WO1999015260A1 - Verfahren zur auftrennung von stoffgemischen mittels eines stoffdurchlässigen werkstoffes - Google Patents

Verfahren zur auftrennung von stoffgemischen mittels eines stoffdurchlässigen werkstoffes Download PDF

Info

Publication number
WO1999015260A1
WO1999015260A1 PCT/EP1998/005937 EP9805937W WO9915260A1 WO 1999015260 A1 WO1999015260 A1 WO 1999015260A1 EP 9805937 W EP9805937 W EP 9805937W WO 9915260 A1 WO9915260 A1 WO 9915260A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
composite material
metal
permeable
compound
Prior art date
Application number
PCT/EP1998/005937
Other languages
English (en)
French (fr)
Inventor
Bernd Penth
Gerhard HÖRPEL
Christian Hying
Original Assignee
Creavis Gesellschaft Für Technologie Und Innovation Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19811708A external-priority patent/DE19811708B4/de
Application filed by Creavis Gesellschaft Für Technologie Und Innovation Mbh filed Critical Creavis Gesellschaft Für Technologie Und Innovation Mbh
Priority to CA 2272318 priority Critical patent/CA2272318A1/en
Priority to EP98950049A priority patent/EP0959981A1/de
Priority to US09/308,230 priority patent/US6299668B1/en
Publication of WO1999015260A1 publication Critical patent/WO1999015260A1/de
Priority to NO992433A priority patent/NO992433L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0052Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with filtering elements moving during filtering operation
    • B01D46/0056Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with filtering elements moving during filtering operation with rotational movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/4263Means for active heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/48Removing dust other than cleaning filters, e.g. by using collecting trays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • B01D46/521Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material using folded, pleated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • B01D53/8675Ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0048Inorganic membrane manufacture by sol-gel transition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0069Inorganic membrane manufacture by deposition from the liquid phase, e.g. electrochemical deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • B01D71/0281Zeolites
    • B01J35/58
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2265/00Casings, housings or mounting for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2265/06Details of supporting structures for filtering material, e.g. cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249956Void-containing component is inorganic
    • Y10T428/249957Inorganic impregnant

Definitions

  • Membranes have long been used to separate mixtures of substances. Synthetic membranes are divided into organic and inorganic membranes
  • membranes made of plastics or inorganic components such as oxides
  • electrolysis or filtration there is always the problem that the membranes clog after a relatively short period of use and the material penetrates the membrane is significantly reduced
  • the membranes must be replaced and either laboriously cleaned or disposed of
  • the present invention is therefore based on the object of providing a method for separating substance mixtures by means of a substance-permeable material which improves the substance separation and makes it more economical in that the material passage through the material is improved
  • the present invention therefore relates to a method for separating mixtures of substances by means of a permeable material, characterized in that an electrical voltage is applied to the material at least briefly
  • the process according to the invention has the advantage that it can be heated by applying a voltage to the material.
  • the material separation is accelerated considerably by the higher temperature in the membrane.
  • the heating of the material can also achieve that the materials have been thermally destroyed in or on the material during the material separation process. This can occur both during the material separation and in a cleaning cycle
  • the method according to the invention also has the advantage that, by applying a voltage to a permeable material, substances can be removed from and from the material used as the membrane by creating gas bubbles on and in the membrane which release the membrane from blocking
  • the inventive method has the additional advantage that by applying a voltage to the material this is electrically charged. Charged particles that are present in the mixture to be separated and have the same charge as the material are kept away from the material, whereby it, in Depending on the pore size of the material used as the membrane, it is also possible to retain salts during material separation
  • an electrical voltage is applied to this material at least for a short time
  • a permeable composite material can be used as the permeable material
  • Permeable composite materials or carriers are understood to mean materials that are permeable to substances with a particle size of 0.5 nm to 500 ⁇ m, depending on the embodiment of the composite material or carrier.
  • the substances can be gaseous, liquid or solid or in a mixed form of these aggregate states
  • This permeable composite material preferably has at least one perforated and permeable carrier as a base.
  • the carrier On at least one surface of the carrier and inside the carrier, the carrier has at least one inorganic component which essentially contains at least one compound made of a metal, a semimetal or a mixed metal at least one element from the 3 to 7 main group having
  • the permeable composite material can be applied to an openwork and permeable carrier by applying a suspension having at least one, a compound of at least one metal, a semimetal or a mixed metal with at least one element of the 3 to 7 main group, and a sol, and by subsequent, at least once heating, in which the suspension having at least one inorganic component is solidified on or in or on and in the carrier
  • the composite material can be permeable to gases, solids or liquids, in particular to particles with a size of 0.5 nm to 10 ⁇ m
  • carriers can be used which have spaces with a size of 0.02 to 500 ⁇ m, preferably from 100 to 500 ⁇ m.
  • the carriers used are at least partially electrically conductive
  • the spaces can be pores, meshes, holes, crystal lattice spaces or cavities.
  • the carrier can be at least one material selected from carbon, metals, alloys, glass, ceramics, minerals, plastics, amorphous substances, natural products, composite materials or from at least a combination of these materials,
  • the carrier which may have the aforementioned materials, may have been modified by a chemical, thermal or mechanical treatment method or a combination of the treatment methods.
  • the composite material preferably has a carrier that has at least one metal, a natural fiber or a plastic that after at least one mechanical deformation technique or treatment method, such as pulling, upsetting, milling, rolling, stretching or forging.
  • the composite material particularly preferably has at least one support which at least interweaves, glues, mattes or ke ramisch bound fibers, or at least sintered or glued molded bodies, spheres or particles, in a further preferred embodiment, a perforated carrier can be used.
  • Permeable carriers can also be those that are treated by laser treatment or Ion beam treatment become permeable or have been made
  • the carrier fibers from at least one material selected from carbon, metals, alloys, ceramics, glass, minerals, plastics, amorphous substances, composites and natural products or fibers from at least a combination of these materials, such as asbestos, Glass fibers, rock wool fibers, carbon fibers, metal wires, steel wires, polyamide fibers, coconut fibers, coated fibers, preferably supports are used which at least have woven fibers made of metal or alloys. Wires made of metal can also serve as wires.
  • the composite material particularly preferably has a support, which has at least one fabric made of steel or stainless steel, such as fabric made of steel wires, steel fibers, stainless steel wires or stainless steel fibers by weaving, which preferably has a mesh size of 5 to 500 ⁇ m, particularly preferably mesh sizes of 50 to 500 ⁇ m and very particularly preferably mesh sizes of 70 to 120 ⁇ m
  • the carrier of the composite material can also have at least one expanded metal with a pore size of 5 to 500 ⁇ m.
  • the carrier can also have at least one granular, sintered metal, a sintered glass or a metal fleece with a pore size of 0.1 ⁇ m to 500 ⁇ m, preferably from 3 to 60 ⁇ m
  • the composite material preferably has a carrier which contains at least aluminum, silicon, cobalt, manganese, zinc, vanadium, molybdenum, indium, lead, bismuth, silver, gold, nickel, copper, iron, titanium, platinum, stainless steel, steel, brass, an alloy of these materials or a material coated with Au, Ag, Pb, Ti, Ni, Cr, Pt, Pd, Rh, Ru and / or Ti
  • the inorganic component present in the composite material can have at least one compound of at least one metal, semimetal or mixed metal with at least one element from the 3 to 7 main group of the periodic table or at least a mixture of these compounds.
  • the compounds of the metals, semimetals or mixed metals can have at least elements of the subgroup elements and the 3 to 5 main group or at least elements of the subgroup elements or the 3 to 5 main group These compounds have a grain size of 0.001 to 25 ⁇ m.
  • the inorganic component preferably has at least one compound of an element from the 3 to 8 subgroup or at least one element from the 3 to 5 main group with at least one of the elements Te, Se, S, O, Sb, As, P, N, Ge, Si, C, Ga, Al or B or at least one compound of an element from the 3 to 8 subgroup and at least one element from the 3 to 5 main group with at least one of the elements Te, Se, S, 0, Sb, As, P, N, Ge, Si, C, Ga, Al or B or a mixture of these compounds.
  • the inorganic component particularly preferably has at least one compound of at least one of the elements Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, B, AI, Ga, In, TI, Si, Ge, Sn, Pb, Sb or Bi with at least one of the elements Te, Se, S, O, Sb, As, P, N, C, Si, Ge or Ga, such as Ti0 2 , A1 2 0 3 , Si0 2 , Zr0 2 , Y 2 0 3 , BC, SiC, Fe 3 0 4 , SiN, SiP, nitrides , Sulfates, phosphides, silicides, spinel e or yttrium aluminum garnet, or one of these elements itself
  • the inorganic component can also be aluminosilicates, aluminum phosphates, zeolites or partially exchanged zeolites, such as ZSM-5, Na-ZSM-5 or Fe-ZSM
  • At least one inorganic component is preferably present in a grain size fraction with a grain size of 1 to 250 nm or with a grain size of 260 to 10,000 nm
  • the composite material has at least two grain size fractions of at least one inorganic component.
  • the grain size ratio of the grain size fractions in the composite material is from 1 1 to 1 10000, preferably from 1 1 to 1 100.
  • the quantitative ratio of the grain size fractions in the composite material can preferably be from 0.01 1 to 1 to 0.01
  • the permeability of the composite material according to the invention can be limited by the grain size of the inorganic component used to particles with a certain maximum size
  • the suspension having at least one inorganic component, with which the composite material can be obtained, can have at least one liquid selected from water, alcohol and acid or a combination of these liquids
  • the composite material can have at least one catalytically active component.
  • the catalytically active component can be identical to the inorganic component. This applies in particular if the inorganic component has catalytically active centers on the surface.
  • the composite material preferably has at least one inorganic material, at least as the catalytically active component a metal or at least one organometallic compound, on the surface of which there are catalytically active centers.
  • the composite material particularly preferably has a zeolite as the catalytic component, such as, for example, ZSM-5, Fe-ZSM-5, silicalite or an amorphous microporous mixed oxide such as, for B are described in DE 195 45 042 and / or DE 195 06 843, such as, for example, vanadium oxide-silicon oxide glass or aluminum oxide-silicon oxide-methyl silicon sesquioxide glasses
  • the composite material can also have at least one oxide of at least one of the elements Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Sb, Pb, Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, TI, Ag, Cu, Li, K, Na, Be, Mg, Ca, Sr and Ba
  • the catalytically active, permeable composite material according to the invention has at least titanium suboxide as the catalytically active component
  • the composite material as a catalytically active component has at least one metal compound selected from the compounds of the metals Pt, Rh, Ru, Ir, Au, Ag, Os, Re, Cu, Ni, Pd and Co, or at least one Metal selected from the metals Pt, Rh, Ru, Ir, Au, Ag, Os, Re, Cu, Ni, Pd and Co, or at least one Metal selected from the metals Pt, Rh, Ru, Ir, Au, Ag, Os, Re, Cu, Ni, Pd and Co
  • the composite material can be made bendable without destroying the inorganic component solidified inside the carrier and on the carrier.
  • the composite material is preferably one smallest radius of up to 1 mm bendable
  • the at least short-term application of an electrical voltage according to the invention is preferably carried out by applying the voltage to the support of the material.
  • the applied voltage can be direct or alternating voltage or a direct voltage which is superimposed on an alternating voltage.
  • the voltage can be applied not only briefly but also via a longer period or during the entire duration of the material separation process
  • the voltage can be applied in such a way that only one pole of a current source is connected to the material or the carrier present in it, or in such a way that both poles of a current source are connected to the material or in it existing carrier is connected.
  • the voltage can be applied periodically, discontinuously or continuously
  • the material can be used as a membrane.
  • This membrane can be used in material separation processes based on the principle of electrolysis or electrodialysis, as well as in material separation processes based on the principle of gas filtration, nanofiltration, ultrafiltration, microfiltration or gas vaporation
  • the material or membrane is negatively or positively charged. This can be done, for example, by switching the material or membrane as a cathode or anode
  • the inorganic component in the material can be converted into an electrically conductive component by switching the material as an anode or cathode, so that the material, or if the material is used as a membrane, the membrane is rendered electrically conductive Materials or membranes used those which have at least titanium oxide as an inorganic component in the material
  • the material can be cleaned of impurities that have accumulated on and in the material during the material separation process. It can also be avoided in certain processes that substances are on or in the material or the membrane if the substances have the same charge as the material or the membrane.
  • the material or the membrane can be cleaned during the material separation process or in a cleaning cycle. The cleaning can remove deposits or blockages from the material or the membrane Removal and / or the avoidance of deposits or impurities has the effect that the passage of material and / or the activity of the material or the membrane is retained over a longer period of time. The service life of such permeable materials can thereby be considerably extended
  • Cleaning can take place, for example, in that the material assumes a positive or negative charge and impurities which have the same charge are repelled by the material
  • the material may be advantageous to use as a membrane electrode.
  • This enables the material to be removed from impurities that have been deposited on and in or on or in the material during the material separation process, by gas bubbles which are generated by briefly applying an electrical voltage to the material through decomposition Substance formed on and / or in the material, cleaned For this purpose, the material is switched as a cathode in aqueous systems and when a voltage is applied to the material, gas bubbles are formed in and / or on the material, which predominantly contain hydrogen and / or in the material connected as the anode gas bubbles which predominantly contain oxygen
  • gas bubbles are formed from, for example, carbon dioxide or nitrogen on the material connected as electrodes.
  • This particular embodiment of the method according to the invention described above can be used with all media to be filtered which are electrically conductive or which can be broken down into gaseous components by means of electrolysis.
  • the method according to the invention can also be used if at least one component is present in the filtrate which is can be converted into gaseous components by means of electrolysis
  • the material is heated by applying an electrical voltage. This heating can take place during the material separation process.
  • the material when the material is used as a membrane, the mobility of the particles that are to pass through the membrane is increased of the membrane is increased By an electrically heated material used in this way, the separation performance or the amount of passage can be increased considerably
  • the heating of the material can also take place at regular intervals inside or outside the material separation process. Because the material can withstand high temperatures, depending on its composition, the material that is used as a membrane can be contaminated in this way but deposited on or in the material during the material separation process can be cleaned. Organic or inorganic compounds that block the material used as a membrane can be thermally destroyed or removed by sublimation or liquefaction
  • the method according to the invention can be used for electromicrofiltration, electro-ultrafiltration or electron anofiltration
  • the method according to the invention can also be used for hydrogen-generating operation with simultaneous catalytic reduction or for oxygen-generating operation with simultaneous catalytic oxidation.
  • the method according to the invention is particularly suitable for separating substances with different isoelectric points
  • a suspension of 30g titanium tetraisopropylate was hydrolyzed with 60g water and then peptized with 45g sulfuric acid (20%). Then 90g aluminum oxide (A16SG, Alcoa) was added and the mixture was stirred until the agglomerates were completely dissolved 50 ⁇ m applied and dried and solidified at 450 ° C within 2 seconds
  • the composite material thus produced was used as an electrode membrane in an electrolysis When applying an electrical voltage of approx. 2.5 volts to the electrode membrane in a solution of a noble metal, the noble metal was electrolytically deposited in the pores of the composite material.This is only possible through the use of titanium dioxide as an inorganic component in the composite material Formation of titanium suboxide at a voltage of more than 2 volts, which becomes electrically conductive. Graphite electrodes were used as the counter electrode. This means that almost all known noble metal catalysts and noble metal catalyst systems (such as Pt / Rh, Pt / Pd or Pt / Ir ) deposit
  • a suspension of 30 g of titanium tetraisopropylate was hydrolyzed with 60 g of water and then peptized with 45 g of nitric acid (25%).
  • 30 g of titanium dioxide (P25, Degussa) were then added and the mixture was stirred until the agglomerates had completely dissolved.
  • This suspension was applied to a titanium wire mesh with an average mesh size of 80 ⁇ m applied and dried and solidified at 450 ° C within 2 seconds If the composite material produced in this way is connected as a cathode with a graphite anode in a solution of 1% ammonium nitrate in water, the voltage is 2.1 volts within 10 hours the nitrate is almost completely broken down with a current yield of 20%
  • the method according to the invention is therefore well suited for the reduction of nitrate compounds, in particular for nitrate degradation in aqueous systems
  • a suspension of 30 g of titanium tetraisopropylate was hydrolyzed with 60 g of water and then peptized with 45 g of nitric acid (25% strength). Then 70 g of 280 g of alumina CT3000SG were added and stirred until the agglomerates had completely dissolved. This suspension was applied to a titanium wire mesh with a medium Mesh size of 80 ⁇ m applied and dried and solidified at 450 ° C within 5 seconds If the composite material produced in this way is used as a cathode connected with a graphite anode in a flat module, a 10% latex dispersion can be obtained by applying a voltage of 2.5 V. Clear particle size 260 nm in crossflow technique without that latex deposits can be observed on the membrane surface.
  • the membrane is covered with a latex layer after 1 h of filtration.

Abstract

Beansprucht wird ein Verfahren zur Auftrennung von Stoffgemischen mittels eines Stoffdurchlässigen Werkstoffes. Durch die erfindungsgemäße Verwendung des Stoffdurchlässigen Werkstoffes zur Stofftrennung mittels kurzzeitigem Anlegen einer Spannung an den Werkstoff ist es möglich, Stofftrennverfahren wie z.B. Mikrofiltration oder Ultrafiltration deutlich in ihrer Effektivität zur erhöhen. Zum einen wird dies dadurch erreicht, daß der als Membran eingesetzte Werkstoff durch Anlegen einer Spannung auf verschiedene Weise gereinigt werden kann, und somit die Trennleistung bei regelmäßiger Abreinigung der Membran erhöht wird, zum anderen kann der als Membran verwendete Werkstoff durch Anlegen einer Spannung aufgeheizt werden, wodurch der Stofftransport durch die Membran erhöht wird. Das erfindungsgemäße Verfahren kann zur Stofftrennung verschiedener Gasgemische, Flüssigkeitsgemische oder Lösungen eingesetzt werden.

Description

Verfahren zur Auftrennung von Stoffgemischen mittels eines stoffdurchlassigen Werkstoffes
Beansprucht wird ein Verfahren zur Auftrennung von Stoffgemischen mittels eines stoffdurchlassigen Werkstoffes
Das Auftrennen von Stoffgemischen ist ein bei der Produktion verschiedener Stoffe häufig auftretendes Problem Besonders häufig fallen flussige Phasen an, die Feststoffe enthalten Diese Feststoffe, die zum Teil als sehr kleine Feststoffpartikel in den flüssigen Phasen vorliegen müssen häufig aus den Flüssigkeiten entfernt werden, bevor diese weiterverarbeitet werden können Eine solche Trennaufgabe besteht z B in der Getränkeindustrie, in der Safte von feinsten Feststoffbestandteilen getrennt werden sollen oder bei der Reinigung von Abwassern Ebenso kann es vorkommen, daß Flussigkeitsgemische, die zwei Flüssigkeiten unterschiedlicher Molekulgroße aufweisen voneinander getrennt werden müssen Gelingt dies nicht durch Destillation, weil sich z B ein Azeotrop bildet, kann die Trennung z B durch Pervaporation vorgenommen werden
Zur Auftrennung von Stoffgemischen werden seit langem Membranen eingesetzt Bei den synthetischen Membranen unterscheidet man zwischen organischen und anorganischen Membranen
Üblicherweise werden Membranen aus Kunststoffen oder aus anorganischen Komponenten, wie z B Oxiden, verwendet Bei den bekannten Verfahren bei denen diese Membranen eingesetzt werden, wie z B Elektrolysen oder Filtrationen besteht immer das Problem, daß die Membranen nach relativ kurzer Verwendungszeit verstopfen und der Stoffdurchtritt durch die Membran erheblich verringert wird Die Membranen müssen ausgetauscht und entweder umständlich gereinigt oder entsorgt werden
Bei ausreichend stabilen keramischen Membranen hat sich das Ruckspulprinzip durchgesetzt In periodischen Zeitabstanden wird schlagartig für eine kurze Zeit die Durchflußrichtung umgekehrt, indem von der Ruckseite ein Druckstoß appliziert wird Dieses Prinzip hat jedoch den Nachteil, effektiv nur bei der Flussigfiltration eingesetzt werden zu können, darüber hinaus die Membranen mechanisch stark zu beanspruchen und schließlich doch nur einen Teil der Anbackungen zu entfernen
In EP 0 165 744, EP 0 380 266 und EP 0 686 420 werden Verfahren beansprucht, die zur Reinigung eines Filters durch Anlegen einer Spannung und Durchfuhren einer Elektrolyse an dem Filter Gasblasen entstehen lassen Die Gasblasen reinigen die Filteroberflache, so daß längere Filterstandzeiten erreicht werden
Mit den vorgenannten Verfahren gelingt es aber nicht das Innere eines Filters zu reinigen Der Stoffdurchtritt durch den Filter verringert sich deshalb wahrend der Filtration betrachtlich
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Auftrennung von Stoffgemischen mittels eines stoffdurchlassigen Werkstoffes bereitzustellen, welches die Stofftrennung dadurch verbessert und wirtschaftlicher macht, daß der Stoffdurchtritt durch den Werkstoff verbessert wird
Überraschenderweise wurde gefunden, daß mit einem Verfahren zur Auftrennung von Stoffgemischen mittels eines stoffdurchlassigen Werkstoffes, dadurch, daß an den Werkstoff zumindest kurzzeitig eine elektrische Spannung angelegt wird, die Stofftrennung wesentlich verbessert und wirtschaftlicher vorgenommen werden kann
Gegenstand der vorliegenden Erfindung ist deshalb ein Verfahren zur Auftrennung von Stoffgemischen mittels eines stoffdurchlassigen Werkstoffes, dadurch gekennzeichnet, daß an den Werkstoff zumindest kurzzeitig eine elektrische Spannung angelegt wird
Das erfindungsgemaße Verfahren hat den Vorteil, daß durch Anlegen einer Spannung an den Werkstoff dieser erwärmt werden kann Bei Verwendung des Werkstoffes als Membran wird die Stofftrennung durch die höhere Temperatur in der Membran wesentlich beschleunigt Durch das Erwarmen des Werkstoffes kann außerdem erreicht werden, daß Stoffe die sich wahrend des Stofftrennprozesses in oder auf dem Werkstoff abgelagert haben thermisch zerstört werden Dies kann sowohl wahrend der Stofftrennung als auch in einem Reinigungszyklus geschehen Das erfindungsgemaße Verfahren hat außerdem den Vorteil, daß durch Anlegen einer Spannung an einen stoffdurchlassigen Werkstoff Stoffe von und aus dem als Membran genutzten Werkstoff dadurch entfernt werden können, daß an und in der Membran Gasblasen entstehen, die eine Blockierung der Membran losen
Das erfindungsgemaße Verfahren hat zusatzlich den Vorteil, daß durch Anlegen einer Spannung an den Werkstof dieser elektrisch geladen wird Dadurch werden geladene Teilchen, die im zu trennenden Stoffgemisch vorhanden sind und die dieselbe Ladung wie der Werkstoff haben, von dem Werkstoff ferngehalten, wodurch es, in Abhängigkeit von der Porengroße des als Membran verwendeten Werkstoffes, möglich ist, auch Salze bei der Stofftrennung zurückzuhalten
Das erfindungsgemaße Verfahren wird im folgenden beispielhaft beschrieben, ohne daß das Verfahren darauf beschrankt ist
Erfindungsgemaß wird bei dem erfindungsgemaßen Verfahren zur Auftrennung von Stoffgemischen mittels eines stoffdurchlassigen Werkstoffes, an diesen Werkstoff zumindest kurzzeitig eine elektrische Spannung angelegt
Als stoffdurchlassiger Werkstoff kann ein stoffdurchlassiger Verbundwerkstoff eingesetzt werden
Unter stoffdurchlassigen Verbundwerkstoffen bzw Tragern werden Materialien verstanden, die durchlassig sind für Stoffe mit einer Teilchengroße von 0,5 nm bis 500 μm, je nach Ausfuhrungsform des Verbundwerkstoffes bzw Tragers Die Stoffe können gasformig, flussig oder fest oder in einer Mischform dieser Aggregatzustande vorliegen
Dieser stoffdurchlassige Verbundwerkstoff weist als Basis vorzugsweise zumindest einen durchbrochenen und stoffdurchlassigen Trager auf Auf zumindest einer Oberflache des Tragers und im Inneren des Tragers weist der Trager zumindest eine anorganische Komponente auf, die im wesentlichen zumindest eine Verbindung aus einem Metall, einem Halbmetall oder einem Mischmetall mit zumindest einem Element der 3 bis 7 Hauptgruppe aufweist
Der stoffdurchlassige Verbundwerkstoff kann durch Aufbringen einer Suspension, die zumindest eine, eine Verbindung zumindest eines Metalls, eines Halbmetalls oder eines Mischmetalls mit zumindest einem Element der 3 bis 7 Hauptgruppe aufweisende, anorganische Komponente und ein Sol aufweist, auf eine durchbrochenen und stoffdurchlassigen Trager, und durch anschließendes, zumindest einmaliges Erwarmen, bei welchem die zumindest eine anorganische Komponente aufweisende Suspension auf oder im oder auf und im Trager verfestigt wird, erhalten werden
Erfindungsgemaß kann der Verbundwerkstoff für Gase, Feststoffe oder Flüssigkeiten durchlassig sein, insbesondere für Teilchen mit einer Große von 0,5 nm bis 10 μm
Als durchbrochener und stoffdurchlassiger Trager können Trager verwendet werden, die Zwischenräume mit einer Große von 0,02 bis 500 μm, vorzugsweise von 100 bis 500 μm, aufweisen Die verwendeten Trager sind zumindest teilweise elektrisch leitend
Die Zwischenräume können Poren, Maschen, Locher, Kristallgitterzwischenraume oder Hohlräume sein Der Trager kann zumindest ein Material, ausgewählt aus Kohlenstoff, Metallen, Legierungen, Glas, Keramiken, Mineralien, Kunststoffen, amorphen Substanzen, Naturprodukten, Verbundstoffen oder aus zumindest einer Kombination dieser Materialien, aufweisen Die Trager, welche die vorgenannten Materialien aufweisen können, können durch eine chemische, thermische oder einer mechanischen Behandlungsmethode oder einer Kombination der Behandlungsmethoden modifiziert worden sein Vorzugsweise weist der Verbundwerkstoff einen Trager, der zumindest ein Metall, eine Naturfaser oder einen Kunststoff aufweist auf, der nach zumindest einer mechanischen Verformungstechnik bzw Behandlungsmethode, wie z B Ziehen, Stauchen, Walken, Walzen, Recken oder Schmieden modifiziert wurde Ganz besonders bevorzugt weist der Verbundwerkstoff zumindest einen Trager, der zumindest verwobene, verklebte, verfilzte oder keramisch gebundene Fasern, oder zumindest gesinterte oder verklebte Formkorper, Kugeln oder Partikel aufweist, auf In einer weiteren bevorzugten Ausführung kann ein perforierter Trager verwendet werden Stoffdurchlassige Trager können auch solche sein, die durch Laserbehandlung oder Ionenstrahlbehandlung stoffdurchlassig werden oder gemacht worden sind
Es kann vorteilhaft sein, wenn der Trager Fasern aus zumindest einem Material, ausgewählt aus Kohlenstoff, Metallen, Legierungen, Keramiken, Glas, Mineralien, Kunststoffen, amorphen Substanzen, Verbundstoffen und Naturprodukten oder Fasern aus zumindest einer Kombination dieser Materialien, wie z B Asbest, Glasfasern, Steinwollfasern, Kohlefasern, Metalldrahte, Stahldrahte, Polyamidfasern, Kokosfasern, beschichtete Fasern, aufweist Vorzugsweise werden Trager verwendet, die zumindest verwobene Fasern aus Metall oder Legierungen aufweisen Als Fasern aus Metall können auch Drahte dienen Ganz besonders bevorzugt weist der Verbundwerkstoff einen Trager auf, der zumindest ein Gewebe aus Stahl oder Edelstahl, wie z B aus Stahldrahten, Stahlfasern, Edelstahldrahten oder Edelstahlfasern durch Weben hergestellte Gewebe, aufweist, welche vorzugsweise eine Maschenweite von 5 bis 500 μm, besonders bevorzugt Maschenweiten von 50 bis 500μm und ganz besonders bevorzugt Maschenweiten von 70 bis 120 μm, aufweisen
Der Trager des Verbundwerkstoffes kann aber auch zumindest ein Streckmetall mit einer Porengroße von 5 bis 500 μm aufweisen Erfindungsgemaß kann der Trager aber auch zumindest ein korniges, gesintertes Metall, ein gesintertes Glas oder ein Metallvlies mit einer Porenweite von 0,1 μm bis 500 μm, vorzugsweise von 3 bis 60 μm, aufweisen
Der Verbundwerkstoff weist vorzugsweise einen Trager auf, der zumindest Aluminium, Silicium, Cobalt, Mangan, Zink, Vanadium, Molybdän, Indium, Blei, Wismuth, Silber, Gold, Nickel, Kupfer, Eisen, Titan, Platin, Edelstahl, Stahl, Messing, eine Legierung aus diesen Materialien oder ein mit Au, Ag, Pb, Ti, Ni, Cr, Pt, Pd, Rh, Ru und/oder Ti beschichtetes Material aufweist
Die im Verbundwerkstoff vorhandene anorganische Komponente kann zumindest eine Verbindung aus zumindest einem Metall, Halbmetall oder Mischmetall mit zumindest einem Element der 3 bis 7 Hauptgruppe des Periodensystems oder zumindest eine Mischung dieser Verbindungen aufweisen Dabei können die Verbindungen der Metalle, Halbmetalle oder Mischmetalle zumindest Elemente der Nebengruppenelemente und der 3 bis 5 Hauptgruppe oder zumindest Elemente der Nebengruppenelemente oder der 3 bis 5 Hauptgruppe aufweisen, wobei diese Verbindungen eine Korngroße von 0,001 bis 25 μm aufweisen Vorzugsweise weist die anorganische Komponente zumindest eine Verbindung eines Elementes der 3 bis 8 Nebengruppe oder zumindest eines Elementes der 3 bis 5 Hauptgruppe mit zumindest einem der Elemente Te, Se, S, O, Sb, As, P, N, Ge, Si, C, Ga, AI oder B oder zumindest eine Verbindung eines Elementes der 3 bis 8 Nebengruppe und zumindest eines Elementes der 3 bis 5 Hauptgruppe mit zumindest einem der Elemente Te, Se, S, 0, Sb, As, P, N, Ge, Si, C, Ga, AI oder B oder eine Mischung dieser Verbindungen auf Besonders bevorzugt weist die anorganische Komponente zumindest eine Verbindung zumindest eines der Elemente Sc, Y, Ti, Zr, V, Nb, Cr, Mo, W, Mn, Fe, Co, B, AI, Ga, In, TI, Si, Ge, Sn, Pb, Sb oder Bi mit zumindest einem der Elemente Te, Se, S, O, Sb, As, P, N, C, Si, Ge oder Ga, wie z B Ti02, A1203, Si02, Zr02, Y203, BC, SiC, Fe304, SiN, SiP, Nitride, Sulfate, Phosphide, Silicide, Spinelle oder Yttriumaluminiumgranat, oder eines dieser der Elemente selbst auf Die anorganische Komponente kann auch Alumosilicate, Aluminiumphospate, Zeolithe oder partiell ausgetauschte Zeolithe, wie z B ZSM-5, Na-ZSM- 5 oder Fe-ZSM-5 oder amorphe mikroporöse Mischoxide, die bis zu 20 % nicht hydrolisierbare organische Verbindungen enthalten können, wie z B Vanadinoxid- Siliziumoxid-Glas oder Aluminiumoxid-Siliciumoxid-Methylsiliciumsesquioxid-Glaser, aufweisen
Vorzugsweise liegt zumindest eine anorganische Komponente in einer Korngroßenfraktion mit einer Korngroße von 1 bis 250 nm oder mit einer Korngroße von 260 bis 10000 nm vor
Es kann vorteilhaft sein, wenn der Verbundwerkstoff zumindest zwei Korngroßenfraktionen von zumindest einer anorganischen Komponente aufweist Das Korngroßenverhaltnis der Korngroßenfraktionen im Verbundwerkstoff betragt von 1 1 bis 1 10000, vorzugsweise von 1 1 bis 1 100 Das Mengenverhältnis der Korngroßenfraktionen im Verbundwerkstoff kann vorzugsweise von 0,01 zu 1 bis 1 zu 0,01 betragen
Die Stoffdurchlassigkeit des erfindungsgemaßen Verbundwerkstoffes kann durch die Korngroße der verwendeten anorganischen Komponente auf Teilchen mit einer bestimmten maximalen Große begrenzt werden kann Die zumindest eine anorganische Komponente aufweisende Suspension, mit welcher der Verbundwerkstoff erhalten werden kann, kann zumindest eine Flüssigkeit, ausgewählt aus Wasser, Alkohol und Saure oder eine Kombination dieser Flüssigkeiten aufweisen
Der Verbundwerkstof kann zumindest eine katalytisch aktive Komponente aufweisen Die katalytisch aktive Komponente kann mit der anorganischen Komponente identisch sein Dies gilt insbesondere dann, wenn die anorganische Komponente an der Oberflache katalytisch aktive Zentren aufweist Vorzugsweise weist der Verbundwerkstoff als katalytisch aktive Komponente zumindest ein anorganisches Material, zumindest ein Metall oder zumindest eine metallorganische Verbindung auf, an deren Oberflache sich katalytisch aktive Zentren befinden Besonders bevorzugt weist der Verbundwerkstoff als katalytische Komponente ein Zeolith, wie z B ZSM-5, Fe-ZSM-5, Silikalit oder ein amorphes mikroporöses Mischoxid wie sie z B in DE 195 45 042 und/oder DE 195 06 843 beschrieben werden, wie z B Vanadinoxid-Siliziumoxid- Glas oder Aluminiumoxid-Siliciumoxid-Methylsiliciumsesquioxid-Glaser, auf
Der Verbundwerkstoff kann als katalytisch aktive Komponente aber auch zumindest ein Oxid zumindest eines der Elemente Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Sb, Pb, Bi, Ru, Re, Cr, W, Nb, Hf, La, Ce, Gd, Ga, In, TI, Ag, Cu, Li, K, Na, Be, Mg, Ca, Sr und Ba aufweisen
In einer besonderen Ausführungsform des erfindungsgemaßen, katalytisch aktiven, stoffdurchlassigen Verbundwerkstoff weist dieser als katalytisch aktive Komponente zumindest Titansuboxid auf
Es kann ebenfalls vorteilhaft sein, wenn der Verbundwerkstoff als katalytisch aktive Komponente zumindest ein Metallverbindung, ausgewählt aus den Verbindungen der Metalle Pt, Rh, Ru, Ir, Au, Ag, Os, Re, Cu, Ni, Pd und Co, oder zumindest ein Metall, ausgewählt aus den Metallen Pt, Rh, Ru, Ir, Au, Ag, Os, Re, Cu, Ni, Pd und Co, aufweist
In einer besonders bevorzugten Ausfuhrungsform des Verbundwerkstoffes kann dieser, ohne Zerstörung der im Inneren des Tragers und auf dem Trager verfestigten anorganischen Komponente, biegbar ausgeführt sein Vorzugsweise ist der Verbundwerkstoff auf einen kleinsten Radius von bis zu 1 mm biegbar
Das erfindungsgemaße zumindest kurzfristige Anlegen einer elektrischen Spannung erfolgt vorzugsweise durch Anlegen der Spannung an den Trager des Werkstoffes Die angelegte Spannung kann Gleich- oder Wechselspannung oder eine Gleichspannung, der eine Wechselspannung überlagert wird, sein Das Anlegen der Spannung kann nicht nur kurzzeitig erfolgen sondern auch über einen längeren Zeitraum oder wahrend der gesamten Dauer des Stofftrennungsprozesses Das Anlegen der Spannung kann so erfolgen, daß nur ein Pol einer Stromquelle mit dem Werkstoff bzw dem in ihm vorhandenen Trager verbunden wird oder so, daß beide Pole einer Stromquelle mit dem Werkstoff bzw dem in ihm vorhandenen Trager verbunden wird Das Anlegen der Spannung kann periodisch, diskontinuierlich oder kontinuierlich erfolgen
Der Werkstoff kann als Membran verwendet werden Diese Membran kann sowohl in Stofftrennprozessen verwendet werden, die auf dem Prinzip der Elektrolyse oder Elektrodialyse basieren, als auch in Stofftrennungsprozessen, die auf dem Prinzip der Gasfiltration, Nanofiltration, Ultrafiltration, Mikrofiltration oder Gasvaporation beruhen
Es kann vorteilhaft sein, wenn der Werkstoff bzw die Membran negativ oder positiv geladen ist Dies kann z B dadurch erfolgen, daß der Werkstoff bzw die Membran als Kathode oder Anode geschaltet wird
Die anorganische Komponente im Werkstoff kann durch Schalten des Werkstoffes als Anode oder Kathode in eine elektrisch leitende Komponente überführt werden, so daß der Werkstoff, oder wenn der Werkstoff als Membran eingesetzt wird, die Membran, gut elektrisch leitend gemacht wird Vorzugsweise werden zur Herstellung elektrisch leitender Werkstoffe bzw Membranen solche verwendet, die als anorganische Komponente im Werkstoff zumindest Titanoxid aufweisen
Es kann außerdem vorteilhaft sein, auf der Oberflache und im Inneren des Werkstoffes durch Anlegen eines elektrischen Feldes oder einer elektrischen Spannung, positive oder negative Ladungen zu erzeugen Erfindungsgemaß kann, durch zumindest kurzzeitiges Anlegen einer Spannung an den Werkstoff, der Werkstoff von Verunreinigungen, die sich auf und in dem Werkstoff wahrend des Stofftrennprozesses abgelagert haben, gereinigt werden Es kann bei bestimmten Verfahren außerdem vermieden werden, daß sich Substanzen auf bzw in dem Werkstoff bzw der Membran ablagern, wenn die Substanzen eine gleichartige Ladung wie der Werkstoff bzw die Membran aufweist Die Reinigung des Werkstoffes bzw der Membran kann wahrend des Stofftrennprozesses oder in einem Reinigungszyklus erfolgen Durch die Reinigung können Ablagerungen oder Verstopfungen vom Werkstoff bzw von der Membran entfernt werden Das Entfernen und/oder das Vermeiden von Ablagerungen bzw Verunreinigungen bewirkt, daß der Stoffdurchtritt und/oder die Aktivität des Werkstoffes bzw der Membran über einen längeren Zeitraum erhalten bleibt Die Standzeiten solcher stoffdurchlassiger Werkstoffe kann dadurch erheblich verlängert werden
Die Reinigung kann z B dadurch erfolgen, daß der Werkstoff eine positive oder negative Ladung annimmt und Verunreinigungen, die eine gleiche Ladung aufweisen vom Werkstoff abgestoßen werden
Es kann vorteilhaft sein, den Werkstoff als Membranelektrode einzusetzen Dadurch kann der Werkstoff von Verunreinigungen, die sich auf und in oder auf oder in dem Werkstoff wahrend des Stofftrennprozesses abgelagert haben, durch Gasblasen, die durch kurzzeitiges Anlegen einer elektrischen Spannung an den Werkstoff durch Zersetzung eines Stoffes an und/oder in dem Werkstoff entstehen, gereinigt werden Zu diesem Zweck wird der Werkstoff in wäßrigen Systemen als Kathode geschaltet und bei Anlegen einer Spannung an den Werkstoff entstehen in und/oder an dem Werkstoff Gasblasen die überwiegend Wasserstoff aufweisen In wäßrigen Systemen entstehen an und/oder in dem als Anode geschalteten Werkstoff Gasblasen die überwiegend Sauerstoff aufweisen In organischen Systemen entstehen Gasblasen aus z B Kohlendioxid oder Stickstoff an dem als Elektroden geschalteten Werkstoff Auf diese Weise kann z B das Auftreten von Fouling(-Schichten) auf, an oder in Membranen vermieden werden Als Gegenelektrode können herkömmliche Elektroden verwendet werden Es kann aber auch vorteilhaft sein, den Werkstoff als Membran-Gegenelektrode zu verwenden Dies kann z B dann vorteilhaft sein, wenn nicht nur eine Membran bzw Filter zur Filtration verwendet wird, sondern zumindest zwei Filter Diese können aus Werkstoffen mit gleicher oder verschiedener Porengroße bestehen Wird der eine Filter als Anode und der zweite als Kathode geschaltet, so können durch kurzzeitiges Anlegen einer Spannung beide Filter gleichzeitig gereinigt werden Bei der Verwendung von mehr als zwei Filtern, können die Filter abwechselnd als Kathode oder Anode geschaltet werden Wurden bei der Reinigung explosionsfahige Gemische, wie z B Wasserstof und Sauerstoff, entstehen kann es vorteilhaft sein, die Membranelektroden so anzuordnen, daß die entstehenden Gase getrennt voneinander abgeleitet werden können
Diese oben beschriebene besondere Ausfuhrungsart des erfindungsgemaßen Verfahrens kann bei allen zu filtrierenden Medien eingesetzt werden, die elektrisch leitend sind bzw die sich mittels Elektrolyse in gasformige Bestandteile zerlegen lassen Ebenso kann das erfindungsgemaße Verfahren verwendet werden, wenn im Filtrat zumindest ein Bestandteil vorhanden ist, der sich mittels Elektrolyse in gasformige Bestandteile umwandeln laßt
Es kann vorteilhaft sein, wenn der Werkstoff durch Anlegen einer elektrischen Spannung geheizt wird Dieses Heizen kann wahrend des Stofftrennprozesses erfolgen Durch das Heizen des Werkstoffes wird, wenn der Werkstoff als Membran eingesetzt wird, die Beweglichkeit der Teilchen, die durch die Membran hindurchtreten sollen, in der Membran erhöht Durch einen so eingesetzten elektrisch beheizten Werkstoff laßt sich die Abtrennleistung bzw die Durchtrittsmenge erheblich erhohen
Das Heizen des Werkstoffes kann aber auch in regelmäßigen Abstanden innerhalb oder außerhalb des Stofftrennvorganges erfolgen Da der Werkstoff, je nach Zusammensetzung auch hohe Temperaturen aushalt, kann auf diese Weise der Werkstoff, der als Membran eingesetzt wird, von Verunreinigungen, die sich auf und in oder aber auf oder in dem Werkstoff wahrend des Stofftrennprozesses abgelagert haben, gereinigt werden Dabei können organische oder anorganische Verbindungen, die den als Membran eingesetzten Werkstoff verstopfen thermisch zerstört oder durch Sublimation oder Verflüssigung entfernt werden
Es kann sinnvoll sein, einen Werkstoff bzw eine Membran aus dem Stofftrennprozeß zu entfernen und den Werkstoff bzw die Membran zu Reinigungszwecken durch Anlegen einer Spannung oder durch Einwirkung von Hitze von Ablagerungen oder Verunreinigungen zu reinigen Dies kann an Luft, in einem geeigneten Reinigungsmittel oder in einem Elektrolyten erfolgen
Das erfindungsgemaße Verfahren kann zur Elektromikrofiltration, Elektroultrafiltration oder Elektronanofiltration verwendet werden
Ebenso kann das erfindungsgemaße Verfahren zum wasserstofferzeugenden Betrieb mit gleichzeitiger katalytischer Reduktion oder zum sauerstofferzeugenden Betrieb mit gleichzeitiger katalytischer Oxidation verwendet werden Besonders geeignet ist das erfindungsgemaße Verfahren zur Trennung von Stoffen mit unterschiedlichen isoelektrischen Punkten
Es kann vorteilhaft sein, bevorzugte Ausführungsarten des erfindungsgemaßen Verfahrens mit zumindest einer weiteren bevorzugten Ausführungsart des erfindungsgemaßen Verfahrens zu kombinieren Ebenso kann es vorteilhaft sein, bevorzugte Ausführungsarten des Verbundwerkstoffes mit zumindest einer weiteren besonderen Ausfuhrungsart oder -form des Verbundwerkstoffes zu kombinieren Dem Fachmann erschließen sich mit Kenntnis der vorliegenden Erfindung weitere Ausführungsarten des erfindungsgemaßen Verfahrens und/oder weitere Verwendungsmöglichkeiten für das erfindungsgemaße Verfahren
Das Verfahren wird in den folgenden Beispielen beschrieben, ohne darauf beschrankt zu sein
Beispiel 1 1
Eine Suspension aus 30g Titantetraisopropylat wurde mit 60g Wasser hydrolysiert und anschließend mit 45g Schwefelsaure (20%ig) peptisiert Anschließend wurden 90g Aluminiumoxid ( A16SG, Alcoa) zugegeben und bis zur vollständigen Losung der Agglomerate gerührt Diese Suspension wurde auf ein Streckmetall mit einer mittleren Maschenweite von 50μm aufgebracht und bei 450 °C innerhalb von 2 Sekunden getrocknet und verfestigt
Der so hergestellte Verbundwerkstoff wurde als Elektrodenmembran in einer Elektrolyse eingesetzt Bei Anlegung einer elektrischen Spannung von ca 2,5 Volt an die in einer Losung eines Edelmetalles befindliche Elektrodenmembran fand eine elektrolytische Abscheidung des Edelmetalls in den Poren des Verbundwerkstoffes statt Dies ist nur durch die Nutzung des Titandioxid als anorganische Komponente im Verbundwerkstoff möglich, da durch Bildung von Titansuboxid bei einer Spannung von mehr als 2 Volt dieses elektrisch leitend wird Als Gegenelektrode wurden Graphitelektroden verwendet Hierdurch lassen sich nahezu alle bekannten Edelmetall-Katalysatoren und Edelmetall-Katalysator-Systeme (wie z B Pt/Rh, Pt/Pd oder Pt/ Ir) abscheiden
Beispiel 1 2
Eine Suspension aus 30g Titantetraisopropylat wurde mit 60g Wasser hydrolysiert und danach mit 45g Salpetersaure (25%ig) peptisiert Anschließend wurden 30g Titandioxid (P25, Degussa) zugegeben und bis zur vollständigen Losung der Agglomerate gerührt Diese Suspension wurde auf eine Titandrahtnetz mit einer mittleren Maschenweite von 80μm aufgebracht und bei 450 °C innerhalb von 2 Sekunden getrocknet und verfestigt Taucht man den so hergestellten Verbundwerkstoff als Kathode geschaltet mit einer Graphitanode in eine Losung aus 1% Ammoniumnitrat in Wasser, so wird bei einer Spannung von 2,1 Volt innerhalb von 10 Stunden das Nitrat bei einer Stromausbeute von 20% nahezu vollständig abgebaut
Das erfindungsgemaße Verfahren eignet sich also gut zur Reduktion von Nitratverbindungen, insbesondere zum Nitratabbau in wäßrigen Systemen
Beispiel 1 3
Eine Suspension aus 30g Titantetraisopropylat wurde mit 60g Wasser hydrolysiert und danach mit 45g Salpetersaure (25%ig) peptisiert Anschließend wurden 70g 280g Aluminiumoxid des Typs CT3000SG der Fa Alcoa zugegeben und bis zur vollständigen Losung der Agglomerate gerührt Diese Suspension wurde auf eine Titandrahtnetz mit einer mittleren Maschenweite von 80μm aufgebracht und bei 450 °C innerhalb von 5 Sekunden getrocknet und verfestigt Verwendet man den so hergestellten Verbundwerkstoff als Kathode geschaltet mit einer Graphitanode in einem Flachmodul, so laßt sich bei Anlegen einer Spannung von 2,5 V eine 10%ige Latexdispersion der Teilchengroße 260 nm in Crossflow-Technik klarfiltrieren, ohne daß Ablagerungen des Latex auf der Membranoberfläche zu beobachten sind.
Wird der gleiche Versuch ohne Anlegen einer Spannung wiederholt, ist nach 1 h Filtrationszeit die Membran mit einer Latexschicht überzogen.

Claims

Patentansprüche:
1 Verfahren zur Auftrennung von Stoffgemischen mittels eines stoffdurchlassigen Werkstoffes, dadurch gekennzeichnet, daß an den Werkstoff zumindest kurzzeitig eine elektrische Spannung angelegt wird
2 Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Werkstoff ein stoffdurchlassiger Verbundwerkstoff auf Basis zumindest eines durchbrochenen und stoffdurchlassigen Tragers, der auf zumindest einer Seite des Tragers und im Inneren des Tragers zumindest eine anorganische Komponente aufweist, die im wesentlichen zumindest eine Verbindung aus einem Metall, einem Halbmetall oder einem Mischmetall mit zumindest einem Element der 3 bis 7 Hauptgruppe aufweist, ist
3 Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Verbundwerkstoff für Gase, Feststoffe oder Flüssigkeiten durchlassig ist
4 Verfahren nach zumindest einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der Verbundwerkstoff für Teilchen mit einer Große von 0,5 nm bis 10 μm durchlassig ist
5 Verfahren nach zumindest einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß der durchbrochene und stoffdurchlassige Trager Zwischenräume mit einer Große von 0,02 bis 500 μm aufweist
6 Verfahren nach zumindest einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß der Trager zumindest ein Material, ausgewählt aus Kohlenstoff, Metallen, Legierungen,
Keramiken, Glas, Mineralien, Kunststoffen, amorphen Substanzen, Naturprodukten, Verbundstoffen oder aus zumindest einer Kombination dieser Materialien, aufweist
7 Verfahren nach zumindest einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der Trager mit zumindest einer Methode, ausgewählt aus thermischer, mechanischer und chemischer Behandlung oder einer Kombination dieser Behandlungsarten modifiziert wurde Verfahren nach zumindest einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, daß der Trager zumindest ein Metall oder eine Naturfaser oder einen Kunststoff aufweist und nach zumindest einer mechanischen Verformungstechnik ausgewählt aus Ziehen, Stauchen, Walzen, Recken und Schmieden modifiziert wurde
Verfahren nach zumindest einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, daß der Trager zumindest verwobene, verfilzte oder keramisch gebundene Fasern, oder zumindest gesinterte Kugeln oder Partikel aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß der Trager perforiert ist
Verfahren nach zumindest einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, daß der stoffdurchlassige Trager durch Laserbehandlung oder Ionenstrahlbehandlung stoffdurchlassig gemacht wurde
Verfahren nach zumindest einem der Ansprüche 2 bis 11, dadurch gekennzeichnet, daß der Trager Fasern aus zumindest einem Material, ausgewählt aus Kohlenstoff, Metallen, Legierungen, Keramiken, Glas, Mineralien, Kunststoffen, amorphen Substanzen, Verbundstoffen und Naturprodukten oder Fasern aus zumindest einer Kombination dieser
Materialien aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 12, dadurch gekennzeichnet, daß der Trager zumindest verwobene Fasern aus Metall oder Legierungen aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß der Trager zumindest ein Gewebe aus Stahl aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 14, dadurch gekennzeichnet, daß der Trager zumindest ein Gewebe oder ein Streckmetall mit einer Maschenweite von 5 bis 500 μm aufweist Verfahren nach zumindest einem der Ansprüche 2 bis 15, dadurch gekennzeichnet, daß der Trager zumindest teilweise elektrisch leitend ist
Verfahren nach zumindest einem der Ansprüche 2 bis 16, dadurch gekennzeichnet, daß der Trager ein gesintertes Metall, ein Sinterglas oder ein Metallvlies mit Porenweiten von 0, 1 bis 500 μm aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 17, dadurch gekennzeichnet, daß der Trager zumindest Aluminium, Silicium, Cobalt, Mangan, Zink, Vanadium, Molybdän, Indium, Blei, Wismuth, Silber, Gold, Nickel, Kupfer, Eisen, Titan, Platin, Edelstahl, Stahl oder Messing oder eine Legierung aus diesen Materialien oder ein mit Au, Ag, Pb, Ti, Ni, Cr, Pt, Pd, Rh, Ru und/oder Ti beschichtetes Material aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 18, dadurch gekennzeichnet, daß die aus zumindest einer Verbindung aus zumindest einem Metall, Halbmetall oder Mischmetall mit zumindest einem Element der 3 bis 7 Hauptgruppe oder zumindest einer Mischung dieser Verbindungen bestehende anorganische Komponente zumindest eine Verbindung der Nebengruppenelemente und der 3 bis 5 Hauptgruppe oder zumindest ein Verbindung der Nebengruppenelemente und zumindest eine Verbindung der 3 bis 5 Hauptgruppe aufweist, wobei die Verbindungen eine Korngroße von 0,01 bis 25 μm aufweisen
Verfahren nach zumindest einem der Ansprüche 2 bis 19, dadurch gekennzeichnet, daß die eine Verbindung aus zumindest einem Metall, zumindest einem Halbmetall oder zumindest einem Mischmetall mit zumindest einem Element der 3 bis 7 Hauptgruppe oder einer Mischungen dieser Verbindungen aufweisende anorganische Komponente, zumindest eine
Verbindung eines Elementes der 3 bis 8 Nebengruppe oder zumindest eines Elementes der 3 bis 5 Hauptgruppe mit zumindest einem der Elemente Te, Se, S, O, Sb, As, P, N, Ge, Si, C, Ga, AI oder B oder zumindest eine Verbindung eines Elementes der 3 bis 8 Nebengruppe und zumindest eines Elementes der 3 bis 5 Hauptgruppe mit zumindest einem der Elemente Te, Se, S, O, Sb, As, P, N, Ge, Si, C, Ga, AI oder B oder eine
Mischung dieser Verbindungen aufweist Verfahren nach zumindest einem der Ansprüche 2 bis 20, dadurch gekennzeichnet, daß die anorganische Komponente zumindest eine Verbindung zumindest eines der Elemente Sc, Y, Ti, Zr, V, Cr, Mo, W, Mn, Fe, Co, B, AI, In, TI, Si, Ge, Sn, Pb, Sb oder Bi mit zumindest einem der Elemente Te, Se, S, O, Sb, As, P, N, C, oder Ga oder zumindest eines dieser Elemente aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 21, dadurch gekennzeichnet, daß die anorganische Komponente Alumosilicate, Aluminiumphosphate, Zeolithe oder partiell modifizierte Zeolithe aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 22, dadurch gekennzeichnet, daß die anorganische Komponente amorphe mikroporöse Mischoxide, die bis zu 20 % nicht hydrolisierbare organische Verbindungen enthalten können, aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 23, dadurch gekennzeichnet, daß der Verbundwerkstoff zumindest zwei Korngroßenfraktionen von zumindest einer anorganischen Komponente aufweist
Verfahren nach Anspruch 24, dadurch gekennzeichnet, daß die Korngroßenfraktionen im Verbundwerkstoff ein Korngroßenverhaltnis von 1 1 bis 1 100 aufweist
Verfahren nach zumindest einem der Ansprüche 24 oder 25, dadurch gekennzeichnet, daß der Verbundwerkstoff ein Mengenverhältnis der Korngroßenfraktionen von 0,01 zu 1 bis 1 zu 0,01 aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 26, dadurch gekennzeichnet, daß die Stoffdurchlassigkeit des Verbundwerkstoffes durch die Korngroße der verwendeten anorganischen Komponente auf Teilchen mit einer bestimmten maximalen Große begrenzt werden kann
Verfahren nach zumindest einem der Ansprüche 2 bis 27, dadurch gekennzeichnet, daß die zumindest eine anorganische Komponente aufweisende Suspension zumindest eine Flüssigkeit, ausgewählt aus Wasser, Alkohol und Saure oder eine Kombination dieser Flüssigkeiten aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 28, dadurch gekennzeichnet, daß der Verbundwerkstoff als katalytisch aktive Komponente zumindest ein anorganisches
Material, zumindest ein Metall oder zumindest eine metallorganische Verbindung aufweist, an deren Oberflache sich katalytisch aktive Zentren befinden
Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß der Verbundwerkstoff als katalytische Komponente ein Zeolith, Silikalit oder ein amorphes mikroporöses Mischoxid aufweist
Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß der Verbundwerkstoff als katalytisch aktive Komponente zumindest ein Oxid zumindest eines der Elemente Mo, Sn, Zn, V, Mn, Fe, Co, Ni, As, Sb, Pb, Bi, Ru, Re, Cr, W, Mb, Hf, La, Ce, Gd, Ga, In, TI, Ag,
Cu, Li, K, Na, Be, Mg, Ca, Sr und Ba aufweist
Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß der Verbundwerkstoff als katalytisch aktive Komponente zumindest Titansuboxid aufweist
Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß der Verbundwerkstoff als katalytisch aktive Komponente zumindest ein Metallverbindung, ausgewählt aus den Verbindungen der Metalle Pt, Rh, Ru, Ir, Au, Ag, Ce, Os, Re, Cu, Ni, Pd und Co, aufweist
Verfahren nach Anspruch 29, dadurch gekennzeichnet, daß der Verbundwerkstoff" als katalytisch aktive Komponente zumindest ein Metall, ausgewählt aus den Metallen Pt, Rh, Ce, Ru, Ir, Au, Ag, Os, Re, Cu, Ni, Pd und Co, aufweist
Verfahren nach zumindest einem der Ansprüche 2 bis 34, dadurch gekennzeichnet, daß der Verbundwerkstoff elektrisch leitend ist Verfahren nach zumindest einem der Ansprüche 2 bis 35, dadurch gekennzeichnet, daß der Verbundwerkstoff biegbar ist
Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß der Verbundwerkstoff" auf einen kleinsten Radius von bis zu 1 mm biegbar ist
Verfahren nach zumindest einem der Ansprüche 1 bis 37, dadurch gekennzeichnet, daß der Werkstoff als Membran verwendet wird
Verfahren nach zumindest einem der Ansprüche 1 bis 38, dadurch gekennzeichnet, daß der Werkstoff negativ geladen ist
Verfahren nach zumindest einem der Ansprüche 1 bis 39, dadurch gekennzeichnet, daß der Werkstoff positiv geladen ist
Verfahren nach zumindest einem der Ansprüche 1 bis 40, dadurch gekennzeichnet, daß der Werkstoff als Kathode geschaltet wird
Verfahren nach zumindest einem der Ansprüche 1 bis 41, dadurch gekennzeichnet, daß der Werkstoff als Anode geschaltet wird
Verfahren nach zumindest einem der Ansprüche 41 oder 42, dadurch gekennzeichnet, daß die anorganische Komponente im Werkstoff durch Schalten des Werkstoffes als Elektrode in eine elektrisch leitende Komponente überführt wird
Verfahren nach zumindest einem der Ansprüche 1 bis 43, dadurch gekennzeichnet, daß auf der Oberflache des Werkstoffes durch Anlegen eines elektrischen Feldes positive oder negative Ladungen erzeugt werden
Verfahren nach zumindest einem der Ansprüche 1 bis 44, dadurch gekennzeichnet, daß der Werkstoff von Verunreinigungen, die sich auf und in dem Werkstoff wahrend des Stofftrennprozesses Stoffe abgelagert haben, durch kurzzeitiges Anlegen einer elektrischen Spannung an den Werkstoff gereinigt wird
Verfahren nach zumindest einem der Ansprüche 1 bis 45, dadurch gekennzeichnet, daß der Werkstoff als Membranelektrode eingesetzt wird
Verfahren nach zumindest einem der Ansprüche 1 bis 46, dadurch gekennzeichnet, daß der Werkstoff von Verunreinigungen, die sich auf und in oder aber auf oder in dem Werkstoff wahrend des Stofftrennprozesses abgelagert haben, durch Gasblasen, die durch kurzzeitiges Anlegen einer elektrischen Spannung an den Werkstoff durch Zersetzung eines Stoffes entstehen, gereinigt wird
Verfahren nach Anspruch 47, dadurch gekennzeichnet, daß in wäßrigen Systemen an und im oder aber an oder in dem als Kathode geschalteten Werkstoff Gasblasen aus Wasserstoff entstehen
Verfahren nach zumindest einem der Ansprüche 47 oder 48, dadurch gekennzeichnet, daß in wäßrigen Systemen an und im oder aber an oder in dem als Anode geschalteten Werkstoff Gasblasen aus Sauerstoff entstehen
Verfahren nach zumindest einem der Ansprüche 47 bis 48, dadurch gekennzeichnet, daß in organischen Systemen Gasblasen aus Kohlendioxid oder Stickstoff an oder in oder aber an und in dem als Elektroden geschalteten Werkstoff entstehen
Verfahren nach zumindest einem der Ansprüche 1 bis 50, dadurch gekennzeichnet, daß der Werkstoff" durch Anlegen eines elektrischen Stroms geheizt wird
Verfahren nach Anspruch 51, dadurch gekennzeichnet, daß der Werkstoff durch Heizen von Verunreinigungen, die sich auf und in oder auf oder in dem Werkstoff wahrend des Stofftrennprozesses abgelagert haben, gereinigt wird
Verwendung eines Verfahrens gemäß einem der Ansprüche 1 bis 52 zur Elektromikrofiltration, Elektroultrafiltration oder Elektronanofiltration Verwendung eines Verfahrens gemäß einem der Ansprüche 1 bis 52 zum wasserstofferzeugenden Betrieb mit gleichzeitiger katalytischer Reduktion
Verwendung eines Verfahrens gemäß einem der Ansprüche 1 bis 52 zum sauerstofferzeugenden Betrieb mit gleichzeitiger katalytischer Oxidation
Verwendung eines Verfahrens gemäß einem der Ansprüche 1 bis 52 zur Trennung von Stoffen mit unterschiedlichen isoelektrischen Punkten
PCT/EP1998/005937 1997-09-20 1998-09-18 Verfahren zur auftrennung von stoffgemischen mittels eines stoffdurchlässigen werkstoffes WO1999015260A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA 2272318 CA2272318A1 (en) 1997-09-20 1998-09-18 Method for separating mixtures of substances using a material pervious to said substances
EP98950049A EP0959981A1 (de) 1997-09-20 1998-09-18 Verfahren zur auftrennung von stoffgemischen mittels eines stoffdurchlässigen werkstoffes
US09/308,230 US6299668B1 (en) 1997-09-20 1998-09-18 Method for separating mixtures of substances using a material pervious to said substances
NO992433A NO992433L (no) 1997-09-20 1999-05-20 FremgangsmÕte for separering av blandinger av stoffer ved anvendelse av et materiale gjennomtrengelig for stoffene

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
DE19741498.2 1997-09-20
DE1997141498 DE19741498B4 (de) 1997-09-20 1997-09-20 Herstellung eines Keramik-Edelstahlgewebe-Verbundes
DE19811708A DE19811708B4 (de) 1997-09-20 1998-03-18 Herstellung von keramischen Membranen
DE19811708.6 1998-03-18
DE19812035.4 1998-03-19
DE19812035A DE19812035B4 (de) 1997-09-20 1998-03-19 Herstellung von katalytisch aktiven, keramischen Membranen
DE19820580A DE19820580B4 (de) 1997-09-20 1998-05-08 Regenerierbarer Diesel-Abgasfilter
DE19820580.5 1998-05-08
DE19824666A DE19824666B4 (de) 1997-09-20 1998-06-03 Herstellung und Verwendung eines Keramik-Metallträger-Verbundes
DE19824666.8 1998-06-03

Publications (1)

Publication Number Publication Date
WO1999015260A1 true WO1999015260A1 (de) 1999-04-01

Family

ID=27512604

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/EP1998/005946 WO1999015257A1 (de) 1997-09-20 1998-09-18 Gasfilter, verfahren zur herstellung eines gasfilters und verwendung dieses gasfilters
PCT/EP1998/005937 WO1999015260A1 (de) 1997-09-20 1998-09-18 Verfahren zur auftrennung von stoffgemischen mittels eines stoffdurchlässigen werkstoffes
PCT/EP1998/005939 WO1999015262A1 (de) 1997-09-20 1998-09-18 Stoffdurchlässiger verbundwerkstoff, verfahren zu dessen herstellung und verwendung des stoffdurchlässigen verbundwerkstoffes
PCT/EP1998/005938 WO1999015272A1 (de) 1997-09-20 1998-09-18 Katalytisch aktiver, stoffdurchlässiger verbundwerkstoff, verfahren zu dessen herstellung und verwendung des verbundwerkstoffes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/005946 WO1999015257A1 (de) 1997-09-20 1998-09-18 Gasfilter, verfahren zur herstellung eines gasfilters und verwendung dieses gasfilters

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/EP1998/005939 WO1999015262A1 (de) 1997-09-20 1998-09-18 Stoffdurchlässiger verbundwerkstoff, verfahren zu dessen herstellung und verwendung des stoffdurchlässigen verbundwerkstoffes
PCT/EP1998/005938 WO1999015272A1 (de) 1997-09-20 1998-09-18 Katalytisch aktiver, stoffdurchlässiger verbundwerkstoff, verfahren zu dessen herstellung und verwendung des verbundwerkstoffes

Country Status (8)

Country Link
US (6) US6340379B1 (de)
EP (4) EP0959981A1 (de)
AT (2) ATE284756T1 (de)
CA (4) CA2272310C (de)
DE (3) DE19741498B4 (de)
ES (1) ES2232963T3 (de)
NO (4) NO992432L (de)
WO (4) WO1999015257A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002214A1 (en) * 2000-07-03 2002-01-10 Bernt Thorstensen Filter or filter-element for modified electro-dialysis (med) purposes
US6752925B2 (en) 2000-03-31 2004-06-22 Atech Innovations Gmbh Filter device with an electrically grounded ceramic membrane filter element
CN108126540A (zh) * 2017-12-15 2018-06-08 天津膜天膜科技股份有限公司 一种大通量编织管增强型中空纤维膜及其制备方法

Families Citing this family (148)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19741498B4 (de) * 1997-09-20 2008-07-03 Evonik Degussa Gmbh Herstellung eines Keramik-Edelstahlgewebe-Verbundes
WO1999061140A1 (en) * 1998-05-28 1999-12-02 Stichting Energieonderzoek Centrum Nederland Process of producing a microporous hydrophobic inorganic membrane
JP4662626B2 (ja) * 1998-06-03 2011-03-30 エボニック デグサ ゲーエムベーハー イオン伝導性で物質透過性の複合材料、その製造方法および該複合材料の使用
NL1010097C2 (nl) * 1998-09-15 2000-03-17 Univ Twente Scheidingsinrichting met keramisch membraan.
US6536604B1 (en) * 1999-06-25 2003-03-25 C. Jeffrey Brinker Inorganic dual-layer microporous supported membranes
US6432586B1 (en) 2000-04-10 2002-08-13 Celgard Inc. Separator for a high energy rechargeable lithium battery
DE60126221T2 (de) * 2000-04-20 2007-11-15 Ngk Insulators, Ltd., Nagoya Verfahren zur herstellung eines katalysators zur zersetzung von organischen haliden und verfahren zur herstellung eines filters zur verwendung bei der zerstetzung von organischen haliden
DE10031281A1 (de) * 2000-06-27 2002-01-10 Creavis Tech & Innovation Gmbh Polyelektrolytbeschichteter, stoffdurchlässiger Verbundwerkstoff, Verfahren zu dessen Herstellung und die Verwendung des Verbundwerkstoffes
DE10034386A1 (de) * 2000-07-14 2002-01-24 Creavis Tech & Innovation Gmbh Verfahren und Vorrichtung zur Elektrofiltration
JP2002054422A (ja) * 2000-08-08 2002-02-20 Ngk Insulators Ltd セラミック製フィルター及びその製造方法
GB2369311B (en) * 2000-11-24 2002-12-11 Membrane Extraction Tech Ltd Separating phase transfer agents
DE10061959A1 (de) * 2000-12-13 2002-06-20 Creavis Tech & Innovation Gmbh Kationen-/protonenleitende, mit einer ionischen Flüssigkeit infiltrierte keramische Membran, Verfahren zu deren Herstellung und die Verwendung der Membran
AUPR226000A0 (en) * 2000-12-22 2001-01-25 Queensland Alumina Limited Contaminant removal process
US20040139858A1 (en) * 2001-03-01 2004-07-22 Phillips Plastics Corporation Filtration media of porous inorganic particles
US7041159B2 (en) * 2003-08-04 2006-05-09 Phillips Plastics Corporation Separation apparatus
EP1363718A2 (de) * 2001-03-01 2003-11-26 Phillips Plastics Corporation Filtermedien aus porösen anorganischen partikeln
US6663998B2 (en) * 2001-04-05 2003-12-16 The Technical University Of Denmark (Dtu) Anode catalyst materials for use in fuel cells
US6670300B2 (en) 2001-06-18 2003-12-30 Battelle Memorial Institute Textured catalysts, methods of making textured catalysts, and methods of catalyzing reactions conducted in hydrothermal conditions
EP1280246B1 (de) * 2001-07-25 2006-03-08 TuiLaser AG Gasentladungslaser
DE10142622A1 (de) * 2001-08-31 2003-03-20 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
US20040025690A1 (en) 2001-09-10 2004-02-12 Henry Krigmont Multi-stage collector
US20030131731A1 (en) * 2001-12-20 2003-07-17 Koros William J. Crosslinked and crosslinkable hollow fiber mixed matrix membrane and method of making same
US6620225B2 (en) * 2002-01-10 2003-09-16 Advanced Technology Materials, Inc. Adsorbents for low vapor pressure fluid storage and delivery
DE10207411A1 (de) 2002-02-21 2003-09-04 Daimler Chrysler Ag Verfahren zur Herstellung von Kompositmembranen
DE10208280A1 (de) * 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Keramische Membran auf Basis eines Polymer-oder Naturfasern ausweisenden Substrates, Verfahren zu deren Herstellung und Verwendung
DE10208278A1 (de) * 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Hybridmembran, Verfahren zu deren Herstellung und die Verwendung der Membran
DE10208208B4 (de) * 2002-02-26 2012-03-08 Eaton Industries Gmbh Bausatz aus mehreren Bausatzelementen und einer Welle
DE10208279A1 (de) * 2002-02-26 2003-10-23 Creavis Tech & Innovation Gmbh Flexible Elektrolytmembran auf Basis eines Polymerfasern umfassenden Trägers, Verfahren zu deren Herstellung und die Verwendung derselben
DE10208276A1 (de) * 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Compositmembran, Verfahren zu deren Herstellung und die Verwendung der Membran
DE10208277A1 (de) 2002-02-26 2003-09-04 Creavis Tech & Innovation Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung
US6797041B2 (en) * 2002-03-01 2004-09-28 Greenheck Fan Corporation Two stage air filter
DE10210667A1 (de) * 2002-03-12 2003-09-25 Creavis Tech & Innovation Gmbh Herstellung von Bahnenwaren mit selbstreinigenden Oberflächen mittels eines Kalandrierprozesses, Bahnenwaren selbst und die Verwendung dieser
NL1020204C2 (nl) * 2002-03-19 2003-09-23 Onstream Holding B V Werkwijze voor het filteren van deeltjes uit een vloeistof en vloeistoffilterinrichting.
DE10214343A1 (de) * 2002-03-28 2003-10-09 Omg Ag & Co Kg Partikelfilter mit einer katalytisch aktiven Beschichtung zur Beschleunigung der Verbrennung der auf dem Filter gesammelten Rußpartikel während einer Regenerationsphase
WO2003092748A1 (en) * 2002-04-18 2003-11-13 Adh Health Products, Inc. Apparatus and process for decontaminating breathing air of toxic substances and pathogenic organisms
US6942708B2 (en) * 2002-04-18 2005-09-13 Rypos, Inc. Bifilar diesel exhaust filter construction using sintered metal fibers
TW200400851A (en) * 2002-06-25 2004-01-16 Rohm & Haas PVD supported mixed metal oxide catalyst
WO2004001278A2 (en) * 2002-06-25 2003-12-31 Aalborg Universitet Method for production of a product having sub-micron primary particle size, product produced by the method and apparatus for use of the method
US6849296B2 (en) * 2002-07-29 2005-02-01 Carleton Life Support Systems, Inc. Leakage free ceramic films for porous surfaces
US7338624B2 (en) * 2002-07-31 2008-03-04 Praxair Technology Inc. Ceramic manufacture for a composite ion transport membrane
DE10238944A1 (de) * 2002-08-24 2004-03-04 Creavis Gesellschaft Für Technologie Und Innovation Mbh Separator zur Verwendung in Hochenergiebatterien sowie Verfahren zu dessen Herstellung
DE10238945B4 (de) 2002-08-24 2013-01-03 Evonik Degussa Gmbh Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung, Verwendung des Separators in Lithium-Batterien und Batterie mit dem Separator
DE10238941B4 (de) * 2002-08-24 2013-03-28 Evonik Degussa Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung in Lithium-Hochleistungsbatterien sowie eine den Separator aufweisende Batterie
DE10238940A1 (de) * 2002-08-24 2004-03-04 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Herstellung eines Separators, insbesondere für Lithium-Ionen-Batterien
DE10238943B4 (de) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung und Verwendung in Lithium-Batterien sowie eine Batterie, aufweisend die Separator-Elektroden-Einheit
DE10240032A1 (de) * 2002-08-27 2004-03-11 Creavis Gesellschaft Für Technologie Und Innovation Mbh Ionenleitender Batterieseparator für Lithiumbatterien, Verfahren zu deren Herstellung und die Verwendung derselben
US7201782B2 (en) * 2002-09-16 2007-04-10 Hewlett-Packard Development Company, L.P. Gas generation system
DE10249246B4 (de) * 2002-10-23 2013-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Farbstoffsensibilisierte photovoltaische Zelle, ein Verfahren zur Herstellung dieser photovoltaischen Zellen sowie deren Verwendung
DE10255121B4 (de) 2002-11-26 2017-09-14 Evonik Degussa Gmbh Separator mit asymmetrischem Porengefüge für eine elektrochemische Zelle
DE10255122A1 (de) * 2002-11-26 2004-06-03 Creavis Gesellschaft Für Technologie Und Innovation Mbh Langzeitstabiler Separator für eine elektrochemische Zelle
US20040232075A1 (en) * 2003-01-31 2004-11-25 Jason Wells Microfiltration device and method for washing and concentrating solid particles
DE10308110A1 (de) * 2003-02-26 2004-09-23 Hermsdorfer Institut Für Technische Keramik E.V. Keramische Nanofiltrationsmembran für die Verwendung in organischen Lösungsmitteln und Verfahren zu deren Herstellung
US7419601B2 (en) * 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
DE602004028298D1 (de) * 2003-03-07 2010-09-02 Seldon Technologies Llc Reinigung von Flüssigkeiten mit Nanomaterialien
US20040178135A1 (en) * 2003-03-13 2004-09-16 Beplate Douglas K. Filtering device incorporating nanoparticles
US9107452B2 (en) 2003-06-13 2015-08-18 Philip Morris Usa Inc. Catalyst to reduce carbon monoxide in the mainstream smoke of a cigarette
US7152609B2 (en) 2003-06-13 2006-12-26 Philip Morris Usa Inc. Catalyst to reduce carbon monoxide and nitric oxide from the mainstream smoke of a cigarette
US7165553B2 (en) * 2003-06-13 2007-01-23 Philip Morris Usa Inc. Nanoscale catalyst particles/aluminosilicate to reduce carbon monoxide in the mainstream smoke of a cigarette
US7243658B2 (en) * 2003-06-13 2007-07-17 Philip Morris Usa Inc. Nanoscale composite catalyst to reduce carbon monoxide in the mainstream smoke of a cigarette
ES2603063T3 (es) 2003-06-24 2017-02-23 Aspen Aerogels Inc. Procedimientos de producción de láminas de gel
US20050067344A1 (en) * 2003-09-30 2005-03-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Zeolite membrane support and zeolite composite membrane
DE10347567A1 (de) * 2003-10-14 2005-05-12 Degussa Elektrischer Separator mit Abschaltmechanismus, Verfahren zu dessen Herstellung und Verwendung in Lithium-Batterien
DE10347568A1 (de) 2003-10-14 2005-05-12 Degussa Kondensator mit keramischer Separationsschicht
DE10347566A1 (de) * 2003-10-14 2005-05-12 Degussa Keramischer Separator für elektrochemische Zellen mit verbesserter Leitfähigkeit
DE10347569A1 (de) * 2003-10-14 2005-06-02 Degussa Ag Keramische, flexible Membran mit verbesserter Haftung der Keramik auf dem Trägervlies
US7166140B2 (en) * 2003-10-22 2007-01-23 Phillips Plastics Corporation High capture efficiency baffle
DE102004006612A1 (de) 2004-02-10 2005-08-25 Degussa Ag Keramischer Wandverkleidungsverbund
DE102006008130A1 (de) 2006-02-20 2007-08-23 Degussa Gmbh Verfahren zur Beschichtung von Substraten und Trägersubstraten
US9096041B2 (en) 2004-02-10 2015-08-04 Evonik Degussa Gmbh Method for coating substrates and carrier substrates
DE102004018930A1 (de) * 2004-04-20 2005-11-17 Degussa Ag Verwendung eines keramischen Separators in Lithium-Ionenbatterien, die einen Elektrolyten aufweisen, der ionische Flüssigkeiten enthält
US7743772B2 (en) * 2004-06-16 2010-06-29 Philip Morris Usa Inc. Silver and silver oxide catalysts for the oxidation of carbon monoxide in cigarette smoke
FR2873497B1 (fr) * 2004-07-23 2014-03-28 Accumulateurs Fixes Accumulateur electrochimique au lithium fonctionnant a haute temperature
DE102004036073A1 (de) * 2004-07-24 2006-02-16 Degussa Ag Verfahren zur Versiegelung von Natursteinen
KR20070105959A (ko) * 2004-09-06 2007-10-31 자이단호진 기타큐슈산교가쿠쥬쓰스이신키코 성형용 다이, 성형용 다이의 제조방법, 및 다이를 이용한성형체의 제조방법
JP2006112888A (ja) * 2004-10-14 2006-04-27 Hitachi Global Storage Technologies Netherlands Bv 分析用フィルタ
KR101146870B1 (ko) * 2004-10-21 2012-05-16 에보니크 데구사 게엠베하 리튬-이온 배터리용 무기 세퍼레이터-전극-유닛, 그의 제조방법 및 리튬 배터리에서의 그의 용도
FR2879478B1 (fr) * 2004-12-17 2007-10-26 Inst Francais Du Petrole Catalyseur a base de cobalt pour la synthese fisher-tropsch
CN101137427B (zh) * 2005-03-09 2011-08-03 加利福尼亚大学校务委员会 纳米复合材料膜及其制备和使用方法
DE102005029124A1 (de) 2005-06-23 2006-12-28 Degussa Ag Filmbildner freies Elektrolyt-Separator-System sowie dessen Verwendung in elektrochemischen Energiespeichern
EP1899586B1 (de) * 2005-07-01 2014-04-30 Höganäs Ab Rostfreier stahl für filteranwendungen
DE102005042215A1 (de) * 2005-09-05 2007-03-08 Degussa Ag Separator mit verbesserter Handhabbarkeit
DE102005042916A1 (de) * 2005-09-08 2007-03-22 Degussa Ag Stapel aus abwechselnd übereinander gestapelten und fixierten Separatoren und Elektroden für Li-Akkumulatoren
US7611565B1 (en) * 2005-10-20 2009-11-03 Los Alamos National Security, Llc Device for hydrogen separation and method
US8118035B2 (en) 2005-12-13 2012-02-21 Philip Morris Usa Inc. Supports catalyst for the combustion of carbon monoxide formed during smoking
DE102006001640A1 (de) * 2006-01-11 2007-07-12 Degussa Gmbh Keramische Wandverkleidungsverbände mit IR-Strahlung reflektierenden Eigenschaften
JP2007260667A (ja) * 2006-03-01 2007-10-11 Nissan Motor Co Ltd 光触媒活性化システム及び光触媒の活性化方法
US8143471B2 (en) * 2006-04-21 2012-03-27 Gas Technology Institute Electrochemical capacitive concentration and deactivation of actinide nuclear materials
JP2008004533A (ja) * 2006-05-22 2008-01-10 Nissan Motor Co Ltd イオン伝導体
WO2007144446A1 (en) 2006-06-15 2007-12-21 Ecocat Oy Coating for particulate filters
US7771520B1 (en) * 2006-09-06 2010-08-10 Bossard Peter R System and method for forming a membrane that is super-permeable to hydrogen
US7559976B2 (en) * 2006-10-24 2009-07-14 Henry Krigmont Multi-stage collector for multi-pollutant control
CA2667579A1 (en) * 2006-10-27 2008-05-15 The Regents Of The University Of California Micro-and nanocomposite support structures for reverse osmosis thin film membranes
DE102007005156A1 (de) 2007-01-29 2008-08-14 Evonik Degussa Gmbh Keramische Membrane mit verbesserter Haftung auf plasmabehandeltem polymerem Supportmaterial, sowie deren Herstellung und Verwendung
CN100427188C (zh) * 2007-02-05 2008-10-22 陕西师范大学 一种在多孔不锈钢基体上制备TiO2陶瓷微滤膜的方法
JP5081527B2 (ja) 2007-07-26 2012-11-28 東京エレクトロン株式会社 気体清浄化装置及び気体清浄化方法
WO2009048682A2 (en) * 2007-08-07 2009-04-16 Drexel University Plasma discharge self-cleaning filtration system
US7910514B2 (en) * 2007-08-09 2011-03-22 Nissan Motor Co., Ltd. Inorganic fiber catalyst, production method thereof and catalyst structure
JP4564520B2 (ja) * 2007-08-31 2010-10-20 株式会社東芝 半導体記憶装置およびその制御方法
AU2008302086A1 (en) * 2007-09-21 2009-03-26 The Regents Of The University Of California Nanocomposite membranes and methods of making and using same
KR100976862B1 (ko) 2007-11-21 2010-08-23 주식회사 엘지화학 향상된 저장성능을 가지는 이차전지 및 이의 제조방법.
US7582145B2 (en) * 2007-12-17 2009-09-01 Krigmont Henry V Space efficient hybrid collector
US7582144B2 (en) * 2007-12-17 2009-09-01 Henry Krigmont Space efficient hybrid air purifier
TW200938236A (en) * 2008-03-13 2009-09-16 Fei-Peng Lin Deodorization material composition, manufacturing method thereof, and deodorization method
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
US20090274850A1 (en) * 2008-05-01 2009-11-05 United Technologies Corporation Low cost non-line-of -sight protective coatings
US7597750B1 (en) 2008-05-12 2009-10-06 Henry Krigmont Hybrid wet electrostatic collector
DE102008040896A1 (de) 2008-07-31 2010-02-04 Evonik Degussa Gmbh Verwendung von keramischen oder keramikhaltigen Schneid- oder Stanzwerkzeugen als Schneiden oder Stanzen für keramikhaltige Verbundstoffe
DE102008040894A1 (de) 2008-07-31 2010-02-04 Evonik Degussa Gmbh Verfahren zum Schneiden mechanisch empfindlicher Bahnenware
US20100050872A1 (en) * 2008-08-29 2010-03-04 Kwangyeol Lee Filter and methods of making and using the same
US20100150805A1 (en) * 2008-12-17 2010-06-17 Uop Llc Highly stable and refractory materials used as catalyst supports
US20120308871A1 (en) * 2009-04-28 2012-12-06 Evonik Litarion Gmbh Production and use of ceramic composite materials based on a polymeric carrier film
JP5745512B2 (ja) * 2009-06-29 2015-07-08 ナノエイチツーオー・インコーポレーテッド 窒素添加剤を含む改良された混成tfcro膜
DE102009028145A1 (de) 2009-07-31 2011-02-03 Evonik Degussa Gmbh Keramische Membranen mit Polyaramid-Faser haltigen Supportmaterialien und Verfahren zur Herstellung dieser Membranen
DE102009029152A1 (de) 2009-09-03 2011-03-17 Evonik Degussa Gmbh Flexible Beschichtungsverbünde mit überwiegend mineralischer Zusammensetzung
JP5582944B2 (ja) * 2009-09-28 2014-09-03 京セラ株式会社 配線基板、積層板及び積層シート
DE102009046673A1 (de) 2009-11-13 2011-05-19 Evonik Degussa Gmbh Verwendung einer keramischen Membran auf Basis eines Polymerfasern aufweisenden Substrates als Feuchtespeicher
US9315426B2 (en) 2010-05-20 2016-04-19 Comanche Tecnologies, LLC Coatings for refractory substrates
DE102010038308A1 (de) 2010-07-23 2012-01-26 Evonik Degussa Gmbh Lithium-Zellen und -Batterien mit verbesserter Stabilität und Sicherheit, Verfahren zu ihrer Herstellung und Anwendung in mobilen und stationären elektrischen Energiespeichern
US9211506B2 (en) 2010-09-02 2015-12-15 The University Of Hong Kong Doping of inorganic minerals to hydrophobic membrane surface
US8722256B2 (en) * 2010-10-20 2014-05-13 Ut-Battelle, Llc Multi-layered, chemically bonded lithium-ion and lithium/air batteries
US8801935B2 (en) 2010-11-10 2014-08-12 Nanoh2O, Inc. Hybrid TFC RO membranes with non-metallic additives
DE102011003186A1 (de) 2011-01-26 2012-07-26 Evonik Degussa Gmbh Dünne, makroporöse Polymerfolien
DE102011007750A1 (de) * 2011-04-20 2012-10-25 Evonik Litarion Gmbh Separator mit Additiv zur Verbesserung der Beschichtungsgüte und Reduzierung von Agglomeraten im keramischen Kompositmaterial
CA3202964A1 (en) 2011-12-06 2013-06-13 Delta Faucet Company Ozone distribution in a faucet
DE102013200722A1 (de) 2012-01-30 2013-08-01 Evonik Litarion Gmbh Separator enthaltend eine organisch-anorganische Haftvermittlerkomponente
RU2532807C2 (ru) * 2012-11-29 2014-11-10 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ получения нанокаталитического материала
FR3000408B1 (fr) * 2013-01-03 2015-02-27 Commissariat Energie Atomique Procede de realisation d'un filtre destine a la filtration de nanoparticules, filtre obtenu et procede de collecte et d'analyse quantitative de nanoparticules associe.
CN103100309B (zh) * 2013-01-28 2015-06-17 西北农林科技大学 用于水溶液中重金属离子Cr(VI)去除的多孔不锈钢基铁氧化物膜的制备方法
US20140272528A1 (en) * 2013-03-15 2014-09-18 Apple Inc. Manufacturing techniques using binder coatings in three-dimensional stacked-cell batteries
DE102013105177A1 (de) 2013-05-21 2014-11-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Gewinnung metallischer Anteile sowie von metallabgereichertem Material aus metallhaltigen Materialien
DE102013018457A1 (de) * 2013-11-02 2015-05-07 Dräger Safety AG & Co. KGaA Filmmaterial zur selektiven Entfernung von Siloxanen
DE102014108200B4 (de) 2014-06-11 2017-08-17 Saeed Isfahani Schweißvorrichtung mit einer Schweißspritzerschutzfolie
DE102014225544A1 (de) 2014-12-11 2016-07-07 Vaillant Gmbh Wärme- und Feuchteübertrager
CN104815566B (zh) * 2015-04-28 2017-03-08 南京工业大学 一种抗菌除尘膜的制备方法
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
KR102413271B1 (ko) * 2015-11-02 2022-06-28 삼성전자주식회사 기판 이송 장치
CN108463437B (zh) 2015-12-21 2022-07-08 德尔塔阀门公司 包括消毒装置的流体输送系统
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
DE102016125168A1 (de) 2016-12-21 2018-06-21 Fortu New Battery Technology Gmbh Wiederaufladbare elektrochemische Zelle mit keramischer Separatorschicht und Indikatorelektrode
DE102016125177A1 (de) 2016-12-21 2018-06-21 Fortu New Battery Technology Gmbh Elektrode-Separator-Element mit einer keramischen Separatorschicht
CN108744599B (zh) * 2018-06-14 2021-04-27 苏州大学 碘掺杂碳酸氧铋包覆的碳布材料及其制备方法与在油水分离中的应用
EP3669973A1 (de) 2018-12-20 2020-06-24 Evonik Operations GmbH Verbundkörper
TW202045485A (zh) * 2019-02-08 2020-12-16 德商贏創運營有限公司 有機化合物之還原
TW202045484A (zh) * 2019-02-08 2020-12-16 德商贏創運營有限公司 有機化合物的氧化
TW202045250A (zh) 2019-02-08 2020-12-16 德商贏創運營有限公司 三相反應器
KR20210033692A (ko) * 2019-09-19 2021-03-29 주식회사 엘지화학 두께 방향에 따라 공극률 차이가 있는 분리막 및 이의 제조방법
CN113304592B (zh) * 2021-06-21 2022-12-27 紫科装备股份有限公司 一种石油化工厂污水处理场废气治理设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380266A1 (de) * 1989-01-25 1990-08-01 Alcan International Limited Filterreinigung
EP0474365A1 (de) * 1990-08-31 1992-03-11 United Kingdom Atomic Energy Authority Filterreinigung
EP0686420A1 (de) * 1994-06-09 1995-12-13 United Kingdom Atomic Energy Authority Filterreinigung
WO1996010453A2 (en) * 1994-10-01 1996-04-11 Imas Technology Limited A filter, apparatus including the filter and a method of use of the apparatus

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175018A (en) * 1977-01-19 1979-11-20 Ppg Industries, Inc. Method of electrocoating
JPS60193517A (ja) * 1984-03-02 1985-10-02 Karupisu Shokuhin Kogyo Kk 微生物除去法
US5100632A (en) * 1984-04-23 1992-03-31 Engelhard Corporation Catalyzed diesel exhaust particulate filter
GB8415887D0 (en) 1984-06-21 1984-07-25 Atomic Energy Authority Uk Membrane cleaning
FR2604920B1 (fr) * 1986-10-10 1988-12-02 Ceraver Membrane de filtration ceramique et procede de fabrication
US5207807A (en) * 1986-12-05 1993-05-04 Iveco Fiat S.P.A. Regenerable filter for exhaust gases of an internal-combustion engine
NL8702759A (nl) * 1987-11-19 1989-06-16 Hoogovens Groep Bv Werkwijze voor het vervaardigen van een micro-permeabel membraan en inrichting voor het aanbrengen van deze membraan op een drager.
DE3742770A1 (de) * 1987-12-17 1989-06-29 Akzo Gmbh Mikro-/ultrafiltrationsmembranen mit definierter porengroesse durch bestrahlung mit gepulsten lasern und verfahren zur herstellung
DE3807539A1 (de) * 1988-03-08 1989-09-21 Peter Voelskow Russfilter
ES2050716T3 (es) * 1988-03-17 1994-06-01 Ceramiques Tech Soc D Membrana de filtrado y procedimiento de fabricacion.
DK249689A (da) * 1988-05-24 1989-11-25 Alcan Int Ltd Sammensat membran og fremgangsmaade ved dens fremstilling
CA2015465A1 (en) * 1989-04-28 1990-10-28 Anthonie Jan Burggraaf Modified membrane
JPH03143535A (ja) * 1989-10-26 1991-06-19 Toto Ltd セラミックス製非対称膜及びその製造方法
JP3018457B2 (ja) * 1990-10-05 2000-03-13 株式会社デンソー 自己発熱型フィルタ
US5120339A (en) * 1991-04-04 1992-06-09 International Business Machines Corporation Method for fabricating a low thermal expansion coefficient glass fiber-reinforced polymer matrix composite substrate and composite substrate
JP3000750B2 (ja) * 1991-09-20 2000-01-17 株式会社デンソー 自己発熱型フィルタ
FR2693921B1 (fr) * 1992-07-24 1994-09-30 Tech Sep Support monolithe céramique pour membrane de filtration tangentielle.
IT1261725B (it) * 1992-11-26 1996-05-30 Iveco Fiat Filtro rigenerabile per i gas di scarico di un motore a combustione interna.
DE4305915C2 (de) * 1993-02-26 1995-04-13 Alfred Buck Regenerierbares Filter
US5655212A (en) * 1993-03-12 1997-08-05 Micropyretics Heaters International, Inc. Porous membranes
JP2732031B2 (ja) * 1994-04-28 1998-03-25 株式会社いすゞセラミックス研究所 デイーゼル機関の排気微粒子フイルタ
US5453116A (en) * 1994-06-13 1995-09-26 Minnesota Mining And Manufacturing Company Self supporting hot gas filter assembly
US5885657A (en) 1994-06-23 1999-03-23 Creavis Gesellschaft Fur Technologie Und Innovation Mbh Production of ceramic layers and their use
US5611832A (en) * 1994-09-21 1997-03-18 Isuzu Ceramics Research Institute Co., Ltd. Diesel particulate filter apparatus
DE19506843A1 (de) 1995-02-28 1996-08-29 Studiengesellschaft Kohle Mbh Mikroporöse amorphe Mischmetalloxide für formselektive Katalyse
EP0764455B1 (de) * 1995-09-25 2002-11-20 Sintokogio, Ltd. Filter zur Abscheidung von Russpartikeln aus Abgas und Vorrichtung zur Verwendung desselben
DE19545042A1 (de) 1995-12-02 1997-06-05 Studiengesellschaft Kohle Mbh Amorphe mikroporöse Mischoxidkatalysatoren mit kontrollierter Oberflächenpolarität für die selektive heterogene Katalyse Adsorption und Stofftrennung
FR2742070B1 (fr) * 1995-12-08 1998-01-09 Inst Francais Du Petrole Procede d'elaboration controlee de membranes de zeolithe supportee
DE19741498B4 (de) * 1997-09-20 2008-07-03 Evonik Degussa Gmbh Herstellung eines Keramik-Edelstahlgewebe-Verbundes
JP4662626B2 (ja) * 1998-06-03 2011-03-30 エボニック デグサ ゲーエムベーハー イオン伝導性で物質透過性の複合材料、その製造方法および該複合材料の使用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0380266A1 (de) * 1989-01-25 1990-08-01 Alcan International Limited Filterreinigung
EP0474365A1 (de) * 1990-08-31 1992-03-11 United Kingdom Atomic Energy Authority Filterreinigung
EP0686420A1 (de) * 1994-06-09 1995-12-13 United Kingdom Atomic Energy Authority Filterreinigung
WO1996010453A2 (en) * 1994-10-01 1996-04-11 Imas Technology Limited A filter, apparatus including the filter and a method of use of the apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6752925B2 (en) 2000-03-31 2004-06-22 Atech Innovations Gmbh Filter device with an electrically grounded ceramic membrane filter element
DE10022917C5 (de) * 2000-03-31 2005-07-28 Atech Innovations Gmbh Filtervorrichtung für die Mikro- und/oder Ultrafiltration
WO2002002214A1 (en) * 2000-07-03 2002-01-10 Bernt Thorstensen Filter or filter-element for modified electro-dialysis (med) purposes
CN108126540A (zh) * 2017-12-15 2018-06-08 天津膜天膜科技股份有限公司 一种大通量编织管增强型中空纤维膜及其制备方法

Also Published As

Publication number Publication date
CA2272310C (en) 2007-03-27
US6299668B1 (en) 2001-10-09
DE19741498B4 (de) 2008-07-03
EP0959981A1 (de) 1999-12-01
NO992433D0 (no) 1999-05-20
NO992434L (no) 1999-07-12
ES2232963T3 (es) 2005-06-01
US20020023419A1 (en) 2002-02-28
NO992432L (no) 1999-07-12
US6309545B1 (en) 2001-10-30
US6841075B2 (en) 2005-01-11
WO1999015272A1 (de) 1999-04-01
CA2272310A1 (en) 1999-04-01
EP0951355A1 (de) 1999-10-27
CA2272318A1 (en) 1999-04-01
EP0939669A1 (de) 1999-09-08
NO992432D0 (no) 1999-05-20
CA2272312A1 (en) 1999-04-01
NO992435L (no) 1999-07-12
US6340379B1 (en) 2002-01-22
EP0946270A1 (de) 1999-10-06
WO1999015262A1 (de) 1999-04-01
DE19741498A1 (de) 1999-03-25
DE59812384D1 (de) 2005-01-20
ATE297247T1 (de) 2005-06-15
EP0946270B1 (de) 2005-06-08
US20020023874A1 (en) 2002-02-28
CA2272314A1 (en) 1999-04-01
CA2272312C (en) 2007-03-06
DE59812853D1 (de) 2005-07-14
NO992433L (no) 1999-07-12
WO1999015257A1 (de) 1999-04-01
EP0951355B1 (de) 2004-12-15
ATE284756T1 (de) 2005-01-15
NO992435D0 (no) 1999-05-20
US6299778B1 (en) 2001-10-09
NO992434D0 (no) 1999-05-20

Similar Documents

Publication Publication Date Title
WO1999015260A1 (de) Verfahren zur auftrennung von stoffgemischen mittels eines stoffdurchlässigen werkstoffes
EP1007193B1 (de) Hydrophober, stoffdurchlässiger verbundwerkstoff, verfahren zu dessen herstellung und dessen verwendung
EP1166860A2 (de) Polyelektrolytbeschichteter, stoffdurchlässiger Verbundwerkstoff, Verfahren zu dessen Herstellung und die Verwendung des Verbundwerkstoffes
WO2002005936A1 (de) Verfahren und vorrichtung zur membranreinigung
WO2003013708A2 (de) Hybridmembran, verfahren zu deren herstellung und die verwendung der membran
DE10122889C2 (de) Anorganische Kompositmembran zur Abtrennung von Wasserstoff aus Wasserstoff enthaltenden Gemischen
DE19824666B4 (de) Herstellung und Verwendung eines Keramik-Metallträger-Verbundes
AT395408B (de) Mikrofiltration
WO2002038260A1 (de) Feinstporiger verbundwerkstoff, verfahren zu dessen herstellung und die verwendung des verbundwerkstoffes
DE10234441A1 (de) Keramischer Katalysatorkörper
EP1414743B1 (de) Verfahren zur filtration eines wässrigen, bei der herstellung von hydroxylamin anfallenden reaktionsgemischs
EP2656905B1 (de) Entquickung von Lösungen durch Ultrafiltration
DE10055611A1 (de) Zeolithmembrane, Verfahren zu deren Herstellung und die Verwendung der Zeolithmembrane
EP0348388A1 (de) Katalysatorträgerkörper.
Tkachev et al. 14 Modification of Polymer Membranes Using Carbon Nanotubes
JPS59229497A (ja) 微粒子の分離方法
JPH01153528A (ja) チタン酸ゲル分散液の処理法
DE10118243A1 (de) Verfahren, Anordnungen, Werkstoffe und Anwendungen von Hybrid-Filtermodulen ausoffen porösen elektrisch leitfähigen festen Substratelektroden und gasförmigen Membranschichten mit besonderen Funktionseigenschaften
DE19935034A1 (de) Verfahren zur Filtration eines wässrigen bei der Herstellung von Hydroxylamin anfallenden Reaktionsgemisches

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998950049

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2272318

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09308230

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998950049

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998950049

Country of ref document: EP