebenen Anordnung konnte eine metallfreie amorphe Kohlenstoffschicht von 2,5 μm Dicke auf ein Stahl (100Cr6) - Substrat als Korrosionsschutz aufgebracht werden. Vor Ein- bringen der Substrate in den Rezipienten erfolgte hier eine Reinigung der Anlage, um lose Partikel zu entfernen und das Abplatzen von aus vorherigen Beschichtungszyklen vorhandenen Schichten zu vermeiden und so einen porenfreien Schichtaufbau zu gewährleisten. Die Prozeßparameter wurden wie im vorhergehenden Beispiel gewählt, jedoch wurde ein geringerer Arbeitsdruck von l-2xl0"3 mbar eingestellt, um den Effekt der Partikelbildung zu verringern.
In einer weiteren Anwendung eignet sich die in den Figuren 1 und 2 wiedergegebene Anlage zur Erzeugung von aus einer
Vielzahl dünner Einzelschichten unterschiedlicher Härte und unterschiedlichen Spannungszustandes aufgebauten Multila- genschichten. Solche Multilagenschichten zeichnen sich durch besonders geringe Eigenspannungen bei großer Härte aus. Anwendbar ist diese Technik u. a. bei amorphen Kohlenstoff- und Siliciumschichten. Der Multilagenaufbau aus Ein- zelschichten wird durch periodische Variation der Substratspannung realisiert. Bei Verringerung der Substratspannung werden weichere Schichten erzeugt, bei Erhöhung härtere. Die Schichtstruktur kann von graphitischen Schichten, ent- sprechend einer Substratspannung von 0 Volt, bis zu Schichten mit Härten von über 50 GPa variiert werden. Die Dauer der einzelnen Pulse der Substratspannung wird dabei so an die Schichtwachstumsrate angepaßt, daß Einzelschichten zwischen 1 nm und 2 μm, bevorzugt 5 nm bis 200 nm abgeschieden werden. Der Übergang zwischen den Einzelschichten wird durch abrupte Änderung der Substratspannung bewirkt. Alternativ kann die Variation der Substratspannung langsam erfolgen, so daß ein kontinuierlicher Übergang zwischen den Einzelschichten entsteht. Vorgesehen sein kann eine Prozeß- parametersteuerung derart, daß der entstehende Multilagen- verband aus einer Vielzahl verschiedenartiger Einzelschichten besteht.
Zur Unterstützung der unterschiedlichen Ausgestaltung der Einzelschichten kann zusätzlich zur Substratspannung eine Variation der über die Mikrowellenquelle 15 eingekoppelten Mikrowellenleistung oder der Menge des zugeführten Gases vorgesehen sein. Beides bewirkt eine Variation der Plasmadichte sowie des Arbeitsdruckes und damit der Ionenenergie- Verteilung, was für die jeweils gewünschten Schichteigenschaften gezielt einzustellen ist.
Eine Variation der Prozeßparameter zur Erzeugung eines Mul- tilagenverbandes aus vielen Einzelschichten kann auch durch Gliederung des Rezipienteninnenraumes 21 in Teilvolumina mit unterschiedlichen Plasmadichten bewirkt werden, indem die zu beschichtenden Substrate 10 nacheinander periodisch durch die verschiedenen Teilvolumina bewegt werden. Erreichen läßt sich eine solche Rezipienteninnenraumgliederung beispielsweise, wie in Figur 2 angedeutet, durch Blenden
22, welche die Ausbildung des Plasmas 20 in einem Teil des Rezipienteninnenraums 21 verhindern. Bei rotatorischer Bewegung der Substrate etwa durch Drehung einer als Drehscheibe ausgebildeten Lagereinrichtung 11 läßt sich die Dicke der Einzelschichten über die Rotationsfrequenz der Substrate durch die Teilvolumina steuern.
Eine Gliederung des Rezipienteninneraumes 21 in Teilvolumina läßt sich alternativ auch durch gleichzeitige Nutzung unterschiedlicher, an verschiedenen Stellen des Rezipienten 12 plazierter Plasmaquellen wie Mikrowellenquelle (n) und Hohlkathode (n) oder unterschiedlicher Mikrowellenquellen herbeiführen.
In einer weiteren Ausführungsvariante wird als weichere von zwei Einzelschichten eine modifizierte metallhaltige Kohlenstoffschicht gewählt. Die Aufbringung der Teilschichten erfolgt in bekannter Weise durch reaktives Magnetonsput- tern. Eine hierzu geeignete, modifizierte Anordnung zeigt Figur 3. Sie unterscheidet sich von einer Anordnung gemäß Figuren 1 und 2 durch eine zusätzliche Magnetronsputter- quelle 17, welche wie in der Figur angedeutet, seitlich in der Rezipientenwand angeordnet sein kann. Die Anlage gestattet durch Steuerung des Rücksputterns von den Substraten 10 über die angelegte Substratspannung eine gezielte Beeinflussung des in die entstehenden Schichten eingebauten Metallanteils .
Eine weitere Anwendung sieht die Verwendung derselben Prozeßparameter wie im ersten Anwendungsbeispiel vor, als zu- sätzliches reaktives Gas wird jedoch Silan oder Siloxan mit 20 Standard-cπrVmin zugeführt. Das Silan bzw. Si-haltige Gas als zusätzliches reaktives Gas führt zu einem Einbau von einigen Atomprozent Silicium in die abgeschiedene Schicht. Es bewirkt eine Verminderung von Schichteigenspan- nungen und beeinflußt das Benetzungsverhalten bezüglich verschiedener Flüssigkeiten. Auf diese Weise läßt sich ins- besondere das Verhalten eines beschichteten Substrates im tribologischen Kontakt steuern. In einer Variante dieser Anwendung wird der Gasfluß der Si-haltigen Gase größer gewählt als der des Acetylens. Dadurch wird eine wasserstoff- haltige Siliciumschicht mit Kohlenstoff als zusätzlichem Bestandteil abgeschieden. Zur Erhöhung der Haftung auf Glas und metallischen Substraten wie Stahl (100Cr6) hat sich das Aufbringen einer modifizierten Silicium-Haftschicht bewährt .
In einer weiteren Variante ist der Anteil des Acetylens im reaktiven Gas zu Null gewählt, so daß eine amorphe, wasser- stoffhaltige Siliciumschicht (a-Si:H) abgeschieden wird. Eine solche Schicht eignet sich als Verschleißschutz- schicht. Sie kann weiter modifiziert werden. So kann durch Zugabe einer entsprechenden Komponente eine stöchiometri- sche Verbindung abgeschieden werden. Ein Beispiel dafür ist die Abscheidung von wasserstoffhaltigem Siliciumnitrid (SiN) durch Zugabe von Stickstoff zum reaktiven Gas. Die entstehende Schicht zeichnet sich durch hohe Verschleißbeständigkeit und elektrische Isolationswirkung aus. Analog lassen sich des weiteren Schichten für andere Anwendungen erzeugen, beispielsweise Schichten für den Aufbau von elektrischen Halbleiterelementen. Die erforderlichen elektri- sehen Eigenschaften können über die Prozeßparameter eingestellt werden, etwa über den Wasserstoffgehalt und eine Dotierung. Eine Isolationswirkung wird durch Abscheidung einer isolierenden Verbindung erreicht. Geeignet sind solche Schichten beispielsweise für die Herstellung von Solarzel- len oder Fiat Panel Displays, bei denen besonders die Möglichkeit zur großflächigen Abscheidung einen großen Vorteil bietet .
Die transparente, kratzfeste oder auch elektrisch leitfähi- ge Beschichtung von Glas, Solarzellen und Displays stellt ein weiteres Anwdungsgebiet dieser Schichten dar. Statt Acetylen, das den Vorteil hat, daß damit häufig höhere Abscheideraten realisiert werden können als mit anderen kohlenwasserstoffhaltigen reaktiven Gasen, können in den vorstehend genannten Ausführungsbeispielen auch andere kohlenstoffhaltige reaktive Gase eingesetzt werden. Dazu sind die Prozeßparameter an die geänderten Bedingungen anzupassen.
Figur 4 zeigt eine modifizierte Anordnung zur Durchführung des vorgeschlagenen Verfahrens. Sie unterscheidet sich von der in den Figuren 1 und 2 wiedergegebenen Anordnung hinsichtlich der Mittel zur Erzeugung des Beschichtungsplasmas 20. Als Plasmaquelle dient jetzt eine Hohlkathode 18, wel- ehe seitlich am Rezipienten 12 angeordnet und als Hohlzy- linder geformt ist. Das Gas wird durch die zylindrische Hohlkathode 18 in den Rezipienteninnenraum 21 eingebracht. Vorteil der Anordnung ist der hohe Anregungsgrad und damit die hohe Effektivität der Plasmaerzeugung. In einer abge- wandelten Ausführung besteht die Hohlkathode 18 aus zwei zueinander parallelen Platten, die in ihrer Länge an die Größe des Rezipienten 12 angepaßt sind. Bei Verwendung von Acetylen als reaktivem Gas können mit einer solchen Anordnung diamantartige Kohlenstoffschichten mit Raten deutlich größer als 5 μm/h auf bewegte Substrate 10 in industriell üblichen Chargengrößen abgeschieden werden. Bei Erhöhung des Gasdruckes kann zur Vermeidung von Partikelbildung der Einsatz von CH-, oder Mischungen unterschiedlicher kohlen- wasserstoffhaltiger reaktiver Gase sinnvoll sein. Die Ein- Stellung der Schichteigenschaften erfolgt wiederum über Variation der Substratspannung über die Spannungsversorgung 13. Bei Einbau von Metallatomen, die von der Hohlkathode 18 abgetragen werden, ist die auf den Substraten erzeugte Schicht in Abhängigkeit von den Prozeßparametern un der Konzentration der eingebauten Metallatome elektrisch leitfähig. In diesem Fall kann an die Substrate 10 an Stelle einer Wechselspannung eine Gleichspannung angelegt werden. Zur Reduktion der Beschichtungstemperatur und zur besseren Steuerung der Schichteigenschaften bietet es sich auch hier der Einsatz einer gepulsten Bias-Spannungsquelle an.
Eine weitere modifizierte, insbesondere zur Abscheidung von Kohlenstoffschichten geeignete Anordnung zur Durchführung des Verfahrens zeigt Figur 5. Sie unterscheidet sich von der in Figur 1 und 2 wiedergegebenen Anordnung wiederum hinsichtlich der Mittel zur Erzeugung des Plasmas 20. Die Plasmaerzeugung erfolgt hier durch einen Hochstrombogen, welcher zwischen einem in der Seitenwand des Rezipienten 12 angeordneten Kohlenstofftarget 19 und einer - nicht gezeigten - Anode gezündet wird, und durch eine in der gegenüber- liegenden Seitenwand angeordnete Sputterkathode 17. Vorteil des Hochstrombogens ist der hohe Ionisierungsgrad des freigesetzten Kohlenstoffs. Da zur Einbringung des Kohlenstoffs keine wasserstoffhaltigen Gase erforderlich sind, ist die resultierende, auf den Substraten 10 abgeschiedene Schicht wasserstoffrei und dadurch besonders temperaturbeständig. Solche wasserstoffreien Kohlenstoffschichten weisen eine Härte von bis zu 80 GPa auf. Bei der in Figur 5 angedeuteten Anordnungsausführung werden bei der Bogenverdampfung entstehende graphitische Makroparitikel ebenfalls auf den Substraten 10 abgeschieden. Der Effekt kann erwünscht sein, da sich die Makropartikel beispielsweise als in der Schicht eingebaute Schmierstoffdepots eignen. Durch Pulsen des Bo- genstromes läßt sich die Makropartikelbildung andererseits unterdrücken, wobei eine gleichzeitige Erhöhung des Bogen- Stroms die Unterdrückung verstärkt. Eine nahezu vollständige Unterdrückung von Makropartikeln läßt sich erreichen, indem die durch die Bogenverdampfung erzeugten Ionen magnetisch auf die Substrate 10 umgelenkt werden. Die ungeladenen Makropartikel treffen auf eine Prallplatte und werden von der Schichtabscheidung ferngehalten. Die Lagereinrichtung kann alternativ so beschaffen sein, daß die Substrate während der Beschichtung unbewegt sind. Das kann beispielsweise aufgrund erhöhter Abscheideraten oder erzielbarer Schichteigenschaften vorteilhaft sein. Die Substrate können weiterhin auch getaktet bewegt werden, so daß sie sich zu verschiedenen Zeiten in verschiedenen räumlichen Bereichen des Rezipienten dort jeweils unbewegt befinden.
In einer weiteren Anwendung kann die Beschichtung auch in einer Einrichtung durchgeführt werden, die Teil eines größeren Verbundes von Einrichtungen ist. Die Substrate werden dabei von Einrichtung zu Einrichtung mit oder ohne Unterbrechung des Vakuums bewegt, wobei in jeder einzelnen Ein- richtung ein oder mehrere Behandlungsschritte vollzogen werden. Figur 6 zeigt als Beispiel dafür eine lineare Anordnung von Einrichtungen in Form einer Durchlaufanläge. Die drehend oder fest gelagerten Substrate 10a, 10b werden dabei durch einen geeigneten, durch einen Pfeil angedeute- ten b Lineartranslator durch die verschiedenen Einrichtungen, etwa wie in Figur 6 gezeigt eine Magnetronsputterquel- le 17 und drei Mikrowellenquellen 15, und erfahren in jeder Einrichtung 17, 15 entsprechende Behandlungs- oder Be- schichtungsschritte. Sequentiell aufeinanderfolgen können so beispielsweise: Plasmaätzen, Haftschichtabscheidung und Hauptschichtabscheidung . Dabei können die Substrate bewegt, unbewegt, oder getaktet bewegt behandelt werden. In Abhängigkeit von Substrat, Einrichtung und Prozeß kann eine Behandlung von liegenden oder stehenden Substraten erfolgen. So ist etwa für die Behandlung von Folien oder Glas eine liegende Anordnung der Substrate möglich.
Figur 7 zeigt als weiteres Beispiel für einen Einrichtungs- verbund eine Mehrkammeranlage mit mit zwei, über vakuum- dichte Schleusentüren 24 verbundenen Rezipienten 12, zwischen denen zu beschichtende Substrate 10 hin und her transportiert werden können. Im Beispiel Figur 7 befindet sich in einem Reziepienten eine Mikrowellenquelle 15, im anderen eine Magnetronsputterquelle 17.
Zur Plasmabeschichtung von Schüttgut kann die Substrathal- terung desweiteren auch als Drehkorb ausgebildet sein, der sich langsam um eine Plasmaquelle herumbewegt.
In vorteilhafter Weise läßt sich die erfindungsgemäße Einrich- tung zur Herstellung einer Multilagenstruktur aus alternierenden Einzelschichten einsetzten. Multilagenstrukturen können im Vergleich zu Einzelschichten gleicher Dicke mit niedrigerer Eigenspannung abgeschieden werden. Dies reduziert die Neigung zu Schichtenthaftungen .
Aufgrund ihrer hervorragenden Wirkung als Korrosions- und Verschleißschutz für tribologisch hochbelatete Bauteile sind Ausführungen der o.g. Multilagenstrukturen besonders vorteilhaft, welche aus alternierenden Hartstoff-und Kohlenstoffeinzel- schichten bestehen. Entsprechend der vorgesehenen Anwendung werden dabei bezüglich der Zusammensetzung - bevorzugt - jeweils eine Art der Hartstoffschicht und eine Art der Kohlen- stoffschicht kombiniert, die je aus einer Vielzahl von Vertretern der beiden Schichttypen ausgewählt werden.
Bei der Herstellung der Schichten der genannten Multilagenstruktur wird im Prinzip in derselben Weise vorgegangen wie bei der Herstellung von Einzelschichten. Ein Unterschied im Verfahren ergibt sich jedoch dadurch, daß aufeinanderfolgend alter- nierende Schichten aufgebracht werden müssen. Die Proben werden vorgereinigt und in einen Rezipienten gebracht, wie er vereinfacht in der Fig. 3 gezeigt ist. Dieser wird auf einen Druck von weniger als etwa lxlO-4 mbar evakuiert. Anschließend werden die Proben im Plasma feingereinigt, etwa durch Plasmaglimmen. Dann werden die Schichten aufgebracht. Damit alternierende
Schichten erzeugt werden, werden die Proben beispielsweise mit- tels Planetengetrieben bewegt und dadurch cyclisch an unterschiedlichen Quellen vorbeigeführt. Durch die Bewegung der Proben relativ zu den Quellen wird auch die Abscheidung homogener Schichten auf komplex geformten Proben erleichtert. Zur Durch- führung des Verfahrens sind die anhand der Figuren 1 bis 7 veranschaulichten Einrichtungen einsetzbar. Dabei können die Quellen beliebig angeordnet sein, etwa - wie die Sputterkathode in der Fig. 3 - an der Rezipientenwand oder im Innern des Rezipienten. Falls erforderlich können - beispielweise - die in den Figuren 3 und 5 gezeigten Einrichtungen noch modifiziert werden, etwa durch den Einbau einer zusätzlichen Sputterkathode (s.u. ) .
Während der Vorbeiführung an einer ersten Quelle wird eine er- ste Schicht auf der Probe deponiert. Die Schichtdicke hängt von der Beschichtungsrate der Quelle und der Geschwindigkeit der Probe ab. Dann wird die Probe an einer zweiten Quelle vorbeigeführt, und dabei eine zweite Schicht aufgebracht. Daraufhin wird die Probe wieder an der ersten Quelle vorbeigeführt und beschichtet usw. Durch diese Bewegung relativ zu unterschiedlichen Quellen und die dabei durchgeführte cyclische Beschichtung wird bei geeigneter Wahl der Beschichtungsrate und der Geschwindigkeit der Probe die gewünschte Multilagenstruktur abgeschieden.
Die Betriebsparameter sind abhängig von den verwendeten Quellen. Sputterkathoden werden insbesondere in einem Druckbereich von 1-3x10 mbar betrieben, der durch Einlaß von Ar oder eines anderen Edelgases eingestellt wird. Die Hartstoffschichten wer- den bevorzugt durch Sputtern von wie die gewünschte Schicht zu- sammengestzten Sputtertargets oder durch reaktives Sputtern erzeugt. Alternativ zum Sputtern kann die Verdampfung im Lichtbogen (Are) bei der Abscheidung angewandt werden. Als Kohlenstoffspender für die Hartstoffschicht wie auch für die Kohlen- stoffschichten werden insbesondere kohlenstoffhaltige Gase, wie Acetylen oder Methan, aber auch Graphittargets, aus Metallcar- bid bestehende Targets und Lichtbögen, als StickstoffSpender besonders stickstoffhaltige Gase, wie Stickstoff und Ammoniak und aus Metallnitrid bestehende Targets und als Siliciumspender Silane und Siloxane und aus Metallsilicid bestehende Targets eingesetzt. Die Leistung, mit der die Kathoden betrieben werden, liegt bevorzugt zwischen 2kW und 20 kW pro Kathode. Durch Leistungsregelung kann die Beschichtungsrate eingestellt werden, was von Bedeutung ist, weil die Quellen aus unterschiedlichen Materialien bestehen, und eine Multilagenstruktur ange- strebt wird, in der die Einzelschichten etwa gleiche Schichtdicken aufweisen.
Alternativ kann die Multilagenstruktur auch aus alternierenden Hartstoff- und Siliciumeinzelschichten aufgebaut sein. Die Struktur, bei der die Siliciumschicht die oben angeführten Zusammensetzungen haben kann, hat die ebenfalls oben angeführten Vorteile. Bei der Herstellung sind - bezüglich der Targets und der reaktiven Gase entsprechend angepaßt - dieselben Verfahren und Einrichtungen anwendbar wie bei den aus al- ternierenden Hartstoff- und Kohlenstoffeinzelschichten bestehenden Strukturen.
Im folgenden werden sieben Ausführungsbeispiele der erfindungsgemäßen Multilagenstruktur beschrieben, die aus alternierenden Hartstoff- und Kohlenstoffschichten aufgebaut sind, wobei die beiden Schichtarten aus jeweils einem Material gebildet werden.
Beispiel 1
Die Multilagenstruktur besteht aus Metallcarbid (MeC) und metallhaltigem Kohlenstoff (C-(MeC)). Vorteilhafte Metalle sind u.a. Wolfram (W) , Chrom (Cr) und Titan (Ti). Die Dicken der Einzelschichten liegen zwischen etwa 3 und etwa 5 nm und die Gesamtschichtdicke liegt zwischen etwa 2 und 3 μm. Das Mul- tilagensystem ist auf einem Stahl- oder Hartmetallsubstrat, wie einem Bauteil oder einem Werkzeug, aufgebracht. Die Herstellung der Struktur erfolgt durch reaktives Sputtern von Targets einerseits aus Metallen (Me) und andererseits aus Metallcarbiden (MeC) in einer Atmosphäre, die aus einer Mi- schung aus Edelgas, wie Argon, als Sputtergas und einem kohlenstoffhaltigem Gas, wie Acetylen und Methan, als reaktivem Gas besteht. Die Schichten können mit einer Einrichtung abgeschieden werden, die sich von der in der Fig. 3 dargestellten durch eine zusätzliche Sputterkathode unterscheidet. Der Gasfluß wird in bekannter Weise so konstant eingestellt, daß im einen Verfahrensschritt vom Metalltarget MeC und im nächsten Schritt vom MeC-Target C-(MeC) gesputtert wird und im übernächsten wieder vom Metalltarget MeC usw., bis die erforderliche Gesamtschichtdicke erreicht ist.
Beispiel 2
Das Multilagensystems besteht aus C-(MeC) als Hartstoff, wobei das Metall bevorzugt Wolfram ist, und aus metallfreiem amorphem wasserstofhaltigem Kohlenstoff (a-C:H). Die Schichtdicken liegen in denselben Bereichen wie beim ersten Ausführungsbeispiel . Die C- (MeC) -Schicht wird mittels reaktiven Sputterns - beispielsweise - eines WC-Targets erzeugt, wobei der zusätzliche Kohlenstoff von Acetylen oder Methan geliefert wird. Die a-C:H- Schicht erhält man mittels einer der oben beschriebenen Plasmaquellen, wie einer RF-Quelle, einer MW-Quelle (s. Figur 3) oder einer Hohlkathodenquelle (s. Figur 4) in der Acetylen oder Methan enthaltenden Atmosphäre. Die Abscheidung der Multilagenstruktur kann mit der in der Figur 3 gezeigten Einrichtung oder mit einer Einrichtung durchgeführt werden, die sich von der in der Fig. 4 gezeigten durch eine zusätzliche Sputterkathode unterscheidet .
Beispiel 3 Das Multilagensystem besteht aus einem Metall (Me) als Hartstoff und a-C:H. Das Metall ist bevorzugt aus den im Beispiel 1 genannten ausgewählt. Die Schichtdicken liegen in denselben Bereichen wie beim ersten Ausführungsbeispiel. Zum Aufbringen der Schichten werden zwei voneinander getrennte Gasräume benötigt, damit das Metall durch Sputtern oder Aufdampfen von Metall in einer nicht kohlenstoffhaltigen Atmosphäre und a-C:H in einer Methan oder Acetylen enthaltende Atmosphäre aufgebracht werden kann. Die Herstellung der Multilagenstruktur läßt sich mit Ein- richtungen durchführen, die ähnlich den in den Figuren 6 und 7 gezeigten arbeiten, wobei eine Trennung der Gasräume auch - obwohl nicht gezeigt - bei der in der Figur 6 gezeigten Einrichtung möglich ist. Damit nicht für jede Schicht ein Vielzahl von Quellen erforderlich ist, sind Ausbildungen der Einrichtungen vorteilhaft, bei denen die Proben nach dem Aufbringen der ersten zwei Schichten wieder an den Anfang der Einrichtung zurückgeführt und dann das Aufbringen weiterer zwei Schichten wiederholt wird, usw.
Beispiel 4
In dem Multilagensystem bestehen die alternierenden Schichten aus einem Metallcarbid (MeC) als Hartstoff und a-C:H. Die Metalle sind bevorzugt aus den im Beispiel 1 genannten ausge- wählt. Die Schichtdicken liegen in denselben Bereichen wie beim ersten Ausführungsbeispiel . Die MeC-Schicht wird durch reaktives Sputtern von einem aus dem Me bestehenden Target in einer Acetylen enthaltenden Atmosphäre abgeschieden. Die a-C:H- Schicht. erhält man mittels einer der oben beschriebenen Plas- maquellen, wie einer RF-Quelle, einer MW-Quelle (s. Figur 3) oder einer Hohlkathodenquelle (s. Figur 4) in der Acetylen enthaltenden Atmosphäre. Die Abscheidung der Multilagenstruktur kann mit der in der Figur 3 gezeigten Einrichtung oder mit einer Einrichtung erzeugt werden, die sich von der in der Fig. gezeigten durch eine zusätzliche Sputterkathode unterscheidet. Beispiel 5
Das Multilagensystem besteht aus einem Metallnitrid (MeN) als Hartstoff, wobei die Metalle bevorzugt Titan oder Chrom sind, und aus a-C:H. Die Schichtdicken liegen in denselben Bereichen wie beim ersten Ausführungsbeispiel. Die Abscheidung der MeN- Schicht wird erreicht entweder durch Sputtern von einem MeN- Target oder durch reaktives Sputtern von einem Me-Target, wobei ein stickstoffhaltiges Gas als reaktives Gas eingesetzt wird und die Atmosphäre von der kohlenstofhaltigen Atmosphäre getrennt ist, in der die a-C:H-Schicht abgeschieden wird. Die Herstellung der Multilagenstruktur läßt sich - wie beim Beispiel 3 - mit Einrichtungen durchführen, die ähnlich den in den Figuren 6 und 7 gezeigten arbeiten. Wegen der Einzelheiten wird auf Beispiel 3 verwiesen.
Beispiel 6
Das Multilagensystem besteht aus einem Metallcarbonitrid (MeCN) als Hartstoff, wobei die Metalle bevorzugt Titan oder Chrom sind, und aus a-C:H. Zur Erzeugung der MeCN-Schicht gibt es insbesondere zwei Alternativen: Reaktives Sputtern von einem Me-Target, wobei das reaktive Gas aus einem stickstoffhaltigen und einem kohlenstoffhaltigen Gas gemischt ist und reaktives Sputtern von einem MeN-Target wobei ein kohlenstoffhaltiges Gas als reaktives Gas eingesetzt wird. Zur Abscheidung der a-C:H- Schicht wird ein kohlenstoffhaltiges Gas eingesetzt. Als solches kann das bei der zweiten Alternative beim reaktiven Sputtern eingesetzte reaktive Gas mitverwendet werden, während bei der ersten Alternative die Abscheidung der a-C: H-Schicht in einem von der Sputteratmosphäre getrennten Gasraum erfolgt, der ein kohlenstoffhaltiges, aber Stickstoffreies reaktives Gas enthält. Die Abscheidung entsprechend der ersten Alternative läßt sich - wie beim Beispiel 3 - mit Einrichtungen durchfüh- ren, die ähnlich den in den Figuren 6 und 7 gezeigten arbeiten, wobei wegen der Einzelheiten auf Beispiel 3 verwiesen wird. Die Abscheidung entsprechend der zweiten Alternative läßt sich mit der in der Figur 3 gezeigten Einrichtung durchführen.
Beispiel 7
Bei Varianten der in den Beispielen 3, 4, 5 und 6 beschriebenen Multilagenstrukturen besteht die Kohlenstoffschicht statt aus a-C:H aus a-C. Die Hartstoffschicht wird bevorzugt von einem Target gesputtert, das je nach der gewünschten Zusammensetzung der Hartstoffschicht aus Me, MeC, MeN bzw. MeCN besteht, und die a-C-Schicht wird von einem Graphittarget gesputtet bzw. mittels eines Kohlebogens erzeugt. Die Multilagenstruktur läßt sich, je nachdem wie die a-C-Schicht erzeugt wird, mittels der in der Figur 5 gezeigten Einrichtung oder mittels einer Ein- richtung abscheiden, die sich von der in der Figur 5 gezeigten dadurch unterscheidet, daß statt des Kohlenstofftargets 19 ein Graphittarget vorgesehen ist.
Durch entsprechende Wahl der Herstellbedingungen, wie der Sput- tertargets und der reaktiven Gase, lassen sich die obengenannten Beispiele so abwandeln, daß statt der Kohlenstoffschichten entsprechende Siliciumschichten erzeugt und gegebenenfalls der Kohlenstoff in der Hartstoffschicht durch Silicium ersetzt wird. So lassen sich beispielsweise aus alternierenden Me- und a-Si:H-Einzelschichten oder aus alternierenden MeSi- und a-
Si:H- bestehenden Multilagenstrukturen erzeugen, wie es im Beispiel 3 bzw. 4 beschrieben ist.
Es sind auch andere Schichtkombinationen vorteilhaft einsetz- bar, beispielsweise solche, bei denen die Hartstoffschichten und ebenso die Kohlenstoff- bzw. Siliciumschichten nicht alle aus demselben Material bestehen und/oder bei denen eine Kohlenstoffschicht , mit einer Silicium oder Silicium und Kohlenstoff enthaltenden Hartstoffschicht oder eine Siliciumschicht mit ei- ner Kohlenstoff oder Kohlenstoff und Silicium enthaltenden Hartstoffschicht kombiniert ist.

Claims

Ansprüche
1. Verfahren zum Vakuumbeschichten eines Substrates mit einem Plasma-CVD-Verfahren, wobei an das Substrat zur Steuerung des Ionenbeschusses während der Beschichtung eine Substratspannung angelegt ist, dadurch gekennzeichnet, daß Substratspannung (US) und Beschichtungsplasma (20) unabhängig voneinander erzeugt und die Substratspannung (US) während der Beschichtung verändert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Substratspannung (US) eine bipolar gepulste Gleichspannung mit einer Frequenz von 0,1 kHz bis 10 MHz, insbesondere 1-100 kHz, ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die positiven und negativen Pulse der Substratspannung (US) in zeitlicher Länge und/oder Höhe unabhängig voneinander eingestellt werden können.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Substratspannung (US) eine Gleichspannung überlagert wird .
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß zwischen den negativen und positiven Pulsen der Substratspannung (US) spannungslose Pausenzeiten von 0 bis 1 msek, insbesondere 2 bis 100 μsek
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Pausenzeit nach einem negativen Puls kürzer ist als die
Pausenzeit nach einem positiven Puls.
ERSATZBLAπ(REGEL26)
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß während der Beschichtung Gase unterschiedlicher Art und in verschiedenen Kombinationen zugesetzt werden.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die zugesetzten Gase durch die Plasmaquelle (18) hindurch geleitet oder nahe an der Quelle eingeleitet werden.
9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß als reaktives Gas (Cχ Hy) , insbesondere (C2H2, CH ), Silane und Siloxane, insbesondere (SiH^ oder HMDS und Derivate, Edelgase, metallorganische Verbindungen oder eine Kombination dieser Gase verwendet wird.
10. Einrichtung zur Durchführung des Verfahrens nach Anspruch 1 mit einem Vakuumrezipienten (12), einer Lagereinrichtung (11) zur Aufnahme von zu beschichtenden Substraten (10), Mitteln (15 bis 19) zur Erzeugung eines Plasmas (20) im Innenraum (21) des Rezipienten, gekennzeichnet durch eine von den Plasmaerzeugungsmitteln (15 bis 19) getrennt steuerbare Einrichtung (13) zur Erzeugung einer Substratspannung (US) welche an die zu beschichtenden Substrate (10) angelegt ist.
11. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, daß zur Erzeugung des Plasmas (20) eine Mikrowellenquelle (15), eine Sputterkathode (17), eine Hohlkathode (18), eine Hoch requenzquelle oder eine Anordnung zur Erzeugung eines Hochstrombogens (19) eingesetzt wird.
12. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Spannur.gsversorgung (13) ein bipolar gepulstes Bi- as-"et∑teil ist.
ERSATZBLAπ(REGEL26)
13. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, daß sie mit unbewegten, gleichförmig bewegten, oder getak¬ teten bewegten Substraten als Durchlaufanläge betrieben wird.
14. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Mittel (15, 17, 18, 19) zur Erzeugung des Plasmas
(20) gepulst betrieben werden.
15. Verfahren nach einem der Ansprüche 1 bis 9 unter Verwendung der Einrichtung nach einem der Ansprüche 10 bis 14 zur Herstellung einer Kohlenstoffschicht, insbesondere einer amorphen Kohlenstoffschicht (a-C:H).
16. Verfahren nach einem der Ansprüche 1 bis 9 unter Verwendung der Einrichtung nach einem der Ansprüche 10 bis 14 zur Herstellung einer Siliciumschicht, insbesondere einer amorphen Siliciumschicht (a-Si:H).
17. Verfahren nach einem der Ansprüche 1 bis 9 unter Verwendung der Einrichtung nach einem der Ansprüche 10 bis 14 zur Herstellung eines mehrlagigen Schichtaufbaus bestehend aus einer metallhaltigen Schicht zur Haftvermittlung und einer darauf aufgebrachten amorphen Kohlenstofschicht , wo- bei die Übergänge zu den haftungsvermittelten Schichten als Gradienten über mindestens 1/5 der Einzelschichtdicken ausgeführt werden.
18. Verfahren nach einem der Ansprüche 1 bis 9 unter Ver- Wendung der Einrichtung nach einem der Ansprüche 10 bis 14 zur Abscheidung eines Schichtsystems, welches Silicium, Bor, Stickstoff, Sauerstoff, Kohlenstoff, ein Metall oder eine Kombination dieser Elemente enthält.
19. Verfahren nach einem der Ansprüche 1 bis 9 unter Verwendung einer Einrichtung nach einem der Ansprüche 10 bis 14 zur Her-
ERSATZBLÄTT (REGEL26) Stellung einer Multilagenstruktur aus alternierenden Einzelschichten.
20. Multilagenstruktur bestehend aus alternierenden Hartststoff- und Kohlenstoff- oder Siliciumeinzelschichten.
21. Multilagenstruktur nach Anspruch 20, dadurch gekennzeichnet, daß die Kohlenstoffschicht aus amorphem wasserstoffhaltigem Kohlenstoff (a-C:H im folgenden), amorphem wasserstoffreiem Kohlenstoff (a-C) , siliciumhaltigem (wasserstoffhaltigem oder wasserstoffreiem) Kohlenstoff oder metallhaltigem (wasserstoffhaltigem oder wasserstoffreiem) Kohlenstoff (C- (MeC) ) besteht, wobei das Metall aus den harten Nebengruppenmetallen ausgewählt ist.
22. Multilagenstruktur nach Anspruch 20, dadurch gekennzeichnet, daß die Siliciumschicht aus amorphem wasserstoffhaltigem Silicium (a-Si:H im folgenden), amorphem wasserstoffreiem Silicium (a-Si) , kohlenstoffhaltigem (wasserstoffhaltigem oder was- serstoffreiem) Silicium oder metallhaltigem
(wasserstoffhaltigem oder wasserstoffreiem) Silicium (Si- (MeSi)) besteht.
23. Multilagenstruktur nach einem der Ansprüche 20 bis 22, da- durch gekennzeichnet, daß die Hartstoffschicht aus einem Metall
(Me im folgenden) , einer MetallVerbindung, Metallcarbid enthaltendem Kohlenstoff (C-(MeC)), Metallsilicid enthaltendem Silicium (Si-(MeSi)) oder Mischungen aus mindestens zwei der genannten Materialien besteht.
24. Multilagenstruktur nach Anspruch 23, dadurch gekennzeichnet, daß das Metall aus der Gruppe Wolfram (W) , Chrom (Cr) , Titan (Ti), Niob (Nb) und Molybdän (Mo) ausgewählt ist.
25. Multilagenstruktur nach Anspruch 23, dadurch gekennzeichnet, daß die Metallverbindung ein Metallcarbid (MeC), ein Me-
ERSATZBLAπ(REGEL26) tallnitrid (MeN) , ein Metallsilicid (MeSi), ein Metallcarboni- trid (Me(CN)), ein Metallcarbosilicid (Me(CSi) oder ein Metall- siliconitrid (Me(SiN) ist.
26. Multilagenstruktur nach einem der Ansprüche 20 bis 25, dadurch gekennzeichnet, daß die Einzelschichten aus einer Art oder mehr Arten der Hartstoffschicht und einer Art oder mehr Arten der Kohlenstoff- bzw. der Siliciumschicht bestehen.
27. Multilagenstruktur nach Anspruch 26, dadurch gekennzeichnet, daß die Einzelschichten aus einer Art der Hartstoffschicht und aus einer Art der Kohlenstoff bzw. der Siliciumschicht bestehen.
28. Multilagenstruktur nach einem der Ansprüche 20 bis 27, dadurch gekennzeichnet, daß die Dicken der Einzelschichten zwischen etwa 1 und etwa 10 nm und bevorzugt zwischen etwa 2 und etwa 5 nm liegen.
29. Multilagenstruktur nach einem der Ansprüche 20 bis 28, dadurch gekennzeichnet, daß die Gesamtdicke der Struktur zwischen etwa 1 und etwa 10 μm, und bevorzugt zwischen etwa 1 und etwa 4 μm liegt.
30. Multilagenstruktur nach einem der Ansprüche 23 bis 29, dadurch gekennzeichnet, daß die Hartstoffschicht aus Me, MeC, MeN, MeSi, Me(CN) Me(CSi) oder Me(SiN) und die Kohlenstoff- schicht aus a-C:H oder a-C besteht.
31. Multilagenstruktur nach einem der Ansprüche 23 bis 29,. dadurch gekennzeichnet, daß sie aus alternierenden C-(WC)- und a- C : H-Schichten besteht.
32. Multilagenstruktur nach einem der Ansprüche 23 bis 29, a- durch gekennzeichnet, daß sie aus alternierenden MeC- und und C- (MeC) -Schichten besteht.
ERSATZBUTT (REGEL 26)
33. Multilagenstruktur nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, daß die Hartstoffschicht aus Me, MeC, MeN, MeSi, Me(CN) Me(CSi) oder Me(SiN) und die Siliciumschicht aus a-3i:H oder a-Si besteht.
34. Multilagenstruktur nach einem der Ansprüche 20 bis 33, dadurch gekennzeichnet, daß die Einzelschichten zusätzlich mindestens ein Element aus der Gruppe Silicium, Bor, Stickstoff, Sauerstoff, Kohlenstoff und ein Metall unter der Voraussetzung enthalten, daß nicht gleichzeitig Bor und Kohlenstoff in ihnen vorhanden ist.
35. Multilagenstruktur nach einem der Ansprüche 20 bis 34, da- durch gekennzeichnet, daß ein Werkzeug, insbesondere ein Zerspan- oder Umformwerkzeug, mit ihr beschichtet ist.
PCT/DE1998/001610 1997-06-16 1998-06-15 Verfahren und einrichtung zum vakuumbeschichten eines substrates WO1998058100A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE59813331T DE59813331D1 (de) 1997-06-16 1998-06-15 Verfahren und einrichtung zum vakuumbeschichten eines substrates
EP98936157A EP0990061B1 (de) 1997-06-16 1998-06-15 Verfahren und einrichtung zum vakuumbeschichten eines substrates
JP50355499A JP2002504189A (ja) 1997-06-16 1998-06-15 基板の真空被覆方法および装置
AU85315/98A AU734809B2 (en) 1997-06-16 1998-06-15 Method and device for vacuum-coating a substrate
US09/446,054 US6372303B1 (en) 1997-06-16 1998-06-15 Method and device for vacuum-coating a substrate
US11/008,413 US7942111B2 (en) 1997-06-16 2004-12-09 Method and device for vacuum-coating a substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19725383 1997-06-16
DE19725383.0 1997-06-16

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/446,054 A-371-Of-International US6372303B1 (en) 1997-06-16 1998-06-15 Method and device for vacuum-coating a substrate
US09446054 A-371-Of-International 1998-06-15
US10/026,259 Division US6869676B2 (en) 1997-06-16 2001-12-21 Method and device for vacuum-coating a substrate

Publications (1)

Publication Number Publication Date
WO1998058100A1 true WO1998058100A1 (de) 1998-12-23

Family

ID=7832611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/001610 WO1998058100A1 (de) 1997-06-16 1998-06-15 Verfahren und einrichtung zum vakuumbeschichten eines substrates

Country Status (8)

Country Link
US (3) US6372303B1 (de)
EP (1) EP0990061B1 (de)
JP (2) JP2002504189A (de)
CN (1) CN1264432A (de)
AU (1) AU734809B2 (de)
DE (2) DE59813331D1 (de)
ES (1) ES2256948T3 (de)
WO (1) WO1998058100A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048406A2 (de) * 2001-12-06 2003-06-12 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co. Beschichtungsverfahren und beschichtung
US6926934B2 (en) * 2000-03-29 2005-08-09 Canon Kabushiki Kaisha Method and apparatus for deposited film
DE102004041234A1 (de) * 2004-08-26 2006-03-02 Ina-Schaeffler Kg Verschleißfeste Beschichtung und Verfahren zur Herstellung derselben
JP2007160506A (ja) * 2007-02-23 2007-06-28 Sumitomo Electric Hardmetal Corp 非晶質カーボン被覆工具
WO2011110413A1 (de) * 2010-03-09 2011-09-15 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, und verfahren zur beschichtung eines gleitelements

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000017457A (ja) 1998-07-03 2000-01-18 Shincron:Kk 薄膜形成装置および薄膜形成方法
DE10005614A1 (de) * 2000-02-09 2001-08-16 Hauzer Techno Coating Europ B Verfahren zur Herstellung von Beschichtungen sowie Gegenstand
DE10005612A1 (de) * 2000-02-09 2001-08-16 Hauzer Techno Coating Europ B Verfahren zur Herstellung eines Gegenstandes und Gegenstand
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
JP2003231203A (ja) * 2001-08-21 2003-08-19 Toshiba Corp 炭素膜被覆部材
EP1382712B1 (de) * 2002-07-08 2008-05-21 Galileo Vacuum Systems S.R.L. Vorrichtung zur chargenweisen Vakuumbeschichtung von Gegenständen
DE10242475B3 (de) * 2002-09-11 2004-06-17 Forschungszentrum Karlsruhe Gmbh Verschleißschutzschicht
FR2853418B1 (fr) * 2003-04-01 2005-08-19 Commissariat Energie Atomique Dispositif optique a stabilite mecanique renforcee fonctionnant dans l'extreme ultraviolet et masque de lithographie comportant un tel dispositif
US7138180B2 (en) * 2003-10-16 2006-11-21 Wisconsin Alumni Research Foundation Hard carbon films formed from plasma treated polymer surfaces
NL1025096C2 (nl) * 2003-12-21 2005-06-23 Otb Group Bv Werkwijze alsmede inrichting voor het vervaardigen van een functionele laag bestaande uit ten minste twee componenten.
DE102004004177B4 (de) * 2004-01-28 2006-03-02 AxynTeC Dünnschichttechnik GmbH Verfahren zur Herstellung dünner Schichten sowie dessen Verwendung
EP1580299B2 (de) 2004-03-25 2020-10-21 Whirlpool Corporation Schutzschicht für Haushaltgerät
US7498062B2 (en) * 2004-05-26 2009-03-03 Wd Media, Inc. Method and apparatus for applying a voltage to a substrate during plating
CN101001976B (zh) * 2004-07-09 2010-12-29 奥尔利康贸易股份公司(特吕巴赫) 具有金属-类金刚石碳硬质材料涂层的含铜导电材料
WO2006011028A1 (en) * 2004-07-20 2006-02-02 Element Six Limited Orthopaedic implants
DE102004036170B4 (de) * 2004-07-26 2007-10-11 Schott Ag Vakuumbeschichtungsanlage und Verfahren zur Vakuumbeschichtung und deren Verwendung
DE102004041235A1 (de) * 2004-08-26 2006-03-02 Ina-Schaeffler Kg Verschleißfeste Beschichtung und Verfahren zur Herstellung derselben
US9180599B2 (en) * 2004-09-08 2015-11-10 Bic-Violex S.A. Method of deposition of a layer on a razor blade edge and razor blade
JP4517791B2 (ja) * 2004-09-10 2010-08-04 凸版印刷株式会社 窒化シリコン膜を用いたパターン形成方法
US7244493B2 (en) * 2004-11-12 2007-07-17 Delphi Technologies, Inc. Coated article
US7459188B2 (en) * 2004-12-02 2008-12-02 Alliance For Sustainable Energy, Llc Method and apparatus for making diamond-like carbon films
ES2321444T3 (es) 2005-05-04 2009-06-05 Oerlikon Trading Ag, Trubbach Intensificador de plasma para una instalacion de tratamiento por plasma.
JP4853857B2 (ja) * 2005-06-15 2012-01-11 東京エレクトロン株式会社 基板の処理方法,コンピュータ読み取り可能な記録媒体及び基板処理装置
WO2006134781A1 (ja) * 2005-06-16 2006-12-21 Kyocera Corporation 堆積膜形成方法、堆積膜形成装置、堆積膜およびこれを用いた感光体
DE502006005651D1 (de) * 2005-09-10 2010-01-28 Ixetic Hueckeswagen Gmbh Verschleißfeste Beschichtung und Verfahren zur Herstellung derselben
US8664124B2 (en) 2005-10-31 2014-03-04 Novellus Systems, Inc. Method for etching organic hardmasks
US8110493B1 (en) 2005-12-23 2012-02-07 Novellus Systems, Inc. Pulsed PECVD method for modulating hydrogen content in hard mask
JP4735309B2 (ja) * 2006-02-10 2011-07-27 トヨタ自動車株式会社 耐キャビテーションエロージョン用部材及びその製造方法
JP4704950B2 (ja) * 2006-04-27 2011-06-22 株式会社神戸製鋼所 非晶質炭素系硬質多層膜及びこの膜を表面に備えた硬質表面部材
US7981810B1 (en) 2006-06-08 2011-07-19 Novellus Systems, Inc. Methods of depositing highly selective transparent ashable hardmask films
US20080014466A1 (en) * 2006-07-11 2008-01-17 Ronghua Wei Glass with scratch-resistant coating
EP1918967B1 (de) * 2006-11-02 2013-12-25 Dow Corning Corporation Verfahren zur Herstellung einer Schicht durch Abscheidung aus einem Plasma
US7915166B1 (en) 2007-02-22 2011-03-29 Novellus Systems, Inc. Diffusion barrier and etch stop films
US7981777B1 (en) 2007-02-22 2011-07-19 Novellus Systems, Inc. Methods of depositing stable and hermetic ashable hardmask films
CA2686445C (en) 2007-05-25 2015-01-27 Oerlikon Trading Ag, Truebbach Vacuum treatment installation and vacuum treatment method
US8962101B2 (en) 2007-08-31 2015-02-24 Novellus Systems, Inc. Methods and apparatus for plasma-based deposition
US7820556B2 (en) * 2008-06-04 2010-10-26 Novellus Systems, Inc. Method for purifying acetylene gas for use in semiconductor processes
US8435608B1 (en) 2008-06-27 2013-05-07 Novellus Systems, Inc. Methods of depositing smooth and conformal ashable hard mask films
CH699110A1 (fr) * 2008-07-10 2010-01-15 Swatch Group Res & Dev Ltd Procédé de fabrication d'une pièce micromécanique.
EP2145856B1 (de) * 2008-07-10 2014-03-12 The Swatch Group Research and Development Ltd. Verfahren zur Herstellung eines mikromechanischen Bauteils
TW201020336A (en) * 2008-11-20 2010-06-01 Yu-Hsueh Lin Method for plating film on surface of heat dissipation module and film-plated heat dissipation module
KR101496149B1 (ko) * 2008-12-08 2015-02-26 삼성전자주식회사 결정질 실리콘 제조 방법
US7955990B2 (en) * 2008-12-12 2011-06-07 Novellus Systems, Inc. Method for improved thickness repeatability of PECVD deposited carbon films
US8267831B1 (en) 2009-05-19 2012-09-18 Western Digital Technologies, Inc. Method and apparatus for washing, etching, rinsing, and plating substrates
JP5710606B2 (ja) 2009-06-26 2015-04-30 東京エレクトロン株式会社 アモルファスカーボンのドーピングによるフルオロカーボン(CFx)の接合の改善
WO2011059749A2 (en) * 2009-10-28 2011-05-19 Applied Materials, Inc. Vertically integrated processing chamber
DE102010002688C5 (de) * 2010-03-09 2014-03-06 Federal-Mogul Burscheid Gmbh Schraubendruckfeder für einen Ölabstreifring eines Kolbens in einem Verbrennungsmotor und Verfahren zur Beschichtung einer Schraubendruckfeder
US8563414B1 (en) 2010-04-23 2013-10-22 Novellus Systems, Inc. Methods for forming conductive carbon films by PECVD
DE102010033543A1 (de) * 2010-08-05 2012-02-09 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Beschichtung von Stahl-Bauteilen
DE102010052971A1 (de) 2010-11-30 2012-05-31 Amg Coating Technologies Gmbh Werkstück mit Si-DLC Beschichtung und Verfahren zur Herstellung von Beschichtungen
EP2628817B1 (de) 2012-02-15 2016-11-02 IHI Hauzer Techno Coating B.V. Beschichteter Artikel aus Martensitstahl und Verfahren zur Herstellung eines beschichteten Artikels aus Stahl
EP2628822B1 (de) 2012-02-15 2015-05-20 IHI Hauzer Techno Coating B.V. Stromisolierende Lagerkomponenten und Lager
JP2012125923A (ja) * 2012-03-19 2012-07-05 Okouchi Kinzoku Co Ltd Dlc被覆を有する切削工具の製造方法
DE102012007763A1 (de) 2012-04-20 2013-10-24 Ulrich Schmidt Modularer Rahmen für Steckdosen und Schalter
DE102012007796A1 (de) 2012-04-20 2013-10-24 Amg Coating Technologies Gmbh Beschichtung enthaltend Si-DLC, DLC und Me-DLC und Verfahren zur Herstellung von Beschichtungen
SG195494A1 (en) 2012-05-18 2013-12-30 Novellus Systems Inc Carbon deposition-etch-ash gap fill process
DE102012017809A1 (de) * 2012-09-10 2014-03-13 Oerlikon Trading Ag, Trübbach Verfahren zur Herstellung einer Metallborocarbidschicht auf einem Substrat
US9362133B2 (en) 2012-12-14 2016-06-07 Lam Research Corporation Method for forming a mask by etching conformal film on patterned ashable hardmask
JP2014125670A (ja) * 2012-12-27 2014-07-07 Kobe Steel Ltd プラズマcvd法による保護膜の形成方法
US9304396B2 (en) 2013-02-25 2016-04-05 Lam Research Corporation PECVD films for EUV lithography
JP6060016B2 (ja) 2013-03-28 2017-01-11 ブラザー工業株式会社 成膜装置、成膜方法及び成膜プログラム
US9589799B2 (en) 2013-09-30 2017-03-07 Lam Research Corporation High selectivity and low stress carbon hardmask by pulsed low frequency RF power
US9320387B2 (en) 2013-09-30 2016-04-26 Lam Research Corporation Sulfur doped carbon hard masks
JP2016084495A (ja) * 2014-10-24 2016-05-19 株式会社日本製鋼所 金属膜と保護膜とを形成する成膜方法および成膜装置
US9523146B1 (en) 2015-06-17 2016-12-20 Southwest Research Institute Ti—Si—C—N piston ring coatings
DE102015115167B4 (de) * 2015-09-09 2017-03-30 Lisa Dräxlmaier GmbH Formkörper aufweisend eine Funktionsschicht, Verfahren zu seiner Herstellung und seine Verwendung
US10441349B2 (en) 2015-10-29 2019-10-15 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10368939B2 (en) 2015-10-29 2019-08-06 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
WO2017182124A1 (de) * 2016-04-22 2017-10-26 Oerlikon Surface Solutions Ag, Pfäffikon Ticn mit reduzierten wachstumsdefekten mittels hipims
WO2017218197A1 (en) 2016-06-15 2017-12-21 Eastman Chemical Company Physical vapor deposited biosensor components
US10249495B2 (en) * 2016-06-28 2019-04-02 Applied Materials, Inc. Diamond like carbon layer formed by an electron beam plasma process
DE102016213951A1 (de) 2016-07-28 2018-02-01 Robert Bosch Gmbh Verbesserte Lenkung von Ionen aus einem Plasma auf ein zu beschichtendes Substrat
KR102547063B1 (ko) 2016-09-16 2023-06-22 이스트만 케미칼 컴파니 물리적 증착에 의해 제조된 바이오센서 전극
KR102547061B1 (ko) 2016-09-16 2023-06-22 이스트만 케미칼 컴파니 물리적 증착에 의해 제조된 바이오센서 전극
DE102017205028A1 (de) * 2017-03-24 2018-09-27 Robert Bosch Gmbh Verschleißschutzbeschichtetes metallisches Bauteil hieraus bestehende Bauteilanordnung
CN110770575A (zh) 2017-06-22 2020-02-07 伊士曼化工公司 用于电化学传感器的物理气相沉积电极
US11043375B2 (en) 2017-08-16 2021-06-22 Applied Materials, Inc. Plasma deposition of carbon hardmask
DE102017214432A1 (de) 2017-08-18 2019-02-21 Gühring KG Verfahren zum beschichten temperaturempfindlicher substrate mit polykristallinem diamant
WO2019034728A1 (de) 2017-08-18 2019-02-21 Gühring KG Verfahren zum beschichten temperaturempfindlicher substrate mit polykristallinem diamant
DE102017217464A1 (de) 2017-09-29 2019-04-04 Gühring KG Verfahren zum Beschichten temperaturempfindlicher Substrate mit polykristallinem Diamant
US10709497B2 (en) 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US10973569B2 (en) 2017-09-22 2021-04-13 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
JP7005367B2 (ja) * 2018-02-05 2022-02-04 東京エレクトロン株式会社 ボロン系膜の成膜方法および成膜装置
US11469097B2 (en) 2018-04-09 2022-10-11 Applied Materials, Inc. Carbon hard masks for patterning applications and methods related thereto
CN109536858A (zh) * 2018-12-14 2019-03-29 深圳大学 锁杆及其制备方法
WO2020243342A1 (en) 2019-05-29 2020-12-03 Lam Research Corporation High selectivity, low stress, and low hydrogen diamond-like carbon hardmasks by high power pulsed low frequency rf
KR20220037456A (ko) 2019-07-01 2022-03-24 어플라이드 머티어리얼스, 인코포레이티드 플라즈마 결합 재료들을 최적화하는 것에 의한 막 특성들의 조절
US11207124B2 (en) 2019-07-08 2021-12-28 Covidien Lp Electrosurgical system for use with non-stick coated electrodes
US11369427B2 (en) 2019-12-17 2022-06-28 Covidien Lp System and method of manufacturing non-stick coated electrodes
US11664226B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density carbon films for hardmasks and other patterning applications
US11664214B2 (en) 2020-06-29 2023-05-30 Applied Materials, Inc. Methods for producing high-density, nitrogen-doped carbon films for hardmasks and other patterning applications
CN111893455B (zh) * 2020-09-08 2023-10-03 河北美普兰地环保科技有限公司 金属基材碳纳米膜材料制造设备及其制备方法
CN113215537A (zh) * 2021-04-21 2021-08-06 合肥波林新材料股份有限公司 一种连杆用防护涂层的制备方法及其应用
RU2762426C1 (ru) * 2021-09-06 2021-12-21 Общество с ограниченной ответственностью "Вириал" (ООО "Вириал") Установка модифицирования поверхности заготовок для режущих пластин

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619865A (en) * 1984-07-02 1986-10-28 Energy Conversion Devices, Inc. Multilayer coating and method
US4863549A (en) * 1987-10-01 1989-09-05 Leybold Aktiengesellschaft Apparatus for coating or etching by means of a plasma
US5102687A (en) * 1988-11-23 1992-04-07 Centre National De La Recherche Scientifique-C.N.R.S. Process for surface treatment by plasma of a substrate supported by an electrode
WO1995026879A1 (en) * 1994-04-01 1995-10-12 Mobil Oil Corporation Barrier films having carbon-coated surfaces
EP0678903A1 (de) * 1994-04-20 1995-10-25 Tokyo Electron Limited Plasmabearbeitungsverfahren und -gerät
EP0701982A1 (de) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Limited Werkzeuge die diesem Film enthalten Mehrschichtfilm mit ultrafeinen Partikeln und hartem Verbundwerkstoff
DE19609804C1 (de) * 1996-03-13 1997-07-31 Bosch Gmbh Robert Einrichtung, ihre Verwendung und ihr Betrieb zum Vakuumbeschichten von Schüttgut
US5693376A (en) * 1995-06-23 1997-12-02 Wisconsin Alumni Research Foundation Method for plasma source ion implantation and deposition for cylindrical surfaces
EP0827817A1 (de) * 1996-09-06 1998-03-11 Sandvik Aktiebolag Beschichtetes Kettensägekettenrad

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727000A (en) * 1983-06-06 1988-02-23 Ovonic Synthetic Materials Co., Inc. X-ray dispersive and reflective structures
JPS6091629A (ja) 1983-10-25 1985-05-23 Nec Corp プラズマ気相成長装置
US4785470A (en) * 1983-10-31 1988-11-15 Ovonic Synthetic Materials Company, Inc. Reflectivity and resolution X-ray dispersive and reflective structures for carbon, beryllium and boron analysis
EP0221531A3 (de) * 1985-11-06 1992-02-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Isoliertes gut wärmeleitendes Substrat und sein Herstellungsverfahren
JPS6393861A (ja) * 1986-10-06 1988-04-25 Nec Corp 低応力薄膜の堆積方法
US4963239A (en) 1988-01-29 1990-10-16 Hitachi, Ltd. Sputtering process and an apparatus for carrying out the same
JPH02205666A (ja) 1989-02-01 1990-08-15 Fujitsu Ltd スパッタ膜の形成方法
DE69017744T2 (de) 1989-04-27 1995-09-14 Fujitsu Ltd Gerät und Verfahren zur Bearbeitung einer Halbleitervorrichtung unter Verwendung eines durch Mikrowellen erzeugten Plasmas.
JP2538691B2 (ja) * 1989-04-27 1996-09-25 富士通株式会社 プラズマ処理装置およびプラズマ処理方法
JPH03114234A (ja) 1989-09-28 1991-05-15 Toshiba Corp 薄膜トランジスタ及びその製造方法
FR2653234A1 (fr) * 1989-10-13 1991-04-19 Philips Electronique Lab Dispositif du type miroir dans le domaine des rayons x-uv.
JPH0430900A (ja) 1990-05-25 1992-02-03 Kosaku Ono 物干し乾燥機
JP3384490B2 (ja) 1990-06-04 2003-03-10 ティーディーケイ株式会社 高周波プラズマcvd法による炭素膜の形成法
US5268217A (en) * 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
US5268216A (en) * 1990-12-21 1993-12-07 Ovonic Synthetic Materials Company, Inc. Multilayer solid lubricant composite structures and method of making same
JP3106528B2 (ja) 1991-03-12 2000-11-06 株式会社島津製作所 硬質カーボン膜形成方法及び形成装置
JPH07109034B2 (ja) 1991-04-08 1995-11-22 ワイケイケイ株式会社 硬質多層膜形成体およびその製造方法
US5786068A (en) * 1991-05-03 1998-07-28 Advanced Refractory Technologies, Inc. Electrically tunable coatings
DE9109503U1 (de) * 1991-07-31 1991-10-17 Magtron Magneto Elektronische Geraete Gmbh, 7583 Ottersweier, De
DE4127317C2 (de) * 1991-08-17 1999-09-02 Leybold Ag Einrichtung zum Behandeln von Substraten
WO1993008316A1 (fr) * 1991-10-14 1993-04-29 Commissariat A L'energie Atomique Materiau multicouche pour revetement anti-erosion et anti-abrasion
JP3263499B2 (ja) * 1993-10-19 2002-03-04 三洋電機株式会社 ダイヤモンド状被膜形成方法及び装置
US5593719A (en) * 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys
JPH08134629A (ja) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd 超微粒積層膜と、それを有する工具用複合高硬度材料
US5500312A (en) * 1994-10-11 1996-03-19 At&T Corp. Masks with low stress multilayer films and a process for controlling the stress of multilayer films
DE19500262C1 (de) 1995-01-06 1995-09-28 Metaplas Oberflaechenveredelun Verfahren zur Plasmabehandlung von Werkstücken
US5569487A (en) * 1995-01-23 1996-10-29 General Electric Company Capacitor dielectrics of silicon-doped amorphous hydrogenated carbon
JPH08255782A (ja) * 1995-03-16 1996-10-01 Toshiba Corp プラズマ表面処理装置
DE19513614C1 (de) 1995-04-10 1996-10-02 Fraunhofer Ges Forschung Verfahren zur Abscheidung von Kohlenstoffschichten, Kohlenstoffschichten auf Substraten und deren Verwendung
DE19515565B4 (de) 1995-04-27 2005-08-04 Hyundai Motor Co. Hinterradaufhängung für Kraftfahrzeuge
US5593234A (en) * 1995-05-16 1997-01-14 Ntn Corporation Bearing assembly with polycrystalline superlattice coating
JPH09106899A (ja) * 1995-10-11 1997-04-22 Anelva Corp プラズマcvd装置及び方法並びにドライエッチング装置及び方法
JPH09111458A (ja) * 1995-10-16 1997-04-28 Fuji Photo Film Co Ltd 成膜装置及び成膜方法
US5672054A (en) * 1995-12-07 1997-09-30 Carrier Corporation Rotary compressor with reduced lubrication sensitivity
JPH1079372A (ja) * 1996-09-03 1998-03-24 Matsushita Electric Ind Co Ltd プラズマ処理方法及びプラズマ処理装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619865A (en) * 1984-07-02 1986-10-28 Energy Conversion Devices, Inc. Multilayer coating and method
US4863549A (en) * 1987-10-01 1989-09-05 Leybold Aktiengesellschaft Apparatus for coating or etching by means of a plasma
US5102687A (en) * 1988-11-23 1992-04-07 Centre National De La Recherche Scientifique-C.N.R.S. Process for surface treatment by plasma of a substrate supported by an electrode
WO1995026879A1 (en) * 1994-04-01 1995-10-12 Mobil Oil Corporation Barrier films having carbon-coated surfaces
EP0678903A1 (de) * 1994-04-20 1995-10-25 Tokyo Electron Limited Plasmabearbeitungsverfahren und -gerät
EP0701982A1 (de) * 1994-09-16 1996-03-20 Sumitomo Electric Industries, Limited Werkzeuge die diesem Film enthalten Mehrschichtfilm mit ultrafeinen Partikeln und hartem Verbundwerkstoff
US5693376A (en) * 1995-06-23 1997-12-02 Wisconsin Alumni Research Foundation Method for plasma source ion implantation and deposition for cylindrical surfaces
DE19609804C1 (de) * 1996-03-13 1997-07-31 Bosch Gmbh Robert Einrichtung, ihre Verwendung und ihr Betrieb zum Vakuumbeschichten von Schüttgut
WO1997034024A1 (de) * 1996-03-13 1997-09-18 Robert Bosch Gmbh Einrichtung zum vakuumbeschichten von schüttgut
EP0827817A1 (de) * 1996-09-06 1998-03-11 Sandvik Aktiebolag Beschichtetes Kettensägekettenrad

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6926934B2 (en) * 2000-03-29 2005-08-09 Canon Kabushiki Kaisha Method and apparatus for deposited film
WO2003048406A2 (de) * 2001-12-06 2003-06-12 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co. Beschichtungsverfahren und beschichtung
WO2003048406A3 (de) * 2001-12-06 2004-02-19 Interpane Entw & Beratungsges Beschichtungsverfahren und beschichtung
AU2002352216B2 (en) * 2001-12-06 2007-10-11 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co. Coating method and coating
DE102004041234A1 (de) * 2004-08-26 2006-03-02 Ina-Schaeffler Kg Verschleißfeste Beschichtung und Verfahren zur Herstellung derselben
JP2007160506A (ja) * 2007-02-23 2007-06-28 Sumitomo Electric Hardmetal Corp 非晶質カーボン被覆工具
WO2011110413A1 (de) * 2010-03-09 2011-09-15 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, und verfahren zur beschichtung eines gleitelements
RU2558024C2 (ru) * 2010-03-09 2015-07-27 Федерал-Могул Буршайд Гмбх Скользящий элемент, в частности поршневое кольцо, и способ покрытия скользящего элемента
US9103015B2 (en) 2010-03-09 2015-08-11 Federal-Mogul Burscheid Gmbh Sliding element and method for coating a sliding element

Also Published As

Publication number Publication date
DE19826259A1 (de) 1998-12-17
EP0990061B1 (de) 2006-01-04
CN1264432A (zh) 2000-08-23
ES2256948T3 (es) 2006-07-16
EP0990061A1 (de) 2000-04-05
AU8531598A (en) 1999-01-04
JP2002504189A (ja) 2002-02-05
AU734809B2 (en) 2001-06-21
US20050098119A1 (en) 2005-05-12
JP2009133008A (ja) 2009-06-18
US20020100420A1 (en) 2002-08-01
US6869676B2 (en) 2005-03-22
US7942111B2 (en) 2011-05-17
DE59813331D1 (de) 2006-03-30
US6372303B1 (en) 2002-04-16

Similar Documents

Publication Publication Date Title
EP0990061B1 (de) Verfahren und einrichtung zum vakuumbeschichten eines substrates
EP1362931B2 (de) Verfahren und Vorrichtung zur Herstellung eines DLC-Schichtsystems
DE19526387C2 (de) Doppelt beschichteter Stahlverbundgegenstand und Verfahren zu dessen Herstellung
EP2148939B1 (de) Vakuumbehandlungsanlage und vakuumbehandlungsverfahren
EP1120473B1 (de) Zerspanungswerkzeug mit Carbonitrid-Beschichtung
US6495002B1 (en) Method and apparatus for depositing ceramic films by vacuum arc deposition
EP2165003A1 (de) Pdv-verfahren und pvd-vorrichtung zur erzeugung von reibungsarmen, verschleissbeständigen funktionsschichten und damit hergestellte beschichtungen
EP0748395B1 (de) Verfahren zur herstellung von schichten aus kubischem bornitrid
EP0888463B1 (de) Einrichtung zum vakuumbeschichten von schüttgut
WO2017148582A1 (de) Wasserstofffreie kohlenstoffbeschichtung mit zirkonium haftschicht
EP1784524A2 (de) Schichtverbund mit kubischen bornitrid
WO2012072225A1 (de) Werkstück mit si-dlc beschichtung und verfahren zur herstellung von beschichtungen
EP1470263B1 (de) Verfahren zur abscheidung von metallfreien kohlenstoffschichten
EP1876257A2 (de) Verfahren zur PVD-Beschichtung
EP2526218A1 (de) Plasma- bzw. ionengestütztes system zur herstellung haftfester beschichtungen auf fluorpolymeren
WO2002097157A2 (de) Modifizierter dlc-schichtaufbau
DE102011009347B4 (de) Verfahren zur Herstellung eines kohlenstoffhaltigen Schichtsystems sowie Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98806256.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998936157

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 85315/98

Country of ref document: AU

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09446054

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998936157

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 85315/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998936157

Country of ref document: EP