WO1999002817A1 - Single-phase annulus-operated sliding sleeve - Google Patents

Single-phase annulus-operated sliding sleeve Download PDF

Info

Publication number
WO1999002817A1
WO1999002817A1 PCT/US1998/014035 US9814035W WO9902817A1 WO 1999002817 A1 WO1999002817 A1 WO 1999002817A1 US 9814035 W US9814035 W US 9814035W WO 9902817 A1 WO9902817 A1 WO 9902817A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
inner sleeve
housing
flow port
annular
Prior art date
Application number
PCT/US1998/014035
Other languages
French (fr)
Inventor
Diana L. Orzechowski
Billy R. Newman
Original Assignee
Camco International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Camco International Inc. filed Critical Camco International Inc.
Priority to GB0000162A priority Critical patent/GB2343209B/en
Priority to AU83854/98A priority patent/AU8385498A/en
Publication of WO1999002817A1 publication Critical patent/WO1999002817A1/en
Priority to NO20000082A priority patent/NO317127B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • E21B34/101Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole with means for equalizing fluid pressure above and below the valve
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/10Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
    • E21B34/102Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole with means for locking the closing element in open or closed position
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools

Definitions

  • the present invention relates to well completion equipment, and more specifically to mechanisms for controlling the flow of fluids within a well bore.
  • the sliding sleeve may be used to control the flow of hydrocarbon fluids from the production zone to the earth's surface, or it can be used to control the flow of various fluids for stimulating or working a well from the earth's surface through the tubing string into the well annulus.
  • Sliding sleeves are generally controlled from the earth's surface by wireline tools, or by other mechanisms known to those of skill in the art.
  • a need has arisen in the industry for a sliding sleeve that may be initially actuated without the use of wireline tools. It has been appreciated that the ability to initially actuate the sliding sleeve without making a trip into the well with wireline tools will result in savings of valuable time and labor.
  • the present invention has been developed in response to this need, and meets this need by providing a sliding sleeve that is initially actuated by annulus pressure instead of by the use of wireline or other tools.
  • the present invention has been contemplated to meet the above-described needs.
  • the present invention is a sliding sleeve connected to a tubular conduit disposed within a well
  • the sliding sleeve includes: a
  • housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one outer fluid flow port; an inner sleeve disposed for axial movement within the longitudinal bore of the housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through the housing to
  • the housing, inner sleeve, and piston cooperate to yield: a run-in mode wherein the piston is releasably secured to the housing, the piston is exposed to annulus pressure through the at least one annulus pressure port, and the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to release the piston from the housing and force the inner sleeve to a first position so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port and fluid communication is established between the annulus and the longitudinal bore of the inner sleeve; and, a closing mode wherein the inner sleeve is shifted to
  • the sliding sleeve may further include a collet attached to the inner sleeve and having an annular rib.
  • the housing further includes at least one annular recess within its longitudinal bore for receiving the collet rib.
  • the housing further includes within its longitudinal bore an upper annular recess, an intermediate annular recess, and a lower annular recess; and, the collet rib is located in the upper annular recess when the inner sleeve is in its first position, the collet rib is located in the intermediate annular recess when the inner sleeve is in the run-in mode, and the collet rib is located in the lower annular recess when the inner sleeve is in its second position.
  • the predetermined annulus pressure is sufficient to release the piston from the housing and disengage the collet rib from the intermediate recess.
  • the sliding sleeve may further include piston seal means for sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position.
  • the piston seal means includes an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position.
  • the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode.
  • an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the sliding sleeve is in its run-in mode, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing when the sliding sleeve is in its run-in mode.
  • an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the inner sleeve is in its second position, and a lower surface of the piston is abutted against an annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its second position.
  • an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its first position.
  • the sliding sleeve may further include an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port.
  • the flow port seals are chevron packing.
  • fluid communication between the annulus and the longitudinal bore of the inner sleeve becomes sealably prevented
  • the sliding sleeve may further include an inner annular piston seal disposed between the inner sleeve and the piston, an outer annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner annular piston seal, the outer annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston.
  • the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing.
  • the piston is shearably affixed by shear means to he-housing during the run-in mode.
  • the sliding sleeve may further include an annular housing seal disposed within the longitudinal bore of the
  • the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port; the housing further includes within its longitudinal bore an equalizing recess between the upper recess and the intermediate recess; and the housing and inner sleeve cooperate to yield an equalizing mode wherein the collet rib
  • the sliding sleeve includes: a housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one
  • outer fluid flow port the longitudinal bore having an upper annular recess, an intermediate annular recess, and a lower annular recess; an inner sleeve disposed for axial movement within the longitudinal bore of the housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through the housing to control fluid flow between the annulus and the longitudinal bore of the inner sleeve; a piston associated with the inner sleeve and the longitudinal bore of the housing; a collet attached to the inner sleeve and having an annular rib.
  • the housing, inner sleeve, and piston cooperate to yield: a run-in mode wherein the piston is releasably secured to the housing, the piston is exposed to annulus pressure through the at least one annulus pressure port, the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve, and the collet rib is located in the intermediate annular recess; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to release the piston from the housing, disengage the collet rib from the intermediate recess, and force the inner sleeve to a first position, so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port, fluid communication is established between
  • the inner sleeve, and the collet rib is located in the lower annular recess.
  • the sliding sleeve may further include an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position, the outer piston seals sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position.
  • the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode.
  • Another feature of the present invention is that: when the sliding sleeve is in its run-in mode, an upper surface of the piston is abutted against an upper shoulder of the inner sleeve, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing; when the inner sleeve is in its second position, the upper surface of the piston is abutted against the upper shoulder of the inner sleeve, and the lower surface of the piston is abutted against the annular shoulder within the longitudinal bore of the housing; and, when the inner sleeve is in its second position, an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing.
  • the sliding sleeve may further include an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port.
  • the flow port seals are chevron packing.
  • fluid communication between the annulus and the longitudinal bore of the inner sleeve becomes sealably prevented upon the at least one inner fluid flow port in the inner sleeve passing below the lower annular
  • the sliding sleeve may further include an inner annular piston seal disposed between the inner sleeve and the piston, an outer lower annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner armular piston seal, the outer lower annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston.
  • the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing.
  • the piston is shearably affixed by shear means to the housing during the run-in mode.
  • the sliding sleeve may further include an annular housing seal disposed within the longitudinal bore of the housing beneath the shear means and above an annular shoulder within the housing to prevent any leakage associated with the shear means when the inner sleeve is in its second position.
  • the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port; the housing further
  • the longitudinal bore of the inner sleeve is equalized through the equalizing port and outer fluid flow port.
  • the sliding sleeve includes a housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one outer fluid flow port; an inner sleeve disposed for axial movement within the longitudinal bore of the housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through the housing to control fluid flow between the annulus and the longitudinal bore of the inner sleeve; and, a piston associated with the inner sleeve and the longitudinal bore of the housing.
  • the housing, inner sleeve, and piston cooperate to yield: a run-in mode wherein the piston is exposed to annulus pressure through the at least one annulus pressure port, and the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to force the inner sleeve to a first position so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port and fluid communication is established between the annulus and the longitudinal bore of the inner sleeve; and, a closing mode wherein the inner sleeve is shifted to a second position so that the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve.
  • the piston is releasably secured to the housing during the run-in mode, and the predetermined annulus pressure releases the piston from the housing during the opening mode.
  • the sliding sleeve may further include a collet attached to the inner sleeve and having an annular rib.
  • the housing further includes at least one annular recess within its longitudinal bore for receiving the collet rib.
  • the housing further includes within its longitudinal bore an upper annular recess, an intermediate annular recess, and a lower annular recess; and, the collet rib is located in the upper annular recess when the inner sleeve is in its first position, the collet rib is located in the intermediate annular recess when the inner sleeve is in the run-in mode, and the collet rib is located in the lower annular recess when the inner sleeve is in its second position.
  • the predetermined annulus pressure is sufficient to disengage the collet rib from the intermediate recess during the run-in mode.
  • the sliding sleeve may further include piston seal means for sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position.
  • the piston seal means includes an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position.
  • the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode.
  • an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the sliding sleeve is in its run-in mode, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing when the sliding sleeve is in its run-in mode.
  • an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the inner sleeve is in its second position, and a lower surface of the piston is abutted against an annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its second position.
  • an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its first position.
  • the sliding sleeve may further include an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port.
  • the flow port seals are chevron packing.
  • fluid communication between the annulus and the longitudinal bore of the inner sleeve becomes sealably prevented
  • the sliding sleeve may further include an inner annular piston seal disposed between the inner sleeve and the piston, an outer annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner annular piston seal, the outer annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston.
  • the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing.
  • the piston is shearably affixed by shear means to the housing during the run-in mode.
  • the sliding sleeve may further include an annular housing seal disposed within the longitudinal bore of the housing beneath the shear means and above an annular shoulder within the housing to prevent any leakage associated with the shear means when the inner sleeve is in its second position.
  • the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port;
  • the housing further includes within its longitudinal bore an equalizing recess between the upper recess and the intermediate recess;
  • Figure 1 illustrates a partial cross-sectional elevation view of a sliding sleeve of the
  • present invention serially connected to a tubing string disposed within a well conduit.
  • Figures 2A through 2C illustrate a partial cross-sectional elevation view which together
  • Figures 3A through 3B illustrate a partial cross-sectional elevation view which together
  • FIGS. 4A through 4C illustrate a partial cross-sectional elevation view which together show a sliding sleeve of the present invention in a closed position.
  • tubular conduit 12 such as a tubing string or coiled tubing, disposed within a well
  • conduit or casing 14 for controlling fluid flow through the tubular conduit 12.
  • the tubular conduit 12 and the casing 14 define an annulus 13 therebetween.
  • sleeve 10 may be used to control the flow of hydrocarbon fluids from a production zone 16 to the earth's surface (not shown), or it can be used to circulate various fluids from the earth's surface through the tubular conduit 12 and into the well annulus 13 to stimulate or work the well, as
  • Figure 1 illustrates a well completion wherein the sliding sleeve 10 is to be used in a fluid circulating mode. This well completion is also shown with a
  • FIGS 2A-2C illustrate the sliding sleeve 10 in its initial or run-in configuration.
  • the sliding sleeve 10 of the present invention in a specific embodiment, the sliding sleeve 10 of the present invention
  • a housing 18 having a longitudinal bore 20 extending therethrough.
  • An inner sleeve 22 is included in the housing 18 having a longitudinal bore 20 extending therethrough.
  • a piston 24 is associated with the inner sleeve 22 and the longitudinal bore.
  • the piston 24 may be sealably disposed around the inner sleeve 22 and within the longitudinal bore 20 of the housing 18.
  • the piston 24 is provided with an upper surface 24a, a lower surface 24b, an inner annular piston seal 24c, an outer upper annular piston seal 24d, and an outer lower annular piston seal 24e.
  • the inner annular piston seal 24c is disposed between the inner sleeve 22 and the piston 24.
  • the outer annular piston seals 24d and 24e are disposed between the piston 24 and the housing
  • At least one annulus pressure port 26 is provided through the housing 18 for exposing the
  • the piston 24 is releasably secured to the housing 18, for example, by at least one shear pin 25; the upper surface 24a of the piston 24 is abutted against an upper shoulder 27 of the inner sleeve 22; the lower surface 24b of the piston is displaced above an annular shoulder 29
  • the housing may also be provided with an annular housing seal 33 beneath the at least one shear pin 25 and above the annular shoulder
  • the housing 18 is provided with at least one outer fluid flow
  • annular flow port seal 34 is disposed above the at least one outer fluid flow port 30 and between the housing 18 and the inner sleeve 22. Similarly, a lower annular flow port seal 34 is disposed below the at least one outer fluid flow port 30 and between the housing 18 and the inner sleeve
  • the flow port seals 34 and 36 may be chevron packing, as well known to those of skill in the art.
  • the at least one outer fluid flow port 30 and the at least one inner fluid flow port 32 sealably cooperate to control fluid flow between the annulus 13 (Figure 1) and a longitudinal bore 23 through the inner sleeve 22.
  • Figure 2B illustrates the fluid flow ports 30 and 32 in a closed or non-aligned relationship. In this position, fluid flow from the annulus 13 is prevented from flowing into the longitudinal bore 23 of the inner sleeve 22. Further, the upper and lower annular seals 34 and 36 prevent fluid from migrating upwardly or downwardly in the annular space between the housing 18 and the inner sleeve 22.
  • the inner sleeve 22 may also be provided with at least one equalizing port 35 above the at least one flow port 32. The function of the at least one equalizing port 35 will be explained below.
  • the lower end of the inner sleeve 22 is provided with a collet 38
  • the longitudinal bore 20 through the housing 18 is provided with a number of annular recesses for receiving the collet rib 40.
  • the bore is provided with a number of annular recesses for receiving the collet rib 40.
  • the bore 20 may be provided with an upper annular recess 42, an intermediate annular recess 44, and a lower annular recess 46.
  • the bore 20 may also be provided with an equalizing recess 43 between the upper recess 42 and the intermediate recess 44.
  • the collet rib 40 is located in the intermediate recess 44 when the sliding sleeve 10 is in its run-in mode, as
  • the annulus pressure is applied to the piston 24 through the at least one annulus pressure port 26.
  • the annulus pressure is contained by the inner piston seal 24c, the outer lower piston seal 24e, and the upper annular fluid flow port seal 34, and acts upon the lower piston surface 24b to force the piston 24 and the inner sleeve 22 upwardly.
  • the force applied to the lower piston surface 24b by the annulus pressure should be sufficient to (a) release the piston from the housing, for example, by shearing the at least one shear pin 25, and (b) disengage the collet rib 40 from the intermediate recess 44.
  • the piston 24 and inner sleeve 22 Referring to Figure 3A, the piston 24 and inner sleeve 22
  • the sliding sleeve 10 of the present invention is in its open position. As shown in Figure 3B, opening the sliding sleeve 10 brings the flow ports 30 and 32
  • the collet rib 40 may be moved into, and held in, the equalizing recess 43 prior to being moved into the upper recess 42. This will move the inner sleeve 22 up to a point so that fluid communication is established from the at least one outer flow port 30 through the at least
  • one equalizing port 35 is not established through the at least one inner flow port 32.
  • the inner sleeve 22 may then be moved
  • a wireline shifting tool (not shown) is used to apply a downward impact force to the inner sleeve 22, in a manner well known to those skilled in the art. Fluid communication through the ports 30 and 32 will be fully terminated when the at least one flow port 32 in the inner sleeve 22 is moved below the lower flow port seal 36. The sliding sleeve 10 will be fully closed, and the inner sleeve 22 will be in its lowermost position, when the collet rib 40 is located in the lower recess 46, as shown in
  • the lower surface 24b of the piston 24 is abutted against the annular shoulder 29 within the longitudinal bore 20 of the housing 18.
  • the outer lower piston seal 24e is located below the at least one annulus pressure port 26 and the outer upper piston seal 24d is located above the at least one annulus pressure port 26.

Abstract

A sliding sleeve is provided to control the flow of fluids through a tubular conduit. The sliding sleeve may include a housing having a longitudinal bore, at least one annulus pressure port, and at least one fluid flow port. An inner sleeve is disposed for axial movement within the longitudinal bore of the housing, and includes at least one fluid flow port for sealably cooperating with the fluid flow port in the housing to control the flow of fluids through the tubing string. A piston is associated with the inner sleeve and the housing. The piston is initially releasably secured to the housing. The sliding sleeve is initially provided with the fluid flow ports in a closed position, and is actuated by applying annulus pressure to the piston through the at least one annulus pressure port in the housing. The annulus pressure releases the piston from the housing and forces the piston and inner sleeve upwardly to establish fluid communication through the fluid flow ports.

Description

SINGLE-PHASE ANNULUS-OPERATED SLIDING SLEEVE
RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No. 60/052,114, filed July 10, 1997.
BACKGROUND OF THE INVENTION 1. Field Of The Invention
The present invention relates to well completion equipment, and more specifically to mechanisms for controlling the flow of fluids within a well bore. 2. Description Of The Related Art
It is known that after an oil and gas well has been drilled it is completed by lining it with a string of casing that is cemented in place and then perforated adjacent a production zone containing hydrocarbon fluids. The hydrocarbon fluids flow through the casing perforations and into a tubing string positioned within the casing. The tubing string and the casing form an annulus therebetween. It is also known that a well tool that can be selectively opened and closed, commonly known as a "sliding sleeve," may be connected in series with the tubing string to control fluid flow therethrough. The sliding sleeve may be used to control the flow of hydrocarbon fluids from the production zone to the earth's surface, or it can be used to control the flow of various fluids for stimulating or working a well from the earth's surface through the tubing string into the well annulus. Sliding sleeves are generally controlled from the earth's surface by wireline tools, or by other mechanisms known to those of skill in the art. A need has arisen in the industry for a sliding sleeve that may be initially actuated without the use of wireline tools. It has been appreciated that the ability to initially actuate the sliding sleeve without making a trip into the well with wireline tools will result in savings of valuable time and labor. The present invention has been developed in response to this need, and meets this need by providing a sliding sleeve that is initially actuated by annulus pressure instead of by the use of wireline or other tools.
SUMMARY OF THE INVENTION The present invention has been contemplated to meet the above-described needs. The present invention is a sliding sleeve connected to a tubular conduit disposed within a well
conduit for controlling fluid flow through the tubular conduit, the tubular conduit and well conduit defining an annulus therebetween. In one aspect, the sliding sleeve includes: a
housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one outer fluid flow port; an inner sleeve disposed for axial movement within the longitudinal bore of the housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through the housing to
control fluid flow between the annulus and the longitudinal bore of the inner sleeve; and, a piston associated with the inner sleeve and the longitudinal bore of the housing. The housing, inner sleeve, and piston cooperate to yield: a run-in mode wherein the piston is releasably secured to the housing, the piston is exposed to annulus pressure through the at least one annulus pressure port, and the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to release the piston from the housing and force the inner sleeve to a first position so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port and fluid communication is established between the annulus and the longitudinal bore of the inner sleeve; and, a closing mode wherein the inner sleeve is shifted to a second position so that the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve.
Another feature of the present invention is that the sliding sleeve may further include a collet attached to the inner sleeve and having an annular rib. Another feature of the present invention is that the housing further includes at least one annular recess within its longitudinal bore for receiving the collet rib. Another feature of the present invention is that: the housing further includes within its longitudinal bore an upper annular recess, an intermediate annular recess, and a lower annular recess; and, the collet rib is located in the upper annular recess when the inner sleeve is in its first position, the collet rib is located in the intermediate annular recess when the inner sleeve is in the run-in mode, and the collet rib is located in the lower annular recess when the inner sleeve is in its second position. Another feature of the present invention is that the predetermined annulus pressure is sufficient to release the piston from the housing and disengage the collet rib from the intermediate recess. Another feature of the present invention is that the sliding sleeve may further include piston seal means for sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position. Another feature of the present invention is that the piston seal means includes an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position. Another feature of the present invention is that the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode. Another feature of the present invention is that an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the sliding sleeve is in its run-in mode, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing when the sliding sleeve is in its run-in mode. Another feature of the present invention is that an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the inner sleeve is in its second position, and a lower surface of the piston is abutted against an annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its second position. Another feature of the present invention is that an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its first position. Another feature of the present invention is that the sliding sleeve may further include an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port. Another feature of the present invention is that the flow port seals are chevron packing. Another feature of the present invention is that fluid communication between the annulus and the longitudinal bore of the inner sleeve becomes sealably prevented
upon the at least one inner fluid flow port in the inner sleeve passing below the lower annular flow port seal during transition from the opening mode to the closing mode. Another feature of the present invention is that the sliding sleeve may further include an inner annular piston seal disposed between the inner sleeve and the piston, an outer annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner annular piston seal, the outer annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston. Another feature of the present invention is that the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing. Another feature of the present invention is that the piston is shearably affixed by shear means to he-housing during the run-in mode. Another feature of the present invention is that the sliding sleeve may further include an annular housing seal disposed within the longitudinal bore of the
housing beneath the shear means and above an annular shoulder within the housing to prevent
any leakage associated with the shear means when the inner sleeve is in its second position. Another feature of the present invention is that the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port; the housing further includes within its longitudinal bore an equalizing recess between the upper recess and the intermediate recess; and the housing and inner sleeve cooperate to yield an equalizing mode wherein the collet rib
is located in the equalizing recess, and pressure between the annulus and the longitudinal bore of the inner sleeve is equalized through the equalizing port and outer fluid flow port.
In another aspect of the present invention, the sliding sleeve includes: a housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one
outer fluid flow port, the longitudinal bore having an upper annular recess, an intermediate annular recess, and a lower annular recess; an inner sleeve disposed for axial movement within the longitudinal bore of the housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through the housing to control fluid flow between the annulus and the longitudinal bore of the inner sleeve; a piston associated with the inner sleeve and the longitudinal bore of the housing; a collet attached to the inner sleeve and having an annular rib. In this aspect, the housing, inner sleeve, and piston cooperate to yield: a run-in mode wherein the piston is releasably secured to the housing, the piston is exposed to annulus pressure through the at least one annulus pressure port, the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve, and the collet rib is located in the intermediate annular recess; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to release the piston from the housing, disengage the collet rib from the intermediate recess, and force the inner sleeve to a first position, so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port, fluid communication is established between
the annulus and the longitudinal bore of the inner sleeve, and the collet rib is located in the upper annular recess; and, a closing mode wherein the inner sleeve is shifted to a second position so that the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port, fluid communication is prevented between the annulus and the longitudinal bore of
the inner sleeve, and the collet rib is located in the lower annular recess.
Another feature of the present invention is that the sliding sleeve may further include an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position, the outer piston seals sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position. Another feature of the present invention is that the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode. Another feature of the present invention is that: when the sliding sleeve is in its run-in mode, an upper surface of the piston is abutted against an upper shoulder of the inner sleeve, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing; when the inner sleeve is in its second position, the upper surface of the piston is abutted against the upper shoulder of the inner sleeve, and the lower surface of the piston is abutted against the annular shoulder within the longitudinal bore of the housing; and, when the inner sleeve is in its second position, an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing. Another feature of the present invention is that the sliding sleeve may further include an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port. Another feature of the present invention is that the flow port seals are chevron packing. Another feature of the present invention is that fluid communication between the annulus and the longitudinal bore of the inner sleeve becomes sealably prevented upon the at least one inner fluid flow port in the inner sleeve passing below the lower annular
flow port seal during transition from the opening mode to the closing mode. Another feature of the present invention is that the sliding sleeve may further include an inner annular piston seal disposed between the inner sleeve and the piston, an outer lower annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner armular piston seal, the outer lower annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston. Another feature of the present invention is that the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing. Another feature of the present invention is that the piston is shearably affixed by shear means to the housing during the run-in mode. Another feature of the present invention is that the sliding sleeve may further include an annular housing seal disposed within the longitudinal bore of the housing beneath the shear means and above an annular shoulder within the housing to prevent any leakage associated with the shear means when the inner sleeve is in its second position. Another feature of the present invention is that: the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port; the housing further
includes within its longitudinal bore an equalizing recess between the upper recess and the intermediate recess; and the housing and inner sleeve cooperate to yield an equalizing mode wherein the collet rib is located in the equalizing recess, and pressure between the annulus and
the longitudinal bore of the inner sleeve is equalized through the equalizing port and outer fluid flow port.
In yet another aspect of the present invention, the sliding sleeve includes a housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one outer fluid flow port; an inner sleeve disposed for axial movement within the longitudinal bore of the housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through the housing to control fluid flow between the annulus and the longitudinal bore of the inner sleeve; and, a piston associated with the inner sleeve and the longitudinal bore of the housing. In this aspect, the housing, inner sleeve, and piston cooperate to yield: a run-in mode wherein the piston is exposed to annulus pressure through the at least one annulus pressure port, and the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to force the inner sleeve to a first position so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port and fluid communication is established between the annulus and the longitudinal bore of the inner sleeve; and, a closing mode wherein the inner sleeve is shifted to a second position so that the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve. Another feature of the present invention is that the piston is releasably secured to the housing during the run-in mode, and the predetermined annulus pressure releases the piston from the housing during the opening mode. Another feature of the present invention is that the sliding sleeve may further include a collet attached to the inner sleeve and having an annular rib. Another feature of the present invention is that the housing further includes at least one annular recess within its longitudinal bore for receiving the collet rib. Another feature of the present invention is that: the housing further includes within its longitudinal bore an upper annular recess, an intermediate annular recess, and a lower annular recess; and, the collet rib is located in the upper annular recess when the inner sleeve is in its first position, the collet rib is located in the intermediate annular recess when the inner sleeve is in the run-in mode, and the collet rib is located in the lower annular recess when the inner sleeve is in its second position. Another feature of the present invention is that the predetermined annulus pressure is sufficient to disengage the collet rib from the intermediate recess during the run-in mode.
Another feature of the present invention is that the sliding sleeve may further include piston seal means for sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position. Another feature of the present invention is that the piston seal means includes an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position. Another feature of the present invention is that the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode. Another feature of the present invention is that an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the sliding sleeve is in its run-in mode, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing when the sliding sleeve is in its run-in mode. Another feature of the present invention is that an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the inner sleeve is in its second position, and a lower surface of the piston is abutted against an annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its second position. Another feature of the present invention is that an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its first position.
Another feature of the present invention is that the sliding sleeve may further include an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port. Another feature of the present invention is that the flow port seals are chevron packing. Another feature of the present invention is that fluid communication between the annulus and the longitudinal bore of the inner sleeve becomes sealably prevented
upon the at least one irmer fluid flow port in the inner sleeve passing below the lower annular
flow port seal during transition from the opening mode to the closing mode. Another feature of the present invention is that the sliding sleeve may further include an inner annular piston seal disposed between the inner sleeve and the piston, an outer annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner annular piston seal, the outer annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston. Another feature of the present invention is that the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing. Another feature of the present invention is that the piston is shearably affixed by shear means to the housing during the run-in mode. Another feature of the present invention is that the sliding sleeve may further include an annular housing seal disposed within the longitudinal bore of the housing beneath the shear means and above an annular shoulder within the housing to prevent any leakage associated with the shear means when the inner sleeve is in its second position.
Another feature of the present invention is that: the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port; the housing further includes within its longitudinal bore an equalizing recess between the upper recess and the intermediate recess;
and the housing and inner sleeve cooperate to yield an equalizing mode wherein the collet rib
is located in the equalizing recess, and pressure between the annulus and the longitudinal bore of the inner sleeve is equalized through the equalizing port and outer fluid flow port.
BRIEF DESCRIPTION OF THE DRAWINGS
In the Drawings:
Figure 1 illustrates a partial cross-sectional elevation view of a sliding sleeve of the
present invention serially connected to a tubing string disposed within a well conduit.
Figures 2A through 2C illustrate a partial cross-sectional elevation view which together
show a sliding sleeve of the present invention in a run-in position.
Figures 3A through 3B illustrate a partial cross-sectional elevation view which together
show a sliding sleeve of the present invention in an open position. Figures 4A through 4C illustrate a partial cross-sectional elevation view which together show a sliding sleeve of the present invention in a closed position.
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims. DETAILED DESCRIPTION OF THE INVENTION Referring to the drawings in detail, wherein like numerals denote identical elements throughout the several views, there is shown in Figure 1 a sliding sleeve 10 that is serially
connected to a tubular conduit 12, such as a tubing string or coiled tubing, disposed within a well
conduit or casing 14 for controlling fluid flow through the tubular conduit 12. The tubular conduit 12 and the casing 14 define an annulus 13 therebetween. As explained above, the sliding
sleeve 10 may be used to control the flow of hydrocarbon fluids from a production zone 16 to the earth's surface (not shown), or it can be used to circulate various fluids from the earth's surface through the tubular conduit 12 and into the well annulus 13 to stimulate or work the well, as
known to those of skill in the art. Figure 1 illustrates a well completion wherein the sliding sleeve 10 is to be used in a fluid circulating mode. This well completion is also shown with a
subsurface safety valve 11 and a packer 15.
Figures 2A-2C illustrate the sliding sleeve 10 in its initial or run-in configuration. Referring to Figure 2A, in a specific embodiment, the sliding sleeve 10 of the present invention
includes a housing 18 having a longitudinal bore 20 extending therethrough. An inner sleeve 22
is disposed for axial movement within the longitudinal bore 20. A piston 24 is associated with the inner sleeve 22 and the longitudinal bore. In a specific embodiment, the piston 24 may be sealably disposed around the inner sleeve 22 and within the longitudinal bore 20 of the housing 18. The piston 24 is provided with an upper surface 24a, a lower surface 24b, an inner annular piston seal 24c, an outer upper annular piston seal 24d, and an outer lower annular piston seal 24e. The inner annular piston seal 24c is disposed between the inner sleeve 22 and the piston 24. The outer annular piston seals 24d and 24e are disposed between the piston 24 and the housing
18. At least one annulus pressure port 26 is provided through the housing 18 for exposing the
piston 24 to pressure within an annulus 13 (Figure 1) between the tubular conduit 12 and the
casing 14. During the run-in mode, as shown in Figure 2A, and before the sliding sleeve is first actuated: the piston 24 is releasably secured to the housing 18, for example, by at least one shear pin 25; the upper surface 24a of the piston 24 is abutted against an upper shoulder 27 of the inner sleeve 22; the lower surface 24b of the piston is displaced above an annular shoulder 29
within the longitudinal bore 20 of the housing 18; and the outer annular seals 24d and 24e are
located above the at least one annulus pressure port 26. The housing may also be provided with an annular housing seal 33 beneath the at least one shear pin 25 and above the annular shoulder
29. The function of the housing seal 33 will be explained below.
Referring now to Figure 2B, the housing 18 is provided with at least one outer fluid flow
port 30, and the inner sleeve 22 is provided with at least one inner fluid flow port 32. An upper
annular flow port seal 34 is disposed above the at least one outer fluid flow port 30 and between the housing 18 and the inner sleeve 22. Similarly, a lower annular flow port seal 34 is disposed below the at least one outer fluid flow port 30 and between the housing 18 and the inner sleeve
22. In a specific embodiment, the flow port seals 34 and 36 may be chevron packing, as well known to those of skill in the art. As will be more fully explained below, the at least one outer fluid flow port 30 and the at least one inner fluid flow port 32 sealably cooperate to control fluid flow between the annulus 13 (Figure 1) and a longitudinal bore 23 through the inner sleeve 22. Figure 2B illustrates the fluid flow ports 30 and 32 in a closed or non-aligned relationship. In this position, fluid flow from the annulus 13 is prevented from flowing into the longitudinal bore 23 of the inner sleeve 22. Further, the upper and lower annular seals 34 and 36 prevent fluid from migrating upwardly or downwardly in the annular space between the housing 18 and the inner sleeve 22. The inner sleeve 22 may also be provided with at least one equalizing port 35 above the at least one flow port 32. The function of the at least one equalizing port 35 will be explained below.
As shown in Figure 2C, the lower end of the inner sleeve 22 is provided with a collet 38
having an annular rib 40. The longitudinal bore 20 through the housing 18 is provided with a number of annular recesses for receiving the collet rib 40. In a specific embodiment, the bore
20 may be provided with an upper annular recess 42, an intermediate annular recess 44, and a lower annular recess 46. In another embodiment, the bore 20 may also be provided with an equalizing recess 43 between the upper recess 42 and the intermediate recess 44. The collet rib 40 is located in the intermediate recess 44 when the sliding sleeve 10 is in its run-in mode, as
shown in Figures 2A-2C. The relationship between the collet rib 40 and the upper, equalizing, and lower recesses 42, 43, and 46 will be described below.
When it is desired to move the sliding sleeve 10 to its open position, as shown in Figure
3A-3B, to establish fluid communication through the fluid flow ports 30 and 32, pressure is
applied to the annulus 13, in any manner known to those of skill in the art. Referring to Figure
2A, the annulus pressure is applied to the piston 24 through the at least one annulus pressure port 26. The annulus pressure is contained by the inner piston seal 24c, the outer lower piston seal 24e, and the upper annular fluid flow port seal 34, and acts upon the lower piston surface 24b to force the piston 24 and the inner sleeve 22 upwardly. The force applied to the lower piston surface 24b by the annulus pressure should be sufficient to (a) release the piston from the housing, for example, by shearing the at least one shear pin 25, and (b) disengage the collet rib 40 from the intermediate recess 44. Referring to Figure 3A, the piston 24 and inner sleeve 22
cease upward movement when an upper surface 48 of the inner sleeve 22 abuts against an upper annular shoulder 50 within the longitudinal bore 20 of the housing 18. When the inner sleeve
22 is in this uppermost position, the sliding sleeve 10 of the present invention is in its open position. As shown in Figure 3B, opening the sliding sleeve 10 brings the flow ports 30 and 32
into alignment and establishes fluid communication between the annulus 13 and the longitudinal
bore 23 of the inner sleeve 22. Fluids from the production zone 16 may then be produced to the earth's surface through the tubular conduit 12. As shown in Figure 3B, the collet rib 40 is
located in the upper recess 42 when the sliding sleeve 10 is in its open position.
If it is desired to equalize the pressure between the annulus 13 and the longitudinal bore
23 of the inner sleeve 22 — so as to avoid an initial rapid fluid flow through the flow ports 30 and 32 — the collet rib 40 may be moved into, and held in, the equalizing recess 43 prior to being moved into the upper recess 42. This will move the inner sleeve 22 up to a point so that fluid communication is established from the at least one outer flow port 30 through the at least
one equalizing port 35 but is not established through the at least one inner flow port 32. After
the pressure between the annulus 13 and the longitudinal bore 23 of the inner sleeve 22 is equalized through the at least one equalizing port 35, the inner sleeve 22 may then be moved
upwardly until flow ports 30 and 32 are aligned, as more fully explained above.
When it is desired to move the sliding sleeve 10 to its closed position, as shown in
Figures 4A-4C, to stop the flow of fluids from the production zone 16, a wireline shifting tool (not shown) is used to apply a downward impact force to the inner sleeve 22, in a manner well known to those skilled in the art. Fluid communication through the ports 30 and 32 will be fully terminated when the at least one flow port 32 in the inner sleeve 22 is moved below the lower flow port seal 36. The sliding sleeve 10 will be fully closed, and the inner sleeve 22 will be in its lowermost position, when the collet rib 40 is located in the lower recess 46, as shown in
Figure 4C. With reference to Figure 4A, when the sliding sleeve 10 is in its fully closed position,
the lower surface 24b of the piston 24 is abutted against the annular shoulder 29 within the longitudinal bore 20 of the housing 18. In this position, the outer lower piston seal 24e is located below the at least one annulus pressure port 26 and the outer upper piston seal 24d is located above the at least one annulus pressure port 26. Thus, when the sliding sleeve 10 is in its fully closed position, the at least one annulus pressure port 26 is sealed off by piston seals 24d and
24e, and any leakage associated with the sheared shear pin 25 is prevented by housing seal 33. This locks out any further hydraulic actuation of the sliding sleeve 10. Any further actuation of the sliding sleeve 10 is restricted to actuation by the use of wireline tools, in a manner known to those skilled in the art.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications, apart from those shown or suggested herein, may be made within the scope and spirit of the present invention. For example, the annulus pressure could act to move a piston downwardly to move the inner sleeve downwardly to place the flow ports in fluid communication. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.

Claims

CLAIMS 1. A sliding sleeve connected to a tubular conduit disposed within a well conduit for controlling fluid flow through the tubular conduit, the tubular conduit and well conduit defining an annulus therebetween, the sliding sleeve comprising:
a housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one outer fluid flow port; an inner sleeve disposed for axial movement within the longitudinal bore of the
housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through
the housing to control fluid flow between the annulus and the longitudinal bore of the inner sleeve; and, a piston associated with the inner sleeve and the longitudinal bore of the housing; the housing, inner sleeve, and piston cooperating to yield: a run-in mode wherein the piston is releasably secured to the housing, the piston is exposed to annulus pressure through the at least one annulus pressure port, and the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the
longitudinal bore of the inner sleeve; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to release the piston from the housing and force the inner sleeve to a first position so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port and fluid ΓÇ₧ communication is established between the annulus and the
longitudinal bore of the inner sleeve; and, a closing mode wherein the inner sleeve is shifted to a second position so that the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve.
2. The sliding sleeve of claim 1, further including a collet attached to the inner sleeve and having an annular rib.
3. The sliding sleeve of claim 2, wherein the housing further includes at least one annular recess within its longitudinal bore for receiving the collet rib.
4. The sliding sleeve of claim 2, wherein: the housing further includes within its longitudinal bore an upper annular recess, an intermediate annular recess, and a lower annular recess; and, the collet rib is located in the upper armular recess when the inner sleeve is in its first position, the collet rib is located in the intermediate annular recess when the inner sleeve is in the run-in mode, and the collet rib is located in the lower annular recess when the inner sleeve is in its second position.
5. The sliding sleeve of claim 4, wherein the predetermined annulus pressure is sufficient to release the piston from the housing and disengage the collet rib from the intermediate recess.
6. The sliding sleeve of claim 1, further including piston seal means for sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position.
7. The sliding sleeve of claim 6, wherein the piston seal means includes an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position.
8. The sliding sleeve of claim 7, wherein the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode.
9. The sliding sleeve of claim 1, wherein an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the sliding sleeve is in its run-in mode, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing when the sliding sleeve is in its run-in mode.
10. The sliding sleeve of claim 1, wherein an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the inner sleeve is in its second position, and a lower surface of the piston is abutted against an annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its second position.
11. The sliding sleeve of claim 1, wherein an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its first position.
12. The sliding sleeve of claim 1, further including an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port.
13. The sliding sleeve of claim 12, wherein the flow port seals are chevron packing.
14. The sliding sleeve of claim 12, wherein fluid communication between the annulus
and the longitudinal bore of the inner sleeve becomes sealably prevented upon the at least one
inner fluid flow port in the inner sleeve passing below the lower annular flow port seal during transition from the opening mode to the closing mode.
15. The sliding sleeve of claim 1, further including an inner annular piston seal disposed between the inner sleeve and the piston, an outer annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner annular piston seal, the outer annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston.
16. The sliding sleeve of claim 1, wherein the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing.
17. The sliding sleeve of claim 1, wherein the piston is shearably affixed by shear means to the housing during the run-in mode.
18. The sliding sleeve of claim 17, further including an annular housing seal disposed within the longitudinal bore of the housing beneath the shear means and above an
annular shoulder within the housing to prevent any leakage associated with the shear means when the inner sleeve is in its second position.
19. The sliding sleeve of claim 4, wherein:
the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port;
the housing further includes within its longitudinal bore an equalizing recess between the upper recess and the intermediate recess; and the housing and inner sleeve cooperate to yield an equalizing mode wherein the collet rib is located in the equalizing recess, and pressure between the annulus and the longitudinal bore of the inner sleeve is equalized
through the equalizing port and outer fluid flow port.
20. A sliding sleeve connected to a tubular conduit disposed within a well conduit
for controlling fluid flow through the tubular conduit, the tubular conduit and well conduit defining an annulus therebetween, the sliding sleeve comprising:
a housing having a longitudinal bore extending therethrough, at least one annulus pressure port, and at least one outer fluid flow port, the longitudinal bore having an upper annular recess, an intermediate annular recess, and a lower annular recess; an inner sleeve disposed for axial movement within the longitudinal bore of the
housing, and having a longitudinal bore and at least one inner fluid flow
port for cooperating with the at least one outer fluid flow port through the housing to control fluid flow between the annulus and the longitudinal bore of the inner sleeve;
a piston associated with the inner sleeve and the longitudinal bore of the housing;
a collet attached to the inner sleeve and having an annular rib; the housing, inner sleeve, and piston cooperating to yield: a run-in mode wherein the piston is releasably secured to the housing, the piston is exposed to annulus pressure through the at least one annulus pressure port, the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve, and the collet rib is located
in the intermediate annular recess; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to release the piston from the housing, disengage the collet rib from the intermediate recess, and force the inner sleeve to a first position, so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port, fluid communication is established between the annulus and the longitudinal bore of the inner sleeve, and the collet rib is located in the upper annular
recess; and, a closing mode wherein the inner sleeve is shifted to a second position so that the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port, fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve, and the collet rib is located in the lower annular recess.
21. The sliding sleeve of claim 20, further including an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower annular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position, the outer piston seals sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position.
22. The sliding sleeve of claim 21, wherein the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode.
23. The sliding sleeve of claim 20, wherein: when the sliding sleeve is in its run-in mode, an upper surface of the piston is abutted against an upper shoulder of the inner sleeve, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing; when the inner sleeve is in its second position, the upper surface of the piston is abutted against the upper shoulder of the irmer sleeve, and the lower surface of the piston is abutted against the annular shoulder within the longitudinal bore of the housing; and, when the inner sleeve is in its second position, an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing.
24. The sliding sleeve of claim 20, further including an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower armular flow port seal being disposed below the outer fluid flow port.
25. The sliding sleeve of claim 24, wherein the flow port seals are chevron packing.
26. The sliding sleeve of claim 24, wherein fluid communication between the annulus
and the longitudinal bore of the inner sleeve becomes sealably prevented upon the at least one
inner fluid flow port in the inner sleeve passing below the lower annular flow port seal during
transition from the opening mode to the closing mode.
27. The sliding sleeve of claim 20, further including an inner annular piston seal disposed between the inner sleeve and the piston, an outer lower annular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner annular piston seal, the outer lower annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston.
28. The sliding sleeve of claim 20, wherein the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing.
29. The sliding sleeve of claim 20, wherein the piston is shearably affixed by shear means to the housing during the run-in mode.
30. The sliding sleeve of claim 29, further including an annular housing seal disposed within the longitudinal bore of the housing beneath the shear means and above an annular shoulder within the housing to prevent any leakage associated with the shear means when the inner sleeve is in its second position.
31. The sliding sleeve of claim 20, wherein: the inner sleeve further includes at least one equalizing port above the at least one inner fluid flow port; the housing further includes within its longitudinal bore an equalizing recess
between the upper recess and the intermediate recess; and the housing and inner sleeve cooperate to yield an equalizing mode wherein the collet rib is located in the equalizing recess, and pressure between the
annulus and the longitudinal bore of the inner sleeve is equalized through the equalizing port and outer fluid flow port.
32. A sliding sleeve connected to a tubular conduit disposed within a well conduit for controlling fluid flow through the tubular conduit, the tubular conduit and well conduit
defining an annulus therebetween, the sliding sleeve comprising: a housing having a longitudinal bore extending therethrough, at least one
annulus pressure port, and at least one outer fluid flow port; an inner sleeve disposed for axial movement within the longitudinal bore of the housing, and having a longitudinal bore and at least one inner fluid flow port for cooperating with the at least one outer fluid flow port through the housing to control fluid flow between the annulus and the
longitudinal bore of the inner sleeve; and, a piston associated with the inner sleeve and the longitudinal bore of the housing;
the housing, inner sleeve, and piston cooperating to yield: a run-in mode wherein the piston is exposed to annulus pressure through the at least one annulus pressure port, and the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve; an opening mode wherein a predetermined annulus pressure is applied through the at least one annulus pressure port to the piston to force the inner sleeve to a first position so that the at least one outer fluid flow port is aligned with the at least one inner fluid flow port and fluid communication is established between the
annulus and the longitudinal bore of the inner sleeve; and, a closing mode wherein the inner sleeve is shifted to a second position so that the at least one outer fluid flow port is misaligned with the at least one inner fluid flow port so that fluid communication is prevented between the annulus and the longitudinal bore of the inner sleeve.
33. The sliding sleeve of claim 32, wherein the piston is releasably secured to the housing during the run-in mode, and the predetermined annulus pressure releases the piston from theiiousing during the opening mode.
34. The sliding sleeve of claim 32, further including a collet attached to the inner sleeve and having an annular rib.
35. The sliding sleeve of claim 34, wherein the housing further includes at least one annular recess within its longitudinal bore for receiving the collet rib.
36. The sliding sleeve of claim 34, wherein: the housing further includes within its longitudinal bore an upper annular recess, an intermediate annular recess, and a lower annular recess; and, the collet rib is located in the upper annular recess when the inner sleeve is in its first position, the collet rib is located in the intermediate annular recess when the inner sleeve is in the run-in mode, and the collet rib is located in the lower armular recess when the inner sleeve is in its second position.
37. The sliding sleeve of claim 36, wherein the predetermined annulus pressure is sufficient to disengage the collet rib from the intermediate recess during the run-in mode.
38. The sliding sleeve of claim 32, further including piston seal means for sealing the piston from the at least one annulus pressure port so that the piston is no longer exposed to annulus pressure when the inner sleeve is in its second position.
39. The sliding sleeve of claim 38, wherein the piston seal means includes an outer upper annular piston seal and an outer lower annular piston seal, the outer annular seals being disposed between the piston and the housing, the outer upper annular seal being disposed above the at least one annulus pressure port when the inner sleeve is in its second position, and the outer lower armular seal being disposed below the at least one annulus pressure port when the inner sleeve is in its second position.
40. The sliding sleeve of claim 39, wherein the outer annular seals are disposed above the at least one annulus pressure port when the sliding sleeve is in its run-in mode.
41. The sliding sleeve of claim 32, wherein an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the sliding sleeve is in its run-in mode, and a lower surface of the piston is displaced above an annular shoulder within the longitudinal bore of the housing when the sliding sleeve is in its run-in mode.
42. The sliding sleeve of claim 32, wherein an upper surface of the piston is abutted against an upper shoulder of the inner sleeve when the inner sleeve is in its second position, and a lower surface of the piston is abutted against an annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its second position.
43. The sliding sleeve of claim 32, wherein an upper surface of the inner sleeve is abutted against an upper annular shoulder within the longitudinal bore of the housing when the inner sleeve is in its first position.
44. The sliding sleeve of claim 32, further including an upper annular flow port seal and a lower annular flow port seal, the flow port seals being disposed between the inner sleeve and the housing, the upper annular flow port seal being disposed above the outer fluid flow port and the lower annular flow port seal being disposed below the outer fluid flow port.
45. The sliding sleeve of claim 44, wherein the flow port seals are chevron packing.
46. The sliding sleeve of claim 44, wherein fluid communication between the annulus
and the longitudinal bore of the inner sleeve becomes sealably prevented upon the at least one
inner fluid flow port in the inner sleeve passing below the lower annular flow port seal during transition from the opening mode to the closing mode.
47. The sliding sleeve of claim 32, further including an inner annular piston seal disposed between the inner sleeve and the piston, an outer armular piston seal disposed between the piston and the housing, and an upper annular flow port seal disposed above the outer fluid flow port and between the inner sleeve and the housing, whereby the inner annular piston seal, the outer annular piston seal, and the upper annular flow port seal cooperate to sealably apply annulus pressure to the piston.
48. The sliding sleeve of claim 32, wherein the piston is sealably disposed around the inner sleeve and within the longitudinal bore of the housing.
49. The sliding sleeve of claim 32, wherein the piston is shearably affixed by shear means to the housing during the run-in mode.
50. The sliding sleeve of claim 49, further including an annular housing seal disposed within the longitudinal bore of the housing beneath the shear means and above an annular shoulder within the housing to prevent any leakage associated with the shear means
when the inner sleeve is in its second position.
51. The sliding sleeve of claim 36, wherein: the irmer sleeve further includes at least one equalizing port above the at least
one inner fluid flow port;
the housing further includes within its longitudinal bore an equalizing recess between the upper recess and the intermediate recess; and the housing and inner sleeve cooperate to yield an equalizing mode wherein the collet rib is located in the equalizing recess, and pressure between the
annulus and the longitudinal bore of the inner sleeve is equalized through the equalizing port and outer fluid flow port.
PCT/US1998/014035 1997-07-10 1998-07-10 Single-phase annulus-operated sliding sleeve WO1999002817A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB0000162A GB2343209B (en) 1997-07-10 1998-07-10 Single-phase annulus-operated sliding sleeve
AU83854/98A AU8385498A (en) 1997-07-10 1998-07-10 Single-phase annulus-operated sliding sleeve
NO20000082A NO317127B1 (en) 1997-07-10 2000-01-07 Single phase annulus driven slide sleeve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US5211497P 1997-07-10 1997-07-10
US60/052,114 1997-07-10

Publications (1)

Publication Number Publication Date
WO1999002817A1 true WO1999002817A1 (en) 1999-01-21

Family

ID=21975560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/014035 WO1999002817A1 (en) 1997-07-10 1998-07-10 Single-phase annulus-operated sliding sleeve

Country Status (5)

Country Link
US (1) US6112816A (en)
AU (1) AU8385498A (en)
GB (1) GB2343209B (en)
NO (1) NO317127B1 (en)
WO (1) WO1999002817A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046917A (en) * 2013-01-22 2013-04-17 中国石油天然气股份有限公司 Underground electric hydraulic control fracturing sliding sleeve
WO2014138117A1 (en) * 2013-03-05 2014-09-12 Schlumberger Canada Limited Downhole tool for removing a casing portion
EP3757347A1 (en) * 2009-03-04 2020-12-30 Halliburton Energy Services, Inc. Circulation control valve and associated method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371208B1 (en) * 1999-06-24 2002-04-16 Baker Hughes Incorporated Variable downhole choke
US6325151B1 (en) * 2000-04-28 2001-12-04 Baker Hughes Incorporated Packer annulus differential pressure valve
GB2399847A (en) * 2000-08-17 2004-09-29 Abb Offshore Systems Ltd Flow control device
US6763892B2 (en) 2001-09-24 2004-07-20 Frank Kaszuba Sliding sleeve valve and method for assembly
US7363981B2 (en) * 2003-12-30 2008-04-29 Weatherford/Lamb, Inc. Seal stack for sliding sleeve
US7258323B2 (en) * 2005-06-15 2007-08-21 Schlumberger Technology Corporation Variable radial flow rate control system
US7377327B2 (en) * 2005-07-14 2008-05-27 Weatherford/Lamb, Inc. Variable choke valve
US20090308619A1 (en) * 2008-06-12 2009-12-17 Schlumberger Technology Corporation Method and apparatus for modifying flow
US7984766B2 (en) * 2008-10-30 2011-07-26 Baker Hughes Incorporated System, method and apparatus for gas extraction device for down hole oilfield applications
US8604634B2 (en) * 2009-06-05 2013-12-10 Schlumberger Technology Corporation Energy harvesting from flow-induced vibrations
US8522877B2 (en) * 2009-08-21 2013-09-03 Baker Hughes Incorporated Sliding sleeve locking mechanisms
US8657010B2 (en) 2010-10-26 2014-02-25 Weatherford/Lamb, Inc. Downhole flow device with erosion resistant and pressure assisted metal seal
US20130087977A1 (en) * 2011-10-05 2013-04-11 Gary L. Galle Damage tolerant casing hanger seal
GB2538550B (en) * 2015-05-21 2017-11-29 Statoil Petroleum As Method for achieving zonal control in a wellbore when using casing or liner drilling

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917191A (en) * 1989-02-09 1990-04-17 Baker Hughes Incorporated Method and apparatus for selectively shifting a tool member
EP0452033A2 (en) * 1990-04-12 1991-10-16 Halliburton Company A fluid flow control system, assembly and method for oil and gas wells
US5211241A (en) * 1991-04-01 1993-05-18 Otis Engineering Corporation Variable flow sliding sleeve valve and positioning shifting tool therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3874634A (en) * 1973-11-07 1975-04-01 Otis Eng Co Well safety valve system
US4043392A (en) * 1973-11-07 1977-08-23 Otis Engineering Corporation Well system
US3990511A (en) * 1973-11-07 1976-11-09 Otis Engineering Corporation Well safety valve system
US4434854A (en) * 1980-07-07 1984-03-06 Geo Vann, Inc. Pressure actuated vent assembly for slanted wellbores
US4429747A (en) * 1981-09-01 1984-02-07 Otis Engineering Corporation Well tool
FR2626613A1 (en) * 1988-01-29 1989-08-04 Inst Francais Du Petrole DEVICE AND METHOD FOR PERFORMING OPERATIONS AND / OR INTERVENTIONS IN A WELL
US5156220A (en) * 1990-08-27 1992-10-20 Baker Hughes Incorporated Well tool with sealing means
US5309988A (en) * 1992-11-20 1994-05-10 Halliburton Company Electromechanical shifter apparatus for subsurface well flow control
US5479989A (en) * 1994-07-12 1996-01-02 Halliburton Company Sleeve valve flow control device with locator shifter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917191A (en) * 1989-02-09 1990-04-17 Baker Hughes Incorporated Method and apparatus for selectively shifting a tool member
EP0452033A2 (en) * 1990-04-12 1991-10-16 Halliburton Company A fluid flow control system, assembly and method for oil and gas wells
US5211241A (en) * 1991-04-01 1993-05-18 Otis Engineering Corporation Variable flow sliding sleeve valve and positioning shifting tool therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757347A1 (en) * 2009-03-04 2020-12-30 Halliburton Energy Services, Inc. Circulation control valve and associated method
CN103046917A (en) * 2013-01-22 2013-04-17 中国石油天然气股份有限公司 Underground electric hydraulic control fracturing sliding sleeve
WO2014138117A1 (en) * 2013-03-05 2014-09-12 Schlumberger Canada Limited Downhole tool for removing a casing portion
GB2528187A (en) * 2013-03-05 2016-01-13 Schlumberger Holdings Downhole tool for removing a casing portion
US9464496B2 (en) 2013-03-05 2016-10-11 Smith International, Inc. Downhole tool for removing a casing portion
GB2528187B (en) * 2013-03-05 2017-07-26 Schlumberger Holdings Downhole tool for removing a casing portion
US10513901B2 (en) 2013-03-05 2019-12-24 Smith International, Inc. Downhole tool for removing a casing portion

Also Published As

Publication number Publication date
NO20000082L (en) 2000-03-07
AU8385498A (en) 1999-02-08
GB2343209A (en) 2000-05-03
GB2343209B (en) 2001-11-07
GB0000162D0 (en) 2000-03-01
NO20000082D0 (en) 2000-01-07
US6112816A (en) 2000-09-05
NO317127B1 (en) 2004-08-23

Similar Documents

Publication Publication Date Title
US6112816A (en) Single-phase annulus-operated sliding sleeve
US5048611A (en) Pressure operated circulation valve
US7665526B2 (en) System and method for downhole operation using pressure activated and sleeve valve assembly
US7152688B2 (en) Positioning tool with valved fluid diversion path and method
US6302216B1 (en) Flow control and isolation in a wellbore
US7252153B2 (en) Bi-directional fluid loss device and method
US5404956A (en) Hydraulic setting tool and method of use
US7954555B2 (en) Full function downhole valve and method of operating the valve
US4312406A (en) Device and method for shifting a port collar sleeve
US6446729B1 (en) Sand control method and apparatus
US5411095A (en) Apparatus for cementing a casing string
US5180015A (en) Hydraulic lockout device for pressure controlled well tools
US20090151960A1 (en) Method and Apparatus for Sealing and Cementing a Wellbore
US20100051276A1 (en) Stage cementing tool
EP2216500A2 (en) Hydraulic lockout device for pressure controlled well tools
RU2746987C1 (en) Drive for a multi-well system
EP0757156A2 (en) Shifting tool for a subterranean completion structure
EP0430389A1 (en) Gravel packing assembly
US4804044A (en) Perforating gun firing tool and method of operation
US4834176A (en) Well valve
US6298919B1 (en) Downhole hydraulic path selection
EP0682169A2 (en) Pressur operated apparatus for use in high pressure well
AU2005311155B2 (en) Diverter tool
US6220359B1 (en) Pump through safety valve and method
US20030221839A1 (en) Double-pin radial flow valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: GB

Ref document number: 200000162

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA