WO1999060272A1 - Dispositif et procede de pompage - Google Patents

Dispositif et procede de pompage Download PDF

Info

Publication number
WO1999060272A1
WO1999060272A1 PCT/JP1999/002645 JP9902645W WO9960272A1 WO 1999060272 A1 WO1999060272 A1 WO 1999060272A1 JP 9902645 W JP9902645 W JP 9902645W WO 9960272 A1 WO9960272 A1 WO 9960272A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
vacuum pump
exhaust
back pressure
evacuation
Prior art date
Application number
PCT/JP1999/002645
Other languages
English (en)
French (fr)
Inventor
Satoshi Arai
Katsuaki Usui
Takahiro Isozaki
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to US09/700,748 priority Critical patent/US6474949B1/en
Priority to EP99921197A priority patent/EP1081380A4/en
Publication of WO1999060272A1 publication Critical patent/WO1999060272A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an evacuation apparatus and a method for evacuating a vacuum chamber (process chamber) of a semiconductor manufacturing apparatus, for example.
  • FIG. 7 shows a vacuum exhaust path for exhausting a vacuum chamber 10 used in a semiconductor manufacturing process such as an etching apparatus or a chemical vapor deposition apparatus (CVD).
  • a vacuum pump 14 is for raising the pressure of the process exhaust gas from the vacuum chamber 10 to the atmospheric pressure.
  • an oil rotary pump is used, and a dry pump is currently mainly used.
  • an ultra-high vacuum pump such as a turbo molecular pump may be further arranged upstream of the vacuum pump. Yes, and if it cannot be released to the atmosphere as it is due to the type of exhaust gas in the process, an exhaust gas treatment device will be installed in the exhaust pipe 16.
  • the exhaust pipe 16 is designed to allow a large amount of gas to flow smoothly when the pump is started or introduced into the atmosphere, so that the back pressure of the vacuum pump 14 falls within the allowable range. For example, if 2 0 0 0 LZ min about the exhaust rate, the inner diameter was using of about 4 O mm c
  • a vacuum chamber for a semiconductor manufacturing apparatus is arranged in a clean room, and an exhaust pipe may be laid in the clean room over a long distance to an external space. Therefore, if the exhaust pipe is thick, there is a problem that the space occupies a high cost and the arrangement is restricted due to interference with other components. On the other hand, if the exhaust pipe is made narrower, the back pressure of the vacuum pump will increase if a large amount of gas flows when the pump is started or introduced into the atmosphere, and as a result, it will be overloaded and operation will be disabled. There was a certain limit in reducing the diameter. Disclosure of the invention
  • the present invention has been made in view of the above-described circumstances, and a vacuum exhaust device capable of performing a stable operation by avoiding an overload operation while saving space by reducing the diameter of an exhaust pipe of an exhaust system. And an exhaust method.
  • the invention according to claim 1 includes a vacuum chamber, an exhaust pipe connecting the vacuum chamber to an atmospheric pressure opening, a variable-speed vacuum pump provided in the exhaust pipe, and a variable number of rotations of the vacuum pump.
  • a vacuum evacuation device comprising a control unit for controlling.
  • a back pressure is detected on the exhaust side of the vacuum pump.
  • the invention according to claim 3 is characterized in that the number of revolutions of the vacuum pump is controlled so that the detection output of the back pressure sensor falls within a predetermined target range. is there.
  • a booster pump is provided in the exhaust pipe in series with the vacuum pump, and the control unit lacks an exhaust capability of the vacuum pump based on an output of the back pressure sensor. 3.
  • control unit controls the rotation speed of the vacuum pump in accordance with a rotation speed change pattern input in advance at the beginning of evacuation.
  • the invention according to claim 7 is the vacuum exhaust device according to claim 1, wherein the conductance of the exhaust pipe is set to be smaller than the exhaust capacity of the vacuum pump.
  • the space for piping can be reduced and the space such as an expensive clean room can be effectively used.
  • c which can facilitate competition for the pipe and the device
  • the invention according to claim 8 is an exhaust method for exhausting a vacuum chamber via an exhaust pipe by a vacuum pump having a variable number of revolutions, wherein a back pressure of the vacuum pump is detected, and the back pressure is detected based on the detected value.
  • This is an evacuation method characterized by controlling the rotation speed of a vacuum pump.
  • a booster pump is installed in series with the vacuum pump, and the control unit lacks an exhaust capability of the vacuum pump based on an output of the back pressure sensor.
  • the booster pump is activated at a time.
  • the rotation speed of the vacuum pump is controlled in accordance with a rotation speed change pattern input in advance. It is.
  • the invention according to claim 11 is an exhaust method in which the vacuum chamber is evacuated by a variable-speed vacuum pump via an exhaust pipe, wherein the initial stage of the exhaust is in accordance with a rotational speed change pattern input in advance. And controlling the number of rotations of the vacuum pump.
  • the invention according to claim 12 is characterized in that the rising speed of the rotation speed is set so as to suppress the initial peak of the back pressure caused by the exhaust to a predetermined value or less. This is an evacuation method.
  • the invention according to claim 13 is the vacuum evacuation method according to claim 11, wherein the number of revolutions is set to increase stepwise.
  • FIG. 1 is a schematic diagram showing an evacuation apparatus according to an embodiment of the present invention.
  • FIG. 2 shows an operation method of the vacuum pump according to the first embodiment of the present invention.
  • 9 is a graph showing a change over time in the number of revolutions in comparison with a conventional example.
  • FIG. 3 is a graph showing the change over time in the back pressure and the rotation speed in the operation method of the vacuum pump according to the second embodiment of the present invention, as compared with a conventional example.
  • FIG. 4 is a graph showing changes over time in back pressure and rotation speed in a method of operating a vacuum pump according to a third embodiment of the present invention, as compared with a conventional example.
  • FIG. 5 is a view showing a vacuum evacuation apparatus according to another embodiment of the present invention.
  • FIG. 6 is a graph showing a temporal change of the back pressure and the number of rotations in the operation method of the vacuum pump according to the embodiment of FIG.
  • FIG. 7 is a diagram showing a conventional evacuation device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a vacuum exhaust system 30 for evacuating a vacuum chamber 10 used in a semiconductor manufacturing process such as an etching apparatus or a chemical vapor deposition apparatus (CVD).
  • An exhaust pipe 34 is connected to the suction port 32 a of the vacuum pump 32, and an exhaust pipe 34 b to the discharge port 32 b of the vacuum pump 32.
  • the vacuum pump 32 As the vacuum pump 32, a so-called dry pump that does not use a lubricant in a gas passage is used, and a motor 40 for driving the same is, for example, a rotation speed controller 4 using an inverter (frequency conversion circuit). DC motors, especially brushless DC motors, are used.
  • the exhaust pipe 34 has a smaller diameter than the conventional exhaust pipe 16 shown in FIG. 7, for example, if the exhaust speed is about 200 LZ min, the inner diameter is 10 mm. Some are used. The inner diameter of the exhaust pipe 34 is determined so that the conductance becomes a predetermined value in consideration of the length of the pipe.
  • a back pressure sensor 44 that constantly detects the pressure, that is, the back pressure of the vacuum pump 32, is provided, and an output signal from the back pressure sensor 44 is input to the rotation speed control unit 42 of the motor 40. It has become.
  • the back pressure of the vacuum pump 32 is set to a predetermined value P.
  • the rotation speed of the vacuum pump 32 is controlled so as to maintain the pressure. That is, when the detection value of the back pressure sensor 44 reaches P + ⁇ , the rotation speed control unit 42 reduces the rotation speed of the motor 40, and increases when the back pressure falls below ⁇ H. . As a result, the back pressure is almost ⁇ , as indicated by the broken line in FIG.
  • the operation time is prolonged, but stable operation can be continued. After a predetermined time, the back pressure becomes ⁇ . It falls below and shifts to steady operation.
  • the feedback control of the vacuum pump 32 is performed using the back pressure sensor 44.
  • sequence control of a simpler configuration is performed will be described with reference to FIG.
  • the regular installation of the back pressure sensor 44 in FIG. 1 is unnecessary.
  • the time-dependent change in the number of revolutions when the vacuum pump 32 is started is input to the control unit 42 in advance. This is shown in FIG. Speed ⁇ ⁇ . Dashed line L with constant gentle slope reaching. And then the steady speed ⁇ . I try to maintain.
  • the set value of the gradient may be selected in accordance with a change in conditions such as the capacity of the vacuum pump 32, the volume of the vacuum chamber 10, the conductance of the exhaust pipe 34, and the like.
  • the rotation speed of the motor 40 is linearly increased, but may be increased stepwise as shown in FIG.
  • FIG. 5 shows still another embodiment of the present invention.
  • a booster pump 50 is installed upstream of a vacuum pump (main pump) 32 in an exhaust path.
  • Each of the motors 40 and 46 for driving these pumps 32 and 50 is a brushless DC motor having a rotation speed control unit 42 using an inverter.
  • a back-pressure sensor 44 is installed near the discharge port 3 2 b of the exhaust pipe 34 because a small diameter pipe is used for the exhaust pipe 34. The point that the number of rotations is controlled is the same as in the previous embodiment.
  • control is performed by setting the target range of the back pressure between the lower limit value and the upper limit value P 2 so that stable exhaust is performed and the motors 40 and 46 are not overloaded. Do.
  • Step 1 when starting the evacuation process, a large amount of evacuation is performed and the back pressure tends to rise as described above, so that only the main pump 32 is instructed to operate at the minimum speed and started. Yes (step 1). This allows o The back pressure increases until the back pressure reaches the initial peak value determined by the volume and initial pressure of the vacuum chamber 10 to be evacuated and the exhaust capacity at the minimum rotation speed of the main pump 32 (step 2). Here the back pressure starts to fall. Exhaust at the minimum speed until the back pressure drops below the lower limit P1 (Step 3).
  • the rotational speed of the main pump 32 is increased at a predetermined pitch (steps 4 and 4 '), and when the back pressure exceeds the lower limit P! And enters the target range. Then, the main pump 32 is maintained at the rotation speed (steps 5 and 5 '). In this way, when the volume of the vacuum chamber 10 matches the exhaust capacity of the main pump 32, the back pressure is adjusted to around the lower limit value P, while controlling the rotation speed of the main pump 32. As a result, stable operation can be continued.
  • the rotation speed of the main pump 32 may be increased. Command does not follow, or the back pressure does not rise. In this case, for example, it is detected that the back pressure is continuously lower than the lower limit value P by a timer or the like, and the booster pump 50 is instructed to operate at the rated speed and started.
  • Step 6 As a result, when the exhaust load of the vacuum chamber 10 is relatively large and the exhaust capacity of the main pump 32 and the booster pump 50 is matched, the operation can be stably continued. (Step 7).
  • the booster pump 50 performs on-off control in accordance with the back pressure.
  • the booster pump 50 also employs a variable speed engine, and controls the back pressure around the lower limit by controlling it in the same manner as the main pump 32. You may drive while driving. Further, an operation may be performed to control the rotation speed of the main pump 32 while operating the booster pump 50 at a rated value. If the minimum rated speed of the main pump 32 is lower, it goes without saying that the initial stage control as shown in FIGS. 2 to 4 may be performed.
  • the main pump 32 and the booster pump 50 are simultaneously operated to continue the meaningless exhaust operation.
  • the situation can be prevented.
  • the back pressure of the pump does not exceed the predetermined value, it is possible to suppress an increase in the pump temperature due to an excessive rise in the back pressure, and to stably operate the pump.
  • the back pressure of the vacuum pump is controlled so as not to exceed a certain value, and a booster pump is added. By doing so, it is started and operated only when the exhaust load increases during the operation process, while maintaining energy saving. Stable exhaust operation can be performed. Therefore, even if the diameter of the exhaust pipe is reduced, overload operation can be avoided and stable operation can be achieved.In addition, the exhaust pipe having a diameter smaller than the exhaust capacity can be used. This also makes it possible to make effective use of space such as expensive clean rooms. Industrial applicability
  • the present invention is useful as an evacuation apparatus and method for evacuating a vacuum chamber (process chamber) of a processing apparatus such as an etching apparatus and a chemical vapor deposition apparatus (CVD) used in a semiconductor manufacturing process.

Description

真空排気装置及び方法
技術分野
本発明は、 例えば半導体製造装置の真空チャンバ (プロセスチャン バ) 等の真空排気を行なう真空排気装置及び方法に関する。
明 背景技術
図 7は、 例えば、 エッチング装置や化書学気相成長装置 (C V D ) 等の 半導体製造工程に用いる真空チャンバ 1 0を排気するための真空排気経 路を示すもので、 この真空チャンバ 1 0には、 真空排気系 1 2の真空ポ ンプ 1 4の吸気口 1. 4 a が接続され、 真空ポンプ 1 4の吐出口 1 4 bに は排気配管 1 6が接続されている。 真空ポンプ 1 4は、 真空チャンバ 1 0からのプロセスの排ガスを大気圧まで昇圧するためのもので、 従来は 油回転式ポンプが、 現在はドライポンプが主に使用されている。
真空チヤンバ 1 0が必要とする真空度が真空ポンプ 1 4の到達真空度 より も高い場合には、 真空ポンプの上流側にさ らにターボ分子ポンプ等 の超高真空ポンプが配置されることがあり、 また、 プロセスの排ガスの 種類によ り、 そのまま大気に放出できない場合には、 排気配管 1 6に排 ガス処理装置が配備される。
従来、 この種の真空排気系 1 2に使用される真空ポンプ 1 4のモータ 2 0 と しては、 定格回転数で回転する誘導モータが一般に使用されてい た。 また、 排気配管 1 6 と しては、 ポンプ始動時や大気導入時に大量の ガスを円滑に流し、 真空ポンプ 1 4の背圧が許容値内に収まるように、 例えば、 排気速度が 2 0 0 0 L Z m i n程度であれば、 内径が 4 O m m 程度のものを使用していた c
通常、 半導体製造装置用の真空チヤンバはク リーンルーム内に配置さ れており 、 排気配管はク リ 一ンルーム内を外部空間まで長い距離に渡り 敷設される場合がある。 従って、 排気配管が太いと、 コス トの高いスぺ ースを占有し、 また、 他の構成機器との干渉のために配置が制約される 等の問題がある。 一方、 排気配管を細くすると、 ポンプ始動時や大気導 入時に大量のガスが流れた場合に真空ポンプの背圧が上昇し、 その結果. 過負荷となって運転不能に陥ってしま うので、 細径化には- 定の限界が あった。 発明の開示
本発明は、 上述の事情に鑑みてなされたもので、 排気系の排気配管の 径を細く して省スペースを図りつつ、 過負荷運転を回避して安定な稼動 を行なう ことができる真空排気装置及び排気方法を提供することを目的 とする。
請求項 1 に記載の発明は、 真空チャンバと、 該真空チャンバを大気圧 開口部へ繋ぐ排気配管と、 該排気配管に設けられた回転数可変な真空ポ ンプと、 該真空ポンプの回転数を制御する制御部とを有することを特徴 とする真空排気装置である。 これによ り、 例えば、 ポンプの起動時等で 大量のガスが排気される場合も真空ポンプの背圧が一定値を超えないよ うに制御して、 安定した運転が可能となる。 従って、 排気配管と して排 気能力より径の細いものを使用することができ、 高価なク リーンルーム 等の空間を有効利用することができる。
請求項 2に記載の発明は、 前記真空ポンプの排気側には背圧を検知す る背圧センサが設けられ、 前記制御部は前記背圧センサの検出出力に基 づいて前記真空ポンプの回転数を制御することを特徴とする請求項 1 に 記載の真空排気装置である。 これによ り、 常に正確な背圧制御を行なつ て安定した運転を行なう ことができる。
請求項 3に記載の発明は、 前記背圧センサの検出出力が所定の目標範 囲になるよ うに該真空ポンプの回転数を制御することを特徴とする請求 項 2に記載の真空排気装置である。
請求項 4に記載の発明は、 前記背圧センサの検出出力が所定の目標値 を超えないよ うに該真空ポンプの回転数を制御することを特徴とする請 求項 2に記載の真空排気装置である。
請求項 5に記載の発明は、 前記排気配管には、 前記真空ポンプに直列 にブースタポンプが設置され、 前記制御部は前記背圧センサの出力に基 づいて前記真空ポンプの排気能力が不足するときに前記ブースタポンプ を起動させることを特徴とする請求項 2に記載の真空排気装置である。 これによ り、 省エネルギー性を維持しつつ大きな排気負荷にも対応する ことができる。
請求項 6に記載の発明は、 前記制御部は排気の初期において予め入力 された回転数変化パターンに沿って前記真空ポンプの回転数を制御する ことを特徴とする請求項 1 に記載の真空排気装置である。 これによ り、 簡単な装置構成で背圧制御を行ない、 安定した装置の立ち上げを行なう ことができる。
請求項 7に記載の発明は、 前記排気配管のコンダクタンスが前記真空 ポンプの排気能力に比べて小さく設定されていることを特徴とする請求 項 1 に記載の真空排気装置である。 これにより、 配管のためのスペース を小さく して高価なク リーンルーム等の空間を有効利用することができ また、 配管と装置との取り合いを容易にすることができる c
請求項 8に記載の発明は、 真空チヤンバを排気配管を介して回転数可 変な真空ポンプによ り排気する排気方法において、 該真空ポンプの背圧 を検出し、 この検出値を基に該真空ボンプの回転数を制御するこ とを特 徴とする真空排気方法である。
請求項 9に記載の発明は、 前記排気配管には、 前記真空ポンプに直列 にブースタポンプが設置され、 前記制御部は前記背圧センサの出力に基 づいて前記真空ポンプの排気能力が不足するときに前記ブースタポンプ を起動させることを特徴とする請求項 8に記載の真空排気方法である。 請求項 1 0に記載の発明は、 排気の初期においては、 予め入力された 回転数変化パターンに沿って前記真空ポンプの回転数を制御することを 特徴とする請求項 8に記載の真空排気方法である。
請求項 1 1 に記載の発明は、 真空チャンバを排気配管を介して回転数 可変な真空ポンプによ り排気する排気方法において、 排気の初期におい ては、 予め入力された回転数変化パターンに沿って前記真空ポンプの回 転数を制御することを特徴とする真空排気方法である。
請求項 1 2に記載の発明は、 回転数の上昇速度が、 排気に伴う背圧の 初期ピークを所定値以下に抑えるよ うに設定されていることを特徴とす る請求項 1 1 に記載の真空排気方法である。
請求項 1 3に記載の発明は、 回転数が段階的に上昇するよ うに設定さ れていることを特徴とする請求項 1 1 に記載の真空排気方法である。 図面の簡単な説明
図 1は、 本発明の一実施の形態の真空排気装置を示す模式図である。 図 2は、 本発明の第 1 の実施の形態の真空ポンプの運転方法における 回転数の時間変化を従来例と比較して示すグラフである。
図 3は、 本発明の第 2の実施の形態の真空ポンプの運転方法における 背圧と回転数の時間変化を従来例と比較して示すグラフである。
図 4は、 本発明の第 3の実施の形態の真空ポンプの運転方法における 背圧と回転数の時間変化を従来例と比較して示すグラフである。
図 5は、 本発明の他の実施の形態の真空排気装置を示す図である。 図 6は、 図 5の実施の形態の真空ポンプの運転方法における背圧と回 転数の時間変化を示すグラフである。
図 7は、 従来の真空排気装置を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を参照して説明する。 図 1 は、 エツ チング装置や化学気相成長装置 (C V D ) のよ うな半導体製造工程に用 いる真空チャンバ 1 0を真空排気する真空排気系 3 0を示すもので、 真 空チャンバ 1 0は、 真空ポンプ 3 2の吸気口 3 2 a に接続され、 真空ポ ンプ 3 2の吐出口 3 2 bには排気配管 3 4が接続されている。
真空ポンプ 3 2 と してはガス通路部に潤滑剤を使用しない、 いわゆる ドライポンプが用いられ、 その駆動用のモータ 4 0は、 例えばインバ一 タ (周波数変換回路) を用いる回転数制御部 4 2を有する直流モータ、 特にブラシレス直流モータが使用されている。 また、 排気配管 3 4 と し ては、 図 7に示す従来の排気配管 1 6 より も径の細いもの、 例えば、 排 気速度が 2 0 0 0 L Z m i n程度であれば、 内径が 1 0 m m程度のもの が使用されている。 排気配管 3 4の内径は、 配管の長さをも考慮して、 コンダクタンスが所定の値になるよ うに決める。
排気配管 3 4の吐出口 3 2 b近傍の位置には、 排気配管 3 4の内部の 圧力すなわち真空ポンプ 3 2の背圧を常時検知する背圧センサ 4 4が設 置されており 、 この背圧センサ 4 4からの出力信号はモータ 4 0の回転 数制御部 4 2に入力されるよ うになつている。
次に、 真空ポンプ 3 2の起動時の運転方法を図 2を参照して説明する c この実施の形態においては、 真空ポンプ 3 2の背圧が予め定められた規 定値 P。 を維持するように真空ポンプ 3 2の回転数を制御する。 すなわ ち、 背圧センサ 4 4の検出値が P + αに達すると、 回転数制御部 4 2 がモータ 4 0の回転数を下げ、 背圧が Ρ ひ よ り下になると回転数を 上げる。 この結果、 図 2に破線で示されるよ うに、 背圧はほぼ Ρ。 に維 持され、 所要時間は長引くが安定な運転を継続することができる。 所定 時間が経過すると、 背圧は Ρ。 以下に下がり、 定常運転に移行する。 上述した実施の形態では、 背圧センサ 4 4を用いて真空ポンプ 3 2を フィ一 ドバック制御したが、 よ り簡単な構成のシーケンス制御を行なう 実施の形態を図 3を参照して説明する。 この実施の形態では、 図 1 にお ける背圧センサ 4 4の定常的な設置は不要である。 真空ポンプ 3 2 の起 動時の回転数の時間的な変化が制御部 4 2に予めイ ンプッ トされており . これは、 図 3において、 従来のポンプの時間 に比べて大きい時間 Τ において定常回転数 Ν。 に達する一定の緩い勾配の破線 L。 で表さ れ、 その後は定常回転数 Ν。 を維持するよ うにしている。
この場合の背圧の変化は同図において破線 L 2 で表されており、 これ は回転数の変化が実線 で、 背圧の変化が L 3 で表される従来の場 合に比べて初期のピークの値 P。 が小さい。 回転数変化線 L。 の勾配 N / T は、 対象の真空ポンプ 3 2の能力、 真空チャンバ 1 0の容 積、 排気配管 3 4のコンダクタンス等に応じて予め実験的に、 あるいは 過去の実験データから計算によ り、 ピークの値 P。 が駆動モータに過度 の負荷を与えない限りで所定の排気能力を得られる程度に定められてい る。
この実施の形態では、 背圧センサに基づく フィー ドバック制御のよ う な複雑な制御を行っていないので、 背圧センサが不要であり、 よ り簡単 な構成で先の実施の形態と同等の効果を得ることができる。 なお、 真空 ポンプ 3 2の能力、 真空チャンバ 1 0の容積、 排気配管 3 4のコンダク タンス等の条件の変化に応じて、 勾配の設定値を選ぶことができるよ う にしてもよい。 なお、 図 3の実施の形態においては、 モータ 4 0の回転 数を直線的に上昇させているが、 図 4に示すよ うに、 段階的に増加させ るよ うにしてもよい。
図 5は、 この発明のさ らに他の実施の形態を示すもので、 この実施の 形態では、 排気経路の真空ポンプ (メイ ンポンプ) 3 2の上流側にブー スタポンプ 5 0が設置されている。 これらのポンプ 3 2, 5 0の駆動用 のモータ 4 0 , 4 6は、 いずれもイ ンバ一タを用いる回転数制御部 4 2 を有するブラシレス直流モータである。 排気配管 3 4 と して径の細いも のを使用している点、 排気配管 3 4の吐出口 3 2 b近傍の位置に背圧セ ンサ 4 4が設置されてこの出力を基にメインポンプの回転数を制御して いる点は先の実施の形態と同様である。
以下に、 この実施の形態の真空排気装置の制御方法の例を、 図 6を参 照しつつ説明する。 この実施の形態では、 安定した排気を行ない、 かつ モータ 4 0, 4 6に過度の負荷を与えないよ うに、 背圧の目標範囲を下 限値 と上限値 P 2 の間と して制御を行なう。
まず、 排気工程を開始するときは、 先に説明したよ うに多量の排気が なされて背圧が上昇しがちであるので、 メィンポンプ 3 2のみを最低回 転数で運転するように指令して起動する (ステップ 1 ) 。 これによ り、 o 背圧が、 排気対象である真空チヤンバ 1 0の容積や初期圧力とメ イ ンボ ンプ 3 2の最低回転数における排気能力で決まる初期ピーク値に達する (ステップ 2 ) まで背圧が上昇し、 こ こで背圧は低下し始める。 背圧が 下限値 P 1以下に下がるまでその最低回転数のままで排気を行なう (ステ ップ 3 ) 。
背圧が下限値 以下に低下すると、 所定のピッチでメイ ンポンプ 3 2の回転数を上昇させて行き (ステップ 4, 4 ' ) 、 背圧が下限値 P ! を超えて目標範囲に入つたら、 メイ ンポンプ 3 2をその回転数に維持す る (ステップ 5 , 5 ' ) 。 このよ う にして、 真空チャンバ 1 0の容積と メインポンプ 3 2の排気能力が見合っている場合には、 メイ ンポンプ 3 2の回転数を制御しつつ背圧を下限値 P , の前後に調整し、 安定に運転 を継続することができる。
ここで、 真空チャンバ 1 0でのガス生成量が多く なつて真空チャンバ 1 0の容積とメインポンプ 3 2の排気能力との間にアンバランスが生じ た場合、 メィンポンプ 3 2の回転数を上げるよ うに指令しても追随しな い、 あるいは背圧が上昇しなく なったりする。 この場合には、 例えば、 タイマ等によって背圧が継続的に下限値 P 以下であることを検知し、 ブースタポンプ 5 0を定格回転数で運転するよ うに指令して起動する
(ステップ 6 ) 。 これによ り、 真空チャンバ 1 0の排気負荷が比較的大 きく、 メインポンプ 3 2 とブースタポンプ 5 0の排気能力を合わせたも のに見合っている場合には、 安定に運転を継続することができる (ステ ップ 7 ) 。
もし、 メインポンプ 3 2 とブースタポンプ 5 0を定格回転数で運転す ると、 背圧が P 2 を超えて上昇するよ うな場合には、 ブ一スタポンプ 5 0の運転を停止して、 メインポンプ 3 2の単独運転のモー ドに戻る (ス テツプ 8 ) 。 つまり、 ブースタポンプ 5 0は、 背圧に応じてオン一オフ 制御する。
なお、 上記の実施の形態において、 ブースタポンプ 5 0にも回転数可 変な形式を用い、 先のメ イ ンポンプ 3 2の場合と同様に制御して、 背圧 を下限値 の前後に調整しながら運転するよ うにしてもよい。 また、 ブースタポンプ 5 0を定格で運転しつつ、 メインポンプ 3 2の回転数を 制御するよ うな運転を行っても良い。 また、 メインポンプ 3 2の最低定 格回転数がよ り低い場合には、 図 2ないし図 4に示すよ うな初期段階制 御を行っても良いことは言うまでもない。
この実施の形態においては、 何らかの理由で配管系にリークが生じて 背圧が上昇するよ うな場合に、 メィンポンプ 3 2 とブースタポンプ 5 0 を同時に稼動して無意味な排気動作を継続するよ うな事態を防止するこ とができる。 また、 ポンプの背圧が所定値を超えることがないので、 背 圧が過度に上昇することに起因するポンプ温度の上昇を抑制することが でき、 ポンプを安定に運転することができる。
また、 同様の理由によ り、 ポンプのケーシングに水等の冷却用媒体を 流通させるジャケッ トを形成してケーシングを直接に冷却する構成を採 用する必要が無く、 従来から行われているマ二ホールド型クーラによる 部分冷却方式のままで対応が可能である。 また、 直接冷却方式を用いな いので、 ポンプ内部温度を過度に冷却し過ぎることが無く、 反応生成物 が出やすいプロセスにも採用可能である。
以上説明したように、 本発明によれば、 ポンプの起動時等で大量のガ スが排気される場合も真空ポンプの背圧が一定値を超えないよ うに制御 し、 また、 ブースタポンプを付加することによ り、 運転の過程で排気負 荷が増した時にのみこれを起動して運転し、 省エネルギーを維持しつつ. 安定な排気動作を行なう ことができる。 従って、 排気配管の径を細く し ても、 過負荷運転を回避して安定な稼動を行なう ことができ、 また、 排 気配管と して排気能力よ り径の細いものを使用することによ り、 高価な ク リーンルーム等の空間を有効利用すること も可能となる。 産業上の利用の可能性
本発明は、 例えば半導体製造工程において用いられるエッチング装置 や化学気相成長装置 (C V D ) 等の処理装置の真空チャンバ (プロセス チャンバ) 等の真空排気を行なう真空排気装置及び方法と して有用であ る。

Claims

請求の範囲
1 . 真空チヤンバと、
該真空チャンバを大気圧開口部へ繋ぐ排気配管と、
該排気配管に設けられた回転数可変な真空ポンプと、
該真空ポンプの回転数を制御する制御部とを有することを特徴とする 真空排気装置。
2 . 前記真空ポンプの排気側には背圧を検知する背圧センサが設けられ. 前記制御部は前記背圧センサの検出出力に基づいて前記真空ボンプの回 転数を制御するこ とを特徴とする請求項 1 に記載の真空排気装置。
3 . 前記背圧センサの検出出力が所定の目標範囲になるよ うに該真空ポ の回転数を制御することを特徴とする請求項 2に記載の真空排気装
4 . 前記背圧センサの検出出力が所定の目標値を超えないよ うに該真空 ポンプの回転数を制御することを特徴とする請求項 2に記載の真空排気
5 . 前記排気配管には、 前記真空ポンプに直列にブースタポンプが設置 され、 前記制御部は前記背圧センサの出力に基づいて前記真空ポンプの 排気能力が不足するときに前記ブースタポンプを起動させることを特徴 とする請求項 2に記載の真空排気装置。
6 . 前記制御部は排気の初期において予め入力された回転数変化パター ンに沿って前記真空ポンプの回転数を制御することを特徴とする請求項 1 に記載の真空排気装置。
7 . 前記排気配管のコンダクタンスが前記真空ポンプの排気能力に比べ て小さく設定されていることを特徴とする請求項 1 に記載の真空排気装
8 . 真空チャンバを排気配管を介して回転数可変な真空ポンプによ り排 気する排気方法において、
該真空ポンプの背圧を検出し、 この検出値を基に該真空ポンプの回転 数を制御することを特徴とする真空排気方法。
9 . 前記排気配管には、 前記真空ポンプに直列にブースタポンプが設置 され、 前記制御部は前記背圧センサの出力に基づいて前記真空ポンプの 排気能力が不足するときに前記ブースタポンプを起動させることを特徴 とする請求項 8に記載の真空排気方法。
1 0 . 排気の初期においては、 予め入力された回転数変化パターンに沿 つて前記真空ポンプの回転数を制御することを特徴とする請求項 8に記 載の真空排気方法。
1 1 . 真空チャンバを排気配管を介して回転数可変な真空ポンプにより 排気する排気方法において、
排気の初期においては、 予め入力された回転数変化パターンに沿って 前記真空ポンプの回転数を制御することを特徴とする真空排気方法。
1 2 . 回転数の上昇速度が、 排気に伴う背圧の初期ピークを所定値以下 に抑えるよ うに設定されていることを特徴とする請求項 1 1 に記載の真 空排気方法。
1 3 . 回転数が段階的に上昇するよ うに設定されていることを特徴とす る請求項 1 1 に記載の真空排気方法。
PCT/JP1999/002645 1998-05-20 1999-05-20 Dispositif et procede de pompage WO1999060272A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/700,748 US6474949B1 (en) 1998-05-20 1999-05-20 Evacuating unit with reduced diameter exhaust duct
EP99921197A EP1081380A4 (en) 1998-05-20 1999-05-20 APPARATUS AND METHOD FOR PUMPING

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/155381 1998-05-20
JP15538198 1998-05-20
JP10/261715 1998-09-16
JP26171598A JP3929185B2 (ja) 1998-05-20 1998-09-16 真空排気装置及び方法

Publications (1)

Publication Number Publication Date
WO1999060272A1 true WO1999060272A1 (fr) 1999-11-25

Family

ID=26483399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002645 WO1999060272A1 (fr) 1998-05-20 1999-05-20 Dispositif et procede de pompage

Country Status (6)

Country Link
US (1) US6474949B1 (ja)
EP (1) EP1081380A4 (ja)
JP (1) JP3929185B2 (ja)
KR (1) KR100576761B1 (ja)
TW (1) TW483988B (ja)
WO (1) WO1999060272A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153362B2 (en) * 2002-04-30 2006-12-26 Samsung Electronics Co., Ltd. System and method for real time deposition process control based on resulting product detection

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172546B2 (en) 1998-11-23 2012-05-08 Entegris, Inc. System and method for correcting for pressure variations using a motor
WO2002079080A1 (fr) * 2001-03-29 2002-10-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Dispositif et procede de production d'une structure a base de silicium
US8337166B2 (en) 2001-11-26 2012-12-25 Shurflo, Llc Pump and pump control circuit apparatus and method
US7083392B2 (en) * 2001-11-26 2006-08-01 Shurflo Pump Manufacturing Company, Inc. Pump and pump control circuit apparatus and method
US20030175112A1 (en) * 2002-03-13 2003-09-18 Hirotaka Namiki Vacuum pump system and vacuum pump RPM control method
WO2003100259A1 (en) * 2002-05-22 2003-12-04 Applied Materials, Inc. Variable speed vacuum pump control method and apparatus
US6739840B2 (en) 2002-05-22 2004-05-25 Applied Materials Inc Speed control of variable speed pump
EP1540185B1 (en) * 2002-08-20 2013-02-13 Ebara Corporation Vacuum pump and method of starting the same
KR20030011024A (ko) * 2002-10-23 2003-02-06 린영태 정압 가변 속력 인버터 제어 부스터 펌프 시스템
GB0229352D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping arrangement and method of operating same
GB0229353D0 (en) * 2002-12-17 2003-01-22 Boc Group Plc Vacuum pumping system and method of operating a vacuum pumping arrangement
FR2854667B1 (fr) * 2003-05-09 2006-07-28 Cit Alcatel Controle de pression dans la chambre de procedes par variation de vitesse de pompes, vanne de regulation et injection de gaz neutre
JP4218756B2 (ja) 2003-10-17 2009-02-04 株式会社荏原製作所 真空排気装置
US8540493B2 (en) 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
GB0401396D0 (en) * 2004-01-22 2004-02-25 Boc Group Plc Pressure control method
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US7845913B2 (en) 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US7854597B2 (en) 2004-08-26 2010-12-21 Pentair Water Pool And Spa, Inc. Pumping system with two way communication
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
DE102004048866A1 (de) * 2004-10-07 2006-04-13 Leybold Vacuum Gmbh Schnelldrehende Vakuumpumpe
GB0424198D0 (en) * 2004-11-01 2004-12-01 Boc Group Plc Pumping arrangement
WO2006057957A2 (en) 2004-11-23 2006-06-01 Entegris, Inc. System and method for a variable home position dispense system
FR2878913B1 (fr) * 2004-12-03 2007-01-19 Cit Alcatel Controle des pressions partielles de gaz pour optimisation de procede
DE102005017418A1 (de) * 2005-04-15 2006-10-19 Leybold Vacuum Gmbh Turbomolekularpumpe
US8753097B2 (en) 2005-11-21 2014-06-17 Entegris, Inc. Method and system for high viscosity pump
JP5339914B2 (ja) 2005-11-21 2013-11-13 インテグリス・インコーポレーテッド 低減された形状要因を有するポンプのためのシステムと方法
CN101356372B (zh) 2005-12-02 2012-07-04 恩特格里公司 用于在泵中进行压力补偿的系统和方法
US7878765B2 (en) 2005-12-02 2011-02-01 Entegris, Inc. System and method for monitoring operation of a pump
US8083498B2 (en) 2005-12-02 2011-12-27 Entegris, Inc. System and method for position control of a mechanical piston in a pump
TWI402423B (zh) 2006-02-28 2013-07-21 Entegris Inc 用於一幫浦操作之系統及方法
US7770431B2 (en) 2006-07-31 2010-08-10 Applied Materials, Inc. Methods and apparatus for insitu analysis of gases in electronic device fabrication systems
JP5322254B2 (ja) * 2007-06-29 2013-10-23 東京エレクトロン株式会社 真空処理装置及び真空処理方法並びに記憶媒体
WO2010042406A1 (en) 2008-10-06 2010-04-15 Pentair Water Pool And Spa, Inc. Method of operating a safety vacuum release system
US8564233B2 (en) 2009-06-09 2013-10-22 Sta-Rite Industries, Llc Safety system and method for pump and motor
US8436559B2 (en) 2009-06-09 2013-05-07 Sta-Rite Industries, Llc System and method for motor drive control pad and drive terminals
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
MX344350B (es) 2010-12-08 2016-12-13 Pentair Water Pool & Spa Inc Válvula de descarga con vacío para sistema de liberación de vacío de seguridad.
GB2492065A (en) 2011-06-16 2012-12-26 Edwards Ltd Noise reduction of a vacuum pumping system
CN102220994A (zh) * 2011-06-20 2011-10-19 昆山振昆纳米科技有限公司 真空室角阀
EP2774009B1 (en) 2011-11-01 2017-08-16 Pentair Water Pool and Spa, Inc. Flow locking system and method
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
GB2508396B (en) * 2012-11-30 2015-10-07 Edwards Ltd Improvements in and relating to vacuum conduits
US20150098839A1 (en) * 2013-10-08 2015-04-09 Ingersoll-Rand Company Pump Systems and Methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106980A (ja) * 1987-09-25 1989-04-24 Alcatel Cit 直列接続された真空ポンプの起動方法及び該方法の実施装置
JPH0242186A (ja) * 1988-05-24 1990-02-13 Boc Group Inc:The ブースターポンプのための制御バイパス
JPH03152350A (ja) * 1989-11-08 1991-06-28 Hitachi Ltd 空気調和機
JPH05195984A (ja) * 1992-01-22 1993-08-06 Nec Yamagata Ltd ターボ型真空ポンプ
JPH06311778A (ja) * 1993-04-19 1994-11-04 Toshiba Corp 冷凍サイクル制御装置
JPH08319946A (ja) * 1995-05-24 1996-12-03 Japan Atom Energy Res Inst 核融合装置の真空排気システム
JPH09317641A (ja) * 1996-05-30 1997-12-09 Daikin Ind Ltd 真空排気装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243982A (ja) * 1986-04-14 1987-10-24 Hitachi Ltd 2段型真空ポンプ装置およびその運転方法
US5224836A (en) * 1992-05-12 1993-07-06 Ingersoll-Rand Company Control system for prime driver of compressor and method
JP3111790B2 (ja) * 1994-02-03 2000-11-27 株式会社日立製作所 流量精密制御ポンプ
JP3847357B2 (ja) * 1994-06-28 2006-11-22 株式会社荏原製作所 真空系の排気装置
US5641270A (en) * 1995-07-31 1997-06-24 Waters Investments Limited Durable high-precision magnetostrictive pump
US5725358A (en) * 1995-08-30 1998-03-10 Binks Manufacturing Company Pressure regulated electric pump
JPH09221381A (ja) 1996-02-08 1997-08-26 Komatsu Electron Metals Co Ltd 単結晶引上装置の真空排気装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106980A (ja) * 1987-09-25 1989-04-24 Alcatel Cit 直列接続された真空ポンプの起動方法及び該方法の実施装置
JPH0242186A (ja) * 1988-05-24 1990-02-13 Boc Group Inc:The ブースターポンプのための制御バイパス
JPH03152350A (ja) * 1989-11-08 1991-06-28 Hitachi Ltd 空気調和機
JPH05195984A (ja) * 1992-01-22 1993-08-06 Nec Yamagata Ltd ターボ型真空ポンプ
JPH06311778A (ja) * 1993-04-19 1994-11-04 Toshiba Corp 冷凍サイクル制御装置
JPH08319946A (ja) * 1995-05-24 1996-12-03 Japan Atom Energy Res Inst 核融合装置の真空排気システム
JPH09317641A (ja) * 1996-05-30 1997-12-09 Daikin Ind Ltd 真空排気装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1081380A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153362B2 (en) * 2002-04-30 2006-12-26 Samsung Electronics Co., Ltd. System and method for real time deposition process control based on resulting product detection

Also Published As

Publication number Publication date
JP3929185B2 (ja) 2007-06-13
JP2000038999A (ja) 2000-02-08
KR100576761B1 (ko) 2006-05-03
KR20010025035A (ko) 2001-03-26
EP1081380A4 (en) 2006-08-02
EP1081380A1 (en) 2001-03-07
TW483988B (en) 2002-04-21
US6474949B1 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
WO1999060272A1 (fr) Dispositif et procede de pompage
RU2421632C2 (ru) Способ работы насосной системы
US7077159B1 (en) Processing apparatus having integrated pumping system
JP5769722B2 (ja) 低電力消費の排気方法及び装置
US20080292469A1 (en) Centrifugal air compressor
KR20020040603A (ko) 진공펌프
JP5062964B2 (ja) 分子ポンプ
KR19990029404A (ko) 진공펌프 작동방법
JP3930297B2 (ja) ターボ分子ポンプ
WO2004090332A1 (en) Dry vacuum pump and method of starting same
EP1540185B1 (en) Vacuum pump and method of starting the same
JP3941147B2 (ja) 真空排気装置及びそのメンテナンス方法
JP2011169164A (ja) ターボ分子ポンプ、その起動方法および真空処理システム
JP3978765B2 (ja) 油拡散ポンプの運転方法及び油拡散ポンプの制御装置並びに真空排気装置とその制御方法
JP2008019740A (ja) ターボ分子ポンプ
JPH09317641A (ja) 真空排気装置
JP2003090287A (ja) ドライ真空ポンプ及びその運転方法
JPH0742693A (ja) ドライ真空ポンプ
JPH03279694A (ja) 真空ユニット
JP2003161281A (ja) 真空処理装置
JP2007198392A (ja) 油拡散ポンプの運転方法及び真空排気装置と真空排気装置の制御方法
JP2019081944A (ja) 真空バルブの制御方法
JPH11190294A (ja) ターボ分子ポンプ
WO2003093679A1 (en) Methods and apparatus for controlling power in vapor jet vacuum pumps
JP2010098092A (ja) 真空ポンプの運転方法及び半導体装置の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999921197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007012893

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09700748

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999921197

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007012893

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020007012893

Country of ref document: KR