WO1999034455A1 - Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor - Google Patents

Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor Download PDF

Info

Publication number
WO1999034455A1
WO1999034455A1 PCT/DE1998/003174 DE9803174W WO9934455A1 WO 1999034455 A1 WO1999034455 A1 WO 1999034455A1 DE 9803174 W DE9803174 W DE 9803174W WO 9934455 A1 WO9934455 A1 WO 9934455A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
connection openings
actuators
actuator
piezoelectric
Prior art date
Application number
PCT/DE1998/003174
Other languages
English (en)
French (fr)
Inventor
Dieter Seipler
Walter Röthlingshöfer
Susumu Nishigaki
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1019997007644A priority Critical patent/KR100655094B1/ko
Priority to US09/380,019 priority patent/US6263550B1/en
Priority to EP98959777A priority patent/EP1008193B1/de
Priority to JP53436999A priority patent/JP4440349B2/ja
Priority to DE59812091T priority patent/DE59812091D1/de
Publication of WO1999034455A1 publication Critical patent/WO1999034455A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/063Forming interconnections, e.g. connection electrodes of multilayered piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • H10N30/088Shaping or machining of piezoelectric or electrostrictive bodies by machining by cutting or dicing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/872Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes
    • H10N30/874Connection electrodes of multilayer piezoelectric or electrostrictive devices, e.g. external electrodes embedded within piezoelectric or electrostrictive material, e.g. via connections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/06Forming electrodes or interconnections, e.g. leads or terminals
    • H10N30/067Forming single-layered electrodes of multilayered piezoelectric or electrostrictive parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49126Assembling bases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49789Obtaining plural product pieces from unitary workpiece
    • Y10T29/49798Dividing sequentially from leading end, e.g., by cutting or breaking

Definitions

  • the invention relates to a piezoelectric actuator, which can be used in particular to actuate a fuel injector, and a method for its production.
  • Piezoelectric actuators in particular for actuating fuel injection valves, are known in diverse designs, for example from DE 195 00 706 AI or DE 43 06 073 Cl.
  • the piezoelectric actuators consist of several stacked piezoelectric layers, each of which is coated on one surface with an electrode.
  • Usual piezo actuators consist of several hundred piezoelectric layers stacked in this way. In this way, a relatively large actuation stroke is achieved.
  • the electrodes of the individual piezoelectric layers must be connected alternately to a voltage source in order to generate an electric field aligned in the same direction in the individual layers.
  • Every second electrode is connected to a first pole of a voltage source, while the electrodes in between are connected to a second pole of a voltage source.
  • a voltage source such as B. in GB 2 193 386 A, it has been customary to connect the electrodes extending to the edge of the stacked piezoelectric layers in the edge region on the outside.
  • this type of contact is complex and prone to failure in a fully automated production with large numbers and also has the disadvantage that the.
  • Electrodes are not insulated from the environment due to their extension into the edge area, so that the jacket area of the piezoelectric actuators must be provided with additional insulation.
  • the inventive method with the features of claim 1 has the advantage that it can be used in a fully automated production and leads to very low manufacturing costs.
  • the electrodes of the actuator are contacted not on the outside but on the inside by an electrically conductive paste placed in connection openings.
  • the contacting according to the invention is therefore less susceptible to faults and insensitive to external mechanical damage.
  • the piezoelectric actuators are manufactured in parallel in a highly integrated manufacturing process. A block containing several piezoelectric actuators is only disassembled into the individual actuators at the end of production. The manufacturing yield can be increased significantly.
  • the same advantages also result for the actuator according to the invention with the features of claim 10.
  • Perforation holes can be formed in the intermediate areas between the individual actuators in the foils forming the piezoelectric layers. These perforation holes serve on the one hand as degassing channels during the subsequent burning of the stacked foils. On the other hand, the perforation holes make it easier to separate the stacked arrangement into the individual actuators.
  • the cutting can z. B. done in that the electrodes of adjacent actuators are applied with an electric field opposite to the polarity. While one neighboring actuator contracts, the other neighboring actuator expands. The resulting mechanical tension leads to the actuators breaking apart along the dividing line defined by the perforation holes. However, the perforation holes also make it easier to separate the actuators by sawing along those through the perforation holes predetermined perforation line. Another suitable cutting process is water jet cutting.
  • the metallic electrodes can advantageously be applied by a screen printing method, vapor deposition or sputtering, it being advantageous for reasons of material saving and better adhesion with the overlying piezoelectric ceramic layer that the electrodes are not covered over the entire surface but with a z.
  • Figure 1 is a schematic representation of three films to be stacked from a piezoelectric ceramic material, which are coated with electrodes and are provided with connection openings and perforation holes.
  • Fig. 2 shows a finished actuator in a sectional, perspective view.
  • Fig. 1 shows a perspective, schematic representation to illustrate the manufacturing method according to the invention. Shown are three foils 1, 2 and 3 made from a still unfired, piezoelectric ceramic material, ie from so-called green ceramic.
  • a suitable material is e.g. B. lead barium titanate (PbBaTi0 2 ).
  • the ceramic material can be z. B. by rolling, pouring or cutting into thin films.
  • the magnitude of the film thickness is, for example, 0.1 mm, without the feasibility of the invention being restricted to this film thickness.
  • the foils 4, 4, 4 2 , 4 3 are coated with an electrically conductive material, preferably with a thin metal layer. All known chemical and physical surface coating processes, e.g. B.
  • the electrodes 5 to 10 j , 5 2 to 10 2 and 5 3 to 10 3 can be applied over the entire surface. In the case of a screen printing process, however, it is a net-like one Structure of the electrodes useful.
  • an electrode 5, to 10,, 5 2 to 10 2 or 5 3 to 10 3 of each film 1, 2 or 3 is assigned to an actuator.
  • a plurality of actuators arranged laterally offset from one another are therefore processed simultaneously by the method according to the invention, as a result of which the production costs can be significantly reduced.
  • the connection openings 11 to 22 serve to contact the individual electrodes 5 to 10, which will be discussed in more detail below.
  • the second connection openings 17 to 22 are each surrounded by a recess 23 to 28, ie the electrode coating does not extend to the edge of the second connection openings 17.
  • the edge of the electrodes 5 to 10 is spaced from the edge of the second connection openings 17 to 22.
  • the electrodes 5 3 to 10 3 of the third film 3 have recesses 23 3 to 28 3 which surround the second connection openings 17 3 to 22 3 .
  • the cutouts 23 2 to 28 2 of the electrodes 5 2 to 10 2 surround the first connection openings 11 2 to 16 2 .
  • the cutouts 23 to 28 are therefore assigned alternately from film layer to film layer to the first connection openings 11 to 16 or the second connection openings 17 to 22, respectively.
  • perforation holes 30,, 30 2 and 30 3 are provided in each film layer 1, 2 and 3 in the illustrated embodiment.
  • B. can be formed by punching or drilling simultaneously with the first connection openings 11 to 16 and the second connection openings 17 to 22.
  • the perforation holes 30 are network-like and in each case mark the boundary line between the individual actuators produced simultaneously using the method according to the invention.
  • net-like intermediate regions 31j or 31 2 or 31 3 are provided, so that the electrodes 5 to 10 do not extend to the outer edge of the actuators, but are spaced apart from the edge marked by the perforation holes 30.
  • the perforation holes 30 are preferably arranged in rows in the intermediate regions 31, which extend along the edges of the individual actuators.
  • actuators with a rectangular cross section are produced.
  • the perforation holes must be arranged accordingly varied.
  • a large number of foils are stacked one above the other.
  • several hundred of the films shown in FIG. 1, which have been treated as prescribed, are preferably stacked on top of one another.
  • the individual film layers are aligned with one another in such a way that both the perforation holes 30 and the first connection openings 11 to 16 and the second connection openings 17 to 22 are positioned exactly one above the other. This can e.g. B. done fully automatically with a mechanically or optically scanned reference marking system.
  • the stacking or layering of the individual foils 1 to 3 is illustrated in FIG. 1 by the arrows 40 to 43.
  • the layer sequence of foils 1 to 3 is selected such that the connection openings 11 to 16 or 17 to 22 arranged one above the other alternately only in every second foil layer 1 to 3 from a recess 23 to 28 of electrodes 5 to 10 are surrounded so that the electrodes 5 to 10 are alternately connected to the first connection openings 11 to 16 or the second connection openings 17 to 22.
  • connection openings 11 to 16 and the second connection openings 17 to 22 are coated with a suitable, electrically conductive paste, e.g. B. a metallizing paste filled.
  • a suitable, electrically conductive paste e.g. B. a metallizing paste filled.
  • the filling of the connection openings 11 to 16 or 17 to 22 can, for. B. by suction by means of vacuum or by pressing.
  • the electrically conductive paste is preferably introduced in the already stacked state of the foils. However, it is also conceivable that each individual film is filled with the electrically conductive paste before stacking.
  • the connection openings 11 to 16 or 17 to 22 can also be referred to as so-called via holes, so that the contacting method is called the via fill process.
  • the stacked arrangement resulting from the stacking of the films 1 to 3 is dried under a suitable pressure at elevated temperature and then fired at a suitable temperature.
  • the focal Temperature is preferably greater than 1000 ° C and is preferably in the range between 1000 ° C and 1500 ° C.
  • the fired, stacked arrangement is then broken down into the individual actuators.
  • a film size of, for example, 15 x 20 cm up to 200 individual actuators can be obtained from the stacked arrangement.
  • the separation into the individual actuators takes place, for. B. by sawing or by water jet cutting.
  • the perforation holes 30 facilitate the separation process and mark the separation point.
  • the stacked arrangement is separated into the individual actuators in that adjacent actuators are subjected to an electrical voltage of different polarity.
  • the electrical field which forms in the individual layers of the actuator and which is oriented in different directions between adjacent actuators results in either a contraction or expansion of the adjacent actuators, depending on the field direction.
  • Mechanical tension therefore occurs between the adjacent actuators which, with suitable dimensioning of the electric field strength and the distance between the individual perforation holes 30, leads to a separation of the actuators along the dividing line predetermined by the perforation holes 30.
  • This procedure is particularly cost-saving since it does not require a special separating device.
  • a single actuator is shown in section in FIG. 2.
  • the stacked layers 50 to 50 15 made of piezoelectric ceramic material can be seen.
  • the electrodes 5] to 5 15 of the individual layers 50 to 50 15 can also be seen .
  • the cutouts 23 to 23 15 of the electrodes 5 to 5 15 are arranged alternately in such a way that they alternately surround the first connection opening 11 and the second connection opening 17.
  • electrically conductive paste 53, the electrodes 5, 5, 3 , ... 5 15 each second layer with a z. B. connected by soldering, bonding, welding or the like to the actuator, the first connecting wire 51.
  • the electrical field which forms in the actuator when an electrical voltage is applied between the connecting wires 51 and 52 is therefore oriented in the same direction in all piezoelectric layers 50 L to 50, 5 , so that the contraction or expansion of each individual piezoelectric layer 15, to 15 15 added constructively to a total stroke of the piezoelectric actuator.
  • the broken perforation holes 30 in the edge region of the actuator can also be seen from FIG. 2.
  • top electrode 5 An additional insulation measure is only to be provided for the top electrode 5.
  • the top of the actuator is preferably covered by a suitable electrically insulating casting compound. This potting compound can be applied evenly before the stacked arrangement is separated into the individual actuators. Furthermore, it is conceivable to apply an electrically insulating cover film to the top as a final layer.
  • the perforation holes 30 not only facilitate the separation of the stacked arrangement into individual actuators, but in particular also support the gas escape as drying channels during drying and burning of the stacked arrangement.
  • the method according to the invention can be used to produce piezoelectric actuators which manage with an operating voltage of less than 150 V and generate a force of more than 1000 N with an actuation stroke of 50 ⁇ m.
  • the stacked arrangement can be broken down into individual actuators with almost any cross-sectional area by water cutting. So z. B. round, triangular or star-shaped actuators can be produced.

Abstract

Die Erfindung betrifft ein Verfahren zur parallelen Herstellung mehrerer piezoelektrischer Aktoren sowie einen entsprechenden piezoelektrischen Aktor. Erfindungsgemäss werden mehrere dünne Folien (1-3) aus einem ungebrannten, piezoelektrischen Keramikwerkstoff aufeinander gestapelt. Auf der Oberfläche (4) der Folien (1-3) ist für jeden Aktor eine Elektrode (5-10) vorgesehen. Zur Kontaktierung der Elektroden (5-10) sind erste (11-16) und zweite (17-22) Verbindungsöffnungen vorgesehen. Die Elektroden (5-10) weisen Aussparungen (23-28) auf, die entweder die ersten (11-16) oder die zweiten (17-22) Verbindungsöffnungen umgeben. In die Verbindungsöffnungen (11-22) wird eine elektrisch leitende Paste (53) eingebracht. Die gestapelte Anordnung wird gebrannt und in die einzelnen Aktoren zerlegt. Die Elektroden sind als Innenelektroden von der Umgebung isoliert.

Description

Verfahren zur Herstellung piezoelektrischer Aktoren und Piezoelektrischer Aktor
Stand der Technik
Die Erfindung betrifft einen piezoelektrischen Aktor, der insbesondere zur Betätigung eines Brennstoffeinspritzventils verwendbar ist, sowie ein Verfahren zu dessen Herstellung.
Piezoelektrische Aktoren, insbesondere zur Betätigung von Brennstoffeinspritzventilen, sind in vielfältigen Bauformen beispielsweise aus der DE 195 00 706 AI oder der DE 43 06 073 Cl bekannt. Die piezoelektrischen Aktoren bestehen aus mehreren übereinander gestapelten piezoelektrischen Schichten, die jeweils an einer Oberfläche mit einer Elektrode beschichtet sind. Übliche Piezoaktoren bestehen aus mehreren hundert derart übereinander geschichteten piezoelektrischen Schichten. Auf diese Weise wird ein relativ großer Betätigungshub erreicht. Wie z. B. in der DE 37 13 697 AI näher dargestellt, müssen die Elektroden der einzelnen piezoelektrischen Schichten alternierend mit einer Spannungsquelle verbunden werden, um in den einzelnen Schichten ein in gleicher Richtung ausgerichtetes elektrisches Feld zu erzeugen. Dabei ist jede zweite Elektrode mit einem ersten Pol einer Spannungsquelle verbunden, während die dazwischenliegenden Elektroden mit einem zweiten Pol einer Spannungsquelle verbunden sind. Wie z. B. in der GB 2 193 386 A näher dargestellt, ist es bislang üblich, die sich bis an den Rand der gestapelten piezoelektrischen Schichten erstreckenden Elektroden im Randbereich außenseitig miteinander zu verbinden. Diese Kontaktierungsart ist jedoch bei einer vollautomatischen Fertigung mit großen Stückzahlen aufwendig und störungsanfällig und hat zudem den Nachteil, daß die. Elektroden aufgrund ihrer Erstreckung bis in den Randbereich gegenüber der Umgebung nicht isoliert sind, so daß der Mantelbereich der piezoelektrischen Aktoren mit einer zusätzlichen Isolierung versehen werden muß. Vorteile der Erfindung
Das erfindungsgemäße Verfahren mit den Merkmalen des Anspruchs 1 hat den Vorteil, daß es in einer vollautomatischen Fertigung einsetzbar ist und zu sehr geringen Fertigungskosten führt. Die Elektroden des Aktors werden nicht an der Außenseite sondern dem Inneren durch eine in Verbindungsöffnungen eingebrachte elektrisch leitende Paste kontaktiert. Die erfindungsgemäße Kontaktierung ist daher wenig störanfällig und unanfällig gegen äußere mechanische Beschädigungen. Die piezoelektrischen Aktoren werden in einem hochintegrierten Fertigungsprozeß parallel zueinander hergestellt. Ein mehrere piezoelektrische Aktoren beinhaltender Block wird erst am Ende der Fertigung in die einzelnen Aktoren zerlegt. Die Fertigungsausbeute läßt sich dadurch erheblich erhöhen. Die gleichen Vorteile ergeben sich auch für den erfindungsgemäßen Aktor mit den Merkmalen des Anspruchs 10.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Herstellungsverfahrens bzw. des im Anspruch 10 angegebenen piezoelektrischen Aktors möglich.
Wenn ein Randbereich der Aktoren von den Elektroden ausgespart ist, hat dies den Vorteil, daß die Elektroden von der Umgebung des Aktors zuverlässig isoliert sind. Es sind daher keine weiteren Maßnahmen zur Isolierung der Elektroden erforderlich. Da zudem die Kontaktierung der Elektroden über Verbindungsöffnungen im Inneren des Aktors erfolgt, ergibt sich eine vollständige Isolierung aller spannungführenden Bauteile nach außen. Die Störanfälligkeit des Aktors wird deutlich vermindert.
In den Zwischenbereichen zwischen den einzelnen Aktoren können in den die piezoelektrischen Schichten bildenden Folien Perforationslöcher ausgebildet werden. Diese Perforationslöcher dienen einerseits als Entgasungskanäle beim anschließenden Brennen der gestapelten Folien. Andererseits erleichtern die Perforationslöcher das Zertrennen der gestapelten Anordnung in die einzelnen Aktoren. Das Zertrennen kann dabei z. B. dadurch erfolgen, daß die Elektroden benachbarter Aktoren mit einem elektrischen Feld entgegengesetzt der Polarität beaufschlagt werden. Während der eine benachbarte Aktor kontrahiert, expandiert der andere benachbarte Aktor. Die sich dadurch ergebende mechanische Spannung führt zu einem Auseinanderbrechen der Aktoren entlang der durch die Perforationslöcher vorgegebenen Trennlinie. Die Perforationslöcher erleichtern jedoch auch ein Zertrennen der Aktoren durch Sägen entlang der durch die Perforationslöcher vorgegebenen Perforationslinie. Ein anderes geeignetes Zertrennungsverfahren ist das Wasserstrahlschneiden .
Die metallischen Elektroden können vorteilhaft durch ein Siebdruckverfahren, Aufdampfen oder Sputtern aufgebracht werden, wobei es aus Gründen der Materialeinsparung und besseren Haftvermittlung mit der darüber liegenden piezoelektrischen Keramikschicht vorteilhaft ist, die Elektroden nicht vollflächig sondern mit einer z. B. netzartigen Struktur aufzubringen.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Fig. 1 eine schematische Darstellung von drei aufeinander zu stapelnden Folien aus einem piezoelektrischen Keramikmaterial, die mit Elektroden beschichtet sind und mit Verbindungsöffnungen und Perforationslöchern versehen sind; und
Fig. 2 einen fertigen Aktor in einer geschnittenen, perspektivischen Darstellung.
Beschreibung des Ausführungsbeispiels
Fig. 1 zeigt eine perspektivische, schematische Darstellung zur Veranschaulichung des erfindungsgemäßen Herstellungsverfahrens. Dargestellt sind drei Folien 1, 2 und 3 aus einem noch ungebrannten, piezoelektrischen Keramikwerkstoff, d. h. aus sogenannter grüner Keramik. Ein geeigneter Werkstoff ist z. B. Blei-Barium-Titanat (PbBaTi02). Der keramische Werkstoff läßt sich vor dem Brennen z. B. durch Walzen, Gießen oder Schneiden zu dünnen Folien verarbeiten. Die Größenordnung der Foliendicke liegt bei beispielsweise 0, 1 mm, ohne daß die Ausführbarkeit der Erfindung auf diese Foliendicke beschränkt wäre. In einem nächsten Verarbeitungsschritt werden die Folien an ihrer Oberseite 4, , 42, 43 mit einem elektrisch leitfähigen Material, vorzugsweise mit einer dünnen Metallschicht, beschichtet. Dazu sind alle bekannten chemischen und physikalischen Oberflächenbeschichtungsverfahren, z. B. Aufdampfen, Sputtern oder ein Siebdruckverfahren geeignet. Die Elektroden 5, bis 10j, 52 bis 102 und 53 bis 103 können ganzflächig aufgebracht werden. Bei einem Siebdruckverfahren ist jedoch eine netzartige Struktur der Elektroden zweckmäßig. Im dargestellten Ausführungsbeispiel ist jeweils eine Elektrode 5, bis 10, , 52 bis 102 bzw. 53 bis 103 einer jeden Folie 1, 2 bzw. 3 einem Aktor zugeordnet. Es werden daher mehrere seitlich versetzt zueinander angeordnete Aktoren durch das erfindungsgemäße Verfahren gleichzeitig prozessiert, wodurch die Herstellungskosten deutlich reduziert werden können. Grundsätzlich ist es auch möglich, jedem Aktor nicht nur eine, sondern mehrere Elektroden zuzuordnen, wenn dies für einzelne Anwendungsfälle wünschenswert ist.
In jeder Folien-Schicht 1, 2 bzw. 3 werden in einem der Beschichtung nachfolgenden oder vorhergehenden Arbeitsschritt erste Verbindungsöffnungen 11 , bis 16x in der ersten Folie 1, 112 bis 162 in der zweiten Folie 2 und 113 bis 163 in der dritten Folie 3 sowie zweite Verbindungsöffnungen 17, bis 22, in der ersten Folie 1, 172 bis 222 in der zweiten Folie 2 und 173 bis 233 in der dritten Folie 3 z. B. durch Stanzen oder Bohren ausgebildet. Die Verbindungsöffnungen 11 bis 22 dienen der Kontaktierung der einzelnen Elektroden 5 bis 10, worauf noch näher eingegangen wird. Um eine alternierende Verbindung zwischen den Elektroden zu erzielen, sind bei der ersten Folie 1 die zweiten Verbindungsöffnungen 17, bis 22, jeweils von einer Aussparung 23, bis 28, umgeben, d. h. die Elektroden- Beschichtung reicht nicht bis zum Rand der zweiten Verbindungsöffnungen 17, bis 22, , sondern der Rand der Elektroden 5, bis 10, ist von dem Rand der zweiten Verbindungsöffnungen 17, bis 22, beabstandet. In ähnlicher Weise sind auch bei den Elektroden 53 bis 103 der dritten Folie 3 Aussparungen 233 bis 283 vorgesehen, die die zweiten Verbindungsöffnungen 173 bis 223 umgeben. In der dazwischen liegenden, zweiten Folienschicht hingegen umgeben die Aussparungen 232 bis 282 der Elektroden 52 bis 102 die ersten Verbindungsöffnungen 112 bis 162. Gleiches gilt auch für eine nicht mehr dargestellte oberhalb der ersten Folie 1 angeordnete an diese angrenzende, weitere Folie und eine ebenfalls nicht mehr dargestellte unterhalb der dritten Folie 3 angeordnete und an diese angrenzende weitere Folie. Die Aussparungen 23 bis 28 sind daher alternierend von Folien-Schicht zu Folien-Schicht jeweils den ersten Verbindungsöffnungen 11 bis 16 oder den zweiten Verbindungsöffnungen 17 bis 22 zugeordnet.
Ferner sind im dargestellten Ausführungsbeispiel Perforationslöcher 30, , 302 und 303 in jeder Folienschicht 1, 2 bzw. 3 vorgesehen, die z. B. durch Stanzen oder Bohren gleichzeitig mit den ersten Verbindungsöffnungen 11 bis 16 und den zweiten Verbindungsöffnungen 17 bis 22 ausgebildet werden können. Die Perforationslöcher 30 sind im dargestellten Ausführungsbeispiel netzartig ausgebildet und markieren jeweils die Grenzlinie zwischen den einzelnen mit dem erfindungsgemäßen Verfahren gleichzeitig hergestellten Aktoren. Zwischen den Elektroden 5, bis 10, bzw. 52 bis 102 bzw. 53 bis 103 sind in jeder Folie netzartige Zwischenbereiche 31j bzw. 312 bzw. 313 vorgesehen, so daß die Elektroden 5 bis 10 nicht bis zum äußeren Rand der Aktoren reichen, sondern von dem durch die Perforationslöcher 30 markierten Rand beabstandet sind. Die Perforationslöcher 30 sind vorzugsweise in den Zwischenbereichen 31 in Reihen angeordnet, die sich entlang der Ränder der einzelnen Aktoren erstrecken. Im dargestellten Ausführungsbeispiel werden Aktoren mit rechteckigen Querschnitt hergestellt. Zur Herstellung von Aktoren mit anderen Querschnittsflächen sind die Perforationslöcher entsprechend variiert anzuordnen.
In einem nachfolgenden Bearbeitungsschritt werden eine Vielzahl von Folien, von welchen in Fig. 1 nur ausschnitts weise die Folien 1 bis 3 dargestellt sind, übereinander gestapelt. Zur Erzielung eines ausreichenden Aktorhubs werden vorzugsweise mehrere hundert der in Fig. 1 dargestellten, wie vorgeschrieben behandelten Folien aufeinander geschichtet. Die einzelnen Folien-Schichten werden dabei so zueinander ausgerichtet, daß sowohl die Perforationslöcher 30 als auch die ersten Verbindungsöffnungen 11 bis 16 und die zweiten Verbindungsöffnungen 17 bis 22 exakt übereinander positioniert sind. Dies kann z. B. vollautomatisch mit einem mechanisch oder optisch abtastbaren Referenz-Markierungs- System erfolgen. Das Stapeln bzw. Schichten der einzelnen Folien 1 bis 3 ist in Fig. 1 durch die Pfeile 40 bis 43 veranschaulicht. Wie bereits erläutert, wird die Schichtenfolge der Folien 1 bis 3 so gewählt, daß die übereinander angeordneten Verbindungsöffnungen 11 bis 16 bzw. 17 bis 22 alternierend nur in jeder zweiten Folien-Schicht 1 bis 3 von einer Aussparung 23 bis 28 der Elektroden 5 bis 10 umgeben sind, so daß die Elektroden 5 bis 10 abwechselnd mit den ersten Verbindungsöffnungen 11 bis 16 oder den zweiten Verbindungsöffnungen 17 bis 22 in Verbindung stehen.
In einem weiteren Bearbeitungsschritt werden die ersten Verbindungsöffnungen 11 bis 16 und die zweiten Verbindungsöffnungen 17 bis 22 mit einer geeigneten, elektrisch leitenden Paste, z. B. einer Metallisierungspaste, gefüllt. Das Füllen der Verbindungsöffnungen 11 bis 16 bzw. 17 bis 22 kann z. B. durch Einsaugen mittels Unterdruck oder durch Einpressen erfolgen. Bevorzugt erfolgt das Einbringen der elektrisch leitenden Paste in dem bereits gestapelten Zustand der Folien. Denkbar ist es jedoch auch, daß jede einzelne Folie vor dem Stapeln mit der elektrisch leitenden Paste gefüllt wird. Die Verbindungsöffnungen 11 bis 16 bzw. 17 bis 22 können auch als sogenannte Via-Löcher bezeichnet werden, so daß dem Kontaktierungsverfahren die Bezeichnung Via-Fill-Prozeß zukommt.
In einem nachfolgenden Bearbeitungsschritt wird die durch das Stapeln der Folien 1 bis 3 entstehende gestapelte Anordnung unter einem geeigneten Druck bei erhöhter Temperatur getrocknet und anschließend bei einer geeigneten Temperatur gebrannt. Die Brenn- Temperatur ist vorzugsweise größer als 1000° C und liegt bevorzugt im Bereich zwischen 1000° C und 1500° C.
Anschließend wird die gebrannte, gestapelte Anordnung in die Einzelaktoren zerlegt. Bei einer Foliengröße von beispielsweise 15 x 20 cm lassen sich bis zu 200 Einzel-Aktoren aus der gestapelten Anordnung gewinnen. Das Zertrennen in die Einzel-Aktoren erfolgt z. B. durch Sägen oder durch Wasserstrahlschneiden. Die Perforationslöcher 30 erleichtern dabei den Trennvorgang und markieren die Trennstelle.
Entsprechend einer bevorzugten Vorgehensweise erfolgt das Trennen der gestapelten Anordnung in die Einzel-Aktoren dadurch, daß benachbarte Aktoren mit einer elektrischen Spannung unterschiedlicher Polarität beaufschlagt werden. Durch das sich in den einzelnen Schichten des Aktors ausbildende elektrische Feld, welches zwischen benachbarten Aktoren in unterschiedlicher Richtung ausgerichtet ist, ergibt sich je nach Feldrichtung entweder eine Kontraktion oder Expansion der benachbarten Aktoren. Zwischen den benachbarten Aktoren tritt deshalb eine mechanische Verspannung auf, die bei geeigneter Dimensionierung der elektrischen Feldstärke und des Abstands zwischen den einzelnen Perforationslöchern 30 zu einem Zertrennen der Aktoren entlang der durch die Perforationslöcher 30 vorgegebenen Trennlinie führt. Diese Vorgehensweise ist besonders kostensparend, da es keiner besonderen Trennvorrichtung bedarf.
Zur besseren Veranschaulichung der Erfindung ist in Fig. 2 ein Einzel- Aktor geschnitten dargestellt. Erkennbar sind die gestapelt übereinander angeordneten Schichten 50, bis 5015 aus piezoelektrischem Keramikwerkstoff. Erkennbar sind ferner die Elektroden 5] bis 515 der einzelnen Schichten 50, bis 5015 . Wie in Fig. 2 nochmals verdeutlicht, sind die Aussparungen 23, bis 2315 der Elektroden 5, bis 515 alternierend so angeordnet, daß sie abwechselnd die erste Verbindungsöffnung 11 und die zweite Verbindungsöffnung 17 umgeben. Durch die in die Verbindungsöffnungen 11 und 17 eingefüllte, elektrisch leitfähige Paste 53 werden die Elektroden 5, , 53, ... 515 jeweils jeder zweiten Schicht mit einem z. B. durch Löten, Bonden, Schweißen oder dergleichen mit dem Aktor verbundenen, ersten Anschlußdraht 51 verbunden. Die dazwischenliegenden Elektroden 52, 54, ...514 werden über die in die zweiten Verbindungsöffnungen 17 eingeführte elektrisch leitfähige Paste 53 mit einem zweiten Anschlußdraht 52 verbunden. Das sich in dem Aktor bei Anlegen einer elektrischen Spannung zwischen den Anschlußdrähten 51 und 52 ausbildende elektrische Feld ist daher in sämtlichen piezoelektrischen Schichten 50L bis 50, 5 in gleicher Richtung ausgerichtet, so daß sich die Kontraktion bzw. Expansion jeder einzelnen piezoelektrischen Schicht 15, bis 1515 konstruktiv zu einem Gesamthub des piezoelektrischen Aktors addiert. Aus Fig. 2 sind ferner die ausgebrochenen Perforationslöcher 30 im Randbereich des Aktors zu erkennen. Dadurch, daß die Elektroden 5j bis 515 sich nicht bis zum Randbereich des Aktors erstrecken, sondern durch einen Abstand a von dem Rand beabstandet sind, ergibt sich eine hermetische Isolation der Elektroden 52 bis 515. Lediglich für die oberste Elektrode 5, ist eine zusätzliche Isolationsmaßnahme vorzusehen. Vorzugsweise wird der Aktor an seiner Oberseite durch eine geeignete elektrisch isolierende Vergußmasse abgedeckt. Diese Vergußmasse kann bereits vor dem Zertrennen der gestapelten Anordnung in die Einzel- Aktoren flächig aufgebracht werden. Ferner ist es denkbar, an der Oberseite als abschließende Schicht eine elektrisch isolierende Abdeck- Folie aufzubringen.
Die Perforationslöcher 30 erleichtern nicht nur das Zertrennen der gestapelten Anordnung in Einzel- Aktoren, sondern unterstützen insbesondere auch als Entgasungskanäle die Gasentweichung beim Trocknen und Brennen der gestapelten Anordnung. Durch das erfindungsgemäße Verfahren lassen sich piezoelektrische Aktoren herstellen, die mit einer Arbeitsspannung von weniger als 150 V auskommen und eine Kraft von mehr als 1000 N bei einem Betätigungshub von 50 μm erzeugen. Durch Wasserschneiden läßt sich die gestapelte Anordnung in Einzelaktoren mit nahezu beliebiger Querschnittsfläche zerlegen. So sind z. B. runde, dreieckige oder sternförmige Aktoren herstellbar.

Claims

Ansprüche
1. Verfahren zur parallelen Herstellung mehrerer piezoelektrischer Aktoren mit folgenden
Verfahrens schritten : - Herstellen von dünnen Folien (1-3) aus einem ungebrannten, piezoelektrischen
Keramikwerkstoff,
Ausbilden von die Folien (1-3) durchdringenden ersten und zweiten
Verbindungsöffnungen (11-16, 17-22), wobei jedem Aktor jeweils eine erste (11-16) und eine zweite (17-22) Verbindungsöffnung zugeordnet ist, - Beschichten jeweils einer Oberfläche (4) der Folien (1-3) mit mehreren Elektroden
(5-10), wobei jedem Aktor in jeder Folie (1-3) zumindest eine Elektrode (5-10) zugeordnet ist und wobei die Verbindungsöffnungen (11-16, 17-22) die Folien (1-3) im Bereich der
Elektroden (5-10) durchdringen und die Elektroden (5-10) jeweils eine Aussparung (23-28) aufweisen, die entweder die erste (11-16) oder zweite (17-22) Verbindungsöffnung umgibt,
- Stapeln einer Vielzahl von Folien (1-3) übereinander, so daß die ersten und zweiten Verbindungsöffnungen (11-16, 17-22) in einer dadurch entstehenden gestapelten Anordnung übereinander angeordnet sind, wobei die Schichtenfolge der Folien (1-3) so gewählt ist, daß die übereinander angeordneten Verbindungsöffnungen (11-16, 17-22) alternierend nur in jeder zweiten Folien-Schicht (1-3) von einer Aussparung (23-28) der Elektroden (5-10) umgeben sind, so daß die Elektroden (5-10) abwechselnd entweder mit den ersten Verbindungsöffnungen (11-16) oder den zweiten Verbindungsöffnungen (17-22) in Verbindung stehen, - Einbringen einer elektrisch leitenden Paste (53) in die Verbindungsöffnungen (11-16, 17-22),
- Brennen der gestapelten Anordnung, und
- Zertrennen der gestapelten Anordnung in einzelne Aktoren.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß auf den Oberflächen (4) der Folien (1-3) im Randbereich zwischen den einzelnen Aktoren Zwischenbereiche (31) vorgesehen sind, die von den Elektroden (5-10) ausgespart sind.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Zwischenbereichen (31) Perforationslöcher (30) ausgebildet werden.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Perforationslöcher (30) in sich in den Zwischenbereichen (31) entlang der Ränder der einzelnen Aktoren erstreckenden Reihen angeordnet sind.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß zum Zertrennen der gestapelten Anordnung in die einzelnen Aktoren zwischen den Elektroden (5-10) benachbarter Aktoren ein elektrisches Feld entgegengesetzter Polarität angelegt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Zertrennen der gestapelten Anordnung in die einzelne Aktoren mittels Sägen oder Wasserstrahlschneiden erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die gestapelte Anordnung vor dem Brennen unter Druck bei einer erhöhten Temperatur getrocknet wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Elektroden (5-10) durch ein Siebdruckverfahren, Aufdampfen, Sputtern oder dergleichen aufgebracht werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß die gestapelte Anordnung beim Brennen unter uniaxialem Druck bei einer Temperatur von mindestens 1000° C gesintert wird.
10. Piezoelektrischer Aktor, der eine Vielzahl von übereinander angeordneten Schichten (50) aus einem piezoelektrischen Keramikwerkstoff aufweist, die jeweils auf einer Oberfläche (4) mit zumindest einer Elektrode (5) beschichtet sind, wobei die Elektroden (5) alternierend miteinander verbunden sind, dadurch gekennzeichnet, daß in jeder Schicht (50) eine erste und zweite die Schicht (50) im Bereich der Elektrode
(5) durchdringende Verbindungsöffnung (11, 17) vorgesehen sind, daß jede Elektrode (5) eine Aussparung (23) aufweist, die entweder die erste (11) oder zweite (17) Verbindungsöffnung umgibt, daß die Schichten (50) so gestapelt sind, daß die ersten und zweiten Verbindungsöffnungen
(11 , 17) sämtlicher Schichten (50) übereinander angeordnet sind und die übereinander angeordneten Verbindungsöffnungen (11, 17) alternierend nur in jeder zweiten Schicht von einer Aussparung (23) der Elektroden (5) umgeben sind, so daß die Elektroden (5) abwechselnd mit den ersten Verbindungsöffnungen (11) und den zweiten Verbindungsöffnungen (17) in Verbindung stehen, und daß die Verbindungsöffnungen (11, 17) mit einer elektrisch leitenden Paste (53) gefüllt sind.
11. Piezoelektrischer Aktor nach Anspruch 10, dadurch gekennzeichnet, daß die Elektroden (5) aus einer netzartigen Metallschicht bestehen.
12. Piezoelektrischer Aktor nach Anspruch 10 oder 11 , dadurch gekennzeichnet, daß die Schichten (50) einen umlaufenden Randbereich (31) aufweisen, der nicht mit der Elektrode (5) beschichtet ist.
13. Piezoelektrischer Aktor nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß die äußere Oberfläche der obersten und/oder untersten Schicht und/oder der Randbereich des Aktors in eine elektrisch isolierende Vergußmasse eingebettet ist.
PCT/DE1998/003174 1997-12-24 1998-10-30 Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor WO1999034455A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019997007644A KR100655094B1 (ko) 1997-12-24 1998-10-30 압전식 액츄에이터의 제조 방법과 압전식 액츄에이터
US09/380,019 US6263550B1 (en) 1997-12-24 1998-10-30 Method for the production of piezoelectric actuators
EP98959777A EP1008193B1 (de) 1997-12-24 1998-10-30 Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor
JP53436999A JP4440349B2 (ja) 1997-12-24 1998-10-30 圧電式アクチュエータの製造方法および圧電式アクチュエータ
DE59812091T DE59812091D1 (de) 1997-12-24 1998-10-30 Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19757877.2 1997-12-24
DE19757877A DE19757877A1 (de) 1997-12-24 1997-12-24 Verfahren zur Herstellung piezoelektrischer Aktoren und piezoelektrischer Aktor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/380,019 A-371-Of-International US6263550B1 (en) 1997-12-24 1998-10-30 Method for the production of piezoelectric actuators
US09/837,127 Division US20010022489A1 (en) 1997-12-24 2001-04-18 Method for manufacturing piezoelectric actuators and a piezoelectric actuator

Publications (1)

Publication Number Publication Date
WO1999034455A1 true WO1999034455A1 (de) 1999-07-08

Family

ID=7853389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/003174 WO1999034455A1 (de) 1997-12-24 1998-10-30 Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor

Country Status (7)

Country Link
US (3) US6263550B1 (de)
EP (1) EP1008193B1 (de)
JP (1) JP4440349B2 (de)
KR (1) KR100655094B1 (de)
CZ (1) CZ295943B6 (de)
DE (2) DE19757877A1 (de)
WO (1) WO1999034455A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126656A1 (de) * 2001-06-01 2002-12-05 Endress & Hauser Gmbh & Co Kg Elektromechanischer Wandler mit mindestens einem piezoelektrischen Element
WO2005067070A1 (de) * 2004-01-12 2005-07-21 Siemens Aktiengesellschaft Aktor mit innenliegender anschlusselektrode und herstellungsverfahren für einen solchen aktor

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024701A1 (de) * 2000-05-18 2001-11-29 Bosch Gmbh Robert Piezoaktor
DE10041338A1 (de) * 2000-08-23 2002-03-14 Epcos Ag Verfahren zum Herstellen eines keramischen Vielschichtbauelements sowie Grünkörper für ein keramisches Vielschichtbauelement
DE10147075A1 (de) * 2001-09-25 2003-04-30 Infineon Technologies Ag Piezoelektrisches Bauelement und Verfahren zu dessen Herstellung
JP2003288158A (ja) * 2002-01-28 2003-10-10 Sony Corp タクタイル・フィードバック機能を持つ携帯型機器
GB2390479A (en) 2002-06-06 2004-01-07 Delphi Tech Inc Poling method
JP2004356206A (ja) * 2003-05-27 2004-12-16 Fuji Photo Film Co Ltd 積層構造体及びその製造方法
JP4842520B2 (ja) * 2003-05-30 2011-12-21 日本碍子株式会社 セル駆動型圧電/電歪アクチュエータ及びその製造方法
JP4438321B2 (ja) * 2003-06-02 2010-03-24 株式会社デンソー 積層型圧電体素子の製造方法
DE10335019A1 (de) * 2003-07-31 2005-02-17 Robert Bosch Gmbh Piezoaktor
US6941740B2 (en) * 2003-10-15 2005-09-13 Deere & Company Baler gate linkage and latch structure
JP4261374B2 (ja) * 2004-01-09 2009-04-30 富士フイルム株式会社 積層構造体及びその製造方法、並びに、超音波トランスデューサ
DE102004002087A1 (de) * 2004-01-15 2005-08-04 Robert Bosch Gmbh Piezoaktor und ein Verfahren zu dessen Herstellung
JP4982031B2 (ja) * 2004-01-16 2012-07-25 株式会社日立製作所 コンテンツ送信装置、コンテンツ受信装置およびコンテンツ送信方法、コンテンツ受信方法
JP2005340387A (ja) * 2004-05-25 2005-12-08 Tdk Corp 積層型圧電素子及び燃料噴射装置
FR2874663B1 (fr) * 2004-08-31 2006-11-24 Renault Sas Dispositif de mise en vibration cyclique d'une buse d'injecteur
US7302744B1 (en) 2005-02-18 2007-12-04 The United States Of America Represented By The Secretary Of The Navy Method of fabricating an acoustic transducer array
DE102005016798A1 (de) * 2005-04-12 2006-10-19 Robert Bosch Gmbh Brennstoffeinspritzventil
JP5205689B2 (ja) * 2005-08-25 2013-06-05 Tdk株式会社 積層型圧電素子
JP4752562B2 (ja) * 2006-03-24 2011-08-17 ヤマハ株式会社 鍵駆動装置及び鍵盤楽器
DE102009028259A1 (de) * 2009-08-05 2011-02-10 Robert Bosch Gmbh Verfahren zur Herstellung von piezoelektrischen Werkstücken
US8210661B2 (en) * 2009-12-16 2012-07-03 Palo Alto Research Center, Incorporated Stacked slice printhead
DE102011003081A1 (de) 2011-01-25 2012-07-26 Robert Bosch Gmbh Verfahren zur Herstellung von piezoelektrischen Werkstücken
DE102011003679A1 (de) 2011-02-07 2012-08-09 Robert Bosch Gmbh Verfahren zur Herstellung von piezoelektrischen Werkstücken
DE102013100764B4 (de) * 2013-01-25 2021-04-22 Bürkert Werke GmbH Verfahren zur Herstellung von durch physikalische Gasphasenabscheidung erzeugten Elektroden sowie ein Verfahren zur Herstellung von Piezoelementen mit durch physikalische Gasphasenabscheidung erzeugten Elektroden
CN111682103A (zh) * 2020-05-29 2020-09-18 深圳振华富电子有限公司 一种带电极片式压电驱动器堆栈的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523121A (en) * 1982-05-11 1985-06-11 Nec Corporation Multilayer electrostrictive element which withstands repeated application of pulses
JPS62199075A (ja) * 1986-02-27 1987-09-02 Fuji Elelctrochem Co Ltd 積層型圧電素子の製造方法
WO1997001868A1 (en) * 1995-06-27 1997-01-16 Philips Electronics N.V. Method of manufacturing multilayer electronic components

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH429228A (de) 1964-12-10 1967-01-31 Kistler Instrumente Ag Piezoelektrischer Einbaukörper zum Einbau in einen piezoelektrischen Wandler
JPS61205100A (ja) 1985-03-08 1986-09-11 Murata Mfg Co Ltd 圧電発音体
US4803393A (en) 1986-07-31 1989-02-07 Toyota Jidosha Kabushiki Kaisha Piezoelectric actuator
DE3713697A1 (de) 1987-04-24 1988-11-10 Licentia Gmbh Ultraschnelles steuerventil
US4967314A (en) * 1988-03-28 1990-10-30 Prime Computer Inc. Circuit board construction
EP0427901B1 (de) 1989-11-14 1996-04-03 Battelle Memorial Institute Verfahren zur Herstellung einer piezoelektrischen Stapelantriebsvorrichtung
JPH04299588A (ja) 1991-03-28 1992-10-22 Nec Corp 電歪効果素子
US5652042A (en) * 1993-10-29 1997-07-29 Matsushita Electric Industrial Co., Ltd. Conductive paste compound for via hole filling, printed circuit board which uses the conductive paste
US5519279A (en) 1994-09-29 1996-05-21 Motorola, Inc. Piezoelectric resonator with grid-like electrodes
DE19500706C2 (de) 1995-01-12 2003-09-25 Bosch Gmbh Robert Zumeßventil zur Dosierung von Flüssigkeiten oder Gasen
JP2842382B2 (ja) 1996-06-11 1999-01-06 日本電気株式会社 積層型圧電トランスおよびその製造方法
DE69724437T2 (de) 1996-07-12 2004-07-15 Taiheiyo Cement Corp. Piezoelektrische transformatoranordnung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4523121A (en) * 1982-05-11 1985-06-11 Nec Corporation Multilayer electrostrictive element which withstands repeated application of pulses
JPS62199075A (ja) * 1986-02-27 1987-09-02 Fuji Elelctrochem Co Ltd 積層型圧電素子の製造方法
WO1997001868A1 (en) * 1995-06-27 1997-01-16 Philips Electronics N.V. Method of manufacturing multilayer electronic components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 054 (E - 583) 18 February 1988 (1988-02-18) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126656A1 (de) * 2001-06-01 2002-12-05 Endress & Hauser Gmbh & Co Kg Elektromechanischer Wandler mit mindestens einem piezoelektrischen Element
US7061165B2 (en) 2001-06-01 2006-06-13 Endress & Hauser Gmbh & Co. Kg Electromechanical converter comprising at least one piezoelectric element
WO2005067070A1 (de) * 2004-01-12 2005-07-21 Siemens Aktiengesellschaft Aktor mit innenliegender anschlusselektrode und herstellungsverfahren für einen solchen aktor

Also Published As

Publication number Publication date
DE59812091D1 (de) 2004-11-11
KR20000075584A (ko) 2000-12-15
DE19757877A1 (de) 1999-07-01
KR100655094B1 (ko) 2006-12-08
US6757947B2 (en) 2004-07-06
JP4440349B2 (ja) 2010-03-24
US6263550B1 (en) 2001-07-24
JP2001513269A (ja) 2001-08-28
EP1008193A1 (de) 2000-06-14
CZ255399A3 (cs) 1999-11-17
CZ295943B6 (cs) 2005-12-14
US20010022489A1 (en) 2001-09-20
EP1008193B1 (de) 2004-10-06
US20020130595A1 (en) 2002-09-19

Similar Documents

Publication Publication Date Title
EP1008193B1 (de) Verfahren zur herstellung piezoelektrischer aktoren und piezoelektrischer aktor
EP1908131B1 (de) Verfahren zum herstellen eines monolithischen piezoaktors mit teilstapeln, monolithischer piezoaktor mit teilstapeln und verwendung des piezoaktors
EP1597780B1 (de) Elektrisches vielschichtbauelement und schichtstapel
EP0958620B1 (de) Piezoaktor mit neuartiger kontaktierung und herstellverfahren
DE19860001C2 (de) Piezoelektrisches Bauelement, Verfahren zu dessen Herstellung und Verwendung eines derartigen Bauelements
DE19945933C1 (de) Piezoaktor mit isolationszonenfreier elektrischer Kontaktierung und Verfahren zu dessen Herstellung
DE1208368B (de) Piezoelektrischer Kraftmesser
EP1997160B1 (de) Piezoaktor und verfahren zum herstellen eines piezoaktors
DE19834461A1 (de) Vielschicht-Piezoaktor
EP2577762B1 (de) Verfahren zum herstellen eines piezoaktors und piezoaktor
EP1235285B1 (de) Verfahren zur Herstellung piezokeramischer Vielschichtaktoren
DE102004026572A1 (de) Herstellungsverfahren für piezoelektrisches Schichtelement
EP2543085B9 (de) Piezoelektrisches bauelement
DE10021919C2 (de) Verfahren zur Herstellung monolithischer piezokeramischer Vielschichtaktoren sowie monolithischer piezokeramischer Vielschichtaktor
EP1129493B1 (de) Piezokeramische vielschichtstruktur mit regelmässiger polygon-querschnittsfläche
EP2054951B1 (de) Piezoelektrisches bauelement
EP2798679B1 (de) Piezostack mit passivierung und verfahren zur passivierung eines piezostacks
WO2015055359A1 (de) Vielschichtbauelement und verfahren zur herstellung eines vielschichtbauelements
EP0576707B1 (de) Translatorstapel und Verfahren zu dessen Herstellung
DE112010002244T5 (de) Piezoelektrische gestapelte Stellanordnung
DE102013100764B4 (de) Verfahren zur Herstellung von durch physikalische Gasphasenabscheidung erzeugten Elektroden sowie ein Verfahren zur Herstellung von Piezoelementen mit durch physikalische Gasphasenabscheidung erzeugten Elektroden
DE102012110556B4 (de) Vielschichtbauelement und Verfahren zu dessen Herstellung
DE102005033463B3 (de) Piezoaktor
DD293689A5 (de) Laminierte keramikanordnung und verfahren zur herstellung derselben
DE102015217334B3 (de) Verfahren zum Herstellen eines als Stapel ausgebildeten Vielschichtaktors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1998959777

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: PV1999-2553

Country of ref document: CZ

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1999 534369

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019997007644

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: PV1999-2553

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 09380019

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998959777

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007644

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998959777

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: PV1999-2553

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1019997007644

Country of ref document: KR