WO1999051854A1 - Procede de recuperation du petrole par injection d'une solution aqueuse moussante - Google Patents

Procede de recuperation du petrole par injection d'une solution aqueuse moussante Download PDF

Info

Publication number
WO1999051854A1
WO1999051854A1 PCT/CN1998/000057 CN9800057W WO9951854A1 WO 1999051854 A1 WO1999051854 A1 WO 1999051854A1 CN 9800057 W CN9800057 W CN 9800057W WO 9951854 A1 WO9951854 A1 WO 9951854A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
foam
flooding
aqueous solution
gas
Prior art date
Application number
PCT/CN1998/000057
Other languages
English (en)
French (fr)
Inventor
Demin Wang
Original Assignee
Da Qing Petroleum Administration Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Da Qing Petroleum Administration Bureau filed Critical Da Qing Petroleum Administration Bureau
Priority to US09/647,854 priority Critical patent/US6439308B1/en
Priority to PCT/CN1998/000057 priority patent/WO1999051854A1/zh
Priority to CN98813947A priority patent/CN1093589C/zh
Priority to GB0024418A priority patent/GB2352260B/en
Priority to CA002327744A priority patent/CA2327744C/en
Priority to AU68193/98A priority patent/AU6819398A/en
Publication of WO1999051854A1 publication Critical patent/WO1999051854A1/zh
Priority to NO20004970A priority patent/NO322769B1/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/94Foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids

Definitions

  • the present invention relates to a method for improving crude oil recovery, and in particular, to a foam composite flooding method.
  • BACKGROUND OF THE INVENTION At present, many oilfields at home and abroad use oil injection to recover crude oil, but due to the heterogeneity of the reservoir and the unfavorable oil-water mobility ratio, a large amount of residual oil remains in the ground after water flooding. In order to recover these remaining oils, in addition to the use of infill wells and other measures, various new methods for improving oil recovery (EOR) have gradually transitioned from indoor research to mine practice, and have been widely used in many oil fields in the world. Among the new technologies of tertiary oil recovery, chemical flooding is still one of the promising methods.
  • the flooding mechanism is mainly as follows: On the one hand, in the ternary composite system The presence of polymers can increase the viscosity of the displacement phase, thereby reducing the fluidity ratio between oil and water, Larger the volume; on the other hand, the synergistic effect of alkali and surfactant can form an ultra-low interfacial tension between oil and water, making it easier for crude oil to peel off the surface of rock and minerals, thereby improving oil displacement efficiency, and ultimately making oil recovery Yields have been greatly improved. References in this regard can be found in SPE24144, SPE21028, SPE17538.
  • foam has better properties of entering and reducing the permeability of the high-permeability layer than polymers or gels, and the foam is generally separable.
  • Ordinary foam is generally added with a surfactant in the injected gas to make it foam on the ground or underground.
  • USP5363915 provides a technology that uses non-ionic surfactants, non-condensable gas, and water to improve crude oil recovery.
  • the foam is stable in nature and can be formed underground or pre-formed on the ground. Oil carbonate formations are best used.
  • other forms of stabilized foam are described in USP5074358.
  • foam is reinforced foam, which means that in addition to surfactants, there is a chemical agent component that increases viscosity.
  • USP5307878 uses polymer to reinforce foam to improve foam stability and reduce gas coning (referring to Into), the polymer reinforced foam is composed of a polymer, an aqueous solvent, a surfactant, and a gas.
  • USP512947 is the use of polymer reinforced foam to treat fractured formations to improve the recovery of liquid hydrocarbons.
  • the foam is also composed of a polymer, a surfactant, an aqueous solvent, and a gas. Foam will preferentially enter the fractures existing in the formation.
  • the above-mentioned methods to increase the recovery of crude oil are aimed at increasing the sweep coefficient of the displacement agent.
  • the chemical component in the foam cannot be as crude as the ternary system. Ultra-low interfacial tension is formed, so the final crude oil recovery is generally between 50 and 60%.
  • the polymer profile control ability is much worse than foam, which limits the efficiency of the ripple effect.
  • the displacement fluid is still easier to break through and channel in the high-permeability layer, and the final crude oil recovery is still generally around 60%.
  • the purpose of the present invention is to address the shortcomings of low spread coefficient in the ternary compound flooding method and low wash efficiency in foam flooding, and to give full play to the high washing efficiency of the ternary compound flooding method and the high impact in the foam flooding method
  • the advantage of efficiency is to use the gas and ternary composite system to simultaneously or alternately inject foam on the ground or underground to improve the crude oil recovery of underground oil-bearing formations.
  • SUMMARY OF THE INVENTION The present invention relates to a method for improving crude oil recovery in an underground oil-bearing layer, and in particular, to a foam composite flooding method, which method includes:
  • the present invention relates to a method for improving the crude oil recovery rate of an underground oil-bearing layer, in particular to a foam composite flooding method, which method comprises:
  • the aqueous solution of the foaming composition includes a base, a surfactant, and a polymer;
  • the polymer aqueous solution was It preferentially enters the high-permeability layer and / or thief layer in the formation to reduce its permeability, so as to prevent the gas in the subsequent foam from channeling along the high-permeability channel; on the other hand, polymer molecules are adsorbed on the rock surface Retention can effectively reduce the loss caused by the adsorption of various effective substances in the subsequent foam on the rock surface.
  • the polymer used as the front slug is a water-soluble biopolymer and / or a synthetic polymer having a molecular weight of 300 to 30,000 Daltons.
  • biopolymers xanthan gum and guar are included; as synthetic polymers, polymers including polyacrylamide and partially hydrolyzed polyacrylamide are included.
  • a non-condensable gas and a polymer including alkali, surfactant and polymer are periodically or simultaneously injected.
  • An aqueous solution of the composition is foamed to form a composite foam in the ground; or the gas and the aqueous solution are periodically injected into a composite foam formed in advance on the ground.
  • the foam formed in the ground at the same time or alternately with the non-condensable gas and the foaming solution or directly injected with the non-condensable gas and the foaming solution forms on the ground
  • the penetration of the foam in the formation is relatively uniform, and no tapering (finger-in) phenomenon will occur.
  • the non-condensable gas used in the method of the present invention includes nitrogen, natural gas, methane gas, air or a mixture thereof.
  • the aqueous foaming composition solution used therein includes a base, a surfactant, and a polymer.
  • the most significant feature of the foaming composition aqueous solution is that it can form ultra-low interfacial tension with crude oil and has a high viscosity.
  • the addition of polymer can increase the viscosity of the displacing phase, reduce the fluidity ratio, and expand the spread. coefficient.
  • the synergistic effect of alkali and surfactant can make the system form ultra-low interfacial tension with crude oil, and its oil-water interfacial tension value can reach the order of l (T 3 mN / m, which is an ultra-low interfacial tension system. Therefore, the washing efficiency can be improved and the The final crude oil recovery rate is greatly improved.
  • the final crude oil recovery rate can generally be increased by 25 to 30%.
  • the foaming composition aqueous solution based on the total weight of the composition aqueous solution, includes 0.5 to 5% (weight) of the base, 0.05 to 0.5% (weight ) Surfactant and 0.05-0.5% by weight of polymer.
  • the base includes sodium hydroxide, potassium hydroxide, potassium carbonate, potassium bicarbonate, sodium carbonate and / or sodium bicarbonate, preferably sodium hydroxide and sodium carbonate;
  • the surfactant includes an ionic surface or nonionic surfactants, said ionic surfactants include ⁇ - olefin sulfonates, C 12 - 16 alkyl sulfate, (: 14--18 embankment benzene sulfonate, the Non-ionic surfactants include triethanolamine; wherein the polymer is a water-soluble biopolymer and / or a synthetic polymer having a molecular weight of 300 to 30,000 Daltons, and the biopolymer includes xanthan Gum, guar gum, and the synthetic polymer includes polyacrylamide and partially hydrolyzed polyacrylamide.
  • the third step of the method of the invention is to inject a polymer protective slug, followed by water flooding.
  • the purpose of injecting the protective plug is to effectively protect the formed foam and reduce the dilution and damage effect of subsequent water flooding on the foam.
  • injecting the polymer protective plug according to the method of the present invention can fully play the role of foam.
  • the polymer used as the protective plug is a water-soluble biopolymer and / or a synthetic polymer having a molecular weight of 300 to 30,000 Daltons, wherein the biopolymer includes xanthan gum and guar.
  • the synthetic polymer includes polyacrylamide and partially hydrolyzed polyacrylamide.
  • the method further comprises the step of performing subsequent water flooding after injecting the polymer aqueous solution as the protective slug.
  • the mechanism of the foam composite flooding method of the present invention is as follows: On the one hand, the formed foam preferentially enters and blocks high-permeability pores in the formation, so that the displacement fluid (including foam) is diverted and enters the low-permeability zone, and the spread coefficient is enlarged ; On the other hand, the injected ternary composite system can form ultra-low interfacial tension with crude oil, which makes it easier for crude oil to peel off the rock surface, improves oil washing efficiency and has a certain bubble stabilizing effect. Increasing the utilization of crude oil in the upper low-permeability layer can greatly improve the recovery of hydrocarbons, that is, crude oil.
  • the polymer in the ternary composite system used in the method of the invention has a stabilizing effect on the foam formed by the ternary composite system.
  • a ternary composite system was prepared using ORS-41 as a surfactant, NaOH as a base, and different amounts of partially hydrolyzed polyacrylamide (HPAM) as polymers. The half-life of the foam produced by the system. The results are shown in Table 1 below: Effect of polymer on foam stability
  • the addition of the polymer causes the half-life of the foam produced by the composition to be extended.
  • the greater the amount of polymer added the longer the half-life of the foam, that is, the stability of the foam. The better.
  • the added amounts of various components will be determined according to reservoir conditions in the oil production area, such as heterogeneity, loss of chemical agents, and economic costs .
  • the volume of the pores of the entire system is generally not less than 50%
  • the amount of liquid is 10-50% of the volume of the pores of the entire system
  • the polymer pre-segment and the protective slug The amount is 2% ⁇ 8% and 10% ⁇ 45% respectively, which accounts for the pore volume of the whole system.
  • the amount of polymer leading slugs and protective slugs can be reduced, and even these two slugs or one of them can be eliminated.
  • the invention can effectively improve the crude oil recovery rate of the underground oil-bearing layer, and generally can improve the recovery rate by 25 to 30% 00 I P (primary geological reserve) on the basis of water flooding.
  • Example 1A foaming composition was prepared having the following composition: Amount of component (% (weight)) fluorenyl arene sulfonate 1 0.3
  • the salinity of 3 water is 918. 31 ⁇ 2g / L.
  • the artificial core (I) as described above was used for the oil displacement experiment.
  • the core is saturated with water for oil flooding, so that the original oil content of the core is saturated, and then the water is flooded to the core outlet with 98% water content.
  • At the beginning of the core outlet pressure is 8. OMPa, the above foaming composition aqueous solution is injected.
  • methane gas wherein the injection amount of the foaming composition aqueous solution is 0.3 PV, the gas phase is Q. 36PV, and then the concentration of Q. 283PV is 60Gmg / L fishing polymer (1275A) aqueous solution plug
  • water flooding was performed until the core outlet had 98% water content.
  • Example 2 and Example 1 experimental process is basically the same, there are two conditions are different, one is the core outlet pressure is normal pressure; the second is the gas and composite system is injected into 11 slugs, the gas-liquid ratio is maintained at 1.0.
  • Table 3 Experimental results of gas-liquid injection
  • the liquid-gas alternating injection method can still improve the recovery factor by 33.5% on the basis of water flooding, and the total recovery factor reaches 73.6%, indicating that the formazan and the foaming composition aqueous solution are alternately injected.
  • the composite foam it can form a composite foam with good structure and properties in the core, which has a similar effect to foaming in front of the core.
  • the model used in the following examples is a two-dimensional longitudinal heterogeneous composite prosody physical model (II).
  • the geometric size of the model ( ⁇ ) is 4.5 cm x 4.5 cm x 30 cm.
  • the model is made of quartz sand cemented with epoxy resin, with an average permeability of about 1 ⁇ m 2 and divided into five layers. There is no impervious barrier in the middle. permeability variation coefficient 0.61, respectively, from top to bottom permeability layers 190 X 10 m 2, 650 X 10- 3 ⁇ 2, 390 X 10- 3 ⁇ 2, 2700 X 10 - 3 ⁇ 1100 X 1 ( ⁇ 3 ⁇ 2.
  • the saturation model uses artificially synthesized simulated salt water with a salinity of 6778mg / L.
  • the experimental oil is prepared by degassing and dehydrating crude oil in the mine.
  • the water for the foaming composition and the flooding water were artificial saline, and the mineralization was 37QQmg / L. 31 ⁇ 2g / L ⁇
  • Preparation of polymer polymer brine is artificially synthesized brine with a salinity of 918. 31 ⁇ 2g / L.
  • the experimental temperature was 45 ° C.
  • Example 3 Using a foaming composition having the same composition as that described in Example 1, an oil displacement experiment was performed on the artificial core model ( ⁇ ) as described above.
  • Example 4 Using a foaming composition having the same composition as described in Example 1, an oil displacement experiment was performed in the artificial core model ( ⁇ ) as described above. After the core is saturated with water, oil flooding is performed to saturate the original oil content of the core, and then the oil is flooded at a rate of lm / d to 98% water content at the model outlet to calculate the water flooding recovery factor. Then in the case where the core outlet pressure is 8. OMPa, the foaming composition and the natural gas are alternately injected: (1) the foaming composition of Q.
  • the method of the present invention can improve the recovery of crude oil by 25-30%, which is a very effective method suitable for improving the recovery of crude oil under the heterogeneous reservoir geological conditions.

Description

泡沫复合驱油方法 发明领域 本发明涉及一种提高原油采收率的方法, 特别涉及一种泡沫复 合驱油方法。 发明背景 目前国内外的许多油田都采用注水幵发的方式幵采原油, 但由 于储层的非均质性以及不利的油水流度比, 水驱后仍有大量的剩余 油残留在地下。 为了幵采这些剩余油, 除了采用加密井等措施以外, 各种提高原油采收率的新方法( E0R ) 已逐步由室内研究过渡到矿 场实践, 并在世界上许多油田得到广泛应用。 在三次采油新技术中, 化学驱仍然是具有很大发展前途的方法之一。 在化学驱中, 复合驱 的应用日趋广泛, 并由砂岩储层扩大到碳酸盐岩储层。 在操作和质 量控制方面正在不断地加以完善。 此外, 为提高化学驱的效果及降 低生产费用, 开发研究了各种化学复合驱方法, 如: 碱-聚合物驱, 表面活性剂-碱驱, 表面活性剂-聚合物驱等二元复合驱, 以及碱 -表面活性剂 -聚合物的三元复合驱。 通过各种化学剂的协同作 用, 不仅可以降低化学剂的用量, 而且比单一化学驱或二元复合驱 具有更高的原油采收率。 对于这种三元复合驱油方法, 不仅进行了 广泛的室内机理研究, 而且在矿场进行了先导性试验, 已经取得较 为明显的效果, 其驱油机理主要为: 一方面三元复合体系中聚合物 的存在可使驱替相的粘度增加, 从而降低了油水之间的流度比, 扩 大了波及体积; 另一方面, 碱与表面活性剂二者的协同效应可使油 水之间形成超低界面张力, 使原油更容易从岩石矿物表面剥离, 从 而提高了驱油效率, 最终使采收率得到大幅度提高, 这方面的文献 可参见 SPE24144 , SPE21028 , SPE17538。
为了提高封堵高渗透层或贼层的能力, 人们经过了大量研究发 现, 泡沫要比聚合物或凝胶具有更好的进人并降低高渗透层渗透性 的性质, 其中泡沫一般又可分为普通泡沫和增强泡沫两类。 普通泡 沫一般是在注入的气体中加人表面活性剂, 使之在地面或地下生成 泡沫。 如 USP5363915提供了一种应用非离子表面活性剂、 非凝析气 和水形成的泡沫来提高原油采收率的技术, 该泡沫性质稳定, 可在 地下形成或在地面预先形成, 对含轻质油的碳酸盐地层应用最佳, 此外, USP5074358中介绍了其它形式的稳定泡沫。 另一类泡沫为增 强泡沫, 是指除表面活性剂外, 还存在一种使粘度增加的化学剂组 分, 例如: USP5307878利用聚合物增强泡沫来提高泡沫的稳定性和 减少气体锥进(指进) , 该聚合物增强泡沫就是由聚合物、 水性溶 剂、 表面活性剂和气体组成。 USP512947是利用聚合物增强泡沫处 理裂缝性地层来提高液态烃类的采收率。 所述的泡沫也是由聚合 物、 表面活性剂、 水性溶剂和气体组成。 泡沬将优先进入地层中存 在的裂缝, 但是, 上述泡沫提高原油采收率方法都是以提高驱替剂 的波及系数为目的, 泡沫中的化学剂组分并不能象三元体系那样与 原油形成超低界面张力, 因此,使最终的原油采收率一般在 50 ~ 60 %之间, 而三元复合驱油方法中, 聚合物的调剖能力比泡沫差很多, 从而限制了波及效率的提高, 驱替液仍然较容易地在高渗透层突破 和窜流, 最终原油采收率一般仍在 60 %左右。 因此, 有必要研究一 种充分发挥泡沫驱和三元复合驱协同优势的驱油方法, 进一步提高 地下含油层的原油采收率, 将残留在含油饱和度较高的低渗透层的 原油和注入水波及到而未能采出的原油一起采出至地面。 发明目的 本发明目的是针对三元复合驱油方法中波及系数不高及泡沫驱 中洗油效率较低的缺点, 充分发挥三元复合驱油方法的高洗油效率 和泡沫驱油方法中高波及效率的优势, 采用气体与三元复合体系同 时或交替注入方式在地面或地下形起泡沫, 来提高地下含油层的原 油采收率。 发明概述 本发明涉及一种提高地下含油层原油采收率的方法, 特别涉及 一种泡沫复合驱油方法, 该方法包括:
( 1 ) 向地下含油层注入一种聚合物水溶液作为前置段塞; ( 2 )周期性地同时或交替注入一种非凝析气体和一种起泡组 合物水溶液以在地下形成复合泡沫或周期性地注入该气体与所述的 水溶液在地面预先形成的复合泡沫, 所述的起泡组合物水溶液包括 碱、 表面活性剂以及聚合物;
( 3 ) 注入一种聚合物水溶液作为保护段塞。 发明的详细描述 本发明涉及一种提高地下含油层原油采收率的方法, 特别涉及 一种泡沫复合驱油方法, 该方法包括:
( 1 ) 向地下含油层注入一种聚合物水溶液作为前置段塞; ( 2 )周期性地同时或交替注人一种非凝析气体和一种起泡组 合物水溶液以在地下形成复合泡沫或周期性地注入该气体与所述的 水溶液在地面预先形成的复合泡沫, 所述的起泡组合物水溶液包括 碱、 表面活性剂以及聚合物;
( 3 ) 注入一种聚合物水溶液作为保护段塞。
在现有技术中, 不管是二元驱油, 或是三元复合驱油, 由于高 渗透层和 /或贼层的存在, 都不同程度地会发生锥进 (指进) 现象。 本发明的发明人经过大量的研究后发现, 在将复合驱油体系加入到 含油层中以进行驱油之前, 加人一种聚合物水溶液作为前置段塞, 一方面, 该聚合物水溶液将优先进人地层中的高渗透层和 /或贼层, 使其渗透率降低, 从而防止随后加人的泡沫中的气体沿高渗透通道 发生气窜; 另一方面, 聚合物分子在岩石表面吸附滞留, 可有效减 少后续泡沫中的各种有效物质在岩石表面吸附而造成的损失。
按照本发明的方法, 其中, 作为前置段塞的聚合物为分子量为 300 一 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物。作为 生物聚合物, 包括黄原胶、 瓜耳胶( guar ); 作为合成聚合物, 包 括聚丙烯酰胺、 部分水解的聚丙烯酰胺在内的聚合物。
按照本发明的方法, 在向地下油层中加入作为前置段塞的聚合 物水溶液后, 周期性地同时或交替注人一种非凝析气体和一种包括 碱、 表面活性剂以及聚合物的起泡组合物水溶液以在地下形成复合 泡沫; 或是周期性地注入该气体与所述的水溶液在地面预先形成的 复合泡沫。 由于事先注入了作为前置段塞的聚合物水溶液, 因此, 同时或交替注入非凝析性气体和起泡溶液而在地下形成的泡沫或直 接注入非凝析性气体和起泡溶液在地面形成的泡沫在地层中的渗透 比较均匀, 不会发生锥进 (指进)现象。 本发明方法中所使用的非 凝析气体包括氮气、 天然气、 甲烷气、 空气或其混合物。 按照本发明的方法, 其中所使用的起泡组合物水溶液包括碱、 表面活性剂和聚合物。 所述的起泡组合物水溶液具有的最显著的特 点是可与原油形成超低界面张力并具有较高的粘度, 聚合物的加入 可使驱替相粘度增加, 降低了流度比, 扩大波及系数。 碱与表面活 性剂的协同作用可使该体系与原油形成超低界面张力, 其油水界面 张力值达到 l (T3mN/m数量级, 为超低界面张力体系。 因此可以提高 洗油效率, 使最终原油采收率大幅度提高。 按照本发明的泡沫复合 驱油方法, 一般可使最终原油采收率提高 25 ~ 30 %。
按照本发明, 所述的起泡组合物水溶液中, 以组合物水溶液的 总重量为基准计, 包括 0. 5-1. 5% (重量) 的碱, 0. 05 - 0. 5% (重 量)的表面活性剂和 0. 05 - 0. 5% (重量)的聚合物。 其中所述的碱 包括氢氧化钠、 氢氧化钾、 碳酸钾、 碳酸氢钾、 碳酸钠和 /或碳酸氢 钠, 优选为氢氧化钠和碳酸钠; 其中所述的表面活性剂包括离子型 表面活性剂或非离子型表面活性剂,所述的离子型表面活性剂包括 α -烯基磺酸盐, C12 - 16烷基硫酸钠, (:14 - 18垸基苯磺酸钠, 所述的非 离子型表面活性剂包括三乙醇胺;其中所述的聚合物为分子量为 300 - 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物, 所述的 生物聚合物包括黄原胶、 瓜耳胶, 所述的合成聚合物包括聚丙烯酰 胺、 部分水解的聚丙烯酰胺。
按照本发明方法, 其中所使用的起泡组合物中, 所述的离子型 或非离子型表面活性剂与碱产生协同作用, 因而能与原油形成 10— 3mN/m数量级的超低界面张力, 并具有很强的发泡能力。
本发明方法的第三个步骤是注入聚合物保护段塞, 随后进行水 驱。 注入保护段塞的目的是对形成的泡沫进行有效的保护, 减少后 续水驱对泡沫的稀释破坏作用。 实践证明, 按照本发明方法注入所 述的聚合物保护段塞能充分地发挥泡沫的作用。 按照本发明方法, 作为保护段塞的聚合物为分子量为 300 - 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物,其中所述的 生物聚合物包括黄原胶、 瓜耳胶, 所述的合成聚合物包括聚丙烯酰 胺、 部分水解的聚丙烯酰胺。
按照本发明方法, 进一步包括在注入所述的作为保护段塞的聚 合物水溶液后, 进行后续水驱的步骤。
本发明泡沫复合驱油方法的机理为: 一方面, 所形成的泡沫优 先进人并封堵地层中的高渗透孔隙, 使驱替流体(包括泡沫)转向 并进入低渗透层带, 扩大波及系数; 另一方面, 所注入的三元复合 体系与原油可形成超低界面张力, 使原油更容易从岩石表面剥离, 提高了洗油效率并具有一定的稳泡作用, 同时利用气体的上浮作 用, 提高上部中低渗透层原油动用程度, 从而使烃类, 即原油的采 收率得到大幅度提高。
本发明方法所使用的三元复合体系中的聚合物对由所述的三元 复合体系所形成的泡沫具有稳定作用。 作为本发明的一个实施例, 采用 0RS - 41作为表面活性剂, 采用 NaOH作为碱, 以不同用量的 部分水解聚丙烯酰胺( HPAM )作为聚合物配制三元复合体系并测定 了由这些三元复合体系产生的泡沫的半衰期。 结果如下表 1所示: 聚合物对泡沫的稳定性的影响
Figure imgf000008_0001
如表 1 所示, 聚合物的加人使由组合物产生的泡沫的半衰期延 聚合物的加入量越大, 则泡沫的半衰期越长, 即泡沫的稳定性 越好。
在按照本发明的方法使用本发明的泡沫复合驱油体系进行采油 时, 将根据采油区的油藏条件如非均质、 化学剂的损耗情况以及经 济成本等来确定各种组分的加入量。 一般来说, 气体占整个体系的 孔隙的体积(地下条件)一般不低于 50 % , 液体用量为占整个体系 的孔隙的体积的 1 0 ~ 50 % , 聚合物前置段塞和保护段塞的用量为 分别占整个体系的孔隙的体积 2 % ~ 8 %和 1 0 % ~ 45 %。
根据油藏地质特点和井网情况, 可以减少聚合物前置段塞和保 护段塞的用量, 甚至可以取消这两个段塞或其中的某一个段塞。
本发明可有效提高地下含油层的原油采收率, 在水驱基础上, 一般可提高采收率 25 ~ 30 % 00 I P (原始地质储量) 。
以下结合实施例对本发明进行进一步的说明。 但应该理解的 是, 本发明并不限于这些实施例。 实施例 在二维人造岩心 ( I )上进行了驱油实验, 岩心几何尺寸为 4. 5 cm X 4. 5 cm χ 30cm , 岩心是石英砂经环氧树脂胶结而成, 平均 渗透率为 1 μ>η2左右, 共分三层, 正韵律分布, 渗透率变异系数为 0. 72, 原始含水矿化度为 6778mg/L, 原油采用矿场脱气脱水原油, 驱替水矿化度为 370 Qmg/L 。 实施例 1 制备组成如下的起泡组合物: 组分 用量(% (重量) ) 垸基芳烃磺酸盐 1 0. 3
水解聚丙烯酰胺 2 0. 12
NaOH 1. 0 水 3 余量
1商品名为 0RS- 41的表面活性剂, 美国 ICT公司产品。
2商品名为 1275A的聚合物, 分子量为 1700万, 水解度为 25 %, 英 国联合胶体公司产品。
3水的矿化度为 918. 3½g/L。 采用如上所述的人造岩心( I )进行驱油实验。 岩心用水饱和 后进行油驱水, 使岩心的原始含油达到饱和, 然后水驱油至岩心出 口含水 98 %时, 幵始在岩心出口压力为 8. OMPa的情况下注入上述 的起泡组合物水溶液和甲烷气体所形成的泡沫, 其中, 起泡组合物 水溶液的注入量为 0. 3PV, 气相为 Q. 36PV, 然后注入 Q. 283PV的浓 度为 60Gmg/L钓聚合物( 1275A )水溶液保护段塞, 最后水驱至岩 心出口含水 98 %为止, 实验结果如表 2所示: 泡沫驱实验结果 石 、渗透 孔隙度 原始含油 水驱采 泡沫驱采 总采收气液比 率 (kw μιη2) (φ) (%) 饱和度 (%) 收率 (%) 收率 (%) 率 (%)
0. 725 20. 1 66. 5 39. 5 29. 5 69. 0 1. 20 从表 2结果可见, 泡沫复合驱油方法可在水驱基础上提高采收 率 30 %左右, 总采收率约 70 %。 实施例 2 与实例 1 的实验过程基本一致, 有两个条件不同, 一是岩心出 口压力为常压; 二是气体与复合体系分 11个段塞注入, 气液比保持 在 1. 0。 实验结果如表 3所示: 表 3 气液交替注入实验结果
Figure imgf000011_0001
从表 3结果可见, 液气交替注人方式仍能在水驱基础上提高采 收率 33. 5 %, 总采收率达到 73. 6 % , 说明在甲垸与起泡组合物水 溶液交替注入的情况下, 能在岩心中形成结构和性质都很好的复合 泡沫, 与在岩心前发泡具有相似的作用。
下面的实施例所采用的模型为两维纵向非均质复合韵律物理模 型( I I )。 模型( Π )的几何尺寸为 4. 5cm χ 4. 5cm χ 30cm , 模 型是石英砂经环氧树脂胶结而成, 平均渗透率为 Ιμηι2左右, 共分五 层, 中间无不渗透性隔层, 渗透率变异系数为 0. 61 , 从上至下各层 的渗透率分别为 190 X 10 m2、 650 X 10— 3μπι2、 390 X 10— 3μπι2、 2700 X 10 - 3μω 1100 X 1 (Τ 3μηι2。 饱和模型用水为人工合成模拟 盐水, 矿化度为 6778mg/L , 实验用油采用矿场脱气脱水原油, 配制 起泡组合物用水及驱替水为人工合成盐水, 矿化度为 37QQmg/L。 配 制聚合物水溶液盐水为人工合成盐水, 矿化度为 918. 3½g/L。 实验 温度为 45 °C。 实施例 3 采用组成与实施例 1所述相同的起泡组合物, 在如上所述的人 造岩心模型( Π )进行驱油实验。 岩心用水饱和后进行油驱水, 使 岩心的原始含油达到饱和, 然后用水以 lm/d的速度驱油至模型出口 含水 98 %, 计算水驱采收率。 然后在岩心出口压力为 8. OMPa的情 况下以约 lm/d的速度注入上述的起泡组合物水溶液和天然气所形成 的泡沫, 其中, 起泡组合物水溶液的注入量为 0. 3PV , 气相为 0. 36PV , 然后注人 0. 283PV的浓度为 600mg/L的聚合物( 1275A ) 水溶液保护段塞, 最后水驱至岩心出口含水 98 %为止, 实验结果如 下表 所示: 表 4 泡沫驱实验结果
Figure imgf000012_0001
上述实验结果说明, 本发明尤其适合于正韵律地层。 实施例 4 釆用组成与实施例 1所述相同的起泡组合物, 在如上所述的人 造岩心模型 ( Π )进行驱油实验。 岩心用水饱和后进行油驱水, 使 岩心的原始含油达到饱和, 然后用水以 lm/d的速度驱油至模型出口 含水 98 %, 计算水驱采收率。 然后在岩心出口压力为 8. OMPa的情 况下,交替注入所述的起泡组合物和所述的天然气: ( 1 )注入 Q. 1PV 的起泡组合物和 0. 05PV的天然气; ( 2 ) 注入 0. 05PV的起泡组合 物和 0. 05PV的天然气; ( 3 )注入 0. 05PV的起泡组合物和 0. 05PV 的天然气; ( 4 ) 注人 0. 05PV的起泡组合物和 0. 05PV的天然气; ( 5 ) 注入 0. 05PV 的起泡组合物和 0. 1PV 的天然气。 然后注人 0. 283PV的浓度为 600mg/L的聚合物 ( 1275A )水溶液保护段塞, 最 后水驱至岩心出口含水 98 %为止, 实验结果如下表所示: 泡沫驱实验结果
Figure imgf000013_0001
如上所述,采用本发明的方法可使原油的采收率可提高 25 - 30 % , 是适合于在非均质性油藏地质条件下提高原油采收率的一种非 常有效的方法。 ·
以上通过实施例对本发明进行了解释和说明, 但本发明并不限 于这些实施例。 应该理解的是, 在不偏离本发明的精神和发明实质 的前提下, 本领域的普通技术人员可以对本发明进行各种各样的修 改和补充。

Claims

权 利 要 求
1、 一种泡沫复合驱油方法, 包括:
( 1 ) 向地下含油层注入一种聚合 l水溶液作为前置段塞;
.( 2 )周期性地同时或交替注人一种非凝析气体和一种起泡组 合物水溶液以在地下形成复合泡沫或周期性地注人该气体与所述的 水溶液在地面预先形成的复合泡沫, 所述的起泡组合物水溶液包括 碱、 表面活性剂以及聚合物;
( 3 ) 注入一种聚合物水溶液作为保护段塞。
2、 按照权利要求 1所述的方法, 进一步包括后续水驱的步骤。
3、按照权利要求 1所述的方法,其中所述的作为前置段塞的聚合物 为分子量为 3QG - 30, 000道尔顿的水溶性生物聚合物和 /或合成 聚合物。
4 、 按照权利要求 3所述的方法, 其中所述的生物聚合物包括黄原 胶、 瓜耳胶。
5、按照权利要求 3所述的方法, 其中所述的合成聚合物包括聚丙烯 酰胺、 部分水解的聚丙烯酰胺。
6、 按照权利要求 1所述的方法, 其中所述的非凝析气体包括氮气、 天然气、 甲垸气、 空气或其混合物。
7、按照权利要求 1所述的方法, 其中所述的起泡组合物水溶液包括 0. 5-1. 5% (重量)的碱, 0. 05 - 0. 5% (重量)的表面活性剂和 0. 05 - 0. 5% (重量) 的聚合物, 所述的百分比以组合物的总重量为基准 计。
8、按照权利要求 7所述的方法, 其中所述的起泡水溶液为超低界面 张力体系, 其与所驱替的地下原油之间的界面张力值小于等于
10— 3mN/m 。
9、 按照权利要求 7所述的方法, 其中所述的碱包括氢氧化钠、 氢氧 化钾、 碳酸钾、 碳酸倾钾、 碳酸钠和 /或碳酸氢钠。
10、 按照权利要求 7所述的方法, 其中所述的表面活性剂包括离子 型表面活性剂或非离子型表面活性剂。
11、按照权利要求 7所述的方法,其中所述的聚合物为分子量为 300 - 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物。
12、按照权利要求 11所述的方法,其中所述的生物聚合物包括黄原 胶、 瓜耳胶。
1 3、按照权利要求 11所述的方法,其中所述的合成聚合物包括聚丙 烯酰胺、 部分水解的聚丙烯酰胺。
14、 按照权利要求 1所述的方法, 其中所述的作为保护段塞的聚合 物为分子量为 3QQ - 30 , 000道尔顿的水溶性生物聚合物和 /或合 成聚合物。
15、按照权利要求 14所述的方法,其中所述的生物聚合物包括黄原 胶、 瓜耳胶。
16、按照权利要求 14所述的方法,其中所述的合成聚合物包括聚丙 烯酰胺、 部分水解的聚丙烯酰胺。
17、 按照权利要求 1所述的方法, 其中所述的气体占孔隙体积的至 少 50 %, 所述的起泡水溶液占孔隙体积的 10 - 50 %。
PCT/CN1998/000057 1998-04-06 1998-04-06 Procede de recuperation du petrole par injection d'une solution aqueuse moussante WO1999051854A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/647,854 US6439308B1 (en) 1998-04-06 1998-04-06 Foam drive method
PCT/CN1998/000057 WO1999051854A1 (fr) 1998-04-06 1998-04-06 Procede de recuperation du petrole par injection d'une solution aqueuse moussante
CN98813947A CN1093589C (zh) 1998-04-06 1998-04-06 泡沫复合驱油方法
GB0024418A GB2352260B (en) 1998-04-06 1998-04-06 A foam drive method
CA002327744A CA2327744C (en) 1998-04-06 1998-04-06 A foam drive method
AU68193/98A AU6819398A (en) 1998-04-06 1998-04-06 A foam drive method
NO20004970A NO322769B1 (no) 1998-04-06 2000-10-02 Fremgangsmate for skumdriv.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN1998/000057 WO1999051854A1 (fr) 1998-04-06 1998-04-06 Procede de recuperation du petrole par injection d'une solution aqueuse moussante

Publications (1)

Publication Number Publication Date
WO1999051854A1 true WO1999051854A1 (fr) 1999-10-14

Family

ID=4575046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN1998/000057 WO1999051854A1 (fr) 1998-04-06 1998-04-06 Procede de recuperation du petrole par injection d'une solution aqueuse moussante

Country Status (7)

Country Link
US (1) US6439308B1 (zh)
CN (1) CN1093589C (zh)
AU (1) AU6819398A (zh)
CA (1) CA2327744C (zh)
GB (1) GB2352260B (zh)
NO (1) NO322769B1 (zh)
WO (1) WO1999051854A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828733A (zh) * 2012-09-04 2012-12-19 北京科技大学 一种使用泡沫复合体系开采油田剩余原油的方法
CN114517657A (zh) * 2020-11-20 2022-05-20 中国石油化工股份有限公司 一种用于高温高盐底水油藏的二元复合控水工艺

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030146002A1 (en) 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US6550542B2 (en) * 2001-07-17 2003-04-22 Conocophillips Company Fluid profile control in enhanced oil recovery
WO2003036033A1 (en) 2001-10-24 2003-05-01 Shell Internationale Research Maatschappij B.V. Simulation of in situ recovery from a hydrocarbon containing formation
US7055602B2 (en) * 2003-03-11 2006-06-06 Shell Oil Company Method and composition for enhanced hydrocarbons recovery
CA2451641A1 (en) * 2004-01-09 2005-07-09 Laurie A. Hodgins Method of placing blocking gel in gas producing formations in order to reduce water influx into the well bore
US20060076145A1 (en) * 2004-10-13 2006-04-13 Weatherford/Lamb, Inc. Gas lift using a gas/oil mixer
CN1304830C (zh) * 2005-03-30 2007-03-14 大庆石油学院 石英砂环氧树脂胶结非均质模型制作方法
RU2415259C2 (ru) 2006-04-21 2011-03-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Последовательное нагревание множества слоев углеводородсодержащего пласта
CA2666959C (en) 2006-10-20 2015-06-23 Shell Internationale Research Maatschappij B.V. Moving hydrocarbons through portions of tar sands formations with a fluid
US20080171672A1 (en) * 2006-12-21 2008-07-17 Cano Manuel Luis Method and composition for enhanced hydrocarbons recovery
CA2684486C (en) 2007-04-20 2015-11-17 Shell Internationale Research Maatschappij B.V. In situ recovery from residually heated sections in a hydrocarbon containing formation
CN101126312B (zh) * 2007-08-17 2013-01-23 中国科学院武汉岩土力学研究所 波动石油开采法
US20090200290A1 (en) 2007-10-19 2009-08-13 Paul Gregory Cardinal Variable voltage load tap changing transformer
MX2010008649A (es) 2008-02-07 2010-08-31 Shell Int Research Metodo y composicion para la recuperacion mejorada de hidrocarburos.
US8664166B2 (en) 2008-02-07 2014-03-04 Shell Oil Company Method and composition for enhanced hydrocarbons recovery
EP2242815B1 (en) * 2008-02-07 2019-07-03 Shell International Research Maatschappij B.V. Method for enhanced hydrocarbons recovery
EA022380B1 (ru) * 2008-02-07 2015-12-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и композиция для улучшенного извлечения углеводородов
MX2010008646A (es) * 2008-02-07 2010-08-31 Shell Int Research Metodo y composicion para la recuperacion mejorada de hidrocarburos.
EP2419488B1 (en) 2009-04-16 2015-11-25 Shell Oil Company Method and composition for enhanced hydrocarbons recovery from a very high salinity, high temperature formation
EP2261298A1 (en) 2009-06-10 2010-12-15 Shell Internationale Research Maatschappij B.V. Method for enhanced hydrocarbon recovery
CN102612548B (zh) 2009-07-09 2015-07-22 国际壳牌研究有限公司 从含有具有特定溶解性组和化学族的原油的地层中强化烃采收的方法和组合物
US9284481B2 (en) 2010-02-12 2016-03-15 Shell Oil Company Method and composition for enhanced oil recovery
US8739874B2 (en) 2010-04-09 2014-06-03 Shell Oil Company Methods for heating with slots in hydrocarbon formations
CN103025996B (zh) 2010-05-22 2016-02-03 斯特潘公司 从含油地层中采油的方法
US20120067571A1 (en) * 2010-09-17 2012-03-22 Shell Oil Company Methods for producing oil and/or gas
BR112013016838A2 (pt) 2010-12-29 2016-09-27 Shell Int Research composição de recuperação de hidrocarbonetos, e, métodos de tratamento de uma formação contendo petróleo bruto, e de preparação de uma composição de recuperação de hidrocarbonetos
CN103429696A (zh) 2010-12-29 2013-12-04 国际壳牌研究有限公司 从含有原油的地层中强化烃采收的方法和组合物
RU2471041C2 (ru) * 2011-03-02 2012-12-27 Валерий Владимирович Бодров Способ очистки поверхностей от нефти и нефтепродуктов
WO2012143433A1 (en) 2011-04-20 2012-10-26 1/7Shell Internationale Research Maatschappij B.V. Method and composition for enhanced hydrocarbon recovery
US9567512B2 (en) 2011-05-16 2017-02-14 Stepan Company Surfactants for enhanced oil recovery
EA201391795A1 (ru) 2011-05-27 2014-03-31 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Композиция и способ для повышения добычи углеводородов
MX2014002033A (es) 2011-08-31 2014-03-21 Shell Int Research Composicion y metodo para la recuperacion mejorada de hidrocarburos.
US9605198B2 (en) 2011-09-15 2017-03-28 Chevron U.S.A. Inc. Mixed carbon length synthesis of primary Guerbet alcohols
US20140262275A1 (en) * 2013-03-15 2014-09-18 Chevron U.S.A. Inc. Alkali polymer surfactant sandwich
CN102434137B (zh) * 2011-12-16 2014-08-06 中国石油天然气股份有限公司 超低界面张力耦合式空气泡沫驱油方法
CN102618246B (zh) * 2012-03-08 2014-07-23 中国石油天然气股份有限公司 一种适用于油田开发的泡沫复合驱油方法
CN102650206A (zh) * 2012-04-25 2012-08-29 中国石油天然气股份有限公司 一种提高非均质油层采收率的方法
EP2738234A1 (en) 2012-11-29 2014-06-04 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
EP2738235A1 (en) 2012-11-29 2014-06-04 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
SG10201707226TA (en) * 2013-03-06 2017-10-30 Shell Int Research Internal olefin sulfonate composition
CN103225495B (zh) * 2013-03-14 2016-01-13 中国石油化工股份有限公司 一种由近及远逐段驱替方法
EP2781582A1 (en) 2013-03-21 2014-09-24 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
EP2781581A1 (en) 2013-03-21 2014-09-24 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
WO2015048135A1 (en) 2013-09-26 2015-04-02 Shell Oil Company Composition and method for enhanced hydrocarbon recovery
US20160215200A1 (en) 2013-09-26 2016-07-28 Shell Oil Company Composition and method for enhanced hydrocarbon recovery
WO2015048139A1 (en) 2013-09-26 2015-04-02 Shell Oil Company Composition and method for enhanced hydrocarbon recovery
CN103497751A (zh) * 2013-10-12 2014-01-08 陕西延长石油(集团)有限责任公司研究院 一种高效空气泡沫驱油体系
CN103589414B (zh) * 2013-11-21 2016-12-07 中国石油大学(华东) 锆冻胶分散体复合驱油体系及其制备方法
CN104060974B (zh) * 2014-03-27 2016-08-24 上海井拓石油开发技术有限公司 等流度驱油与调剖一体化技术
US10196555B2 (en) * 2014-10-30 2019-02-05 Chevron U.S.A. Inc. Subterranean producing zone treatment
CN105985483A (zh) * 2015-02-05 2016-10-05 中国石油天然气股份有限公司 一种包裹无机核的聚合物微粒及其制备方法和应用
CN104762078B (zh) * 2015-03-18 2017-12-15 西南石油大学 一种多功能空气泡沫驱用发泡体系
CN104989344B (zh) * 2015-06-04 2017-05-10 中国石油大学(华东) 一种确定氮气泡沫驱油过程中气体窜流程度的方法
US10815164B2 (en) 2015-10-19 2020-10-27 Shell Oil Company Process for producing styrene
WO2017176454A1 (en) 2016-04-03 2017-10-12 Stepan Company Enhanced oil recovery methods
CN106220781A (zh) * 2016-07-21 2016-12-14 西安长庆化工集团有限公司 一种调剖用聚合物微球及其制备方法
CN106958437B (zh) * 2017-05-16 2019-03-15 东北石油大学 一种油井压裂提高采收率新方法
WO2019076794A1 (en) 2017-10-18 2019-04-25 Shell Internationale Research Maatschappij B.V. SURFACE COMPOSITION
AR114937A1 (es) 2017-12-05 2020-11-11 Shell Int Research Un método para producir un sulfato de propoxi alcohol
CN108729893B (zh) * 2018-03-22 2020-10-13 中国石油化工股份有限公司 一种提高稠油油藏采收率的泡沫复合冷采方法
CN112240173B (zh) * 2019-07-18 2023-06-02 中国石油化工股份有限公司 一种基于泡沫循环的油气井冲砂洗井方法及用于油气井冲砂洗井的消泡液和起泡液
CN110644956A (zh) * 2019-09-17 2020-01-03 中国石油天然气股份有限公司 一种提高低渗透油藏co2驱效果的方法
CN111648741A (zh) * 2020-06-02 2020-09-11 中国石油化工股份有限公司 一种中渗油藏的化学驱方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044833A (en) * 1976-06-08 1977-08-30 Phillips Petroleum Company Acid foam fracturing
US4195689A (en) * 1978-11-06 1980-04-01 Cities Service Company Chemical waterflood process development
US4291765A (en) * 1979-08-02 1981-09-29 Mitchell Energy Corporation Water flooding process using multiple fluids
US4606407A (en) * 1984-11-29 1986-08-19 Mobil Oil Corporation Programmed gelation of polymers for oil reservoir permeability control
US4609044A (en) * 1985-05-20 1986-09-02 Shell Oil Company Alkali-enhanced steam foam oil recovery process
US4911241A (en) * 1989-01-27 1990-03-27 Dowell Schlumberger Incorporated Constant viscosity foam
SU1760095A1 (ru) * 1989-10-25 1992-09-07 Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности "Укргипрониинефть" Пенообразующий состав дл удалени жидкости с забо скважины
WO1992015769A1 (en) * 1991-03-11 1992-09-17 Marathon Oil Company Enhanced liquid hydrocarbon recovery process

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330346A (en) * 1965-01-27 1967-07-11 Union Oil Co Method of treating a subterranean formation with a foam bank
US4495995A (en) * 1980-05-19 1985-01-29 Phillips Petroleum Company Method for plugging and subsequent treatment of subterranean formations
US4513821A (en) * 1984-02-03 1985-04-30 Mobil Oil Corporation Lowering CO2 MMP and recovering oil using carbon dioxide
US4676316A (en) * 1985-11-15 1987-06-30 Mobil Oil Corporation Method and composition for oil recovery by gas flooding
US4863618A (en) * 1986-11-07 1989-09-05 Shell Oil Company Oil recovery with water containing carbonate salt, CO2, and surfactant
US4813483A (en) * 1988-04-21 1989-03-21 Chevron Research Company Post-steam alkaline flooding using buffer solutions
US5363915A (en) 1990-07-02 1994-11-15 Chevron Research And Technology Company Enhanced oil recovery technique employing nonionic surfactants
US5074358A (en) 1990-07-03 1991-12-24 Alberta Oil Sands Technology And Research Authority Surfactant-stabilized foams for enhanced oil recovery
US5199490A (en) * 1991-11-18 1993-04-06 Texaco Inc. Formation treating
US5307878A (en) 1993-01-07 1994-05-03 Marathon Oil Company Polymer enhanced foams for reducing gas coning
US5363914A (en) * 1993-03-25 1994-11-15 Exxon Production Research Company Injection procedure for gas mobility control agents
US5638902A (en) * 1995-03-30 1997-06-17 Martin; Waylan C. Water flow obstruction process
US5614473A (en) * 1995-05-22 1997-03-25 Rhone-Poulenc Inc. Use of high purity imidazoline based amphoacetate surfactant as foaming agent in oil wells
US5834406A (en) * 1996-03-08 1998-11-10 Marathon Oil Company Foamed gel for permeability reduction or mobility control in a subterranean hydrocarbon-bearing formation
US6022834A (en) * 1996-05-24 2000-02-08 Oil Chem Technologies, Inc. Alkaline surfactant polymer flooding composition and process
GB2318814B (en) * 1996-11-01 2001-02-21 Sofitech Nv Foamable gel composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4044833A (en) * 1976-06-08 1977-08-30 Phillips Petroleum Company Acid foam fracturing
US4195689A (en) * 1978-11-06 1980-04-01 Cities Service Company Chemical waterflood process development
US4291765A (en) * 1979-08-02 1981-09-29 Mitchell Energy Corporation Water flooding process using multiple fluids
US4606407A (en) * 1984-11-29 1986-08-19 Mobil Oil Corporation Programmed gelation of polymers for oil reservoir permeability control
US4609044A (en) * 1985-05-20 1986-09-02 Shell Oil Company Alkali-enhanced steam foam oil recovery process
US4911241A (en) * 1989-01-27 1990-03-27 Dowell Schlumberger Incorporated Constant viscosity foam
SU1760095A1 (ru) * 1989-10-25 1992-09-07 Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности "Укргипрониинефть" Пенообразующий состав дл удалени жидкости с забо скважины
WO1992015769A1 (en) * 1991-03-11 1992-09-17 Marathon Oil Company Enhanced liquid hydrocarbon recovery process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828733A (zh) * 2012-09-04 2012-12-19 北京科技大学 一种使用泡沫复合体系开采油田剩余原油的方法
CN114517657A (zh) * 2020-11-20 2022-05-20 中国石油化工股份有限公司 一种用于高温高盐底水油藏的二元复合控水工艺

Also Published As

Publication number Publication date
CA2327744A1 (en) 1999-10-14
GB2352260A (en) 2001-01-24
CN1093589C (zh) 2002-10-30
NO20004970L (no) 2000-10-24
NO20004970D0 (no) 2000-10-02
US6439308B1 (en) 2002-08-27
GB0024418D0 (en) 2000-11-22
GB2352260B (en) 2002-10-23
AU6819398A (en) 1999-10-25
CN1291253A (zh) 2001-04-11
NO322769B1 (no) 2006-12-11
CA2327744C (en) 2004-07-13

Similar Documents

Publication Publication Date Title
WO1999051854A1 (fr) Procede de recuperation du petrole par injection d'une solution aqueuse moussante
Samanta et al. Surfactant and surfactant-polymer flooding for enhanced oil recovery
US8939211B2 (en) Hydrocarbon recovery process
US7963329B2 (en) Recovery and recycling of chemicals in chemical flooding process
CN103980873A (zh) 一种三相泡沫复合驱油体系及其应用
Thomas et al. Micellar flooding and ASP-chemical methods for enhanced oil recovery
CN106593376B (zh) 人造泡沫油促发剂及蒸汽驱后稠油油藏驱替开采方法
WO2011041086A1 (en) Combined miscible or near miscible gas and asp flooding for enhanced oil recovery
WO2011100136A1 (en) Low salinity reservoir environment
US20150198018A1 (en) Composition for and process of recovering oil from an oil-bearing formation
CA1224915A (en) .alpha. OLEFIN SULFONATE SURFACTANT ADDITIVES FOR GAS FOAM DRIVES AND A PROCESS OF STIMULATING HYDROCARBON RECOVERY FROM A SUBTERRANEAN FORMATION
US3882940A (en) Tertiary oil recovery process involving multiple cycles of gas-water injection after surfactant flood
US4458760A (en) Oil recovery process for stratified high salinity reservoirs
US3915230A (en) Surfactant oil recovery process
US20140352958A1 (en) Process for enhancing oil recovery from an oil-bearing formation
Kuhlman et al. CO2 foam with surfactants used below their critical micelle concentrations
US4981176A (en) Method for using foams to improve alkaline flooding oil recovery
CN105315982A (zh) 一种二元复合驱后三相强化泡沫驱油体系
US3335792A (en) Method for increasing oil recovery
Li et al. Field application of alkali/surfactant/polymer flood with novel mixtures of anionic/cationic surfactants for high-temperature and high-water-cut mature sandstone reservoir
US4184549A (en) High conformance oil recovery process
US4159037A (en) High conformance oil recovery process
US3500921A (en) Polymer-preceded chemical flood
GB2215362A (en) Oil recovery process utilizing gravitational forces
US20160215201A1 (en) Composition and method for enhanced hydrocarbon recovery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98813947.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2327744

Country of ref document: CA

Ref document number: 2327744

Country of ref document: CA

Kind code of ref document: A

Ref document number: 200024418

Country of ref document: GB

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09647854

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA