WO1999035979A1 - Methods and apparatus for crossing total occlusions in blood vessels - Google Patents

Methods and apparatus for crossing total occlusions in blood vessels Download PDF

Info

Publication number
WO1999035979A1
WO1999035979A1 PCT/US1998/026938 US9826938W WO9935979A1 WO 1999035979 A1 WO1999035979 A1 WO 1999035979A1 US 9826938 W US9826938 W US 9826938W WO 9935979 A1 WO9935979 A1 WO 9935979A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
cannula
blood vessel
lumen
catheter
Prior art date
Application number
PCT/US1998/026938
Other languages
French (fr)
Inventor
Matthew R. Selmon
Richard E. Hill
Fred H. Co
Charles F. Milo
Ronald G. French
Original Assignee
Lumend, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lumend, Inc. filed Critical Lumend, Inc.
Priority to JP2000539761A priority Critical patent/JP4334765B2/en
Priority to BR9814588-6A priority patent/BR9814588A/en
Priority to CA002318470A priority patent/CA2318470A1/en
Priority to AU18315/99A priority patent/AU745116B2/en
Priority to EP98963257A priority patent/EP1047344A1/en
Publication of WO1999035979A1 publication Critical patent/WO1999035979A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3205Excision instruments
    • A61B17/3207Atherectomy devices working by cutting or abrading; Similar devices specially adapted for non-vascular obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00243Type of minimally invasive operation cardiac
    • A61B2017/00247Making holes in the wall of the heart, e.g. laser Myocardial revascularization
    • A61B2017/00252Making holes in the wall of the heart, e.g. laser Myocardial revascularization for by-pass connections, i.e. connections from heart chamber to blood vessel or from blood vessel to blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22038Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with a guide wire
    • A61B2017/22042Details of the tip of the guide wire
    • A61B2017/22044Details of the tip of the guide wire with a pointed tip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22072Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other
    • A61B2017/22074Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel
    • A61B2017/22077Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an instrument channel, e.g. for replacing one instrument by the other the instrument being only slidable in a channel, e.g. advancing optical fibre through a channel with a part piercing the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22094Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for crossing total occlusions, i.e. piercing
    • A61B2017/22095Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for crossing total occlusions, i.e. piercing accessing a blood vessel true lumen from the sub-intimal space
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00392Transmyocardial revascularisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3925Markers, e.g. radio-opaque or breast lesions markers ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0082Catheter tip comprising a tool
    • A61M2025/0096Catheter tip comprising a tool being laterally outward extensions or tools, e.g. hooks or fibres

Definitions

  • crossing the occlusion with a guidewire can be accomplished simply by pushing the guidewire through the occlusion.
  • the guidewire remains in the blood vessel lumen and provides the desired access path.
  • the guidewire inadvertently penetrates into the subintimal space between the intimal layer and the adventitial layer of the blood vessel as it attempts to cross the occlusion. Once in the subintimal space, it is very difficult and in many cases impossible to direct the guidewire back into the blood vessel lumen. In such cases, it will usually be impossible to perform the catheter-based intervention and other, more traumatic, procedures may have to be employed.
  • the total occlusions are crossed by first forming a track from a lumen in the blood vessel into a subintimal space between an intimal layer and an adventitial layer of the blood vessel.
  • the track is formed so that it extends from a location proximal of the total occlusion to a location which is distal to the total occlusion.
  • a passage is then formed from the track back into the blood vessel lumen at the distal location.
  • the track is formed by advancing a wire through the blood vessel lumen into the subintimal space, typically by advancing the wire until it encounters the total occlusion. By continuing to advance the wire, it will usually pass into the subintimal space and can be further advanced to the desired distal location. After the wire is located distally to the total occlusion, it is typically deflected from the track back into the blood vessel lumen .
  • intravascular imaging e.g. intravascular ultrasonic imaging (IVUS)
  • IVUS intravascular ultrasonic imaging
  • OCT optical coherence tomography
  • an ultrasonic imaging guidewire may be used to initially access the subintimal space and/or may be exchanged for the wire which is used to access the subintimal space.
  • kits comprising a wire-deflecting catheter having a lumen or mechanism capable of laterally deflecting a wire.
  • the kit will further comprise instructions setting forth any of the methods described above.
  • the kit may further comprise the wire which is used for penetrating the subintimal space and/or back into the blood vessel lumen.
  • the kit will usually still further comprise a package for containing both the wire deflecting catheter and the instructions, and optionally the additional wire(s). Suitable packages include pouches, trays, tubes, boxes, and the like.
  • the instructions may be printed on a separate package insert or may be printed in part or in whole on the packaging itself. Usually, the components of the kit within the package will be sterilized by conventional procedures.
  • Apparatus according to the present invention comprise wire-deflection systems.
  • Exemplary wire-deflection systems usually comprise the wire-deflecting catheter which includes a catheter body and a deflecting cannula.
  • the catheter body will have a proximal end, a distal end, and at least one lumen extending through at least a distal portion thereof.
  • the lumen will have a distal opening and a lateral opening.
  • the cannula also has a proximal end, a distal end, and at least one lumen extending through a distal portion thereof.
  • the distal portion of the cannula will have a pre- formed, resilient curve.
  • the cannula will be slidably disposed within the lumen of the catheter body to assume (a) a straightened configuration when the cannula is proximally retracted within the catheter body lumen and (b) a curved configuration when the cannula is extended laterally through the lateral opening of the catheter body. In this way, the cannula can be selectively deflected through the intimal layer of the blood vessel according to the preferred methods described above .
  • the system may further comprise a wire configured to pass through the cannula lumen.
  • the wire may be a conventional guidewire, but will more typically be a wire having a sharpened distal tip intended particularly for penetrating the intimal layer of the blood vessel wall.
  • the wire may further comprise an imaging means such as an ultrasonic imaging means.
  • the catheter body will typically have a fluoroscopically visible marker near its distal end. The marker will be configured to permit visual determination of the rotational orientation of the distal end of the catheter body when viewed in a two-dimensional fluoroscopic image.
  • the catheter body will usually be reinforced to enhance torsional rigidity, and may further comprise a distal nose cone wherein the distal and lateral openings are defined within the nose cone.
  • the distal end of the cannula will usually be pre-formed in a smooth curve which may extend over an arc in the range from 15° to 135°, usually from 45° to 90°.
  • the pre-formed curve may have a radius in the range from 0.5 mm to 15 mm, usually from 2 mm to 10 mm.
  • FIG. 1 is a schematic illustration of a coronary artery showing the intimal layer, the medial layer, and the adventitial layer.
  • Fig. 2 is a schematic illustrations of a total occlusion within the coronary artery of Fig. 1, shown in full section.
  • Figs. 3A-3D illustrate the method of the present invention for crossing a total occlusion with a wire using a deflecting catheter.
  • Figs. 3BB illustrates an alternate guidewire advancement step for the method of Figs. 3A-3D.
  • Fig. 4 illustrates a first embodiment of the distal end of a deflecting catheter suitable for use in the methods of the present invention.
  • Figs. 11A and 11B illustrate a configuration for rotationally keying the proximal end of the catheter of Figs. 7-10.
  • Fig. 12 illustrates a configuration for rotationally keying the distal end of the catheter of Figs. 7-10.
  • a normal (non-diseased) artery A comprises an arterial wall having a number of layers .
  • the innermost layer is referred to herein as the intimal layer I which includes the endothelium, the subendothelial layer, and the internal elastic lamina.
  • a medial layer M is concentrically outward from the intimal layer, and an adventitial layer AL is the outermost layer. Beyond the adventitial layer AL lies the extravascular tissue.
  • the region between the intimal layer I and the adventitial layer AL generally including the medial layer M, will be referred to as the subintimal space. It is the subintimal space through which the wires, deflecting catheters, and other catheter of the present invention will pass when crossing a total occlusion.
  • Total occlusion TO may comprise atheroma, plaque, thrombus, and/or other occluding materials normally associated with cardiovascular disease.
  • total occlusion it is meant that the occluding material occludes substantially the entire lumen L of the artery or other blood vessel so that blood flow through the vessel is substantially stopped.
  • the present invention will usually be used with patients where the totally occluded artery is not immediately life threatening since the tissue distal to the occlusion will receive oxygenated blood from collateral arteries.
  • a wire 10 is advanced through the lumen of the artery until it encounters the total occlusion TO. At that time, it is possible that the wire 10 will advance through the occlusion without deflecting into the blood vessel wall.
  • deflecting catheter 20 may be advanced over the wire 10, by coaxial introduction over the proximal end of the wire, until it approaches the total occlusion, also as shown in Fig. 3B.
  • the deflecting catheter 20 is then further advanced over the wire 10 until its distal tip also extends beyond the total occlusion TO, as illustrated in Fig. 3C.
  • the deflecting catheter 20 will include some mechanism for laterally deflecting the wire 10 so that it may pass back in a radially inward direction through the intimal layer I back into the blood vessel lumen L.
  • the deflection mechanism may take a variety of forms as described below. As shown in Fig.
  • a lateral port 22 is provided.
  • the wire 10 may be retracted so that its distal tip lies proximally of the port 22 and then advanced distally so that the wire passes laterally outwardly through the port and back into the blood vessel lumen, as shown in Fig. 3D.
  • an imaging guidewire may be advanced to the region of the total occlusion TO in a direction opposite to that of the wire 10 and catheter 20.
  • the imaging guidewire need not advance through the total occlusion, but could still detect advancement of the catheter and/or guidewire, particularly if ultrasonically opaque components were provided on either or both of the catheter and wire.
  • an ultrasonic imaging catheter or guidewire could be positioned in a vein adjacent to the arterial occlusion site, allowing imaging of the entire occluded region while the guidewire is advanced there through.
  • Other imaging modalities such as optical coherence tomography (OCT) (see U.S. Patent Nos.
  • a second desirable feature of the method of the present invention will be rotational positioning of the deflecting catheter 20. It will be appreciated that the direction of deflection is usually selective, and therefore it will be desirable to aim the deflecting mechanism from the subintimal space back toward the arterial or other blood vessel lumen L. If the catheter 22 is provided with ultrasonic imaging, such imaging can be used for rotationally positioning the distal tip of the catheter. The catheter will be rotationally rigid so that rotation of its proximal end. may position the distal end. By then detecting the presence of the blood vessel lumen, the deflecting port 22 or other deflecting mechanism can be properly positioned. In an alternative embodiment, as illustrated below in connection with the exemplary catheter, a rotationally specific fluoroscopic marker may be provided on the catheter 20. The marker will be such that by observing the two-dimensional image of the marker by fluoroscopic imaging, the rotational direction of the catheter tip can be determined.
  • the distal end of the catheter 30 has a distal port 32, a lateral port 34, and a passive deflecting mechanism 36.
  • the catheter 30 may be advanced over the proximal end of a wire so that the wire passes over the deflecting mechanism 36 and back into the main lumen of the catheter 30.
  • the catheter 30 may then be advanced over the wire until the distal tip enters the subintimal space and approaches the distal end of the wire.
  • a cannula 52 having a pre-formed distal end may be advanced and retracted out of a distal port 54 of the catheter 50 so that its distal end can assume a laterally deflected shape, as shown in broken line. It will be appreciated that these three embodiments are intended to be exemplary only. A wide variety of other passive and active deflecting mechanisms could be provided on deflecting catheters for use in the methods of the present invention.
  • the cannula 114 has a sharpened tip 116, typically formed from a metal, hard plastic, composite, or the like, optically being radiopaque. Alternatively or additionally, it may be desirable to provide at least one separate radiopaque marker or the cannula at or near its distal end to facilitate visualization under fluoroscopic imaging.
  • a distal length 118 of the cannula 114 is pre-formed in a curved shaped, as best seen in Figs. 7 and 9.
  • a rotationally specific radiopaque marker 120 is mounted near the distal end of catheter body 102. As illustrated, the marker has a generally U-shaped configuration so that the rotational position of the distal end of the catheter body 102 will be apparent when the marker is observed in a two- dimensional fluoroscopic image.
  • catheter 100 As with catheter 40 in Fig. 5, the purpose of catheter 100 is to laterally deflect the distal tip of the cannula 114 through a lateral opening 122 in the deflector housing 110.
  • the deflector housing 110 also includes a distal port 124 to permit introduction of the catheter 100 over the proximal end of a guidewire GW, as illustrated in Fig. 8 in broken line.
  • the guidewire GW will pass through the distal port 124 and into the distal end of the cannula 114 and travel through a lumen of cannula 114 all the way to the proximal end of the catheter 100.
  • the actuator hub 112 comprises a pair of coaxial, telescoping tubes 130 and 132.
  • the outer telescoping tube 132 is connected to a proximal end of cannula 114, typically by an adhesive 134.
  • a proximal fitting 136 is further attached to the proximal end of tube 132 so that the assembly of the cannula 114, tube 132, and fitting 136 will move together as a unit through the hemostatic fitting 140 at the proximal end of the hub 112.
  • Hub 112 further includes a rotational fitting 142 which permits the catheter body 102 to be rotated relative to the hub body.
  • the cannula 114 and catheter body 102 will be rotationally coupled or “keyed” together to limit or prevent relative rotation, typically by keying within the hub and/or near the distal end, so that rotation of the catheter body- causes a like rotation of the cannula as the catheter is rotationally positioned within a blood vessel.
  • a side branch 148 is provided on hub 112 to permit perfusion and/or infusion through the lumen 108 of catheter 102.
  • Keying at the proximal end of the catheter 100 can be achieved in a variety of ways.
  • the telescoping tubes 130 and 132 can be provided with asymmetric, mating peripheral geometries, such as oval cross-sections (Fig. 11A) or triangular cross-sections (Fig. 11B) .
  • Keying at the distal end can also be achieved in a number of ways, such as providing the catheter body 102 with an asymmetric lumen 108 and the cannula 114 with a mating cross-section, e.g. a D- shaped cross-section as illustrated in Fig. 12.
  • the ability to limit relative rotation of the cannula 114 within the catheter body 102 is advantageous since it assures that curved distal length 118 is properly oriented (usually directed radially outwardly) when the tip 116 emerges through the opening 122.
  • catheter 100 will be advanced over guidewire GW while the cannula 114 is retracted, as shown in Fig. 8. Once the catheter is properly positioned, cannula 114 may be distally advanced, as shown in Fig. 9. Distal advancement is achieved by forwardly advancing the sleeve 132 in hub 136 relative to the remainder of the hub 112 so that the cannulas move forwardly within the lumen 108 of catheter body 102.
  • the port 122 Prior to advancing the cannula, the port 122 will be properly positioned so that it is directed toward the blood vessel lumen by rotating catheter body 102, typically using the rotational hub 142. Conveniently, the physician will observe the marker 120 so that the lateral port 122 will be directed in the proper radially inward direction.
  • the guidewire GW may then be advanced into the lumen, the cannula 114 withdrawn proximally, and the entire catheter assembly then withdrawn from over the guidewire, leaving the guidewire in place for introduction of other interventional and/or diagnostic catheters .

Abstract

Total occlusions are crossed by passing a guidewire or other penetrating wire from a point proximal to the occlusion into a subintimal space between the intimal layer and adventitial layer of the blood vessel wall. The wire is advanced to a point distal the occlusion and thereafter deflected back into the blood vessel lumen, typically using a deflecting catheter which is advanced over the guidewire after it has been positioned within the subintimal space. After the guidewire is returned to the blood vessel lumen, the deflecting catheter may be withdrawn and the guidewire is available for introduction of other interventional and diagnostic catheters.

Description

METHODS AND APPARATUS FOR CROSSING TOTAL
OCCLUSIONS IN BLOOD VESSELS
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to medical devices, kits, and methods. More particularly, the present invention relates to systems and procedures for crossing chronic total occlusions in blood vessels with guidewires and subsequently performing angioplasty, atherectomy, stenting, or other treatments .
Cardiovascular disease is a leading cause of mortality worldwide. Cardiovascular disease can take many forms, and a variety of specific interventional and pharmaceutical treatments have been devised over the years with varying levels of success.
A particularly troublesome form of cardiovascular disease results when a blood vessel becomes totally occluded with atheroma or plaque, referred to as a chronic total occlusion. Until recently, chronic total occlusions have usually been treated by performing a bypass procedure where an autologous or synthetic blood vessel is anastomotically attached to locations on the blood vessel upstream and downstream of the occlusion. While highly effective, such bypass procedures are quite traumatic to the patient. Recently, catheter-based intravascular procedures have been utilized to treat chronic total occlusions with increasing success. Catheter-based intravascular procedures include angioplasty, atherectomy, stenting, and the like, and are often preferred because they are much less traumatic to the patient. Before such catheter-based treatments can be performed, however, it is usually necessary to cross the occlusion with a guidewire to provide access for the interventional catheter. In some instances, crossing the occlusion with a guidewire can be accomplished simply by pushing the guidewire through the occlusion. The guidewire remains in the blood vessel lumen and provides the desired access path. In many cases, however, the guidewire inadvertently penetrates into the subintimal space between the intimal layer and the adventitial layer of the blood vessel as it attempts to cross the occlusion. Once in the subintimal space, it is very difficult and in many cases impossible to direct the guidewire back into the blood vessel lumen. In such cases, it will usually be impossible to perform the catheter-based intervention and other, more traumatic, procedures may have to be employed.
For these reasons, it would be desirable to provide methods, kits, and apparatus which facilitate crossing a chronic total occlusion in a blood vessel with a guidewire . In particular, it would be desirable to provide catheters, guides, or other apparatus which could be used with a conventional or specialized guidewire to direct or redirect the guidewire from the subintimal space back into the blood vessel lumen after the guidewire has entered such space . Such methods and apparatus should be useful in coronary arteries as well as other blood vessels and should be capable of being performed with or without imaging from within or adjacent to the blood vessel. The apparatus for achieving these objective should be of simple construction and be capable of being used in a straight -forward, generally fool-proof manner. At least some of these objectives will be met by the invention described hereinafter.
2. Description of the Background Art Catheters having side guidewire entry ports spaced proximally from their distal tips are described in U.S. Patent NOS. 5,464,395; 5,413,581; 5,190,528; 5,183,470; 4,947,864; and 4,405,314. Catheters and methods for forming lateral penetrations through tissue to and from blood vessels past total occlusions are described in U.S. Patent Nos. 5,443,497; 5,429,144; 5,409,019; 5,287,861; WO 97/13463; and WO 97/13471. SUMMARY OF THE INVENTION According to the present invention, methods are provided for crossing total occlusions in blood vessels. While the methods are particularly beneficial for the treatment of coronary artery disease, they are also useful in the treatment of other arteries and veins, such as the treatment of peripheral vascular diseases.
The total occlusions are crossed by first forming a track from a lumen in the blood vessel into a subintimal space between an intimal layer and an adventitial layer of the blood vessel. The track is formed so that it extends from a location proximal of the total occlusion to a location which is distal to the total occlusion. A passage is then formed from the track back into the blood vessel lumen at the distal location. In the specific embodiments, the track is formed by advancing a wire through the blood vessel lumen into the subintimal space, typically by advancing the wire until it encounters the total occlusion. By continuing to advance the wire, it will usually pass into the subintimal space and can be further advanced to the desired distal location. After the wire is located distally to the total occlusion, it is typically deflected from the track back into the blood vessel lumen .
In the exemplary methods, the wire is deflected using a deflecting catheter. Typically, the deflecting catheter is advanced over a proximal end of the wire and advanced into the track within the subintimal space. The wire and the deflecting catheter are then manipulated so that the wire is deflected laterally through the intimal layer back into the blood vessel lumen. Such deflecting catheters are also useful in supporting the wire as it is advanced into and/or through the track, i.e. the catheter can enhance the "pushability" of the wire when it is advanced forward through any resisting material. Specific designs for such deflecting catheters are described in detail below. Alternatively, the wire which is initially positioned within the track in the subintimal space may be withdrawn through the deflecting catheter and exchanged for a second wire or other device suitable for penetrating through the intimal layer back into the blood vessel lumen. It will be appreciated that the wires and/or deflecting and other catheters may be freely exchanged over or through one another in a conventional matter without departing from the present invention.
It will usually be necessary to determine when the wire and/or deflecting catheter are positioned distal to the total occlusion so that the wire may be returned to the blood vessel lumen beyond said occlusion. Most simply, such position determination can be made by fluoroscopically imaging the blood vessel in a conventional manner. Alternatively or additionally to such fluoroscopic imaging, intravascular imaging, e.g. intravascular ultrasonic imaging (IVUS) , and a variety of optical imaging modelities, such as optical coherence tomography (OCT) , may be employed. For example, an ultrasonic imaging guidewire may be used to initially access the subintimal space and/or may be exchanged for the wire which is used to access the subintimal space. An imaging guidewire present in the subintimal space may readily detect the presence or absence of occluding material within the blood vessel lumen. When the transition from occluding material to lack of occluding material is detected, it is known that the position of the guidewire has advanced beyond the total occlusion. After the passage is formed back from the track into the blood vessel lumen and a wire is in place across the total occlusion, the wire is available for use as a guidewire in positioning interventional and diagnostic catheters across the total occlusion. Most commonly, interventional catheters will be positioned across the total occlusion for treating the occlusion. Exemplary interventional catheters include angioplasty balloon catheters, rotational atherectomy catheters, directional atherectomy catheters, stent-placement catheters, and the like. In a preferred aspect of the methods of the present invention, the wire deflecting step will comprise deflecting a cannula from the subintimal space back into the blood vessel lumen and thereafter passing the wire through a path defined by the cannula, typically by a lumen within the cannula. Usually, the cannula will be advanced over the wire after the wire is disposed within the subintimal space, and the cannula- deflecting step will comprise advancing a resilient (pre- formed) curved end of the cannula from a constraining lumen into the blood vessel lumen. Alternatively, the wire- deflecting step may comprise advancing a deflecting catheter over the wire which has been advanced into the subintimal space . A cannula may then be advanced through a lateral opening of the deflecting catheter and penetrated through the intimal layer to define a path for the wire back into the blood vessel lumen. Steerable and other actively deployed cannulas may also be used.
The present invention further provides kits comprising a wire-deflecting catheter having a lumen or mechanism capable of laterally deflecting a wire. The kit will further comprise instructions setting forth any of the methods described above. Optionally, the kit may further comprise the wire which is used for penetrating the subintimal space and/or back into the blood vessel lumen. The kit will usually still further comprise a package for containing both the wire deflecting catheter and the instructions, and optionally the additional wire(s). Suitable packages include pouches, trays, tubes, boxes, and the like. The instructions may be printed on a separate package insert or may be printed in part or in whole on the packaging itself. Usually, the components of the kit within the package will be sterilized by conventional procedures.
Apparatus according to the present invention comprise wire-deflection systems. Exemplary wire-deflection systems usually comprise the wire-deflecting catheter which includes a catheter body and a deflecting cannula. The catheter body will have a proximal end, a distal end, and at least one lumen extending through at least a distal portion thereof. The lumen will have a distal opening and a lateral opening. The cannula also has a proximal end, a distal end, and at least one lumen extending through a distal portion thereof. The distal portion of the cannula will have a pre- formed, resilient curve. The cannula will be slidably disposed within the lumen of the catheter body to assume (a) a straightened configuration when the cannula is proximally retracted within the catheter body lumen and (b) a curved configuration when the cannula is extended laterally through the lateral opening of the catheter body. In this way, the cannula can be selectively deflected through the intimal layer of the blood vessel according to the preferred methods described above . The system may further comprise a wire configured to pass through the cannula lumen. The wire may be a conventional guidewire, but will more typically be a wire having a sharpened distal tip intended particularly for penetrating the intimal layer of the blood vessel wall. Optionally, the wire may further comprise an imaging means such as an ultrasonic imaging means. The catheter body will typically have a fluoroscopically visible marker near its distal end. The marker will be configured to permit visual determination of the rotational orientation of the distal end of the catheter body when viewed in a two-dimensional fluoroscopic image. The catheter body will usually be reinforced to enhance torsional rigidity, and may further comprise a distal nose cone wherein the distal and lateral openings are defined within the nose cone. The distal end of the cannula will usually be pre-formed in a smooth curve which may extend over an arc in the range from 15° to 135°, usually from 45° to 90°. The pre-formed curve may have a radius in the range from 0.5 mm to 15 mm, usually from 2 mm to 10 mm.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic illustration of a coronary artery showing the intimal layer, the medial layer, and the adventitial layer.
Fig. 2 is a schematic illustrations of a total occlusion within the coronary artery of Fig. 1, shown in full section.
Figs. 3A-3D illustrate the method of the present invention for crossing a total occlusion with a wire using a deflecting catheter. Figs. 3BB illustrates an alternate guidewire advancement step for the method of Figs. 3A-3D.
Fig. 4 illustrates a first embodiment of the distal end of a deflecting catheter suitable for use in the methods of the present invention.
Fig. 5 illustrates a second embodiment of the distal end of a deflecting catheter useful in the methods of the present invention.
Fig. 6 illustrates a third embodiment of the distal end of a deflecting catheter useful in the methods of the present invention.
Fig. 7 illustrates a presently preferred embodiment for the wire-deflecting catheter and system of the present invention. Figs. 8 and 9 are detailed, cross-sectional views of the distal end of the catheter of Fig. 7, illustrating an internal cannula in a retracted and advanced configuration, respectively.
Fig. 10 is a schematic illustration of a proximal hub of the catheter of Fig. 7.
Figs. 11A and 11B illustrate a configuration for rotationally keying the proximal end of the catheter of Figs. 7-10.
Fig. 12 illustrates a configuration for rotationally keying the distal end of the catheter of Figs. 7-10.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS Referring to Fig. 1, a normal (non-diseased) artery A comprises an arterial wall having a number of layers . The innermost layer is referred to herein as the intimal layer I which includes the endothelium, the subendothelial layer, and the internal elastic lamina. A medial layer M is concentrically outward from the intimal layer, and an adventitial layer AL is the outermost layer. Beyond the adventitial layer AL lies the extravascular tissue. As used hereinafter, the region between the intimal layer I and the adventitial layer AL, generally including the medial layer M, will be referred to as the subintimal space. It is the subintimal space through which the wires, deflecting catheters, and other catheter of the present invention will pass when crossing a total occlusion.
Referring now to Fig. 2, a total occlusion TO within the artery A is illustrated. Total occlusion TO may comprise atheroma, plaque, thrombus, and/or other occluding materials normally associated with cardiovascular disease. By "total" occlusion, it is meant that the occluding material occludes substantially the entire lumen L of the artery or other blood vessel so that blood flow through the vessel is substantially stopped. The present invention will usually be used with patients where the totally occluded artery is not immediately life threatening since the tissue distal to the occlusion will receive oxygenated blood from collateral arteries. Usually, however, the blood supply will be insufficient and it will be desirable to treat the occlusion by an intravascular intervention, such as angioplasty, atherectomy, stenting, or the like, to restore blood flow through the affected vessel. The method of the present invention will be described with reference to Figs. 3A-3D. These figures represent an upper portion of the artery of Fig. 2. As seen in Fig. 3A, a wire 10 is advanced through the lumen of the artery until it encounters the total occlusion TO. At that time, it is possible that the wire 10 will advance through the occlusion without deflecting into the blood vessel wall.
Should that occur, subsequent repositioning of the guidewire according to the methods of the present invention may not be necessary. More usually, however, the wire 10 will advance into the subintimal space within the medial layer M, as shown in Fig. 3A. The intimal layer I and adventitial layer AL together define a "tissue plane" through which the wire will naturally pass as the wire is pushed distally from its proximal end. The wire 10 will continue to advance until its tip passes beyond the distal end of the total occlusion TO, as shown in Fig. 3B. The tip could axially advance well beyond the total occlusion until advancement is ceased.
Fig. 3B shows the guidewire 10 advancing without support. In some instances, however, the guidewire 10 may encounter significant resistance as it enters and/or passes through the space between the intimal layer I and adventitial layer AL. If resistance is encountered, the deflection, catheter 20 may be used to support and enhance the "pushability" of the guidewire 10 by advancing the catheter to a location just proximal of the distal tip of the guidewire, as shown in Fig. 3B. The guidewire 10 and catheter 20 may then be advanced sequentially, e.g. advancing the guidewire a short distance followed by advancing the catheter, and so on. According to the present invention, however, once the wire 10 has its distal tip positioned beyond the total occlusion TO, deflecting catheter 20 may be advanced over the wire 10, by coaxial introduction over the proximal end of the wire, until it approaches the total occlusion, also as shown in Fig. 3B. The deflecting catheter 20 is then further advanced over the wire 10 until its distal tip also extends beyond the total occlusion TO, as illustrated in Fig. 3C. The deflecting catheter 20 will include some mechanism for laterally deflecting the wire 10 so that it may pass back in a radially inward direction through the intimal layer I back into the blood vessel lumen L. The deflection mechanism may take a variety of forms as described below. As shown in Fig. 3C, a lateral port 22 is provided. The wire 10 may be retracted so that its distal tip lies proximally of the port 22 and then advanced distally so that the wire passes laterally outwardly through the port and back into the blood vessel lumen, as shown in Fig. 3D.
In order to optimize performance of this method, it is usually desirable to assure that the distal tip of the wire 10 and the deflecting port 22 (or other deflecting mechanism) of the deflecting catheter 20 are properly positioned beyond the total occlusion TO without being advanced excessively beyond the end of the total occlusion. Typically, it will be desirable to position the deflecting mechanism at from 0 cm to 2 cm beyond the distal end of the total occlusion TO, preferably from 0 cm to 0.5 cm. As discussed above, such positioning can in some instances be performed using conventional fluoroscopic imaging. For example, in some instances it may be sufficient to provide suitable radiopaque markers on the wire and on the deflecting mechanism of the deflecting catheter 20 permitting visual positioning of the tip via fluoroscopy. Often, however, it will be desirable to provide ultrasonic or other imaging at or near the total occlusion. In one approach, wire 10 may be provided with ultrasonic imaging so that the presence and absence of the occluding material may be detected as the wire is advanced passed the total occlusion TO. Alternatively, the deflecting catheter 20 may be provided with such ultrasonic imaging, e.g. in the form of a phased array located near the distal tip (not shown) . Ultrasonic imaging guidewires are described in the patent literature. See, e.g. U.S. 5,095,911, the full disclosure of which is incorporated herein by reference. As yet another alternative, an imaging guidewire may be advanced to the region of the total occlusion TO in a direction opposite to that of the wire 10 and catheter 20. In this way, the imaging guidewire need not advance through the total occlusion, but could still detect advancement of the catheter and/or guidewire, particularly if ultrasonically opaque components were provided on either or both of the catheter and wire. In yet another alternative, an ultrasonic imaging catheter or guidewire could be positioned in a vein adjacent to the arterial occlusion site, allowing imaging of the entire occluded region while the guidewire is advanced there through. Other imaging modalities, such as optical coherence tomography (OCT) (see U.S. Patent Nos. 5,321,501; 5,459,570; 5,383,467; and 5,439,000) fluorescence imaging (see U.S. Patent Nos. 4,718,417; and 5,106,387) and Raman spectroscopy (WO 92/18008), may also be employed.
A second desirable feature of the method of the present invention will be rotational positioning of the deflecting catheter 20. It will be appreciated that the direction of deflection is usually selective, and therefore it will be desirable to aim the deflecting mechanism from the subintimal space back toward the arterial or other blood vessel lumen L. If the catheter 22 is provided with ultrasonic imaging, such imaging can be used for rotationally positioning the distal tip of the catheter. The catheter will be rotationally rigid so that rotation of its proximal end. may position the distal end. By then detecting the presence of the blood vessel lumen, the deflecting port 22 or other deflecting mechanism can be properly positioned. In an alternative embodiment, as illustrated below in connection with the exemplary catheter, a rotationally specific fluoroscopic marker may be provided on the catheter 20. The marker will be such that by observing the two-dimensional image of the marker by fluoroscopic imaging, the rotational direction of the catheter tip can be determined.
Referring now to Figs. 4-6, exemplary deflecting mechanisms for the deflecting catheters of the present invention will be described. In Fig. 4, the distal end of the catheter 30 has a distal port 32, a lateral port 34, and a passive deflecting mechanism 36. The catheter 30 may be advanced over the proximal end of a wire so that the wire passes over the deflecting mechanism 36 and back into the main lumen of the catheter 30. The catheter 30 may then be advanced over the wire until the distal tip enters the subintimal space and approaches the distal end of the wire. By retracting the distal end of the wire within the lumen of catheter 30 so that its distal tip is proximal to the deflecting mechanism 36, subsequent distal advancement of the wire will engage the proximal surface of the deflecting mechanism and cause the wire to be deflected laterally through lateral port 34.
A first active deflecting mechanism is illustrated in Fig. 5. There, catheter 40 has a distal port 42 and a lateral port 44. Rather than a passive deflecting mechanism, catheter 40 includes an axially translatable cannula 46 having a resilient, pre- formed distal tip which may be advanced through port 44, as shown in broken line. The cannula 46 has a lumen which provides a guide path for the wire . Catheter 50 illustrated in Fig. 6 is similar to catheter 40 in Fig. 5, except that no lateral port is provided. Instead, a cannula 52 having a pre-formed distal end may be advanced and retracted out of a distal port 54 of the catheter 50 so that its distal end can assume a laterally deflected shape, as shown in broken line. It will be appreciated that these three embodiments are intended to be exemplary only. A wide variety of other passive and active deflecting mechanisms could be provided on deflecting catheters for use in the methods of the present invention.
Referring now to Figs. 7-10, a presently preferred exemplary deflecting catheter 100 constructed in accordance with the principles of the present invention will be described. The deflecting catheter 100 comprises a catheter body 102 having a distal end 104 and a proximal end 106. Catheter body 102 includes a single lumen 108 (Figs. 8 and 9), and a deflecting housing 110 secured to the distal end 104 thereof. An actuator hub 112 is secured to the proximal end 106 of catheter body 102, and an axially translatable cannula is disposed within lumen 108. The cannula 114 has a sharpened tip 116, typically formed from a metal, hard plastic, composite, or the like, optically being radiopaque. Alternatively or additionally, it may be desirable to provide at least one separate radiopaque marker or the cannula at or near its distal end to facilitate visualization under fluoroscopic imaging. A distal length 118 of the cannula 114 is pre-formed in a curved shaped, as best seen in Figs. 7 and 9. A rotationally specific radiopaque marker 120 is mounted near the distal end of catheter body 102. As illustrated, the marker has a generally U-shaped configuration so that the rotational position of the distal end of the catheter body 102 will be apparent when the marker is observed in a two- dimensional fluoroscopic image. As with catheter 40 in Fig. 5, the purpose of catheter 100 is to laterally deflect the distal tip of the cannula 114 through a lateral opening 122 in the deflector housing 110. The deflector housing 110 also includes a distal port 124 to permit introduction of the catheter 100 over the proximal end of a guidewire GW, as illustrated in Fig. 8 in broken line. The guidewire GW will pass through the distal port 124 and into the distal end of the cannula 114 and travel through a lumen of cannula 114 all the way to the proximal end of the catheter 100. The distal length 118 of cannula 114 will be straightened and deflected by axially retracting and advancing the cannula between the configuration shown in Fig. 8 and Fig. 9, respectively. Referring now to Fig. 10, the actuator hub 112 comprises a pair of coaxial, telescoping tubes 130 and 132. The outer telescoping tube 132 is connected to a proximal end of cannula 114, typically by an adhesive 134. A proximal fitting 136 is further attached to the proximal end of tube 132 so that the assembly of the cannula 114, tube 132, and fitting 136 will move together as a unit through the hemostatic fitting 140 at the proximal end of the hub 112. , Hub 112 further includes a rotational fitting 142 which permits the catheter body 102 to be rotated relative to the hub body. The cannula 114 and catheter body 102 will be rotationally coupled or "keyed" together to limit or prevent relative rotation, typically by keying within the hub and/or near the distal end, so that rotation of the catheter body- causes a like rotation of the cannula as the catheter is rotationally positioned within a blood vessel. A side branch 148 is provided on hub 112 to permit perfusion and/or infusion through the lumen 108 of catheter 102.
Keying at the proximal end of the catheter 100 can be achieved in a variety of ways. For example, the telescoping tubes 130 and 132 can be provided with asymmetric, mating peripheral geometries, such as oval cross-sections (Fig. 11A) or triangular cross-sections (Fig. 11B) . Keying at the distal end can also be achieved in a number of ways, such as providing the catheter body 102 with an asymmetric lumen 108 and the cannula 114 with a mating cross-section, e.g. a D- shaped cross-section as illustrated in Fig. 12. The ability to limit relative rotation of the cannula 114 within the catheter body 102 is advantageous since it assures that curved distal length 118 is properly oriented (usually directed radially outwardly) when the tip 116 emerges through the opening 122.
In use, catheter 100 will be advanced over guidewire GW while the cannula 114 is retracted, as shown in Fig. 8. Once the catheter is properly positioned, cannula 114 may be distally advanced, as shown in Fig. 9. Distal advancement is achieved by forwardly advancing the sleeve 132 in hub 136 relative to the remainder of the hub 112 so that the cannulas move forwardly within the lumen 108 of catheter body 102.
Prior to advancing the cannula, the port 122 will be properly positioned so that it is directed toward the blood vessel lumen by rotating catheter body 102, typically using the rotational hub 142. Conveniently, the physician will observe the marker 120 so that the lateral port 122 will be directed in the proper radially inward direction. After the cannula has been advanced into the blood vessel, the guidewire GW may then be advanced into the lumen, the cannula 114 withdrawn proximally, and the entire catheter assembly then withdrawn from over the guidewire, leaving the guidewire in place for introduction of other interventional and/or diagnostic catheters .
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims .

Claims

WHAT IS CLAIMED IS:
1. A method for crossing a total occlusion in a blood vessel, said method comprising: forming a track from a lumen in the blood vessel into a space between an intimal layer and an adventitial layer of the blood vessel, said track extending from proximal of the total occlusion to past the total occlusion; and selectively forming a passage from the track back into the blood vessel lumen at a location distal to the total occlusion.
2. A method for crossing a total occlusion, said method comprising: forming a track from a lumen in the blood vessel into a space between an intimal layer and an adventitial layer of the blood vessel, said track extending from proximal of the total occlusion to past the total occlusion, and deflecting a wire from the track back into the blood vessel at a location distal to the total occlusion.
3. A method for crossing a total occlusion in a blood vessel, said method comprising: advancing a wire through a lumen of the blood vessel into a space between an intimal layer and an adventitial layer of the blood vessel to create a track in said space past the total occlusion; and selectively forming a passage from the track back into the blood vessel lumen at a location distal to the total occlusion.
4. A method for crossing a total occlusion in a blood vessel, said method comprising: advancing a wire through a lumen of the blood vessel into a space between an intimal layer and an adventitial layer of the blood vessel; and deflecting a wire from the subintimal space back into the blood vessel lumen a location distal to the total occlusion.
5. A method as in any of claims 1 to 4 , wherein the blood vessel is an artery.
6. A method as in claim 5, wherein the artery is a coronary artery.
7. A method as in any of claims 1 to 4 , further comprising performing an interventional or diagnostic procedure over a wire disposed in the subintimal space.
8. A method as in either claim 2 or claim 4, further comprising advancing an interventional or diagnostic catheter over the deflected wire from proximal to the occlusion, through the subintimal space, back into the blood vessel lumen.
9. A method as in any of claims 1 to 4 , further comprising imaging the occlusion and blood vessel lumen to identify the location distal to the total occlusion.
10. A method as in claim 9, wherein the imaging step comprising imaging from within the subintimal space or blood vessel.
11. A method as in claim 9, wherein the imaging step comprises imaging from a position external to the subintimal space and the blood vessel.
12. A method as in claim 9, wherein the blood vessel is a coronary artery and the imaging step comprises imaging from a position in a vein adjacent to the coronary artery .
13. A method as in claim 4, wherein a single wire is both advanced into the subintimal space and deflected back into the blood vessel lumen.
14. A method as in claim 4 , further comprising exchanging a first wire which is advanced into the subintimal space for a second wire which is deflected back into the blood vessel lumen.
15. A method as in claim 4, wherein the wire deflecting step comprises : deflecting a cannula from the subintimal space into the blood vessel lumen; and passing the wire through a path defined by the cannula.
16. A method as in claim 15, wherein the wire deflecting step further comprises advancing the cannula over the wire after said wire is disposed within the subintimal space and before the cannula is deflected.
17. A method as in claim 16, wherein the cannula- deflecting step comprises advancing a resilient curved end of the cannula from a constraining lumen into the blood vessel lumen .
18. A method as in claim 4, wherein the wire deflecting step comprises advancing a deflecting catheter over the wire which has been advanced into the subintimal space.
19. A method as in claim 18 , further comprising passing a cannula thorough a lateral opening of the deflecting catheter and penetrating the cannula through the intimal layer, wherein the wire is thereafter advanced through a lumen of the cannula.
20. A method as in claim 19, wherein the wire deflecting step comprises: retracting the wire into the cannula lumen before the cannula is passed through the lateral opening of the catheter; and advancing the wire through the cannula after said cannula has been passed through the lateral opening of the catheter.
21. A method as in claim 19, wherein the deflecting step comprises : withdrawing the wire from the cannula; and introducing a second catheter into the cannula and through said cannula after said cannula has been passed through the lateral opening of the catheter.
22. A method as in either claim 20 or claim 21, wherein the catheter and cannula are withdrawn from over the wire after said wire has deflected into the blood vessel lumen.
23. An improved method for advancing a guidewire thorough a subintimal space between an intimal layer and an adventitial layer and past a total occlusion in a blood vessel, wherein the improvement comprises selectively deploying the guidewire through a passage from the subintimal space back into the blood vessel lumen.
24. A kit comprising: a wire; a wire deflector having a lumen which deflects a wire laterally; and instructions setting forth use of the wire deflector according to any of claims 1 to 4.
25. A kit as in claim 24, wherein the wire, the wire deflector, and the instructions are packaged together in a single container.
26. A kit as in claim 24, further comprising a wire.
27. A wire deflection system comprising: a catheter body having a proximal end, a distal end, and at least one lumen extending through at least a distal portion thereof, wherein said lumen has a distal opening and a lateral opening; and a cannula having a proximal end, a distal end, and at least one lumen extending through a distal portion thereof, wherein said distal portion has a pre-formed resilient curve and wherein said distal portion of the cannula is slidably disposed in the lumen of the catheter body to assume (a) a straightened configuration with said cannula lumen axially aligned within the distal opening of the catheter body when the cannula is proximally retracted within the catheter body and (b) a curved configuration with the cannula extending laterally through the lateral opening of the catheter body when the cannula is distally advanced within the catheter body.
28. A system as in claim 27, further comprising a wire configured to pass through the cannula lumen.
29. A system as in claim 27, wherein the wire has a sharpened distal tip.
30. A system as in claim 27, wherein the wire comprises means for imaging tissue surrounding the wire.
31. A system as in claim 27, wherein the cannula comprises a self-penetrating distal end.
32. A system as in claim 31, wherein the self- penetrating distal end comprises a sharpened distal tip.
33. A system as in claim 27, wherein the cannula comprises a radiopaque marker near its distal end.
34. A system as in claim 27, wherein the catheter body has a fluoroscopically visible marker near its distal end wherein said marker permits visual determination of the rotational orientation of the distal end of the catheter body.
35. A system as in claim 27, wherein the catheter body is reinforced to enhance its torsional rigidity.
36. A system as in claim 27, further comprising a distal nose cone attached to the distal end of the catheter body, wherein said nose cone defines the distal and lateral openings .
37. A system as in claim 27, wherein the pre-formed curve in the distal end of the cannula extends over an arc in the range from 15┬░ to 135┬░.
38. A system as in either claim 27 or 37, wherein the pre-formed curve has a radius in the range from 1 mm to 20 mm.
39. A system as in claim 27, further comprising a hub rotationally secured to a proximal end of the catheter body .
PCT/US1998/026938 1998-01-13 1998-12-18 Methods and apparatus for crossing total occlusions in blood vessels WO1999035979A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000539761A JP4334765B2 (en) 1998-01-13 1998-12-18 Device for traversing a total occlusion in a blood vessel
BR9814588-6A BR9814588A (en) 1998-01-13 1998-12-18 Process for crossing a total occlusion in a blood vessel, joint, and wire deflection system
CA002318470A CA2318470A1 (en) 1998-01-13 1998-12-18 Methods and apparatus for crossing total occlusions in blood vessels
AU18315/99A AU745116B2 (en) 1998-01-13 1998-12-18 Methods and apparatus for crossing total occlusions in blood vessels
EP98963257A EP1047344A1 (en) 1998-01-13 1998-12-18 Methods and apparatus for crossing total occlusions in blood vessels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/006,563 US6231546B1 (en) 1998-01-13 1998-01-13 Methods and apparatus for crossing total occlusions in blood vessels
US09/006,563 1998-01-13

Publications (1)

Publication Number Publication Date
WO1999035979A1 true WO1999035979A1 (en) 1999-07-22

Family

ID=21721489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/026938 WO1999035979A1 (en) 1998-01-13 1998-12-18 Methods and apparatus for crossing total occlusions in blood vessels

Country Status (7)

Country Link
US (4) US6231546B1 (en)
EP (1) EP1047344A1 (en)
JP (1) JP4334765B2 (en)
AU (1) AU745116B2 (en)
BR (1) BR9814588A (en)
CA (1) CA2318470A1 (en)
WO (1) WO1999035979A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261304B1 (en) 1998-09-10 2001-07-17 Percardia, Inc. Delivery methods for left ventricular conduit
WO2002039906A2 (en) * 2000-11-20 2002-05-23 Avantec Vascular Corporation Method and device for the treatment of vulnerable tissue site
WO2002045598A2 (en) * 2000-12-05 2002-06-13 Lumend, Inc. Catheter system for vascular re-entry from a sub-intimal space
US6475226B1 (en) 1999-02-03 2002-11-05 Scimed Life Systems, Inc. Percutaneous bypass apparatus and method
US7704222B2 (en) 1998-09-10 2010-04-27 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
WO2014031922A1 (en) * 2012-08-23 2014-02-27 Volcano Corporation Device, system, and method for anatomical lesion length estimation
US9561126B2 (en) 1996-11-04 2017-02-07 Boston Scientific Scimed, Inc. Catheter with attached flexible side sheath
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent

Families Citing this family (314)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379319B1 (en) * 1996-10-11 2002-04-30 Transvascular, Inc. Systems and methods for directing and snaring guidewires
US6217527B1 (en) * 1998-09-30 2001-04-17 Lumend, Inc. Methods and apparatus for crossing vascular occlusions
US20050171478A1 (en) * 1998-01-13 2005-08-04 Selmon Matthew R. Catheter system for crossing total occlusions in vasculature
AU768005B2 (en) * 1998-03-31 2003-11-27 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers
US6406488B1 (en) * 1998-08-27 2002-06-18 Heartstent Corporation Healing transmyocardial implant
US6290728B1 (en) * 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
US6641610B2 (en) * 1998-09-10 2003-11-04 Percardia, Inc. Valve designs for left ventricular conduits
US6196230B1 (en) * 1998-09-10 2001-03-06 Percardia, Inc. Stent delivery system and method of use
ATE322230T1 (en) * 1998-09-10 2006-04-15 Percardia Inc TMR DEVICE
JP2002524196A (en) * 1998-09-10 2002-08-06 パーカーディア,インコーポレイティド Transmyocardial shunt for left ventricular revascularization and its mounting mechanism
US6949114B2 (en) * 1998-11-06 2005-09-27 Neomend, Inc. Systems, methods, and compositions for achieving closure of vascular puncture sites
AU736964B2 (en) * 1998-12-09 2001-08-09 Cook Medical Technologies Llc Hollow, curved, superelastic medical needle
US8506519B2 (en) 1999-02-16 2013-08-13 Flowcardia, Inc. Pre-shaped therapeutic catheter
US6855123B2 (en) 2002-08-02 2005-02-15 Flow Cardia, Inc. Therapeutic ultrasound system
US6409697B2 (en) 1999-05-04 2002-06-25 Heartstent Corporation Transmyocardial implant with forward flow bias
US6638237B1 (en) * 1999-08-04 2003-10-28 Percardia, Inc. Left ventricular conduits and methods for delivery
US6299622B1 (en) 1999-08-19 2001-10-09 Fox Hollow Technologies, Inc. Atherectomy catheter with aligned imager
US7887556B2 (en) 2000-12-20 2011-02-15 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20030125757A1 (en) * 2000-12-20 2003-07-03 Fox Hollow Technologies, Inc. Debulking catheters and methods
US7708749B2 (en) 2000-12-20 2010-05-04 Fox Hollow Technologies, Inc. Debulking catheters and methods
US6638233B2 (en) * 1999-08-19 2003-10-28 Fox Hollow Technologies, Inc. Apparatus and methods for material capture and removal
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US7713279B2 (en) 2000-12-20 2010-05-11 Fox Hollow Technologies, Inc. Method and devices for cutting tissue
US20030120295A1 (en) * 2000-12-20 2003-06-26 Fox Hollow Technologies, Inc. Debulking catheters and methods
US20050119679A1 (en) * 1999-10-05 2005-06-02 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device to treat chronic total occlusions
US20040097996A1 (en) 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
JP3782297B2 (en) * 2000-03-28 2006-06-07 株式会社東芝 Solid-state imaging device and manufacturing method thereof
US6854467B2 (en) * 2000-05-04 2005-02-15 Percardia, Inc. Methods and devices for delivering a ventricular stent
US20020032478A1 (en) * 2000-08-07 2002-03-14 Percardia, Inc. Myocardial stents and related methods of providing direct blood flow from a heart chamber to a coronary vessel
US6602286B1 (en) * 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6506178B1 (en) * 2000-11-10 2003-01-14 Vascular Architects, Inc. Apparatus and method for crossing a position along a tubular body structure
US20040167554A1 (en) * 2000-12-20 2004-08-26 Fox Hollow Technologies, Inc. Methods and devices for reentering a true lumen from a subintimal space
US20050154407A1 (en) * 2000-12-20 2005-07-14 Fox Hollow Technologies, Inc. Method of evaluating drug efficacy for treating atherosclerosis
US20060235366A1 (en) * 2000-12-20 2006-10-19 Fox Hollow Technologies, Inc. Method of evaluating a treatment for vascular disease
US7927784B2 (en) * 2000-12-20 2011-04-19 Ev3 Vascular lumen debulking catheters and methods
US20100121360A9 (en) * 2000-12-20 2010-05-13 Fox Hollow Technologies, Inc Testing a patient population having a cardiovascular condition for drug efficacy
DE60144107D1 (en) 2000-12-20 2011-04-07 Fox Hollow Technologies Inc REDUCTION CATHETER
US7699790B2 (en) * 2000-12-20 2010-04-20 Ev3, Inc. Debulking catheters and methods
US8979801B2 (en) * 2001-01-17 2015-03-17 Medtronic Vascular, Inc. Microcatheter devices and methods for targeted substance delivery
US6976990B2 (en) * 2001-01-25 2005-12-20 Percardia, Inc. Intravascular ventriculocoronary bypass via a septal passageway
US6989004B2 (en) 2001-02-28 2006-01-24 Rex Medical, L.P. Apparatus for delivering ablation fluid to treat lesions
US7087040B2 (en) 2001-02-28 2006-08-08 Rex Medical, L.P. Apparatus for delivering ablation fluid to treat lesions
AU2002250170B2 (en) * 2001-02-28 2006-08-10 Rex Medical, L.P. Apparatus for Delivering Ablation Fluid to Treat Lesions
US6702744B2 (en) * 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
EP1417000B1 (en) * 2001-07-11 2018-07-11 Nuvasive, Inc. System for determining nerve proximity during surgery
US20030023261A1 (en) * 2001-07-30 2003-01-30 Scimed Life Systems Inc. Chronic total occlusion device with variable stiffness shaft
US20030036698A1 (en) * 2001-08-16 2003-02-20 Robert Kohler Interventional diagnostic catheter and a method for using a catheter to access artificial cardiac shunts
FR2829396B1 (en) * 2001-09-11 2003-12-26 Sedat SELECTIVE SEALING DEVICE FOR ACCESS TO THE INTERIOR OF A CATHETER
EP2481338A3 (en) 2001-09-25 2012-09-05 Nuvasive, Inc. System for performing surgical procedures and assessments
US8608661B1 (en) 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
WO2003059162A1 (en) * 2002-01-15 2003-07-24 Broad Of Regents, The University Of Texas System Methods and compositions to reduce scattering of light during therapeutic and diagnostic imaging procedures
US6949118B2 (en) * 2002-01-16 2005-09-27 Percardia, Inc. Encased implant and methods
US7008397B2 (en) * 2002-02-13 2006-03-07 Percardia, Inc. Cardiac implant and methods
US9949789B2 (en) 2002-03-05 2018-04-24 Avent, Inc. Methods of treating the sacroiliac region of a patient's body
US20060259026A1 (en) * 2005-05-05 2006-11-16 Baylis Medical Company Inc. Electrosurgical treatment method and device
US9216053B2 (en) 2002-03-05 2015-12-22 Avent, Inc. Elongate member providing a variation in radiopacity
US11291496B2 (en) 2002-03-05 2022-04-05 Avent, Inc. Methods of treating the sacroiliac region of a patient's body
US20040176759A1 (en) * 2003-03-07 2004-09-09 Subashini Krishnamurthy Radiopaque electrical needle
US7819869B2 (en) * 2004-11-15 2010-10-26 Kimberly-Clark Inc. Methods of treating the sacroilac region of a patient's body
US9364281B2 (en) * 2002-03-05 2016-06-14 Avent, Inc. Methods for treating the thoracic region of a patient's body
US20090024124A1 (en) * 2005-07-14 2009-01-22 Lefler Amy Methods for treating the thoracic region of a patient's body
US20030220661A1 (en) * 2002-05-21 2003-11-27 Heartstent Corporation Transmyocardial implant delivery system
US7582058B1 (en) 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US7361368B2 (en) 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
US9955994B2 (en) 2002-08-02 2018-05-01 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US8133236B2 (en) 2006-11-07 2012-03-13 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US7137963B2 (en) 2002-08-26 2006-11-21 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US7220233B2 (en) 2003-04-08 2007-05-22 Flowcardia, Inc. Ultrasound catheter devices and methods
US7335180B2 (en) 2003-11-24 2008-02-26 Flowcardia, Inc. Steerable ultrasound catheter
US7604608B2 (en) * 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US6942677B2 (en) 2003-02-26 2005-09-13 Flowcardia, Inc. Ultrasound catheter apparatus
US7326219B2 (en) * 2002-09-09 2008-02-05 Wilk Patent Development Device for placing transmyocardial implant
US20070167804A1 (en) * 2002-09-18 2007-07-19 Byong-Ho Park Tubular compliant mechanisms for ultrasonic imaging systems and intravascular interventional devices
WO2004026105A2 (en) * 2002-09-18 2004-04-01 The Board Of Trustees Of The Leland Stanford Junior University Tubular compliant mechanisms for ultrasonic imaging systems
FR2846520B1 (en) * 2002-11-06 2006-09-29 Roquette Freres USE OF MALTODEXTRINS BRANCHED AS BLEACHES OF GRANULATION
US6951554B2 (en) * 2002-12-16 2005-10-04 Intraluminal Therapeutics Inc. Deflecting catheter
US6928669B2 (en) * 2003-01-10 2005-08-16 Tyler Pipe Company Closet carrier system and method of assembly
US20040167437A1 (en) * 2003-02-26 2004-08-26 Sharrow James S. Articulating intracorporal medical device
US20100185082A1 (en) * 2003-03-07 2010-07-22 Baylis Medical Company Inc. Device and method for electrosurgery
US7303533B2 (en) * 2003-04-10 2007-12-04 Intraluminal Therapeutics, Inc. Shapeable intraluminal device and method therefor
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US7641643B2 (en) 2003-04-15 2010-01-05 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US20040220604A1 (en) * 2003-04-30 2004-11-04 Fogarty Thomas J. Tissue separation apparatus and method
WO2004105830A2 (en) * 2003-05-23 2004-12-09 Belsley Scott J Adjustable device delivery system
IES20030539A2 (en) * 2003-07-22 2005-05-18 Medtronic Vascular Connaught Stents and stent delivery system
US7758510B2 (en) 2003-09-19 2010-07-20 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US7824345B2 (en) 2003-12-22 2010-11-02 Boston Scientific Scimed, Inc. Medical device with push force limiter
US7976562B2 (en) 2004-01-22 2011-07-12 Rex Medical, L.P. Method of removing a vein filter
US7794414B2 (en) 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US20060293612A1 (en) * 2004-06-24 2006-12-28 Boston Scientific Scimed, Inc. Apparatus and method for treating occluded vasculature
US8241315B2 (en) 2004-06-24 2012-08-14 Boston Scientific Scimed, Inc. Apparatus and method for treating occluded vasculature
US7540852B2 (en) 2004-08-26 2009-06-02 Flowcardia, Inc. Ultrasound catheter devices and methods
GB0419954D0 (en) 2004-09-08 2004-10-13 Advotek Medical Devices Ltd System for directing therapy
US7854944B2 (en) 2004-12-17 2010-12-21 Advanced Cardiovascular Systems, Inc. Tissue regeneration
US8221343B2 (en) 2005-01-20 2012-07-17 Flowcardia, Inc. Vibrational catheter devices and methods for making same
CN101495171A (en) * 2005-03-30 2009-07-29 卢门德公司 Catheter systems for crossing total occlusions in vasculature
JP2008534109A (en) * 2005-03-31 2008-08-28 パイエオン インコーポレイテッド Apparatus and method for positioning a device within a tubular organ
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US8187621B2 (en) * 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US20080125745A1 (en) * 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
US8828433B2 (en) 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US7794413B2 (en) 2005-04-19 2010-09-14 Ev3, Inc. Libraries and data structures of materials removed by debulking catheters
US8303972B2 (en) * 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US20070016062A1 (en) 2005-05-04 2007-01-18 Byong-Ho Park Multiple transducers for intravascular ultrasound imaging
US20060271154A1 (en) * 2005-05-25 2006-11-30 Prescient Medical, Inc. Methods and systems for treating vulnerable plaque
US7644714B2 (en) * 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
AU2006269738A1 (en) * 2005-07-14 2007-01-18 Kimberly-Clark Inc. Electrosurgical device and methods
US20070038173A1 (en) * 2005-07-27 2007-02-15 Fox Hollow Technologies, Inc. Methods affecting markers in patients having vascular disease
US20070213671A1 (en) * 2005-09-07 2007-09-13 Hiatt Mark J Infusion catheter system with telescoping cannula
US8083727B2 (en) * 2005-09-12 2011-12-27 Bridgepoint Medical, Inc. Endovascular devices and methods for exploiting intramural space
US11020141B2 (en) 2005-09-12 2021-06-01 Bridgepoint Medical, Inc. Endovascular devices and methods
EP1924315B1 (en) 2005-09-12 2019-12-04 Bridgepoint Medical, Inc. Endovascular devices
US7918870B2 (en) 2005-09-12 2011-04-05 Bridgepoint Medical, Inc. Endovascular devices and methods
US8025655B2 (en) 2005-09-12 2011-09-27 Bridgepoint Medical, Inc. Endovascular devices and methods
US20070142849A1 (en) * 2005-12-16 2007-06-21 Usgi Medical, Inc. Helical tissue manipulation instruments and methods of use
US7989207B2 (en) * 2006-02-17 2011-08-02 Tyco Healthcare Group Lp Testing lumenectomy samples for markers of non-vascular diseases
US9282984B2 (en) 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
US9511214B2 (en) 2006-05-02 2016-12-06 Vascular Access Technologies, Inc. Methods of transvascular retrograde access placement and devices for facilitating therein
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US7732190B2 (en) 2006-07-31 2010-06-08 Advanced Cardiovascular Systems, Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
US20080071230A1 (en) * 2006-08-30 2008-03-20 Med-El Elektromedizinische Geraete Gmbh System, Apparatus, and Method for Facilitating Interface with Laryngeal Structures
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9744354B2 (en) 2008-12-31 2017-08-29 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9913982B2 (en) 2011-01-28 2018-03-13 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
ES2722849T3 (en) 2006-10-13 2019-08-19 Cyberonics Inc Devices and systems for the treatment of obstructive sleep apnea
US7566722B2 (en) * 2006-10-31 2009-07-28 Janssen Pharmaceutica, N.V. Triazolopyrimidine derivatives as ADP P2Y12 receptor antagonists
US8246643B2 (en) 2006-11-07 2012-08-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US8741326B2 (en) * 2006-11-17 2014-06-03 Abbott Cardiovascular Systems Inc. Modified two-component gelation systems, methods of use and methods of manufacture
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
EP2101655B1 (en) * 2006-11-21 2016-06-01 Bridgepoint Medical, Inc. Endovascular devices for exploiting intramural space
US10888354B2 (en) * 2006-11-21 2021-01-12 Bridgepoint Medical, Inc. Endovascular devices and methods for exploiting intramural space
US9060802B2 (en) 2006-11-21 2015-06-23 Bridgepoint Medical, Inc. Endovascular devices and methods for exploiting intramural space
US11298511B2 (en) 2006-11-21 2022-04-12 Bridgepoint Medical, Inc. Endovascular devices and methods for exploiting intramural space
JP4181599B2 (en) * 2006-12-27 2008-11-19 メドトロニックソファモアダネック株式会社 Puncture device
US8192760B2 (en) * 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
US20080147174A1 (en) * 2006-12-11 2008-06-19 Trireme Medical, Inc. Apparatus and method of using markers to position stents in bifurcations
US20080172036A1 (en) * 2007-01-12 2008-07-17 Adam Stys Guide catheter and method for advancing a guide catheter in a vessel
WO2008103336A1 (en) * 2007-02-21 2008-08-28 Cook Incorporated Methods for intravascular engraftment in heart
US8257382B2 (en) * 2007-03-29 2012-09-04 Boston Scientific Limited Lumen reentry devices and methods
CA2687876A1 (en) * 2007-05-23 2009-03-05 Oscillon Ltd. Apparatus and method for guided chronic total occlusion penetration
US8357152B2 (en) 2007-10-08 2013-01-22 Biosense Webster (Israel), Ltd. Catheter with pressure sensing
US8535308B2 (en) * 2007-10-08 2013-09-17 Biosense Webster (Israel), Ltd. High-sensitivity pressure-sensing probe
US8632556B2 (en) * 2007-10-22 2014-01-21 Bridgepoint Medical, Inc. Methods and devices for crossing chronic total occlusions
JP5351897B2 (en) * 2007-11-02 2013-11-27 レックス メディカル リミテッド パートナーシップ Intravenous filter insertion method
US20090177119A1 (en) * 2008-01-03 2009-07-09 Boston Scientific Scimed, Inc. Articulating intracorporeal medical device
US8337425B2 (en) 2008-02-05 2012-12-25 Bridgepoint Medical, Inc. Endovascular device with a tissue piercing distal probe and associated methods
WO2009100129A2 (en) 2008-02-05 2009-08-13 Chad John Kugler Crossing occlusions in blood vessels
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US8133243B2 (en) * 2008-03-28 2012-03-13 Henry William Lupton Device for unblocking an occluded vessel, and a method for unblocking an occluded vessel
US9498600B2 (en) 2009-07-01 2016-11-22 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
EP3165184B1 (en) 2008-04-28 2021-12-01 Bridgepoint Medical, Inc. Apparatus for crossing occlusions in blood vessels
US20090299171A1 (en) * 2008-06-03 2009-12-03 Medtronic Vascular, Inc. Intraluminal Access and Imaging Device
US8437832B2 (en) * 2008-06-06 2013-05-07 Biosense Webster, Inc. Catheter with bendable tip
US20110118767A1 (en) * 2008-07-30 2011-05-19 Ams Research Corporation Method and Apparatus for Determining Status of Approximation Structures on Anastomosis Device
US9101734B2 (en) * 2008-09-09 2015-08-11 Biosense Webster, Inc. Force-sensing catheter with bonded center strut
EP3714771A1 (en) * 2008-10-01 2020-09-30 Inspire Medical Systems, Inc. System for treating sleep apnea transvenously
WO2010045226A2 (en) 2008-10-13 2010-04-22 Fox Hollow Technologies, Inc. Devices and methods for manipulating a catheter shaft
US8876851B1 (en) 2008-10-15 2014-11-04 Nuvasive, Inc. Systems and methods for performing spinal fusion surgery
US9326700B2 (en) 2008-12-23 2016-05-03 Biosense Webster (Israel) Ltd. Catheter display showing tip angle and pressure
US8475450B2 (en) * 2008-12-30 2013-07-02 Biosense Webster, Inc. Dual-purpose lasso catheter with irrigation
US8600472B2 (en) 2008-12-30 2013-12-03 Biosense Webster (Israel), Ltd. Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes
JP2012521864A (en) 2009-03-31 2012-09-20 インスパイア・メディカル・システムズ・インコーポレイテッド Percutaneous access method in a system for treating sleep-related abnormal breathing
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
KR101323553B1 (en) 2009-04-29 2013-10-29 코비디엔 엘피 Methods and devices for cutting and abrading tissue
JP5281195B2 (en) 2009-05-14 2013-09-04 コヴィディエン リミテッド パートナーシップ Atherotomy catheter that can be easily cleaned and method of use
AU2010253912B2 (en) 2009-05-28 2015-03-05 Avinger, Inc. Optical Coherence Tomography for biological imaging
US8226566B2 (en) 2009-06-12 2012-07-24 Flowcardia, Inc. Device and method for vascular re-entry
US8409236B2 (en) * 2009-08-21 2013-04-02 Vascular Access Technologies, Inc. Methods of transvascular retrograde access placement and devices for facilitating the placement
US20120265233A1 (en) 2009-08-28 2012-10-18 Lea Waisman Inverted balloon neck on catheter
WO2011028632A1 (en) 2009-09-03 2011-03-10 Si Therapies Ltd. Lancet micro-catheter
US10688278B2 (en) * 2009-11-30 2020-06-23 Biosense Webster (Israel), Ltd. Catheter with pressure measuring tip
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
IN2012DN04977A (en) 2009-12-11 2015-09-25 Tyco Healthcare
US8241311B2 (en) * 2009-12-15 2012-08-14 Medtronic Vascular, Inc. Methods and systems for bypassing an occlusion in a blood vessel
US8920415B2 (en) 2009-12-16 2014-12-30 Biosense Webster (Israel) Ltd. Catheter with helical electrode
US8398579B2 (en) 2009-12-16 2013-03-19 Medrad, Inc. Catheter including composite guide and methods for use of the same
US8521462B2 (en) 2009-12-23 2013-08-27 Biosense Webster (Israel), Ltd. Calibration system for a pressure-sensitive catheter
US8529476B2 (en) 2009-12-28 2013-09-10 Biosense Webster (Israel), Ltd. Catheter with strain gauge sensor
US8608735B2 (en) * 2009-12-30 2013-12-17 Biosense Webster (Israel) Ltd. Catheter with arcuate end section
US8374670B2 (en) * 2010-01-22 2013-02-12 Biosense Webster, Inc. Catheter having a force sensing distal tip
US8798952B2 (en) 2010-06-10 2014-08-05 Biosense Webster (Israel) Ltd. Weight-based calibration system for a pressure sensitive catheter
BR112012031907A2 (en) 2010-06-14 2020-08-04 Covidien Lp material removal device.
US8226580B2 (en) 2010-06-30 2012-07-24 Biosense Webster (Israel), Ltd. Pressure sensing for a multi-arm catheter
WO2014039096A1 (en) 2012-09-06 2014-03-13 Avinger, Inc. Re-entry stylet for catheter
JP2013531542A (en) 2010-07-01 2013-08-08 アビンガー・インコーポレイテッド An atherectomy catheter having a longitudinally movable drive shaft
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US8380276B2 (en) 2010-08-16 2013-02-19 Biosense Webster, Inc. Catheter with thin film pressure sensing distal tip
US8731859B2 (en) 2010-10-07 2014-05-20 Biosense Webster (Israel) Ltd. Calibration system for a force-sensing catheter
US8932315B2 (en) 2010-10-18 2015-01-13 W. L. Gore & Associates, Inc. Systems and methods for percutaneous occlusion crossing
KR101518147B1 (en) 2010-10-28 2015-05-06 코비디엔 엘피 Material removal device and method of use
US8979772B2 (en) 2010-11-03 2015-03-17 Biosense Webster (Israel), Ltd. Zero-drift detection and correction in contact force measurements
CA2817213C (en) 2010-11-11 2016-06-14 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US8821478B2 (en) 2011-03-04 2014-09-02 Boston Scientific Scimed, Inc. Catheter with variable stiffness
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
EP2691038B1 (en) 2011-03-28 2016-07-20 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US8956376B2 (en) 2011-06-30 2015-02-17 The Spectranetics Corporation Reentry catheter and method thereof
US8998936B2 (en) 2011-06-30 2015-04-07 The Spectranetics Corporation Reentry catheter and method thereof
US9220433B2 (en) 2011-06-30 2015-12-29 Biosense Webster (Israel), Ltd. Catheter with variable arcuate distal section
WO2013003757A2 (en) 2011-06-30 2013-01-03 The Spectranetics Corporation Reentry catheter and method thereof
US20130018306A1 (en) 2011-07-13 2013-01-17 Doron Moshe Ludwin System for indicating catheter deflection
US9662169B2 (en) 2011-07-30 2017-05-30 Biosense Webster (Israel) Ltd. Catheter with flow balancing valve
JP5806407B2 (en) 2011-09-01 2015-11-10 コヴィディエン リミテッド パートナーシップ Catheter with helical drive shaft and manufacturing method
EP2757984B1 (en) 2011-09-19 2018-08-29 Boston Scientific Scimed, Inc. Subintimal re-entry catheter and retrograde recanalization
WO2013050880A2 (en) * 2011-10-04 2013-04-11 AVNERI, Ben-Ami Devices and methods for percutaneous endarterectomy
WO2013055917A1 (en) 2011-10-12 2013-04-18 Volcano Corporation Rotational shape-memory actuators and associated devices, systems, and methods
EP2768406B1 (en) 2011-10-17 2019-12-04 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
US9808373B2 (en) 2013-06-28 2017-11-07 Aquesys, Inc. Intraocular shunt implantation
EP2787935B1 (en) 2011-12-09 2018-03-07 Boston Scientific Scimed, Inc. Subintimal recanalization with bio-absorbable stent
US9687289B2 (en) 2012-01-04 2017-06-27 Biosense Webster (Israel) Ltd. Contact assessment based on phase measurement
US9603615B2 (en) 2012-01-18 2017-03-28 C.R. Bard, Inc. Vascular re-entry device
US9918726B2 (en) * 2012-03-07 2018-03-20 Cook Medical Technologies Llc Lumen re-entry system and method
US9060815B1 (en) 2012-03-08 2015-06-23 Nuvasive, Inc. Systems and methods for performing spine surgery
US9888859B1 (en) 2013-03-14 2018-02-13 Nuvasive, Inc. Directional dilator for intraoperative monitoring
ES2696081T3 (en) 2012-04-23 2019-01-14 Pq Bypass Inc System for circumventing occlusions in a femoral artery
EP2849660B1 (en) 2012-05-14 2021-08-25 Avinger, Inc. Atherectomy catheter drive assemblies
WO2013172972A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
US11406412B2 (en) 2012-05-14 2022-08-09 Avinger, Inc. Atherectomy catheters with imaging
US9486239B2 (en) * 2012-05-24 2016-11-08 Boston Scientific Scimed, Inc. Subintimal re-entry device
WO2013181397A1 (en) 2012-05-30 2013-12-05 Vascular Access Technologies, Inc. Transvascular access device and method
US9623217B2 (en) 2012-05-30 2017-04-18 Vascular Access Techonlogies, Inc. Transvascular access methods
US9456842B2 (en) 2012-07-13 2016-10-04 Boston Scientific Scimed, Inc. Wire-guided recanalization system
WO2014012008A1 (en) 2012-07-13 2014-01-16 Boston Scientific Scimed, Inc. Subintimal reentry system
EP2879596A2 (en) 2012-08-02 2015-06-10 Flowcardia, Inc. Ultrasound catheter system
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
WO2015120146A1 (en) 2014-02-06 2015-08-13 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
EP2892448B1 (en) 2012-09-06 2020-07-15 Avinger, Inc. Balloon atherectomy catheters with imaging
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US8974482B2 (en) 2012-12-21 2015-03-10 Edgar Louis Shriver Device to steer into subintimal false lumen and parallel park in true lumen
US9301774B2 (en) 2013-01-07 2016-04-05 Cook Medical Technologies Llc Lumen reentry mechanism and method
WO2014159549A2 (en) 2013-03-14 2014-10-02 Boston Scientific Scimed, Inc. Systems, apparatus and methods for treating blood vessels
US10258770B2 (en) 2013-03-14 2019-04-16 Boston Scientific Scimed, Inc. Subintimal re-entry catheter with shape controlled balloon
WO2014143064A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Chronic total occlusion crossing devices with imaging
EP2967507B1 (en) 2013-03-15 2018-09-05 Avinger, Inc. Tissue collection device for catheter
WO2014142958A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Optical pressure sensor assembly
US9409014B2 (en) 2013-06-12 2016-08-09 Med-El Elektromedizinische Geraete Gmbh Method for modifying larynx position by trans-positioning muscle and electrode stimulation
US9108054B2 (en) 2013-06-12 2015-08-18 Med-El Elektromedizinische Geraete Gmbh Method for modifying larynx position by trans-positioning muscle and electrode stimulation
US10130386B2 (en) 2013-07-08 2018-11-20 Avinger, Inc. Identification of elastic lamina to guide interventional therapy
US9308356B2 (en) 2013-07-29 2016-04-12 Invatec S.P.A. Occlusion bypassing apparatuses and methods for bypassing an occlusion in a blood vessel
US9301777B2 (en) 2013-07-29 2016-04-05 Invatec S.P.A. Occlusion bypassing apparatuses and methods for bypassing an occlusion in a blood vessel
US9364642B2 (en) 2013-08-14 2016-06-14 Invatec S.P.A. Balloon catheter systems and methods for bypassing an occlusion in a blood vessel
US9320874B2 (en) 2013-08-15 2016-04-26 Invatec S.P.A. Catheter systems with a blocking mechanism and methods for bypassing an occlusion in a blood vessel
BR122020011777B1 (en) 2013-11-14 2022-01-25 AqueSys, Inc Insertion device for the treatment of glaucoma
WO2015123360A1 (en) 2014-02-11 2015-08-20 Cyberonics, Inc. Systems and methods of detecting and treating obstructive sleep apnea
US9855402B2 (en) 2014-02-15 2018-01-02 Rex Medical, L.P. Apparatus for delivering fluid to treat renal hypertension
US9446222B2 (en) 2014-03-05 2016-09-20 Invatec S.P.A. Catheter assemblies and methods for stabilizing a catheter assembly within a subintimal space
US10098650B2 (en) 2014-06-09 2018-10-16 Boston Scientific Scimed, Inc. Systems and methods for treating atherosclerotic plaque
US9545263B2 (en) 2014-06-19 2017-01-17 Limflow Gmbh Devices and methods for treating lower extremity vasculature
WO2015200702A1 (en) 2014-06-27 2015-12-30 Covidien Lp Cleaning device for catheter and catheter including the same
US10357277B2 (en) 2014-07-08 2019-07-23 Avinger, Inc. High speed chronic total occlusion crossing devices
US10391282B2 (en) 2014-07-08 2019-08-27 Teleflex Innovations S.À.R.L. Guidewires and methods for percutaneous occlusion crossing
US10456557B2 (en) 2014-08-14 2019-10-29 Invatec S.P.A. Occlusion bypassing apparatus with varying flexibility and methods for bypassing an occlusion in a blood vessel
US10729454B2 (en) 2014-09-10 2020-08-04 Teleflex Life Sciences Limited Guidewire capture
US10130384B2 (en) 2014-09-23 2018-11-20 CARDINAL HEALTH SWITZERLAND 515 GmbH Catheter systems and methods for re-entry in body vessels with chronic total occlusion
US9636477B2 (en) 2014-10-09 2017-05-02 Vascular Solutions, Inc. Catheter
US9782561B2 (en) 2014-10-09 2017-10-10 Vacular Solutions, Inc. Catheter tip
US9974559B2 (en) * 2014-12-04 2018-05-22 Cook Medical Technologies Llc Cutting guide wire and method of use thereof
EP3270999B1 (en) 2015-03-19 2022-12-07 Boston Scientific Scimed, Inc. Subintimal re-entry balloon catheter and method of forming thereof
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
WO2016189394A1 (en) 2015-05-27 2016-12-01 Angioworks Medical, B.V. Devices and methods for minimally invasive tissue removal
JP6896699B2 (en) 2015-07-13 2021-06-30 アビンガー・インコーポレイテッドAvinger, Inc. Microformed anamorphic reflector lens for image-guided therapy / diagnostic catheter
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10172632B2 (en) 2015-09-22 2019-01-08 Medtronic Vascular, Inc. Occlusion bypassing apparatus with a re-entry needle and a stabilization tube
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
US10327791B2 (en) 2015-10-07 2019-06-25 Medtronic Vascular, Inc. Occlusion bypassing apparatus with a re-entry needle and a distal stabilization balloon
CN108882857A (en) 2016-01-25 2018-11-23 阿维格公司 With the modified OCT image conduit of lag
US10478553B2 (en) * 2016-03-09 2019-11-19 Orbit Biomedical Limited Apparatus for subretinal administration of therapeutic agent via a curved needle
EP3435892B1 (en) 2016-04-01 2024-04-03 Avinger, Inc. Atherectomy catheter with serrated cutter
CN109475368A (en) 2016-06-03 2019-03-15 阿维格公司 Conduit device with detachable distal end
US11224459B2 (en) 2016-06-30 2022-01-18 Avinger, Inc. Atherectomy catheter with shapeable distal tip
US11020563B2 (en) 2016-07-14 2021-06-01 C. R. Bard, Inc. Automated catheter-to-vessel size comparison tool and related methods
US10245050B2 (en) 2016-09-30 2019-04-02 Teleflex Innovations S.À.R.L. Methods for facilitating revascularization of occlusion
WO2018067537A1 (en) 2016-10-07 2018-04-12 Pq Bypass Inc. Systems and methods for delivering stent grafts
US20180140321A1 (en) 2016-11-23 2018-05-24 C. R. Bard, Inc. Catheter With Retractable Sheath And Methods Thereof
US10617854B2 (en) 2016-12-09 2020-04-14 Vascular Access Technologies, Inc. Trans-jugular carotid artery access methods
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US11654224B2 (en) 2016-12-30 2023-05-23 Vascular Access Technologies, Inc. Methods and devices for percutaneous implantation of arterio-venous grafts
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
EP4299086A2 (en) 2017-04-10 2024-01-03 LimFlow GmbH Devices for treating lower extremity vasculature
US10238834B2 (en) 2017-08-25 2019-03-26 Teleflex Innovations S.À.R.L. Catheter
WO2019083757A1 (en) 2017-10-26 2019-05-02 Teleflex Innovations S.A.R.L. Subintimal catheter device and assembly
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
US10952898B2 (en) 2018-03-09 2021-03-23 Aquesys, Inc. Intraocular shunt inserter
US11135089B2 (en) * 2018-03-09 2021-10-05 Aquesys, Inc. Intraocular shunt inserter
JP6968299B2 (en) 2018-04-24 2021-11-17 朝日インテック株式会社 Reentry catheter
JP7244114B2 (en) * 2018-06-04 2023-03-22 アップストリーム ペリフェラル テクノロジーズ リミテッド Pointed Needle Axial Reentry Device
US10470797B1 (en) 2018-07-17 2019-11-12 SlipStream, LLC Systems and methods for vascular access
WO2020076833A1 (en) 2018-10-09 2020-04-16 Limflow Gmbh Devices and methods for catheter alignment
US20200315639A1 (en) * 2019-04-05 2020-10-08 Traverse Vascular, Inc. Reentry catheters and methods for traversing chronic total occlusions
US11497552B2 (en) 2019-07-09 2022-11-15 Juad, Inc. Apparatus, systems and methods for transvascular access to the brain
CN112535499A (en) 2019-09-20 2021-03-23 巴德阿克塞斯系统股份有限公司 Automated vessel detection tool and method
US11471650B2 (en) 2019-09-20 2022-10-18 Biosense Webster (Israel) Ltd. Mechanism for manipulating a puller wire
EP4044942A4 (en) 2019-10-18 2023-11-15 Avinger, Inc. Occlusion-crossing devices
US20220387758A1 (en) 2019-10-29 2022-12-08 Orbusneich Medical Pte. Ltd. Vascular re-entry catheter
EP4051174A4 (en) 2019-11-01 2023-11-22 LimFlow GmbH Devices and methods for increasing blood perfusion to a distal extremity
EP4171723A4 (en) 2020-06-30 2023-12-13 Vonova Inc. Transcatheter electroctode array and use thereof
WO2022020351A1 (en) 2020-07-21 2022-01-27 Bard Access Systems, Inc. System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3d visualization thereof
EP4203828A1 (en) 2020-08-25 2023-07-05 Cross Vascular, Inc. Transseptal crossing system
CN215839160U (en) 2020-09-03 2022-02-18 巴德阿克塞斯系统股份有限公司 Portable ultrasound probe and system
EP4213739A1 (en) 2020-09-25 2023-07-26 Bard Access Systems, Inc. Minimum catheter length tool
US20220117468A1 (en) * 2020-10-15 2022-04-21 American Endoscopic Innovations, LLC Endoscopic System With Attached Instruments
US11672595B1 (en) 2022-06-15 2023-06-13 Corveus Medical, Inc. Systems and methods for interrupting nerve activity to treat a medical condition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095911A (en) * 1990-05-18 1992-03-17 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
US5429144A (en) * 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
WO1997013463A1 (en) * 1995-10-13 1997-04-17 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US5628761A (en) * 1994-07-08 1997-05-13 Rizik; David G. Guide wire passage creation device
WO1997037581A2 (en) * 1996-04-10 1997-10-16 Endoscopic Technologies, Inc. Improving visualization during closed-chest surgery
US5695457A (en) * 1994-07-28 1997-12-09 Heartport, Inc. Cardioplegia catheter system

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1747407A (en) 1928-07-20 1930-02-18 Reinhold H Wappler Catheterizing instrument
FR1585065A (en) 1968-06-24 1970-01-09
DE2945237A1 (en) 1979-11-09 1981-05-14 Stavros Prof. Dr.med. 5100 Aachen Lymberopoulos Urinary passage stone-removal grip - has dish-shaped head contracted to catheter tube dia. by pulling control member
US4470407A (en) 1982-03-11 1984-09-11 Laserscope, Inc. Endoscopic device
US4405314A (en) 1982-04-19 1983-09-20 Cook Incorporated Apparatus and method for catheterization permitting use of a smaller gage needle
US4774949A (en) 1983-06-14 1988-10-04 Fogarty Thomas J Deflector guiding catheter
US4552554A (en) 1984-06-25 1985-11-12 Medi-Tech Incorporated Introducing catheter
US5114414A (en) 1984-09-18 1992-05-19 Medtronic, Inc. Low profile steerable catheter
US4594074A (en) * 1985-05-06 1986-06-10 Viridian, Inc. Non-occluding high flow enteral feeding tube
US4648402A (en) 1985-10-03 1987-03-10 Santos Manuel V Blood vessel dilating surgical instrument
DE3643235C1 (en) * 1986-12-18 1987-11-12 Braun Melsungen Ag Steel cannulas for spinal and peridural anesthesia
US5001556A (en) 1987-09-30 1991-03-19 Olympus Optical Co., Ltd. Endoscope apparatus for processing a picture image of an object based on a selected wavelength range
US4886067A (en) 1989-01-03 1989-12-12 C. R. Bard, Inc. Steerable guidewire with soft adjustable tip
US5099850A (en) 1989-01-17 1992-03-31 Olympus Optical Co., Ltd. Ultrasonic diagnostic apparatus
US4932413A (en) 1989-03-13 1990-06-12 Schneider (Usa), Inc. Guidewire exchange catheter
ATE134492T1 (en) * 1989-06-01 1996-03-15 Schneider Europ Ag CATHETER ARRANGEMENT WITH A GUIDE WIRE AND METHOD FOR PRODUCING SUCH A GUIDE WIRE
US5019040A (en) 1989-08-31 1991-05-28 Koshin Sangyo Kabushiki Kaisha Catheter
US5213221A (en) 1989-09-05 1993-05-25 Charles E. T. Raye, Sr. Foldable drying rack
US5061245A (en) 1990-01-19 1991-10-29 Waldvogel Chester W Arterial bypass tool
US5109830A (en) 1990-04-10 1992-05-05 Candela Laser Corporation Apparatus for navigation of body cavities
DE9190089U1 (en) 1990-06-11 1993-02-11 Schneider (Usa) Inc., Plymouth, Minn., Us
DE59105247D1 (en) 1990-10-04 1995-05-24 Schneider Europ Ag Balloon dilatation catheter.
US5190528A (en) 1990-10-19 1993-03-02 Boston University Percutaneous transseptal left atrial cannulation system
US5389096A (en) 1990-12-18 1995-02-14 Advanced Cardiovascular Systems System and method for percutaneous myocardial revascularization
ES2098489T3 (en) 1990-11-09 1997-05-01 Boston Scient Corp GUIDE WIRE TO CROSS OCCLUSIONS IN BLOOD GLASSES.
US5409453A (en) 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US5183470A (en) 1991-03-04 1993-02-02 International Medical, Inc. Laparoscopic cholangiogram catheter and method of using same
US5321501A (en) 1991-04-29 1994-06-14 Massachusetts Institute Of Technology Method and apparatus for optical imaging with means for controlling the longitudinal range of the sample
WO1993000868A1 (en) 1991-07-04 1993-01-21 Earl Ronald Owen Tubular surgical implant
US5452733A (en) 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
JPH06511181A (en) 1992-03-18 1994-12-15 ザ・スペクトラネティックス・コーポレーション Fiber optic catheter with flexible tip
US5350377A (en) 1992-10-26 1994-09-27 Ultrasonic Sensing & Monitoring Systems, Inc. Medical catheter using optical fibers that transmit both laser energy and ultrasonic imaging signals
WO1995022283A1 (en) 1992-10-26 1995-08-24 Ultrasonic Sensing & Monitoring Systems, Inc. Catheter using optical fibers to transmit laser and ultrasonic energy
US5409019A (en) 1992-10-30 1995-04-25 Wilk; Peter J. Coronary artery by-pass method
US5287861A (en) 1992-10-30 1994-02-22 Wilk Peter J Coronary artery by-pass method and associated catheter
US5279565A (en) 1993-02-03 1994-01-18 Localmed, Inc. Intravascular treatment apparatus and method
GB9307572D0 (en) * 1993-04-13 1993-06-02 Gould Derek A Transintimal recanalisation device
WO1995002430A1 (en) 1993-07-15 1995-01-26 Advanced Cardiovascular Systems, Inc. Rapid exchange type intraluminal catheter with guiding element
US5443497A (en) 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
CA2181157A1 (en) 1994-01-14 1995-07-20 Paul G. Yock Ultrasonic ablation of stenoses and occlusions with imaging guidance
US6039749A (en) * 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
US5464395A (en) 1994-04-05 1995-11-07 Faxon; David P. Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway
US5456694A (en) 1994-05-13 1995-10-10 Stentco, Inc. Device for delivering and deploying intraluminal devices
US5607435A (en) 1994-05-23 1997-03-04 Memory Medical Systems, Inc. Instrument for endoscopic-type procedures
US5573531A (en) 1994-06-20 1996-11-12 Gregory; Kenton W. Fluid core laser angioscope
US5531700A (en) * 1994-07-29 1996-07-02 Cardiovascular Imaging Systems, Inc. Convertible tip catheters and sheaths
DE4429117A1 (en) 1994-08-17 1996-02-22 Bess Medizintechnik Gmbh Dilatation catheter for vessel or tissue restrictions
US5707389A (en) 1995-06-07 1998-01-13 Baxter International Inc. Side branch occlusion catheter device having integrated endoscope for performing endoscopically visualized occlusion of the side branches of an anatomical passageway
US6302875B1 (en) * 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
CA2234389A1 (en) 1995-10-13 1997-04-17 Transvascular, Inc. A device, system and method for interstitial transvascular intervention
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US6283983B1 (en) 1995-10-13 2001-09-04 Transvascular, Inc. Percutaneous in-situ coronary bypass method and apparatus
US6036713A (en) * 1996-01-24 2000-03-14 Archimedes Surgical, Inc. Instruments and methods for minimally invasive vascular procedures
AUPN775296A0 (en) 1996-01-25 1996-02-22 Endogad Research Pty Limited Directional catheter
CN1218414A (en) 1996-02-02 1999-06-02 血管转换公司 Methods and apparatus for blocking flow through blood vessels
JP2001508318A (en) 1996-02-02 2001-06-26 トランスバスキュラー インコーポレイテッド Apparatus, systems and methods for interstitial transvascular intervention
IL125417A (en) 1996-02-02 2004-03-28 Transvascular Inc Apparatus for blocking flow through blood vessels
US5800389A (en) * 1996-02-09 1998-09-01 Emx, Inc. Biopsy device
US5916194A (en) 1996-05-24 1999-06-29 Sarcos, Inc. Catheter/guide wire steering apparatus and method
US5928135A (en) * 1996-08-15 1999-07-27 Ethicon Endo-Surgery, Inc. Method and devices for endoscopic vessel harvesting
AU743142B2 (en) 1996-08-26 2002-01-17 Transvascular, Inc. Methods and apparatus for transmyocardial direct coronary revascularization
US6447539B1 (en) * 1996-09-16 2002-09-10 Transvascular, Inc. Method and apparatus for treating ischemic heart disease by providing transvenous myocardial perfusion
US6379319B1 (en) 1996-10-11 2002-04-30 Transvascular, Inc. Systems and methods for directing and snaring guidewires
WO1998016161A1 (en) 1996-10-11 1998-04-23 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6432127B1 (en) 1996-10-11 2002-08-13 Transvascular, Inc. Devices for forming and/or maintaining connections between adjacent anatomical conduits
US5741270A (en) * 1997-02-28 1998-04-21 Lumend, Inc. Manual actuator for a catheter system for treating a vascular occlusion
IL132195A0 (en) 1997-04-11 2001-03-19 Transvascular Inc Method and apparatus for transmyocardial direct coronary revascularization
US6071292A (en) 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US5935108A (en) 1997-11-14 1999-08-10 Reflow, Inc. Recanalization apparatus and devices for use therein and method
US5938671A (en) 1997-11-14 1999-08-17 Reflow, Inc. Recanalization apparatus and devices for use therein and method
US6330884B1 (en) 1997-11-14 2001-12-18 Transvascular, Inc. Deformable scaffolding multicellular stent
US6217527B1 (en) * 1998-09-30 2001-04-17 Lumend, Inc. Methods and apparatus for crossing vascular occlusions
US6241667B1 (en) * 1998-01-15 2001-06-05 Lumend, Inc. Catheter apparatus for guided transvascular treatment of arterial occlusions
AU768005B2 (en) 1998-03-31 2003-11-27 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers
US6561998B1 (en) * 1998-04-07 2003-05-13 Transvascular, Inc. Transluminal devices, systems and methods for enlarging interstitial penetration tracts
US6015423A (en) 1998-04-10 2000-01-18 Andrese; Craig A. Dilatation catheter tip for angioplasty procedures
US6569145B1 (en) 1999-03-25 2003-05-27 Transvascular, Inc. Pressure-controlled continuous coronary sinus occlusion device and methods of use
US6126649A (en) 1999-06-10 2000-10-03 Transvascular, Inc. Steerable catheter with external guidewire as catheter tip deflector
EP1253859B1 (en) 2000-01-04 2009-04-15 Medtronic Vascular, Inc. Apparatus for creating a channel between adjacent body lumens
US6589164B1 (en) 2000-02-15 2003-07-08 Transvascular, Inc. Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
US6602241B2 (en) * 2001-01-17 2003-08-05 Transvascular, Inc. Methods and apparatus for acute or chronic delivery of substances or apparatus to extravascular treatment sites

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095911A (en) * 1990-05-18 1992-03-17 Cardiovascular Imaging Systems, Inc. Guidewire with imaging capability
US5429144A (en) * 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
US5628761A (en) * 1994-07-08 1997-05-13 Rizik; David G. Guide wire passage creation device
US5695457A (en) * 1994-07-28 1997-12-09 Heartport, Inc. Cardioplegia catheter system
WO1997013463A1 (en) * 1995-10-13 1997-04-17 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
WO1997037581A2 (en) * 1996-04-10 1997-10-16 Endoscopic Technologies, Inc. Improving visualization during closed-chest surgery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561126B2 (en) 1996-11-04 2017-02-07 Boston Scientific Scimed, Inc. Catheter with attached flexible side sheath
US8597226B2 (en) 1998-09-10 2013-12-03 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US7704222B2 (en) 1998-09-10 2010-04-27 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US7736327B2 (en) 1998-09-10 2010-06-15 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US8216174B2 (en) 1998-09-10 2012-07-10 Jenavalve Technology, Inc. Methods and conduits for flowing blood from a heart chamber to a blood vessel
US6261304B1 (en) 1998-09-10 2001-07-17 Percardia, Inc. Delivery methods for left ventricular conduit
US6475226B1 (en) 1999-02-03 2002-11-05 Scimed Life Systems, Inc. Percutaneous bypass apparatus and method
WO2002039906A3 (en) * 2000-11-20 2003-05-30 Avantec Vascular Corp Method and device for the treatment of vulnerable tissue site
WO2002039906A2 (en) * 2000-11-20 2002-05-23 Avantec Vascular Corporation Method and device for the treatment of vulnerable tissue site
WO2002045598A2 (en) * 2000-12-05 2002-06-13 Lumend, Inc. Catheter system for vascular re-entry from a sub-intimal space
WO2002045598A3 (en) * 2000-12-05 2003-01-16 Lumend Inc Catheter system for vascular re-entry from a sub-intimal space
US11517431B2 (en) 2005-01-20 2022-12-06 Jenavalve Technology, Inc. Catheter system for implantation of prosthetic heart valves
US11357624B2 (en) 2007-04-13 2022-06-14 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US11154398B2 (en) 2008-02-26 2021-10-26 JenaValve Technology. Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US10993805B2 (en) 2008-02-26 2021-05-04 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11564794B2 (en) 2008-02-26 2023-01-31 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US11589981B2 (en) 2010-05-25 2023-02-28 Jenavalve Technology, Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US10226203B2 (en) 2012-08-23 2019-03-12 Volcano Corporation Device for anatomical lesion length estimation
WO2014031922A1 (en) * 2012-08-23 2014-02-27 Volcano Corporation Device, system, and method for anatomical lesion length estimation
US11185405B2 (en) 2013-08-30 2021-11-30 Jenavalve Technology, Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
US11337800B2 (en) 2015-05-01 2022-05-24 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US11065138B2 (en) 2016-05-13 2021-07-20 Jenavalve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system

Also Published As

Publication number Publication date
AU1831599A (en) 1999-08-02
US6511458B2 (en) 2003-01-28
AU745116B2 (en) 2002-03-14
EP1047344A1 (en) 2000-11-02
US20010012924A1 (en) 2001-08-09
US6231546B1 (en) 2001-05-15
CA2318470A1 (en) 1999-07-22
US6235000B1 (en) 2001-05-22
US6719725B2 (en) 2004-04-13
BR9814588A (en) 2000-10-24
JP4334765B2 (en) 2009-09-30
JP2002508987A (en) 2002-03-26
US20030120195A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
US6231546B1 (en) Methods and apparatus for crossing total occlusions in blood vessels
US6221049B1 (en) Methods and apparatus for crossing vascular occlusions
US20130245430A1 (en) Catheter systems for crossing total occlusions in vasculature
US20050171478A1 (en) Catheter system for crossing total occlusions in vasculature
JP4159357B2 (en) Intrapericardial drug delivery device for angiogenesis
CA2613165C (en) Method and system for navigating through an occluded tubular organ
US8374680B2 (en) Needleless catheters and methods for true lumen re-entry in treatment of chronic total occlusions and other disorders
US9603615B2 (en) Vascular re-entry device
JP2010512971A (en) Low profile catheter and method for the treatment of chronic total occlusion and other diseases
US20070293846A1 (en) Dual Lumen Guidewire Support Catheter
EP2967599B1 (en) Side lumen reentry catheters
AU1552202A (en) A wire deflection system
WO2003030744A1 (en) Coronary bypass apparatus and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 18315/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1998963257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2318470

Country of ref document: CA

Ref country code: CA

Ref document number: 2318470

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 539761

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWP Wipo information: published in national office

Ref document number: 1998963257

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 18315/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1998963257

Country of ref document: EP