WO1999003784A1 - Hydrogenotitanates de lithium et leur procede de fabrication - Google Patents

Hydrogenotitanates de lithium et leur procede de fabrication Download PDF

Info

Publication number
WO1999003784A1
WO1999003784A1 PCT/JP1998/003184 JP9803184W WO9903784A1 WO 1999003784 A1 WO1999003784 A1 WO 1999003784A1 JP 9803184 W JP9803184 W JP 9803184W WO 9903784 A1 WO9903784 A1 WO 9903784A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
titanate
compound
acid
lithium hydrogen
Prior art date
Application number
PCT/JP1998/003184
Other languages
English (en)
French (fr)
Inventor
Yoshinori Atsumi
Masayuki Nagamine
Hiromi Koga
Tokuo Suita
Original Assignee
Sony Corporation
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation, Ishihara Sangyo Kaisha, Ltd. filed Critical Sony Corporation
Priority to JP50691299A priority Critical patent/JP4022265B2/ja
Priority to EP98932536A priority patent/EP0937684B1/en
Priority to DE69842254T priority patent/DE69842254D1/de
Priority to US09/254,828 priority patent/US6139815A/en
Publication of WO1999003784A1 publication Critical patent/WO1999003784A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Definitions

  • the present invention relates to a lithium hydrogen titanate in which a part of lithium is replaced with a landscape proton, and further relates to a technique for producing the same. You.
  • a non-aqueous electrolyte secondary battery is expected as a new secondary battery that meets such demands.
  • the development and commercialization of lithium-ion secondary batteries capable of inserting and extracting lithium has been actively pursued, and the market has been rapidly increasing.
  • vanadium pentoxide, manganese oxide, lithium cobaltate, lithium nickelate, spinel-type lithium manganate, etc. are mainly used, and carbon material such as graphite is used for the negative electrode.
  • carbon material such as graphite is used for the negative electrode.
  • Titanium oxide containing / T1 in the raw material includes blue-kit type, rutile type, and analytic type, but until now, analytic type oxide with more excellent charge / discharge capability and good cycle characteristics Titanium is considered a promising material.
  • Lithium titanate, etc. are known. Among these lithium compounds, L i ⁇ . W T i
  • the deficient lithium titanate L ii 0 obtained in this way has a theoretical charge-discharge capacity of one electron reaction of 175 mAh / g, whereas the commercially available material has 0 Currently, it is about 130 to 150 mAh / g, which is much lower than the theoretical capacity in the 75 to 1.0 electron reaction (Electrochemistry vol. 62, No. 9 (1994) P8 70 to 875) See).
  • lithium hydrogen titanate in which lithium ions of lithium titanate were replaced with protons had a pH value, that is, They found that the charge / discharge capacity increased in proportion to the proton substitution amount X, and that the charge / discharge capacity of a structure having voids in the particles further increased. Reached.
  • the lithium hydrogen titanate of the present invention has a pH value of 11.2 or less, and has a general formula HxL 1 y-xT i z 0 4 (However, y ⁇ x> 0, 0.8 ⁇ y ⁇ 2.7, 1.3 ⁇ z ⁇ 2
  • the lithium hydrogen titanate can be obtained by treating lithium titanate with an acid.
  • the manufacturing method of the lithium titanate of the present invention have the general formula L i> ⁇ T i z 0 , is represented by (wherein, 0. 8 ⁇ y ⁇ 2. 7, 1. 3 ⁇ z ⁇ 2. 2) Lithium titanate is brought into contact with an acid, and lithium ions are replaced with protons to replace the general formula Li y x Ti z 0 4 (where y ⁇ x> 0, 0.8 ⁇ y ⁇ 2.7, 1 It is characterized by being lithium hydrogen titanate represented by 3 ⁇ z ⁇ 2.2).
  • the pH value of the lithium hydrogen titanate after the above-mentioned acid treatment can be one parameter in adjusting the charge / discharge capacity, and the value is preferably set to 7.5 to 11.2. .
  • the lithium hydrogen titanate can be used as a positive electrode and negative electrode material of a low iSiT: lithium ion secondary battery of 3 V or less, and has a capacity far exceeding the theoretical charge / discharge capacity.
  • Lithium titanate originally has a deficient Swinel-type structure due to the effect of the proton substitution treatment, which can cause the material to far exceed the theoretical charge capacity.
  • the doping state of lithium ions supplied from the source is a charged state, and usually does not exceed the theoretical capacity of one electron reaction of 175 mAh / g.
  • part of the lithium constituting the crystal lattice is replaced with protons, so that lithium and protons are exchanged, and the originally limited void A Voids that allow lithium ions to enter the crystal lattice of the site and B site Can be made. It is presumed that this action could result in a material having a charge / discharge capacity that greatly exceeds the theoretical capacity.
  • the lithium hydrogen titanate of the present invention makes use of the characteristic that the specific surface area increases (the reaction area improves) as the firing temperature is lowered, and further, by performing proton replacement treatment, the amount of voids into which lithium ions can be taken is increased. Is much larger than the theoretical charge capacity of one-electron reaction of lithium titanate, 175 mAh / g, and the material itself is novel compared to existing lithium titanate materials. Therefore, the industrial value of this study is great.
  • Fig. 1 is a characteristic diagram showing the difference between the charging and discharging carp depending on the presence or absence of acid treatment.
  • FIG. 2 is a characteristic diagram showing the ⁇ ⁇ dependence of the capacity S in lithium hydrogen titanate.
  • FIG. 3 is a schematic cross-sectional view showing the structure of a coin-type battery used for evaluating the characteristics.
  • Figure 4 is a characteristic diagram showing the dependence of the charge capacity on the proton replacement rate.
  • BEST MODE FOR CARRYING OUT THE INVENTION the pH value of lithium titanate after acid treatment, that is, the pH value of lithium hydrogen titanate obtained, adjusts its charge / discharge capacity. Parame can be overnight.
  • the pH value of lithium hydrogen titanate obtained by performing the acid treatment is preferably less than 11.6, more preferably 11.2 or less.
  • the battery when the pH value thus measured falls within the above range K, the battery can be given particularly high charge / discharge capacity.
  • the pH value obtained by the acid treatment can be a parameter in adjusting the charging / discharging capacity.
  • the higher the acid treatment concentration the higher the proton exchange M, and consequently the pH value becomes more sexual.
  • the acid treatment concentration is low, the pH value on the alkali side is exhibited, and the amount of proton substitution is reduced.
  • / TiM is considered to be capable of taking a crystal structure advantageous for charge and discharge, that is, a crystal structure having a large space for taking in lithium.
  • the range of the pH value regulated by the present invention is presumed to be one of the indices indicating that a crystal structure advantageous for this charge / discharge is formed. Therefore, lithium hydrogen titanate having the PH value is used as the negative electrode material. Thus, excellent charge / discharge capability can be obtained.
  • the more preferable pH value range of lithium hydrogen titanate is 5.6 to 11.2.
  • the above-mentioned pH value is closely related to proton substitution in lithium titanate. Therefore, the lithium hydrogen titanate of the present invention can be considered as proton-substituted lithium titanate.
  • titanate lithium hydrogen of the present invention is a general formula H X L i y -x T i z compounds ⁇ at O. When used, this may be a single phase of lithium hydrogen titanate or a mixture of lithium hydrogen titanate and titanium oxide.
  • the values of y and z in the above general formula are in the range of ⁇ .
  • the proton substitution amount X is preferably in the range of y X> 0 in terms of charge and discharge capacity a, more preferably in the range of 0.9 y ⁇ x ⁇ 0.05 y, and most preferably in the range of 0.8 y ⁇ X ⁇ 0. ly range Iffl.
  • the lithium hydrogen titanate of the present invention is preferably in the form of particles.
  • the shape of the particles is not particularly limited, and various shapes such as granules and plates can be used. Above all, lithium hydrogen phosphate having voids in the particles is a preferable shape because the charge / discharge capacity is further increased.
  • the presence of the voids can be confirmed by measuring the void volume. For example, if the void volume is 0.005 ml / g or more, it can be recognized that the particles have voids.
  • the preferred range of the void amount is 0.0:!-1.5 ml / g, and the more preferred range is 0.01-0.1 ml / g.
  • the preferred lithium hydrogen titanate of the present invention has a controlled size in the form of fine particles.
  • the longest particle diameter can be appropriately designed, but is preferably in the range of 0.05 to 50 m, more preferably 0.05 to 10 m, in terms of ease of handling as a powder and battery characteristics. And most preferably in the range of 0.1 to l / m.
  • the ratio 3 ⁇ 4 Men ⁇ the range ⁇ preferably of 0. 0 1 ⁇ 300m 2 / g, and more favorable Mashiku in the range of 0. 1 ⁇ 1 50 m 2 / g , and most preferably, 0.. 5 to 100 m 2 / g range.
  • the production method of the present 3 ⁇ 4 ⁇ is over general formula 1 ⁇ ;. ⁇ 11 2 ⁇ 1 (however, 0. 8 ⁇ y ⁇ 2. 7, 1. 3 ⁇ z ⁇ 2. 2) represented by Lithium titanate is brought into contact with an acid to convert lithium ions with protons, and the general formula H xL i yT iz 04 ( ⁇ y ⁇ x> 0, 0.8 ⁇ y ⁇ 2.7, 1.3 ⁇ It is characterized by lithium hydrogen titanate represented by z ⁇ 2.2).
  • a solvent such as water, alcohol, cellosolve, methylethylketone, xylene, or toluene
  • the acid any of inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as acetic acid and formic acid can be used without any particular limitation. Among them, acetic acid, hydrochloric acid and nitric acid are preferable.
  • the particle shape is not particularly limited, and may be various shapes such as a granular shape and a plate shape, and the lithium titanate particle shape is inherited by the lithium hydrogen titanate particle shape.
  • lithium titanate for example, (1) a method in which a mixture of titanium oxide and a lithium compound is heat-treated at a temperature of 500 to 900 ° C. to form granular lithium titanate, (2) A first step of reacting a titanium compound and an ammonium compound in an aqueous medium to obtain a titanate compound; reacting the titanate compound and a lithium compound in an aqueous medium to form lithium titanate hydrate A method of producing a plate-like lithium titanate through a second step of obtaining a lithium titanate hydrate and a third step of heat-treating the lithium titanate hydrate can be used.
  • the above method (1) is a preferable method because lithium titanate can be easily and inexpensively obtained.
  • the preferable range of the heat treatment temperature is 600 to 800 ° C.
  • the preferred range is 65-750 ° C.
  • the lithium titanate obtained by the above method (2) is a preferable method because the size and shape of the particles are controlled and lithium hydrogen titanate having voids in the particles is obtained.
  • titanium oxide refers to various titanium oxides or titanium hydroxides such as analytic titanium oxide, rutile titanium oxide, amorphous titanium oxide, metatitanic acid, and orthotitanic acid; Means hydrated titanium oxide and hydrated titanium oxide.
  • the lithium compound lithium hydroxide, lithium carbonate, lithium nitrate, lithium sulfate or the like can be used.
  • To obtain a mixture of titanium oxide and lithium compound simply mix dry with titanium oxide and lithium compound. Mixing, drying and mixing in an aqueous medium such as water or water-alcohol, and further adding a lithium compound to titanium oxide slurry suspended in the aqueous medium and evaporating to dryness. Method and the like.
  • the first step is a step of obtaining a titanate compound by reacting a titanium compound and an ammonium compound in an aqueous medium.
  • the titanic acid compound means orthotitanic acid, a compound in which -part of orthotitanic acid proton is substituted by ammonium ion or the like.
  • the titanium compound inorganic titanium compounds such as titanium sulfate, titanyl sulfate and titanium chloride and organic titanium compounds such as titanium alkoxide can be used.4
  • titanium chloride which can reduce the amount of impurities in lithium hydrogen titanate can be used. It is preferably used.
  • ammonium compound examples include ammonia water, ammonium carbonate, ammonium sulfate, and ammonium nitrate.
  • an alkali metal compound such as a sodium compound or a potassium compound is supplied instead of the ammonium compound, the element of sodium potassium is left in the titanium compound to be obtained, and heating in the subsequent process is performed. It is not preferable because sintering of particles occurs during dehydration, and the size and shape of the particles tend to be uneven.
  • the reaction proceeds by mixing the titanium compound and the ammonium compound in an aqueous medium, and the orthotitanic acid ( ⁇ ⁇ i 0, or H n (NH 4) ⁇ in which the proton is replaced by ammonium ion)
  • the titanate compound is obtained, which is a compound represented by ⁇ i ⁇ ,, ⁇ 4 — ⁇ ( ⁇ ⁇ .,) ⁇ ⁇ i 0. , Free hydroxyl group concentration, hydrogen ion concentration and reaction temperature It can be changed arbitrarily by adjusting the conditions such as.
  • the first step is important because the particle size of the obtained titanic acid compound affects the particle size of the lithium titanate obtained in the subsequent steps.
  • the reaction temperature is set to 0 to 50 ° C, preferably 5 to 40 ° C, and more preferably 10 to 30 ° C in order to obtain fine particles of lithium titanate.
  • the titanate compound thus obtained is filtered, washed with water, pickled, or dried as necessary, and then subjected to the next step (2).
  • the second step is a step of reacting the titanate compound obtained in the first step with a lithium compound in an aqueous medium to obtain lithium titanate hydrate.
  • a lithium compound water-soluble lithium compounds such as lithium hydroxide, lithium carbonate, lithium nitrate, and lithium sulfate can be used.
  • the reaction proceeds by mixing the lithium compound and the titanate compound in an aqueous medium solution width.
  • the reaction ffi ⁇ is at least 50 ° C, preferably at least 100 ° C, more preferably at 100 to 250 ° C, and ⁇ is preferably at 130 to 200 ° C. is there. By reacting in this temperature range, it is possible to obtain lithium titanate hydrate having excellent productability.
  • the lithium compound and the titanate compound are put in an autoclave and subjected to hydrothermal treatment under a saturated vapor pressure or a pressure.
  • hydrothermal treatment a lithium titanate hydrate having a plate shape and having voids in the particles can be obtained.
  • the lithium titanate hydrate thus obtained is filtered and Wash or dry as appropriate.
  • the drying temperature can be appropriately set as long as the temperature is below the temperature at which lithium titanate hydrate releases water of crystallization, and a temperature of 30 to 200 ° C. is appropriate.
  • the temperature of the heat treatment may be a temperature higher than the temperature at which lithium titanate hydrate releases water of crystallization, and may vary depending on the composition of lithium titanate hydrate and the amount of water of crystallization.
  • the temperature is about 200 ° C or more.
  • the temperature range EI is about 200 to 800 ° C. for obtaining lithium titanate having pores, and preferably 250 to 700 ° C. for obtaining lithium titanate having many pores. More preferably, the temperature is 350-650 ° C. Further, 800 is required to obtain dense lithium titanate.
  • Heat treatment may be performed at a temperature of C or higher. 3; constructive ⁇ degree of heat treatment 1 3 0 0
  • the above-mentioned lithium hydrogen titanate can be used as an active material of a pond.
  • a battery with a large charge / discharge capacity can be constructed.
  • the acid-treated lithium titanate was examined from the viewpoint of the pH value.
  • Lithium hydrogen titanate was obtained in the same manner as in Example 1, except that the concentration of the acetic acid solution used for the acid treatment was changed.
  • the pH values of this material were 8.0 and 5.6, respectively. Comparative Example 1
  • Lithium titanate was synthesized in the same manner as in Example 1 by firing, and this untreated lithium titanate was used as a comparative example.
  • the pH value of this material was 12.0.
  • Lithium titanate was synthesized by calcination in the same manner as in Example 1, and after washing this lithium titanate by steaming, the same procedure as in Example 1 was performed except that the acid treatment with the acetic acid solution was not performed. Was obtained.
  • the pH value of this material was 11.6.
  • a coin-type evaluation battery was manufactured using each material obtained as described above.
  • an outer can containing a negative electrode pellet and a dye-free battery and an outer cup containing a counter electrode are laminated via a separator, and the outer edges of the outer can and the outer cup are connected. It is drawn by swaging through a gasket.
  • Such a coin-type evaluation pond was prepared as follows.
  • n-methylpyrrolidone was added little by little to prepare a slurry negative electrode mix.
  • This negative electrode mix was dried at a temperature of 120 ° C. for 2 hours, and further crushed in a mortar to obtain a powder mix.
  • This powder mix is filled into a net-like stainless steel (SUS 304) electrode current collector so as to have an outer diameter of 15.5 mm and a thickness of 0.2 mm. This was vacuum-dried at a temperature of 120 ° C. for 2 hours to produce a negative electrode pellet.
  • SUS 304 net-like stainless steel
  • metallic lithium having a thickness of 1.0 mm serving as a counter electrode was press-bonded to a punched external force wrap by a circular force having an outer diameter of 16.5 mm.
  • a sealing gasket made of polypropylene is attached to this exterior wrap.
  • FIG. 1 shows a charge / discharge curve of an evaluation battery using lithium hydrogen titanate of Example 2, Comparative Example 1, and Comparative Example 2. ⁇ table 1 ⁇
  • the battery of Example 2 using lithium hydrogen titanate which had been subjected to both the cleaning treatment and the acid treatment on lithium titanate was the same as the battery of Comparative Example 1 which had not been subjected to any treatment.
  • a longer charge / discharge time can be obtained as compared to the battery of Comparative Example 2 in which only the treatment was performed.
  • FIG. 2 shows the relationship between the pH and charge capacity of lithium titanate (lithium hydrogen titanate). It can be seen that the charge capacity sharply increases when the pH falls below 12.0. Further, desirably, those having a pH of from 5, 6 to 11.2.
  • a 25-liter glass reaction vessel was charged with 6.01 mol / liter of ammonia water at a concentration of 8.988 liters, and cooled with ice to a temperature of 10 to 20 ° C under stirring. Meanwhile, 9.01 liter of a titanium tetrachloride solution having a concentration of 1.25 mol / liter was dispersed and added over 1.5 hours. Adding free ammonia concentration at the end is 0.5 mol / l, the solid concentration was 50 g / l at T i 0 2 conversion, pH showed 8.3.
  • the slurry was charged into a stainless steel 25 liter autoclave, and subjected to hydrothermal treatment at 190 ° C for 4 hours with stirring.
  • the slurry after the hydrothermal treatment was thickened.
  • the viscosity at ° C was 2140 cp.
  • the slurry after the hydrothermal treatment was filtered, dried at a temperature of 110 ° C without washing, and dried with lithium titanate hydrate (Li- 33 Ti ..66 64 ⁇ H 2 ⁇ ) was obtained.
  • the pulverized product is placed in a quartz firing vessel, and fired at 550 ° C for 3 hours in an air atmosphere to prepare lithium titanate (sample A). ).
  • Example A1 500 ml of pure water and 100 g of lithium titanate of sample A were introduced into a 1-liter glass reaction vessel, and 67 ml of a 10-acid aqueous acid solution were added all at once. After reacting at a temperature of 25 ° C. for 1 hour, the mixture was filtered, washed and dried in the air at a temperature of 110 ° C. for 3 hours to obtain lithium hydrogen titanate (sample A1). The pH values are 1 1 and 2.
  • Example 4 instead of adding 67 ml of a 10% by weight aqueous acetic acid solution of (2) and reacting at 25 ° C. for 1 hour, 133% of a 10% by weight aqueous acetic acid solution was added. The same treatment as in Example 4 was carried out except that litter was added all at once and reacted at 60 ° C. for 1 hour to obtain lithium hydrogen titanate (sample A2). The pH value is 9.3. 'Example 6
  • Example 4 instead of adding 67 ml of a 10% by weight aqueous acetic acid solution of (2) and reacting at a temperature of 25 ° C. for 1 hour, a 10% by weight Lithium hydrogen titanate (sample A3) was treated in the same manner as in Example 4 except that 200 milliliters of an acetic acid aqueous solution was added all at once and reacted at 60 ° C for 1 hour. I got The pH value is 8.0.
  • Example 7 Example 7
  • Example 4 instead of adding 67 milliliters of a 10% by weight aqueous acetic acid solution of (2) and reacting at 25 ° C. for 1 hour, acetic acid of 20% was added. Add 16.7 milliliters of aqueous solution all at once and add
  • Example A4 The same treatment as in Example 4 was carried out except that the reaction was carried out at 60 C for 1 hour, to obtain lithium hydrogen titanate (sample A4).
  • the pH value is 7.8.
  • Example 4 67 milliliters of a 10 J% aqueous acetic acid solution of (2) were added all at once to give 25. Instead of incubating for 1 hour at a temperature of C, a batch addition of 40 SIi% acetic acid aqueous solution of 167 milliliters was carried out, and the reaction was carried out at 60 ° C for 1 hour. Was treated in the same manner as in Example 4 to obtain lithium hydrogen titanate (sample A5). ⁇ ⁇ is 7.6! ). Project 9
  • Example 4 instead of adding 67 milliliters of the 10% by weight aqueous acetic acid solution of (2) and reacting at 25 ° C for 1 hour, 5 mol / liter was used. The same treatment as in Example 4 was carried out except that 17.6 milliliters of hydrochloric acid aqueous solution having a concentration of 1 torr was added and dispersed in 1 hour and reacted at 60 ° C. for 1 hour. Sample A6) was obtained. The pH value is 7.4.
  • Example 4 instead of adding 67 ml of a 10% by weight aqueous acetic acid solution of (2) and reacting at a temperature of 25 ° C. for 1 hour, 5 mol / l A 200-milliliter aqueous solution of hydrochloric acid having a concentration of 0.1 ml was dispersed and added in 1 hour, and the reaction was carried out in the same manner as in Example 4 except that the reaction was carried out at 60 ° C for 1 hour. A 7) was obtained. The pH value is 5.6.
  • the lithium titanate of Sample A obtained in (1) of Example 4 was used as a comparative sample.
  • the pH value is 11.6.
  • Example 1 is the same as Example 1 except that baking was performed at a temperature of 625 ° C for 3 o'clock instead of baking at a temperature of 550 ° C in 1 ⁇ 3).
  • Lithium titanate (sample ⁇ ) was prepared in the same manner as 1 and ⁇ .
  • a 1-liter glass reaction vessel was charged with 500 milliliters of pure water and 100 g of lithium titanate of sample ⁇ , and stirred, with stirring. Add a little at once, 60. At a temperature of C
  • Example 11 133 milliliters of an aqueous acetic acid solution of (2) of 10 IB amount% was added all at once and reacted at a temperature of 60 ° C. for 1 hour. W
  • Example 11 In Example 11, 133 ml of a 10% by weight aqueous acetic acid solution of (2) was added all at once, and the reaction was carried out at a temperature of 60 ° C. for 1 hour. Lithium hydrogen titanate (Sample B3) was treated in the same manner as in Example 11 except that 178 milliliters of an aqueous hydrochloric acid solution was dispersed and added in 1 hour, and the reaction was carried out at 60 ° C for 1 hour. Was obtained. The pH value is 7.5.
  • lithium titanate C 500 liters of pure water and sample in 1 liter glass reaction vessel 100 g of lithium titanate C was added thereto, and 133 ml of a 10% by weight aqueous acetic acid solution was added thereto at a time with stirring, and the mixture was reacted at a temperature of 60 ° C. for 1 hour. The solution was dried at 110 ° C for 3 hours to obtain lithium hydrogen titanate (sample C 1). The pH value is 8.9.
  • Example 14 133 mol of a 10% by weight aqueous acetic acid solution of (2) was added at once and the reaction was carried out at a temperature of 60 ° C. for 1 hour, instead of 5 mol / liter. The same procedure as in Example 14 was repeated except that 86 milliliters of a concentrated hydrochloric acid aqueous solution was dispersed and added in one hour, and reacted at a temperature of 60 ° C. for one hour. A sample C 2) was obtained. The pH value is 8.3.
  • Example 4 Lithium titanate (Sample D) was obtained in the same manner as in Example 4 except that firing was performed at 810 ° C for 3 hours instead of firing at the temperature of C for 3 hours. .
  • the pH value is 3.7.
  • the chemical compositions L i and T i are as follows. Determined by chemical analysis. The longest particle diameter was read from an electron micrograph. Specific surface area and void volume are manufactured by Nippon Pell Co., Ltd. The measurement was performed using Soap 28. Further, the amount of H (proton) substitution was determined by TG-DTA thermal analysis according to the following method. In other words, in the TG-DTA curve, the weight loss due to the endothermic reaction due to the release of protons as water was observed at around 21 ° C and around 277 ° C at the B sites and A at the spinel structure. The amount of proton substitution was calculated from these weight reductions, since they were observed corresponding to the site protons. The amount of proton substitution calculated by this method corresponds well with the remaining amount of Li obtained by the chemical analysis.
  • the batteries were charged using the lithium titanate samples A1 to A7, B1 to B3, C1sC2, and A to C obtained in Examples 4 to 15 and Comparative Examples 3 to 6.
  • the discharge capacity was measured.
  • Figure 3 shows the overall structure of the nonaqueous electrolyte battery used in the evaluation.
  • the active material ⁇ lithium hydrogen titanate was set to 9 o iit
  • metal lithium 3 having a thickness of 1.0 mm was punched out with a circular force having an outer diameter of 16 mm and pressed against a force lip 2.
  • a microporous polypropylene film of 25 m thickness punched to the required dimensions Separation overnight 6 is inserted between the sealing gasket 5 made of polypropylene and the one inserted into the cup 2, and then propylene power—bonate (PC), ethylene power water (EC), 1 , an equal volume of mixed medium of 2 dimethyl Tokishetan (DME), was added dropwise with those obtained by dissolving L i PF 6 at a rate of 1 mol / Li Uz torr.
  • PC propylene power—bonate
  • EC ethylene power water
  • DME dimethyl Tokishetan
  • the stainless steel (SUS304) is covered with a nickel-plated two-layered can 1, and the sealing portion is swaged and sealed.
  • the outer diameter is 20mm and the height is 1mm.
  • a 6-mm coin-type nonaqueous electrolyte secondary battery was fabricated.
  • the battery was charged to 2.5 V with a constant current of 1 mA at room temperature, then discharged to 1.0 V, and the charge / discharge capacity was measured.
  • samples A ⁇ A1 ⁇ A2 ⁇ A3 ⁇ A4 ⁇ A5 ⁇ A6 ⁇ A7 were charged and discharged in the order; Has improved.
  • the sample was filled at the position of B ⁇ B1 ⁇ B2 ⁇ B3, and the fli volume increased. Also, the packing efficiency was higher for sample C and C 1 ⁇ C 2. In each case, it was confirmed that the larger the proton conversion amount, the larger the reflection on the charging capacity.
  • the proton replacement amount and the charging capacity are in a proportional relationship.
  • the effect of the present invention is further enhanced under low-temperature firing conditions, in combination with the conditions for increasing the amount of proton substitution.

Description

明 細 書 チタン酸水素リチゥム及びその製造方法 技 術 分 野 本発明は、 リチウムの一部を景プロ トン置換したチタン酸水素リチ ゥムに関するものであり、 さらには技その製造方法に関するものであ る。
近年、 電子技術等の進歩によって、 種々の電子機器の高性能化、 小型化、 携带化が進み、 これらの電子機器電源として使用される二 次電池にも高性能化、 小型化が強く耍求されるようになってきてい る
このような要望に応える新しい二次電池として、 非水電解液二次 電池が期待されている。 特にリチウムを吸蔵、 放出することができ るリチウムイオン二次電池の開発、 実用化が盛んに行なわれており、 その市場も急増している。
この種の電池の正極活物質としては、 五酸化バナジウムやマンガ ン酸化物、 コバルト酸リチウム、 ニッケル酸リチウム、 スピネル型 マンガン酸リチウム等が主に用いられており、 負極に黒鉛等の炭素 材料等を組み合わせることで、 高電圧、 高エネルギー密度電池とし て実用化されている。 しかしながら、 これらの材料を用いた電池は、 3 V以下の低電圧 を使用領域とする用途には不向きである。
今後、 電子機器技術開発の進歩、 I C使用可能電圧の低下等によ り、 機器電圧の低電圧化が一層進むものと考えられる。
このような状況から、 昨今の技術開発により、 负極にスピネル型 チタン酸リチウムを用いた電池が、 ソーラ一発電機との組み合わせ により、 1 . 5 V前後で駆動する時計用途に実川化されており、 今 後の市場動向が注目されている (新素材 1996.8 原稿 NO. N03- 04チタ ン酸リチウムイオン二次電池) 。
この電池系の特徴として、 サイクル特性、 過放 ί 、 保存特性に特 に優れており、 今後 1 . 5 V系^池の使用用途が拡大すると、 より 一層、 充放^容燈の高い ¾池開 g要求が進むものと考えられる。 従来、 この非水電解液二次電池における正極及び负極活物質とし てのチタン酸リチウムは、 原材料に川いる酸化チタンの特性が電池 特性に大きく影響するため、 これに阒する研究報 が盛んに行なわ れている。
原材料に/ T1いる酸化チタンとしては、 ブルーカイ 卜形, ルチル形, アナ夕一ゼ形等が存在するが、 これまで、 より充放 i 能力に優れ、 サイクル特性も良好なアナ夕一ゼ形酸化チタンが有力な材料と考え られている。
リチウムイオン二次電池材料として有用なリチウム化合物として は、 L i 2. 6 7 T 丄 し 〇 、 1 1 0 L 1 Γ ί 0 s
L i .. T i .. . 0 、 L i 8 T i 2 0 . 等のチタン酸リチウム が知られている。 これらリチウム化合物のなかでも、 L i^ . w T i
は、 その充放電容量が大きいことから注目ざれている。 上記チタン酸リチウムを得るには、 酸化チタンとリチウム化合物 との混合物を 700〜 1 600 °Cの温度で乾式熱処理する方法が用 いられている (例えば、 特開平 6— 275263号参照) 。
ところが、 このようにして得られる欠損型チタン酸リチウム L i i 0 は、 1電子反応での充放電理論容量が 1 75 mA h/gであるのに対して、 商品化されている材料は、 0. 75から 1. 0電子反応で、 約 1 30〜 1 50 mAh/gと理論容量を大き く下回っているのが現状である (電気化学 vol.62、 No.9 ( 1994) P8 70〜 875参照) 。
近年、 ノートパソコン、 携帯電話、 携帯用 CDプレーヤ、 MDプ レ一ャ等の普及に伴い、 これらの電源として組み込まれる二次電池 の需要が急速に堦大し、 また、 小型化に伴って、 より使用時間の長 いもの、 より ¾命の; L いものといった要求が強まっている。 したが つて、 充放 ¾容燈の大きな材料 I j'「.j ¾が急務である。
½ HJJ の 示 本 ¾明者らぼ、 充放電容量に優れた材料を得るべく種々検討 た 結果、 チタン酸リチウムのリチウムイオンをプロ トンで置換したチ タン酸水素リチウムは、 p H値、 すなわちプロ トン置換量 Xに比例 して充放電容量が増大すること、 さらには、 粒子内に空隙を有する 構造としたものはより一層充放電容量が増大することなどを見出し、 本発明を完成するに至った。
すなわち、 本発明のチタン酸水素リチウムは、 p H値が 1 1. 2 以下であることを特徴とするものであり、 また一般式 HxL 1 y-xT iz04 (但し、 y≥x>0、 0. 8≤ y≤ 2. 7、 1. 3≤ z≤ 2.
2) で表されることを特徴とするものである。
上記チタン酸水素リチウムは、 チタン酸リチウムを酸で処理する ことにより得ることができる。
すなわち、 本発明のチタン酸リチウムの製造方法は、 一般式 L i >■ T i z 0 , (但し、 0. 8≤y≤ 2. 7、 1. 3≤ z≤ 2. 2) で 表されるチタン酸リチウムを酸と接触させ、 リチウムイオンをプロ トンで置換して一般式 L i y x T i z04 (但し、 y≥x>0、 0. 8≤ y≤ 2. 7、 1. 3≤ z≤ 2. 2 ) で表されるチタン酸水素リ チウムとすることを特徴とするものである。
上記酸処理後のチタン酸水素リチウムの p H値は、 充放電能力を 調整する上で一つのパラメ一夕となり得るものであり、 その値を 7. 5〜 1 1. 2とすることが好ましい。
上記チタン酸水素リチウムは、 3 V以下の低 iSiT:系リチウムィォ ン二次 ¾池の正極及び負極材料として使川でき、 理論充放電容量を はるかに越える容造を有する。
プロ 卜ン置換処理効果により、 理論充電容量をはるかに越える材 料になりえる原因として、 本来このチタン酸リチウムは、 欠損スビ ネル型構造を有しており、 この欠損部の空隙に対極のリチウム源よ り供給されたリチウムイオンの ドープ状態が充電状態であり、 通常 では 1電子反応の理論容量である 1 75 mAh/gを越える事は無 い。 しかし、 プロ トン置換処理を行なったチタン酸リチウムにおい ては、 結晶格子を構成するリチウムの 1部をプロ トンで置換するた め、 リチウムとプロ トンが交換され、 本来限られた空隙である Aサ ィ ト及び Bサイ 卜の結晶格子内にリチウムイオンが入り込める空隙 を造り得る事ができるものである。 この作用により、 理論容量を大 きく越える充放電容量を有した材料になり得たものと推定される。 本発明のチタン酸水素リチウムは、 焼成温度が低い程比表面積が 大きくなる (反応面積が向上) 特徴を生かし、 さらに、 プロ トン置 換処理を行なう事によって.、 リチウムイオンを取り込める空隙量を 大きくできるため、 チタン酸リチウムの 1電子反応の理論充電容量 である、 1 7 5 m A h / gを大きく越えるものであり、 既存のチ夕 ン酸リチウム材料と比較して、 材料自体に新規性があるものである < よって、 本究明の工業的価値は大である。 図 面 の 簡 Γ[1 な 説 明 図 1は酸処理の有無による充放 ίίϊカープの相違を示す特性図であ る。
図 2はチタン酸水素リチウムにおける充 ίϋ容 Sの ρ Η依存性を示 す特性図である。
図 3は特性の評価に用いたコィン形電池の構造を示す概略断面図 である。
図 4は充電容量のプロ トン置換率依存性を示す特性図である。 発明を実施するための最良の形態 チタン酸水素リチウムにおいては、 チタン酸リチウムの酸処理後 の p H値、 すなわち得られるチタン酸水素リチウムの p H値が、 そ の充放電能力を調整されるパラメ一夕となり得る。 具体的には、 酸処理を施すことにより得られるチタン酸水素リチ ゥムの p H値は、 1 1 . 6未満、 さらには 1 1 . 2以下であるのが 好ましい。
但し、 このチタン酸水素リチウムの p H値は次のようにして測定 されるものである。
まず、 チタン酸水素リチウムの 3 0 gを蒸留水 5 0 m lに投入し、 温度 1 0 0 °Cで 5分間煮沸する。 冷却後、 このチタン酸水素リチウ ムが投入された水を濾紙を通して滤過し、 得られた滤液の p H値を、 温度 2 0 °C下、 p Hメ一夕によつて測定する。
チタン酸水素リチウムでは、 このようにして測定される p H値が 上記範 Kとされている場合に特に高い充放^能力を ¾池に付与でき るようになる。 この理由としては、 前項で記載したように、 酸処理 によって得られた p H値が充放 ¾能力を調整する上で 1つのパラメ 一夕となり得るからである。 つまり、 酸処理濃度が いほど、 プロ 卜ン Ϊ換 Mが ¾えることによって、 結果的に p Hの ίιι'ι:は 性側にな る。 逆に酸処理濃度が低いと、 アルカリ側の p H値を示し、 プロ ト ン置換量は少なくなる。
そして、 p H値が、 ある特定範圆にある場合にチタン酸水素 |/チ ゥムは充放電に有利な結晶構造、 すなわちリチウムを取り込む空間 の多い結晶構造をとり得るものと考えられる。
本発明で規制する p H値の範囲は、 この充放電に有利な結晶構造 が構成されていることを表す指標の一つと推測され、 このため当該 P H値のチタン酸水素リチウムを負極材料として用いると優れた充 放電能力が得られことになる。 なお、 チタン酸水素リチウムのより 好ましい p H値の範囲は 5 . 6〜 1 1 . 2である。 上記 pH値は、 チタン酸リチウムにおけるプロ トン置換と密接な 関係にあり、 したがって、 本発明のチタン酸水素リチウムは、 プロ トン置換されたチタン酸リチウムと考えることができる。
かかる観点から見たときに、 本発明のチタン酸水素リチウムは、 一般式 HXL i y-x T i zO で衷される化合物である。 使用に際して は、 このチタン酸水素リチウムの単一相であってもよいし、 チタン 酸水素リチウムと酸化チタンとの混合物であってもよい。
上記一般式中の y、 zの値は◦ . 8 ^y≤ 2. 7、 1. 3≤ z≤ 2. 2の範囲が好ましい組成物となる値である。 プロ トン置換量 X は y X > 0の範囲が充放 ΐϊ容 aの点で好ましく、 より好ましくは 0. 9 y≥x≥ 0. 05 yの範 fflであり、 最も好ましくは 0. 8 y ≥ X≥ 0. l yの範 Ifflである。 リチウムイオンすべてがプロ トンで 置換されたものは、 y = xにネ Π当する組成であり、 これも本発明の チ夕ン酸水素リチウムに含まれるものである。 プロ トン蹬換 Sxが 上記範 ifflより少ないと、 充放¾容1¾の改善が ではない。
本究明のチタン酸水素リチウムは、 粒子状のものが好ましく、 そ の場合、 粒子の形状には特に制限はなく、 粒状、 板状などの種々の 形状とするこどができる。 なかでも、 粒子内に空隙を ¾するチ ン 酸水素リチウムは、 より一層充放 ¾容量が増大するため好ましい形 状である。
この空隙の存在は、 空隙量を測定することにより確認することが でき、 例えば空隙量が 0. 005 ml/g以上であれば粒子内に空 隙を有すると認めることができる。 空隙量の好ましい範囲は 0. 0 :!〜 1. 5ml/gであり、 より好ましい範囲は 0. 01〜0. Ί ml/gである。 粒子形状を横層構造とすることにより、 その層間 に空隙を多量に確保することができる。
また、 本発明の好ましいチタン酸水素リチウムは微粒子状に大き さが制御されたものである。 その最長粒子径は適宜設計することが できるが、 粉体としての取り扱い易さ、 電池特性などの点で、 0. 05〜 50 mの範囲が好ましく、 より好ましくは 0. 05〜; 10 imの範囲であり、 最も好ましくは 0. l〜 l /mの範囲である。 比¾面桢は 0. 0 1〜 300m2 / gの範圆が好ましく、 より好 ましくは 0. 1〜 1 50 m2 /gの範囲であり、 最も好ましくは、 0. 5〜 100m2 /gの範囲である。
次に、 本¾叨の製造方法は、 ー般式1^ ;^112〇 .1 (但し、 0. 8≤ y≤ 2. 7、 1. 3≤ z≤ 2. 2 ) で表されるチタン酸リチウ ムを酸と接触させてリチウムイオンをプロ トンで 換し、 一般式 H xL i yT i z 04 (伹し y≥x〉 0、 0. 8≤ y≤ 2. 7、 1. 3≤ z≤ 2. 2) で ¾されるチタン酸水素リチウムとすることを特 徴とするものである。
チタン酸リチウムを酸と接触させるには、 例えばチタン酸リチウ ムを水、 アルコール、 セルソルブ、 メチルェチルケ トン、 キシレン、 トルエン等の溶媒に懸濁させ、 この中に酸を添加することにより'行 うことができる。 酸としては塩酸、 硝酸、 硫酸等の無機酸、 酢酸、 蟻酸等の有機酸の何れでも特に制限なく用いることができるが、 こ れらのなかでも酢酸、 塩酸、 硝酸が好ましい。
本発明の製造方法に用いるチ夕ン酸リチウムは、 一般式 L iyT i z04 で表され、 y、 zの値は 0. 8≤y≤ 2. 7、 1. 3≤ z≤ 2 2の範囲が好ましい組成物となる値であり、 例えば、 L i2.67T i
1. 3304 、 L 1 Ί 1 204 N J-i l l. 3 l l l . 6604 、 L» l l."T丄 し W
7 . 0 4 、 L ί 0 . 8 T ί 2 . 2 θ 4 等が挙げられる。 その粒子形状には、 特に制限はなく、 粒状、 板状などの種々の形状とすることができ、 このチタン酸リチウムの粒子形状がチタン酸水素リチウムの粒子形 状に継承される。
チタン酸リチウムを得るには、 例えば ( 1 ) 酸化チタンとリチウ ム化合物との混合物を 5 0 0〜 9 0 0 °Cの温度で熱処理して粒状の チタン酸リチウムを作成する方法、 ( 2 ) チタン化合物とアンモニ ゥム化合物とを水系媒液中で反応させてチタン酸化合物を得る第 1 工程、 該チタン酸化合物とリチウム化合物とを水系媒液中で反応さ せてチタン酸リチゥム水和物を得る第 2工程及び該チタン酸リチウ ム水和物を熱処理する第 3工程を経て板状のチタン酸リチウムを作 成する方法等を川いることができる。 上記 ( 1 ) の方法は、 容易に、 しかも安価にチタン酸リチウムが^られるため好ましい方法であり、 熱処理温度の奵ましい範 \1ϊは 6 0 0〜 8 0 0 °Cであり、 より好まし い範囲は 6 5 0〜 7 5 0 °Cである。
また、 上記 ( 2 ) の方法で ί られるチタン酸リチウムは、 粒子の 大きさや形状が制御され、 その粒子内に空隙を するチタン酸水素 リチウムが得 れるため、 好ましい方法である。
上記 ( 1 ) の方法において、 酸化チタンとは、 アナ夕一ゼ型酸化 チタン、 ルチル型酸化チタン、 無定形酸化チタン、 メタチタン酸、 オルソチタン酸等の各種の酸化チ夕ンあるいは水酸化チタン、 含水 酸化チタン、 水和酸化チタンを意味する。 また、 リチウム化合物 としては、 水酸化リチウム、 炭酸リチウム、 硝酸リチウム、 硫酸リ チウム等を用いることができる。 酸化チタンとリチウム化合物との 混合物を得るには、 酸化チタンとリチウム化合物と 単に乾式で混 合したり、 水、 水一アルコール等の水系媒液中で混合 ·乾燥したり、 さらには、 水系媒液中に懸濁させた酸化チタンスラリ一中にリチウ ム化合物を添加し蒸発乾固する方法等が挙げられる。
上記 ( 2 ) の方法において、 第 1工程はチタン化合物とアンモニ ゥム化合物とを水系媒液中で反応させてチタン酸化合物を得るェ程 である。 チタン酸化合物とは、 オル卜チタン酸、 オルトチタン酸の プロ トンの-一部がアンモニゥムイオン等で置換されたもの等を意味 する。 チタン化合物としては、 硫酸チタン、 硫酸チタニル、 塩化チ 夕ンなどの無機チタン化合物やチタンアルコキシ ド等の有機チタン 化合物を用いる 4ίができ、 特にチタン酸水素リチウム内の不純物量 を少なくできる塩化チタンを用いるのが好ましい。 また、 アンモニ ゥム化合物としては、 アンモニア水、 炭酸アンモニゥム、 硫酸アン モニゥム、 硝酸アンモニゥム等を川いることができる。 このアンモ ニゥム化合物に代えて、 ナト リウム化合物、 カリウム化合物等のァ ルカリ金屈化合物を川いると、 られるチタン化合物内にナ卜リウ ムゃカリゥムの元尜が残 ¾し、 その後の工程の加熱脱水の際に粒子 問の焼結を引き起こし、 粒子の大きさや形状を不均一にし易いため 好ましくない。一
水系媒液としては、 水、 水一アルコール等を用いることができる。 上記チタン化合物とアンモニゥム化合物とを水系媒液中で混合する ことにより反応が進み、 オルトチタン酸 (Η Τ i 0 、 またはそ のプロ トンがアンモニゥムイオンに置換された H n ( N H 4 ) η Τ i 〇,,で表される化合物であるチタン酸化合物が得られる。 Η 4η ( Ν Η ., ) π Τ i 0 . のアンモニゥムイオンの置換量は、 反応の際のアン モニゥムイオン濃度、 遊離水酸基濃度、 水素イオン濃度や反応温度 などの条件を調整することにより任意に変えられる。 得られるチ夕 ン酸化合物の粒子径は、 その後の工程で得られるチタン酸リチウム の粒子径に影響を及ぼすため、 この第一の工程は重要であり、 微粒 子状のチタン酸化合物、 さらには微粒子状のチタン酸リチウムとす るために、 反応温度を 0〜 5 0 °C、 好ましくは 5 ~ 4 0 °C、 より好 ましくは 1 0〜 3 0 °Cに設定する。
このようにして得られたチタン酸化合物を、 必要に応じて、 濾過 したり、 水洗浄したり、 酸洗淨したり、 あるいは乾燥したりして、 次の第 2ェ程の処理に供する。
第 2工程は、 上記第 1工程で得られたチタン酸化合物とリチウム 化合物とを水系媒液中で反応させてチタン酸リチウム水和物を得る 工程である。 リチウム化合物としては、 水酸化リチウム、 炭酸リチ ゥム、 硝酸リチウム、 硫酸リチウム等の水可溶性リチウム化合物を 川いることができる。 このリチウム化合物とチタン酸化合物とを水 系媒液巾で混合することにより反応が進む。 反応 ffi ^は、 5 0 °C以 上、 好ましくは 1 0 0 °C以上、 より好ましくは 1 0 0〜 2 5 0 °Cで あり、 ίδも好ましくは 1 3 0〜 2 0 0 °Cである。 この温度範囲で反 応させること より結品性の優れたチタン酸リチゥム水和物を得る ことができる。
1 0 o °c以上の温度で反応を行なう場合には、 リチウム化合物と チタン酸化合物とをォートクレープに入れ、 飽和蒸気圧下または加 圧下で水熱処现するのが好ましい。 この水熱処理により、 板状形状 を有し、 しかも粒子内に空隙を有するチタン酸リチウム水和物を得 ることができる。
このようにして得られたチタン酸リチウム水和物を '濾過し、 必要 に応じて洗浄したり、 乾燥したりする。 乾燥温度は、 チタン酸リチ ゥム水和物が結晶水を放出する温度以下の温度であれば適宜設定す ることができ、 3 0 ~ 2 0 0 °Cの温度が適当である。
第 3工程は、 上記第 2工程で得られたチタン酸リチウム水和物を 熱処现して一般式 L i v T i z4 (但し、 0 . 8 ^ y≤ 2 . 7、 1 , 3≤ z≤ 2 . 2 ) で表されるチタン酸リチウムを得る工程である。 熱処理の温俊は、 チタン酸リチウム水和物が結晶水を放出する温度 以上の温度であればよく、 チタン酸リチウム水和物の組成や結晶水 の量などで異なる場合があると考えられるが、 概ね 2 0 0 °C以上の 温度である。 空隙を苻するチタン酸リチウムを得るうえでは、 温度 範 EIは概ね 2 0 0〜 8 0 0 °C程度、 空隙の多いチタン酸リチウムを 得るうえでは好ましくは 2 5 0〜 7 0 0 °C、 より好ましくは 3 5 0 〜 6 5 0 °Cである。 また、 緻密なチタン酸リチウムを得る上では、 8 0 0。C以上の温度で熱処理すればよい。 熱処理の Ϊ;„\度を 1 3 0 0
。c . 以 i二にすると、 粒子 [/¾の焼糸,1 iが進んだチタン酸リチウムが得 られる。
上述のチタン酸水素リチウムは、 '池の活物質として川いること ができ、 例えば対極としてリチウムを ド一プ、 脱ドープ可能な材料 と組み合わせることにより、 充放電容量の大きな電池を構成するこ とができる。 すなわち、 本発明のチタン酸水素リチウムは、 低電圧 系の電池用正極及び負極活物質活物質用途とすることで、 活物質自 体の理論容量を大きく越えるものであり、 従来の電池の充放電容量 を大きく向上させられるものである。
以下、 本発明の具体的な実施例について、 実験結果を基に説明す るが、 本発明がこれら実施例に限定されるものでない'ことは言うま でもない。
く pHに関する検討〉
先ず、 酸処理したチタン酸リチウムについて、 pH値の観点から 検討した。
実施例 1
先ず、 アナ夕一ゼ形 T i 02 (純度 99. 8 %) に L i 0 Hの飽 和水溶液を、 L i原子比 R L i T i が 1. 10となるように混合し、 乳鉢で粉砕した。 次に、 この粉砕によって得られた粉末を、 酸素雰 囲気中、 温度 800 Cで 8時問焼成することによってチタン酸リチ ゥム L i 4/3T i 5/3〇4 を合成した。 そして、 この得られたチタン 酸リチウムを 75メッシュのふるいにかけ、 ふるいを通過したチタ ン酸リチウムを蒸留水で洗净した後、 1. 5重 S%の酢酸溶液によ る酸処理を施した。 続いて、 この処理が施されたチタン酸リチウム を、 温度 1 20 °Cで 8時冏乾燥させ、 チタン酸水尜リチウムを得た。 得られたチタン酸水素リチウムの p H値を次のようにして測定し た。
チタン酸水素リチウムの 30 gを蒸留水 50 m 1に投入し、 温度 100°Cで 5分間煮沸した。 冷却後、 このチタン酸水素リチウ Aが 投入された水を濾紙を通して濾過し、 得られた上澄み液の p H値を、 温度 20°C下、 pHメ一夕によって測定した。 その結果、 pH値は 9. 2であった。
実施例 2, 実施例 3
酸処理に用いる酢酸溶液の濃度を変えたこと以外は実施例 1と同 様にしてチタン酸水素リチウムを得た。 この材料の p H値はそれそ れ 8. 0、 5. 6であった。 比較例 1
焼成によって実施例 1と同様にチタン酸リチウムを合成し、 この 未処理のチタン酸リチウムを比較例とした。 この材料の p H値は 1 2. 0であった。
比較例 2
焼成によって実施例 1と同様にチタン酸リチウムを合成し、 この チタン酸リチウムを蒸 水によって洗铮した後、 酢酸溶液による酸 処理を施さなかったこと以外は実施例 1と同様にして比較例材料を 得た。 この材料の pH値は 1 1. 6であった。
以上のようにして得られた各材料を用いてコィン型評価電池を作 製した。
このコィン型評価電池は、 負極べレツ トと染 ¾休が収容された外 装缶と、 対極が収容された外装カツプがセパレー夕を介して積層さ れ、 外装缶と外装カップの外周縁をガスケッ トを介してかしめるこ とで描成されるものである。
このようなコィン型評 ίιίίϊ ΐί:池を次のようにして作製した。
まず、 各実施例あるいは比較例で得られた材料 (L i4/3T i5/34 ) 90|gfi部と、 導電材となるグラフアイ ト 511量部、 バイン ダ一となるポリフッ化ビニリデン PVdF 5ffi量部を加え、 乳鉢で 混練、 分散させた後、 n—メチルピロリ ドンを少量ずつ加えること でスラリー状の負極ミックスを調製した。
この負極ミ ックスを、 温度 1 20°Cで 2時間乾燥させ、 さらに乳 鉢で粉砕することによって粉末ミックスとした。 この粉末ミックス を、 外径 1 5. 5 mm、 厚さ 0. 2 mmの厚さとなるように、 網状 のステンレス (SUS 304 ) 製電極集電体に充填、'圧縮成型し、 これを温度 1 2 0°Cで 2時間真空乾燥することによって負極ペレツ トを作製した。
次に、 対極となる厚さ 1. 0 mmの金属リチウムを、 外径 1 6. 5 mmの円形状力ッ夕一によって打抜き外装力ップに圧着した。 な お、 この外装力ップにはポリプロピレン製の封口ガスケッ トが装着 されている。
そして、 この外装カップに圧着された金属リチウム上に、 所定寸 法に打抜いた厚さ 5 0〃mの微多孔性ポリプロピレンフィルムょり なるセパレ一夕をのせ、 その上から、 プロピレンカーボネートと炭 酸メチルェチルを 5 0 : 5 0なる休積比で混合した溶媒に L i P F 6を 1モル/ 1の割合で溶解させた電解液を滴下した。 綽いて、 先の 工程で作製した負極ペレッ トをセパレー夕上にのせ、 さらにその上 に、 外装缶を被せ、 外周緣部をかしめ密閉することで外径 20mm、 高さ 1. 6 mmのコイン形評 f!lli電池を作製した。 なお、 外装缶は、 ステンレス ( S U S 3 04 ) 製の ίにニッケルめっき処理を施した ものである。 また、 この電池の充 ¾容量の理論値は 1 7 5 mAh/ gである。
以上のように-して作製した電池について、 室温下、 1111八の率電 流で 2. 5 Vまで充電し、 続いて 1. 0 Vまで放電を行った。 この 充放電に際する充電容量を表 1に示す。 また、 代表例として、 実施 例 2、 比較例 1及び比較例 2のチタン酸水素リチウムを用いた評価 電池の充放電カーブを図 1に示す。 【表 1】
Figure imgf000018_0001
図 1からわかるように、 チタン酸リチウムに洗浄処理と酸処理の 両方を施したチタン酸水素リチウムを用いた実施例 2の電池は、 い ずれの処理も施していない比較例 1の電池や洗浄処理のみを施した 比較例 2の電池に較べて長い充放電時間が得られる。
そして、 表 1に示すように実施例 1〜実施例 3の電池では、 理論 値 ( 1 75mAh/g) を大きく越える充電容量が得られる。
このことから、 チタン酸水素リチゥムの p H値を規定することで、 その充電能力を推定できるパラメ一夕となり得ることがわかった。 図 2は、 チタン酸リチウム (チタン酸水素リチウム) の pHと充 電容量の関係を示すものであり、 pHが 12. 0以下になると急激 に充電容量が増加することがわかる。 また、 望ましくは、 pHが 5, 6から 1 1. 2を示すものがよい。
<プロ トン置換に関する検討〉
チタン酸リチウムを酸処理することにより p H値が変わり、 これ が特性に影響を与えることが先の実験によりわかった。
本実験では、 酸処理によるプロ トン置換の観点から、 その性能に ついて検討を加えた。 実施例 4
( 1) チタン酸リチウムの合成
1 - 1 ) チタン酸化合物の合成
25リ ヅ トルのガラス製反応容器に 6. 0 1モル/リヅ トルの濃度 のアンモニア水 8. 988リ ツ トルを仕込み、 攪拌下、 溶液の温度 が 10〜 20 °Cになるように氷冷しながら、 1. 25モル/リッ ト ルの濃度の四塩化チタン溶液 9. 0 1リッ トルを 1. 5時間かけて 分散添加した。 添加終了時点での遊離アンモニア濃度は 0. 5モル /リ ッ トル、 固体濃度は T i 02 換算で 50 g/リ ッ トルであり、 pHは 8. 3を示した。
1時間熟成した後、 5モル/リッ トルの濃度の塩酸水溶液 1. 3 リ ヅ トルを 1時間で分散添加し、 pHを 4とした。 引き続き、 pH を 4に保持し、 1時問熟成した。 熟成中は pHを 4に保持するため、 5モル/リ ッ トル塩酸水 ¾液 0. 42リ ッ トルを分敗添加した。 熟 成終了後、 ろ過水洗してチタン酸化合物を得た。
1— 2) チタン酸リチウム水和物の合成
1— 1 ) で得たチタン酸化合物に純水を加え、 大型ミキサーで攪拌 して分散させ、— 1 7リッ トルの水分散液を得た。 水分散液の固体濃 度は T i〇 2 換算で 45. 38 g/リ ッ トルで、 p Hは 6. 7であ つた。 25リ ッ トルのガラス製反応容器に上記水分散液 13. 88 2リッ トルと純水 0. 1 18リ ツ トルを仕込み、 攪拌下、 溶液の温 度が 10〜20°Cになるように氷冷しながら、 2. 0 1モル/リ ツ トルの水酸化リチウム水溶液 4. 00リ ッ トルを 1時間で分散添加 した後、 1時間熟成した。 添加後の固体濃度は T i 02 換算で 35 g/リッ トル、 L i/T iモル比は 1. 02であり、 'p Hは 11. ' 8であった。
熟成終了後のスラリーをステンレス製 25リツ トルのォ一 トクレ —ブに仕込み、 攪拌しながら 1 90°Cの温度で 4時間水熱処理した, 水熱処理後のスラリ—は増粘しており、 25 °Cでの粘度は 2 140 c pであった。
次いで、 水熱処理後のスラ リーを濾過した後、 洗浄せずに 1 10 °Cの温度で乾燥して、 チタン酸リチウム水和物 (L iし 33T i ..6 6 〇4 · H2〇) を得た。
1 - 3 ) チ夕ン酸リチウムの合成
1— 2) で得られたチタン酸リチウム水和物を粉碎した後、 粉砕物 を石英製焼成容器に入れ、 大気雰囲気下で 550 °Cの温度で 3時間 焼成してチタン酸リチウム (試料 A) を得た。
( 2 ) チタン酸水素リチウムの合成
1リッ トルのガラス製反応容器に純水 500ミ リ リ ツ トルと試料 Aのチタン酸リチウム 1 00 gを化込み、 お しながら 1 0 の舴酸水溶液 67ミ リ リ ッ トルを一括添加して、 2 5°Cの温度で 1 時 反応させた後、 ろ過洗 し、 大気中で 1 10°Cの温度で 3時間 乾燥し、 チタン酸水素リチウム (試料 A 1) を得た。 pH値は 1 1 , 2である。
実施例 5
実施例 4において、 (2) の 10重量%の酢酸水溶液 67ミ リ り ヅ トルを一括添加して、 25°Cの温度で 1時間反応させることに代 えて、 10重量%の酢酸水溶液 133ミ リ リツ トルを一括添加して、 60°Cで 1時間反応させたこと以外は実施例 4と同様に処理し、 チ タン酸水素リチウム (試料 A2) を得た。 pH値は 9. 3である。 '実施例 6
実施例 4において、 ( 2 ) の 1 0重量%の酢酸水溶液 6 7ミ リ リ ッ トルを一括添加して、 2 5°Cの温度で 1時間反応させることに代 えて、 1 0重量%の酢酸水溶液 2 0 0 ミ リ リ ツ トルを一括添加して、 6 0°Cで 1時間反応させたこと以外は実施例 4と同様に処理し、 チ タン酸水素リチウ'ム (試料 A 3 ) を得た。 p H値は 8. 0である。 実施例 7
実施例 4において、 ( 2 ) の 1 0重量%の酢酸水溶液 6 7 ミ リ リ ッ トルを一括添加して、 2 5 °Cの温度で 1時問反応させることに代 えて、 2 0 の酢酸水溶液 1 6 7 ミ リ リ ツ トルを一括添加して、
6 0 Cで 1時問反応させたこと以外は実施例 4と同様に処理し、 チ タン酸水素リチウム (試料 A 4 ) を得た。 p H値は 7. 8である。
施例 8
実施例 4において、 ( 2 ) の 1 0 J %の酢酸水 液 6 7 ミ リ リ ッ 卜ルを一-括添加して、 2 5。Cの温 li£で 1時 反 } させることに代 えて、 4 0 SIi %の酢酸水溶液 1 6 7 ミ リ リ ツ トルを一括添加して、 6 0°Cで 1時問反応させたこと以外は実施例 4と同様に処理し、 チ タン酸水素リチ -ゥム (試料 A 5 ) を得た。 ρ Ηίιίίは 7. 6であ!)。 突施例 9
実施例 4において、 ( 2 ) の 1 0重量%の酢酸水溶液 6 7 ミ リ リ ッ トルを一括添加して、 2 5 °Cの温度で 1時間反応させることに代 えて、 5モル/リ ッ トルの濃度の塩酸水溶液 1 7 6 ミ リ リ ツ トルを 1時間で分散添加して、 6 0°Cで 1時間反応させたこと以外は実施 例 4と同様に処理し、 チタン酸水素リチウム (試料 A 6 ) を得た。 p H値は 7. 4である。 実施例 1 o
実施例 4において、 ( 2 ) の 1 0重量%の酢酸水溶液 6 7ミ リ リ ッ トルるを一括添加して、 2 5°Cの温度で 1時間反応させることに 代えて、 5モル/リ ッ トルの濃度の塩酸水溶液 200ミ リ リッ トル を 1時間で分散添加して、 6 0°Cで 1時間反応させたこと以外は実 施例 4と同様に処理し、 チタン酸水素リチウム (試料 A 7 ) を得た。 pH値は 5. 6である。
比較例 3
実施例 4の ( 1 ) で得られた試料 Aのチタン酸リチウムを比較試 料とした。 p H値は 1 1. 6である。
実施例 I I
( 1 ) チタン酸リチウムの合成
実施例 1において、 1— 3 ) の 5 5 0 °Cの温度で 3時 | 焼成する ことに代えて、 6 2 5 °Cの温^で 3 焼成したこと以外は実施例
1 と^様に処 してチタン酸リチウム (試料 Β) を た。
( 2 ) チタン酸水尜リチウムの合成
1 リッ トルのガラス製反応容器に純水 5 00ミ リ リ ツ トルと試料 Βのチタン酸リ—チウム 1 0 0 gを仕込み、 攪拌しながら 1 0重尋% の酢酸水溶液 1 3 3ミ リ リ ツ トルを一括添加して、 60。Cの温度で
1時間反応させた後、 ろ過洗净し、 大気中で 1 1 0°Cの温度で 3時 間乾燥してチタン酸水素リチウム (試料 B 1 ) を得た。 p H値は 9.
2である。
実施例 1 2
実施例 1 1において、 ( 2 ) の 1 0 IB量%の酢酸水溶液 1 33ミ リ リッ トルを一括添加して、 6 0°Cの温度で 1時間反応させること W
21 に代えて、 20重量%の酢酸水溶液 1 67ミ リ リツ トルを一括添加 して、 60°Cで 1時間反応させたこと以外は実施例 1 1と同様に処 理してチタン酸水素リチウム (試料 B 2) を得た。 pH値は 8. 2 である。
実施例 13
実施例 1 1において、 (2) の 10重量%の酢酸水溶液 133ミ リ リッ トルを一括添加して、 60°Cの温度で 1時間反応させること に代えて、 5モル/リッ トルの濃度の塩酸水溶液 1 78ミ リ リッ ト ルを 1時間で分散添加して、 60°Cで 1時間反応させたこと以外は 実施例 1 1と同様に処现してチタン酸水素リチウム (試料 B 3) を 得た。 p H値は 7. 5である。
比較例 4
実施例 1 1の ( 1 ) で^られた試料 Bのチタン酸リチウムを比較 試料とした。 pH iは 1 2. 3である。
突施例 14
( 1 ) チタン酸リチウムの合成
3リ ッ トルのプラスチック製ビーカーに T i 02 換算で 50◦ g の含水酸化チタン (商品名 C- II、 石原産業社製) を入れてスラ リー とし、 3. 00モル/リッ トルの濃度の水酸化リチウム水溶液 1. 8 1 5リ ッ トルを加え、 室温で 4時問攪拌した。 このスラリーを、 大気中 150°Cで蒸発乾固した。 乾燥ケーキを粉碎した後、 大気中 で 700 °Cの温度で 3時間焼成してチタン酸リチウム (試料 C) を 得た。
( 2 ) チタン酸水素リチウムの合成
1リッ トルのガラス製反応容器に純水 500ミ リ リツ トルと試料 Cのチタン酸リチウム 100 gを仕込み、 攪拌しながら 10重量% の酢酸水溶液 133ミ リ リ ツ トルを一括添加して、 60°Cの温度で 1時間反応させた後、 ろ過洗浄して、 大気中で 1 1 0°Cの温度で 3 時間乾燥してチタン酸水素リチウム (試料 C 1 ) を得た。 pH値は 8. 9である。
m 15
実施例 14において、 ( 2 ) の 1 0重量%の酢酸水溶液 133ミ リ リ ッ トルを一括添加して、 60°Cの温度で 1時間反応させること に代えて、 5モル/リ ヅ トルの濃度の塩酸水溶液 86ミ リ リ ッ トル を 1時問で分散添加して、 60 °Cの温度で 1時間反応させたこと以 外は実施例 14と同様に処现してチタン酸水素リチウム (試料 C 2 ) を得た。 p H値は 8. 3である。
比蛟例 5
¾施例 14の ( 1 ) で られた 料 Cのチタン リチウムを比較 試料とした。 ρΗ^ι'Πί Ι 1. 5である。
m 6
実施例 4において、 550。Cの温度で 3時問焼成することに代え て、 8 10°C©温度で 3時問焼成した寧を以外は実施例 4と同禅に 処理してチタン酸リチウム (試料 D) を得た。 pH値は 3. 7であ る。
特件の評価
実施例 4〜 1 5及び比較例 3〜 6で得られた A 1〜A 7、 B 1〜 B 3、 C l、 C 2及び A〜Cの試料において、 化学組成 L i、 T i については化学分析により求めた。 最長粒子径は、 電子顕微鏡写真 より読み取った。 比表面積、 空隙量は、 日本ペル社製、 商品名ペル ソープ 2 8を用いて測定した。 さらに、 H (プロ トン) 置換量につ いては、 T G— D T A熱分析により以下の方法により求めた。 すな わち、 T G— D T A曲線において、 プロ トンが水として離脱するこ とによる吸熱反応に基づく減量が、 2 1 3 °C付近及び 2 7 7 °C付近 にスピネル構造の Bサイ ト及び Aサイ 卜のプロ トンに対応してそれ それ観測されるので、 これらの減量より、 プロ トン置換量を算出し た。 なお、 この方法により算出したプロ トン置換量は、 先に化学分 析により求めた L iの残存量とよく対応している。
また、 実施例 4〜 1 5及び比較例 3〜 6で得られた A 1〜 A 7、 B 1〜B 3、 C 1 s C 2及び A〜Cのチタン酸リチウム各試料用い て電池の充放 ¾能力の測定を行った。 図 3は、 評 ίιΐϋに使川した非水 電解液電池の全体構造図である。
この実施例及び比敉例を )Uいたコイン形 池の詳細について説叨 する。
先ず、 活物 κチタン酸水素リチウムを 9 o iit とし、 これに導
¾材であるグラフアイ 卜を 5 IR 部、 バイングーとしてポリ沸化ビ 二リデンを 5重量部加え、 乳鉢で混純し、 分散させたものに N M P を少量ずつ加えながらスラリ一状のミックスを作製した。 この ッ クスを 1 2 0 °Cで 2時間乾燥した後、 さらに乳鉢で粉砕しドライ粉 末ミ ックスとした。 これを外径 1 5 m m, 厚さ 0 . 2 m mとなるよ うにステンレス (SUS304) ネッ 卜の電極集電体 8に充填、 圧縮成型 してペレッ ト 7を作製し、 これを 1 2 0 °C、 2時間真空乾燥した。 また、 対極として外径 1 6 m mの円形状力ッ夕一にて厚さ 1 . 0 m mの金属リチウム 3を打抜いて力ップ 2に圧着した。 その上に必 要寸法に打抜いた, 厚さ 2 5 mの微多孔性ポリプ レンフィルム のセパレ一夕 6をポリプロビレン製の封口ガスケヅ ト 5とカップ 2 に挿着したものに挟み込んで入れた後、 電解液としてプロピレン力 —ボネート (P C) 、 エチレン力一ボネ一ト (E C) 、 1 , 2ジメ トキシェタン (DME) の等容積混合媒体に、 L i P F 6 を 1モル /リ ヅ トルの割合で溶解させたものを用い滴下した。
さらに、 前記のペレッ ト 7をのせた後、 ステンレス (SUS304) に ニッケルメツキ処理を施した 2層からなるカン 1をかぶせ、 その封 口部をかしめてシールした後、 外径 20mm, 高さ 1. 6 mmのコ ィン形非水電解液二次電池を作製した。
次に, こう して作製したコイン形電池を用いて, 室温で 1mAの 定電流で 2. 5Vまで充電し、 その後 1. 0Vまで放 ¾を行い、 充 放電容量を測定した。
最長粒子径、 比衷而¾、 空隙 ifi及び対極に金屈リチウムを用いた コィ ン形 ¾池での充¾ ¾の贿認結 を 2及び 14に^した。
【表 2】
実施例 化学組成 最長粒子 g 比表面積 空隙量 充電容 m P H値
u m g" m 1/g m A h/g 比較例 3 A Lil.45Til.6504 0.1〜 0.2 63.0 0.43 163 11.6 実施例 4 Al H0.14Lil.24Til.66O4 0.1〜 0.2 62.2 0.48 175 11.2 実施^ 5 Λ2 H0.32Lil.08Til.65O4 0.1〜 0.2 59.3 0.49 193 9.3
Λ3 H0.40LJ0.96Til.66O4 0.1〜 0.2 57.2 0.43 204 8.0 実施例 7 Λ4 H0.43Li0.88Til.67O4 0.1〜 0.2 56.7 0.50 212 7.8 突施冽 8 Λ5 H0.54し i0.80T .6704 0.1〜 0.2 52.8 0.56 215 7.6 突施冽 9 Λ6 H1.09Lt0.16Til.68O4 0.1〜 0.2 60.2 0.48 264 7.4 実施例 1 0 A7 H1.28Li0.02TU.67O4 0.1〜 0.2 62.2 0.43 271 5.6 比較冽 4 B し .43ΊΊ 1.6504 0.13〜 0.2 26.4 0.18 158 12.3 実脑 1 1 Bl HO.16Lil.l4Ti 1.6704 0.13〜 0.2 29.1 0.20 171 9.2
½施例 1 2 B2 H0.35IJ0.97Ti 1.6704 0.13 〜 0.2 31.4 0.2! 200 8.2
¾施例 1 3 B3 H1.05Li0.1STil.6(;O4 0.13 〜 0.2 32.5 0.20 つつ 1 7.5 比敉冽 5 C Lil.44TiI.6504 0.2 〜 0.4 6.1 0.03 145 11.5 鶴冽 1 4 CI H0.19し .16Til.66〇4 0.2 〜 0.4 6.6 0.02 15i 8.9 実施咧 1 5 C2 H0.53Li0.75Til.68O4 0.2 〜 0.4 7.9 0.05 204 8.3 比較冽 6 D Lil.17Til.8104 0.5 〜 1.0 0.9 0.01 83 - 3.7
比較例及び実施例として記載された表 2における実験内容の詳細 条件として、 Aは大気雰囲気下 550°Cの温度で 3時間、 8は62 5°Cで 3時間、 Cは 700 °Cで 3時間焼成したものが基準となって おり、 これらのチタン酸リチウム焼成後に水及び酸処理により、 プ 口 トン置換量を変更して得られたものである。
表 2の結果から、 現在 1. 5 V系リチウムイオン二次電池として、 市場にて商品化されているチタン酸リチウムの 1電子反応における 充電容量が約 1 50mAh/g相当であるに対して、 プロ トン置換 を行なっていない比較例 3においても、 1 60 m A h/g以上とか なり大きな充電容量を保持していた。
また、 本究明のプロ トン蹬換を行なった実施例 A 1 ~A 7におい ては、 試料 A< A 1 <A2<A3 <A4<A5<A 6<A7の順で 充放 ; 容 ffiが向上している。 同様に、 実施例 B 1〜B 7においては、 試料 B<B 1 < B 2 < B 3の顺位で充 fli容造が |ή】上してり、 さらに 灾施例 C〜C 2においても、 試料 Cく C 1 < C 2の顺で充 ¾容 ffiが 上している。 いずれも、 プロ トン 換量が大きくなるほど、 充電 容量に大きく反映していることが贿認できた。
この温度によ—る影響をみるため、 比較例 6に 80 (TCにて焼 し たチタン酸リチウムの充電容量を掲載した。
比較例 6の値から、 比表面積は 0. 9 m2 /gと比較例 3の 1/ 6であって、 充電容量は約 50%相当の 83mAh/gを示してい た。 よって、 上記焼成温度による充電容量の影響が大きい事が裏付 けられた。
また、 図 4に示した様に、 プロ トン置換量と充電容量は比例関係 にある事が確認できる。 つまりプロ トン置換量が大きくなるほど充 電容量も大きくなつており、 チタン酸リチウムにおけるプロ トン置 換の効果が明らかである。 また、 A ( 550 °C ) > B ( 625 °C) > C ( 700 °C ) の順で焼成温度が低いほど比表面積が大きくなり、 反応面積が向上するため、 充電容量も大きくなつている。 プロ トン 置換量を増加させる条件との組み合わせにより、 低温焼成条件でさ らに本発明の効果がより一層大きくなるものである。
しかし、 プロ トン置換量を多くする jiで、 より大きな充電容量が 望める反面、 水及び酸処理によってプロ トン置換量をコントロール する事が難しく、 本発明の実施例ではプロ トン置換量が大きくなる ほど、 充電容 Mのばらつきが大きくなる事が確認されているため、 本 ¾叨のプロ トン置換量として、 望ましくは一般式 HXL i y -x T i ζθ., (但し、 y≥x> 0、 0. 8≤ y≤ 2. 7、 1. 3≤ z≤ 2. 2 ) で表されるプロ トン ίίϊ換領域が、 ¾池材料として川いるために はより^好な条件と^えられる。

Claims

請 求 の 範 囲
1. チタン酸リチウムが酸処理されてなり、 pHが 1 1. 2以下 であることを特徴とするチタン酸水素リチウム。
2. 一般式 HXL i y- xT i ζθ,, (但し、 y≥x〉 0、 0. 8≤ y ≤ 2. 7、 1. 3≤ z≤ 2. 2) で表されるチタン酸水素リチウム。
3. 粒子状であり、 且つ粒子内に空隙を有することを特徴とする 請求項 2記載のチタン酸水素リチウム。
4. 最大粒子径が 0. 05 ~ 50〃mであることを特徴とする請 求项 3記載のチタン酸水素リチウム。
5. 比表而 Μ·が 0. 0 1~30 Om2 /gであることを特徴とす る請求項 3記載のチタン酸水素リチウム。
6. —般式 丁 。,, ( !!し、 0. 8≤y≤ 2. 7、 1. 3 ≤ z≤ 2. 2 ) で ¾されるチタン酸リチウムを酸と接触させ、
リチウムイオンをプロ トンでS換して一般式 H .、 L i y T i z〇 (但し、 y≥x〉 0、 0. 8≤ y≤ 2. 7、 1. 3≤ z≤ 2. 2 ) で表されるチタン酸水素リチウムとすることを特徴とするチタン酸 水素リチウムの—製造方法。
7. 上記酸が、 酢酸であることを特徴とする請求項 6記載のチタ ン酸水素リチウムの製造方法。
8. チタン化合物とアンモニゥム化合物とを水系媒液中で反応さ せてチタン酸化合物を得る第 1工程と、
上記チタン酸化合物とリチウム化合物とを水系媒液中で反応させ てチタン酸リチウム水和物を得る第 2工程と、
上記チタン酸リチゥム水和物を熱処理する第 3工程とを有し、 これら各工程を経て一般式 L i yT i z04 (但し、 0. 8≤y≤ 2. 7、 1. 3≤ z≤ 2. 2) で表されるチタン酸リチウムを得る ことを特徴とする請求項 6記載のチタン酸水素リチウムの製造方法。
9. 第 2工程がチタン酸化合物とリチウム化合物とを水系媒液中 で水熱処理してチタン酸リチウム水和物を得る工程であることを特 徴とする請求項 8記載のチタン酸水素リチウムの製造方法。
10. 第 3工程がチタン酸リチウム水和物を 200〜 800 °Cの 温度範面で熱処理する工程であることを特徴とする請求項 8記載の チタン酸水素リチウムの製造方法。
1 1. 酸化チタンとリチウム化合物との混合物を 500〜 900 °Cの温度で熱処理して一般式 L i yT i z〇 (但し、 0. 8≤y≤ 2. 7、 1. 3≤ z≤ 2. 2) で表されるチタン酸リチウムを得ること を特徴とする請求项 6記载のチタン酸水素リチウムの製造方法。
PCT/JP1998/003184 1997-07-15 1998-07-15 Hydrogenotitanates de lithium et leur procede de fabrication WO1999003784A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP50691299A JP4022265B2 (ja) 1997-07-15 1998-07-15 チタン酸水素リチウム及びその製造方法
EP98932536A EP0937684B1 (en) 1997-07-15 1998-07-15 Lithium hydrogentitanates and process for the preparation thereof
DE69842254T DE69842254D1 (de) 1997-07-15 1998-07-15 Lithiumwasserstofftitanat und verfahren zu dessen herstellung
US09/254,828 US6139815A (en) 1997-07-15 1998-07-15 Hydrogen lithium titanate and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/190176 1997-07-15
JP19017697 1997-07-15

Publications (1)

Publication Number Publication Date
WO1999003784A1 true WO1999003784A1 (fr) 1999-01-28

Family

ID=16253717

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP1998/003185 WO1999004442A1 (fr) 1997-07-15 1998-07-15 Cellule auxiliaire a electrolyte non aqueux
PCT/JP1998/003184 WO1999003784A1 (fr) 1997-07-15 1998-07-15 Hydrogenotitanates de lithium et leur procede de fabrication

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003185 WO1999004442A1 (fr) 1997-07-15 1998-07-15 Cellule auxiliaire a electrolyte non aqueux

Country Status (8)

Country Link
US (2) US6139815A (ja)
EP (2) EP0937684B1 (ja)
JP (2) JP4022265B2 (ja)
KR (2) KR100522061B1 (ja)
CN (2) CN1155134C (ja)
DE (2) DE69842254D1 (ja)
TW (1) TW381357B (ja)
WO (2) WO1999004442A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213623A (ja) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd チタン酸リチウムの製造方法およびリチウムイオン電池ならびにその電極
JP2001213622A (ja) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd チタン酸リチウムの製造方法およびリチウムイオン電池並びにその電極
US6475673B1 (en) * 1999-02-16 2002-11-05 Toho Titanium Co., Ltd. Process for producing lithium titanate and lithium ion battery and negative electrode therein
WO2009057722A1 (ja) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池用正極活物質の製造方法
JP2009176752A (ja) * 2005-07-07 2009-08-06 Toshiba Corp 負極活物質及びその製造方法、非水電解質電池及び電池パック
JP2011026188A (ja) * 2009-06-25 2011-02-10 National Institute Of Advanced Industrial Science & Technology チタン酸アルカリ金属化合物及びその製造方法、並びに該チタン酸アルカリ金属化合物を含む電極活物質及び該電極活物質を用いてなる蓄電デバイス
JP2012234648A (ja) * 2011-04-28 2012-11-29 Kochi Univ 被覆活物質の製造方法
JP2013012461A (ja) * 2011-06-02 2013-01-17 Nissan Motor Co Ltd 正極活物質および電極の製造方法、ならびに電極
JP2013119493A (ja) * 2011-12-07 2013-06-17 Toyota Industries Corp 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び車両
JP2013531600A (ja) * 2010-05-21 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー チタン化合物を製造する方法
JP2014143004A (ja) * 2013-01-22 2014-08-07 Toshiba Corp 負極及び非水電解質電池
WO2014155408A1 (ja) * 2013-03-25 2014-10-02 株式会社豊田自動織機 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP2015042611A (ja) * 2014-10-07 2015-03-05 サチトレベン ピグメンツ オーワイ チタン酸リチウム化合物の製造方法
JP2015509066A (ja) * 2011-11-28 2015-03-26 ルノー エス.ア.エス. 炭素存在下での粉砕によるLi4Ti5O12をベースとする材料の製造
JP2016501806A (ja) * 2012-10-10 2016-01-21 ハイドロ−ケベック 層状およびスピネル型チタン酸リチウムならびにその調製プロセス
US10153485B2 (en) 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2020153409A1 (ja) * 2019-01-23 2020-07-30 国立研究開発法人産業技術総合研究所 チタン酸化物、チタン酸化物の製造方法、およびチタン酸化物を含む電極活物質を用いたリチウム二次電池

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645673B2 (en) * 1999-02-16 2003-11-11 Toho Titanium Co., Ltd. Process for producing lithium titanate and lithium ion battery and negative electrode therein
CA2327370A1 (fr) * 2000-12-05 2002-06-05 Hydro-Quebec Nouvelle methode de fabrication de li4ti5o12 pur a partir du compose ternaire tix-liy-carbone: effet du carbone sur la synthese et la conductivite de l'electrode
US7211350B2 (en) * 2001-01-29 2007-05-01 Rutgers University Foundation Nanostructure lithium titanate electrode for high cycle rate rechargeable electrochemical cell
ATE285379T1 (de) * 2001-07-20 2005-01-15 Altair Nanomaterials Inc Verfahren zur herstellung von lithiumtitanat
EP1282180A1 (en) * 2001-07-31 2003-02-05 Xoliox SA Process for producing Li4Ti5O12 and electrode materials
JP4340160B2 (ja) * 2002-03-08 2009-10-07 アルテアナノ インコーポレイテッド ナノサイズ及びサブミクロンサイズのリチウム遷移金属酸化物の製造方法
US20040053136A1 (en) * 2002-09-13 2004-03-18 Bauman William C. Lithium carbide composition, cathode, battery and process
US7041239B2 (en) * 2003-04-03 2006-05-09 Valence Technology, Inc. Electrodes comprising mixed active particles
DE602004001349T2 (de) * 2003-05-09 2007-05-10 Umicore Negative elektrode für lithiumbatterien
JP3795886B2 (ja) * 2003-11-20 2006-07-12 Tdk株式会社 リチウムイオン二次電池の充電方法、充電装置および電力供給装置
JP3769291B2 (ja) 2004-03-31 2006-04-19 株式会社東芝 非水電解質電池
US7682745B2 (en) 2004-10-29 2010-03-23 Medtronic, Inc. Medical device having lithium-ion battery
US9077022B2 (en) 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US9065145B2 (en) 2004-10-29 2015-06-23 Medtronic, Inc. Lithium-ion battery
US7582387B2 (en) * 2004-10-29 2009-09-01 Medtronic, Inc. Lithium-ion battery
CN101048898B (zh) 2004-10-29 2012-02-01 麦德托尼克公司 锂离子电池及医疗装置
US7337010B2 (en) * 2004-10-29 2008-02-26 Medtronic, Inc. Medical device having lithium-ion battery
US8980453B2 (en) 2008-04-30 2015-03-17 Medtronic, Inc. Formation process for lithium-ion batteries
US8105714B2 (en) 2004-10-29 2012-01-31 Medtronic, Inc. Lithium-ion battery
US7662509B2 (en) * 2004-10-29 2010-02-16 Medtronic, Inc. Lithium-ion battery
US7563541B2 (en) 2004-10-29 2009-07-21 Medtronic, Inc. Lithium-ion battery
EP1805833B1 (en) * 2004-10-29 2011-02-23 Medtronic, Inc. Method of charging lithium-ion battery
US7927742B2 (en) 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
US7641992B2 (en) 2004-10-29 2010-01-05 Medtronic, Inc. Medical device having lithium-ion battery
MX2008005136A (es) * 2005-10-21 2008-10-31 Altairnano Inc Baterias de ion de litio.
JP4878861B2 (ja) * 2006-02-15 2012-02-15 三洋電機株式会社 非水電解液電池
US7820327B2 (en) * 2006-04-11 2010-10-26 Enerdel, Inc. Lithium titanate and lithium cells and batteries including the same
US7820137B2 (en) 2006-08-04 2010-10-26 Enerdel, Inc. Lithium titanate and method of forming the same
US7541016B2 (en) * 2006-04-11 2009-06-02 Enerdel, Inc. Lithium titanate and method of forming the same
US8168330B2 (en) * 2006-04-11 2012-05-01 Enerdel, Inc. Lithium titanate cell with reduced gassing
JP2010524179A (ja) * 2007-03-30 2010-07-15 アルテアーナノ,インコーポレーテッド リチウムイオンセルを作成するための方法
HUE035407T2 (en) * 2008-11-04 2018-05-28 Huntsman P&A Finland Oy Process for the preparation of alkali metal titanates
CN101740809A (zh) * 2009-12-29 2010-06-16 奇瑞汽车股份有限公司 一种大容量动力锂电池及其制备方法
CA2834024A1 (en) * 2011-04-28 2012-11-01 Ishihara Sangyo Kaisha, Ltd. Titanium raw material for lithium titanate production and method for producing lithium titanate using same
JP2012238444A (ja) * 2011-05-11 2012-12-06 Seiko Epson Corp 高分子固体電解質及びその製造方法、リチウムイオン二次電池
KR101328988B1 (ko) 2011-06-30 2013-11-13 삼성에스디아이 주식회사 음극 활물질, 이를 포함하는 음극, 리튬 이차전지 및 음극 활물질 제조방법
US9287580B2 (en) 2011-07-27 2016-03-15 Medtronic, Inc. Battery with auxiliary electrode
US20130149560A1 (en) 2011-12-09 2013-06-13 Medtronic, Inc. Auxiliary electrode for lithium-ion battery
CN102616835B (zh) * 2012-03-31 2014-10-29 陕西科技大学 一种花球状锂电池负极材料的制备方法
JP6370531B2 (ja) * 2013-03-22 2018-08-08 大阪瓦斯株式会社 蓄電デバイス用棒状チタン系構造体及びその製造方法、並びに該チタン系構造体を用いた電極活物質、電極活物質層、電極、及び蓄電デバイス
CN103682296B (zh) * 2013-08-16 2015-12-09 东莞上海大学纳米技术研究院 一种高比容量纳米级钛酸锂材料的制备方法
KR101751574B1 (ko) * 2014-09-30 2017-06-27 주식회사 엘지화학 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차 전지용 음극, 및 리튬 이차 전지
CN104900861B (zh) * 2015-04-02 2017-03-01 清华大学 一种钛酸氢锂Li‑H‑Ti‑O材料及其制备方法
CN107910590A (zh) * 2017-11-24 2018-04-13 杨彬 一种环境友好型锂电池电解液
DE102018211178A1 (de) 2018-07-06 2020-01-09 Robert Bosch Gmbh Verfahren zur Dotierung von H2081Ti12O25 mit Metallionen und Verwendung des dotierten H2Ti12O25
JP7387564B2 (ja) * 2020-09-16 2023-11-28 株式会社東芝 二次電池、電池パック、車両及び定置用電源

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172869A (ja) * 1982-04-05 1983-10-11 Nippon Telegr & Teleph Corp <Ntt> 二次電池
JPH04294060A (ja) * 1991-03-25 1992-10-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JPH06275263A (ja) 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd リチウム二次電池およびその負極の製造法
JPH09219215A (ja) * 1996-02-07 1997-08-19 Japan Storage Battery Co Ltd リチウムイオン電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2663037A1 (fr) * 1990-06-11 1991-12-13 Centre Nat Rech Scient Nouveaux materiaux electrochromes et leur procede de preparation.
FR2663021B1 (fr) * 1990-06-11 1992-09-11 Centre Nat Rech Scient Procede de preparation de couches minces d'oxydes de metaux de transition.
US5180574A (en) * 1990-07-23 1993-01-19 Moli Energy (1990) Limited Hydrides of lithiated nickel dioxide and secondary cells prepared therefrom
GB9121912D0 (en) * 1991-10-16 1991-11-27 Atomic Energy Authority Uk Titanium dioxide-based material
JPH0668867A (ja) * 1992-08-21 1994-03-11 Central Res Inst Of Electric Power Ind リチウム二次電池の負極体
JPH0714581A (ja) * 1993-06-25 1995-01-17 Fuji Photo Film Co Ltd 非水二次電池
ZA94750B (en) * 1993-09-02 1994-09-29 Technology Finance Corp Electrochemical cell
JPH07288124A (ja) * 1994-04-15 1995-10-31 Haibaru:Kk 非水電解液二次電池
JPH08180875A (ja) * 1994-12-24 1996-07-12 Aichi Steel Works Ltd リチウム二次電池
JP3197779B2 (ja) * 1995-03-27 2001-08-13 三洋電機株式会社 リチウム電池
JP3894614B2 (ja) * 1996-03-18 2007-03-22 石原産業株式会社 チタン酸リチウムの製造方法
JPH1027626A (ja) * 1996-07-09 1998-01-27 Matsushita Electric Ind Co Ltd リチウム二次電池
US5766796A (en) * 1997-05-06 1998-06-16 Eic Laboratories, Inc. Passivation-free solid state battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58172869A (ja) * 1982-04-05 1983-10-11 Nippon Telegr & Teleph Corp <Ntt> 二次電池
JPH04294060A (ja) * 1991-03-25 1992-10-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極
JPH06275263A (ja) 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd リチウム二次電池およびその負極の製造法
JPH09219215A (ja) * 1996-02-07 1997-08-19 Japan Storage Battery Co Ltd リチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMISTRY, vol. 62, no. 9, 1994, pages 870 - 875

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475673B1 (en) * 1999-02-16 2002-11-05 Toho Titanium Co., Ltd. Process for producing lithium titanate and lithium ion battery and negative electrode therein
JP4642960B2 (ja) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 チタン酸リチウムの製造方法
JP2001213622A (ja) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd チタン酸リチウムの製造方法およびリチウムイオン電池並びにその電極
JP2001213623A (ja) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd チタン酸リチウムの製造方法およびリチウムイオン電池ならびにその電極
JP4642959B2 (ja) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 チタン酸リチウムの製造方法
US10153485B2 (en) 2003-04-11 2018-12-11 Murata Manufacturing Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2009176752A (ja) * 2005-07-07 2009-08-06 Toshiba Corp 負極活物質及びその製造方法、非水電解質電池及び電池パック
WO2009057722A1 (ja) * 2007-11-01 2009-05-07 Agc Seimi Chemical Co., Ltd. リチウムイオン二次電池用正極活物質の製造方法
US8192711B2 (en) 2007-11-01 2012-06-05 Agc Seimi Chemical Co., Ltd. Process for production of cathode active material for lithiun ion secondary battery
JP5193189B2 (ja) * 2007-11-01 2013-05-08 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP2011026188A (ja) * 2009-06-25 2011-02-10 National Institute Of Advanced Industrial Science & Technology チタン酸アルカリ金属化合物及びその製造方法、並びに該チタン酸アルカリ金属化合物を含む電極活物質及び該電極活物質を用いてなる蓄電デバイス
JP2013531600A (ja) * 2010-05-21 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー チタン化合物を製造する方法
JP2012234648A (ja) * 2011-04-28 2012-11-29 Kochi Univ 被覆活物質の製造方法
JP2013012461A (ja) * 2011-06-02 2013-01-17 Nissan Motor Co Ltd 正極活物質および電極の製造方法、ならびに電極
JP2015509066A (ja) * 2011-11-28 2015-03-26 ルノー エス.ア.エス. 炭素存在下での粉砕によるLi4Ti5O12をベースとする材料の製造
JP2013119493A (ja) * 2011-12-07 2013-06-17 Toyota Industries Corp 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池及び車両
JP2016501806A (ja) * 2012-10-10 2016-01-21 ハイドロ−ケベック 層状およびスピネル型チタン酸リチウムならびにその調製プロセス
JP2014143004A (ja) * 2013-01-22 2014-08-07 Toshiba Corp 負極及び非水電解質電池
WO2014155408A1 (ja) * 2013-03-25 2014-10-02 株式会社豊田自動織機 水素含有リチウムシリケート系化合物及びその製造方法、並びに非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP2015042611A (ja) * 2014-10-07 2015-03-05 サチトレベン ピグメンツ オーワイ チタン酸リチウム化合物の製造方法
WO2020153409A1 (ja) * 2019-01-23 2020-07-30 国立研究開発法人産業技術総合研究所 チタン酸化物、チタン酸化物の製造方法、およびチタン酸化物を含む電極活物質を用いたリチウム二次電池
JP2020117416A (ja) * 2019-01-23 2020-08-06 国立研究開発法人産業技術総合研究所 チタン酸化物、チタン酸化物の製造方法、およびチタン酸化物を含む電極活物質を用いたリチウム二次電池

Also Published As

Publication number Publication date
EP0938148B1 (en) 2008-05-07
KR100518706B1 (ko) 2005-10-05
CN1126716C (zh) 2003-11-05
JP4022265B2 (ja) 2007-12-12
KR100522061B1 (ko) 2005-10-18
DE69842254D1 (de) 2011-06-16
EP0938148A1 (en) 1999-08-25
JP4016429B2 (ja) 2007-12-05
DE69839438D1 (de) 2008-06-19
EP0937684B1 (en) 2011-05-04
EP0937684A1 (en) 1999-08-25
KR20000068551A (ko) 2000-11-25
US6120938A (en) 2000-09-19
KR20000068552A (ko) 2000-11-25
CN1155134C (zh) 2004-06-23
WO1999004442A1 (fr) 1999-01-28
TW381357B (en) 2000-02-01
CN1236351A (zh) 1999-11-24
EP0937684A4 (en) 2007-12-26
US6139815A (en) 2000-10-31
EP0938148A4 (en) 2007-02-14
CN1236492A (zh) 1999-11-24

Similar Documents

Publication Publication Date Title
WO1999003784A1 (fr) Hydrogenotitanates de lithium et leur procede de fabrication
JP4768901B2 (ja) リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP6519202B2 (ja) チタン酸リチウム粉末、及び活物質材料、並びにそれを用いた蓄電デバイス
KR101781764B1 (ko) 이방성 구조를 갖는 알칼리 금속 티탄 산화물 및 티탄 산화물 그리고 이들 산화물을 포함하는 전극 활물질 및 축전 디바이스
US8926938B2 (en) Method of preparing crystalline titanium dioxide powder, method of preparing a negative active material, negative active material, and rechargebale lithium battery
WO2007034823A1 (ja) 正極活物質の製造方法およびそれを用いた非水電解質電池
WO2005112152A1 (ja) リチウム二次電池正極用のリチウム含有複合酸化物の製造方法
US9150424B2 (en) Lithium titanate, method for producing same, electrode active material containing the lithium titanate, and electricity storage device using the electrode active material
JP4268613B2 (ja) リチウム二次電池用の正極活物質の製造方法
JP2002211925A (ja) チタン酸リチウム及びその製造方法並びにそれを用いてなるリチウム電池
WO2008013208A1 (fr) Matériau actif d&#39;électrode positive pour batterie secondaire à électrolyte non aqueux et procédé de production de celui-ci
KR101795977B1 (ko) 용액 함침시킨 다공성 티탄 화합물을 사용한 티탄 산화물의 제조 방법
KR102533325B1 (ko) 리튬 전이 금속 복합 산화물 및 제조 방법
KR102090572B1 (ko) 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법
WO2019088032A1 (ja) リチウム複合金属化合物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR100668050B1 (ko) 망간복합산화물, 이를 이용한 리튬이차전지 스피넬형양극활물질 및 그 제조방법
JP5830842B2 (ja) チタン酸リチウム粒子粉末の製造法及び非水電解質二次電池
JP3822437B2 (ja) マンガン酸リチウムの製造方法及び該マンガン酸リチウムを用いてなるリチウム電池
KR20080096093A (ko) 리튬 이차전지용 Lⅰ(NⅰCoMn)O₂계 양극 활물질및 이를 제조하는 방법
JP2023085223A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR20070015637A (ko) 리튬 2차 전지용 양극활물질의 제조방법
JPH0773884A (ja) 二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98801152.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998932536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997002141

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09254828

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998932536

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997002141

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997002141

Country of ref document: KR