WO1999048448A1 - Dynamic orthopedic braces - Google Patents

Dynamic orthopedic braces Download PDF

Info

Publication number
WO1999048448A1
WO1999048448A1 PCT/US1999/004258 US9904258W WO9948448A1 WO 1999048448 A1 WO1999048448 A1 WO 1999048448A1 US 9904258 W US9904258 W US 9904258W WO 9948448 A1 WO9948448 A1 WO 9948448A1
Authority
WO
WIPO (PCT)
Prior art keywords
support member
support
user
force
indicator
Prior art date
Application number
PCT/US1999/004258
Other languages
French (fr)
Inventor
Robert N. Hotchkiss
Bruce H. Robie
Mark A. Deitch
Original Assignee
New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery filed Critical New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery
Priority to CA002321666A priority Critical patent/CA2321666A1/en
Priority to AU30646/99A priority patent/AU3064699A/en
Priority to JP2000537503A priority patent/JP2003521948A/en
Priority to EP99912228A priority patent/EP1063950A1/en
Publication of WO1999048448A1 publication Critical patent/WO1999048448A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • A61F5/013Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations for the arms, hands or fingers

Definitions

  • the present invention relates to orthopedic devices including a support member which is configured to the actual or desired shape of a user's body part and is removably attached to the user by a support structure.
  • the support member includes a variable force applicator for adjusting and directly applying force to the user with an indicator for displaying the force applied.
  • the present invention relates to dynamic braces, and in particular to a "smart" dynamic wrist brace that reduces and maintains the reduction of extra articular fractures of the distal radius by applying a palmarly directed force to the metacarpals and distal carpus.
  • Orthopedic braces for immobilizing or providing limited movement of the hand and/or wrist, to allow for healing are known, and include conventional and dynamic types of braces.
  • U.S. Patent No. 2,767,708 to Keropian relates to an orthopedic hand brace having a forearm support which is pivotally connected to the hand support, whereby lateral movement of the hand brace is possible.
  • the wrist brace includes a palmar and dorsal hand support. Dorsal pressure is applied to the hand through an inclined lateral support which is integral with a lateral extension that is pivotally connected to the arm assembly.
  • FIGS. 16-19 a dynamic wrist splint is described in FIGS. 16-19, where hand and arm assemblies are pivotally connected to one another.
  • the dynamically adjustable force is provided by the flexible palmar strap and pad, and rotation of the strap relative to the palmar strap.
  • the inter-relationship of the varied parts is very complicated.
  • the above exemplified devices do not provide an adjustable, palmarly directed force with automatic feedback on the amount of force applied to fix the fracture, with the intent that the displacement can be adjusted so as to generate the appropriate amount of force.
  • the present invention relates to an orthopedic brace which provides the automatic feedback on the amount of force applied to maintain or reduce a fracture or to maintain or reduce a malalignment or to change alignment, so that the appropriate amount of force can be applied.
  • the brace includes a first support member configured to fit a user's body part and is connected to releasable structure for attaching the brace to the user.
  • the configured support member includes a variable force applicator to increase or decrease pressure/force applied to the user and an indicator for displaying the amount of force that is applied.
  • One object of the present invention is to provide an orthopedic brace with automatic feedback on the amount of force applied to a support member configured to fit a body part of a user and fix a fracture.
  • Another object of the present invention is to provide a wrist brace with palmarly directed force feedback.
  • Another object of the present invention is to provide a knee device with feedback on the amount of force being applied.
  • a still further objected is to provide a simplified brace that can be easily adjusted.
  • a further object of the present invention involves providing a method for maintaining or reducing a fracture or maintaining or reducing a malalignment, or changing the alignment, in response to the automatic feedback of the orthopedic brace of the present invention.
  • FIG. 1 shows a dorsal view of a first embodiment according to the present invention, on a user.
  • FIG. 2 shows a lateral view of the first embodiment according to the present invention, on a user.
  • FIG. 3 shows a palmar view of the first embodiment according to the present invention, on a user.
  • FIG. 4 shows a oblique view of the first embodiment according to the present invention with the user's wrist flexed.
  • FIG. 5 shows a side view of the first embodiment according to the present invention.
  • FIG. 5 A is a cross-sectional view of the palmar support according to the present invention.
  • FIG. 6 is a flow chart of an electronic sensor control system "ESCS" according to the present invention.
  • FIG. 7 is the protocol for the ESCS system according to the present invention.
  • FIG. 8 shows a hand assembly embodiment of the present invention using strain gages.
  • FIG. 9 is a front view of another embodiment of the present invention.
  • FIG. 10 is a cross-sectional side view of a further embodiment of the present invention.
  • FIG. 11 is a top and side view of one torque knob embodiment of the present invention.
  • FIG. 12 is a side view of a back brace according to the present invention.
  • FIG. 13 is front view of the rib/torso support of the invention shown in FIG. 12.
  • FIG. 14 is a side view of the support shown in FIG. 13.
  • FIGS. 15 and 16 are respectively front views of a current knee brace and a knee brace in accordance with the present invention.
  • FIG. 17 is an exploded perspective view of a hand assembly and insertable computer module incorporating the components and protocol of FIGS. 6 and 7.
  • FIG. 18 is a side view of the bladder hand assembly device according to the present invention.
  • the present invention relates to an orthopedic brace which provides the automatic feedback on the amount of force applied to maintain or reduce a fracture or to maintain or reduce a malalignment or to change alignment, so that the appropriate amount of force can be applied.
  • the brace includes a first support member configured to fit a user's body part and is connected to releasable structure for attaching the brace to the user.
  • the releasable structure is provided by Velcro® fasteners and Velcro® straps in a first embodiment.
  • the straps for attaching the backbrace to the user are the releasable structure.
  • the strap for the knee brace forms the releasable structure.
  • a wrist brace which is designed to treat non-articular fractures of the distal radius.
  • the device provides automatic feedback on the amount of force applied to fix the fracture, with the intent that the displacement force can be adjusted so as to generate the appropriate amount of force.
  • the brace applies a palmarly directed force to the dorsum of the hand which maintains the reduction of the fracture, in a variety of wrist positions.
  • the palmarly directed force is resisted at the forearm and at the distal aspect of the metacarpal row.
  • the bending moment induced by the palmarly directed force must be resisted by the forearm components with respect to the forearm.
  • FIGS. 1-5 The wrist brace 510 of the present invention is shown in use in FIGS. 1-5.
  • FIG. 1 a dorsal view looking palmarly is depicted and
  • FIG. 2 shows a lateral view.
  • FIG. 3 shows a palmar view, looking dorsally, while
  • FIG. 4 shows an oblique view with the wrist flexed.
  • FIG. 5 A side view of the wrist brace 510 of FIGS. 1-4 is shown in FIG. 5.
  • a forearm assembly 520 fixes the hand assembly 540 to a user's hand, wrist and forearm (not shown) and provides a hinge 541 to allow movement of the hand assembly 540 relative to the arm assembly 520 and flexion/extension motion at the wrist.
  • the arm assembly 520 receives the volar surface of the user's forearm.
  • the forearm assembly 520 includes a forearm pad 522, two Velcro® fasteners 524, 526 and two Velcro® straps 528, 530.
  • the forearm pad 522 is preferably formed from a plastic material, is generally shaped to match the contour of the forearm, and includes two rounded tabs 532, 534 which extend dorsally and are oriented perpendicular to the palmar plane.
  • the forearm pad 520 is substantial rigid and may also include a resilient material for cushioning purposes, including at least one layer designed for comfort and transmission of moisture away from the user.
  • a suitable material could include a cotton or similar synthetic material covered with a breathable fabric, e.g., a Gore-Tex® fabric.
  • the palmar support 550 (FIG. 5 A), includes a threaded sleeve 551 for receiving a threaded shaft 552, and an outer cushioning layer 558.
  • the support 550 has opposite ends 551, 552 slidably received in slots 554 and grooves 556 therein. The ends of the support 550 are configured to have an outer diameter that is greater than the width of the open slot, but smaller than the width of the groove which extends on opposite sides of the slot.
  • hand assembly 840 includes sides 843 and 845 terminating in free ends 842 and 844 respectively, each of which includes a slot 854 for receiving the palmar support bar 850.
  • the hand assembly 840 includes strain gages 875 which are positioned on opposite sides 843 and 845 of the hand assembly 840 to measure the strain generated by the dorsum support 880 and the torque nut 870. The strain gages will produce an electronic signal for processing which will be indicative of the forces applied to the dorsum of the hand in the palmar direction.
  • FIG. 9 provides one embodiment of the present invention showing a hand assembly 940 which applies a variable palmer force to the dorsum of the hand, which also resists that force with the distal metacarpal row, allows wrist motion, and adjustably fits different hand sizes.
  • variable palmar force is applied through a variable force applicator system 960 which is positioned within the housing 946 of the hand assembly 940, which is substantially the same structure 540 shown in FIG. 5, and which includes free ends 942 and 944, each having a slot and groove, as shown in FIG. 5, for slidably supporting the palmar support 950.
  • the variable force applicator system 960 includes a torque knob 970 and dorsal pad 980.
  • the variable palmar force system 960 includes the torque knob 970 and the dorsal pad 980 which includes an upper, substantially rigid polymeric member 982 and a lower cushioning member 984 for contacting and engaging the user's hand.
  • Hand assembly 1040 includes a free end 1042 with slot 1054 for receiving the palmar support 1050.
  • the hand assembly 1040 includes a housing 1046 and a pressure applicator system 1060.
  • Pressure applicator system 1060 includes a torque knob 1070 and a two piece dorsal pad 1080 which will contact the dorsum of the hand includes plastic component 1082 and a padding 1084.
  • Plastic component 1082 contains a threaded cylinder 1086 extending upwardly from the back of the dorsal pad 1080 ancT which is received in the threaded hole 1072 in torque knob 1070.
  • the torque knob 1070 which receives the dorsal pad 1080 and connects to the hand assembly 1040, is round in shape. Although the torque knob 1070 is shown as having a round shape, other configurations are also possible, such as pentagonal, hexagonal, etc.
  • the torque knob 1070 is free to rotate relative to the hand assembly 1040, but the dorsal pad 1080 is not, due to contact with the user's hand. As a result of this relationship, when the torque knob 1070 is rotated, it causes translation of pressure to the dorsal pad 1080 in a dorsal to palmar direction, thus enabling direct loading or unloading of the dorsum.
  • the palmar bar 1050 attaches to the hand assembly 1040 and counters the dorsal load at the distal metacarpal row.
  • the palmar bar 1050 is generally cylindrical and rides in two matching slots 1054 on the hand assembly 1040.
  • the slots 1054 allow the palmar bar 1050 to be adjusted to a variety of hand sizes. It also accommodates left or right hands in the same components.
  • the palmar bar 1050 includes two pieces, a threaded head and shaft, similar to that shown in FIG. 5A, forming respective ends 1053.
  • bar 1050 includes a shaft which is inserted through one slot 1054 of the hand assembly 1040.
  • the palmar support 1050 is padded to provide comfort.
  • the present invention provides a hand assembly which provides automatic feedback on the amount of force applied to fix the fracture, with the intent that the displacement force can be adjusted so as to generate the appropriate amount of force.
  • the force information can be measured in a variety of ways, including pressure transducers or strain gages.
  • the hand assembly 1040 includes a force sensing resistor (FSR) transducer 1090 which is located in channel 1092 which is recessed in surface 1041 of housing assembly 1040.
  • the sensor 1090 measures the forces exerted on the sensor 1090 by the torque knob 1060 and generates an electrical signal representative of that value.
  • FSR force sensing resistor
  • FIG. 6 a block diagram of an Electronic Sensor Control
  • the ESCS 600 interfaces with a patient 602 in conjunction with the dynamic wrist brace (FIG. 1 and the hand assembly of FIGS. 8, 9, 10 and 17).
  • a force transducer 604 (1090 of FIG. 10) is connected to a patient 602 via the wrist brace and senses the force currently applied at the force transducer location. Multiple force transducers 604 can be used. Force transducers 604 include piezoelectric transducers and force sensing resistors. One of ordinary skill in the art practicing the invention described herein could select a suitable sensor.
  • the force transducer 604 transmits an electronic signal, which represents the detected force, to a conditioning circuitry 606.
  • the conditioning circuitry 606 receives the electronic signal representing the force detected by the force transducer 604 and processes the signal and then transmits a signal to a microcontroller 608.
  • the microcontroller 608 receives the conditioned electronic signal from the conditioning circuitry 606 and converts the signal to a signal appropriate to drive a display 610.
  • the display 610 indicates a value that corresponds to the forces sensed by the force transducer 604. The value can be displayed in a human readable format.
  • a voltage regulation circuitry 614 provides regulated voltage levels to various devices including the conditioning circuitry 606, the microcontroller 608, and the display 610. The voltage levels required for each of these devises may vary.
  • the voltage regulation circuitry 614 receives DC power from a battery 616.
  • the battery 616 may include several batteries connected together.
  • the voltage regulation circuitry 614 converts the voltage level of the battery 616 to the appropriate voltage levels for the various devices.
  • a "reset and on/off switch 612 provides reset and on/off functions.
  • the patient 602 or medical personal can reset the ESCS 600 by pressing a reset switch 612.
  • the switch 612 can provide automatic resetting of the ESCS 600 at power on or during operation.
  • the switch 612 can be used to power the ESCS 600 off or on.
  • a flow diagram 700 of the operation of the electronic sensor control system (“ESCS") 600 is illustrated.
  • the process is restarted at step 702.
  • a battery test 704 is performed to determine the status of the battery or batteries 616 (FIG. 6). If the results of the battery test is determined to be unsatisfactory in step 706, then a battery error is transmitted to the display 610 in step 708 and the ESCS is stopped in step 730. If the result of the battery test is determined to be satisfactory in step 706, then the force transducer 604 (FIG. 6) is tested.
  • step 710 the load is taken off the brace and the transducer value is set to a value of zero in step 710.
  • the output value of the force transducer is compared to the expected value of zero. If the output of the force transducer 604 does not match the expected value, an error message is displayed in step 714, then the ESCS is stopped in step 730.
  • the ESCS enters a run-time processing loop including steps 716 through 728.
  • the ESCS exits the run-time processing loop only if the timer runs out or the ESCS is reset or powered off.
  • the force transducer 604 is read.
  • the value corresponds to detected pressure at the location of the force transducer 604.
  • the output of the force transducer is converted to a value that corresponds to known transducer values, that is, the value can be normalized, scaled, or converted to logarithms or otherwise converted.
  • the converted value of the transducer reading is compared to known values.
  • step 722 the result of the comparison is displayed on the display 610 (FIG. 6).
  • the timer is incremented in step 724.
  • the timer is compared to a time-out value in step 728. If the timer exceeds the time-out value, the ESCS exits the run-time processing loop and stops in step 730. If the timer does not exceed the time-out value, the ESCS loops back to step 716 and repeats the run-time processing loop describe above.
  • any electrical sensor will use basically the same electronics and computer software, the integration of the electrical sensor into the device may change.
  • the strain gages 875 are used to sense the force.
  • the hand assembly 1740 includes a slot 1780 and electrical contacts 1782. These contacts are electrically connected to the particular sensor included in the hand assembly 1740.
  • a removable, battery powered computer module 1785 including a variable display 1787, indicator 1784 and mode and control buttons 1788 and 1789, and including the components of FIG. 6, and capable of following the protocol of FIG. 7, is inserted into the slot 1780, thereby having terminals on the backside of module 1785 which engage contacts 1782.
  • the circuitry for the computer module are commercially available and do not form part of the present invention.
  • the torque needed to turn the torque knob 870, 970, 1070 is measured with a torque wrench (a conventional mechanical device that typically has a needle that moves dependent on torque).
  • the scale on the face of the torque wrench would display axial force, based on a known relationship between torque and force.
  • an opening 990 would be provided in a side wall of the assembly 940 so that the torque wrench could engage torque knob 970.
  • the torque knob 1170 could be modified, as shown in FIG. 11, to accommodate a standard driver at opening 1172 that would connect to the torque wrench.
  • the housing would also need an access opening, such as opening 940 of FIG. 9 to permit adjustment of the torque knob.
  • a still further embodiment of the present invention is schematically shown in FIG. 18.
  • a hand assembly 1840 includes a palmar bar 1850, a bladder 1890, and fluid connector 1891 for inflating or deflating bladder 1890.
  • the dorsal support 1880 includes an upstanding wall 1881 that circumscribes and retains the bladder in
  • a sensor (not shown) is positioned between the underside of the housing and the upper surface of the bladder 1890, and would also be connected to a pressure gage to help regulate the pressure.
  • the leads from the sensor may be connected to the electrical contacts in the hand assembly wall, as shown in FIG. 17, or connected to an appropriate control and monitoring system as discussed above.
  • An access hole would be provided in a sidewall of the hand assembly 1840 so that either a hand pump, such as the kind used to pump up athletic equipment, could be connected to the bladder 1890 to increase the force of the bladder by injecting more air, or the pressure of the bladder could be reduced by bleeding air from the bladder.
  • a hand pump such as the kind used to pump up athletic equipment
  • the bladder 1890 could be connected to the bladder 1890 to increase the force of the bladder by injecting more air, or the pressure of the bladder could be reduced by bleeding air from the bladder.
  • a still further embodiment is using a piezoelectric transducer which could be used to detect load and provide a signal to the electronic/computer system.
  • the mechanical embodiment of this would be identical to that for the system of FIG. 10 described above.
  • the piezoelectric wafer would be sandwiched between the hand piece and the torque knob. Wire leads coming off of the wafer would lead to the electronics/computer system or the electrical contacts 1782.
  • the concept of applying a variable force via a moving actuator to the human body while providing feedback to the user regarding the force magnitude can also be applied to other braces.
  • the present invention can also be incorporated into scoliosis braces which are used to maintain, or sometimes reduce, curvature of the spine. This is accomplished by applying loads to counter the ongoing curvature.
  • the force is developed in part by the shape of the brace and in part by the tightness of the connections.
  • FIG. 12 Applying the variable force/feedback concept, the force is varied on the loading pad 1270. This force is in-part generated/tensioned by strap attachments 1285 to the support pad 1275, and the hip pad 1277.
  • FIG. 13 where the pressure loading pad 1380, which corresponds to pad 1270 of FIG. 12,
  • a threaded cylinder 1490 On the top surface of the pad 1480 is a threaded cylinder 1490. This mates with a tension knob 1492 (analogous to the torque knob of the wrist brace).
  • a load piece 1493 is attached to the strap 1485. The sensor would rest on the end of the load piece nearest to the tension knob. As the knob 1490 is turned it would move either towards the loading pad 1480 or away from it. This movement would either decrease or increase the tension in the strap 1485. The change in tension will result in a different force on the load piece, which would be detected by the sensor.
  • FIG. 15 shows a knee brace which is currently gaining popularity for nonoperative treatment of knee arthritis.
  • the brace of FIG. 15 is shown modified in FIG. 16. in accordance with the present invention.
  • the brace angularly displaces the femur relative to the tibia to take the load off of a condyle.
  • a load pad 1680 replaces part of the strap 1685.
  • the assembly would then have a cross-sectional view similar to that shown in FIGS. 13 and 14.
  • the geometry of the pad and strap would be similar to that described in FIG. 12.

Abstract

The present invention relates to a brace including a support member that is configured to the actual or desired shape of a user's body part, a support structure for mounting the support member on a user, a variable force applicator for adjusting the amount of force to be applied by the support member and an indicator for displaying the force applied.

Description

DYNAMIC ORTHOPEDIC BRACES
FIELD OF THE INVENTION
The present invention relates to orthopedic devices including a support member which is configured to the actual or desired shape of a user's body part and is removably attached to the user by a support structure. The support member includes a variable force applicator for adjusting and directly applying force to the user with an indicator for displaying the force applied. More specifically, the present invention relates to dynamic braces, and in particular to a "smart" dynamic wrist brace that reduces and maintains the reduction of extra articular fractures of the distal radius by applying a palmarly directed force to the metacarpals and distal carpus.
BACKGROUND OF THE INVENTION
Orthopedic braces for immobilizing or providing limited movement of the hand and/or wrist, to allow for healing, are known, and include conventional and dynamic types of braces. For example, U.S. Patent No. 2,767,708 to Keropian relates to an orthopedic hand brace having a forearm support which is pivotally connected to the hand support, whereby lateral movement of the hand brace is possible.
In U.S. Patent No. 5,002,044 to Carter, the distal ends of struts which form part of the forearm and hand assembly supports are connected at a rotation plate which limits rotation of the hand assembly support relative to the forearm assembly support. The proximal ends of the struts may be slidably received within sleeves and coact with tension or compression springs.
In U.S. Patent No. 5,254,078 to Carter, the wrist brace includes a palmar and dorsal hand support. Dorsal pressure is applied to the hand through an inclined lateral support which is integral with a lateral extension that is pivotally connected to the arm assembly.
In U.S. Patent No. 5,358,469 to Patchel, a dynamic wrist splint is described in FIGS. 16-19, where hand and arm assemblies are pivotally connected to one another. The dynamically adjustable force is provided by the flexible palmar strap and pad, and rotation of the strap relative to the palmar strap.
In the above devices, the inter-relationship of the varied parts is very complicated. Thus a need exists for a simplified orthopedic device. Also, the above exemplified devices do not provide an adjustable, palmarly directed force with automatic feedback on the amount of force applied to fix the fracture, with the intent that the displacement can be adjusted so as to generate the appropriate amount of force.
SUMMARY OF THE INVENTION
The present invention relates to an orthopedic brace which provides the automatic feedback on the amount of force applied to maintain or reduce a fracture or to maintain or reduce a malalignment or to change alignment, so that the appropriate amount of force can be applied. The brace includes a first support member configured to fit a user's body part and is connected to releasable structure for attaching the brace to the user. The configured support member includes a variable force applicator to increase or decrease pressure/force applied to the user and an indicator for displaying the amount of force that is applied.
One object of the present invention is to provide an orthopedic brace with automatic feedback on the amount of force applied to a support member configured to fit a body part of a user and fix a fracture.
Another object of the present invention is to provide a wrist brace with palmarly directed force feedback.
Another object of the present invention is to provide a knee device with feedback on the amount of force being applied.
A still further objected is to provide a simplified brace that can be easily adjusted.
A further object of the present invention involves providing a method for maintaining or reducing a fracture or maintaining or reducing a malalignment, or changing the alignment, in response to the automatic feedback of the orthopedic brace of the present invention.
Objects and advantages of the invention are set forth in part herein and in part will be apparent herefrom, or may be learned by practice with the invention, the same being realized and attained by means of the structures, instrumentalities and combinations pointed out in the appended claims. Accordingly, the invention resides in the novel parts, structures, arrangements, combinations and improvements herein shown and described.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a dorsal view of a first embodiment according to the present invention, on a user.
FIG. 2 shows a lateral view of the first embodiment according to the present invention, on a user.
FIG. 3 shows a palmar view of the first embodiment according to the present invention, on a user.
FIG. 4 shows a oblique view of the first embodiment according to the present invention with the user's wrist flexed. FIG. 5 shows a side view of the first embodiment according to the present invention.
FIG. 5 A is a cross-sectional view of the palmar support according to the present invention.
FIG. 6 is a flow chart of an electronic sensor control system "ESCS" according to the present invention.
FIG. 7 is the protocol for the ESCS system according to the present invention.
FIG. 8 shows a hand assembly embodiment of the present invention using strain gages.
FIG. 9 is a front view of another embodiment of the present invention.
FIG. 10 is a cross-sectional side view of a further embodiment of the present invention. FIG. 11 is a top and side view of one torque knob embodiment of the present invention.
FIG. 12 is a side view of a back brace according to the present invention.
FIG. 13 is front view of the rib/torso support of the invention shown in FIG. 12. FIG. 14 is a side view of the support shown in FIG. 13.
FIGS. 15 and 16 are respectively front views of a current knee brace and a knee brace in accordance with the present invention.
FIG. 17 is an exploded perspective view of a hand assembly and insertable computer module incorporating the components and protocol of FIGS. 6 and 7. FIG. 18 is a side view of the bladder hand assembly device according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an orthopedic brace which provides the automatic feedback on the amount of force applied to maintain or reduce a fracture or to maintain or reduce a malalignment or to change alignment, so that the appropriate amount of force can be applied. The brace includes a first support member configured to fit a user's body part and is connected to releasable structure for attaching the brace to the user. The releasable structure is provided by Velcro® fasteners and Velcro® straps in a first embodiment. In a second embodiment, the straps for attaching the backbrace to the user are the releasable structure. In a third embodiment, the strap for the knee brace forms the releasable structure.
In a first embodiment of the present invention, a wrist brace is provided which is designed to treat non-articular fractures of the distal radius. The device provides automatic feedback on the amount of force applied to fix the fracture, with the intent that the displacement force can be adjusted so as to generate the appropriate amount of force.
The brace applies a palmarly directed force to the dorsum of the hand which maintains the reduction of the fracture, in a variety of wrist positions. The palmarly directed force is resisted at the forearm and at the distal aspect of the metacarpal row. At the same time, the bending moment induced by the palmarly directed force must be resisted by the forearm components with respect to the forearm.
The wrist brace 510 of the present invention is shown in use in FIGS. 1-5. In FIG. 1 a dorsal view looking palmarly is depicted and FIG. 2 shows a lateral view. FIG. 3 shows a palmar view, looking dorsally, while FIG. 4 shows an oblique view with the wrist flexed.
A side view of the wrist brace 510 of FIGS. 1-4 is shown in FIG. 5. As seen in FIG. 5, a forearm assembly 520 fixes the hand assembly 540 to a user's hand, wrist and forearm (not shown) and provides a hinge 541 to allow movement of the hand assembly 540 relative to the arm assembly 520 and flexion/extension motion at the wrist.
The arm assembly 520 receives the volar surface of the user's forearm. The forearm assembly 520 includes a forearm pad 522, two Velcro® fasteners 524, 526 and two Velcro® straps 528, 530. The forearm pad 522 is preferably formed from a plastic material, is generally shaped to match the contour of the forearm, and includes two rounded tabs 532, 534 which extend dorsally and are oriented perpendicular to the palmar plane. The forearm pad 520 is substantial rigid and may also include a resilient material for cushioning purposes, including at least one layer designed for comfort and transmission of moisture away from the user. A suitable material could include a cotton or similar synthetic material covered with a breathable fabric, e.g., a Gore-Tex® fabric.
At the center of each tab 532, 534, a short cylindrical stud 536 protrudes. These studs 536 mate with matching holes 542 in the hand assembly 540 so as to provide rotation of the hand assembly 540 about the studs 536, thereby permitting wrist motion by the user. The palmar support 550 (FIG. 5 A), includes a threaded sleeve 551 for receiving a threaded shaft 552, and an outer cushioning layer 558. The support 550 has opposite ends 551, 552 slidably received in slots 554 and grooves 556 therein. The ends of the support 550 are configured to have an outer diameter that is greater than the width of the open slot, but smaller than the width of the groove which extends on opposite sides of the slot.
In the embodiment of FIG. 8, hand assembly 840 includes sides 843 and 845 terminating in free ends 842 and 844 respectively, each of which includes a slot 854 for receiving the palmar support bar 850. The hand assembly 840 includes strain gages 875 which are positioned on opposite sides 843 and 845 of the hand assembly 840 to measure the strain generated by the dorsum support 880 and the torque nut 870. The strain gages will produce an electronic signal for processing which will be indicative of the forces applied to the dorsum of the hand in the palmar direction.
FIG. 9 provides one embodiment of the present invention showing a hand assembly 940 which applies a variable palmer force to the dorsum of the hand, which also resists that force with the distal metacarpal row, allows wrist motion, and adjustably fits different hand sizes.
The variable palmar force is applied through a variable force applicator system 960 which is positioned within the housing 946 of the hand assembly 940, which is substantially the same structure 540 shown in FIG. 5, and which includes free ends 942 and 944, each having a slot and groove, as shown in FIG. 5, for slidably supporting the palmar support 950. The variable force applicator system 960 includes a torque knob 970 and dorsal pad 980.
The variable palmar force system 960 includes the torque knob 970 and the dorsal pad 980 which includes an upper, substantially rigid polymeric member 982 and a lower cushioning member 984 for contacting and engaging the user's hand.
A more detailed view of the force applicator system can be seen in FIG. 10. Hand assembly 1040, includes a free end 1042 with slot 1054 for receiving the palmar support 1050. The hand assembly 1040 includes a housing 1046 and a pressure applicator system 1060. Pressure applicator system 1060 includes a torque knob 1070 and a two piece dorsal pad 1080 which will contact the dorsum of the hand includes plastic component 1082 and a padding 1084. Plastic component 1082 contains a threaded cylinder 1086 extending upwardly from the back of the dorsal pad 1080 ancT which is received in the threaded hole 1072 in torque knob 1070. The torque knob 1070 which receives the dorsal pad 1080 and connects to the hand assembly 1040, is round in shape. Although the torque knob 1070 is shown as having a round shape, other configurations are also possible, such as pentagonal, hexagonal, etc. The torque knob 1070 is free to rotate relative to the hand assembly 1040, but the dorsal pad 1080 is not, due to contact with the user's hand. As a result of this relationship, when the torque knob 1070 is rotated, it causes translation of pressure to the dorsal pad 1080 in a dorsal to palmar direction, thus enabling direct loading or unloading of the dorsum.
The palmar bar 1050 attaches to the hand assembly 1040 and counters the dorsal load at the distal metacarpal row. The palmar bar 1050 is generally cylindrical and rides in two matching slots 1054 on the hand assembly 1040. The slots 1054 allow the palmar bar 1050 to be adjusted to a variety of hand sizes. It also accommodates left or right hands in the same components. The palmar bar 1050 includes two pieces, a threaded head and shaft, similar to that shown in FIG. 5A, forming respective ends 1053. As with FIG. 5 A, bar 1050 includes a shaft which is inserted through one slot 1054 of the hand assembly 1040. The palmar support 1050 is padded to provide comfort.
The present invention provides a hand assembly which provides automatic feedback on the amount of force applied to fix the fracture, with the intent that the displacement force can be adjusted so as to generate the appropriate amount of force. The force information can be measured in a variety of ways, including pressure transducers or strain gages. For example, the hand assembly 1040 includes a force sensing resistor (FSR) transducer 1090 which is located in channel 1092 which is recessed in surface 1041 of housing assembly 1040. The sensor 1090 measures the forces exerted on the sensor 1090 by the torque knob 1060 and generates an electrical signal representative of that value.
The operation of the hand assembly 1040, shown in FIG. 10, is best described with reference to the flow charts of FIGS. 6 and 7. Referring to FIG. 6, a block diagram of an Electronic Sensor Control
System ("ESCS") 600 is illustrated. The ESCS 600 interfaces with a patient 602 in conjunction with the dynamic wrist brace (FIG. 1 and the hand assembly of FIGS. 8, 9, 10 and 17). A force transducer 604 (1090 of FIG. 10) is connected to a patient 602 via the wrist brace and senses the force currently applied at the force transducer location. Multiple force transducers 604 can be used. Force transducers 604 include piezoelectric transducers and force sensing resistors. One of ordinary skill in the art practicing the invention described herein could select a suitable sensor.
The force transducer 604 transmits an electronic signal, which represents the detected force, to a conditioning circuitry 606. The conditioning circuitry 606 receives the electronic signal representing the force detected by the force transducer 604 and processes the signal and then transmits a signal to a microcontroller 608.
The microcontroller 608 receives the conditioned electronic signal from the conditioning circuitry 606 and converts the signal to a signal appropriate to drive a display 610. The display 610 indicates a value that corresponds to the forces sensed by the force transducer 604. The value can be displayed in a human readable format.
A voltage regulation circuitry 614 provides regulated voltage levels to various devices including the conditioning circuitry 606, the microcontroller 608, and the display 610. The voltage levels required for each of these devises may vary. The voltage regulation circuitry 614 receives DC power from a battery 616. The battery 616 may include several batteries connected together. The voltage regulation circuitry 614 converts the voltage level of the battery 616 to the appropriate voltage levels for the various devices.
A "reset and on/off switch 612 provides reset and on/off functions. The patient 602 or medical personal can reset the ESCS 600 by pressing a reset switch 612. The switch 612 can provide automatic resetting of the ESCS 600 at power on or during operation. The switch 612 can be used to power the ESCS 600 off or on.
Referring to FIG. 7, a flow diagram 700 of the operation of the electronic sensor control system ("ESCS") 600 is illustrated. When the ESCS is reset or the power is first turned on, the process is restarted at step 702. Then, a battery test 704 is performed to determine the status of the battery or batteries 616 (FIG. 6). If the results of the battery test is determined to be unsatisfactory in step 706, then a battery error is transmitted to the display 610 in step 708 and the ESCS is stopped in step 730. If the result of the battery test is determined to be satisfactory in step 706, then the force transducer 604 (FIG. 6) is tested. To test the force transducers 604 the load is taken off the brace and the transducer value is set to a value of zero in step 710. In step 712, the output value of the force transducer is compared to the expected value of zero. If the output of the force transducer 604 does not match the expected value, an error message is displayed in step 714, then the ESCS is stopped in step 730.
If the battery 616 (FIG. 6) and force transducer 604 (FIG. 6) pass the initial testing, the ESCS enters a run-time processing loop including steps 716 through 728. The ESCS exits the run-time processing loop only if the timer runs out or the ESCS is reset or powered off. In step 716, the force transducer 604 is read. The value corresponds to detected pressure at the location of the force transducer 604. In step 718, the output of the force transducer is converted to a value that corresponds to known transducer values, that is, the value can be normalized, scaled, or converted to logarithms or otherwise converted. In step 720, the converted value of the transducer reading is compared to known values. In step 722, the result of the comparison is displayed on the display 610 (FIG. 6). After the result of the comparison is displayed, the timer is incremented in step 724. Then, the timer is compared to a time-out value in step 728. If the timer exceeds the time-out value, the ESCS exits the run-time processing loop and stops in step 730. If the timer does not exceed the time-out value, the ESCS loops back to step 716 and repeats the run-time processing loop describe above. While any electrical sensor will use basically the same electronics and computer software, the integration of the electrical sensor into the device may change. In FIG. 8, the strain gages 875 are used to sense the force. Leads from these gages (not shown) can be connected to the electronics described above and processed in the same manner. Alternatively, as seen in FIG. 17, the hand assembly 1740 includes a slot 1780 and electrical contacts 1782. These contacts are electrically connected to the particular sensor included in the hand assembly 1740. A removable, battery powered computer module 1785, including a variable display 1787, indicator 1784 and mode and control buttons 1788 and 1789, and including the components of FIG. 6, and capable of following the protocol of FIG. 7, is inserted into the slot 1780, thereby having terminals on the backside of module 1785 which engage contacts 1782. The circuitry for the computer module are commercially available and do not form part of the present invention. In a further embodiment of the present invention, the torque needed to turn the torque knob 870, 970, 1070 is measured with a torque wrench (a conventional mechanical device that typically has a needle that moves dependent on torque). The scale on the face of the torque wrench would display axial force, based on a known relationship between torque and force. In this embodiment, an opening 990 would be provided in a side wall of the assembly 940 so that the torque wrench could engage torque knob 970. Alternatively, the torque knob 1170 could be modified, as shown in FIG. 11, to accommodate a standard driver at opening 1172 that would connect to the torque wrench. The housing would also need an access opening, such as opening 940 of FIG. 9 to permit adjustment of the torque knob. A still further embodiment of the present invention is schematically shown in FIG. 18. A hand assembly 1840, includes a palmar bar 1850, a bladder 1890, and fluid connector 1891 for inflating or deflating bladder 1890. The dorsal support 1880 includes an upstanding wall 1881 that circumscribes and retains the bladder in
10 position. A sensor (not shown) is positioned between the underside of the housing and the upper surface of the bladder 1890, and would also be connected to a pressure gage to help regulate the pressure. The leads from the sensor may be connected to the electrical contacts in the hand assembly wall, as shown in FIG. 17, or connected to an appropriate control and monitoring system as discussed above.
An access hole would be provided in a sidewall of the hand assembly 1840 so that either a hand pump, such as the kind used to pump up athletic equipment, could be connected to the bladder 1890 to increase the force of the bladder by injecting more air, or the pressure of the bladder could be reduced by bleeding air from the bladder. One of ordinary skill in the art practicing the invention described herein could select a suitable sensor as the sensor in this embodiment.
A still further embodiment is using a piezoelectric transducer which could be used to detect load and provide a signal to the electronic/computer system. The mechanical embodiment of this would be identical to that for the system of FIG. 10 described above. The piezoelectric wafer would be sandwiched between the hand piece and the torque knob. Wire leads coming off of the wafer would lead to the electronics/computer system or the electrical contacts 1782.
The concept of applying a variable force via a moving actuator to the human body while providing feedback to the user regarding the force magnitude can also be applied to other braces. For example, the present invention can also be incorporated into scoliosis braces which are used to maintain, or sometimes reduce, curvature of the spine. This is accomplished by applying loads to counter the ongoing curvature. The force is developed in part by the shape of the brace and in part by the tightness of the connections. One version of this brace is shown in FIG. 12. Applying the variable force/feedback concept, the force is varied on the loading pad 1270. This force is in-part generated/tensioned by strap attachments 1285 to the support pad 1275, and the hip pad 1277. A more detailed view of how the force is varied on the loading pad is conveyed in FIG. 13 where the pressure loading pad 1380, which corresponds to pad 1270 of FIG. 12,
11 includes a sensor and force applicator 1320. The sensor and force applicator 1320 are shown in cross-section in FIG. 14. The mechanics of this embodiment are similar to that in the palmar load on the wrist brace embodiments discussed above. A loading pad 1480 with a foam cushion 1482 contacts the skin of the subject. On the top surface of the pad 1480 is a threaded cylinder 1490. This mates with a tension knob 1492 (analogous to the torque knob of the wrist brace). A load piece 1493 is attached to the strap 1485. The sensor would rest on the end of the load piece nearest to the tension knob. As the knob 1490 is turned it would move either towards the loading pad 1480 or away from it. This movement would either decrease or increase the tension in the strap 1485. The change in tension will result in a different force on the load piece, which would be detected by the sensor.
FIG. 15 shows a knee brace which is currently gaining popularity for nonoperative treatment of knee arthritis. The brace of FIG. 15 is shown modified in FIG. 16. in accordance with the present invention. The brace angularly displaces the femur relative to the tibia to take the load off of a condyle. Using the variable force/feedback concept of the present invention, a load pad 1680 replaces part of the strap 1685. The assembly would then have a cross-sectional view similar to that shown in FIGS. 13 and 14. The geometry of the pad and strap would be similar to that described in FIG. 12.
It will be readily appreciated that the invention in its broader aspects is not limited to the specific embodiment herein shown and described. Rather, variations may be made therefrom within the scope of the accompanying claim without departing from the principles of the invention and without sacrificing its chief advantages.
12

Claims

THE CLAIMS:
1. A brace comprising: a first support member having inner and outer facing surfaces; a second support member having an inner facing surface; a support structure mounting said first and second support members so that said inner surfaces face one another; a variable force applicator positioned between said outer supporting surface of said first support member and said support structure to apply an amount of a variable force in a direction towards said second support member; and an indicator displaying said amount of applied force.
2. The device of claim 1 , wherein said force applicator is inflatable.
3. The device of claim 1, wherein said force applicator is mechanically adjusted.
4. The device of claim 1, wherein said indicator includes a sensor positioned between said force applicator and said support structure.
5. The device of claim 1, wherein said indicator includes a strain gage associated with said support structure.
6. The device of claim 1 , wherein said indicator includes a torque wrench.
7. The device of claim 1, wherein said first support member is a dorsal support.
8. The device of claim 1. wherein said second support is a palmar support.
13
9. The device of claim 1, wherein said support structure is configured to receive a user's hand.
10. The device of claim 9, wherein said support structure terminates in free ends for slidably mounting said second support member.
11. The device of claim 1, wherein the support structure comprises a housing terminating in free ends for supporting said second support member.
12. The device of claim 10, wherein said free ends respectively include slots for receiving respective ends of said second support member.
13. The device of claim 10, wherein said indicator is mounted within said support structure.
14. The device of claim 10, further including a third support member configured to receive a user's arm and pivotally attached to said support structure.
15. The device of claim 13, further including a third support member configured to receive a user's arm and pivotally attached to said support structure.
16. The device of claim 15, wherein said third support member is configured to receive a volar surface of a user's forearm.
17. The device of claim 14, wherein said third support member includes at least one flexible and adjustable fastener to attach said third support to a user's arm.
14
18. The device of claim 1, wherein said indicator further includes a sensor for sensing said amount of force and generating a signal therefor.
19. The device of claim 18, wherein said indicator further includes a power source.
20. The device of claim 19, wherein said indicator further includes a processing circuit for receiving and processing said generated signal.
21. The device of claim 20, wherein said processing circuit receives and processes a status signal from said power source.
22. The device of claim 1, wherein said indicator includes a display for indicating said amount of force.
23. The device of claim 1, wherein said indicator includes a display for indicating power source status.
24. The device of claim 1, wherein said first support member is formed from a synthetic material.
25. The device of claim 1, wherein said support structure comprises straps for positioning said first and second support members about a user's knee.
26. A brace comprising: a first support member having at least one section each of which has an outer surface; a second support member having at least one section each of which has an
15 outer surface; releasable strapping affixed to said first and second support members; a variable force applicator positioned between said outer surface of said first support member and said strapping to increase or decrease tension of said strapping; and an indicator for displaying an amount of force applied by said first support member to said strapping.
27. The brace according to claim 26, wherein said first support member includes two sections.
28. The brace according to claim 26, wherein said second support member includes two sections.
29. The brace according to claim 27, wherein said member includes two sections respectively configured to fit a right and left rib/torso of a user.
30. The brace according to claim 28 wherein said member includes two sections attached to said strapping and configured to a back of a user.
31. The brace according to claim 26, wherein said second support member includes two sections.
32. A brace comprising: a first support member configured to fit a user's joint and being connected to releasable strapping for attaching to a user; a variable force applicator associated with said first support member to increase or decrease pressure to a user by said support member; and
16 an indicator for displaying an amount of force applied by said first support member to a user.
33. The brace according to claim 32, wherein said first support is a pad configured to apply pressure to a knee of a user.
34. The brace according to claim 32, wherein said first support is a pad configured to apply pressure to an elbow of a user.
35. The brace according to claim 32, wherein said first support is a pad configured to apply pressure to a dorsum of a user.
36. A brace comprising: a first support member having inner and outer facing surfaces; a second support member having an inner facing surface; a support structure mounting said first and second support members so that said inner surfaces face one another; a third support member configured to receive a user's forearm which is pivotally attached to said support structure; a variable force applicator positioned between said outer supporting surface of said first support member and said support structure to apply an amount of a variable force in a direction towards said second support member; and an indicator displaying said amount of applied force.
17
PCT/US1999/004258 1998-03-20 1999-03-18 Dynamic orthopedic braces WO1999048448A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002321666A CA2321666A1 (en) 1998-03-20 1999-03-18 Dynamic orthopedic braces
AU30646/99A AU3064699A (en) 1998-03-20 1999-03-18 Dynamic orthopedic braces
JP2000537503A JP2003521948A (en) 1998-03-20 1999-03-18 Dynamic orthopedic orthosis
EP99912228A EP1063950A1 (en) 1998-03-20 1999-03-18 Dynamic orthopedic braces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/044,914 US6592538B1 (en) 1998-03-20 1998-03-20 Dynamic orthopedic braces
US09/044,914 1998-03-20

Publications (1)

Publication Number Publication Date
WO1999048448A1 true WO1999048448A1 (en) 1999-09-30

Family

ID=21935011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/004258 WO1999048448A1 (en) 1998-03-20 1999-03-18 Dynamic orthopedic braces

Country Status (6)

Country Link
US (1) US6592538B1 (en)
EP (1) EP1063950A1 (en)
JP (1) JP2003521948A (en)
AU (1) AU3064699A (en)
CA (1) CA2321666A1 (en)
WO (1) WO1999048448A1 (en)

Families Citing this family (518)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19835324A1 (en) * 1998-08-05 2000-02-10 Bayer Ag Cyclopentabenzofuran derivatives and their use
US7060045B2 (en) * 2000-09-22 2006-06-13 Breg, Inc. Orthosis providing dynamic tracking of the patello-femoral joint
US20050043660A1 (en) * 2003-03-31 2005-02-24 Izex Technologies, Inc. Orthoses
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7179234B2 (en) * 2003-07-10 2007-02-20 Neurocom International, Inc. Apparatus and method for characterizing contributions of forces associated with a body part of a subject
US7618386B2 (en) * 2004-07-22 2009-11-17 Nordt Development Co., Llc Two-component compression collar clamp for arm or leg
US7615023B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Donning support with framework fastened to garment
US7708708B2 (en) * 2004-07-22 2010-05-04 Nordt Development Co., Ltd. Donning potentiating support with expandable framework fastened to garment
US8162867B2 (en) 2004-07-22 2012-04-24 Nordt Development Co., Llc Body support for spanning a hinge joint of the body comprising an elastically stretchable framework
US7615027B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Support with framework fastened to garment
US7615022B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Potentiating support with alignment opening for joint protuberance
US7615021B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Clothing having expandable framework
US7618389B2 (en) * 2004-07-22 2009-11-17 Nordt Development Co., Llc Potentiating support with expandable framework
US7704219B2 (en) 2004-07-22 2010-04-27 Nordt Development Company, Llc Wrist support
US7615020B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Support with removable pressure/alignment ring
US7615019B2 (en) * 2004-07-22 2009-11-10 Nordt Development Co., Llc Potentiating support with side struts spanning hinge joint
US7637884B2 (en) * 2004-07-22 2009-12-29 Nordt Development Co., Llc Shirt, pants and jumpsuit having expandable framework
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
WO2006028489A1 (en) * 2004-09-07 2006-03-16 Aircast, Inc. Fracture brace
US7896827B2 (en) * 2004-12-22 2011-03-01 Ossur Hf Knee brace and method for securing the same
US7198610B2 (en) 2004-12-22 2007-04-03 Ossur Hf Knee brace and method for securing the same
US8585623B2 (en) 2004-12-22 2013-11-19 Ossur Hf Orthopedic device
US7794418B2 (en) * 2004-12-22 2010-09-14 Ossur Hf Knee brace and method for securing the same
US8216170B2 (en) 2004-12-22 2012-07-10 Ossur Hf Orthopedic device
US7597675B2 (en) * 2004-12-22 2009-10-06 össur hf Knee brace and method for securing the same
US7713225B2 (en) * 2004-12-22 2010-05-11 Ossur Hf Knee brace and method for securing the same
US9220622B2 (en) * 2004-12-22 2015-12-29 Ossur Hf Orthopedic device
US8425441B2 (en) * 2004-12-22 2013-04-23 Ossur Hf Spacer element for use in an orthopedic or prosthetic device
US8231560B2 (en) 2004-12-22 2012-07-31 Ossur Hf Orthotic device and method for securing the same
US7662122B2 (en) * 2005-03-07 2010-02-16 Bellacure, Inc. Orthotic or prosthetic devices with adjustable force dosimeter and sensor
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070194079A1 (en) 2005-08-31 2007-08-23 Hueil Joseph C Surgical stapling device with staple drivers of different height
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8597219B2 (en) * 2005-10-27 2013-12-03 Djo, Llc Fracture brace
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US7468048B2 (en) 2006-10-06 2008-12-23 National Jewish Health Joint aspirate facilitating device
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
WO2009012458A1 (en) * 2007-07-19 2009-01-22 Trustees Of Boston University Knee brace with expandable members and method of using the same
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8728018B2 (en) * 2009-03-31 2014-05-20 Top Shelf Manufacturing, Llc Post operative hinge brace
US20110152736A1 (en) * 2009-05-19 2011-06-23 Djo, Llc Brace having a Force Indicator
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8858352B2 (en) * 2010-06-25 2014-10-14 Sang-Hak Jun Wrist guard for bowling
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9877720B2 (en) 2010-09-24 2018-01-30 Ethicon Llc Control features for articulating surgical device
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
WO2013120005A1 (en) 2012-02-08 2013-08-15 Limonadi Farhad M Method and apparatus for limiting range of motion of body
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9254216B2 (en) 2012-07-24 2016-02-09 Farhad M. Limonadi Method and apparatus for limiting range of motion of the body of the user
GB201213348D0 (en) * 2012-07-26 2012-09-12 Waugh Neil Improvements relating to a therapeutic foot support
US9474334B2 (en) 2012-11-13 2016-10-25 Ossur Hf Fastener member for affixation to a structure in an orthopedic device and method for securing the same
WO2014089331A1 (en) 2012-12-06 2014-06-12 Ossur Hf Electrical stimulation for orthopedic devices
US9358146B2 (en) 2013-01-07 2016-06-07 Ossur Hf Orthopedic device and method for securing the same
US9375341B2 (en) 2013-01-31 2016-06-28 Ossur Hf Orthopedic device having detachable components for treatment stages and method for using the same
US9364365B2 (en) 2013-01-31 2016-06-14 Ossur Hf Progressive force strap assembly for use with an orthopedic device
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US20140246475A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Control methods for surgical instruments with removable implement portions
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
WO2014168910A1 (en) 2013-04-08 2014-10-16 Ossur Hf Strap attachment system for orthopedic device
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10639185B2 (en) 2014-04-25 2020-05-05 The Trustees Of Columbia University In The City Of New York Spinal treatment devices, methods, and systems
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
WO2016112110A1 (en) 2015-01-06 2016-07-14 Ossur Iceland Ehf Orthopedic device for treating osteoarthritis of the knee
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
JP6828018B2 (en) 2015-08-26 2021-02-10 エシコン エルエルシーEthicon LLC Surgical staple strips that allow you to change the characteristics of staples and facilitate filling into cartridges
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006192A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11389315B2 (en) 2016-02-15 2022-07-19 Honda Motor Co., Ltd. Orthotic device responsive to detected forces at user-operated tool
US11662058B2 (en) 2016-02-15 2023-05-30 Honda Motor Co., Ltd. Orthotic device for use with user-operated tool
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US20170290451A1 (en) * 2016-04-11 2017-10-12 Apogee Designs, Ltd. Utensil Stabilization Device
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
WO2017214091A1 (en) 2016-06-06 2017-12-14 Ossur Iceland Ehf Orthopedic device, strap system and method for securing the same
US11850175B2 (en) 2016-06-06 2023-12-26 Ossur Iceland Ehf Orthopedic device, strap system and method for securing the same
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
EP3691578B1 (en) 2017-10-06 2023-09-13 Ossur Iceland EHF Orthopedic device for unloading a knee
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
USD908458S1 (en) 2018-10-08 2021-01-26 Ossur Iceland Ehf Hinge cover
USD882803S1 (en) 2018-10-08 2020-04-28 Ossur Iceland Ehf Orthopedic shell
USD888258S1 (en) 2018-10-08 2020-06-23 Ossur Iceland Ehf Connector assembly
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
WO2022146806A1 (en) 2020-12-28 2022-07-07 Ossur Iceland Ehf Sleeve and method for use with orthopedic device
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767708A (en) 1952-08-19 1956-10-23 Keropian Michael Orthopedic brace for the hand
US3707963A (en) * 1970-01-21 1973-01-02 M Keropian Articulated hand brace
US5002044A (en) 1989-10-10 1991-03-26 Carter Peter R Derotation wrist brace
US5254078A (en) 1991-06-03 1993-10-19 Innovation Sports, Inc. Wrist brace
US5358469A (en) 1990-02-09 1994-10-25 Ultraflex Systems, Inc. Dynamic splint
US5466192A (en) * 1994-03-03 1995-11-14 Castolo; Rodrigo L. Adjustable hinged bowling wrist support
US5653680A (en) * 1995-08-10 1997-08-05 Cruz; Mark K. Active wrist brace
WO1998042257A1 (en) * 1997-03-24 1998-10-01 Izex Technologies, Inc. Orthoses

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3124127A (en) 1964-03-10 Adjustable splint
US1366576A (en) 1919-12-05 1921-01-25 Robert D Maddox Surgical splint
US1860995A (en) 1927-03-14 1932-05-31 Collender Kelsey Gordon Ffyner Surgical splint for the arm
US2357323A (en) 1944-04-15 1944-09-05 Goldberg David Adjustable splint
US3028858A (en) 1956-05-31 1962-04-10 Myrtle Mccool Stretcher brace
US3714940A (en) 1971-03-17 1973-02-06 R Palmer Hand brace
US3868952A (en) 1971-12-14 1975-03-04 Aerazur Constr Aeronaut Inflatable shaped structures
US3769970A (en) 1972-08-25 1973-11-06 A Swanson Postoperative lumbrical bar and brace
US3937215A (en) 1975-06-03 1976-02-10 The United States Of America As Represented By The United States National Aeronautics And Space Administration Office Of General Counsel-Code Gp Therapeutic hand exerciser
SU596236A1 (en) 1976-08-20 1978-03-05 Одесский Научно-Исследовательский Институт Курортологии Apparatus for flexing-out contractures
US4294237A (en) 1979-12-26 1981-10-13 Frazier Calvin H Splint for reducing fractures of the metacarpals
US4274399A (en) 1980-01-29 1981-06-23 Jobst Institute, Inc. Therapeutic appliance for flexing joints
US4440159A (en) 1981-06-29 1984-04-03 Cochran Phillip E Veterinary appliance for use on a front leg of a small animal
US4465076A (en) * 1982-07-06 1984-08-14 Sturgeon Harvey H Self-applying accessory for blood pressure cuff
JPS6083657A (en) 1983-10-14 1985-05-11 萬デザイン株式会社 Function improver of fingers
US4671258A (en) 1984-01-12 1987-06-09 Barthlome Donald E Therapeutic multiple joint exerciser
US4677971A (en) 1985-12-26 1987-07-07 Rolyan Manufacturing Co. Inc Adjustable wrist splint
JPH0211071Y2 (en) 1986-09-22 1990-03-19
US4941460A (en) 1988-06-20 1990-07-17 Loren Working Carpal brace
US5052379A (en) 1989-04-27 1991-10-01 Soma Dynamics Corporation Combination brace and wearable exercise apparatus for body joints
JPH0420329U (en) 1990-06-13 1992-02-20
US5213094A (en) 1990-07-30 1993-05-25 Bonutti Peter M Orthosis with joint distraction
US5285773A (en) 1990-07-30 1994-02-15 Peter M. Bonutti Orthosis with distraction through range of motion
US5112296A (en) 1991-04-30 1992-05-12 The Board Of Supervisors Of Louisiana State University Biofeedback activated orthosis for foot-drop rehabilitation
US5337737A (en) 1992-01-13 1994-08-16 Albert Einstein College Of Medicine Of Yeshiva University Dynamic orthosis with proportional resistance
US5346461A (en) * 1992-10-23 1994-09-13 Bio-Cybernetics International Electromechanical back brace apparatus
US5358471A (en) 1993-03-24 1994-10-25 Klotz John S Wrist brace
US5423333A (en) 1994-02-23 1995-06-13 Orthopedic Systems, Inc. Apparatus for shoulder immobilization
US5514081A (en) 1994-10-07 1996-05-07 D'mannco, Inc. Elbow orthosis having an inflatable bladder support and method of use
US5601597A (en) 1995-11-13 1997-02-11 Tat Inc. Combination radial artery occluder and wrist splint
US5728055A (en) * 1996-01-30 1998-03-17 Fisher Scientific Company Therapeutic lumbosacral appliance
US5891061A (en) * 1997-02-20 1999-04-06 Jace Systems, Inc. Brace for applying a dynamic force to a jointed limb

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2767708A (en) 1952-08-19 1956-10-23 Keropian Michael Orthopedic brace for the hand
US3707963A (en) * 1970-01-21 1973-01-02 M Keropian Articulated hand brace
US5002044A (en) 1989-10-10 1991-03-26 Carter Peter R Derotation wrist brace
US5358469A (en) 1990-02-09 1994-10-25 Ultraflex Systems, Inc. Dynamic splint
US5254078A (en) 1991-06-03 1993-10-19 Innovation Sports, Inc. Wrist brace
US5466192A (en) * 1994-03-03 1995-11-14 Castolo; Rodrigo L. Adjustable hinged bowling wrist support
US5653680A (en) * 1995-08-10 1997-08-05 Cruz; Mark K. Active wrist brace
WO1998042257A1 (en) * 1997-03-24 1998-10-01 Izex Technologies, Inc. Orthoses

Also Published As

Publication number Publication date
EP1063950A1 (en) 2001-01-03
CA2321666A1 (en) 1999-09-30
JP2003521948A (en) 2003-07-22
AU3064699A (en) 1999-10-18
US6592538B1 (en) 2003-07-15

Similar Documents

Publication Publication Date Title
US6592538B1 (en) Dynamic orthopedic braces
US8678979B2 (en) Remote monitoring of a patient
US7878055B2 (en) Sensor and analyzer for determining physiological limitations
US6554781B1 (en) Spinal monitor apparatus and method
JP4001637B2 (en) Deformation appliance
US8840570B2 (en) Multi-section limb and ligament evaluation apparatus and associated methods for using same
US4969471A (en) Knee ligament testing device and method of use
US20090143704A1 (en) Device for movement detection, movement correction and training
EP1227756B1 (en) A system for the analysis of 3d kinematic of the knee
WO2005104945A2 (en) Measurement of laxity of human joints
WO1999059521A1 (en) Therapeutic pressing device
EP2603142A1 (en) Robotic knee testing device, subjective patient input device and methods for using same
US20110152736A1 (en) Brace having a Force Indicator
US11484254B2 (en) Floating patella sensor, knee stabilizer with same and robotic knee testing apparatus with same
US7182717B2 (en) Therapy cushion for use with blood pressure cuff
TW200816958A (en) Pulsometer
KR101897519B1 (en) Waist disk belt and exercising method using the waist disk belt
WO2012021726A1 (en) Robotic knee testing device, subjective patient input device and methods for using same
WO2007007720A1 (en) Method and device for measuring toe flexor power
AU769371B2 (en) Spinal monitor apparatus and method
Levesque Experimental Evaluation and Characterization of a Mobility Assist Device Physical Interface
CA2287771A1 (en) Validation of 3-d knee analyser
MXPA01002078A (en) Orthoses for joint rehabilitation
KR20070114232A (en) Backbone proofreading device and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2321666

Country of ref document: CA

Ref country code: CA

Ref document number: 2321666

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 537503

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 1999912228

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999912228

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1999912228

Country of ref document: EP