WO1999056731A1 - Matrices formed of polymer and hydrophobic compounds for use in drug delivery - Google Patents

Matrices formed of polymer and hydrophobic compounds for use in drug delivery Download PDF

Info

Publication number
WO1999056731A1
WO1999056731A1 PCT/US1999/005187 US9905187W WO9956731A1 WO 1999056731 A1 WO1999056731 A1 WO 1999056731A1 US 9905187 W US9905187 W US 9905187W WO 9956731 A1 WO9956731 A1 WO 9956731A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
polymer
poly
hydrophobic
microparticles
Prior art date
Application number
PCT/US1999/005187
Other languages
French (fr)
Inventor
Howard Bernstein
Donald Chickering
Sarwat Khattak
Julie Straub
Original Assignee
Acusphere, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL343691A priority Critical patent/PL196159B1/en
Application filed by Acusphere, Inc. filed Critical Acusphere, Inc.
Priority to NZ508470A priority patent/NZ508470A/en
Priority to BR9910340-0A priority patent/BR9910340A/en
Priority to MXPA00010566A priority patent/MXPA00010566A/en
Priority to CA002329875A priority patent/CA2329875C/en
Priority to AU29954/99A priority patent/AU746696B2/en
Priority to IL13925299A priority patent/IL139252A0/en
Priority to EP99911269A priority patent/EP1073422B1/en
Priority to JP2000546758A priority patent/JP5153032B2/en
Priority to DE69930240T priority patent/DE69930240T2/en
Publication of WO1999056731A1 publication Critical patent/WO1999056731A1/en
Priority to IL139252A priority patent/IL139252A/en
Priority to NO20005452A priority patent/NO324895B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)

Definitions

  • the present invention is generally in the area of drug delivery, and is particularly directed to polymer matrices containing drug and having lipid or another hydrophobic or amphiphilic compound incorporated therein to modify the release kinetics.
  • the matrices are preferably used for parenteral delivery.
  • the matrices are preferably in the form of microparticles.
  • Controlled or sustained release compositions have been developed over the last twenty to thirty years in order to increase the amount of drug delivered by any of a variety of routes, to sustain drug release in a controlled fashion, thereby avoiding burst release which can cause elevated but transient drug levels, and to provide a means for customized release profiles.
  • These formulations have taken many forms, including microparticles such as microspheres and microcapsules formed of drug and encapsulated or mixed with a natural or synthetic polymer, drug particles mixed with excipients such as surfactants to decrease agglomeration of the particles, and devices such as the silastic controlled release depots which release drug as a function of diffusion of water into the device where it dissolves and releases drug back out the same entry. It is difficult to achieve sustained release when the delivery means consists solely of drug or drug and excipient since the drug tends to solubilize relatively quickly. In contrast, non-biodegradable devices such as the silastic devices must be removed after usage.
  • Microparticles have been formed using a wide range of techniques, including spray drying, hot melt, solvent evaporation, solvent extraction, and mechanical means such as milling and rolling.
  • the microparticles are typically formed of a biocompatible material having desirable release properties as well as being processible by techniques compatible with the drug to be delivered. Many drugs are labile and cannot be encapsulated
  • microparticles which have incorporated therein means for limiting diffusion of drug out of the microparticle.
  • hydrophobic compounds A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as "hydrophobic compounds”) is integrated into a polymeric matrix for drug delivery to alter drug release kinetics.
  • the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material.
  • the drug has low water solubility, the drug is released over shorter periods of time as compared to release from matrix not incorporating the hydrophobic compound into the polymeric material.
  • the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix.
  • the integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.
  • the hydrophobic compound must be incorporated into the matrix and the matrix shaped using a technique which results in integration of the hydrophobic compound into the polymeric matrix, rather than at the outer surface of the matrix. In the preferred embodiment, the matrix is formed into
  • microparticles are manufactured with a diameter suitable for the intended route of administration. For example, with a diameter of between 0.5 and 8 microns for intravascular administration, a diameter of 1-100 microns for subcutaneous or intramuscular administration, and a diameter of between 0.5 and 5 mm for oral administration for delivery to the gastrointestinal tract or other lumens.
  • a preferred size for administration to the pulmonary system is an aerodynamic diameter of between one and three microns, with an actual diameter of five microns or more.
  • the polymers are synthetic biodegradable polymers.
  • Most preferred polymers are biocompatible hydrolytically unstable polymers like polyhydroxy acids such as polylactic acid-co-glycolic acid, polylactide, polyglycolide or polyactide co-glycolide, which may be conjugated to polyethylene glycol or other materials inhibiting uptake by the reticuloendothelial system (RES).
  • the hydrophobic compounds can be hydrophobic compounds such as some lipids, or amphiphilic compounds (which include both a hydrophilic and hydrophobic component or region).
  • amphiphilic compounds are phospholipids, most preferably dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), diarachidoylphosphatidylcholine (DAPC), dibehenoylphosphatidylcholine (DBPC), ditricosanoylphosphatidylcholine (DTPC), and dilignoceroylphatidylcholine (DLPC), incorporated at a ratio of between 0.01-60 (w/w polymer), most preferably between 0.1-30 (w lipid/w polymer). Surface properties of the matrix can also be modified.
  • DPPC dipalmitoylphosphatidylcholine
  • DSPC distearoylphosphatidylcholine
  • DAPC diarachidoylphosphatidylcholine
  • DBPC dibehenoylphosphatidylcholine
  • DTPC ditricosanoylphosphatidyl
  • adhesion can be enhanced through the selection of bioadhesive polymers, which may be particularly desirable when the matrix is in the form of microparticles administered to a mucosal surface such as in intranasal, pulmonary, vaginal, or oral administration.
  • Targeting can also be achieved by selection of the polymer or incorporation within or coupling to the polymer to ligands which specifically bind to particular tissue types or cell surface molecules.
  • ligands may be attached to the
  • polymeric delivery systems consisting of polymer matrices that contain an active agent, such as a therapeutic or prophylactic agent (referred to herein generally as "drug").
  • drug a therapeutic or prophylactic agent
  • the matrices are useful in a variety of drug delivery applications, and can be administered by injection, aerosol or powder, orally, or topically. A preferred route of administration is via the pulmonary system or by injection.
  • hydrophobic compound a hydrophobic and/or amphiphilic compound
  • the incorporation of a hydrophobic and/or amphiphilic compound (referred to generally herein as "hydrophobic compound”) into the polymeric matrix modifies the period of drug release as compared with the same polymeric matrix without the incorporated hydrophobic compound, by altering the rate of diffusion of water into and out of the matrix and/or the rate of degradation of the matrix.
  • the term "matrix” refers to a structure including one or more materials in which a drug is dispersed, entrapped, or encapsulated.
  • the material can be crystalline, semi-crystalline, or amorphous.
  • the matrix can be in the form of pellets, tablets, slabs, rods, disks, hemispheres, or microparticles, or be of an undefined shape.
  • microparticle includes microspheres and microcapsules, as well as microparticles, unless otherwise specified. Microparticles may or may not be spherical in shape.
  • Microcapsules are defined as microparticles having an outer polymer shell surrounding a core of another material, in this case, the active agent.
  • Microspheres are generally solid polymeric spheres, which can include a honeycombed structure formed by pores through the polymer which are filled with the active agent, as described below.
  • Polymers The matrix can be formed of non-biodegradable or biodegradable matrices, although biodegradable matrices are preferred, particularly for
  • Non-erodible +polymers may be used for oral administration.
  • synthetic polymers are preferred due to more reproducible synthesis and degradation, although natural polymers may be used and have equivalent or even better properties, especially some of the natural biopolymers which degrade by hydrolysis, such as polyhydroxybutyrate.
  • the polymer is selected based on the time required for in vivo stability, i.e. that time required for distribution to the site where delivery is desired, and the time desired for delivery.
  • Representative synthetic polymers are: poly(hydroxy acids) such as poly(lactic acid), poly(glycolic acid), and poly(lactic acid-co-glycolic acid), poly(lactide), poly(glycolide), poly(lactide-co-glycolide), polyanhydrides, polyorthoesters, polyamides, polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly(ethylene glycol), polyalkylene oxides such as poly(ethylene oxide), polyalkylene terepthalates such as poly(ethylene terephthalate), polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, polyvinyl halides such as poly(vinyl chloride), polyvinylpyrrolidone, polysiloxanes, poly(vinyl alcohols), poly(vinyl acetate), polystyrene, polyurethanes and co-polymers thereof, derivativized celluloses such as alkyl
  • derivatives include polymers having substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art.
  • preferred biodegradable polymers include polymers of hydroxy acids such as lactic acid and glycolic acid, and copolymers with PEG, polyanhydrides, poly(ortho)esters, polyurethanes, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), blends and copolymers thereof.
  • Examples of preferred natural polymers include proteins such as albumin and prolamines, for example, zein, and polysaccharides such as alginate, cellulose and polyhydroxyalkanoates, for example, p olyhy droxybutyrate .
  • the in vivo stability of the matrix can be adjusted during the production by using polymers such as polylactide co glycolide copolymerized with polyethylene glycol (PEG). PEG if exposed on the external surface may elongate the time these materials circulate since it is hydrophilic.
  • non-biodegradable polymers examples include ethylene vinyl acetate, poly(meth)acrylic acid, polyamides, copolymers and mixtures thereof.
  • Bioadhesive polymers of particular interest for use in targeting of mucosal surfaces, as in the gastrointestinal tract, include polyanhydrides, polyacrylic acid, poly(methyl methacrylates), poly(ethyl methacrylates), poly(butylmethacrylate), poly(isobutyl methacrylate), poly(hexylmethacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), and poly(octadecyl acrylate).
  • Solvents A solvent for the polymer is selected based on its biocompatibility as well as the solubility of the polymer and where appropriate, interaction with the agent to be delivered. For example, the ease with which the agent is dissolved in the solvent and the lack of detrimental effects of the solvent on
  • Aqueous solvents can be used to make matrices formed of water soluble polymers.
  • Organic solvents will typically be used to dissolve hydrophobic and some hydrophilic polymers.
  • Preferred organic solvents are volatile or have a relatively low boiling point or can be removed under vacuum and which are acceptable for administration to humans in trace amounts, such as methylene chloride.
  • Other solvents such as ethyl acetate, ethanol, methanol, dimethyl formamide (DMF), acetone, acetonitrile, tetrahydrofuran (THF), acetic acid, dimethyle sulfoxide (DMSO) and chloroform, and combinations thereof, also may be utilized.
  • Preferred solvents are those rated as class 3 residual solvents by the Food and Drug Administration, as published in the Federal Register vol. 62, number 85, pp. 24301-24309 (May 1997).
  • the polymer is dissolved in the solvent to form a polymer solution having a concentration of between 0.1 and 60% weight to volume (w/v), more preferably between 0.25 and 30%.
  • the polymer solution is then processed as described below to yield a polymer matrix having hydrophobic components incorporated therein.
  • Hydrophobic and Amphiphilic Compounds In general, compounds which are hydrophobic or amphiphilic (i.e., including both a hydrophilic and a hydrophobic component or region) can be used to modify penetration and/or uptake of water by the matrix, thereby modifying the rate of diffusion of drug out of the matrix, and in the case of hydrolytically unstable materials, alter degradation and thereby release of drug from the matrix.
  • Lipids which may be used include, but are not limited to, the following classes of lipids: fatty acids and derivatives, mono-, di and triglycerides, phospholipids, sphingolipids, cholesterol and steroid derivatives, terpenes and vitamins.
  • Fatty acids and derivatives thereof may include, but are not limited to, saturated and unsaturated fatty acids, odd and even number fatty acids, cis and trans isomers, and fatty acid derivatives including alcohols, esters, anhydrides, hydroxy fatty acids and prostaglandins.
  • Saturated and unsaturated fatty acids that may be used include, but are not limited to, molecules that have between 12 carbon atoms
  • saturated fatty acids that may be used include, but are not limited to, lauric, myristic, palmitic, and stearic acids.
  • unsaturated fatty acids include, but are not limited to, lauric, physeteric, myristoleic, palmitoleic, petroselinic, and oleic acids.
  • branched fatty acids that may be used include, but are not limited to, isolauric, isomyristic, isopalmitic, and isostearic acids and isoprenoids.
  • Fatty acid derivatives include 12-(((7'-diethylaminocoumarin-3 yl)carbonyl)methylamino)- octadecanoic acid; N-[12-(((7'diethylaminocoumarin-3-yl) carbonyl)methyl- amino) octadecanoyl]-2-aminopalmitic acid, N succinyl- dioleoylphosphatidylethanol amine and palmitoyl-homocysteine; and/or combinations thereof.
  • Mono, di and triglycerides or derivatives thereof that may be used include, but are not limited to, molecules that have fatty acids or mixtures of fatty acids between 6 and 24 carbon atoms, digalactosyldiglyceride, 1 ,2-dioleoyl-sn-glycerol; 1 ,2-cdipalmitoyl-sn-3 succinylglycerol; and l,3-dipalmitoyl-2-succinylglycerol.
  • Phospholipids which may be used include, but are not limited to, phosphatidic acids, phosphatidyl cholines with both saturated and unsaturated lipids, phosphatidyl ethanolamines, phosphatidylglycerols, phosphatidylserines, phosphatidylinositols, lysophosphatidyl derivatives, cardiolipin, and ⁇ -acyl-y-alkyl phospholipids.
  • phospholipids include, but are not limited to, phosphatidylcholines such as dioleoylphosphatidylcholine, dimyristoylphosphatidylcholine, dipentadecanoylphosphatidylcholine dilauroylphosphatidylcholine, dipalmitoylphosphatidylchohne (DPPC), distearoylphosphatidylcholine (DSPC), diarachidoylphosphatidylcholine (DAPC), dibehenoylphosphatidylcholine (DBPC), ditricosanoylphosphatidylcholine (DTPC), dilignoceroylphatidylcholine (DLPC); and phosphatidylethanolamines such as dioleoylphosphatidylethanolamine or 1- hexadecyl-2 ⁇ palmitoylglycerophosphoethanolamine.
  • DPPC dipalmitoylphosphatidylchohne
  • Synthetic phospholipids with asymmetric acyl chains may also be used.
  • Sphingolipids which may be used include ceramides, sphingomyelins, cerebrosides, gangliosides, sulfatides and lysosulfatides.
  • Sphinglolipids include, but are not limited to, the gangliosides GM1 and GM2.
  • Steroids which may be used include, but are not limited to, cholesterol, cholesterol sulfate, cholesterol hemisuccinate, 6-(5 -cholesterol 3 ⁇ -yloxy) hexyl-6-amino-6-deoxy-l-thio- -D-galactopyranoside, 6-(5- cholesten-3 ⁇ -tloxy)hexyl-6-amino-6-deoxyl- 1 -thio- ⁇ -D mannopyranoside and cholesteryl)4'-trimethyl 35 ammonio)butanoate.
  • Additional lipid compounds which may be used include tocopherol and derivatives, and oils and derivatized oils such as stearlyamine.
  • a variety of cationic lipids such as DOTMA, N-[l-(2,3- dioleoyloxy)propyl-N,N,N-trimethylammonium chloride; DOTAP, 1,2- dioleoyloxy-3-(trimethylammonio) propane; and DOTB, l,2-dioleoyl-3-(4'- trimethyl-ammonio) butanoyl-sn glycerol may be used.
  • the most preferred lipids are phospholipids, preferably DPPC,
  • DAPC DAPC
  • DSPC DSPC
  • DTPC DBPC
  • DLPC DLPC and most preferably DPPC, DAPC and DBPC.
  • hydrophobic compounds include amino acids such as tryptophane, tyrosine, isoleucine, leucine, and valine, aromatic compounds such as an alkyl paraben, for example, methyl paraben, and benzoic acid.
  • the content of hydrophobic compound ranges from .01-60 (w hydrophobic compound /w polymer); most preferably between 0.1-30 (w hydrophobic compound /w polymer).
  • Targeting Microparticles can be targeted specifically or non-specifically through the selection of the polymer forming the microparticle, the size of the microparticle, and/or incorporation or attachment of a ligand to the microparticles.
  • biologically active molecules or molecules affecting the charge, lipophilicity or hydrophilicity of the particle, may be attached to the surface of the microparticle.
  • molecules may be attached to the microparticles which minimize tissue adhesion, or which facilitate specific targeting of the microparticles in vivo.
  • Representative targeting molecules include antibodies, lectins, and other molecules which
  • -9- are specifically bound by receptors on the surfaces of cells of a particular type.
  • Inhibition of Uptake by the RES Uptake and removal of the microparticles can be minimized through the selection of the polymer and/or incorporation or coupling of molecules which minimize adhesion or uptake.
  • tissue adhesion by the microparticle can be minimized by covalently binding poly(alkylene glycol) moieties to the surface of the microparticle.
  • the surface poly(alkylene glycol) moieties have a high affinity for water that reduces protein adsorption onto the surface of the particle. The recognition and uptake of the microparticle by the reticulo-endothelial system (RES) is therefore reduced.
  • RES reticulo-endothelial system
  • the terminal hydroxyl group of the poly(alkylene glycol) is covalently attached to biologically active molecules, or molecules affecting the charge, lipophilicity or hydrophilicity of the particle, onto the surface of the microparticle.
  • Methods available in the art can be used to attach any of a wide range of ligands to the microparticles to enhance the delivery properties, the stability or other properties of the microparticles in vivo.
  • Active agents which can be incorporated into the matrix for delivery include therapeutic or prophylactic agents. These can be proteins or peptides, sugars, oligosaccharides, nucleic acid molecules, or other synthetic or natural agents.
  • the agents may be labeled with a detectable label such as a fluorescent label or an enzymatic or chromatographically detectable agent.
  • Preferred drugs include antibiotics, antivirals, vaccines, vasodilators, vasoconstrictors, immunomodulatory compounds, including steroids, antihistamines, and cytokines such as interleukins, colony stimulating factors, tumor necrosis factor and interferon ( ⁇ , ⁇ , ⁇ ), oligonucleotides including genes and antisense, nucleases, bronchodilators, hormones including reproductive hormones, calcitonin, insulin, erthropoietin, growth hormones, and other types of drugs such as AntibanTM.
  • antibiotics include antibiotics, antivirals, vaccines, vasodilators, vasoconstrictors, immunomodulatory compounds, including steroids, antihistamines, and cytokines such as interleukins, colony stimulating factors, tumor necrosis factor and interferon ( ⁇ , ⁇ , ⁇ ), oligonucleotides including genes and antisense, nucleases, bronchodilators, hormones including reproductive hormone
  • microparticles are produced by spray drying.
  • Techniques which can be used to make other types of matrices, as well as microparticles, include melt extrusion, compression molding, fluid bed drying, solvent extraction, hot melt encapsulation, and solvent evaporation, as discussed below.
  • a major criteria is that the hydrophobic compound must be dissolved or melted with the polymer or dispersed as a solid or a liquid in a solution of the polymer, prior to forming the matrix.
  • the hydrophobic (or amphiphilic) compound is mixed throughout the matrix, in a relatively uniform manner, not just on the surface of the finished matrix.
  • the active agent can be incorporated into the matrix as solid particles, as a liquid or liquid droplets, or by dissolving the agent in the polymer solvent.
  • a. Solvent Evaporation In this method the polymer and hydrophobic compound are dissolved in a volatile organic solvent such as methylene chloride. A pore forming agent as a solid or as a liquid may be added to the solution.
  • the active agent can be added as either a solid or in solution to the polymer solution. The mixture is sonicated or homogenized and the resulting dispersion or emulsion is added to an aqueous solution that may contain a surface active agent such as TWEENTM 20, TWEENTM 80, PEG or poly(vinyl alcohol) and homogenized to form an emulsion.
  • microparticles are stirred until most of the organic solvent evaporates, leaving microparticles.
  • polymer concentrations can be used (0.05-0.60 g/ml).
  • Microparticles with different sizes (1-1000 microns) and morphologies can be obtained by this method. This method is particularly useful for relatively stable polymers like polyesters.
  • Solvent evaporation is described by E. Mathiowitz, et al., J. Scanning Microscopy. 4, 329 (1990); L.R. Beck, et al., Fertil. SteriL. 31, 545 (1979); and S. Benita, et al., J. Pharm. Sci. 73, 1721 (1984), the teachings of which are incorporated herein.
  • Particularly hydrolytically unstable polymers such as polyanhydrides, may degrade during the fabrication process due to the
  • a hot Melt Microencapsulation In this method, the polymer and the hydrophobic compound are first melted and then mixed with the solid or liquid active agent. A pore forming agent as a solid or in solution may be added to the solution. The mixture is suspended in a non-miscible solvent (like silicon oil), and, while stirring continuously, heated to 5°C above the melting point of the polymer. Once the emulsion is stabilized, it is cooled until the polymer particles solidify. The resulting microparticles are washed by decantation with a polymer non-solvent such as petroleum ether to give a free-flowing powder.
  • a polymer non-solvent such as petroleum ether
  • Microparticles with sizes between one to 1000 microns can be obtained with this method.
  • the external surfaces of particles prepared with this technique are usually smooth and dense.
  • This procedure is used to prepare microparticles made of polyesters and polyanhydrides.
  • this method is limited to polymers with molecular weights between 1000-50,000.
  • Preferred polyanhydrides include polyanhydrides made of bis- carboxyphenoxypropane and sebacic acid with molar ratio of 20:80 (P(CPP- SA) 20:80) (Mw 20,000) and poly(fumaric-co-sebacic) (20:80) (MW 15,000) microparticles.
  • P(CPP- SA) 20:80) Mw 20,000
  • poly(fumaric-co-sebacic) (20:80) (MW 15,000) microparticles.
  • Solvent Removal This technique was primarily designed for polyanhydrides. In this method, the solid or liquid active agent is dispersed or dissolved in a solution of the selected polymer and hydrophobic compound in a volatile organic solvent like methylene chloride.
  • Microparticles can be produced by spray drying by dissolving a biocompatible polymer and hydrophobic
  • the process of "spray drying" a solution of a polymer and an active agent refers to a process wherein the solution is atomized to form a fine mist and dried by direct contact with hot carrier gases.
  • the polymer solution may be delivered through the inlet port of the spray drier, passed through a tube within the drier and then atomized through the outlet port.
  • the temperature may be varied depending on the gas or polymer used. The temperature of the inlet and outlet ports can be controlled to produce the desired products.
  • the size of the particulates of polymer solution is a function of the nozzle used to spray the polymer solution, nozzle pressure, the flow rate, the polymer used, the polymer concentration, the type of solvent and the temperature of spraying (both inlet and outlet temperature) and the molecular weight. Generally, the higher the molecular weight, the larger the particle size, assuming the concentration is the same.
  • the agent may be encapsulated as solid particles which are added to the polymer solution prior to spraying, or the agent can be dissolved in an aqueous solution which then is emulsified with the polymer solution prior to spraying, or the solid may be cosolubilized together with the polymer in an appropriate solvent prior to spraying, e.
  • Hydrogel Microparticles Microparticles made of gel-type polymers, such as polyp hosphazene or polymethylmethacrylate, are produced by dissolving the polymer in an aqueous solution, suspending if desired a pore forming agent and suspending a hydrophobic compound in the mixture, homogenizing the mixture, and extruding the material through a
  • microdroplet forming device producing microdroplets which fall into a hardening bath consisting of an oppositely charged ion or polyelectrolyte solution, that is slowly stirred.
  • the advantage of these systems is the ability to further modify the surface of the microparticles by coating them with polycationic polymers, like polylysine after fabrication. Microparticle particles are controlled by using various size extruders.
  • Additives to Facilitate Matrix Formation A variety of surfactants may be added to the continuous phase as emulsifiers if one is used during the production of the matrices. Exemplary emulsifiers or surfactants which may be used (0.1-5% by weight) include most physiologically acceptable emulsifiers.
  • Pore Forming Agents can be included in an amount of between 0.01% and 90%) weight to volume, to increase matrix porosity and pore formation during the production of the matrices.
  • the pore forming agent can be added as solid particles to the polymer solution or melted polymer or added as an aqueous solution which is emulsified with the polymer solution or is co- dissolved in the polymer solution.
  • a pore forming agent such as a volatile salt, for example, ammonium bicarbonate, ammonium acetate, ammonium chloride or ammonium benzoate or other lyophilizable salt, is first dissolved in water.
  • the solution containing the pore forming agent is then emulsified with the polymer solution to create droplets of the pore forming agent in the polymer.
  • This emulsion is then spray dried or taken through a solvent evaporation/extraction process.
  • the hardened microparticles can be frozen and lyophilized to remove any pore forming agents not removed during the microencapsulation process.
  • the matrix can be administered orally, topically, to a mucosal surface (i.e., nasal, pulmonary, vaginal, rectal), or by implantation or injection, depending on the form of the matrix and the agent to be delivered.
  • Useful pharmaceutically acceptable carriers include saline containing glycerol and TWEENTM 20 and isotonic mannitol containing TWEENTM 20.
  • the matrix can also be in the form of powders, tablets, in capsules, or in a topical formulation such as an ointment, gel or lotion.
  • Microparticles can be administered as a powder, or formulated in tablets or capsules, suspended in a solution or in a gel (ointment, lotion, hydrogel).
  • the size of the microparticles is determined by the method of administration.
  • the microparticles are manufactured with a diameter of between 0.5 and 8 microns for intravascular administration, a diameter of 1-100 microns for subcutaneous or intramuscular administration, and a diameter of between 0.5 and 5 mm for oral administration for delivery to the gastrointestinal tract or other lumens, or application to other mucosal surfaces (rectal, vaginal, oral, nasal).
  • a preferred size for administration to the pulmonary system is an aerodynamic diameter of between one and three microns, with an actual diameter of five microns or more, as described in U.S. Patent No. U.S. Patent No. 5,855,913, which issued on January 5, 1999, to Edwards, et al. Particle size analysis can be performed on a Coulter counter, by light microscopy, scanning electron microscopy, or transmittance electron microscopy.
  • microparticles are combined with a pharmaceutically acceptable carrier such as phosphate buffered saline or saline or mannitol, then an effective amount administered to a patient using an appropriate route, typically by injection into a blood vessel (i.v.), subcutaneously, intramuscularly (IM) or orally.
  • a pharmaceutically acceptable carrier such as phosphate buffered saline or saline or mannitol
  • an effective amount administered to a patient using an appropriate route typically by injection into a blood vessel (i.v.), subcutaneously, intramuscularly (IM) or orally.
  • IM intramuscularly
  • Microparticles containing an active agent may be used for delivery to the vascular system, as well as delivery to the liver and renal systems, in cardiology applications, and in treating tumor masses and tissues.
  • the microparticles can be combined with pharmaceutically acceptable bulking agents and administered as a dry powder.
  • compositions described above will be further understood with reference to the following non-limiting examples.
  • Example 1 Preparation of PLGA:DAPC Drug Delivery Particles.

Abstract

A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as 'hydrophobic compounds') is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In embodiments where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug.

Description

MATRICES FORMED OF POLYMER AND HYDROPHOBIC COMPOUNDS FOR USE IN DRUG DELIVERY
Background of the Invention This claims priority to U.S. Serial 60/083,636 filed April 30, 1998 for
"Lipid Polymer Compositions For Enhanced Drug Delivery" by Howard Bernstein, Donald E. Chickering and Julie Ann Straub.
The present invention is generally in the area of drug delivery, and is particularly directed to polymer matrices containing drug and having lipid or another hydrophobic or amphiphilic compound incorporated therein to modify the release kinetics. The matrices are preferably used for parenteral delivery. The matrices are preferably in the form of microparticles.
Controlled or sustained release compositions have been developed over the last twenty to thirty years in order to increase the amount of drug delivered by any of a variety of routes, to sustain drug release in a controlled fashion, thereby avoiding burst release which can cause elevated but transient drug levels, and to provide a means for customized release profiles. These formulations have taken many forms, including microparticles such as microspheres and microcapsules formed of drug and encapsulated or mixed with a natural or synthetic polymer, drug particles mixed with excipients such as surfactants to decrease agglomeration of the particles, and devices such as the silastic controlled release depots which release drug as a function of diffusion of water into the device where it dissolves and releases drug back out the same entry. It is difficult to achieve sustained release when the delivery means consists solely of drug or drug and excipient since the drug tends to solubilize relatively quickly. In contrast, non-biodegradable devices such as the silastic devices must be removed after usage.
Microparticles have been formed using a wide range of techniques, including spray drying, hot melt, solvent evaporation, solvent extraction, and mechanical means such as milling and rolling. The microparticles are typically formed of a biocompatible material having desirable release properties as well as being processible by techniques compatible with the drug to be delivered. Many drugs are labile and cannot be encapsulated
-1- using harsh organic solvents or heat. Most of these methods result in formation of a structure where drug is released by diffusion of drug out of the microparticle and/or degradation of the microparticle. In some cases it is desirable to further limit or control diffusion. It is an object of this invention to provide microparticles which have incorporated therein means for limiting diffusion of drug out of the microparticle.
It is a further object of this invention to provide biodegradable microparticles which have incorporated therein means for modifying the degradation kinetics of the microparticles.
It is still another object of the present invention to provide microparticles particularly well suited for parenteral drug delivery.
Summary of the Invention A lipid or other hydrophobic or amphiphilic compound (collectively referred to herein as "hydrophobic compounds") is integrated into a polymeric matrix for drug delivery to alter drug release kinetics. In one embodiment where the drug is water soluble, the drug is released over longer periods of time as compared to release from the polymeric matrix not incorporating the hydrophobic compound into the polymeric material. In a further embodiment where the drug has low water solubility, the drug is released over shorter periods of time as compared to release from matrix not incorporating the hydrophobic compound into the polymeric material. In contrast to methods in which a surfactant or lipid is added as an excipient, the hydrophobic compound is actually integrated into the polymeric matrix, thereby modifying the diffusion of water into the microparticle and diffusion of solubilized drug out of the matrix. The integrated hydrophobic compound also prolongs degradation of hydrolytically unstable polymers forming the matrix, further delaying release of encapsulated drug. The hydrophobic compound must be incorporated into the matrix and the matrix shaped using a technique which results in integration of the hydrophobic compound into the polymeric matrix, rather than at the outer surface of the matrix. In the preferred embodiment, the matrix is formed into
-2- microparticles. The microparticles are manufactured with a diameter suitable for the intended route of administration. For example, with a diameter of between 0.5 and 8 microns for intravascular administration, a diameter of 1-100 microns for subcutaneous or intramuscular administration, and a diameter of between 0.5 and 5 mm for oral administration for delivery to the gastrointestinal tract or other lumens. A preferred size for administration to the pulmonary system is an aerodynamic diameter of between one and three microns, with an actual diameter of five microns or more. In the preferred embodiment, the polymers are synthetic biodegradable polymers. Most preferred polymers are biocompatible hydrolytically unstable polymers like polyhydroxy acids such as polylactic acid-co-glycolic acid, polylactide, polyglycolide or polyactide co-glycolide, which may be conjugated to polyethylene glycol or other materials inhibiting uptake by the reticuloendothelial system (RES). The hydrophobic compounds can be hydrophobic compounds such as some lipids, or amphiphilic compounds (which include both a hydrophilic and hydrophobic component or region). The most preferred amphiphilic compounds are phospholipids, most preferably dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), diarachidoylphosphatidylcholine (DAPC), dibehenoylphosphatidylcholine (DBPC), ditricosanoylphosphatidylcholine (DTPC), and dilignoceroylphatidylcholine (DLPC), incorporated at a ratio of between 0.01-60 (w/w polymer), most preferably between 0.1-30 (w lipid/w polymer). Surface properties of the matrix can also be modified. For example, adhesion can be enhanced through the selection of bioadhesive polymers, which may be particularly desirable when the matrix is in the form of microparticles administered to a mucosal surface such as in intranasal, pulmonary, vaginal, or oral administration. Targeting can also be achieved by selection of the polymer or incorporation within or coupling to the polymer to ligands which specifically bind to particular tissue types or cell surface molecules. Additionally, ligands may be attached to the
-3- microparticles which effect the charge, lipophilicity or hydrophilicity of the particle.
Detailed Description of the Invention Methods are provided for the synthesis of polymeric delivery systems consisting of polymer matrices that contain an active agent, such as a therapeutic or prophylactic agent (referred to herein generally as "drug"). The matrices are useful in a variety of drug delivery applications, and can be administered by injection, aerosol or powder, orally, or topically. A preferred route of administration is via the pulmonary system or by injection. The incorporation of a hydrophobic and/or amphiphilic compound (referred to generally herein as "hydrophobic compound") into the polymeric matrix modifies the period of drug release as compared with the same polymeric matrix without the incorporated hydrophobic compound, by altering the rate of diffusion of water into and out of the matrix and/or the rate of degradation of the matrix.
Reagents for Making Matrix Having Hydrophobic Compound Incorporated Therein
As used herein, the term "matrix" refers to a structure including one or more materials in which a drug is dispersed, entrapped, or encapsulated. The material can be crystalline, semi-crystalline, or amorphous. The matrix can be in the form of pellets, tablets, slabs, rods, disks, hemispheres, or microparticles, or be of an undefined shape. As used herein, the term microparticle includes microspheres and microcapsules, as well as microparticles, unless otherwise specified. Microparticles may or may not be spherical in shape. Microcapsules are defined as microparticles having an outer polymer shell surrounding a core of another material, in this case, the active agent. Microspheres are generally solid polymeric spheres, which can include a honeycombed structure formed by pores through the polymer which are filled with the active agent, as described below. Polymers The matrix can be formed of non-biodegradable or biodegradable matrices, although biodegradable matrices are preferred, particularly for
-4- parenteral administration. Non-erodible +polymers may be used for oral administration. In general, synthetic polymers are preferred due to more reproducible synthesis and degradation, although natural polymers may be used and have equivalent or even better properties, especially some of the natural biopolymers which degrade by hydrolysis, such as polyhydroxybutyrate. The polymer is selected based on the time required for in vivo stability, i.e. that time required for distribution to the site where delivery is desired, and the time desired for delivery.
Representative synthetic polymers are: poly(hydroxy acids) such as poly(lactic acid), poly(glycolic acid), and poly(lactic acid-co-glycolic acid), poly(lactide), poly(glycolide), poly(lactide-co-glycolide), polyanhydrides, polyorthoesters, polyamides, polycarbonates, polyalkylenes such as polyethylene and polypropylene, polyalkylene glycols such as poly(ethylene glycol), polyalkylene oxides such as poly(ethylene oxide), polyalkylene terepthalates such as poly(ethylene terephthalate), polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, polyvinyl halides such as poly(vinyl chloride), polyvinylpyrrolidone, polysiloxanes, poly(vinyl alcohols), poly(vinyl acetate), polystyrene, polyurethanes and co-polymers thereof, derivativized celluloses such as alkyl cellulose, hydroxyalkyl celluloses, cellulose ethers, cellulose esters, nitro celluloses, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxy-propyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxylethyl cellulose, cellulose triacetate, and cellulose sulphate sodium salt (jointly referred to herein as "synthetic celluloses"), polymers of acrylic acid, methacrylic acid or copolymers or derivatives thereof including esters, poly(methyl methacrylate), poly(ethyl methacrylate), poly(butylmethacrylate), poly(isobutyl methacrylate), poly(hexylmethacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), and poly(octadecyl acrylate) (jointly referred to herein as "polyacrylic acids"), poly(butyric acid), poly(valeric acid), and poly(lactide-co-caprolactone), copolymers and
-5- blends thereof. As used herein, "derivatives" include polymers having substitutions, additions of chemical groups, for example, alkyl, alkylene, hydroxylations, oxidations, and other modifications routinely made by those skilled in the art. Examples of preferred biodegradable polymers include polymers of hydroxy acids such as lactic acid and glycolic acid, and copolymers with PEG, polyanhydrides, poly(ortho)esters, polyurethanes, poly(butyric acid), poly(valeric acid), poly(lactide-co-caprolactone), blends and copolymers thereof. Examples of preferred natural polymers include proteins such as albumin and prolamines, for example, zein, and polysaccharides such as alginate, cellulose and polyhydroxyalkanoates, for example, p olyhy droxybutyrate . The in vivo stability of the matrix can be adjusted during the production by using polymers such as polylactide co glycolide copolymerized with polyethylene glycol (PEG). PEG if exposed on the external surface may elongate the time these materials circulate since it is hydrophilic.
Examples of preferred non-biodegradable polymers include ethylene vinyl acetate, poly(meth)acrylic acid, polyamides, copolymers and mixtures thereof.
Bioadhesive polymers of particular interest for use in targeting of mucosal surfaces, as in the gastrointestinal tract, include polyanhydrides, polyacrylic acid, poly(methyl methacrylates), poly(ethyl methacrylates), poly(butylmethacrylate), poly(isobutyl methacrylate), poly(hexylmethacrylate), poly(isodecyl methacrylate), poly(lauryl methacrylate), poly(phenyl methacrylate), poly(methyl acrylate), poly(isopropyl acrylate), poly(isobutyl acrylate), and poly(octadecyl acrylate).
Solvents A solvent for the polymer is selected based on its biocompatibility as well as the solubility of the polymer and where appropriate, interaction with the agent to be delivered. For example, the ease with which the agent is dissolved in the solvent and the lack of detrimental effects of the solvent on
-6- the agent to be delivered are factors to consider in selecting the solvent. Aqueous solvents can be used to make matrices formed of water soluble polymers. Organic solvents will typically be used to dissolve hydrophobic and some hydrophilic polymers. Preferred organic solvents are volatile or have a relatively low boiling point or can be removed under vacuum and which are acceptable for administration to humans in trace amounts, such as methylene chloride. Other solvents, such as ethyl acetate, ethanol, methanol, dimethyl formamide (DMF), acetone, acetonitrile, tetrahydrofuran (THF), acetic acid, dimethyle sulfoxide (DMSO) and chloroform, and combinations thereof, also may be utilized. Preferred solvents are those rated as class 3 residual solvents by the Food and Drug Administration, as published in the Federal Register vol. 62, number 85, pp. 24301-24309 (May 1997).
In general, the polymer is dissolved in the solvent to form a polymer solution having a concentration of between 0.1 and 60% weight to volume (w/v), more preferably between 0.25 and 30%. The polymer solution is then processed as described below to yield a polymer matrix having hydrophobic components incorporated therein.
Hydrophobic and Amphiphilic Compounds In general, compounds which are hydrophobic or amphiphilic (i.e., including both a hydrophilic and a hydrophobic component or region) can be used to modify penetration and/or uptake of water by the matrix, thereby modifying the rate of diffusion of drug out of the matrix, and in the case of hydrolytically unstable materials, alter degradation and thereby release of drug from the matrix. Lipids which may be used include, but are not limited to, the following classes of lipids: fatty acids and derivatives, mono-, di and triglycerides, phospholipids, sphingolipids, cholesterol and steroid derivatives, terpenes and vitamins. Fatty acids and derivatives thereof may include, but are not limited to, saturated and unsaturated fatty acids, odd and even number fatty acids, cis and trans isomers, and fatty acid derivatives including alcohols, esters, anhydrides, hydroxy fatty acids and prostaglandins. Saturated and unsaturated fatty acids that may be used include, but are not limited to, molecules that have between 12 carbon atoms
-7- and 22 carbon atoms in either linear or branched form. Examples of saturated fatty acids that may be used include, but are not limited to, lauric, myristic, palmitic, and stearic acids. Examples of unsaturated fatty acids that may be used include, but are not limited to, lauric, physeteric, myristoleic, palmitoleic, petroselinic, and oleic acids. Examples of branched fatty acids that may be used include, but are not limited to, isolauric, isomyristic, isopalmitic, and isostearic acids and isoprenoids. Fatty acid derivatives include 12-(((7'-diethylaminocoumarin-3 yl)carbonyl)methylamino)- octadecanoic acid; N-[12-(((7'diethylaminocoumarin-3-yl) carbonyl)methyl- amino) octadecanoyl]-2-aminopalmitic acid, N succinyl- dioleoylphosphatidylethanol amine and palmitoyl-homocysteine; and/or combinations thereof. Mono, di and triglycerides or derivatives thereof that may be used include, but are not limited to, molecules that have fatty acids or mixtures of fatty acids between 6 and 24 carbon atoms, digalactosyldiglyceride, 1 ,2-dioleoyl-sn-glycerol; 1 ,2-cdipalmitoyl-sn-3 succinylglycerol; and l,3-dipalmitoyl-2-succinylglycerol.
Phospholipids which may be used include, but are not limited to, phosphatidic acids, phosphatidyl cholines with both saturated and unsaturated lipids, phosphatidyl ethanolamines, phosphatidylglycerols, phosphatidylserines, phosphatidylinositols, lysophosphatidyl derivatives, cardiolipin, and β-acyl-y-alkyl phospholipids. Examples of phospholipids include, but are not limited to, phosphatidylcholines such as dioleoylphosphatidylcholine, dimyristoylphosphatidylcholine, dipentadecanoylphosphatidylcholine dilauroylphosphatidylcholine, dipalmitoylphosphatidylchohne (DPPC), distearoylphosphatidylcholine (DSPC), diarachidoylphosphatidylcholine (DAPC), dibehenoylphosphatidylcholine (DBPC), ditricosanoylphosphatidylcholine (DTPC), dilignoceroylphatidylcholine (DLPC); and phosphatidylethanolamines such as dioleoylphosphatidylethanolamine or 1- hexadecyl-2~palmitoylglycerophosphoethanolamine. Synthetic phospholipids with asymmetric acyl chains (e.g., with one acyl chain of 6 carbons and another acyl chain of 12 carbons) may also be used. Sphingolipids which may be used include ceramides, sphingomyelins, cerebrosides, gangliosides, sulfatides and lysosulfatides. Examples of Sphinglolipids include, but are not limited to, the gangliosides GM1 and GM2.
Steroids which may be used include, but are not limited to, cholesterol, cholesterol sulfate, cholesterol hemisuccinate, 6-(5 -cholesterol 3 β-yloxy) hexyl-6-amino-6-deoxy-l-thio- -D-galactopyranoside, 6-(5- cholesten-3 β-tloxy)hexyl-6-amino-6-deoxyl- 1 -thio-α-D mannopyranoside and cholesteryl)4'-trimethyl 35 ammonio)butanoate.
Additional lipid compounds which may be used include tocopherol and derivatives, and oils and derivatized oils such as stearlyamine. A variety of cationic lipids such as DOTMA, N-[l-(2,3- dioleoyloxy)propyl-N,N,N-trimethylammonium chloride; DOTAP, 1,2- dioleoyloxy-3-(trimethylammonio) propane; and DOTB, l,2-dioleoyl-3-(4'- trimethyl-ammonio) butanoyl-sn glycerol may be used. The most preferred lipids are phospholipids, preferably DPPC,
DAPC, DSPC, DTPC, DBPC, DLPC and most preferably DPPC, DAPC and DBPC.
Other preferred hydrophobic compounds include amino acids such as tryptophane, tyrosine, isoleucine, leucine, and valine, aromatic compounds such as an alkyl paraben, for example, methyl paraben, and benzoic acid. The content of hydrophobic compound ranges from .01-60 (w hydrophobic compound /w polymer); most preferably between 0.1-30 (w hydrophobic compound /w polymer). Targeting Microparticles can be targeted specifically or non-specifically through the selection of the polymer forming the microparticle, the size of the microparticle, and/or incorporation or attachment of a ligand to the microparticles. For example, biologically active molecules, or molecules affecting the charge, lipophilicity or hydrophilicity of the particle, may be attached to the surface of the microparticle. Additionally, molecules may be attached to the microparticles which minimize tissue adhesion, or which facilitate specific targeting of the microparticles in vivo. Representative targeting molecules include antibodies, lectins, and other molecules which
-9- are specifically bound by receptors on the surfaces of cells of a particular type.
Inhibition of Uptake by the RES Uptake and removal of the microparticles can be minimized through the selection of the polymer and/or incorporation or coupling of molecules which minimize adhesion or uptake. For example, tissue adhesion by the microparticle can be minimized by covalently binding poly(alkylene glycol) moieties to the surface of the microparticle. The surface poly(alkylene glycol) moieties have a high affinity for water that reduces protein adsorption onto the surface of the particle. The recognition and uptake of the microparticle by the reticulo-endothelial system (RES) is therefore reduced.
In one method, the terminal hydroxyl group of the poly(alkylene glycol) is covalently attached to biologically active molecules, or molecules affecting the charge, lipophilicity or hydrophilicity of the particle, onto the surface of the microparticle. Methods available in the art can be used to attach any of a wide range of ligands to the microparticles to enhance the delivery properties, the stability or other properties of the microparticles in vivo.
Active Agents Active agents which can be incorporated into the matrix for delivery include therapeutic or prophylactic agents. These can be proteins or peptides, sugars, oligosaccharides, nucleic acid molecules, or other synthetic or natural agents. The agents may be labeled with a detectable label such as a fluorescent label or an enzymatic or chromatographically detectable agent. Preferred drugs include antibiotics, antivirals, vaccines, vasodilators, vasoconstrictors, immunomodulatory compounds, including steroids, antihistamines, and cytokines such as interleukins, colony stimulating factors, tumor necrosis factor and interferon (α, β, γ), oligonucleotides including genes and antisense, nucleases, bronchodilators, hormones including reproductive hormones, calcitonin, insulin, erthropoietin, growth hormones, and other types of drugs such as Antiban™.
-10- Methods for Manufacture of Matrix
In the most preferred embodiment, microparticles are produced by spray drying. Techniques which can be used to make other types of matrices, as well as microparticles, include melt extrusion, compression molding, fluid bed drying, solvent extraction, hot melt encapsulation, and solvent evaporation, as discussed below. A major criteria is that the hydrophobic compound must be dissolved or melted with the polymer or dispersed as a solid or a liquid in a solution of the polymer, prior to forming the matrix. As a result, the hydrophobic (or amphiphilic) compound is mixed throughout the matrix, in a relatively uniform manner, not just on the surface of the finished matrix. The active agent can be incorporated into the matrix as solid particles, as a liquid or liquid droplets, or by dissolving the agent in the polymer solvent. a. Solvent Evaporation. In this method the polymer and hydrophobic compound are dissolved in a volatile organic solvent such as methylene chloride. A pore forming agent as a solid or as a liquid may be added to the solution. The active agent can be added as either a solid or in solution to the polymer solution. The mixture is sonicated or homogenized and the resulting dispersion or emulsion is added to an aqueous solution that may contain a surface active agent such as TWEEN™ 20, TWEEN™ 80, PEG or poly(vinyl alcohol) and homogenized to form an emulsion. The resulting emulsion is stirred until most of the organic solvent evaporates, leaving microparticles. Several different polymer concentrations can be used (0.05-0.60 g/ml). Microparticles with different sizes (1-1000 microns) and morphologies can be obtained by this method. This method is particularly useful for relatively stable polymers like polyesters.
Solvent evaporation is described by E. Mathiowitz, et al., J. Scanning Microscopy. 4, 329 (1990); L.R. Beck, et al., Fertil. SteriL. 31, 545 (1979); and S. Benita, et al., J. Pharm. Sci. 73, 1721 (1984), the teachings of which are incorporated herein.
Particularly hydrolytically unstable polymers, such as polyanhydrides, may degrade during the fabrication process due to the
-11- presence of water. For these polymers, the following two methods, which are performed in completely organic solvents, are more useful. b. Hot Melt Microencapsulation. In this method, the polymer and the hydrophobic compound are first melted and then mixed with the solid or liquid active agent. A pore forming agent as a solid or in solution may be added to the solution. The mixture is suspended in a non-miscible solvent (like silicon oil), and, while stirring continuously, heated to 5°C above the melting point of the polymer. Once the emulsion is stabilized, it is cooled until the polymer particles solidify. The resulting microparticles are washed by decantation with a polymer non-solvent such as petroleum ether to give a free-flowing powder. Microparticles with sizes between one to 1000 microns can be obtained with this method. The external surfaces of particles prepared with this technique are usually smooth and dense. This procedure is used to prepare microparticles made of polyesters and polyanhydrides. However, this method is limited to polymers with molecular weights between 1000-50,000.
Hot-melt microencapsulation is described by E. Mathiowitz, et al., Reactive Polymers. 6, 275 (1987), the teachings of which are incorporated herein. Preferred polyanhydrides include polyanhydrides made of bis- carboxyphenoxypropane and sebacic acid with molar ratio of 20:80 (P(CPP- SA) 20:80) (Mw 20,000) and poly(fumaric-co-sebacic) (20:80) (MW 15,000) microparticles. c. Solvent Removal. This technique was primarily designed for polyanhydrides. In this method, the solid or liquid active agent is dispersed or dissolved in a solution of the selected polymer and hydrophobic compound in a volatile organic solvent like methylene chloride. This mixture is suspended by stirring in an organic oil (such as silicon oil) to form an emulsion. Unlike solvent evaporation, this method can be used to make microparticles from polymers with high melting points and different molecular weights. The external morphology of particles produced with this technique is highly dependent on the type of polymer used. d. Spray Drying of Microparticles. Microparticles can be produced by spray drying by dissolving a biocompatible polymer and hydrophobic
-12- compound in an appropriate solvent, dispersing a solid or liquid active agent into the polymer solution, and then spray drying the polymer solution, to form microparticles. As defined herein, the process of "spray drying" a solution of a polymer and an active agent refers to a process wherein the solution is atomized to form a fine mist and dried by direct contact with hot carrier gases. Using spray drying apparatus available in the art, the polymer solution may be delivered through the inlet port of the spray drier, passed through a tube within the drier and then atomized through the outlet port. The temperature may be varied depending on the gas or polymer used. The temperature of the inlet and outlet ports can be controlled to produce the desired products.
The size of the particulates of polymer solution is a function of the nozzle used to spray the polymer solution, nozzle pressure, the flow rate, the polymer used, the polymer concentration, the type of solvent and the temperature of spraying (both inlet and outlet temperature) and the molecular weight. Generally, the higher the molecular weight, the larger the particle size, assuming the concentration is the same. Typical process parameters for spray drying are as follows: polymer concentration = 0.005-0.20 g/ml, inlet temperature = 20-1000°C, outlet temperature = 10-300°C, polymer flow rate = 5-2000 ml/min., and nozzle diameter = 0.2-4 mm ID. Microparticles ranging in diameter between one and ten microns can be obtained with a morphology which depends on the selection of polymer, concentration, molecular weight and spray flow.
If the active agent is a solid, the agent may be encapsulated as solid particles which are added to the polymer solution prior to spraying, or the agent can be dissolved in an aqueous solution which then is emulsified with the polymer solution prior to spraying, or the solid may be cosolubilized together with the polymer in an appropriate solvent prior to spraying, e. Hydrogel Microparticles. Microparticles made of gel-type polymers, such as polyp hosphazene or polymethylmethacrylate, are produced by dissolving the polymer in an aqueous solution, suspending if desired a pore forming agent and suspending a hydrophobic compound in the mixture, homogenizing the mixture, and extruding the material through a
-13- microdroplet forming device, producing microdroplets which fall into a hardening bath consisting of an oppositely charged ion or polyelectrolyte solution, that is slowly stirred. The advantage of these systems is the ability to further modify the surface of the microparticles by coating them with polycationic polymers, like polylysine after fabrication. Microparticle particles are controlled by using various size extruders. Additives to Facilitate Matrix Formation A variety of surfactants may be added to the continuous phase as emulsifiers if one is used during the production of the matrices. Exemplary emulsifiers or surfactants which may be used (0.1-5% by weight) include most physiologically acceptable emulsifiers. Examples include natural and synthetic forms of bile salts or bile acids, both conjugated with amino acids and unconjugated such as taurodeoxycholate, and cholic acid. In contrast to the methods described herein, these surfactant will coat the microparticle and will facilitate dispersion for administration. Pore Forming Agents Pore forming agents can be included in an amount of between 0.01% and 90%) weight to volume, to increase matrix porosity and pore formation during the production of the matrices. The pore forming agent can be added as solid particles to the polymer solution or melted polymer or added as an aqueous solution which is emulsified with the polymer solution or is co- dissolved in the polymer solution. For example, in spray drying, solvent evaporation, solvent removal, hot melt encapsulation, a pore forming agent such as a volatile salt, for example, ammonium bicarbonate, ammonium acetate, ammonium chloride or ammonium benzoate or other lyophilizable salt, is first dissolved in water. The solution containing the pore forming agent is then emulsified with the polymer solution to create droplets of the pore forming agent in the polymer. This emulsion is then spray dried or taken through a solvent evaporation/extraction process. After the polymer is precipitated, the hardened microparticles can be frozen and lyophilized to remove any pore forming agents not removed during the microencapsulation process.
-14- Methods for Administration of Drug Delivery Systems
The matrix can be administered orally, topically, to a mucosal surface (i.e., nasal, pulmonary, vaginal, rectal), or by implantation or injection, depending on the form of the matrix and the agent to be delivered. Useful pharmaceutically acceptable carriers include saline containing glycerol and TWEEN™ 20 and isotonic mannitol containing TWEEN™ 20. The matrix can also be in the form of powders, tablets, in capsules, or in a topical formulation such as an ointment, gel or lotion.
Microparticles can be administered as a powder, or formulated in tablets or capsules, suspended in a solution or in a gel (ointment, lotion, hydrogel). As noted above, the size of the microparticles is determined by the method of administration. In the preferred embodiment, the microparticles are manufactured with a diameter of between 0.5 and 8 microns for intravascular administration, a diameter of 1-100 microns for subcutaneous or intramuscular administration, and a diameter of between 0.5 and 5 mm for oral administration for delivery to the gastrointestinal tract or other lumens, or application to other mucosal surfaces (rectal, vaginal, oral, nasal). A preferred size for administration to the pulmonary system is an aerodynamic diameter of between one and three microns, with an actual diameter of five microns or more, as described in U.S. Patent No. U.S. Patent No. 5,855,913, which issued on January 5, 1999, to Edwards, et al. Particle size analysis can be performed on a Coulter counter, by light microscopy, scanning electron microscopy, or transmittance electron microscopy.
In the preferred embodiment, microparticles are combined with a pharmaceutically acceptable carrier such as phosphate buffered saline or saline or mannitol, then an effective amount administered to a patient using an appropriate route, typically by injection into a blood vessel (i.v.), subcutaneously, intramuscularly (IM) or orally. Microparticles containing an active agent may be used for delivery to the vascular system, as well as delivery to the liver and renal systems, in cardiology applications, and in treating tumor masses and tissues. For administration to the pulmonary system, the microparticles can be combined with pharmaceutically acceptable bulking agents and administered as a dry powder.
-15- Pharmaceutically acceptable bulking agents include sugars such as mannitol, sucrose, lactose, fructose and trehalose. The microparticles also can be linked with ligands that minimize tissue adhesion or that target the microparticles to specific regions of the body in vivo as described above. The methods and compositions described above will be further understood with reference to the following non-limiting examples. Example 1: Preparation of PLGA:DAPC Drug Delivery Particles.
30 grams of PLGA (50:50) (IV 0.4 dL/g Boehringer Ingelheim), 1.8 g of diarachidoylphosphatidylcholine (Avanti, Birmingham, AL) and 495 mg of Azure A (Sigma Chemicals, St. Louis, MO) were dissolved in 1000 ml of methylene chloride. The solution was pumped at a flowrate of 20 mL/min and spray dried using a Bucchi Lab spray dryer. The inlet air temperature was 40°C. The dried microparticle powder was collected and stored at -20°C until analysis. Size of the microparticles was performed using a Coulter multisizer II. The microparticles have a volume average mean diameter of 5.982 microns.
18 grams of PLGA (50:50) (IV 0.4 dL/g Boehringer Ingelheim) and 1.08 g of diarachidoylphosphatidylcholine (Avanti, Birmingham, AL) were dissolved in 600 mL of methylene chloride. 38.9 mg of Eosin Y (Sigma Chemicals) was dissolved in 38.9 mL of a 0.18 g/ml ammonium bicarbonate solution. The eosin solution was emulsified with the polymer solution using a Silverson homogenizer at 7000 rpm for 8 minutes. The solution was pumped at a flowrate of 20 mL/min and spray dried using a Bucchi Lab spray dryer. The inlet air temperature was 40°C. The dried microparticle powder was collected and stored at -20°C until analysis. Size analysis of the microparticles was performed using a Coulter multisizer II. The microparticles have a volume average mean diameter of 6.119 microns.
-16-

Claims

We claim:
1. A polymeric matrix for delivery of a therapeutic or prophylactic agent, wherein the matrix is formed of a biocompatible polymer having incorporated therein an therapeutic or prophylactic agent and an effective amount of a hydrophobic or amphiphilic compound to modify the diffusion of water into the matrix and the release of the therapeutic or prophylactic agent from the matrix.
2. The matrix of claim 1 wherein the matrix is in the form of microparticles.
3. The matrix of claim 1 wherein the hydrophobic or amphiphilic compound is incorporated into the matrix at a ratio of between 0.01 and 60 by weight of hydrophobic compound to weight of polymer.
4. The matrix of claim 3 wherein the hydrophobic or amphiphilic compound is a lipid incorporated into the matrix at a ratio of between 0.01 and 30 (weight lipid/w eight matrix material).
5. The matrix of claim 4 wherein the lipid is selected from the group consisting of fatty acids and derivatives, mono-, di and triglycerides, phospholipids, sphingolipids, cholesterol and steroid derivatives, oils, vitamins and terpenes.
6. The matrix of claim 5 wherein the lipid is a phospholipid selected from the group consisting of phosphatidic acids, phosphatidyl cholines with both saturated and unsaturated lipids, phosphatidyl ethanolamines, phosphatidylglycerols, phosphatidylserines, phosphatidylinositols, lysophosphatidyl derivatives, cardiolipin, and ╬▓-acyl-y-alkyl phospholipids.
7. The matrix of claim 6 wherein the phospholipid is selected from the group consisting of dioleoylphosphatidylcholine, dimyristoylphosphatidylcholine, dipentadecanoylphosphatidylcholine dilauroylphosphatidylcholine, dipalmitoylphosphatidylchohne, distearoylphosphatidylcholine, diarachidoylphosphatidylcholine, dibehenoylphosphatidylcholine, ditricosanoylphosphatidylcholine, dilignoceroylphatidylcholine; and phosphatidylethanolamines.
-17-
8. The matrix of claim 1 wherein the agent is a therapeutic agent.
9. The matrix of claim 1 wherein the matrix is formed of a bioadhesive polymer.
10. The matrix of claim 1 wherein the matrix is formed of a polymer selected from the group consisting of poly(hydroxy acids), polyanhydrides, polyorthoesters, polyamides, polycarbonates, polyalkylenes, polyalkylene glycols, polyalkylene oxides, polyalkylene terepthalates, polyvinyl alcohols, polyvinyl ethers, polyvinyl esters, polyvinyl halides, polyvinylpyrrolidone, polysiloxanes, poly(vinyl alcohols), poly(vinyl acetate), polystyrene, polyurethanes and co-polymers thereof, synthetic celluloses, polyacrylic acids, poly(butyric acid), poly(valeric acid), and poly(lactide-co-caprolactone), ethylene vinyl acetate, copolymers and blends thereof.
11. The matrix of claim 1 wherein the matrix is formed of a protein or polysaccharide.
12. The matrix of claim 1 wherein the matrix is in a pharmaceutically acceptable carrier for topical application or application to a mucosal surface.
13. The matrix of claim 1 wherein the matrix is in a pharmaceutically acceptable carrier for injection.
14. The matrix of claim 1 wherein the matrix is formulated for administration rectally or vaginally.
15. The matrix of claim 2 wherein the microparticles are formulated for pulmonary administration.
16. A method for making the matrix of claims 1-15, wherein the hydrophobic compound is distributed into the polymer in an amount effective to modify the rate of release of the therapeutic or prophylactic agent..
17. The method of claim 16 wherein the matrix is formed by melting the polymer with the hydrophobic or amphiphilic compound.
18. The method of claim 16 wherein the matrix is formed by dissolving the polymer with the hydrophobic or amphiphilic compound together.
-18-
19. The method of claim 16 wherein the solvent is removed by evaporation or extraction.
20. A method for administering a therapeutic or prophylactic agent comprising administering the matrix of any of claims 1-15 to a patient.
-19-
PCT/US1999/005187 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery WO1999056731A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AU29954/99A AU746696B2 (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery
NZ508470A NZ508470A (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in sustained release drug delivery
BR9910340-0A BR9910340A (en) 1998-04-30 1999-03-08 Polymeric matrix for the distribution of a therapeutic or prophylactic agent, method for its manufacture and administration
MXPA00010566A MXPA00010566A (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery.
CA002329875A CA2329875C (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery
PL343691A PL196159B1 (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery
IL13925299A IL139252A0 (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery
DE69930240T DE69930240T2 (en) 1998-04-30 1999-03-08 MATRIZES MADE OF POLYMER AND HYDROPHOBIC COMPOUNDS FOR USE IN THE DISPOSAL OF MEDICINAL PRODUCTS
JP2000546758A JP5153032B2 (en) 1998-04-30 1999-03-08 Matrix formed of polymers and hydrophobic compounds for use in drug delivery
EP99911269A EP1073422B1 (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery
IL139252A IL139252A (en) 1998-04-30 2000-10-24 Matrices formed of polymer and hydrophobic compounds for use in drug delivery
NO20005452A NO324895B1 (en) 1998-04-30 2000-10-27 Porous polymer matrix formed from polymer and hydrophobic compounds for use in drug delivery, processes for their preparation.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US8363698P 1998-04-30 1998-04-30
US60/083,636 1998-04-30
US09/255,179 1999-02-22
US09/255,179 US6423345B2 (en) 1998-04-30 1999-02-22 Matrices formed of polymer and hydrophobic compounds for use in drug delivery

Publications (1)

Publication Number Publication Date
WO1999056731A1 true WO1999056731A1 (en) 1999-11-11

Family

ID=26769533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/005187 WO1999056731A1 (en) 1998-04-30 1999-03-08 Matrices formed of polymer and hydrophobic compounds for use in drug delivery

Country Status (19)

Country Link
US (5) US6423345B2 (en)
EP (1) EP1073422B1 (en)
JP (1) JP5153032B2 (en)
KR (1) KR100703051B1 (en)
CN (1) CN1201729C (en)
AT (1) ATE319433T1 (en)
AU (1) AU746696B2 (en)
BR (1) BR9910340A (en)
CA (1) CA2329875C (en)
DE (1) DE69930240T2 (en)
DK (1) DK1073422T3 (en)
ES (1) ES2259472T3 (en)
IL (2) IL139252A0 (en)
MX (1) MXPA00010566A (en)
NO (1) NO324895B1 (en)
NZ (1) NZ508470A (en)
PL (1) PL196159B1 (en)
PT (1) PT1073422E (en)
WO (1) WO1999056731A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000072827A2 (en) * 1999-05-27 2000-12-07 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
WO2001095877A2 (en) * 2000-06-15 2001-12-20 Acusphere, Inc. Porous celecoxib matrices and methods of manufacture thereof
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
EP1246608A1 (en) * 2000-01-05 2002-10-09 Imarx Therapeutics, Inc. Pharmaceutical formulations for the delivery of drugs having low aqueous solubility
WO2005032523A1 (en) * 2003-09-30 2005-04-14 Acusphere, Inc. Injectable, oral, or topical sustained release pharmaceutical formulations
EP1642572A1 (en) * 1999-05-27 2006-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
USRE40493E1 (en) 1999-05-27 2008-09-09 Acusphere, Inc. Porous paclitaxel matrices and methods of manufacture thereof
JP2010248271A (en) * 2002-03-13 2010-11-04 Novartis Ag Pharmaceutical microparticles
US7919119B2 (en) 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
WO2011089595A2 (en) 2010-01-19 2011-07-28 Polypid Ltd. Sustained-release nucleic acid matrix compositions
US8460707B2 (en) 2004-08-05 2013-06-11 Ferring B.V. Stabilised prostaglandin composition
US8642082B2 (en) * 2001-12-11 2014-02-04 Cosmo Technologies Limited Pharmaceutical compositions for the oral administration of heparin or derivatives thereof
US8852623B2 (en) 2003-03-31 2014-10-07 Titan Pharmaceuticals, Inc. Implantable polymeric device for sustained release of dopamine agonist
US8877242B2 (en) 2008-07-14 2014-11-04 Polypid Ltd. Sustained-release drug carrier composition
US8956602B2 (en) 2006-12-05 2015-02-17 Landec, Inc. Delivery of drugs
US8974813B2 (en) 2006-07-05 2015-03-10 Ferring B.V. Hydrophilic polyurethane compositions
US9308220B2 (en) 2001-12-11 2016-04-12 Cosmo Technologies Limited Pharmaceutical compositions for the oral administration of heparin or derivatives thereof
US9987364B2 (en) 2002-09-27 2018-06-05 Ferring B.V. Water-swellable polymers

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743777B1 (en) * 1992-03-19 2004-06-01 Eli Lilly And Company Cyclic peptide antifungal agents and process for preparation thereof
US7208010B2 (en) 2000-10-16 2007-04-24 Conor Medsystems, Inc. Expandable medical device for delivery of beneficial agent
US7208011B2 (en) * 2001-08-20 2007-04-24 Conor Medsystems, Inc. Implantable medical device with drug filled holes
US6241762B1 (en) 1998-03-30 2001-06-05 Conor Medsystems, Inc. Expandable medical device with ductile hinges
US6423345B2 (en) * 1998-04-30 2002-07-23 Acusphere, Inc. Matrices formed of polymer and hydrophobic compounds for use in drug delivery
US7022683B1 (en) 1998-05-13 2006-04-04 Carrington Laboratories, Inc. Pharmacological compositions comprising pectins having high molecular weights and low degrees of methoxylation
US6277413B1 (en) * 1998-07-17 2001-08-21 Skyepharma, Inc. Biodegradable compositions for the controlled release of encapsulated substances
JP4936595B2 (en) * 1999-03-03 2012-05-23 イーライ リリー アンド カンパニー Echinocandine pharmaceutical formulations containing micelle-forming surfactants
JP4272359B2 (en) 1999-03-03 2009-06-03 イーライ リリー アンド カンパニー Echinocandin / Carbohydrate Complex
CN100376291C (en) * 1999-05-27 2008-03-26 阿库斯菲尔公司 Porous drug matrices and methods of manufacture thereof
US20040009229A1 (en) * 2000-01-05 2004-01-15 Unger Evan Charles Stabilized nanoparticle formulations of camptotheca derivatives
WO2002032398A2 (en) * 2000-10-16 2002-04-25 Massachusetts Institute Of Technology Lipid-protein-sugar particles for drug delivery
DE20122506U1 (en) * 2000-10-16 2005-12-08 Conor Medsystems, Inc., Menlo Park Expandable medical device for delivering a beneficial agent
US6777000B2 (en) * 2001-02-28 2004-08-17 Carrington Laboratories, Inc. In-situ gel formation of pectin
US7494669B2 (en) * 2001-02-28 2009-02-24 Carrington Laboratories, Inc. Delivery of physiological agents with in-situ gels comprising anionic polysaccharides
WO2003000235A1 (en) * 2001-06-22 2003-01-03 Pfizer Products Inc. Pharmaceutical compositions of dispersions of drugs and neutral polymers
US7056338B2 (en) * 2003-03-28 2006-06-06 Conor Medsystems, Inc. Therapeutic agent delivery device with controlled therapeutic agent release rates
US7842083B2 (en) 2001-08-20 2010-11-30 Innovational Holdings, Llc. Expandable medical device with improved spatial distribution
AU2002335046A1 (en) * 2001-10-19 2003-05-06 Inhale Therapeutic Systems, Inc. The use of proton sequestering agents in drug formulations
US7008644B2 (en) * 2002-03-20 2006-03-07 Advanced Inhalation Research, Inc. Method and apparatus for producing dry particles
EP1485073A2 (en) * 2002-03-20 2004-12-15 Advanced Inhalation Research, Inc. Method for administration of growth hormone via pulmonary delivery
US6991800B2 (en) * 2002-06-13 2006-01-31 Vicuron Pharmaceuticals Inc. Antifungal parenteral products
CN1694689A (en) * 2002-09-30 2005-11-09 阿库斯菲尔公司 Sustained release pharmaceutical formulation for inhalation
US20040143321A1 (en) * 2002-11-08 2004-07-22 Conor Medsystems, Inc. Expandable medical device and method for treating chronic total occlusions with local delivery of an angiogenic factor
GB0228571D0 (en) * 2002-12-06 2003-01-15 Novartis Ag Organic compounds
US6962006B2 (en) * 2002-12-19 2005-11-08 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
US20040121003A1 (en) * 2002-12-19 2004-06-24 Acusphere, Inc. Methods for making pharmaceutical formulations comprising deagglomerated microparticles
EP1610823B1 (en) 2003-03-28 2011-09-28 Innovational Holdings, LLC Implantable medical device with continuous agent concentration gradient
US20040202692A1 (en) * 2003-03-28 2004-10-14 Conor Medsystems, Inc. Implantable medical device and method for in situ selective modulation of agent delivery
US20040247624A1 (en) * 2003-06-05 2004-12-09 Unger Evan Charles Methods of making pharmaceutical formulations for the delivery of drugs having low aqueous solubility
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
US7645474B1 (en) * 2003-07-31 2010-01-12 Advanced Cardiovascular Systems, Inc. Method and system of purifying polymers for use with implantable medical devices
US20050118262A1 (en) * 2003-09-17 2005-06-02 Jack Aurora Controlled release formulation
WO2005035606A1 (en) * 2003-10-10 2005-04-21 Samyang Corporation Amphiphilic block copolymer and polymeric composition comprising the same for drug delivery
US20050084455A1 (en) * 2003-10-16 2005-04-21 Council Of Scientific & Industrial Research Inhalable biodegradable microparticles for target-specific drug delivery in tuberculosis and a process thereof
US8157788B2 (en) * 2003-11-06 2012-04-17 Paolo L. Manfredi Multi-site drug delivery platform
US20050100577A1 (en) * 2003-11-10 2005-05-12 Parker Theodore L. Expandable medical device with beneficial agent matrix formed by a multi solvent system
WO2005053652A1 (en) 2003-12-04 2005-06-16 Pfizer Products Inc. Multiparticulate crystalline drug compositions containing a poloxamer and a glyceride
JP2007513145A (en) * 2003-12-04 2007-05-24 ファイザー・プロダクツ・インク Method for producing pharmaceutical fine particles
EP1691786A1 (en) * 2003-12-04 2006-08-23 Pfizer Products Inc. Multiparticulate compositions with improved stability
US6984403B2 (en) * 2003-12-04 2006-01-10 Pfizer Inc. Azithromycin dosage forms with reduced side effects
JP2007513147A (en) * 2003-12-04 2007-05-24 ファイザー・プロダクツ・インク Spray congealing process for producing a multiparticulate crystalline pharmaceutical composition, preferably containing poloxamer and glyceride, using an extruder
WO2005053639A2 (en) * 2003-12-04 2005-06-16 Pfizer Products Inc. Controlled release multiparticulates formed with dissolution enhancers
CA2547239A1 (en) * 2003-12-04 2005-06-16 Pfizer Products Inc. Azithromycin multiparticulate dosage forms by liquid-based processes
KR20050104152A (en) 2004-04-28 2005-11-02 최승호 Enhancing systems for poorly absorptive drugs
US7446131B1 (en) 2004-06-10 2008-11-04 The United States Of America As Represented By The Secretary Of Agriculture Porous polymeric matrices made of natural polymers and synthetic polymers and optionally at least one cation and methods of making
US20060051406A1 (en) * 2004-07-23 2006-03-09 Manjeet Parmar Formulation of insoluble small molecule therapeutics in lipid-based carriers
US7862835B2 (en) * 2004-10-27 2011-01-04 Boston Scientific Scimed, Inc. Method of manufacturing a medical device having a porous coating thereon
US8128952B2 (en) * 2005-01-12 2012-03-06 Clemson University Research Foundation Ligand-mediated controlled drug delivery
DE102005002703C5 (en) * 2005-01-19 2013-07-04 Heraeus Kulzer Gmbh Antibiotic coating of implants and methods for antibiotic coating
JP5178506B2 (en) * 2005-03-14 2013-04-10 バイオベンション ホールディングス リミテッド Methods related to drug delivery compositions
WO2007111720A2 (en) * 2005-12-06 2007-10-04 Rigel Pharmaceuticals, Inc. Formulation of insoluble small molecule therapeutics in lipid-based carriers
US20070148211A1 (en) * 2005-12-15 2007-06-28 Acusphere, Inc. Processes for making particle-based pharmaceutical formulations for oral administration
US20070142287A1 (en) * 2005-12-20 2007-06-21 Biomed Solutions, Llc Compositions And Methods For Treatment Of Cancer
ES2470340T3 (en) 2005-12-28 2014-06-23 Advanced Bionutrition Corporation Administration vehicle for probiotic bacteria comprising a dry matrix of polysaccharides, saccharides and polyols in vitreous form
US8968721B2 (en) 2005-12-28 2015-03-03 Advanced Bionutrition Corporation Delivery vehicle for probiotic bacteria comprising a dry matrix of polysaccharides, saccharides and polyols in a glass form and methods of making same
US8399007B2 (en) * 2006-12-05 2013-03-19 Landec Corporation Method for formulating a controlled-release pharmaceutical formulation
US20090263346A1 (en) * 2006-12-05 2009-10-22 David Taft Systems and methods for delivery of drugs
US20090246155A1 (en) * 2006-12-05 2009-10-01 Landec Corporation Compositions and methods for personal care
US20100004124A1 (en) * 2006-12-05 2010-01-07 David Taft Systems and methods for delivery of materials for agriculture and aquaculture
WO2008076975A1 (en) 2006-12-18 2008-06-26 Advanced Bionutrition Corporation A dry food product containing live probiotic
EP3391874A3 (en) * 2007-02-12 2019-04-24 Particle Sciences, Inc. Delivery devices containing encapsulated and/or particle- bound active pharmaceutical ingredients
IN266731B (en) * 2007-05-14 2015-05-28 Sustained Nano Systems Llc
US20090148498A1 (en) * 2007-05-14 2009-06-11 Sustained Nano Systems Llc Controlled release implantable dispensing device and method
US8071119B2 (en) * 2007-05-14 2011-12-06 Sustained Nano Systems Llc Controlled release implantable dispensing device and method
US8101274B2 (en) * 2007-06-11 2012-01-24 Spedden Richard H Solid state membranes with surface-embedded glycosylated amphiphilic molecules and micelles formed therefrom
FR2919188B1 (en) * 2007-07-27 2010-02-26 Proteins & Peptides Man COMPLEXES BETWEEN AN AMPHIPHILIC POLYMER AND A OSTEOGENIC PROTEIN BELONGING TO THE BMPS FAMILY
US8067028B2 (en) * 2007-08-13 2011-11-29 Confluent Surgical Inc. Drug delivery device
US8114883B2 (en) * 2007-12-04 2012-02-14 Landec Corporation Polymer formulations for delivery of bioactive materials
EP2222281B1 (en) 2007-12-20 2018-12-05 Evonik Corporation Process for preparing microparticles having a low residual solvent volume
CA2689472C (en) 2008-07-18 2019-01-15 Karine Theberge Articles of manufacture releasing an active ingredient
WO2010017459A1 (en) 2008-08-07 2010-02-11 Bioactive Surgical, Inc> Stem cell capture and immobilization coatings for medical devices and implants
US11028454B2 (en) * 2008-09-24 2021-06-08 Resilux Incorporation of thermo-resistant and/or pressure-resistant organisms in materials
CA2986751A1 (en) 2009-03-27 2010-09-30 Intervet International B.V. Microparticulated vaccines for the oral or nasal vaccination and boostering of animals including fish
NZ597053A (en) 2009-05-26 2014-02-28 Advanced Bionutrition Corp Stable dry powder composition comprising biologically active microorganisms and/or bioactive materials and methods of making
CN105126179B (en) 2009-07-14 2018-09-25 波利皮得有限公司 Sustained-release drug carrier composition
RU2535869C2 (en) 2010-01-28 2014-12-20 Эдванст Бионутришн Корпорейшн Dry glass-like composition for stabilisation and protection of biologically active material, and method for its obtaining
US9504750B2 (en) 2010-01-28 2016-11-29 Advanced Bionutrition Corporation Stabilizing composition for biological materials
WO2011146483A1 (en) 2010-05-17 2011-11-24 Aerie Pharmaceuticals, Inc. Drug delivery devices for delivery of ocular therapeutic agents
AU2011289272B2 (en) 2010-08-13 2015-02-05 Advanced Bionutrition Corporation Dry storage stabilizing composition for biological materials
US8927007B2 (en) 2010-09-17 2015-01-06 Paul Talalay Formulations for treatment with glucosinolates
ITMI20111050A1 (en) 2011-06-10 2012-12-11 Sevecom Spa USE OF EMULSIFIERS ASSOCIATED WITH VEGETABLE OILS IN AN ANIMAL FOOD.
AU2012288422B2 (en) * 2011-07-27 2016-08-11 Polypid Ltd. Matrix compositions for controlled release of peptide and polypeptide molecules
CN105287431A (en) * 2014-05-30 2016-02-03 中国科学院过程工程研究所 Polymer lipid sphere carrying active drugs and preparation method thereof
MY177518A (en) 2014-07-21 2020-09-17 Sevecom Spa A powder emulsifier for animal feeds
WO2016025911A1 (en) * 2014-08-14 2016-02-18 Brown University Compositions for stabilizing and delivering proteins
PT3328215T (en) 2015-07-29 2021-08-03 Advanced Bionutrition Corp Stable dry probiotic compositions for special dietary uses
US10327935B2 (en) * 2016-07-21 2019-06-25 Cook Medical Technologies Llc Stent graft with internal constraining mechanism
SG11202005949UA (en) 2018-05-24 2020-07-29 Celanese Eva Performance Polymers Corp Implantable device for sustained release of a macromolecular drug compound
SG11202005947RA (en) 2018-05-24 2020-07-29 Celanese Eva Performance Polymers Corp Implantable device for sustained release of a macromolecular drug compound
CN112094580A (en) * 2020-09-01 2020-12-18 杭州曦茂新材料科技有限公司 Resin anticorrosive paint and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342628A (en) * 1990-10-11 1994-08-30 Applied Medical Research, Inc. Drug diffusion polymer system and method
DE4337492A1 (en) * 1993-11-03 1995-05-04 Joerg Michael Dr Schierholz Method for incorporating pharmaceutically active substances into hard and soft contact lenses to produce ophthalmological controlled release systems by means of diffusion-controlled sorption
WO1996003984A1 (en) * 1994-08-02 1996-02-15 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
WO1998004292A2 (en) * 1996-07-29 1998-02-05 Acusphere, Inc. Polymer-lipid microencapsulated gases for use as imaging agents

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2409283A (en) 1943-04-21 1946-10-15 James L Hudson Coupling for plastic tubes
US3022209A (en) 1956-11-23 1962-02-20 Phillips Petroleum Co Method of welding butted pipe sections of polyethylene to form a reinforced joint
US3643805A (en) 1970-01-20 1972-02-22 Abcor Water Management Co Inc A membrane system which includes a tube sheet for securing supported membrane tubes therein
US3683960A (en) 1970-11-19 1972-08-15 Jerry Kirsch Block manifold for fluid control systems and method of making the same
GB1390379A (en) 1972-06-28 1975-04-09 Serck Industries Ltd Method of manufacturing hollow articles eg heat exchangers
US3776001A (en) 1973-01-16 1973-12-04 Kimberly Clark Co Self-lubricating compound for use in hygienic and medical applications, and suppositories made therefrom
US4070044A (en) 1976-01-22 1978-01-24 Phillips Petroleum Company Polymer pipe connection and method to make it
US4312687A (en) 1980-12-15 1982-01-26 Chevron Research Company Solar collector headers
US4818542A (en) 1983-11-14 1989-04-04 The University Of Kentucky Research Foundation Porous microspheres for drug delivery and methods for making same
US4615114A (en) 1984-03-12 1986-10-07 Asea Electric, Incorporated Method of manufacturing molded buswork for power distribution systems
US4730458A (en) * 1986-09-26 1988-03-15 The United States Of America As Represented By The United States Department Of Energy Thermal electric vapor trap arrangement and method
US5012052A (en) * 1988-03-22 1991-04-30 Indiana University Foundation Isotope-ratio-monitoring gas chromatography-mass spectrometry apparatus and method
US5447341A (en) 1988-06-13 1995-09-05 Metzeler Automotive Profiles Gmbh Molder rubber hose branch
CA1328550C (en) 1988-09-19 1994-04-19 Yoshinori Umezawa Method of fabricating pipe units
NZ231281A (en) 1988-11-08 1991-01-29 Takeda Chemical Industries Ltd Sustained release pharmaceutical preparations comprising the active agent dispersed in a solid matrix of a fatty acid ester of a polyglycerol
US5287758A (en) * 1991-01-26 1994-02-22 Behringwerke Ag Temperature controlled pipette tube
US5335944A (en) 1991-03-25 1994-08-09 Toyoda Gosei Co., Ltd. Hose coupling structure
JPH0538769A (en) 1991-07-19 1993-02-19 Mitsutoyo Jushi Kk Injection-molding method for thick-wall flange on edge of blow-molded pipe
JPH0570793A (en) * 1991-09-10 1993-03-23 Nissei Baadeishie Kk Granular lipid composition
FR2693249B1 (en) 1992-07-03 1994-09-16 Hutchinson Method of connecting tubes or pipes, fittings and similar devices obtained by its implementation.
JP3266656B2 (en) * 1992-08-18 2002-03-18 日清ファルマ株式会社 Vitamin-impregnated granules and method for producing the same
EP0659073B1 (en) 1992-09-10 2001-12-19 Children's Medical Center Corporation Biodegradable polymer matrices for sustained delivery of local anesthetic agents
US5411300A (en) 1993-03-16 1995-05-02 Toyoda Gosei Co., Ltd. Hose connecting assembly
FR2710265B1 (en) 1993-09-22 1995-10-20 Adir Bioadhesive pharmaceutical composition for the controlled release of active ingredients.
US6333021B1 (en) 1994-11-22 2001-12-25 Bracco Research S.A. Microcapsules, method of making and their use
US5942253A (en) 1995-10-12 1999-08-24 Immunex Corporation Prolonged release of GM-CSF
EP0879135B1 (en) 1996-02-07 2002-06-12 Anthony Joseph Cesaroni Bonding of tubes of thermoplastic polymers
US5762961A (en) 1996-02-09 1998-06-09 Quadrant Holdings Cambridge Ltd. Rapidly soluble oral solid dosage forms, methods of making same, and compositions thereof
JP3544604B2 (en) * 1996-12-16 2004-07-21 株式会社荏原製作所 Switchable trap device
US5855913A (en) 1997-01-16 1999-01-05 Massachusetts Instite Of Technology Particles incorporating surfactants for pulmonary drug delivery
US5874064A (en) * 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
DE19631001C1 (en) * 1996-08-01 1997-12-18 Testo Gmbh & Co Condenser for portable flue gas analysis instrument employs Peltier effect cooling
KR0181252B1 (en) * 1996-12-31 1999-03-20 박원훈 Porous matrix sustained-release preparation by emulsion metho
US5895695A (en) 1997-03-28 1999-04-20 Rowley; William W. Crosslinked overmolded plumbing tubes
JP3347977B2 (en) * 1997-07-02 2002-11-20 フリヂスター株式会社 Liquid circulation type thermoelectric cooling / heating device
US6565885B1 (en) 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
US6540926B2 (en) * 1997-10-02 2003-04-01 David Paul Goodrich Filter assembly
US6423345B2 (en) * 1998-04-30 2002-07-23 Acusphere, Inc. Matrices formed of polymer and hydrophobic compounds for use in drug delivery
US6096178A (en) * 1998-08-24 2000-08-01 Aviv Amirav Electrolyzer device for the operation of flame ionization detectors
US6101815A (en) * 1998-11-09 2000-08-15 General Electric Company Thermo-electrical dehumidifier
US6490879B1 (en) * 2000-09-27 2002-12-10 Assist International Marketing, Inc. Water generating machine
US6427449B1 (en) * 2000-12-15 2002-08-06 Solid State Cooling Systems Compact volatile organic compound removal system
US6370884B1 (en) * 2001-03-30 2002-04-16 Maher I. Kelada Thermoelectric fluid cooling cartridge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342628A (en) * 1990-10-11 1994-08-30 Applied Medical Research, Inc. Drug diffusion polymer system and method
DE4337492A1 (en) * 1993-11-03 1995-05-04 Joerg Michael Dr Schierholz Method for incorporating pharmaceutically active substances into hard and soft contact lenses to produce ophthalmological controlled release systems by means of diffusion-controlled sorption
WO1996003984A1 (en) * 1994-08-02 1996-02-15 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
WO1998004292A2 (en) * 1996-07-29 1998-02-05 Acusphere, Inc. Polymer-lipid microencapsulated gases for use as imaging agents

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919119B2 (en) 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
EP1180020B2 (en) 1999-05-27 2009-06-24 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
EP1642572A1 (en) * 1999-05-27 2006-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
WO2000072827A2 (en) * 1999-05-27 2000-12-07 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
WO2000072827A3 (en) * 1999-05-27 2001-01-25 Acusphere Inc Porous drug matrices and methods of manufacture thereof
US6645528B1 (en) 1999-05-27 2003-11-11 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
KR100752000B1 (en) * 1999-05-27 2007-08-28 아쿠스피어 인코포레이티드. Methods of manufacturing porous drug matrices
US8821938B2 (en) 1999-05-27 2014-09-02 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
USRE40493E1 (en) 1999-05-27 2008-09-09 Acusphere, Inc. Porous paclitaxel matrices and methods of manufacture thereof
US6932983B1 (en) 1999-05-27 2005-08-23 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
EP1246608A4 (en) * 2000-01-05 2005-05-18 Imarx Therapeutics Inc Pharmaceutical formulations for the delivery of drugs having low aqueous solubility
EP1246608A1 (en) * 2000-01-05 2002-10-09 Imarx Therapeutics, Inc. Pharmaceutical formulations for the delivery of drugs having low aqueous solubility
WO2001095877A2 (en) * 2000-06-15 2001-12-20 Acusphere, Inc. Porous celecoxib matrices and methods of manufacture thereof
WO2001095877A3 (en) * 2000-06-15 2002-05-02 Acusphere Inc Porous celecoxib matrices and methods of manufacture thereof
US8642082B2 (en) * 2001-12-11 2014-02-04 Cosmo Technologies Limited Pharmaceutical compositions for the oral administration of heparin or derivatives thereof
US9308220B2 (en) 2001-12-11 2016-04-12 Cosmo Technologies Limited Pharmaceutical compositions for the oral administration of heparin or derivatives thereof
US8460709B2 (en) 2002-03-13 2013-06-11 Novartis Ag Pharmaceutical microparticles
JP2010248271A (en) * 2002-03-13 2010-11-04 Novartis Ag Pharmaceutical microparticles
US9987364B2 (en) 2002-09-27 2018-06-05 Ferring B.V. Water-swellable polymers
US9278163B2 (en) 2003-03-31 2016-03-08 Titan Pharmaceuticals, Inc. Implantable polymeric device for sustained release of dopamine agonist
US8852623B2 (en) 2003-03-31 2014-10-07 Titan Pharmaceuticals, Inc. Implantable polymeric device for sustained release of dopamine agonist
WO2005032523A1 (en) * 2003-09-30 2005-04-14 Acusphere, Inc. Injectable, oral, or topical sustained release pharmaceutical formulations
US8460707B2 (en) 2004-08-05 2013-06-11 Ferring B.V. Stabilised prostaglandin composition
US8709482B2 (en) 2004-08-05 2014-04-29 Ferring B.V. Stabilised prostaglandin composition
US8974813B2 (en) 2006-07-05 2015-03-10 Ferring B.V. Hydrophilic polyurethane compositions
US10105445B2 (en) 2006-07-05 2018-10-23 Ferring B.V. Hydrophilic polyurethane compositions
US8956602B2 (en) 2006-12-05 2015-02-17 Landec, Inc. Delivery of drugs
US8877242B2 (en) 2008-07-14 2014-11-04 Polypid Ltd. Sustained-release drug carrier composition
US10682412B2 (en) 2008-07-14 2020-06-16 Polypid Ltd. Sustained-release drug carrier composition
US8795726B2 (en) 2010-01-19 2014-08-05 Polypid Ltd. Sustained-release nucleic acid matrix compositions
EP2525778A4 (en) * 2010-01-19 2013-07-03 Polypid Ltd Sustained-release nucleic acid matrix compositions
EP2525778A2 (en) * 2010-01-19 2012-11-28 Polypid Ltd. Sustained-release nucleic acid matrix compositions
AU2011208374B2 (en) * 2010-01-19 2016-09-08 Polypid Ltd. Sustained-release nucleic acid matrix compositions
US9616032B2 (en) 2010-01-19 2017-04-11 Polypid Ltd. Sustained-release nucleic acid matrix compositions
WO2011089595A2 (en) 2010-01-19 2011-07-28 Polypid Ltd. Sustained-release nucleic acid matrix compositions

Also Published As

Publication number Publication date
US20070104656A1 (en) 2007-05-10
IL139252A (en) 2006-10-31
MXPA00010566A (en) 2002-04-24
NO20005452D0 (en) 2000-10-27
KR100703051B1 (en) 2007-04-05
US20010000230A1 (en) 2001-04-12
DE69930240D1 (en) 2006-05-04
PT1073422E (en) 2006-05-31
JP2002513752A (en) 2002-05-14
NZ508470A (en) 2003-02-28
EP1073422A1 (en) 2001-02-07
EP1073422B1 (en) 2006-03-08
IL139252A0 (en) 2001-11-25
DE69930240T2 (en) 2006-11-23
CN1201729C (en) 2005-05-18
US6689390B2 (en) 2004-02-10
CA2329875A1 (en) 1999-11-11
DK1073422T3 (en) 2006-07-03
US20030147962A1 (en) 2003-08-07
NO324895B1 (en) 2007-12-27
AU746696B2 (en) 2002-05-02
US20010000470A1 (en) 2001-04-26
NO20005452L (en) 2000-12-29
US6423345B2 (en) 2002-07-23
CA2329875C (en) 2003-09-16
AU2995499A (en) 1999-11-23
US7052719B2 (en) 2006-05-30
PL343691A1 (en) 2001-08-27
PL196159B1 (en) 2007-12-31
BR9910340A (en) 2001-01-09
KR20010043136A (en) 2001-05-25
CN1301150A (en) 2001-06-27
ATE319433T1 (en) 2006-03-15
US20010043948A1 (en) 2001-11-22
JP5153032B2 (en) 2013-02-27
ES2259472T3 (en) 2006-10-01
US7160557B2 (en) 2007-01-09

Similar Documents

Publication Publication Date Title
US6689390B2 (en) Matrices formed of polymer and hydrophobic compounds for use in drug delivery
US6730322B1 (en) Matrices formed of polymer and hydrophobic compounds for use in drug delivery
US6632457B1 (en) Composite hydrogel drug delivery systems
JP3884484B2 (en) Preparation of particles for inhalation
AU665206B2 (en) Preparation of microparticles
US20040105821A1 (en) Sustained release pharmaceutical formulation for inhalation
US20070264343A1 (en) Methods for making and using particulate pharmaceutical formulations for sustained release
JP2002518432A (en) Large porous particles released from an inhaler
EP1569620A1 (en) Nanoparticulate bioactive agents
JPH09511762A (en) Microcapsule and method of manufacturing and using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99806372.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 139252

Country of ref document: IL

Ref document number: 29954/99

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2329875

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2000 546758

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/010566

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020007012030

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1999911269

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 508470

Country of ref document: NZ

WWP Wipo information: published in national office

Ref document number: 1999911269

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020007012030

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 29954/99

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1999911269

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007012030

Country of ref document: KR